WO2014101862A1 - 一种多酸液流燃料电池系统 - Google Patents

一种多酸液流燃料电池系统 Download PDF

Info

Publication number
WO2014101862A1
WO2014101862A1 PCT/CN2013/090849 CN2013090849W WO2014101862A1 WO 2014101862 A1 WO2014101862 A1 WO 2014101862A1 CN 2013090849 W CN2013090849 W CN 2013090849W WO 2014101862 A1 WO2014101862 A1 WO 2014101862A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyacid
battery
fuel cell
solution
acid
Prior art date
Application number
PCT/CN2013/090849
Other languages
English (en)
French (fr)
Inventor
刘军
林迈里
张群力
杨思忠
Original Assignee
益阳金能新材料有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 益阳金能新材料有限责任公司 filed Critical 益阳金能新材料有限责任公司
Publication of WO2014101862A1 publication Critical patent/WO2014101862A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to fuel cell technology in the field of new energy, in particular to a polyacid flow fuel cell system using polyacid as a reducing agent and air as an oxidant. Background technique
  • the pentavalent vanadium in the vanadium battery positive electrode is liable to precipitate vanadium pentoxide precipitate when it is at a standstill or temperature higher than 45 degrees Celsius, and the precipitated precipitate blocks the flow path and coats the carbon felt fiber. , deteriorate the performance of the stack until the stack is depleted, and the temperature of the electrolyte during the long-term operation is easily over 45 degrees Celsius.
  • the graphite plate is easily etched by the positive electrode in the battery. If the user operates improperly, the graphite plate can be completely etched by one charge, and the stack can only be scrapped. Therefore, the battery still has many difficulties in industrialization after long-term research. Summary of the invention
  • the present invention provides a polyacid flow fuel cell system having a large-scale storage energy capacity, a better discharge capacity, a high power density, and no toxic toxicity.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: a polyacid liquid fuel cell system, wherein a reduced acid polyacid solution is used as a reducing agent for a liquid flow battery, and oxygen in the air is oxidized.
  • the ion exchange membrane is a battery separator
  • the porous polypropylene carbon fiber felt is a negative electrode material
  • the air gas diffusion electrode is a positive electrode material composed of a liquid flow redox battery.
  • the polyacid solution refers to a solution formed of a polyacid dissolved in an acidic solution, and the polyacid is one or more of the same polyacid, heteropolyacid, and doped polyacid;
  • the polyacid is tungstic acid or molybdic acid, and the anion in the heteropoly acid has the chemical formula of the formula (I):
  • 1 in the formula (I) is 2 to 10.
  • the polyacid is a supramolecular compound formed by combining a polyacid molecule having an formula of the formula (II) or (III):
  • the acidic solution is one or more of an organic acid and a mineral acid, and the molar concentration of hydrogen ions in the acidic solution is 10 - 4 ⁇ lOimol /
  • the non-oxidizing acid solution and an organic non-oxidizing mineral acid is one or more; the concentration of hydrogen ions in the acidic solution of 10_ 4 ⁇ lOimol /
  • the negative electrode of the fuel cell is composed of a heat-treated and surface-modified polypropylene fiber carbon felt and a current collecting plate to form a negative electrode.
  • the chemical treatment of the surface modification of the electrode is to modify the surface of the polypropylene fiber carbon felt with a metal element
  • the metal element is a composition of one or more of Co, Ni, Ir, Ru, Au, Ag, Pt, W and Mo.
  • the ion exchange membrane comprises a perfluorotransverse S? resin exchange membrane or a non-perfluorinated S-proton exchange membrane capable of passing hydrogen ions.
  • the positive electrode of the fuel cell is a hydrophobic porous gas exchange electrode formed of a binder, carbon black, a catalyst and a collecting network;
  • the binder is polytetrafluoroethylene, tetrafluoroethylene and perfluoro One or a mixture of several sulfonic acid resins.
  • the catalyst is one or more of a metal, an alloy, a metal oxide catalyst and a doped metal oxide catalyst
  • the metal is Co, Ni, Mn, Ir, Ru, Au, Pt, W, Mo or Ag metal
  • the alloy being an alloy of one or more of Co, Ni, Mn, Ir, Ru, Au, Pt, W, Mo or Ag metal
  • the metal oxide is Mn0 2 , LaMn0 3 , one or more of LaNin0 3 and LaCo0 3
  • the doping element in the doped metal metal oxide catalyst is one or more of Ca, Sr, Ce and Pb elements.
  • the battery can be regenerated by charging or by replacing the solution in the negative electrode region.
  • the positive effects of the present invention are:
  • the flow battery has a large-scale energy storage capacity, and there is no storage requirement for the oxidant solution relative to the all-vanadium flow battery, and there is no problem of etching the electrode of the positive solution;
  • the reducing agent phase in the battery It has better discharge capacity than the low-valent vanadium reducing agent in the all-vanadium flow battery, because the power density is also greatly improved; compared with the all-vanadium flow battery, the battery has no acute toxicity of high-valence compounds of vanadium; All vanadium redox flow batteries are cheaper for large-scale development.
  • the invention provides a multi-acid liquid fuel cell system, which belongs to the fuel cell technology in the field of new energy, and relates to a fluid fuel cell production method using polyacid as a reducing agent and air as an oxidant.
  • the energy density of the battery can be greatly improved, and the present invention provides a polyacid as a reducing agent.
  • the invention provides a polyacid flow fuel cell system, wherein the liquid fuel cell system uses a reduced polyacid solution as a reducing agent for a liquid flow battery, oxygen in the air as an oxidant, and an ion exchange membrane as a battery separator.
  • the porous polypropylene carbon fiber felt is a negative electrode material
  • the air gas diffusion electrode is a positive electrode material composed of a liquid flow redox battery.
  • FIG. 1 is a schematic structural diagram of a multi-acid liquid fuel cell system according to an embodiment of the present invention.
  • the polyacid flow battery system provided by the embodiment of the present invention includes a positive electrode, a negative electrode, and an ion exchange.
  • the polyacid flow battery system further includes an inlet of a low temperature polyacid solution disposed at a side wall of the flow battery and an outlet of a polyacid solution, the inlet being disposed above the outlet; the inlet and outlet settings On the side of the negative electrode of the flow battery.
  • the inlet of the low-temperature polyacid solution is used to introduce a polyacid solution into the flow battery to provide a reducing agent for the flow battery; in the flow battery, after the oxidation-reduction reaction is completed, The reducing polyacid solution is oxidized to give an oxidation product which exits the flow battery via the polyacid solution outlet.
  • the polyacid flow fuel cell system provided by the present invention comprises a polyacid solution in a reduced state, and the polyacid solution acts as a reducing agent for a flow battery.
  • the polyacid solution is a solution formed of a polyacid dissolved in an acidic solution, and the polyacid is preferably one or more of the same polyacid, heteropolyacid, and doped polyacid.
  • the homopoly acid is preferably tungstic acid or molybdic acid, and the anion in the heteropoly acid has a chemical formula represented by the formula (I):
  • X is preferably P, Si, Ge or As; M is preferably W or Mo; a:b is preferably 1:6, 1:9 or 1:12; n is preferably from 2 to 10, more preferably 2, 3 , 4, 5, 6, 8 or 10;
  • the doping element in the doped polyacid is preferably one or a combination of Fe, Co, Ni, Cr, Cu, Al, Ti, and Sn elements.
  • the poly-S history is further preferably a supramolecular compound composed of a polyacid molecule having an acid formula represented by formula (II) or (III):
  • the source of the polyacid in the above technical solution is not particularly limited, and a polyacid which is well known to those skilled in the art may be used.
  • a polyacid which is well known to those skilled in the art may be used.
