WO2014101811A1 - 热像匹配装置和热像匹配方法 - Google Patents

热像匹配装置和热像匹配方法 Download PDF

Info

Publication number
WO2014101811A1
WO2014101811A1 PCT/CN2013/090632 CN2013090632W WO2014101811A1 WO 2014101811 A1 WO2014101811 A1 WO 2014101811A1 CN 2013090632 W CN2013090632 W CN 2013090632W WO 2014101811 A1 WO2014101811 A1 WO 2014101811A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal image
subject
image data
information
detection
Prior art date
Application number
PCT/CN2013/090632
Other languages
English (en)
French (fr)
Inventor
王浩
Original Assignee
Wang Hao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Hao filed Critical Wang Hao
Priority to US14/758,253 priority Critical patent/US20150358559A1/en
Publication of WO2014101811A1 publication Critical patent/WO2014101811A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/025Interfacing a pyrometer to an external device or network; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/026Control of working procedures of a pyrometer, other than calibration; Bandwidth calculation; Gain control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0265Handheld, portable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0275Control or determination of height or distance or angle information for sensors or receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/028Constructional details using a charging unit or battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/07Arrangements for adjusting the solid angle of collected radiation, e.g. adjusting or orienting field of view, tracking position or encoding angular position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0859Sighting arrangements, e.g. cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/24Aligning, centring, orientation detection or correction of the image
    • G06V10/245Aligning, centring, orientation detection or correction of the image by locating a pattern; Special marks for positioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • H04N23/635Region indicators; Field of view indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • H04N23/634Warning indications

Definitions

  • the thermal image matching device and the thermal image matching method of the present invention relate to an application field of infrared detection.
  • a reference image embodies a predetermined morphological feature of the subject and a captured infrared thermal image are continuously superimposed and displayed, and the user uses the reference image as a visual reference for capturing a thermal image of the subject, and performs a subject.
  • the shooting is to ensure that the morphological features of the subject's thermal image in the infrared thermal image are correct to ensure the quality of the shot.
  • a thermal imaging apparatus is disclosed, for example, in Patent Document Application No. 201210008404.
  • the above method requires the user to visually judge the degree of matching between the reference image and the subject thermal image, and the user is prone to visual fatigue and affects the speed of shooting.
  • the reference image has a large limitation on the user's shooting, such as having a certain occlusion on the infrared thermal image, and the thermal image position, size, and angle of the thermal image of the object are greatly limited, but are increased. The inconvenience of the user.
  • the present invention provides a thermal image matching device and a thermal image matching method capable of detecting whether a captured subject thermal image has a specific subject thermal image, and displaying a hot body indicating a subject when a specific subject thermal image is detected.
  • a thermal image matching device and a thermal image matching method capable of detecting whether a captured subject thermal image has a specific subject thermal image, and displaying a hot body indicating a subject when a specific subject thermal image is detected.
  • a thermal image matching device and a thermal image matching method capable of detecting whether a captured subject thermal image has a specific subject thermal image, and displaying a hot body indicating a subject when a specific subject thermal image is detected.
  • the location identifier to inform the user. Therefore, the operation of the shooting is simple, the technical requirements of the user are lowered, the quality and speed of the shooting are improved, the working intensity is reduced, and the beneficial effects of the user's subjective thoughts are not excessively relied on; further processing or operations such as analysis, storage, and the like are facilitated.
  • the thermal image matching device comprising: an acquisition unit, configured to capture a frame for acquiring thermal image data; and a detecting unit, configured to detect whether a specific object has a specific object based on the acquired thermal image data frame
  • the image processing unit is configured to generate, according to the detection result detected by the detecting unit, an infrared thermal image with a mark indicating a position at which the specific subject thermal image is located in the infrared thermal image based on the acquired thermal image data frame.
  • the thermal image matching device includes: an acquiring unit, configured to acquire a thermal image data frame; and a detecting unit, configured to detect whether a specific subject thermal image is based on the acquired thermal image data frame; and an image processing unit And generating, according to the detection result detected by the detecting unit, an infrared thermal image with a mark indicating a position of the specific subject thermal image located in the infrared thermal image based on the acquired thermal image data frame.
  • the thermal image matching device includes: an acquiring unit, configured to acquire a thermal image data frame; and a detecting unit, configured to detect whether a specific subject thermal image is based on the acquired thermal image data frame; And a unit configured to generate, according to the detection result detected by the detecting unit and the thermal image data frame acquired by the acquiring unit, a mark indicating a position where the specific subject thermal image is located in the infrared thermal image.
  • the acquiring unit is configured to continuously acquire thermal image data frames.
  • the thermal image matching method of the present invention includes: an obtaining step of acquiring a thermal image data frame; a detecting step of detecting whether a specific subject thermal image is based on the acquired thermal image data frame; and an image processing step, Based on the detection result detected by the detecting step, based on the acquired thermal image data frame, an infrared thermal image with a mark reflecting a position in which the specific subject thermal image is located in the infrared thermal image is generated.
  • Fig. 1 is a block diagram showing a schematic configuration of a thermal imaging device 100 as an example of a thermal image recording apparatus according to a first embodiment of the present invention.
  • Fig. 2 is an external view of the thermal imaging device 100 of the first embodiment.
  • Fig. 3 is a schematic diagram of subject information, subject identification information, and the like stored in the storage medium of the first embodiment.
  • Figure 4 is a schematic illustration of the detection window.
  • Figure 5 is a schematic illustration of multiple detection window detections.
  • Fig. 6 is a view showing an example of display of a display interface in the processing procedure of the first embodiment.
