WO2014101858A1 - 一种液流电池用低温液相燃料重整器 - Google Patents

一种液流电池用低温液相燃料重整器 Download PDF

Info

Publication number
WO2014101858A1
WO2014101858A1 PCT/CN2013/090843 CN2013090843W WO2014101858A1 WO 2014101858 A1 WO2014101858 A1 WO 2014101858A1 CN 2013090843 W CN2013090843 W CN 2013090843W WO 2014101858 A1 WO2014101858 A1 WO 2014101858A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
solution
low
temperature
reformer
Prior art date
Application number
PCT/CN2013/090843
Other languages
English (en)
French (fr)
Inventor
刘军
林迈里
张群力
杨思忠
Original Assignee
益阳金能新材料有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 益阳金能新材料有限责任公司 filed Critical 益阳金能新材料有限责任公司
Publication of WO2014101858A1 publication Critical patent/WO2014101858A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/109After-treatment of the membrane other than by polymerisation thermal other than drying, e.g. sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the fuel cell technology in the field of new energy, and relates to a low temperature liquid fuel reformer applied to a proton exchange membrane fuel cell. Background technique
  • the fuel cell can directly convert the chemical energy of the fuel into electric energy by discharging the fuel and the oxidant on the electrodes on both sides of the battery, so that the energy conversion rate is high, which is not limited by the energy conversion efficiency of the Carnot cycle.
  • the efficiency of traditional heat engines is more than twice.
  • Energy conversion through hydrogen fuel cells is an efficient and clean way to use energy.
  • hydrogen fuel used in hydrogen fuel cells is a flammable and explosive gas, there are many problems in storage and transportation.
  • the main hydrogen storage methods include high-pressure hydrogen tank storage, hydrogen storage alloy storage, and high-temperature catalyst reforming.
  • the hydrogen storage in the high-pressure hydrogen tank has the disadvantages of large energy consumption, low hydrogen storage density and large volume in the process of hydrogen storage; while the hydrogen storage alloy has hydrogen storage alloy in the hydrogen storage process, the alloy is continuously pulverized and refined, resulting in alloy storage.
  • a series of problems such as hydrogen failure, and hydrogen storage alloy hydrogen storage also has the defects of large weight of the alloy itself; while high-temperature catalyst reforming, there is a certain concentration of carbon monoxide gas produced by the reformer, which can poison the catalyst of the fuel cell. Causes the fuel cell to not work properly. Therefore, the current development of the fuel cell field has been greatly hindered by the fuel. Summary of the invention
  • the present invention provides a catalyst solution capable of converting a small molecule liquid fuel into a reducing medium in a medium-low temperature liquid phase by using a low temperature liquid phase fuel reformer under low temperature liquid state, and then The reducing solution is directly supplied to the liquid fuel cell as a fuel, thereby solving the problem of storage of the fuel cell fuel.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to provide a low temperature liquid phase combustion a reformer comprising a fuel reaction chamber and a heat exchanger, wherein the fuel reaction chamber contains a solution of a catalyst; mixing the catalyst solution and the fuel solution, and then delivering the obtained mixed solution to the fuel reaction chamber at a temperature of 20 a chemical reaction occurs at a temperature of 200 ° C and a pressure of 0.1 to 20 MPa to form a low-cost fuel solution having a reducing property, and the conversion of the fuel is completed, and the fuel is oxidized to carbon dioxide and water;
  • the valence fuel solution is cooled by the heat exchanger and then enters the liquid fuel cell, and is oxidized in the negative electrode region of the fuel cell to obtain a high valence state catalyst solution, and the high valence state catalyst solution re-enters the heat exchanger and then re-enters
  • the fuel reaction chamber reacts with the fuel to form a complete circulation system; the operation of the entire reformer operates under the control
  • the catalyst solution is a solution formed of a polyacid dissolved in an acidic solution, and the polyacid is one or more of the same polyacid, heteropolyacid, and doped polyacid;
  • the polyacid is tungstic acid or molybdic acid;
  • the anion in the heteropoly acid has the chemical formula represented by the general formula (I):
  • a composition of one or more of the Ta, Nb and Zr elements is provided.
  • the polyacid is a supramolecular compound formed by combining a polyacid molecule having an formula of the formula (II) or (III):
  • the acidic solution in the reformer is one or more of a non-oxidizing organic acid and a non-oxidizing inorganic acid;
  • the acidic solution is a mixed solution of one or more of sulfuric acid, phosphoric acid, citric acid and hydrochloric acid.
  • the fuel in the reformer is one or a mixture of decyl alcohol, furfural and citric acid.
  • the pressure at which the catalyst solution and the fuel solution react is 0.5 to 18 MPa.
  • the system controller is a component comprising a pressure sensor, a temperature sensor, a safety valve, a catalyst solution concentration test sensor, a S-situ test sensor, a reaction chamber auxiliary heating system, a micro electric control valve, a micro pump, and a reaction container. Organic complete system.
  • the auxiliary heating system is provided with a fuel
  • the fuel and air are combusted within the auxiliary heating system to generate heat.
  • the heat exchanger comprises a plurality of sets of heat exchange tubes
  • the heat exchanger cools the high-temperature low-pressure fuel solution having the reducing property outputted by the fuel reaction chamber, and then uses the fuel solution for the liquid-phase fuel cell, and pre-cools the catalyst solution of the low-temperature and high-valence state of the liquid fuel cell. After heat is added to the fuel reaction chamber, the purpose of improving the energy efficiency of the entire reformer system; the heat exchanger also absorbs the heat released during the operation of the fuel cell to the reformer system to keep the fuel cell working. The constant temperature in the process makes the fuel cell system work at its best.
  • the heat exchanger has multiple sets of heat exchange tubes at the same time inside the same heat exchanger, and the heat exchanger is also responsible for absorbing the heat released by the fuel cell to the reformer system while working with the fuel cell.
  • the constant temperature in the process makes the fuel cell system work at its best.
  • the positive effect of the present invention is that the reforming temperature of the reformer is low, and the reforming reaction with fuel can be started at about 80 ° C at a low temperature, and the reforming speed per unit time becomes faster as the reaction temperature is increased.
  • the operating temperature of 200 ⁇ 800 °C has obvious advantages; the reformer can effectively utilize the heat generated during the operation of the fuel cell, and improve the efficiency of the entire fuel cell; the reformer The reforming directly converts the fuel into a liquid, which can be directly used in a liquid fuel cell, lowers the valence state fuel, avoids the platinum catalyst in the oxyhydrogen fuel cell, and thus can greatly reduce the cost of the fuel cell.
  • FIG. 1 is a schematic view showing the structure of a low-temperature liquid phase fuel reformer for a liquid flow battery according to an embodiment of the present invention.
  • the invention provides a low-temperature liquid phase fuel reformer, which belongs to a fuel cell in a new energy technology, and relates to a fuel reforming converter for a proton exchange membrane fuel cell and a liquid fuel cell.
  • a reformer that can output a reductive fuel solution for use in a liquid fuel cell, which can satisfy similar sterols, furfural and hydrazine by using a cryogenic liquid fuel reformer under low temperature liquid conditions.
  • a small molecule liquid fuel that is easily transported and stored, such as an acid, is converted in a medium-low temperature liquid phase to obtain a fuel used in a fuel cell, thereby solving the problem of storage of the fuel cell fuel.
  • the present invention provides a cryogenic liquid phase fuel reformer comprising a fuel reaction chamber, a heat exchanger and a system controller connected to a discharge port of the fuel reaction chamber at a first feed port, the fuel reaction chamber containing a solution of the catalyst; the system controller controls the operation of the entire reformer; under the control of the system controller, the catalyst solution and the fuel solution are mixed, and then the resulting mixed solution is delivered to the fuel reaction chamber, The catalyst solution and the fuel solution are chemically reacted to generate a low-cost fuel solution having reducing properties, the fuel is converted, the fuel is oxidized to carbon dioxide and water; and the reduced low-cost fuel solution is exchanged
  • the heat exchanger cools down and enters the fluid fuel cell as a fuel for the fluid fuel cell.
  • FIG. 1 is a schematic structural diagram of a low temperature liquid phase fuel reformer according to an embodiment of the present invention, wherein 1 is a fuel storage tank, 2 is a first liquid flow pump, 3 is a temperature gauge, 4 is a pressure gauge, 5 For the chart, 6 is the second liquid flow pump, 7 is a low-temperature fuel solution having a reducing property at a high temperature, 8 is a heat exchanger, and 9 is a low-temperature fuel solution having a reducing property at a low temperature.
  • the cryogenic liquid phase fuel reformer provided by the present invention includes a fuel reaction chamber.
  • the fuel reaction chamber is provided with a first feed port for fuel input.
  • a second feed port is further disposed on the side wall of the fuel reaction chamber for output from the liquid fuel cell.
  • the second feed port of the fuel solution having the reducing property after being preheated by the heat exchanger.
  • the fuel reaction chamber is used to mix a fuel solution and a catalyst solution to obtain a fuel solution having reduced properties, carbon dioxide, and water.
  • the fuel reaction chamber reaction results in a high temperature fuel solution having reducing properties.
  • the size and material of the fuel reaction chamber of the present invention are not particularly limited, and the size, material and shape of the fuel reaction chamber well known to those skilled in the art may be used. For example, a small pressure vessel of C 100 150 mm may be prepared by using stainless steel. As a fuel reaction chamber.