  • a commercially available product of a polyacid may be used, or a preparation method well known to those skilled in the art may be employed.
  • the polyacid is prepared by itself.
  • the acidic solution is preferably one or more of a non-oxidizing organic acid and a non-oxidizing inorganic acid, and the present invention is not particularly limited thereto, and the molar concentration of hydrogen ions in the acidic solution is preferably 1 (T 4 ⁇ lO ⁇ ol/L, more preferably 1 (T 3 ⁇ 1 mol/L, most preferably 1 ( ⁇ 2 ⁇ 0.1) Mol/L.
  • the acidic solution is preferably in the ⁇ acid, phosphoric acid, hydrochloric acid, citric acid, and wherein one or several of formulated mixture, formulated in the acidic solution the hydrogen ion concentration is preferably 10- 4 ⁇ K ⁇ Mol / L, in some embodiments of the present invention, the concentration of hydrogen ions in the acidic solution may be 10 - 3 ⁇ 1 mol / L, in another embodiment of the invention, the hydrogen ions in the acidic solution The concentration can also be 1 ( ⁇ 2 ⁇ 0.1 mol/L.
  • the mass concentration of the polyacid in the acidic solution is preferably from 0.1 g/mL to lg/mL, more preferably from 0.15 g/mL to 0.8 g/mL, most preferably 0.2 g/mL to 0.5 g/mL.
  • the polyacid solution is preferably formulated as follows:
  • the acidic solution and the polyacid are mixed under heating, and after cooling, a polyacid solution is obtained.
  • a polyacid solution is obtained.
  • a polyacid solution is obtained.
  • the catalyst solution is a catalyst solution containing a doped polyacid
  • the doping element-containing raw material is preferably a salt compound containing the doping element described in the above technical solution, such as when the doping element is Fe, the doping element-containing salt
  • the compound can be ferrous sulfate.
  • the heating temperature is preferably from 70 ° C to 90 ° C, more preferably from 75 ° C to 85 ° C, and most preferably 80 ° C.
  • the present invention preferably filters the obtained mixed solution to obtain a polyacid solution.
  • a polyacid liquid fuel cell system is prepared by using a reduced polyacid solution as a reducing agent.
  • the polyacid solution described in the above aspect is reduced by an electrolytic method to obtain a polyacid solution in a reduced state.
  • the electrolysis method of the present invention is not particularly limited, and the polyacid solution in an oxidized state is reduced by a technical scheme known to those skilled in the art to obtain a polyacid solution in a reduced state.
  • the polyacid fuel cell system provided by the present invention comprises a negative electrode, and the negative electrode of the fuel cell is preferably composed of a heat-treated and surface-modified polypropylene fiber carbon felt and a current collecting plate composite to constitute a negative electrode.
  • the heat-treated and surface-modified polypropylene fiber carbon felt is preferably prepared by the following method: The polypropylene fiber carbon felt is immersed in a solution containing a modifying element, and impregnated to obtain a polypropylene fiber carbon felt to which a modified element is attached;
  • the polypropylene fiber carbon felt to which the modifying element is attached is subjected to heat treatment to obtain a negative electrode material for preparing a liquid flow battery.
  • the polypropylene fiber carbon felt is preferably immersed in a solution containing a modifying element, and impregnated to obtain a polypropylene fiber carbon felt to which a modifying element is attached.
  • the source of the polypropylene fiber carbon felt of the present invention is not particularly limited, and a polypropylene fiber carbon felt well known to those skilled in the art can be used.
  • a polypropylene fiber carbon felt of a suitable size is selected.
  • the metal element used in the chemical treatment of the surface modification of the negative electrode is preferably one or a combination of elements of Co, Ni, Ir, Ru, Au, Ag, Pt, W and Mo.
  • the solution containing the modifying element is preferably a solution containing ions of the above metal element, and the mass concentration of the metal ion in the solution containing the modifying element is preferably 5% to 60%, more preferably 10% to 30%.
  • the mass ratio of the polypropylene fiber carbon felt to the metal element is preferably 1 : ( 0.000001% - 0.001%), more preferably 1: (0.0001 - 0.001%).
  • a polypropylene fiber carbon felt is immersed in the solution containing the modifying element, and the solution containing the modifying element is preferably used to immerse the polypropylene fiber carbon felt in the containing
  • the immersion time in the solution of the modifying element is preferably from 0.5 to 24 hours, more preferably from 2 to 4 hours.
  • the present invention heat-treats the polypropylene fiber carbon felt to obtain a negative electrode material for preparing a liquid flow battery.
  • the polypropylene fiber carbon felt is preferably taken out from the solution containing the modifying element, the water therein is drained, and the obtained polypropylene fiber carbon felt with the modified element is heat-treated to obtain a liquid flow battery.
  • Anode material is preferably from 300 to 600, more preferably from 350 ° C to 550 ° C, most preferably from 400 ° C to 500 ° C; and the heat treatment time is preferably from 0.5 to 48 hours. More preferably, it is 2 to 24 hours.
  • the method for preparing the chemically modified polypropylene fiber carbon felt is preferably also prepared by the following method:
  • the polypropylene fiber carbon felt was immersed in a solution containing a modifying element and electrolyzed to obtain a chemically modified polypropylene fiber carbon felt.
  • the mass concentration of the modifying element, the solution containing the modifying element, the source and size of the polypropylene fiber carbon felt, and the mass ratio of the polypropylene fiber carbon felt to the modifying element are the same as those described in the above technical solution. This will not be repeated here.
  • the electrode used for the electrolysis is preferably a graphite-based electrode material, more preferably a polyacrylonitrile carbon fiber felt electrode; the potential of the electrolysis is preferably 0.2 to 10 V, more preferably 0.5 to 5 V; The time is preferably from 10 to 600 minutes, more preferably from 3 to 60 minutes.
  • the separator in the liquid fuel cell is preferably an ion exchange membrane, more preferably a perfluorosulfonic acid resin exchange membrane or a non-perfluorosulfonic acid proton exchange membrane capable of passing hydrogen ions.
  • the source of the ion exchange membrane of the present invention is not particularly limited, and the above ion exchange membrane well known to those skilled in the art may be employed.
  • the size of the battery separator of the present invention is not particularly limited, and those skilled in the art can select a battery separator of a suitable size according to the size of the desired flow battery.
  • the positive electrode of the liquid fuel cell is an air diffusion electrode, preferably a hydrophobic porous gas exchange electrode formed of a binder, carbon black, a catalyst, and a current collecting net; in the present invention, the viscosity
  • the binder is preferably one or more of polytetrafluoroethylene, vinylidene fluoride and perfluoro-cross-S history resin;
  • the catalyst constituting the positive electrode is preferably a metal, an alloy, a metal oxide and a doped metal oxide.
  • the metal is preferably a metal of Co, Ni, Mn, Ir, Ru, Au, Pt, W, Mo or Ag;
  • the alloy is preferably Co, Ni, Mn, Ir, Ru, Au
  • the metal oxide is preferably Mn0 2 , LaMnO 3 , LaNin0 3 or LaCo0 3 ; doping in the doped metal oxide
  • the element is preferably one or more of the elements Ca, Sr, Ce and Pb.
  • the mass ratio of the binder, carbon black and catalyst is preferably (0.5 to 10): (80 to 90): (0.1-5), more preferably (1-5): (85 ⁇ 90) : ( 0.1-1 ).
  • the preparation method of the positive electrode is not particularly limited, and the positive electrode can be prepared by using the binder, the carbon black, the catalyst and the current collecting net described in the above technical solution by using the electrode preparation method well known to those skilled in the art. .
  • the binder, carbon black and catalyst are preferably mixed to obtain a slurry; the slurry is coated on a collecting grid to obtain a positive electrode of the flow battery.