  • Fig. 7 is a flowchart showing the control of the first embodiment.
  • Fig. 8 is a display example in which the subject contour and the analysis area are used as the markers.
  • Fig. 9 is a flow chart showing the control of the second embodiment.
  • Fig. 10 is a view showing an example of display of the logo of the second embodiment.
  • Fig. 11 is a view showing an example of display in which two specific subject thermal images are detected and generated separately in the second embodiment.
  • Fig. 12 is a flow chart showing the control of the third embodiment.
  • the present invention is applied to a hand-held thermal image capturing apparatus in the following embodiments, the photographing function is not essential to the present invention, and any thermal image data source for which specific subject detection is to be performed may be used.
  • the present invention is therefore widely used for reading and playing back or displaying a thermal image processing apparatus that records a thermal image or receives and processes a thermal image from the outside.
  • the thermal image processing apparatus includes various devices such as a personal computer, a personal digital assistant, and the like.
  • the thermal imaging device 100 of the first embodiment sequentially detects the correlation between the obtained thermal image data frame and the subject identification information based on the thermal image data frame captured by the imaging unit 1, and the thermal imaging device 100 is based on the detection. The location of the specific subject thermal image to which it is generated, the identification is generated, and the user is notified.
  • Fig. 1 is a block diagram showing a schematic configuration of a thermal imaging device 100 as an example of a thermal image matching device according to a first embodiment of the present invention.
  • the thermal imaging device 100 includes an imaging unit 1, a temporary storage unit 2, a flash memory 3, a communication I/F 4, a memory card I/F 5, a memory card 6, an image processing unit 7, a detection unit 8, and a display control unit 9,
  • the display unit 10, the control unit 11, the operation unit 12, and the control unit 11 are connected to the corresponding portion of the data bus 13 by the control, and are responsible for the overall control of the thermal image device 100.
  • the imaging unit 1 is composed of an optical member (not shown), a lens driving member, an infrared detector, a signal preprocessing circuit, and the like.
  • the optical component consists of an infrared optical lens for focusing the received infrared radiation onto the infrared detector.
  • the lens driving section drives the lens in accordance with a control signal of the control section 11 to perform a focusing or zooming operation. In addition, it can also be a manually adjusted optical component.
  • Infrared detectors such as infrared or non-refrigerated infrared focal plane detectors, convert infrared radiation through optical components into electrical signals.
  • the signal pre-processing circuit comprises a sampling circuit, an AD conversion circuit, a timing trigger circuit, etc., and the signal output from the infrared detector is sampled and processed in a predetermined period, and converted into a digital thermal image signal by the AD conversion circuit.
  • Hot The image signal is, for example, 14-bit or 16-bit binary data (also referred to as thermal image AD value data).
  • the imaging unit In the first embodiment, the imaging unit
  • 1 is an example of an acquisition section for capturing a thermal image data frame.
  • the thermal image data frame may be a thermal image signal (the thermal image AD value data obtained by the AD detector after the AD detector is converted), or the image data of the infrared thermal image, or the temperature value, according to different implementations of the acquisition unit.
  • the so-called thermal image data frame in the first embodiment is exemplified by a thermal image signal.
  • the temporary storage unit 2 is a buffer memory that temporarily stores a thermal image data frame output from the imaging unit 1 as a buffer memory for temporarily storing the thermal image data frame output from the imaging unit 1. For example, the following processing is repeated, and the acquired thermal image data frame is temporarily stored for a predetermined time portion.
  • the acquisition unit the imaging unit 1
  • the old frame is deleted and a new thermal image data frame is stored.
  • the control unit 11 As a work memory of the image processing unit 7, the detection unit 8, the control unit 11, and the like. It functions to temporarily store data processed by the image processing unit 7 and the control unit 11.
  • the memory, the register, and the like included in the processor corresponding to the image processing unit 7, the detecting unit 8, the control unit 11, and the like may be interpreted as a temporary storage medium.
  • the flash memory 3 stores programs for control and various data used in the control of each part.
  • data relating to calculation correlation or the like is stored in a storage medium such as the flash memory 3, for example, a database storing subject identification information (Table 3), and the subject of each subject is
  • Table 3 subject identification information
  • the subject information, the subject identification information, and the predetermined judgment values correspond to each other and are stored in the database, or may be stored in a data file of a specific format or the like.
  • the predetermined judgment value is stored in advance in Table 3 in the flash memory 3, but it may be prepared in other ways, such as a judgment value set by the user.
  • the subject information is information related to the subject, for example, information representing the location, type, number, and the like of the subject, and may also be exemplified by the belonging unit and the classification level (such as the voltage level, the important level) related to the subject. Etc., model, manufacturer, performance and characteristics, history of past shooting or overhaul, date of manufacture, age of use, etc. Various applicable subject information can be prepared depending on the application.
  • the communication I/F 4 is an interface that connects and exchanges data between the thermal image device 100 and an external device in accordance with a communication specification such as USB, 1394, or network.
  • a communication specification such as USB, 1394, or network.
  • an external device for example, a personal computer, a server, or a PDA (personal digital assistant device) can be cited. ), other thermal imaging devices, visible light imaging devices, storage devices, and the like.
  • the memory card I/F 5 is an interface of the memory card 6, and a memory card 6 as a rewritable nonvolatile memory is connected to the memory card I/F 5, and is detachably attached to the main body of the thermal image device 100.
  • data such as thermal image data is recorded under the control of a recording control unit (not shown) of the control unit 11.