  • the fuel reaction chamber may include a fuel storage tank 1, a first liquid flow pump 2, and a chemical reaction chamber, and the fuel storage tank 1 is used to store a fuel solution, that is, a small molecule organic matter solution;
  • the fuel solution is transported from the fuel storage tank to the chemical reaction chamber through the liquid flow pump 2; specifically, in the embodiment of the present invention, the side wall of the chemical reaction chamber is provided with a first feed port, a second feed port and a discharge port, the first feed port and the second feed port are disposed on the same side, and the discharge port is opposite to the first feed port and the second feed port
  • the first feed port is for feeding a fuel solution
  • the second feed port is for feeding a fuel solution having a reducing property from a heat exchanger
  • the discharge port is replaced with the feed
  • the feed port of the heat exchanger is connected to transport the fuel solution having the reducing property obtained by the reaction to the heat exchanger for cooling.
  • thermometer 3 a pressure gauge 4, and a chart 5 are further disposed in the chemical reaction chamber, and the thermometer and the chart are immersed in the chemical reaction chamber below the liquid level of the mixed solution, and used for The temperature and pressure of the chemical reaction in the chemical reaction chamber are determined to provide a suitable temperature and pressure for the chemical reaction of the catalyst solution and the fuel solution.
  • the catalyst solution and the fuel solution are mixed in the chemical reaction chamber, and the resulting mixed solution undergoes a chemical reaction at a temperature of 20 to 200 ° C and a pressure of 0.1 to 20 MPa to form a low-valent state having a reducing property.
  • the temperature at which the catalyst solution and the fuel solution are reacted is preferably 50 to 180 ° C, more preferably 80 to 150 ° C, and most preferably 90 to 130 ° C.
  • the pressure of the reaction between the catalyst solution and the fuel solution is preferably 0.5 to 15 18 MPa, more preferably 0.5 to 5 MPa, most preferably 1 to 1.5 MPa; the reaction time of the catalyst solution and the fuel solution is preferably 5 min to 60 min, more preferably 10 min to 30 min, and most preferably 10 Min ⁇ 15 minphon
  • the chemical reaction chamber is preliminarily provided with a catalyst solution.
  • the catalyst solution may be added in an amount of one-half to two-thirds of the volume of the chemical reaction chamber.
  • the present invention is not particularly limited thereto.
  • the catalyst solution is a solution formed of a polyacid dissolved in an acidic solution, the polyacid being one or more of the same polyacid, heteropolyacid, and doped polyacid;
  • the isopoly acid is tungstic acid or molybdic acid;
  • the anion in the heteropoly acid has the chemical formula of the formula (I):
  • the doping element in the doped polyacid is a combination of one or more of Fe, Co, Ni, Cr, Cu, Al, Ti, Sn, Ta, Nb and Zr elements.
  • the multi-S history is also preferably a supramolecular compound formed by combining a polyacid molecule and an organic molecule, and the supramolecular compound preferably has a chemical composition represented by the formula (II) or (III): [(C 19 H 18 N 3 ) 2 H][PMo 12 O 40 ] ( II ) ; (ppy) 4 H 6 [SiW 12 O 40 ] ( III ) .
  • the source of the polyacid described in the above technical solution is not particularly limited, and a polyacid which is well known to those skilled in the art may be used.
  • a polyacid which is well known to those skilled in the art may be used, and the field may also be used.
  • the preparation method well known to the skilled person prepares the polyacid described in the above technical solution by itself.
  • the method for preparing the catalyst solution preferably comprises the steps of: mixing a polyacid and an acidic solution, and heating and maintaining the catalyst solution.
  • the polyacid is preferably dissolved in an acidic solution, and the resulting mixed solution is heated and kept warm to obtain a catalyst solution.
  • the catalyst solution is a catalyst solution containing a doped polyacid
  • the doping element-containing raw material is preferably a salt compound containing the doping element described in the above technical solution, such as when the doping element is Fe, the doping element-containing salt The compound can be ferrous sulfate.
  • the heating temperature is preferably 70 ° C to 90 ° C, more preferably 75 ° C to 85 ° C, and most preferably 80 ° C;
  • the heat retention time is preferably 20 1 ⁇ 1 ⁇ 50 1 ⁇ 1 , more preferably 25 min to 40 min, most preferably 30 min.
  • the acidic solution may be a mixed solution of one or more of a non-oxidizing organic acid and a non-oxidizing inorganic acid, which is not particularly limited in the present invention, and hydrogen ions in the acidic solution
  • the molar concentration is preferably 10 - 4 ⁇ lOimol /
  • the acidic solution may be prepared by mixing one or a mixture of sulfuric acid, phosphoric acid, citric acid and hydrochloric acid in a prepared solution.
  • the molar concentration of hydrogen ions is preferably from 10 - 4 to K ⁇ mol / L, more preferably from 10 -3 to 0 mol / L, and most preferably from 1 ( ⁇ 2 to 10 mol / L.
  • the plurality The mass concentration of the acid in the acidic solution is preferably from 0.1 g/mL to lg/mL, more preferably from 0.15 g/mL to 0.8 g/mL, and most preferably from 0.2 g/mL to 0.5 g/mL.
  • the fuel is a small molecule organic substance, preferably a mixture of one or more of decyl alcohol, furfural and citric acid.
  • the mass concentration of the fuel solution is preferably from 1% to 100%, more preferably from 20% to 80%; and the mass ratio of the fuel to the catalyst is preferably 1:100 to 100:1, more It is preferably 1:10 to 10:1.
  • a low-cost, low-cost fuel solution that is delivered to the liquid fuel cell for electrolysis;
  • a second feed port of the heat exchanger is connected to a discharge port of the liquid fuel cell, the heat exchanger
  • the second discharge port is connected to the second feed port of the fuel reaction chamber, and is used for conveying the high valence state catalyst solution obtained by electrolysis of the liquid flow fuel cell to a heat exchanger for preheating and transporting to The fuel reaction chamber is chemically reacted with a fuel solution.
  • a second liquid flow pump 6 is disposed between the heat exchanger and the fuel reaction chamber for controlling a low-cost state having a reducing property flowing out of the fuel reaction chamber The flow rate of the fuel solution into the heat exchanger.
  • the heat exchanger comprises a plurality of sets of heat exchange tubes.
  • the heat exchanger cools the high-temperature low-pressure fuel solution having the reducing property output from the fuel reaction chamber, and then supplies the liquid fuel cell to the liquid fuel cell, and outputs the low temperature and high valence of the liquid fuel cell output.
  • the catalyst solution is preheated and then injected into the fuel reaction chamber to improve the energy efficiency of the entire reformer system; the heat exchanger also absorbs the heat released by the fuel cell during operation of the fuel cell to the reformer system. Maintain the constant temperature of the fuel cell during operation, so that the fuel cell system works at its best.
  • the size, shape and material of the heat exchanger are not particularly limited, and the size, shape and material of the heat exchanger well known to those skilled in the art may be used. In the embodiment of the invention, stainless steel may be used.
  • the heat exchanger housing those skilled in the art can design heat exchangers of different sizes and shapes according to actual needs, and the present invention has no particular limitation.
  • the low-temperature fuel solution having a reducing property outputted from the heat exchanger discharge port is delivered to the liquid flow fuel cell system.
  • the cryogenic liquid The phase fuel reformer is connected to the liquid flow fuel cell
  • the feed port of the flow battery is connected to the first discharge port of the heat exchanger
  • the discharge port of the flow battery is A second feed port of the heat exchanger is connected
  • a second discharge port of the heat exchanger is connected to the second feed port of the fuel reaction chamber to form a complete circulation system.
  • the flow battery preferably includes a cathode plate, an anode plate, a separator, and a low-cost fuel solution inlet having a reducing property.
  • the separator in the liquid fuel cell is preferably an ion exchange membrane, more preferably a perfluorosulfonic acid resin exchange membrane or a non-perfluorosulfonic acid proton exchange membrane capable of passing hydrogen ions.
  • the source of the ion exchange membrane of the present invention is not particularly limited, and the above ion exchange membrane well known to those skilled in the art may be employed.
  • the size of the battery separator of the present invention is not particularly limited, and those skilled in the art can select a battery separator of a suitable size according to the size of the desired flow battery.
  • the positive electrode of the liquid fuel cell is an air diffusion electrode, preferably a hydrophobic porous gas exchange electrode formed of a binder, carbon black, a catalyst, and a current collecting net; in the present invention, the viscosity
  • the binder is preferably one or more of polytetrafluoroethylene, vinylidene fluoride and perfluoro-cross-S history resin;
  • the catalyst constituting the positive electrode is preferably a metal, an alloy, a metal oxide and a doped metal oxide.
  • the metal is preferably a metal of Co, Ni, Mn, Ir, Ru, Au, Pt, W, Mo or Ag;
  • the alloy is preferably Co, Ni, Mn, Ir, Ru, Au
  • the metal oxide is preferably Mn0 2 , LaMnO 3 , LaNin0 3 or LaCo0 3 ; doping in the doped metal oxide
  • the element is preferably one or more of the elements Ca, Sr, Ce and Pb.
  • the mass ratio of the binder, carbon black and catalyst is preferably (0.5 to 10): (80 to 90): (0.1-5), more preferably (1 to 5): (85 ⁇ 95) : ( 0.1-1 ).
  • the preparation method of the positive electrode is not particularly limited, and the positive electrode can be prepared by using the binder, the carbon black, the catalyst and the current collecting net described in the above technical solution by using the electrode preparation method well known to those skilled in the art. .