  • the coating method of the present invention is not particularly limited, and a coating method well known to those skilled in the art may be employed, such as a spraying method; in the present invention, the coating is applied to the current collecting
  • the thickness of the web slurry is preferably from 0.01 to 0.5 mm, more preferably from 0.1 to 0.3 mm.
  • the present invention preferably performs the obtained slurry-coated current collecting net.
  • the pressing pressure is preferably 0.1 MPa to 10 MPa, more preferably 0.2 to 2 MPa, to obtain a positive electrode of a flow battery, and the present invention is not particularly limited to the drying method, and is well known to those skilled in the art.
  • the dry technical solution may be, for example, a drying method may be employed, and the drying temperature is preferably from 70 to 300, more preferably from 100 to 280 ° C, and most preferably 250 ° C.
  • the method for preparing the flow battery of the present invention is not particularly limited, and is prepared by using the technical solutions for preparing a liquid flow battery well known to those skilled in the art, and preparing the positive electrode, the negative electrode, the battery separator, the reducing agent and the oxidizing agent according to the above technical solution.
  • the flow battery provided by the present invention can be obtained.
  • the polyacid flow battery provided by the present invention can be regenerated.
  • the battery is regenerated by charging or by replacing the solution in the negative electrode region.
  • the solution to be replaced in the flow battery is discharged from the outlet of the polyacid solution of the flow battery, and then the polyacid solution in the flow battery is supplemented by the inlet of the polyacid solution, so that the flow battery is obtained. regeneration.
  • the flow battery provided by the invention has the capability of large-scale storage energy, and has no storage requirement of the oxidant solution relative to the whole vanadium redox flow battery, and there is no etching problem of the positive electrode solution electrode; the reducing agent in the battery is compared with the total vanadium
  • the low-valent vanadium reductant in the flow battery has better discharge capacity because the power density is also greatly improved; compared with the all-vanadium flow battery, the battery has no acute toxicity of high-valence compounds of vanadium; the price of the battery is relatively full vanadium Streaming batteries are cheaper for large-scale development.
  • the polypropylene fiber carbon felt was immersed in a chloroauric acid solution having a molar concentration of 0.5 mol/L, and immersed for 30 minutes; the water in the polypropylene fiber carbon felt adhered to the chloroauric acid was drained at 300 ° C. Heat treatment was carried out for 25 min to obtain a chemically modified polypropylene fiber carbon felt.
  • the polypropylene fiber carbon felt was immersed in a nickel nitrate solution having a molar concentration of 0.1 mol/L, and impregnated.
  • the polypropylene fiber carbon felt adhered to the nickel nitrate was heat-treated at 450 ° C for 20 min to obtain a nickel oxide chemically modified polypropylene fiber carbon felt.
  • a plastic groove of length X width X height 150 X 50 X 70 mm was made of ABS plastic plate, and a hole of 130 X 50 was opened in one side wall of the groove.
  • Processing foamed nickel with a length X width of 140 x 60 mm and a thickness of 1 mm as a collector, and then carbon black, activated carbon, ⁇ crystal Mn0 2 , polytetrafluoroethylene resin and perfluorinated cross S history resin according to 30:30 : 15: 5: 20 weight ratio column is configured to be sprayed onto the carbon paper by spraying, and dried at 80 ° C and then rolled to obtain a positive electrode.
  • a proton exchange membrane having a length X width of 150 x 70 mm is cut into a separator.
  • the proton exchange membrane separator and the positive electrode are pressed and pressed in order to obtain a positive electrode and a diaphragm integrated electrode, and then the integrated electrode is fixed at the opening of the plastic groove and the gap between the positive electrode and the plastic groove is sealed, so that The diaphragm faces the inside of the plastic tank.
  • the negative electrode of the battery is made of a graphite sheet having a processing length X width of 140 x 60 mm, a thickness of 1 mm, and a polyacrylonitrile carbon fiber felt obtained in Example 1 having a length X width of 140 60 mm, and then heat-treated at a high temperature to obtain an electrode. And a collector integrated electrode, the electrode and the collector integrated electrode are assembled into a plastic to form a negative electrode of the liquid fuel cell.
  • the performance of the liquid fuel cell detected by the present invention shows that the output voltage of the battery reaches 0.9 V, the current density is greater than 100 mA/cm 2 , and the power reaches 90 mW.cm -2 under the condition that the entire battery system does not use the platinum catalyst.
  • the battery system and the cryogenic liquid fuel reformer When synthesizing a complete sterol fuel cell system, it is much higher than a direct sterol fuel cell using a platinum catalyst in the absence of a catalyst.
  • the output current density and peak power density of the DMFC output voltage is 022V. 68 mA.cm-2 and 14.8 mW.cm- 2 .
  • ABS plastic plate to make plastic groove with length X width X height 150 X 50 X 70mm and open hole of 130 x 50 mm in one side wall of groove, processing foam nickel with length x width 140 x 60mm and thickness lmm
  • the activated carbon, platinum black, graphene, polytetrafluoroethylene resin, and perfluoro-cross-S resin are arranged in a weight ratio of 30:10:20:15:5:20 to be used as a slurry.
  • the method was sprayed onto carbon paper, and dried at 80 °C, and then rolled to obtain a positive electrode.
  • the proton exchange membrane having a length X width of 150 X 70 mm is cut into a diaphragm, and the proton exchange membrane separator and the positive electrode are pressed and pressed in order to obtain a positive electrode and a diaphragm integrated electrode, and then the integrated electrode is fixed in the plastic tank.
  • the opening is sealed at the gap where the positive electrode and the plastic groove are in contact with the diaphragm facing the inside of the plastic groove.
  • the negative electrode of the battery is a polypropylene carbon fiber felt obtained by processing the graphite sheet having a length X width of 140 60 mm and a thickness of 1 mm and a polypropylene carbon fiber felt having a length X width of 140 60 mm, and then heat-treating at a high temperature to obtain an electrode.
  • the collector integrated electrode is assembled to the inside of the plastic to form a negative electrode of the liquid fuel cell.
  • the reducing agent solution For the configuration of the reducing agent solution, 1 L of high-purity water was taken, 80 ml of analytically pure H 2 S0 4 was added thereto, and after stirring uniformly, the solution was heated to 80 ° C, and then 100 g of ammonium molybdate and 20 g of sulfuric acid were added thereto. Iron, lowering the temperature to cool, filtering the solution will obtain a blue solution in which the solution is reduced to a low-cost state by electrolysis, and the solution is added to the negative electrode region of the battery to obtain the liquid fuel cell.
  • the performance of the liquid fuel cell detected by the present invention shows that the output voltage of the battery reaches 1.0 V, the current density is greater than 150 mA/cm 2 , and the power reaches 150 mW 'cm -2 under the condition that the platinum catalyst is used throughout the battery system.
  • the performance of the liquid fuel cell detected by the present invention shows that the output voltage of the battery reaches 0.9 V, the current density is greater than 90 mA/cm 2 , and the power reaches 80 mW, cm_ 2 under the condition that the entire battery system does not use the platinum catalyst at all.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种多酸液流燃料电池系统,是以还原态的多酸溶液为液流电池的还原剂,空气中的氧气为氧化剂,离子交换膜为电池隔膜,多孔聚丙烯炭纤维毡为负极电极材料,空气气体扩散电极为正极电极材料组成液流氧化还原电池。本发明的液流电池具有大规模存储能量能力,同时相对全钒液流电池没有氧化剂溶液的存储要求,同时也没有正极溶液对电极的刻蚀问题;该电池中的还原剂相比全钒液流电池中的低价钒还原剂具有更好的放电能力,因为功率密度也大大提高;相对全钒液流电池,该电池没有钒的高价化合物的剧毒性;该电池价格相对全钒液流电池更加便宜适合大规模发展。