  • the image processing unit 7 is configured to perform predetermined processing on the thermal image data frame obtained by the imaging unit 1, for example, a thermal image of a predetermined time portion temporarily stored in the temporary storage unit 2 when the display timing comes. In the data frame, the frame of each predetermined time interval is selected and read; the processing of the image processing unit 7 is converted into data suitable for display, recording, etc., such as correction, interpolation, pseudo color, synthesis, compression, decompression, and the like. deal with.
  • the image processing unit 7 can be realized by, for example, a DSP or another microprocessor or a programmable FPGA, or can be integrated with the processor of the detecting unit 8 and the control unit 11.
  • the image processing unit 7 performs predetermined processing on the thermal image data frame (thermographic image signal) obtained by the imaging unit 1 to obtain image data of the infrared thermal image. Specifically, for example, the image processing unit 7 performs predetermined processing such as non-uniformity correction and interpolation on the thermal image data frame obtained by the imaging unit 1, and performs pseudo color processing on the thermal image data frame after the predetermined processing to obtain an infrared thermal image.
  • predetermined processing such as non-uniformity correction and interpolation
  • pseudo color processing on the thermal image data frame after the predetermined processing to obtain an infrared thermal image.
  • Image data for example, determining a corresponding pseudo color table range according to a range of the thermal image data frame AD value or a set range of the AD value, and correspondingly the thermal image data in the pseudo color plate range
  • the specific color value is taken as the image data of the corresponding pixel position in the infrared thermal image.
  • the image data obtained after the pseudo color processing by the image processing unit 7 is transferred to the temporary storage unit 2 used as a buffer memory.
  • the image processing unit 7 includes an image synthesizing unit (not shown) that synthesizes the infrared thermal image generated by the image processing unit 7 based on the identification data supplied from the marker generating unit 7A to generate a composite image.
  • Image data for example, determining a corresponding pseudo color table range according to a range of the thermal image data frame AD value or a set range of the AD value, and correspondingly the thermal image data in the pseudo color plate range
  • the specific color value is taken as the image data of the corresponding pixel position in the infrared thermal image.
  • the image synthesizing unit may also perform pseudo color processing on the thermal image signal according to the processing, that is, according to the position of the pixel located in the infrared thermal image, to generate display image data embodying the logo and the infrared thermal image ( For example, according to the position of the pixel located in the infrared thermal image, the thermal image signal of the pixel position is not subjected to pseudo color processing, and the thermal image signal other than the identified pixel position is pseudo-color processed, and then combined.
  • the image data to be identified is used to generate image data for display.
  • the image processing unit 7 is provided with a flag generating unit 7A for providing identification data.
  • the mark is used to indicate a position of the subject thermal image (the subject thermal image matching the subject identification information) in the infrared thermal image according to the detected position, size, and the like of the subject thermal image. , or it also reflects the size of the subject's thermal image, tilt angle and other information.
  • the logo may be various shapes of points, lines, and faces; preferably, the logo corresponds to a specific subject, for example, an image embodying the morphological feature of the subject, such as a contour image, as shown in FIG.
  • the contour image T1 on the thermal image of the subject is convenient for visually observing the matching degree; for example, an image reflecting the specific analysis area of the subject, as shown in Fig. 8 (b), is superimposed on the thermal image of the subject
  • the area F1 is convenient for visually observing whether the analysis area is suitable; in this case, for example, the identification data and the relative positional relationship between the identification and the detection window (for example, the location of the identification in the template, or the size, or the inclination angle) In advance, it is stored in Table 3 corresponding to the subject information, the subject identification information, and the like; or, depending on the detected specific subject thermal image, the position, the size, and the tilt angle in the infrared thermal image. Etc., to generate the identification; in addition, according to the different processing of the thermal image data in the detection window to obtain the identification, for example, further extraction detection The outline of the thermal image of the subject contained in the thermal image data in the window is identified.
  • the image processing unit 7 may perform processing different from the pseudo color processing of the thermal image signal of the other image position at which the infrared thermal image is generated, by identifying the pixel corresponding to the pixel position in the thermal image data frame.
  • An image is generated with an image that reflects the thermal image of the particular subject.
  • the characteristic pixel position for example, the contour position
  • the thermal image data in the detection window is subjected to pseudo color conversion different from the other pixel positions as the identification of the display; in this case, it can be removed in the thermal image device 100.
  • An image synthesis unit that combines the identification image with the infrared thermal image.
  • a pseudo color conversion (such as a different pseudo color table) different from other pixel positions is performed according to the pixel position of the detection window as an identifier of the display; in this case, it may be removed in the thermal image device 100.
  • the image synthesizing unit that combines the identification image with the infrared thermal image, or the identification generating unit 7A for obtaining the identification image data may also be removed.
  • the detecting unit 8 performs correlation calculation with the subject identification information based on the acquired thermal image data frame; for example, the detecting unit 8 can read the photograph stored in the temporary storage unit 2 based on the control of the control unit 11.
  • the unit 1 captures the obtained thermal image data frame, or reads the data obtained by performing predetermined processing on the thermal image data frame obtained by the imaging unit 1 by the image processing unit stored in the temporary storage unit 2 (for example, infrared obtained by pseudo color processing)
  • the image data of the thermal image is used to perform detection processing of the degree of correlation with the registered subject identification information.
  • thermal image data frame obtained by decoding from other thermal image devices by I/F 4. It may be obtained from a thermal image file in a recording medium, for example, by reading a thermal image file from the memory card 6 to obtain a thermal image data frame.
  • the thermal image data frame associated with the detection process may be a thermal image signal, or image data of an infrared thermal image, or array data of temperature values, or other data obtained based on a thermal image signal.