  • the binder, carbon black and catalyst are preferably mixed to obtain a slurry; the slurry is coated on a collecting grid to obtain a positive electrode of the flow battery.
  • the coating method of the present invention is not particularly limited, and a coating method well known to those skilled in the art may be employed, such as a spraying method; in the present invention, the coating is applied to the current collecting
  • the thickness of the web slurry is preferably from 0.01 to 0.5 mm, more preferably from 0.1 to 0.3 mm.
  • the present invention preferably presses and drys the obtained slurry-coated current collecting net, and the pressing pressure is preferably 0.1 MPa to 10 MPa. More preferably, it is 0.2 to 2 MPa, and the positive electrode of the flow battery is obtained.
  • the drying method of the present invention is not particularly limited, and a drying technical solution well known to those skilled in the art may be used, such as a drying method.
  • the drying temperature is preferably from 70 ° C to 300 ° C, more preferably from 100 ° C to 280 ° C, most It is preferably 250 °C.
  • the size, shape and material of the liquid flow fuel cell are not particularly limited, and the size, shape and material of the liquid fuel cell which are well known to those skilled in the art may be used.
  • the PP material is used to prepare a liquid flow fuel cell casing. Those skilled in the art can design liquid flow fuel cells of different sizes and shapes as needed, and the present invention has no particular limitation.
  • the low-temperature fuel solution 7 having a reducing property at a high temperature outputted from the fuel reaction chamber is cooled by a heat exchanger to obtain a low-temperature fuel solution 9 having a reducing property at a low temperature, which has a reducing property.
  • the low-cost fuel solution is transported from the feed port of the liquid fuel cell to the liquid fuel cell for discharge reaction, and after the reaction, is oxidized to a high-priced polyacid solution and returned to the second feed port of the heat exchanger for transport back.
  • the obtained high temperature and high valence catalyst solution having an oxidation state is outputted from the second discharge port of the heat exchanger to the fuel reaction chamber, and the second reaction chamber is The feed port enters the fuel reaction chamber, and reacts with the fuel solution delivered from the first feed port in the fuel reaction chamber to generate a low temperature catalyst solution having a reduced state at a high temperature.
  • the cryogenic liquid phase fuel reformer provided by the present invention comprises a system controller that controls the operation of the fuel reaction chamber, the heat exchanger and the liquid fuel cell.
  • the system controller is preferably It includes an organic complete system of pressure sensor, temperature sensor, safety valve, catalyst solution concentration test sensor, S-situ test sensor, fuel reaction chamber auxiliary heating system, micro electric control valve, micro pump and reaction vessel.
  • the fuel reaction chamber auxiliary heating system includes a fuel in which the fuel and air are combusted inside an auxiliary heating system to generate heat to provide energy for operation of the auxiliary heating system; The auxiliary heating system works by utilizing the heat generated by the combustion of fuel and air inside the auxiliary heating system.
  • the pressure sensor may be a pressure gauge 4, and the temperature sensor may be a thermometer 3.
  • the low temperature liquid phase fuel reformer provided by the invention outputs a low temperature fuel solution having a low temperature reducing property, which is supplied to a liquid flow fuel cell.
  • the reformer has a low starting temperature, and can start a reforming reaction with a fuel at a low temperature of about 80 ° C, and the reforming rate per unit time becomes faster as the reaction temperature is increased. Compared with other reformers, the operating temperature of 200 ⁇ 800 °C is obviously excellent.
  • the reformer can effectively utilize the heat generated during the operation of the fuel cell to improve the efficiency of the entire fuel cell; the reformer can provide fuel reforming for the liquid fuel cell, so that the fuel cell can be avoided
  • the use of a platinum catalyst can greatly reduce the cost of the fuel cell.
  • cryogenic liquid fuel reformers provided by the present invention are described in detail below with reference to the examples, but they are not to be construed as limiting the scope of the invention.
  • Example 1 a low temperature liquid phase fuel reformer was constructed using the structure shown in Fig. 1.
  • a C 100 X 130mm container is machined from stainless steel, and two sets of capillary copper tubes are arranged as heat exchange tubes for the heat exchanger, and corresponding valves are installed to obtain the required heat exchangers;
  • a polyacid acid conversion solution take 1 L of pure water, add 100 g of ammonium molybdate thereto, stir to dissolve, add 20 mL of analytically pure 3 ⁇ 4 P0 4 thereto, and then heat the obtained solution to 80 ° C for 30 minutes to lower the temperature. Cooling, filtering the solution to obtain the desired polyacid acid conversion solution, adding the solution to two-thirds of the volume of the reformer fuel reaction chamber; using a peristaltic pump to add sterol to the reformer through the fuel inlet
  • the amount of addition is controlled by the sensor; the heating of the reformer is provided by the fuel cell stack radiator; the temperature of the reforming reaction is controlled at 150 ° C, the reaction time is 10 minutes, and the reactor pressure is controlled at 1.5 MPa.
  • the fuel reaction chamber generates a deep blue solution with strong reducing properties, which flows out from the discharge port of the fuel reaction chamber to the heat exchanger, is cooled by the heat exchanger, and is supplied to the liquid flow battery, and the blue solution of the low valence state is in the liquid
  • the flow battery is oxidized, and at the same time, the negative electrode of the flow battery is discharged, and the oxidized solution re-enters the reaction chamber to regenerate and continuously circulate.
  • the reformer prepared in this embodiment is suitable for use in a high-power liquid flow fuel cell, and can start a reforming reaction of fuel at about 80 ° C, and has a low starting temperature.
  • stainless steel is processed into a small pressure vessel of C 100 150mm, and the design pressure is 2MPa.
  • the temperature sensor, pressure sensor, pH sensor, auxiliary heating system heating tube are processed on the tank as shown.
  • the feed port, the discharge port and the corresponding valve provide the desired fuel reaction chamber.
  • a C 100 X 130mm container is machined in stainless steel, and two sets of capillary copper tubes are arranged as heat exchange tubes for the heat exchanger, and corresponding valves are installed to obtain the required heat exchanger.
  • a multi-acid conversion solution take 1 L of high-purity water, add 80 g of ammonium molybdate, 20 g of ammonium tungstate, and 1.0 g of ferrous sulfate to dissolve and dissolve. Then, add 50 g of citric acid to stir and dissolve it, then add 1 : 3 diluted analytical H 2 S0 4 45mL, then the mixed solution was heated to 80 ° C for 30 minutes, then cooled to cool, filtered to obtain the desired polyacid acid conversion solution, the solution was added to Two-thirds of the volume of the reformer fuel reaction chamber. The sterol is added to the reformer through a fuel inlet using a peristaltic pump, the amount of which is controlled by the sensor.
  • the heating of the reformer during operation is provided by the fuel cell stack heat sink.
  • the temperature of the reforming reaction was controlled at 160 ° C, the reaction time was 15 minutes, and the reactor pressure was controlled at 2 MPa.
  • the fuel reaction chamber generates a deep blue solution with strong reducing properties, which flows out from the fuel outlet, is supplied to the liquid fuel cell after being cooled by the heat exchanger, and the blue solution having a low valence state is oxidized in the liquid fuel cell. It is notified that the negative electrode of the flow battery is discharged, and the oxidized solution re-enters the fuel reaction chamber to regenerate and continuously circulate.
  • the reformer prepared in this embodiment is suitable for use in a high-power liquid flow fuel cell, and can start a fuel reforming reaction at about 80 ° C, and has a low starting temperature.
  • the design pressure is 2MPa.
  • the temperature sensor, pressure sensor and pH transmission are processed on the tank according to the illustration.
  • a C 100 X 130mm container is machined in stainless steel, and two sets of capillary copper tubes are arranged as heat exchange tubes for the heat exchanger, and corresponding valves are installed to obtain the required heat exchanger.
  • the acidic conversion solution For the configuration of the acidic conversion solution, take 1 L of high-purity water, add 50 g of ⁇ S ammonium, 10 g of sodium silicate, and then add 1:3 analytical pure H 2 SO 4 to 60 mL, and then heat the solution to 80 ° C. Reduce the temperature to cool, filter the solution to obtain the desired acid conversion solution, and add the solution to two-thirds of the volume of the reformer fuel reaction chamber.
  • the sterol is added to the reformer through a fuel inlet using a peristaltic pump, the amount of which is controlled by the sensor.
  • the heating of the reformer during operation is provided by the fuel cell stack heat sink.
  • the temperature of the reforming reaction was controlled at 100 ° C, the reaction time was 30 minutes, and the reactor pressure was controlled to be 2 MPa or less.
  • the fuel reaction chamber generates a deep blue solution with strong reducing properties, which flows out from the discharge port of the fuel reaction chamber, and is cooled by the heat exchanger to enter the fuel cell for use in the liquid flow, and the blue solution of the low valence state is in the liquid fuel.
  • the battery is oxidized while discharging the negative electrode of the flow battery, and the oxidized solution re-enters the reaction chamber to regenerate and continuously circulate.
  • the reformer prepared in this embodiment is suitable for use in a high-power liquid flow fuel cell, and can start a fuel reforming reaction at about 80 ° C, and has a low starting temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