Description

一种多酸液流燃料电池系统
本申请要求于 2012 年 12 月 31 日提交中国专利局、 申请号为 201210588902.2、 发明名称为 "一种多酸液流燃料电池系统" 的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及新能源领域的燃料电池技术,尤其涉及一种以多酸为还原 剂、 空气为氧化剂的多酸液流燃料电池系统。 背景技术
液流电池是一种大型储能装置,其基本工作原理为电池的正负极或某 一极活性物质为液态流体氧化还原电对。由于液流电池能够将能量转化到 电解液中分别进行存储, 因为具有超大规模存储能量的优势, 由于这种特 点液流电池适合风能、太阳能等新能源发电的储能技术。在液流电池中目 前以全钒液流电池最具发展潜力。 然而, 在全液流电池中, 钒电池正极液 中的五价钒在静置或温度高于 45摄氏度的情况下易析出五氧化二钒沉淀, 析出的沉淀堵塞流道, 包覆碳毡纤维, 恶化电堆性能, 直至电堆^艮废, 而 电堆在长时间运行过程中电解液温度艮容易超过 45摄氏度。 同时,在该电 池中石墨极板容易被正极液刻蚀,如果用户操作不当,一次充电就能让石 墨板完全刻蚀, 电堆只能报废。 因此该电池目前经过长期研究在产业化上 仍有很多困难。 发明内容
为了克服现有技术的上述缺点, 本发明提供一种具有大规模存储能 量能力,有更好的放电能力,功率密度大且无剧毒性的多酸液流燃料电池 系统。
本发明解决其技术问题所采用的技术方案是:一种多酸液流燃料电池 系统,是以还原态的多酸溶液为液流电池的还原剂, 空气中的氧气为氧化 剂, 离子交换膜为电池隔膜, 多孔聚丙烯炭纤维毡为负极电极材料, 空气 气体扩散电极为正极电极材料组成液流氧化还原电池。
优选的, 所述的多酸溶液是指由溶解于酸性溶液中的多酸形成的溶 液, 所述多酸为同多酸、 杂多酸和掺杂多酸中的一种或几种; 所述同多酸 为钨酸或者钼酸, 所述杂多酸中的阴离子具有通式(I )所示化学式:
[XaMbO40]n" ( I );
式(I ) X=P、 Si、 Ge或 As, M=W或 Mo。 a:b=l:6、 1:9或 1:12; 所 述掺杂多酸中的掺杂元素为 Fe、 Co、 Ni、 Cr、 Cu、 Al、 Ti和 Sn元素中 的一种或者几种。
优选的, 所述式(I ) 中的 1 为2〜10。
优选的, 所述的多酸是由多酸分子和有机分子结合成的超分子化合 物, 所述超分子化合物具有式(II )或 (III )所示化学式:
[(C19H18N3)2H][PMo12O40] ( II ); (ppy)4H6[SiW12O40] ( III )。
优选的,所述的酸性溶液为有机酸和无机酸中的一种或多种 ,所述酸 性溶液中氢离子的摩尔浓度为 10-4 ~ lOimol/
优选的,所述酸性溶液为非氧化有机酸和非氧化无机酸中的一种或多 种; 所述酸性溶液中氢离子浓度为 10_4 ~ lOimol/
优选的,所述的燃料电池的负极是以经过热处理的并进行表面修饰的 聚丙烯纤维碳毡和集流板复合组成负极。
优选的,所述的电极表面修饰的化学处理为采用金属元素对聚丙烯纤 维碳毡进行表面进行修饰;
所述金属元素为 Co、 Ni、 Ir、 Ru、 Au、 Ag、 Pt、 W和 Mo其中的一 种或者几种的组合物。
优选的,所述的离子交换膜包括全氟横 S炱树脂交换膜或者能通过氢离 子的非全氟横 S史质子交换膜。
优选的, 所述燃料电池的正极为由粘接剂、炭黑、催化剂和集流网形 成的疏水多孔的气体交换电极; 所述粘接剂为聚四氟乙烯、偏四氟乙烯和 全氟磺酸树脂中的一种或者几种的混合物。 优选的, 所述催化剂为金属、合金、金属氧化物催化剂和掺杂金属氧 化物催化剂中的一种或几种, 所述金属为 Co、 Ni、 Mn、 Ir、 Ru、 Au、 Pt、 W、 Mo或 Ag金属, 所述合金为 Co、 Ni、 Mn、 Ir、 Ru、 Au、 Pt、 W、 Mo或 Ag金属中的一种或者几种组成的合金; 所述金属氧化物为 Mn02、 LaMn03、 LaNin03和 LaCo03中的一种或几种, 所述掺杂金属金属氧化物 催化剂中的掺杂元素为 Ca、 Sr、 Ce和 Pb元素中的一种或几种。
优选的,所述的电池能够通过充电的办法来获得再生,或通过更换负 极区域的溶液来获得再生。
本发明的积极效果是: 液流电池具有大规模存储能量能力, 同时相对 全钒液流电池没有氧化剂溶液的存储要求,同时也没有正极溶液对电极的 刻蚀问题;该电池中的还原剂相比全钒液流电池中的低价钒还原剂具有更 好的放电能力, 因为功率密度也大大提高; 相对全钒液流电池, 该电池没 有钒的高价化合物的剧毒性;该电池价格相对全钒液流电池更加便宜适合 大规模发展。
附图说明 具体实施方式
下面结合实施例对本发明进一步说明。
本发明提供了一种多酸液流燃料电池系统,是属于新能源领域的燃料 电池技术, 涉及一种以多酸为还原剂, 空气为氧化剂的流体燃料电池生产 方法。
为解决上述全钒液流电池存在的问题,以及利用燃料电池中使用的氧 化剂为从空气中获得的氧气,从而可以大幅度的提高电池的能量密度,本 发明提供一种多酸为还原剂, 空气为氧化剂的流体燃料电池生产方法。