  • the detecting unit 8 includes, for example, a feature registration unit, a detection window setting unit, a detecting unit, and a determining unit (not shown).
  • the feature registration unit is configured to register the subject identification information related to the correlation calculation.
  • the subject identification information may be registered according to the subject identification information stored in advance in the storage medium; for example, registered for the correlation calculation based on the subject identification information associated with the selected subject information of the user.
  • Subject identification information may be specified by the user, for example, subject identification information (for example, template data, or a feature amount extracted by the region) may be obtained by specifying a subject region from the display image.
  • the registered subject identification information is stored, for example, at a predetermined position of the temporary storage unit 2, or is distinguished from other stored subject identification information by the mark when stored.
  • the object identification information may be template data (such as a template image) for template matching; in addition, the object identification information may also be a feature quantity of the parameter description, so-called feature quantity (point, line, surface, etc.), For example, a value determined according to the state of the pixel included in the detection window, such as a ratio of a predetermined partial pixel in a specific detection window, an average value of pixel values, a center point of an outline of a specific subject, an area, and the like.
  • the subject identification information is the template data 301, and for the subject 2 in Table 3, the subject identification information is the feature amount 302.
  • a combination of one or more types of subject identification information may be employed depending on the situation.
  • a detection window setting unit for setting a detection window For example, according to a certain range of detection areas (such as G1 in FIG. 5), a plurality of detection windows are disposed in the detection area G1, which may be a plurality of detection windows of different sizes, or may be a detection window after a further tilt, usually The size, tilt, etc. of the detection window can be preset according to the quality of the shooting; as shown in Fig. 4, where Fig. 4 (a) is the standard detection window, and Fig. 4 (b) is the detection window according to the reduced size. 4 ( c) The detection window set for the enlargement size, and Fig. 4 (A) is the detection window set to be inclined at a specified angle.
  • the template image is used here in a state of being reduced or enlarged or tilted, or a template image having a size equal to the window size may be prepared and stored for use. Further, it is also possible to use the thermal image data in the detection window in a state of being reduced or enlarged or also inclined to correspond to the template image.
  • the detection window is not limited to a square shape, and may be other shapes, for example, depending on the shape of the template image.
  • the detection area may also be set by the user according to the shooting habit; or may be pre-stored as associated with the subject information; may also be generated according to the position of the last identification; or may not be set with a specific detection area, but the thermal image
  • the range of the data frame is used as the detection area. It is also possible to set a plurality of detection windows by a user-specified position and size. It is not necessary to set multiple detection windows, or you can set only one detection window.
  • the detection area is superimposed on the infrared thermal image, and the user can easily understand the approximate position and size of the captured thermal image of the subject, which is convenient for shooting reference. However, the detection area may not be displayed.
  • the detecting unit compares the detected thermal image data frame with the thermal imaging data in the detection window with the subject identification information, and obtains a value for evaluating the degree of similarity.
  • the value of the maximum correlation obtained by the detection may be used as the value of the correlation of the thermal image data frame.
  • the detecting process of the detecting unit 8 may be based on a template matching detection method, and perform correlation calculation and comparison based on the thermal image data in the detection window and the template image; for example, the detecting unit calculates image data of the infrared thermal image in the detection window and As the sum of the differences between the pixels of the positions of the image data of the infrared thermal image as the template, the smaller the sum of the calculated differences, the higher the correlation.
  • the detection processing of the detection unit 8 may be a detection method based on the feature amount described by the parameter, and perform a predetermined calculation to obtain a feature amount of the thermal image data in the detection window, and a reference value of the feature amount (subject identification information) ) Compare to get the value of the correlation.
  • the reference value of the feature amount is a ratio of pixels of a specific pixel value
  • the detecting unit calculates a ratio of pixels of a specific pixel value of the thermal image data in the detection window, and compares it with a reference value of the feature amount to obtain both The value of the correlation between.
  • the contour image is used as a template for matching, and the detecting unit 8 detects whether or not a specific subject is in the thermal image data frame by, for example, the following processing. First, the detecting unit 8 extracts the thermal image data located in the detection window.
  • the predetermined threshold of the AD value binarizes the thermal image data in the read detection window; then, extracts the connected image of the binary image having the predetermined pixel value (1 or 0) connected; and then determines the Whether the connected image has a size of a predetermined range; if it is determined that the size of the connected image is within a predetermined range, a comparison process is performed between the extracted connected image and the registered template, for example, to calculate an overlapping area between the two The sum of the proportions in the respective total areas, thereby obtaining the correlation between the extracted thermal image data and the template.
  • the judging unit judges the correlation degree according to a predetermined judgment value (for example, pre-stored corresponding to the subject identification information); for example, when the value of the degree of correlation of the degree of similarity with the template is found to exceed the judgment value,
  • the frame is determined to be a frame including a specific subject thermal image, that is, a specific subject thermal image is detected to obtain a detection result.
  • the predetermined judgment value is stored in advance in Table 3 in the flash memory 3, but may be other methods such as a judgment value set by the user.
  • the detecting section 8 moves the window J1 from the upper left corner to the lower right corner of the prescribed detection area G1 of the thermal image data frame 501 for detection, cuts the thermal image data in the window, and detects it.
  • the range of the detected window size, window displacement, and tilt angle of the window is defined in advance, for example, the window size varies from 150 X 50 pixels to 120 X 40 pixels, and the range of window displacement varies. From 10 pixels to 1 pixel, the tilt angle of the window varies from 0° to 10° based on the center point.
  • the detecting section 8 successively changes the window size by 5 pixels at a time, and changes the window displacement by 1 pixel at a time, and changes the window tilt angle by 2° each time.