一种液流电池用低温液相燃料重整器,将催化剂溶液和燃料溶液混合,然后将混合溶液输送至重整器的反应室在温度在20-200℃、压力为0.1-20MPa的条件下发生化学反应生成具有还原性质的低价态燃料溶液,从而完成燃料的转换,而燃料则氧化成为二氧化碳和水,具有还原性的低价态燃料溶液经过换热器换热后降温进入到液流燃料电池,在液流电池负极区域氧化得到高化合价态的催化剂溶液,所述高化合价态的催化剂溶液重新进入换热器升温后重新进入反应室和燃料反应,形成完整的循环系统。

Description

一种液流电池用低温液相燃料重整器
本申请要求于 2012 年 12 月 31 日提交中国专利局、 申请号为 201210589197.8、 发明名称为 "一种具有两种输出形式的低温液相燃料重 整器" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明属于新能源领域的燃料电池技术,涉及一种应用于质子交换膜 燃料电池的低温液相燃料重整器。 背景技术
燃料电池能通过把燃料和氧化剂分别在电池的两侧电极上放电实现 将燃料的化学能直接转变为电能,所以它的能量转化率 4艮高,不受卡诺循 环能量转换效率的限制,是传统热机效率的两倍以上。通过氢燃料电池实 现能量的转换是一种高效、清洁的能源利用方式。但由于氢燃料电池使用 的燃料氢气是一种易燃易爆的气体, 在存贮和运输环节存在很多的问题。 目前主要氢气存贮方式有高压氢气罐存贮,储氢合金存贮以及高温催化剂 重整。其中高压氢气罐储氢在存储氢压缩过程中本身耗能大、储氢密度低 和体积大的缺点;而储氢合金储氢存在储氢合金在反复储氢过程合金不断 粉碎细化导致合金储氢失效等一系列问题,同时储氢合金储氢还存在合金 本身重量大的缺陷;而高温催化剂重整则存在重整器产出的氢气存在一定 浓度的一氧化碳气体,能够使燃料电池的催化剂中毒导致燃料电池不能正 常工作。因而,目前燃料电池领域的发展因为燃料的原因受到极大的阻碍。 发明内容
为了克服现有技术的上述缺点, 本发明提供一种能满足在低温液态 条件下通过使用低温液相燃料重整器将小分子液态燃料在中低温液相中 转化为还原性的催化剂溶液,然后将该还原性的溶液直接提供给液流燃料 电池作为燃料, 从而解决燃料电池燃料的存贮问题。
本发明解决其技术问题所采用的技术方案是:提供了一种低温液相燃 料重整器, 包括燃料反应室和换热器,所述燃料反应室中含有催化剂的溶 液;将催化剂溶液和燃料溶液混合,然后将得到的混合溶液输送至所述燃 料反应室在温度为 20 ~ 200°C、 压力为 0.1 ~ 20MPa的条件下发生化学反 应, 生成具有还原性质的低价态燃料溶液, 完成燃料的转换, 所述燃料被 氧化成为二氧化碳和水;所述具有还原性的低价态燃料溶液经过换热器换 热后降温进入到液流燃料电池,在燃料电池负极区域氧化得到高化合价态 的催化剂溶液,所述高化合价态的催化剂溶液重新进入换热器升温后重新 进入所述燃料反应室中与燃料反应,形成完整的循环系统;整个重整器的 工作都在系统控制器的控制下进行工作。
优选的: 所述的催化剂溶液为由溶解于酸性溶液中的多酸形成的溶 液, 所述多酸为同多酸、 杂多酸和掺杂多酸中的一种或几种; 所述同多酸 为钨酸或者钼酸; 所述杂多酸中的阴离子具有通式(I )所示的化学式:
[XaMbO40]n" ( 1 );
X=P、 Si、 Ge或 As; M=W或 Mo; a:b=l:6、 1:9或 1:12; n为 2〜10; 所述掺杂多酸中的掺杂元素为 Fe、 Co、 Ni、 Cr、 Cu、 Al、 Ti、 Sn、
Ta、 Nb和 Zr元素中的一种或者几种的组合物。
优选的: 所述的多酸为由多酸分子和有机分子结合成的超分子化合 物, 所述超分子化合物具有式(II )或 (III )所示化学式:
[(C19H18N3)2H][PMo12O40] ( II ); (ppy)4H6[SiW12O40] ( III )。
优选的:所述的重整器中酸性溶液为非氧化性有机酸和非氧化性无机 酸中的一种或几种;
所述酸性溶液中氢离子的摩尔浓度为 10_4 ~ K^mol/L 。
优选的: 所述酸性溶液为硫酸、磷酸、柠檬酸和盐酸中的一种或几种 的混合溶液。
优选的: 所述重整器中的燃料为曱醇、 曱醛和曱酸中的一种或者几种 组成的混合物。
°C ;
所述催化剂溶液和燃料溶液发生反应的压力为 0.5〜18 MPa。 优选的: 所述系统控制器为包括压力传感器、 温度传感器、 安全阀、 催化剂溶液浓度测试传感器、 S史度测试传感器、反应室辅助加热系统、微 型电动调节阀、 微型泵和反应容器组成的一个有机成套系统。
优选的: 所述辅助加热系统中设置有燃料;
所述燃料和空气在所述辅助加热系统内部燃烧产生热量。
优选的: 所述的换热器包括多组换热管;
所述换热器将所述燃料反应室输出的高温的具有还原性质的低价态 燃料溶液降温后给液流燃料电池使用,将所述液流燃料电池输出的低温高 化合价态的催化剂溶液预热后加注到燃料反应室,起到提高整个重整器系 统能量效率的目的;所述换热器还将燃料电池工作的时候译放的热量吸收 给重整器系统使用,保持燃料电池工作过程中的恒温性,使燃料电池系统 工作在最佳状态下。
优选的,所述换热器同时拥有多组换热管在同一换热器内部,换热器 还负责将燃料电池工作的时候译放的热量吸收给重整器系统使用,同时持 燃料电池工作过程中的恒温性, 使燃料电池系统工作在最佳状态下。
本发明的积极效果是: 该重整器的启动温度低, 能在低温下 80°C左 右就开始具有燃料的重整反应,随着反应温度的提高其单位时间重整速度 变快。 相对于其他重整器高达 200 ~ 800 °C的工作温度具有明显的优势; 该重整器同时能够有效的利用燃料电池工作过程中产生的热量,提高了整 个燃料电池的效率;该重整器重整直接将燃料转化成液态可以直接在液流 燃料电池中使用的低化合价态的燃料,避开了氢氧燃料电池中的铂金催化 剂, 因而能够大大降低燃料电池的成本。
附图说明
图 1 是本发明实施例提供的液流电池用低温液相燃料重整器的结构 示意图。
具体实施方式
下面结合实施例和附图对本发明提供的技术方案进行进一步说明。 本发明提供了一种低温液相燃料重整器,它属于新能源技术中的燃料 电池,涉及一种应用于质子交换膜燃料电池和液流燃料电池用燃料重整转 换的重整器,该重整器可以输出具有还原性的燃料溶液供液流燃料电池使 用, 能满足在低温液态条件下通过使用低温液相燃料重整器将类似曱醇、 曱醛和曱酸等容易运输存贮的小分子液态燃料在中低温液相中转化来得 到燃料电池使用的燃料, 从而解决燃料电池燃料的存贮问题。