本发明提供了一种多酸液流燃料电池系统,所述液流燃料电池系统以 还原态的多酸溶液为液流电池的还原剂, 空气中的氧气为氧化剂, 离子交 换膜为电池隔膜,多孔聚丙烯炭纤维毡为负极电极材料, 空气气体扩散电 极为正极电极材料组成液流氧化还原电池。 参见图 1 ,图 1为本发明实施例提供的多酸液流燃料电池系统的结构示 意图, 由图 1可以看出,本发明实施例提供的多酸液流电池系统包括正极、 负极、 离子交换膜和还原性多酸溶液。所述多酸液流电池系统还包括设置 在所述液流电池侧壁的低温多酸溶液的进口和多酸溶液的出口,所述进口 设置于所述出口的上方; 所述进口和出口设置在所述液流电池负极的一 侧。在本发明中,所述低温多酸溶液的进口用于向所述液流电池中通入多 酸溶液, 为所述液流电池提供还原剂; 在液流电池中, 完成氧化还原反应 后,还原性的多酸溶液被氧化得到氧化产物,所述氧化产物经由所述多酸 溶液出口流出液流电池。
本发明提供的多酸液流燃料电池系统包括还原态的多酸溶液,所述多 酸溶液作为液流电池的还原剂。在本发明中,所述的多酸溶液为由溶解于 酸性溶液中的多酸形成的溶液,所述多酸优选为同多酸、杂多酸和掺杂多 酸中的一种或几种。 在本发明中, 所述同多酸优选为钨酸或者钼酸, 所述 杂多酸中的阴离子具有通式(I )所示的化学式:
[XaMbO40]n" ( I ) ;
其中, X优选为 P、 Si、 Ge或 As; M优选为 W或 Mo; a:b优选为 1:6、 1:9或 1:12; n优选为 2〜10, 更优选为 2、 3、 4、 5、 6、 8或 10;
所述掺杂多酸中的掺杂元素优选为 Fe、 Co、 Ni、 Cr、 Cu、 Al、 Ti 和 Sn元素中的一种或者几种的组合。
在本发明的实施例中 ,所述多 S史还优选为由多酸分子和有机分子结合 成的超分子化合物, 所述超分子化合物具有式(II )或(III )所示化学式:
[(C19H18N3)2H][PMo12O40] ( II ) ; (ppy)4H6[SiW12O40] ( III ) ; 式(III ) 中 ppy为聚吡咯。
本发明对上述技术方案所述多酸的来源没有特殊的限制 ,采用本领域 技术人员熟知的多酸即可,如可以采用多酸的市售商品,也可以采用本领 域技术人员熟知的制备方法自行制备得到多酸。
在本发明中,所述的酸性溶液优选为非氧化有机酸和非氧化无机酸中 的一种或多种,本发明对此没有特殊的限制,所述酸性溶液中氢离子的摩 尔浓度优选为 1(T4 ~ lO^ol/L, 更优选为 1(T3〜1 mol/L, 最优选为 1(Τ2〜0.1 mol/L。 具体的, 所述酸性溶液优选为^酸、 磷酸、 柠檬酸和盐酸中的一 种或者其中的几种混合物配制而成,配制成的酸性溶液中其氢离子浓度优 选为 10-4 ~ K^mol/L, 在本发明的一些实施例中, 所述酸性溶液中氢离子 的浓度可以为 10-3〜1 mol/L, 在本发明另外的实施例中, 所述酸性溶液中 氢离子的浓度还可以为 1 (Τ2〜0.1 mol/L。
在本发明中,在本发明中,所述多酸在所述酸性溶液中的质量浓度优 选为 0.1 g/mL〜l g/mL , 更优选为 0.15 g/mL〜0.8 g/mL , 最优选为 0.2 g/mL〜0.5 g/mL。
在本发明中, 所述多酸溶液优选按照下述方法配制:
在加热条件下, 将所述酸性溶液和多酸混合, 冷却后得到多酸溶液。 本发明优选在加热条件下,向所述酸性溶液中加入多酸, 降低温度冷 却后得到多酸溶液; 更优选将所述酸性溶液加热,向加热的酸性溶液中加 入多酸, 降低温度冷却后得到多酸溶液。 在本发明中, 当所述催化剂溶液 为含有掺杂多酸的催化剂溶液时,优选将含有掺杂元素的原料与多酸溶于 酸性溶液中, 加热保温, 得到含有掺杂多酸的催化剂溶液; 在本发明中, 所述含有掺杂元素的原料优选为含有上述技术方案所述掺杂元素的盐类 化合物,如当所述掺杂元素为 Fe时,所述含有掺杂元素的盐类化合物可以 为硫酸亚铁。 在本发明中, 所述加热的温度优选为 70°C〜90°C , 更优选为 75°C〜85°C , 最优选为 80°C。
冷却后, 本发明优选将得到的混合溶液过滤, 得到多酸溶液。
本发明以还原态的多酸溶液为还原剂, 制备多酸液流燃料电池系统。 本发明优选将上述技术方案所述的多酸溶液通过电解法还原,得到还原态 的多酸溶液。本发明对所述电解法没有特殊的限制,采用本领域技术人员 熟知的电解的技术方案将氧化态的多酸溶液还原,得到还原态的多酸溶液 即可。
本发明提供的多酸燃料电池系统包括负极,所述燃料电池的负极优选 为以经过热处理的并进行表面修饰的聚丙烯纤维碳毡和集流板复合组成 负极。在本发明中,所述经热处理并进行表面修饰的聚丙烯纤维碳毡优选 按照以下方法制备得到: 将聚丙烯纤维碳毡浸入含有修饰元素的溶液中,浸渍得到附着有修饰 元素的聚丙烯纤维碳毡;
将所述附着有修饰元素的聚丙烯纤维碳毡进行热处理,得到用于制备 液流电池的负极材料。
本发明优选将聚丙烯纤维碳毡浸入含有修饰元素的溶液中 ,浸渍得到 附着有修饰元素的聚丙烯纤维碳毡。本发明对所述聚丙烯纤维碳毡的来源 没有特殊的限制,采用本领域技术人员熟知的聚丙烯纤维碳毡即可。本发 所需的负极材料的尺寸, 选择合适尺寸的聚丙烯纤维碳毡。 在本发明中, 所述的负极表面修饰的化学处理使用的金属元素优选为 Co、 Ni、 Ir、 Ru、 Au、 Ag、 Pt、 W和 Mo元素中的一种或者几种组合。 所述含有修饰元素的 溶液优选为包括上述金属元素的离子的溶液,所述含有修饰元素的溶液中 金属离子的质量浓度优选为 5%〜60%, 更优选为 10%〜30%。 在本发明中, 所述聚丙烯纤维碳毡与 金属元素 的质量 比为优选为 1 : ( 0.000001%~0.001% ) , 更优选为 1: ( 0.0001-0.001% ) 。 本发明将聚丙 烯纤维碳毡浸入与所述含有修饰元素的溶液中,所述含有修饰元素的溶液 的用量优选能够浸没所述聚丙烯纤维碳毡,所述聚丙烯纤维碳毡在所述含 有修饰元素的溶液中的浸渍时间优选为 0.5〜24小时, 更优选为 2〜4小时。