  • the detecting unit 8 performs correlation calculation of the template image T1 and the thermal image data frame 501; after completing the detection of all the detection windows, the value of the correlation obtained by selecting the detection window with the highest correlation is selected as the thermal image data frame 501. The value of the corresponding relevance.
  • the display control unit 9 displays the image data for display stored in the temporary storage unit 2 on the display unit 10. For example, in the shooting standby mode, the infrared thermal image generated by the thermal image data frame obtained by the shooting is continuously displayed; in the playback mode, the infrared thermal image read and expanded from the memory card 6 is displayed, and various settings can be displayed. information.
  • the display control unit 9 includes a VRAM, a VRAM control unit, a signal generating unit (not shown), and the like, and the signal generating unit periodically reads out image data from the VRAM under the control of the control unit 11 (from temporary storage)
  • the portion 2 reads and stores the image data to the VRAM, and generates a video signal output, which is displayed on the display unit 10.
  • the display portion 10 is, for example, a liquid crystal display device.
  • the display unit 10 may be other display devices connected to the thermal image device 100, and the thermal image device 100 itself may have no display portion in its electrical configuration.
  • the display control portion 9 may also be an example of an image output member. .
  • the display unit 10 is configured to perform notification when a thermal image data frame having a correlation greater than a predetermined determination value is detected; in addition to indicating the position of the thermal image of the subject in an identification manner, For example, using text and images for police Reporting information showing the degree of correlation, such as an infrared thermal image (shown together with a dynamic infrared thermal image) obtained by displaying a thermal image data frame of a maximum correlation within a predetermined time period, or accompanied by transparency, color, and color of characters and images. Notifications such as size, flashing, changes, etc.
  • the information of the correlation degree for example, the value of the correlation degree may be converted into information that is easy for the user to understand and the display is displayed; for example, according to the specified comparison table of the value and the percentage of the correlation degree, or the calculation manner (for example)
  • the sum of the extracted specific object contours and the ratio of the overlapping area of the contour T1 as a template in the respective total areas, divided by 200% can be converted into a percentage value of the correlation degree
  • the value is converted to a percentage value; it can also be other methods, such as directly displaying the value of the calculated correlation.
  • the value of the correlation, the evaluation value, and the like are converted as a percentage value, but in practice, it is not necessary to convert to a percentage value.
  • the relevance information can be displayed on the identification.
  • other means of notification may be used, for example, by means of a vibrating member, an indicator light (not shown) in the thermal imaging device 100, an analysis component (not shown), a diagnostic component (not shown), based on the control section.
  • the control of 11 can also generate a light change by the indicator light when the thermal image data frame of the maximum correlation is detected, and the vibration is generated by the vibration device, and the analysis component analyzes and displays the analysis result, and the diagnosis component displays the diagnosis and displays the diagnosis result.
  • a pseudo color change of the infrared thermal image or one or more of the above methods for notification, as long as the user can perceive the manner.
  • the way of notification can last for a specified period of time.
  • the control unit 11 controls the overall operation of the thermal imaging device 100, and stores a program for control and various data used for control of each part in a storage medium such as the flash memory 3.
  • the control unit 11 is realized by, for example, a CPU, an MPU, a SOC, a programmable FPGA, or the like.
  • the control unit 11, the display unit 10, and the like are also configured as a subject information selecting unit for selecting subject information.
  • Operation unit 12 Various operations such as various instruction operations or input of setting information are input by the user, and the control unit 11 executes the corresponding program based on the operation signal of the operation unit 12. Referring to FIG. 2, the operation unit 12 is provided.
  • the buttons for providing user operations include a record button 1, a focus button 2, a confirmation button 3, a play button 4, a menu button 5, a direction button 6, and the like;
  • a speech recognition component (not shown) or the like is used to implement related operations.
  • the control flow of the detection mode of the thermal image device 100 will be described with reference to Fig. 7, and the change of the display interface during the shooting will be described with reference to Fig. 6.
  • the user holds the thermal imaging device 100 to photograph the subject of the substation.
  • the control unit 11 controls the overall operation of the thermal imaging device 100 and the control for executing a plurality of mode processes based on the control program stored in the flash memory 3 and various data used in the respective partial controls.
  • the control unit 11 After the power is turned on, the control unit 11 initializes the internal circuit, and then enters the standby shooting mode, that is, the imaging unit 1 captures and obtains the thermal image data frame, and stores it in the temporary storage unit 2; the image processing unit 7 captures the imaging unit 1 The obtained thermal image data frame is subjected to predetermined processing and stored in a predetermined area of the temporary storage unit 2, and the infrared thermal image is continuously displayed on the display unit 10 as a moving image. In this state, the control unit 11 performs control and continuously monitors whether or not According to the predetermined operation, the process is switched to another mode or the shutdown operation is performed, and if so, the corresponding process control is entered.
  • the control mode of the detection mode is as follows:
  • step A01 the control unit 11 continuously monitors whether the user has selected the detection mode.
  • the display unit 10 displays a dynamic infrared thermal image.
  • the user would be confused about the morphological characteristics of the subject thermal image IR1 and the imaging position, size, and angle in the infrared thermal image in which it is placed, in order to ensure shooting.
  • the quality specification selects the detection mode by the predetermined operation of the operation unit 12, and when the control unit 11 detects that the user has selected the detection mode (step A01: YES), the detection mode process is entered.
  • the feature registration unit registers the template data T1 for matching.
  • the control unit 11 displays the subject instruction information generated by the subject information on the display unit 10 based on the table 3 stored in the flash memory 3, when the user is based on the shooting scene.