本发明提供了一种低温液相燃料重整器, 包括燃料反应室、第一进料 口与所述燃料反应室出料口相连的换热器和系统控制器,所述燃料反应室 中含有催化剂的溶液; 所述系统控制器控制整个重整器的工作;在所述系 统控制器的控制下,所述催化剂溶液和燃料溶液混合,然后将得到的混合 溶液输送至所述燃料反应室, 所述催化剂溶液和燃料溶液发生化学反应, 生成具有还原性质的低价态燃料溶液,完成燃料的转换,所述燃料被氧化 成为二氧化碳和水;所述具有还原性的低价态燃料溶液经过换热器换热后 降温进入流体燃料电池作为流体燃料电池的燃料。
参见图 1,图 1为本发明实施例提供的低温液相燃料重整器的结构示意 图, 其中 1为燃料储罐, 2为第一液流泵, 3为温度表, 4为压力表, 5为图 表, 6为第二液流泵, 7为高温具有还原性质的低价态燃料溶液, 8为换热 器, 9为低温具有还原性质的低价态燃料溶液。
本发明提供的低温液相燃料重整器包括燃料反应室。所述燃料反应室 设置有燃料输入的第一进料口,在本发明的实施例中,所述燃料反应室的 侧壁上还设置有第二进料口,用于由液流燃料电池输出经换热器预热后的 具有还原性质的燃料溶液输入的第二进料口。所述燃料反应室用于将燃料 溶液和催化剂溶液混合进行反应,得到具有还原性质的燃料溶液、二氧化 碳和水。在本发明中,所述燃料反应室反应得到的是高温的具有还原性质 的燃料溶液。本发明对所述燃料反应室的尺寸和材质没有特殊的限制,采 用本领域技术人员熟知的燃料反应室的尺寸、材质和形状即可,如可采用 不锈钢制备得到 C 100 150mm的小型压力容器, 作为燃料反应室。
在本发明的实施例中, 所述燃料反应室可以包括燃料储罐 1、 第一液 流泵 2和化学反应室,所述燃料储罐 1用于储存燃料溶液, 即小分子有机物 溶液; 所述燃料溶液由所述燃料储罐通过液流泵 2输送至化学反应室; 具 体的, 在本发明的实施例中, 所述化学反应室的侧壁设置有第一进料口、 第二进料口和出料口,所述第一进料口与所述第二进料口设置在同侧,所 述出料口与所述第一进料口和第二进料口相对;所述第一进料口用于燃料 溶液的进料;所述第二进料口用于换热器输送来的具有还原性质的燃料溶 液的进料;所述出料口与所述换热器的进料口相连,用于将反应得到的具 有还原性质的燃料溶液输送至换热器进行降温。在本发明的实施例中,在 所述化学反应室中还设置有温度计 3、 压力表 4和图表 5, 所述温度计和图 表浸于所述化学反应室中混合溶液的液面以下,用于测定所述化学反应室 中化学反应的温度和压力,从而为所述催化剂溶液和燃料溶液的化学反应 提供合适的温度和压力。在本发明中,催化剂溶液和燃料溶液在所述化学 反应室中混合,得到的混合溶液在温度为 20〜200°C和压力为 0.1〜20MPa下 发生化学反应, 生成具有还原性质的低价态燃料溶液、二氧化碳和水。 所 述催化剂溶液和燃料溶液反应的温度优选为 50〜180 °C , 更优选为 80〜150 °C , 最优选为 90〜130°C ; 所述催化剂溶液和燃料溶液反应的压力优选为 0.5〜18 MPa, 更优选为 0.5〜5 MPa, 最优选为 1〜1.5 MPa; 所述催化剂溶液 和燃料溶液反应的时间优选为 5 min〜60 min, 更优选为 10 min〜30 min, 最 优选为 10 min〜15 min„
在本发明中,所述化学反应室中预先设置有催化剂溶液,在本发明的 实施例中,所述催化剂溶液的加入量可以为所述化学反应室体积的二分之 一至三分之二, 本发明对此不作特殊的限制。
在本发明中 ,所述催化剂溶液为由溶解于酸性溶液中的多酸形成的溶 液, 所述多酸为同多酸、 杂多酸和掺杂多酸中的一种或几种; 所述同多酸 为钨酸或钼酸; 所述杂多酸中的阴离子具有通式(I )所示化学式:
[XaMbO40]n" ( I ) ;
X=P、 Si、 Ge或 As; M=W或 Mo; a:b=l:6、 1:9或 1: 12; n为 2〜10, 具 体的, n优选为 2、 3、 4、 5、 6、 8或 10;
所述掺杂多酸中的掺杂元素为 Fe、 Co、 Ni、 Cr、 Cu、 Al、 Ti、 Sn、 Ta、 Nb和 Zr元素中的一种或者几种的组合物。
在本发明中 ,所述多 S史还优选为由多酸分子和有机分子结合成的超分 子化合物, 所述超分子化合物优选具有式(II )或 (III ) 所示化学组成: [(C19H18N3)2H][PMo12O40] ( II ) ; (ppy)4H6[SiW12O40] ( III ) 。
本发明对上述技术方案所述的多酸的来源没有特殊的限制,采用本领 域技术人员熟知的多酸即可,如可以采用上述技术方案所述多酸的市售商 品 ,也可以采用本领域技术人员熟知的制备方法自行制备上述技术方案所 述多酸。 在本发明中, 所述催化剂溶液的制备方法优选包括以下步骤: 将多酸和酸性溶液混合, 加热保温, 得到催化剂溶液。
本发明优选将多酸溶于酸性溶液中,将得到的混合溶液加热保温,得 到催化剂溶液。在本发明中, 当所述催化剂溶液为含有掺杂多酸的催化剂 溶液时, 优选将含有掺杂元素的原料与多酸溶于酸性溶液中, 加热保温, 得到含有掺杂多酸的催化剂溶液;在本发明中,所述含有掺杂元素的原料 优选为含有上述技术方案所述掺杂元素的盐类化合物,如当所述掺杂元素 为 Fe时, 所述含有掺杂元素的盐类化合物可以为硫酸亚铁。 在本发明中, 所述加热的温度优选为 70°C〜90°C , 更优选为 75°C〜85°C , 最优选为 80°C ; 所述保温的时间优选为20 1^1〜50 1^1 , 更优选为 25 min〜40 min, 最优选 为 30 min。
本发明优选将保温后的混合溶液过滤后,得到含有掺杂多酸的催化剂 溶液。
在本发明中,所述酸性溶液可以为非氧化性有机酸和非氧化性无机酸 中的一种或几种的混合溶液,本发明对此没有特殊的限制,所述酸性溶液 中氢离子的摩尔浓度优选为 10-4 ~ lOimol/ 在本发明的实施例中, 所述 酸性溶液可以为硫酸、磷酸、柠檬酸和盐酸中的一种或几种的混合物配制 而成, 配制成的溶液中氢离子的摩尔浓度优选为 10-4 ~ K^mol/L, 更优选 为 10-3 ~ 0 mol/L, 最优选为 1(Τ2 ~ 10 mol/L。 在本发明中, 所述多酸在所 述酸性溶液中的质量浓度优选为 0.1 g/mL〜l g/mL , 更优选为 0.15 g/mL〜0.8 g/mL, 最优选为 0.2 g/mL〜0.5 g/mL。