得到附着有修饰元素的聚丙烯纤维碳毡后,本发明将所述聚丙烯纤维 碳毡进行热处理,得到用于制备液流电池的负极材料。本发明优选将聚丙 烯纤维碳毡从所述含有修饰元素的溶液中取出, 沥干其中的水分,将得到 的附着有修饰元素的聚丙烯纤维碳毡进行热处理,得到用于制备液流电池 的负极材料。 在本发明中, 所述热处理的温度优选为300 〜600 , 更优 选为 350 °C〜550 °C , 最优选为 400 °C〜500 °C ; 所述热处理的时间优选为 0.5〜48小时, 更优选为 2〜24小时。
在本发明中,所述化学修饰的聚丙烯纤维碳毡的制备方法优选还可以 由以下方法制备得到:
将聚丙烯纤维碳毡浸入含有修饰元素的溶液中,进行电解,得到化学 修饰的聚丙烯纤维碳毡。 在本发明中, 所述修饰元素、含有修饰元素的溶液的质量浓度、 聚丙 烯纤维碳毡的来源和尺寸、聚丙烯纤维碳毡与修饰元素的质量比与上述技 术方案所述的一致, 在此不再贅述。
在本发明中,所述电解采用的电极优选为石墨类电极材料,更优选为 聚丙烯腈碳纤维毡电极; 所述电解的电位优选为 0.2〜10V, 更优选为 0.5〜5V; 所述电解的时间优选为 10〜600分钟, 更优选为 3〜60分钟。
在本发明中,所述液流燃料电池中的隔膜优选为离子交换膜,更优选 为全氟磺酸树脂交换膜或者能通过氢离子的非全氟磺酸质子交换膜。本发 明对所述离子交换膜的来源没有特殊的限制,采用本领域技术人员熟知的 上述离子交换膜即可。本发明对所述电池隔膜的尺寸没有特殊的限制,本 领域技术人员可根据所需液流电池的尺寸选择合适尺寸的电池隔膜。
在本发明中,所述液流燃料电池的正极为空气扩散电极,优选为由粘 接剂、炭黑、催化剂和集流网形成的疏水多孔的气体交换电极; 在本发明 中,所述粘接剂优选为聚四氟乙烯、偏四氟乙烯和全氟横 S史树脂中的一种 或者几种; 所述的组成正极的催化剂优选为金属、合金、金属氧化物和掺 杂金属氧化物中的一种或几种; 所述金属优选为 Co、 Ni、 Mn、 Ir、 Ru、 Au、 Pt、 W、 Mo或 Ag金属; 所述合金优选为 Co、 Ni、 Mn、 Ir、 Ru、 Au、 Pt、 W、 Mo和 Ag金属中的一种或者几种组成的合金; 所述金属氧化物优 选为 Mn02、 LaMn03、 LaNin03或 LaCo03; 所述掺杂金属氧化物中的掺杂 元素优选为 Ca、 Sr、 Ce和 Pb元素中的一种或几种。 在本发明中, 所述粘 结剂、 炭黑和催化剂的质量比优选为 (0.5〜10 ) : ( 80〜90 ) : ( 0.1-5 ) , 更优选为 ( 1-5 ) : ( 85〜90 ) : ( 0.1-1 ) 。
本发明对所述正极的制备方法没有特殊的限制,采用本领域技术人员 熟知的电极的制备方法, 以上述技术方案所述的粘结剂、炭黑、催化剂和 集流网制备得到正极即可。本发明优选将所述粘结剂、炭黑和催化剂混合, 得到浆料; 将所述浆料涂覆在集流网上, 得到液流电池的正极。 本发明对 所述涂覆的方法没有特殊的限制,采用本领域技术人员熟知的涂覆的技术 方案即可, 如可以采用喷涂的方法; 在本发明中, 所述涂覆在所述集流网 上浆料的厚度优选为 0.01〜0.5mm, 更优选为 0.1〜0.3mm。 本发明将所述浆 料涂覆在所述集流网上后,本发明优选将得到的涂覆有浆料的集流网进行 压制并进行干燥, 所述压制的压力优选为 0.1MPa〜10MPa , 更优选为 0.2〜2MPa, 得到液流电池的正极, 本发明对所述干燥的方法没有特殊的 限制,采用本领域技术人员熟知的干燥的技术方案即可,如可采用烘干的 方法, 所述干燥的温度优选为70 〜300 , 更优选为 100°C〜280°C , 最优 选为 250°C。
本发明对所述液流电池的制备方法没有特殊的限制,采用本领域技术 人员熟知的制备液流电池的技术方案,以上述技术方案所述的正极、负极、 电池隔膜、 还原剂和氧化剂制备得到本发明提供的液流电池即可。
本发明提供的多酸液流电池能够再生,优选的,所述的电池通过充电 的办法来获得再生,或通过更换负极区域的溶液来获得再生。在本发明的 实施例中,液流电池中待更换的溶液由液流电池的多酸溶液出口流出,再 由多酸溶液进口对液流电池中的多酸溶液进行补充,使得液流电池获得再 生。
本发明提供的液流电池具有大规模存储能量能力,同时相对全钒液流 电池没有氧化剂溶液的存储要求, 同时也没有正极溶液对电极的刻蚀问 题;该电池中的还原剂相比全钒液流电池中的低价钒还原剂具有更好的放 电能力, 因为功率密度也大大提高; 相对全钒液流电池, 该电池没有钒的 高价化合物的剧毒性;该电池价格相对全钒液流电池更加便宜适合大规模 发展。
为了进一步说明本发明,下面结合实施例对本发明提供的多酸液流燃 料电池系统进行详细地描述,但不能将它们理解为对本发明保护范围的限 定。
实施例 1 :
将聚丙烯纤维碳毡浸没于摩尔浓度为 0.5 mol/L的氯金酸溶液中,浸渍 30 min; 沥干得到的附着有氯金酸的聚丙烯纤维碳毡中的水分, 在 300°C 下进行热处理 25 min, 得到化学修饰聚丙烯纤维碳毡。
实施例 2 将聚丙烯纤维碳毡浸没于摩尔浓度为 0.3 mol/L的氯铂酸溶液中,浸渍 60 min; 沥干得到的附着有氯金酸的聚丙烯纤维碳毡中的水分, 在 600°C 下进行热处理 10 min, 得到化学修饰聚丙烯纤维碳毡。
实施例 3
将聚丙烯纤维碳毡浸没于摩尔浓度为 0.1 mol/L的硝酸镍溶液中,浸渍