  • the subject "subject 1" is selected by the operation unit 12 to select "subject 1" displayed on the display unit 10, and the feature registration unit determines the subject to be matched according to the user's selection.
  • the identification information is read, and the template data 301 is read from the flash memory 3 and transferred to the temporary storage unit 2.
  • Step A03 acquiring a thermal image data frame, and transmitting the thermal image data frame obtained by the imaging unit 1 to the temporary storage unit 2;
  • step A04 reading the heat obtained in the temporary storage unit 2, for example, by the imaging unit 1
  • the detection window setting unit Like the data frame, the detection window setting unit, and the detection window. For example, based on the upper left corner of the prescribed detection area G1, a detection window is first set;
  • Step A05 a process of calculating the correlation between the thermal image data and the subject identification information in the detection window is performed.
  • the detecting unit 8 extracts the thermal image data located in the detection window based on the detection window set by the detection window setting unit, and calculates the correlation between the two based on the template registered by the feature registration unit. For example, according to the contour of the specific subject thermal image extracted by the thermal image data in the detection window, compared with the outline of the contour image T1 (template image obtained by the template data 301), the overlap area between the two is calculated in each total The sum of the proportions in the area.
  • step A06 the value of the obtained correlation is stored.
  • step A07 the detecting section 8 judges whether or not the correlation has been calculated for all the detection windows when the detection window is set in the thermal image data frame. If there is no area in which the correlation has not been calculated (NO in step A07), the process returns to step A04, and the detection window setting unit shifts the position of the detection window by a predetermined number of pixels in a predetermined direction, and sets the position as the detection window. Next position, and repeat the subsequent processing.
  • a detection process similar to that described above is also performed when the detection window is enlarged and reduced and the detection window is tilted by a predetermined angle.
  • step A07 If the correlation has been calculated for all the detection windows to be set in the thermal image data frame (YES in step A07), the value of the detected maximum correlation and the position parameter of the corresponding detection window are obtained in step A08. .
  • step A09 if the correlation degree is smaller than the predetermined determination value, the detecting unit 8 determines that the specific subject thermal image is not detected, and returns to step A03, and may also be configured to go to step A11, and if not, exit Go to A03; Repeat the subsequent processing, and the displayed infrared thermal image is shown in Fig. 6 (a), (b). Since the matching subject thermal image is not detected in the detection area G1, the infrared thermal image is displayed. There is no indication of the identity. When the correlation detected in step A09 is greater than the prescribed judgment value, it proceeds to step A10.
  • Step A10 where the identifier is generated according to the position of the detection window with the highest correlation, for example, the identifier is generated directly according to the position and size of the detection window.
  • the generated identifier is combined with the infrared thermal image obtained by the thermal image data frame to be overlapped, and then displayed, as shown in Figs. 6(c) and 6(d) for signs B1 and B2.
  • the detected positional parameters such as the position, the size, and the tilt angle of the subject thermal image are not limited to the positional parameters of the detection window, for example, the feature of the thermal image data in the detection window is further extracted, for example, the extraction is taken.
  • the body contour is used to obtain a more precise positional parameter and to set the identity based on the positional parameter.
  • Step Al l judging whether to exit the detection mode, if exiting, then ending, if not exiting, returning to step A03, repeating the above processing.
  • the detecting unit 8 detects whether or not there is a specific subject thermal image based on the thermal image data frame continuously acquired by the acquisition unit, and calculates prescribed information related to the specific subject thermal image; for example, it may be continuous acquisition.
  • Thermal image data frame All of the detection processing may be performed by reading only the thermal image data frame at a predetermined interval or performing a reduction process before the thermal image data frame in the read thermal image data frame or the detection window is detected; Reduce the processing burden associated with detection.
  • generating an image with a mark indicating a position at which the specific subject thermal image is located in the infrared thermal image is not limited to the infrared thermal image obtained by the thermal image data frame in which the subject thermal image is detected.
  • the generated identification is obtained, and the infrared thermal image obtained by the subsequent newly obtained thermal image data frame, for example, a predetermined time, can also be obtained.
  • whether or not a specific subject thermal image is detected is not limited to the comparison between the value of the correlation and the judgment value, and may be changed, for example, by the prescribed information obtained by the detection and/or the evaluation value obtained based on the prescribed information. And the comparison result of the corresponding comparison value is used as a basis for detecting a specific subject thermal image.
  • the predetermined information includes at least one of a position, a size, an inclination angle, an analysis value, a value of a correlation degree, or any combination of values of a specific subject thermal image.
  • the predetermined detection area since the predetermined detection area is set, it is possible for the user to understand the range of the photographing, and when the thermal image data frame whose correlation is higher than the predetermined value is detected, the subject among them is detected.
  • the position of the thermal image is notified, and when the user observes the logo, it is known that the subject thermal image is photographed, and the next step of storage and analysis can be performed, and the visual alignment can be greatly reduced.
  • the difficulty of operation greatly reduces the beneficial effect of the physical strength of the shooting. It is easy for ordinary users to master this shooting skill.
  • the second embodiment is different from the first embodiment in that the detecting unit 8 is configured to detect predetermined information of a specific subject thermal image in the thermal image data frame based on the acquired thermal image data frame;
  • the image processing unit 7 generates a marker embodying the same or different morphological effects based on the predetermined information obtained by the detecting unit 8, and the logo of the different morphological effects includes at least a color, a line shape, a thickness, a transparency ratio, a shape, and a content ( For example, different color configurations, the blinking state, the brightness, the constituent data, the position, the size, the rotation angle, and the one of the presentation information are different.