在本发明中, 所述燃料为小分子有机物,优选为曱醇、 曱醛和曱酸中 的一种或几种组成的混合物。在本发明中,所述燃料溶液的质量浓度优选 为 1%〜100%, 更优选为 20%〜80%; 所述燃料与所述催化剂的质量比优选 为 1 :100〜100:1 , 更优选为 1:10〜10: 1。 本发明提供的低温液相燃料重整器包括燃料重整反应室和换热器、所 述换热器的第一进料口与所述燃料反应室的出料口相连,所述换热器的第 一出料口与所述液流燃料电池的进料口相连,用于将所述燃料反应室得到 的高温具有还原性的低价态燃料溶液输送至换热器中进行换热,得到低温 具有还原性的低价态燃料溶液,输送到液流燃料电池中进行电解; 所述换 热器的第二进料口与所述液流燃料电池的出料口相连,所述换热器的第二 出料口与所述燃料反应室的第二进料口相连,用于将所述液流燃料电池电 解得到的高化合价态的催化剂溶液输送至换热器进行预热 ,并输送至所述 燃料反应室中与燃料溶液进行化学反应。在本发明的实施例中,在所述换 热器和所述燃料反应室之间设置有第二液流泵 6, 用于控制由所述燃料反 应室流出的具有还原性性质的低价态燃料溶液流入换热器的流速。在本发 明的实施例中, 所述换热器包括多组换热管。在本发明中, 所述换热器将 所述燃料反应室输出的高温的具有还原性质的低价态燃料溶液降温后给 液流燃料电池使用,将所述液流燃料电池输出的低温高化合价态的催化剂 溶液预热后加注到燃料反应室, 起到提高整个重整器系统能量效率的目 的;所述换热器还将燃料电池工作的时候译放的热量吸收给重整器系统使 用,保持燃料电池工作过程中的恒温性,使燃料电池系统工作在最佳状态 下。
本发明对所述换热器的尺寸、形状和材质没有特殊的限制,采用本领 域技术人员熟知的换热器的尺寸、形状和材质即可,在本发明的实施例中, 可采用不锈钢制备换热器外壳,本领域技术人员可根据实际需要设计不同 尺寸和形状的换热器, 本发明对此没有特殊的限制。
在本发明中,由所述换热器出料口输出的低温具有还原性质的低价态 燃料溶液被输送至液流燃料电池系统, 在本发明的实施例中, 具体的, 所 述低温液相燃料重整器是和液流燃料电池进行连接的 ,所述液流电池的进 料口与所述换热器的第一出料口相连,所述液流电池的出料口与所述换热 器的第二进料口相连,所述换热器的第二出料口与所述燃料反应室的第二 进料口相连, 从而形成了完整的循环系统。 在本发明中, 所述液流电池优 选包括阴极极板, 阳极极板, 隔膜, 具有还原性质的低价态燃料溶液进口 阀门、具有高化合价态的催化剂溶液出口阀门,设置在所述正极极板处的 气体出口阀门, 压力传感器和温度传感器。
在本发明中,所述液流燃料电池中的隔膜优选为离子交换膜,更优选 为全氟磺酸树脂交换膜或者能通过氢离子的非全氟磺酸质子交换膜。本发 明对所述离子交换膜的来源没有特殊的限制,采用本领域技术人员熟知的 上述离子交换膜即可。本发明对所述电池隔膜的尺寸没有特殊的限制,本 领域技术人员可根据所需液流电池的尺寸选择合适尺寸的电池隔膜。
在本发明中,所述液流燃料电池的正极为空气扩散电极,优选为由粘 接剂、炭黑、催化剂和集流网形成的疏水多孔的气体交换电极; 在本发明 中,所述粘接剂优选为聚四氟乙烯、偏四氟乙烯和全氟横 S史树脂中的一种 或者几种; 所述的组成正极的催化剂优选为金属、合金、金属氧化物和掺 杂金属氧化物中的一种或几种; 所述金属优选为 Co、 Ni、 Mn、 Ir、 Ru、 Au、 Pt、 W、 Mo或 Ag金属; 所述合金优选为 Co、 Ni、 Mn、 Ir、 Ru、 Au、 Pt、 W、 Mo和 Ag金属中的一种或者几种组成的合金; 所述金属氧化物优 选为 Mn02、 LaMn03、 LaNin03或 LaCo03; 所述掺杂金属氧化物中的掺杂 元素优选为 Ca、 Sr、 Ce和 Pb元素中的一种或几种。 在本发明中, 所述粘 结剂、 炭黑和催化剂的质量比优选为 (0.5〜10 ) : ( 80〜90 ) : ( 0.1-5 ) , 更优选为 (1〜5 ) : ( 85〜95 ) : ( 0.1-1 ) 。
本发明对所述正极的制备方法没有特殊的限制,采用本领域技术人员 熟知的电极的制备方法, 以上述技术方案所述的粘结剂、炭黑、催化剂和 集流网制备得到正极即可。本发明优选将所述粘结剂、炭黑和催化剂混合, 得到浆料; 将所述浆料涂覆在集流网上, 得到液流电池的正极。 本发明对 所述涂覆的方法没有特殊的限制,采用本领域技术人员熟知的涂覆的技术 方案即可, 如可以采用喷涂的方法; 在本发明中, 所述涂覆在所述集流网 上浆料的厚度优选为 0.01〜0.5mm, 更优选为 0.1〜0.3mm。 本发明将所述 浆料涂覆在所述集流网上后 ,本发明优选将得到的涂覆有浆料的集流网进 行压制并进行干燥, 所述压制的压力优选为 0.1MPa〜10MPa, 更优选为 0.2〜2MPa, 得到液流电池的正极, 本发明对所述干燥的方法没有特殊的 限制,采用本领域技术人员熟知的干燥的技术方案即可,如可采用烘干的 方法, 所述干燥的温度优选为 70°C〜300°C , 更优选为 100°C〜280°C , 最 优选为 250 °C。
本发明对所述液流燃料电池的尺寸、形状和材质没有特殊的限制,采 用本领域技术人员熟知的液流燃料电池的尺寸、形状和材质即可,在本发 明的实施例中, 可采用 PP材料制备液流燃料电池外壳, 本领域技术人员 可根据需要设计不同尺寸和形状的液流燃料电池,本发明对此没有特殊的 限制。
在本发明中,由所述燃料反应室输出的高温具有还原性质的低价态燃 料溶液 7经换热器降温后,得到低温具有还原性质的低价态燃料溶液 9,所 述低温具有还原性质的低价态燃料溶液由液流燃料电池的进料口输送至 液流燃料电池中进行放电反应,反应后氧化至高价的多酸溶液返回到所述 换热器的第二进料口输送回换热器中进行预热,得到的高温且具有氧化态 的高化合价的催化剂溶液由所述换热器的第二出料口输出至燃料反应室 中, 由所述燃料反应室的第二进料口进入燃料反应室,与由第一进料口输 送来的燃料溶液在所述燃料反应室进行反应,生成高温的具有还原态的低 价态催化剂溶液。
本发明提供的低温液相燃料重整器包括系统控制器,所述系统控制器 控制这燃料反应室、换热器和液流燃料电池的工作, 在本发明中, 所述系 统控制器优选为包括压力传感器、温度传感器、 安全阀、催化剂溶液浓度 测试传感器、 S史度测试传感器、燃料反应室辅助加热系统、微型电动调节 阀、微型泵和反应容器的一个有机成套系统。 在本发明中, 所述燃料反应 室辅助加热系统包括燃料,在所述辅助加热系统中,所述燃料和空气在辅 助加热系统内部燃烧,产生热量来为辅助加热系统的工作提供能量; 所述 辅助加热系统是利用燃料和空气在辅助加热系统内部燃烧产生的热量来 工作。 在本发明的实施例中, 所述压力传感器可以为压力表 4, 所述温度 传感器可以为温度表 3。