90 min; 沥干得到的附着有硝酸镍的聚丙烯纤维碳毡, 在 450°C下进行热 处理 20 min, 得到氧化镍化学修饰聚丙烯纤维碳毡。
实施例 4
用 ABS塑料板制作长 X宽 X高 150 X 50 X 70mm的塑料槽, 并在槽其 中一个侧壁开出 130 X 50的孔。 加工尺寸长 X宽为 140 x 60mm、 厚度为 lmm的泡沫镍为集电极, 然后将炭黑、 活性炭、 β晶型的 Mn02、 聚四氟乙 烯树脂和全氟横 S史树脂按照 30:30: 15: 5: 20的重量比列配置成浆料利用喷 涂的方法均勾的喷涂到碳纸上,在 80°C条件下充分烘干后进行轧制得到正 极。 裁切尺寸长 X宽为 150 x 70mm的质子交换膜为隔膜。 按顺序将质子 交换膜隔膜、正极压紧后热压得到正极、 隔膜一体化电极, 然后将该一体 化电极固定在塑料槽的开口处并将正极和塑料槽的接触的缝隙处进行密 封, 让隔膜面向塑料槽的内部。
电池的负极是采用加工尺寸长 X宽为 140 x 60mm, 厚度为 lmm的石 墨片和长 X宽尺寸为 140 60mm的实施例 1得到的聚丙婦碳纤维毡用树 脂粘结后再高温热处理, 得到电极、 集电极一体化电极, 将该电极、 集电 极一体化电极装配到塑料的内部形成液流燃料电池的负极。
还原剂溶液的配置, 取高纯水 1 L, 向其中加入 100 ml分析纯 ¾P04, 搅拌均匀后, 然后将溶液加热至 80°C , 然后再向其中加入 200 g钼酸铵, 降低温度冷却,将得到的混合溶液过滤,得到的滤液通过电解法还原成低 价态的蓝色溶液,将该溶液加入到电池的负极区域得到所述的液流燃料电 池。
本发明检测得到的液流燃料电池的性能,结果表明,在整个电池系统 不使用白金催化剂的条件下电池的输出电压达到 0.9V , 电流密度大于 lOOmA/cm2,功率达到 90mW.cm-2。 当该电池系统和低温液相燃料重整器整 合成完整的曱醇燃料电池系统时,其在完全没有催化剂的条件下远远高于 使用白金催化剂的直接曱醇燃料电池, 后者 DMFC输出电压为 022V时, 其输出电流密度和峰值功率密度只有 68mA.cm-2和 14.8mW.cm-2
实施例 5
用 ABS塑料板制作长 X宽 X高 150 X 50 X 70mm的塑料槽并在槽其 中一个侧壁开出 130 x 50 mm的孔, 加工尺寸长 x宽为 140 x 60mm、 厚 度为 lmm的泡沫镍为集电极, 然后将活性碳、 铂黑、 石墨烯、 聚四氟乙 烯树脂、 全氟横 S史树脂按照 30: 10:20: 15: 5: 20的重量比列配置成浆料 利用喷涂的方法均勾的喷涂到碳纸上, 在 80 °C条件下充分烘干后进行轧 制得到正极。 裁切尺寸长 X宽为 150 X 70mm的质子交换膜为隔膜, 按顺 序将质子交换膜隔膜、正极压紧后热压得到正极、 隔膜一体化电极, 然后 将该一体化电极固定在塑料槽的开口处并将正极和塑料槽的接触的缝隙 处进行密封, 让隔膜面向塑料槽的内部。
电池的负极是采用加工尺寸长 X宽为 140 60mm,厚度为 lmm的石 墨片和长 X宽尺寸为 140 60mm的实施例 2得到的聚丙烯碳纤维毡用树 脂粘结后再高温热处理, 得到电极、 集电极一体化电极, 将该电极、 集电 极一体化电极装配到塑料的内部形成液流燃料电池的负极。
还原剂溶液的配置 , 取高纯水 1 L, 向其中加入 80 ml分析纯 H2S04, 搅拌均匀后, 然后将溶液加热至 80°C , 然后向其中加入 100 g钼酸铵和 20 g硫酸亚铁, 降低温度冷却,过滤溶液将得到所溶液通过电解法还原成 低价态的蓝色溶液,将该溶液加入到电池的负极区域得到所述的液流燃料 电池。
本发明检测得到的液流燃料电池的性能,结果表明,在整个电池系统 在使用白金催化剂的条件下电池的输出电压达到 1.0V, 电流密度大于 150mA/cm2, 功率达到 150mW'cm-2
实施例 6
采用实施例 5的技术方案, 装配得到液流燃料电池, 不同的是, 本实 施例采用实施例 3的聚丙烯纤维碳毡代替实施例 5采用的聚丙烯纤维碳 毡; 本实施例中还原剂溶液由下述过程配制得到: 取高纯水 1 L, 向其中 加入 70 ml分析纯 H2S04和 15 mL市售浓 HC1,搅拌均匀后, 然后将溶液 加热至 90°C , 然后向其中加入 150 g (ppy)4H6[SiW12O40] , 降低温度冷却, 过滤溶液将得到所溶液通过电解法还原成低价态的蓝色溶液,将该溶液加 入到电池的负极区域得到所述的液流燃料电池。
本发明检测得到的液流燃料电池的性能,结果表明,在整个电池系统 完全不使用白金催化剂的条件下电池的输出电压达到 0.9V, 电流密度大 于 90mA/cm2,功率达到 80mW,cm_2
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应 当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前 提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发 明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术 人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的 精神或范围的情况下在其它实施例中实现。 因此,本发明将不会被限制于 本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一 致的最宽的范围。
+