  • the contour of the subject and the analysis region corresponding to the subject are used.
  • the predetermined information includes at least one of a position, a size, a tilt angle, an analysis value, and a value of a correlation of a specific subject thermal image.
  • the thermal image of the object in the infrared thermal image are considered, different shooting qualities are corresponding; therefore, for example, the thermal image of the subject is considered to be located in the thermal image data.
  • the position, size, tilt angle and other factors in the frame serve as a factor for generating the logo of the corresponding different form to prompt the user to pay attention to the quality of the shooting.
  • the detecting unit 8 further has a functional unit for detecting an analysis value, for example, an analysis value obtained by a predetermined algorithm for the detected thermal image data frame or the detected subject thermal image; for example, by the detection window.
  • the thermal image data AD value is calculated by the obtained temperature value, and the predetermined algorithm calculates, for example, the highest, lowest, and average temperature values in the specified analysis region; or may be a comparison value of the temperature in different analysis regions, such as a temperature difference; when the detection is detected When there is an analysis value in the body heat image that is larger than the specified comparison value (for example, the threshold value of the defect), it means that the object has a defect, and then the user should pay attention to it; the specific mark at this time will immediately cause the user's Note that it is of great significance for infrared detection.
  • the analysis value is not limited to the temperature value, and may be, for example, an AD value, a color value in a pseudo color thermal image, a ratio of a specific image value, or a value obtained by calculating these
  • the image processing unit 7 can generate a mark reflecting the same or different form effect based on the predetermined information obtained by the detecting unit 8.
  • the identifier may be generated according to a comparison table between the specified information and the identification data. For example, different positions, sizes, and rotation angles correspond to different transparency ratios, line types, etc., different analysis values correspond to different colors, and different correlation values correspond to different shapes, thereby generating an identifier.
  • FIG. 10 the positions of different detection windows are exemplified, The shape of the mark corresponding to the size and the tilt angle is taken as an example; wherein, in Fig. 10 (a), the shape corresponding to the detection window (as the mark) is a broken line, and the form corresponding to the detection window (as the mark) in Fig. 10 is true. line.
  • the image processing section 7 can generate an image with respect to each subject; since the detecting section 8 detects the subject heat
  • the identifier of IR2 is displayed as Red (solid line is shown) and IR1 is shown in blue (dashed line is shown).
  • the comprehensive evaluation value may be obtained by specifying the information; for example, the specific information in the detected prescribed information may correspond to different coefficients, and the other specified information in the detected prescribed information may be obtained by combining the coefficient.
  • the evaluation value for example, the weight of the different prescribed information may be used to obtain the evaluation value by weighting.
  • the final evaluation value can be obtained by various calculation methods.
  • the image processing unit 7 (identification generating unit 7A) generates an identification based on, for example, a comparison table of the evaluation value and the identification data.
  • FIG. 10(a) detects the corresponding 0.95 of the window J2
  • FIG. 10(b) detects that the window coefficient of the window J1 is 0.8
  • the evaluation value the value of the correlation.
  • the X window coefficient therefore, when a specific subject thermal image with the same correlation is detected in the two windows, the value of the correlation is combined with the evaluation value of the detection window J2 (for example, converted to 95%) to be combined with the value of the correlation degree.
  • the evaluation value of the detection window J1 (for example, converted to 80%) is obtained according to the line type corresponding to the evaluation value (95% corresponds to a solid line, 80% corresponds to a broken line) to obtain a logo of a different form.
  • an evaluation value obtained based on the partial information of the detected predetermined information may be generated, and an identification may be generated based on the evaluation value and the predetermined information that does not participate in the generation of the evaluation value, and the identification table of the identification data.
  • a comparison table between the evaluation value obtained by the predetermined information and/or the predetermined information and the identification data is prepared in advance according to different subjects, and is stored in correspondence with the subject information, the subject identification information, and the like in Table 3. .
  • the prompt information is different, for example, the content, color, font, transparency, and flicker of the prompt information are different; the prompt information may be A part of the logo can also be displayed in other areas of the display.
  • Step A01-Step A07 similar to the steps A01-A07 of Embodiment 1, the description is omitted;
  • Step B08 the detecting unit 8 obtains a value of a correlation degree of a predetermined number of detection windows in the thermal image data frame and a corresponding position parameter thereof;
  • Step B09 if the correlation degree obtained by the predetermined number of detection windows is smaller than the predetermined determination value, the detecting unit 8 determines that the specific subject thermal image is not detected, continues to display the infrared thermal image, and returns to step B03 to repeat the subsequent When the correlation detected in step B09 is greater than the predetermined determination value, the process proceeds to step B10.
  • Embodiment 1 The difference from Embodiment 1 is that it is not limited to selecting the value of the correlation obtained in the detection window with the highest correlation as the value of the correlation corresponding to the thermal image data frame, and a predetermined number of detection windows may be selected.
  • the detecting unit 8 further detects the thermal image data in the detection window whose correlation degree is larger than the predetermined determination value, and obtains predetermined information such as an analysis value and the like related to the generation of the identification.
  • the outline of the subject can also be extracted from the detection window to obtain a more accurate parameter of the position, size, rotation angle, and the like of the thermal image of the subject.
  • Step Bl l the image processing unit 7 generates a corresponding flag based on the obtained predetermined information, for example, based on the comparison table of the evaluation value and the identification.
  • the detecting unit 8 detects a plurality of subjects, respective corresponding identifiers can be generated. (as shown in Figure 11)
  • the generated identifier is synthesized and overlapped with the infrared thermal image obtained by the thermal image data frame, and then displayed.