本发明提供的低温液相燃料重整器输出具有低温还原性的低价态燃 料溶液, 提供给液流燃料电池使用。 该重整器的启动温度低, 能在低温下 80°C左右就开始具有燃料的重整反应,随着反应温度的提高其单位时间重 整速度变快。相对于其他重整器高达 200 ~ 800 °C的工作温度具有明显的优 势;该重整器同时能够有效的利用燃料电池工作过程中产生的热量,提高 了整个燃料电池的效率;该重整器能为液流燃料电池提供燃料的重整,使 得燃料电池能够避开使用铂金催化剂,因而能够大幅度的降低燃料电池的 成本。
为了进一步说明本发明,下面结合实施例对本发明提供的低温液相燃 料重整器进行详细地描述, 但不能将它们理解为对本发明保护范围的限 定。
在下述实施例中, 采用图 1所示的结构, 构建低温液相燃料重整器。 实施例 1
采用不锈钢加工成一个 C 100 X 150mm的小型压力容器, 设计压力为
2MPa, 分别在罐体上按照图示加工安装温度传感器, 压力传感器, pH值 传感器, 辅助加热系统的加热管进料口, 出料口以及对应的阀门, 得到所 需的燃料反应室;
采用不锈钢加工一个 C 100 X 130mm的容器, 里面排布两组毛细铜管 做为换热器的热交换管, 并安装对应的阀门得到所需的换热器;
将反应室, 热交换器, 控制器连接安装完毕并检查气密性, 得到所需 要的重整器。
多酸酸性转换液的配制, 取纯水 1L, 向其中加入 100g钼酸铵, 搅拌 溶解, 向其中加入 20 mL分析纯 ¾P04, 然后将得到的溶液加热至 80 °C保 温 30分钟, 降低温度冷却, 过滤溶液得到所需要的多酸酸性转换溶液, 将 该溶液加入的到重整器燃料反应室体积的三分之二处;使用蠕动泵通过燃 料加入口将曱醇加入到重整器中,加入量通过传感器控制; 重整器工作时 的加热由燃料电池电堆散热器提供; 重整反应发生温度控制在 150°C , 反 应时间为 10分钟, 反应器压力控制在 1.5MPa。 燃料反应室产生具有较强 还原性质的深蓝色溶液, 由燃料反应室的出料口流出至换热器,经过换热 器降温后提供给液流电池使用, 低化合价态的蓝色溶液在液流电池被氧 化, 同时在液流电池负极放电, 氧化后的溶液重新进入反应室再生, 不断 循环。 本实施例制备得到的重整器适合大功率液流燃料电池使用, 能在 80 °c左右就开始具有燃料的重整反应, 具有较低的启动温度。
实施例 2:
按附图说明的方案采用不锈钢加工成一个 C 100 150mm的小型压 力容器,设计压力为 2MPa, 分别在罐体上按照图示加工安装温度传感器, 压力传感器, pH值传感器, 辅助加热系统的加热管进料口, 出料口以及 对应的阀门, 得到所需的燃料反应室。
按照图示采用不锈钢加工一个 C 100 X 130mm的容器, 里面排布两组 毛细铜管作为换热器的热交换管, 并安装对应的阀门得到所需的换热器。
将反应室, 热交换器, 控制器连接安装完毕并检查气密性, 得到所需 要的重整器。
多酸性转换液的配制, 取高纯水 1L, 向其中加入 80 g钼酸铵、 20 g钨 酸铵和 1.0 g硫酸亚铁搅拌溶解后, 再向其中加入 50 g柠檬酸搅拌使之溶 解, 然后加入 1 :3稀释后的分析纯 H2S04 45mL, 然后将混合溶液加热至 80 °C保温 30分钟,然后降低温度冷却,过滤溶液得到所需要的多酸酸性转换 溶液,将该溶液加入的到重整器燃料反应室体积的三分之二处。使用蠕动 泵通过燃料加入口将曱醇加入到重整器中,加入量通过传感器控制。重整 器工作时的加热由燃料电池电堆散热器提供。 重整反应发生温度控制在 160°C , 反应时间为 15分钟, 反应器压力控制在 2 MPa。 燃料反应室产生 具有较强还原性质的深蓝色溶液, 由燃料输出口流出,经过换热器降温后 提供给液流燃料电池使用,低化合价态的蓝色溶液在液流燃料电池中被氧 化, 通知在液流电池负极放电, 氧化后的溶液重新进入燃料反应室再生, 不断循环。
本实施例制备得到的重整器适合大功率液流燃料电池使用, 能在 80 °C左右就开始具有燃料的重整反应, 具有较低的启动温度。
实施例 3
采用不锈钢加工成一个 C 100 X 150mm的小型压力容器, 设计压力为 2MPa, 分别在罐体上按照图示加工安装温度传感器, 压力传感器, pH传 感器, 辅助加热系统的加热管进料口, 出料口以及对应的阀门,得到所需 的燃料反应室。
按照图示采用不锈钢加工一个 C 100 X 130mm的容器, 里面排布两组 毛细铜管作为换热器的热交换管, 并安装对应的阀门得到所需的换热器。
将反应室, 热交换器, 控制器连接安装完毕并检查气密性, 得到所需 要的重整器。
酸性转换液的配置, 取高纯水 1L, 向其中加入 50g鵠 S史铵, 10g硅酸 钠搅拌均匀后, 再向其中加入 1 :3分析纯 H2SO4 60mL, 然后将溶液加热至 80°C , 降低温度冷却, 过滤溶液得到所需要的酸性转换溶液, 将该溶液加 入的到重整器燃料反应室体积的三分之二处。使用蠕动泵通过燃料加入口 将曱醇加入到重整器中,加入量通过传感器控制。重整器工作时的加热由 燃料电池电堆散热器提供。 重整反应发生温度控制在 100°C , 反应时间 30 分钟, 反应器压力控制在 2MPa以下。 燃料反应室产生具有较强还原性质 的深蓝色溶液, 由燃料反应室的出料口流出,经过换热器降温后进入提供 给液流燃料电池使用,低化合价态的蓝色溶液在液流燃料电池被氧化同时 在液流电池负极放电, 氧化后的溶液重新进入反应室再生, 不断循环。
本实施例制备得到的重整器适合大功率液流燃料电池使用, 能在 80 °C左右就开始具有燃料的重整反应, 具有较低的启动温度。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应 当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前 提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发 明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术 人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的 精神或范围的情况下在其它实施例中实现。 因此,本发明将不会被限制于 本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一 致的最宽的范围。