Claims

权 利 要 求
1、 一种多酸液流燃料电池系统, 其特征是: 是以还原态的多酸溶液 为液流电池的还原剂, 空气中的氧气为氧化剂, 离子交换膜为电池隔膜, 多孔聚丙烯炭纤维毡为负极电极材料,空气气体扩散电极为正极电极材料 组成的液流氧化还原电池。
2、 如权利要求 1所述多酸液流燃料电池系统, 其特征是: 所述的多 酸溶液是指由溶解于酸性溶液中的多酸形成的溶液, 所述多酸为同多酸、 杂多酸和掺杂多酸中的一种或几种; 所述同多酸为钨酸或者钼酸,所述杂 多酸中的阴离子具有通式(I )所示的化学式;
[XaMbO40]n" ( I );
式(I ) 中, X=P、 Si、 Ge或 As; M=W或 Mo; a:b=l:6、 1:9或 1: 12; 所述掺杂多酸中的掺杂元素为 Fe、 Co、 Ni、 Cr、 Cu、 Al、 Ti和 Sn 元素一种或者几种。
3、 如权利要求 2所述多酸液流燃料电池系统, 其特征是: 所述的多 酸为由多酸分子和有机分子结合成的超分子化合物,所述超分子化合物具 有式(II )或式(III )所示化学式:
[(C19H18N3)2H][PMo12O40] ( II ); (ppy)4H6[SiW12O40] ( III )。
4、 如权利要求 2所述多酸液流燃料电池系统, 其特征是: 所述的酸 性溶液为非氧化有机酸和非氧化无机酸中的一种或者多种;
所述酸性溶液中氢离子的摩尔浓度为 10_4〜 10 imol/L。
5、 如权利要求 1所述多酸液流燃料电池系统, 其特征是: 所述燃料 电池的负极是以经过热处理的并进行表面修饰的聚丙烯纤维碳毡和集流 板复合组成负极。
6、 如权利要求 5所述多酸液流燃料电池系统, 其特征是: 电极表面 修饰的化学处理为采用金属元素对聚丙烯纤维碳毡进行表面修饰;
所述金属元素为 Co、 Ni、 Ir、 Ru、 Au、 Ag、 Pt、 W、 Mo其中的一 种或者几种的组合物。
7、 如权利要求 1所述多酸液流燃料电池系统, 其特征是: 所述的离 子交换膜包括全氟磺酸树脂交换膜或者能通过氢离子的非全氟磺酸质子 交换膜。
8、 如权利要求 1所述多酸液流燃料电池系统, 其特征是: 所述燃料 电池的正极为由粘接剂、炭黑、催化剂和集流网形成的疏水多孔的气体交 换电极;
所述粘接剂为聚四氟乙烯、偏四氟乙烯和全氟横 S史树脂中的一种或者 几种的混合物。
9、 如权利要求 8所述多酸液流燃料电池系统, 其特征是: 所述催化 剂为金属、合金、金属氧化物和掺杂金属氧化物中的一种和几种; 所述金 属为 Co、 Ni、 Mn、 Ir、 Ru、 Au、 Pt、 W、 Mo或 Ag金属; 所述合金为 Co、 Ni、 Mn、 Ir、 Ru、 Au、 Pt、 W、 Mo或 Ag金属中的一种或者几种组 成的合金; 所述金属氧化物为 Mn02、 LaMn03、 LaNin03和 LaCo03中的 一种或几种, 所述掺杂金属氧化物中的掺杂元素为 Ca、 Sr、 Ce和 Pb元 素中的一种或几种。
10、如权利要求 1所述多酸液流燃料电池系统, 其特征是: 所述的液 流燃料电池能够通过充电的办法来获得再生,或通过更换负极区域的溶液 来获得再生。
+
PCT/CN2013/090849 2012-12-31 2013-12-30 一种多酸液流燃料电池系统 WO2014101862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210588902.2 2012-12-31
CN2012105889022A CN103022545A (zh) 2012-12-31 2012-12-31 一种多酸液流燃料电池系统

Publications (1)

Publication Number Publication Date
WO2014101862A1 true WO2014101862A1 (zh) 2014-07-03

Family

ID=47970852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090849 WO2014101862A1 (zh) 2012-12-31 2013-12-30 一种多酸液流燃料电池系统

Country Status (2)

Country Link
CN (1) CN103022545A (zh)
WO (1) WO2014101862A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022545A (zh) * 2012-12-31 2013-04-03 刘军 一种多酸液流燃料电池系统
CN105420289B (zh) * 2015-12-09 2019-02-05 清华大学 一种以木质纤维素为原料联产乙醇和电能的方法
CN114204067B (zh) * 2021-12-13 2024-05-28 上海交通大学 基于杂多酸的储氢溶液及使用其的便携式燃料电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396687A (en) * 1980-12-08 1983-08-02 Ford Motor Company Chemically regenerable redox fuel cell and method of operating the same
CN101405901A (zh) * 2006-03-24 2009-04-08 阿卡尔能源有限公司 燃料电池
CN102468510A (zh) * 2010-11-18 2012-05-23 北京科技大学 一种基于杂多化合物储能的间接甲醇燃料电池装置
CN103022545A (zh) * 2012-12-31 2013-04-03 刘军 一种多酸液流燃料电池系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134018A1 (en) * 2010-04-30 2011-11-03 Gomez Rodolfo Antonio M Non-diffusion liquid energy storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396687A (en) * 1980-12-08 1983-08-02 Ford Motor Company Chemically regenerable redox fuel cell and method of operating the same
CN101405901A (zh) * 2006-03-24 2009-04-08 阿卡尔能源有限公司 燃料电池
CN102468510A (zh) * 2010-11-18 2012-05-23 北京科技大学 一种基于杂多化合物储能的间接甲醇燃料电池装置
CN103022545A (zh) * 2012-12-31 2013-04-03 刘军 一种多酸液流燃料电池系统

Also Published As

Publication number Publication date
CN103022545A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
CN102867967B (zh) 一种全钒液流储能电池用电极材料及其应用
CN103227334B (zh) 一种碳载金属催化剂及其制备方法和应用
Chen et al. SiO2-decorated graphite felt electrode by silicic acid etching for iron-chromium redox flow battery
CN103394350B (zh) 一种钛钨氧化物包覆碳纳米管载铂电催化剂的制备方法
JP2002100373A (ja) 燃料電池用触媒化多孔性炭素電極製造方法
CN105449232B (zh) 过渡族金属掺杂Pt‑Al金属间化合物形成双模式孔三元合金的制备方法及应用
CN111244470B (zh) 一种纳米复合阴极及其制备和应用
CN106410245B (zh) 一种固体氧化物燃料电池阴极催化剂及催化阴极的制备方法
US10675611B2 (en) Carbon powder for fuel cell and catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell using the carbon powder for fuel cell
JP2006210135A (ja) 触媒電極材料、触媒電極、及びこれらの製造方法、電極触媒用の担体材料、並びに電気化学デバイス
CN102626649A (zh) 一种氧还原非贵金属催化剂及其制备方法
CN104319409A (zh) 一种全钒液流电池用高活性不对称电极及其制备方法
CN102104157A (zh) 一种炭干凝胶的制备方法
CN106058276A (zh) 一种二氧化硅修饰的多球腔碳材料的制法及其在燃料电池膜电极中的应用
WO2014104282A1 (ja) 静止型バナジウムレドックス電池
CN112968184B (zh) 一种三明治结构的电催化剂及其制备方法和应用
CN105895942B (zh) 一种新型lsc催化的bcfz阴极及其制备方法
Xiang et al. Electrochemical enhancement of carbon paper by indium modification for the positive side of vanadium redox flow battery
CN101162780B (zh) 一种直接甲醇燃料电池阳极催化剂及其制备方法
CN104707625A (zh) Pt-Ag-Co/C催化剂的制备方法
Li et al. Advanced Architectures of Air Electrodes in Zinc–Air Batteries and Hydrogen Fuel Cells
Zhao et al. Performance improvement of non-aqueous iron-vanadium flow battery using chromium oxide–modified graphite felt electrode
WO2014101862A1 (zh) 一种多酸液流燃料电池系统
CN104103837B (zh) 抗二氧化碳的中低温固体氧化物燃料电池阴极材料及应用
CN100497449C (zh) 一种酸浸高分子质子交换膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868624

Country of ref document: EP

Kind code of ref document: A1