Claims

权 利 要 求
1、 一种液流电池用低温液相燃料重整器, 其特征是: 包括燃料反应 室和换热器,所述燃料反应室中含有催化剂的溶液;将催化剂溶液和燃料 溶液混合, 然后将得到的混合溶液输送至所述燃料反应室在温度为 20 ~ 200°C、 压力为 0.1 ~ 20MPa的条件下发生化学反应, 生成具有还原性质 的低价态燃料溶液,完成燃料的转换,所述燃料被氧化成为二氧化碳和水; 所述具有还原性的低价态燃料溶液经过换热器换热后降温进入到液流燃 料电池,在燃料电池负极区域氧化得到高化合价态的催化剂溶液,所述高 化合价态的催化剂溶液重新进入换热器升温后重新进入所述燃料反应室 中与燃料反应,形成完整的循环系统;整个重整器的工作都在系统控制器 的控制下进行工作。
2、 如权利要求 1所述低温液相燃料重整器, 其特征是: 所述的催化 剂溶液为由溶解于酸性溶液中的多酸形成的溶液,所述多酸为同多酸、杂 多酸和掺杂多酸中的一种或几种; 所述同多酸为钨酸或者钼酸;所述杂多 酸中的阴离子具有通式(I ) 所示的化学式:
[XaMbO40]n" ( 1 );
X=P、 Si、 Ge或 As; M=W或 Mo; a:b=l:6、 1:9或 1:12; n为 2〜10; 所述掺杂多酸中的掺杂元素为 Fe、 Co、 Ni、 Cr、 Cu、 Al、 Ti、 Sn、 Ta、 Nb和 Zr元素中的一种或者几种的组合物。
3、 如权利要求 2所述低温液相燃料重整器, 其特征是: 所述的多酸 为由多酸分子和有机分子结合成的超分子化合物,所述超分子化合物具有 式(II )或 (III )所示化学式:
[(C19H18N3)2H][PMo12O40] ( II ); (ppy)4H6[SiW12O40] ( III )。
4、 如权利要求 2所述的低温液相燃料重整器, 其特征是: 所述的重 整器中酸性溶液为非氧化性有机酸和非氧化性无机酸中的一种或几种; 所述酸性溶液中氢离子的摩尔浓度为 10_4 ~ K^mol/L 。
5、 如权利要求 4所述的低温液相燃料重整器, 其特征是: 所述酸性 溶液为硫酸、 磷酸、 柠檬酸和盐酸中的一种或几种的混合溶液。
6、 如权利要求 1所述低温液相燃料重整器, 其特征是: 所述重整器 中的燃料为曱醇、 曱醛和曱酸中的一种或者几种组成的混合物。
7、 如权利要求 1所述的低温液相燃料重整器, 其特征是: 所述催化 剂溶液与燃料溶液发生化学反应的温度为 50〜180°C;
所述催化剂溶液和燃料溶液发生反应的压力为 0.5〜18 MPa。
8、 如权利要求 1所述低温液相燃料重整器, 其特征是: 所述系统控 制器为包括压力传感器、温度传感器、安全阀、催化剂溶液浓度测试传感 器、 S史度测试传感器、反应室辅助加热系统、 微型电动调节阀、 微型泵和 反应容器组成的一个有机成套系统。
9、 如权利要求 8所述低温液相燃料重整器, 其特征是: 所述辅助加 热系统中设置有燃料;
所述燃料和空气在所述辅助加热系统内部燃烧产生热量。
10、如权利要求 1所述的低温液相燃料重整器, 其特征是: 所述的换 热器包括多组换热管;
所述换热器将所述燃料反应室输出的高温的具有还原性质的低价态 燃料溶液降温后给液流燃料电池使用,将所述液流燃料电池输出的低温高 化合价态的催化剂溶液预热后加注到燃料反应室,起到提高整个重整器系 统能量效率的目的;所述换热器还将燃料电池工作的时候译放的热量吸收 给重整器系统使用,保持燃料电池工作过程中的恒温性,使燃料电池系统 工作在最佳状态下。
PCT/CN2013/090843 2012-12-31 2013-12-30 一种液流电池用低温液相燃料重整器 WO2014101858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210589197.8 2012-12-31
CN2012105891978A CN103022537A (zh) 2012-12-31 2012-12-31 一种具有两种输出形式的低温液相燃料重整器

Publications (1)

Publication Number Publication Date
WO2014101858A1 true WO2014101858A1 (zh) 2014-07-03

Family

ID=47970844

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2013/090843 WO2014101858A1 (zh) 2012-12-31 2013-12-30 一种液流电池用低温液相燃料重整器
PCT/CN2013/090853 WO2014101864A1 (zh) 2012-12-31 2013-12-30 一种低温液相燃料重氢气发生器及高纯氢的制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090853 WO2014101864A1 (zh) 2012-12-31 2013-12-30 一种低温液相燃料重氢气发生器及高纯氢的制备方法

Country Status (2)

Country Link
CN (3) CN103022537A (zh)
WO (2) WO2014101858A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022537A (zh) * 2012-12-31 2013-04-03 刘军 一种具有两种输出形式的低温液相燃料重整器
CN106876767B (zh) * 2015-12-13 2019-09-24 中国科学院大连化学物理研究所 一种含添加剂的全钒液流电池正极电解液
CN110661015B (zh) * 2019-10-12 2020-11-10 中氢新能技术有限公司 一种甲醇重整燃料电池系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624963A (zh) * 2004-10-20 2005-06-08 华南理工大学 以杂多酸为促进剂的燃料电池阳极催化剂及其制备方法
CN101170175A (zh) * 2006-10-26 2008-04-30 三星Sdi株式会社 燃料电池用电极、燃料电池用膜电极组件和燃料电池系统
CN102468510A (zh) * 2010-11-18 2012-05-23 北京科技大学 一种基于杂多化合物储能的间接甲醇燃料电池装置
CN103022537A (zh) * 2012-12-31 2013-04-03 刘军 一种具有两种输出形式的低温液相燃料重整器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123385A (en) * 1980-03-05 1981-09-28 Tokyo Inst Of Technol Prodution of hydrogen from water using photogalvanic effect of polyacid ion
US6936364B2 (en) * 2001-10-24 2005-08-30 Modine Manufacturing Company Method and apparatus for vaporizing fuel for a reformer fuel cell system
AR061454A1 (es) * 2006-06-13 2008-08-27 Monsanto Technology Llc Sistemas de potencia alimentados por alcohol reformado
KR100971745B1 (ko) * 2007-10-30 2010-07-21 삼성에스디아이 주식회사 연료 전지 시스템 및 그 운전방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624963A (zh) * 2004-10-20 2005-06-08 华南理工大学 以杂多酸为促进剂的燃料电池阳极催化剂及其制备方法
CN101170175A (zh) * 2006-10-26 2008-04-30 三星Sdi株式会社 燃料电池用电极、燃料电池用膜电极组件和燃料电池系统
CN102468510A (zh) * 2010-11-18 2012-05-23 北京科技大学 一种基于杂多化合物储能的间接甲醇燃料电池装置
CN103022537A (zh) * 2012-12-31 2013-04-03 刘军 一种具有两种输出形式的低温液相燃料重整器

Also Published As

Publication number Publication date
CN103738917B (zh) 2015-12-02
CN103730674A (zh) 2014-04-16
CN103738917A (zh) 2014-04-23
CN103730674B (zh) 2016-04-27
WO2014101864A1 (zh) 2014-07-03
CN103022537A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
CN110498393B (zh) 一种基于压力控制的氢发生装置及方法、燃料电池系统
CN109935855B (zh) 一种重整燃料电池系统的运行方法
CN103887545A (zh) 一种高温液体燃料电池系统启动方法
CN109962260A (zh) 一种甲醇燃料电池系统
CN109956450A (zh) 一种甲醇水即时制氢系统及其制氢方法
WO2014101858A1 (zh) 一种液流电池用低温液相燃料重整器
CN109638324A (zh) 针对多种碳氢燃料的一体化多套管结构的纯氢催化装置及pemfc发电系统
CN106887630B (zh) 高温燃料电池电堆及燃料电池系统和系统控制方法
CN116093367A (zh) 用于电池储氢罐的环路式热管传热系统及氢燃料电池系统
US11482717B2 (en) Dehydrogenation method for hydrogen storage materials
CN101601997A (zh) 一种甲醇自热重整制氢催化剂及其制备方法
CN201191632Y (zh) 一种大功率燃料电池堆冷却系统
CN210325993U (zh) 一种微量co的甲醇重整制氢燃料电池发电系统
CN109935866B (zh) 一种用于液体燃料电池系统低温启动的方法
CN103551147B (zh) 一种快速、可控的PtBi金属间化合物电催化剂的合成方法
US10978728B2 (en) Method for producing high-purity electrolyte for vanadium redox flow battery using catalytic reactor
WO2014101862A1 (zh) 一种多酸液流燃料电池系统
CN209872348U (zh) 一种甲醇水制氢装置
WO2014101860A1 (zh) 以小分子液态有机物为燃料的液流燃料电池的制备方法
CN219086007U (zh) 一种紧凑型低温直接氨燃料电池系统
CN101775610A (zh) 一种固体电化学氧泵及其二氧化碳分解方法
US9461316B2 (en) System and method for controlling dehydration of fuel cell stack
US20080050617A1 (en) Catalyst for oxidizing carbon monoxide for reformer of fuel cell, method for preparing the same, and fuel cell system including the same
CN212695196U (zh) 一种适应于冷启动的燃料电池混合电源系统
CN217361661U (zh) 一种利用co2的超临界状态提纯甲酸制氢生成系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867426

Country of ref document: EP

Kind code of ref document: A1