  • the evaluation value is converted into a percentage as an example (the evaluation value is converted into a percentage) Etc.), it can be other methods, such as directly displaying the calculated evaluation value.
  • the evaluation value shown in Fig. 10 (a) is 80% (corresponding to the indication frame showing the dotted line); the evaluation value shown in Fig. 10 (b) is 95% (corresponding to the indication frame showing the solid line) .
  • the specific evaluation value or the detected specific information may be notified in other manners, for example, when the analysis value is detected to be larger than the predetermined comparison value, the blinking of the indicator light is also accompanied.
  • the notification method can last for a specified time.
  • the notification unit may be a vibrating member, an indicator lamp (not shown) in the thermal imaging device 100, an analysis unit (not shown), and a diagnostic unit (not shown), and the specific detection is detected based on the control of the control unit 11.
  • the light change can also be generated by the indicator light
  • the vibration is generated by the vibration device
  • the analysis component analyzes and displays the analysis result
  • the diagnosis component diagnoses and displays the diagnosis result; or one or more of the above methods simultaneously Notifications can be made as long as they are perceptible to the user.
  • step B12 it is judged whether to exit the detection mode, and if it is exited, it ends. If it is not exited, it returns to step A02, and the above processing is repeated.
  • the thermal image data frame obtained by continuous shooting when the thermal image data frame whose correlation is higher than the predetermined judgment value is detected, the user can be continuously notified, and according to the detected predetermined information, different indications can be indicated.
  • the visual effect mark can further reduce the shooting workload, avoid shooting wrong parts, and suggest the beneficial effects of specific test results.
  • Embodiment 2 in the case of some applications, whether or not a specific subject thermal image is detected by photographing, is not limited to the comparison between the value of the correlation and the judgment value, and is also more variable, for example, according to the detection.
  • the comparison result of the predetermined information and/or the evaluation value and the corresponding comparison value is used as a basis for detecting a specific subject thermal image or as a basis for generating the identification.
  • the identification can be generated in time.
  • the user is prompted to pay attention to a specific situation, which can greatly reduce the difficulty of visual alignment, greatly reduce the physical strength of the shooting, and improve the quality of the finally obtained thermal image data frame. It is easy for ordinary users to master this shooting skill.
  • implementing any of the products of the embodiments of the present invention does not necessarily require all of the advantages described above to be achieved at the same time.
  • Embodiment 3 is different from Embodiments 1 and 2 described above in the embodiment in which the thermal image of the subject is detected in the playback mode of the thermal imaging device 100, and the embodiment is also applicable to the frozen state.
  • the setting of the identification of the thermal image of the subject, and the subsequent setting of the identification of the thermal image of the subject when the thermal image processing device (for example, a computer) reads the thermal image file.
  • Step G01 obtaining a thermal image data frame, for example, a recording operation when the user freezes the image, and holding the instant thermal image data frame obtained by the imaging unit 1 in the temporary storage unit 2;
  • step G02 the thermal image data frame is detected, and here, information for obtaining a thermal image with the subject is detected. (A03-A08 of the same embodiment 1 is omitted). Step G03, generating an image with the identifier according to the detected information. (A10 of the same embodiment 1 or B10-B12 of the embodiment 2, the description is omitted).
  • the thermal image device 100 as an example is explained in each of the above embodiments.
  • the invention is applicable not only to thermal imaging devices with shooting functions such as various thermal imaging devices for portable shooting or online shooting, but also to various thermal image processing devices, such as continuously receiving and processing thermal images from the outside (such as timing acquisition).
  • Thermal image processing device such as a computer, a personal digital assistant, a display device used in conjunction with a thermal image device of a photographing function
  • a communication port an example of an acquisition unit
  • the thermal image processing device is connected to an external device, and the thermal image device is wired or wirelessly connected, and the thermal image data frame outputted by the thermal image device connected thereto is continuously received.
  • the processing such as the detection processing is similar to the above-described embodiment, and the description is omitted.
  • thermal image data frame It is not limited to photographing or acquiring a thermal image data frame from the outside, but may also be a constituent component or a functional module in a thermal imaging device or a thermal image processing device, for example, acquiring a thermal image data frame from other components, and in this case, also constitutes the present invention. Implementation.
  • the detecting unit may obtain the determination result based on the subject identification information and based on the determination value corresponding to the plurality of subject identification information, for example, according to the weighting of the plurality of feature amounts. To get the final judgment result.
  • the detecting unit may first calculate a comparison result of one of the feature quantities and the thermal image data frame according to the plurality of object identification information, when the value is greater than a predetermined threshold, and calculate the next one.
  • the result of comparison between the subject identification information and the thermal image data frame is obtained based on a plurality of comparisons to obtain a final judgment result.
  • various methods of detecting a specific subject thermal image can be used, and the processing in this embodiment is only an example of a usable method.
  • control unit 11 and the image processing unit and the like include a plurality of processors, there may be parallel processing to which some steps are applicable.
  • the storage medium storing the object identification information or the like may be a storage medium in the thermal imaging device 100, such as a nonvolatile storage medium such as the flash memory 3 or the memory card 6, or a volatile storage medium such as the temporary storage unit 2;
  • Other storage media that are wired or wirelessly connected to the thermal image device 100 such as storage media or network destination storage in other devices that are wired or wirelessly connected to the communication I/F 4, such as other storage devices, thermal imaging devices, computers, and the like. medium.
  • the embodiment in which the subject identification information is associated with the subject information is a preferred mode, and various applicable subject information can be prepared depending on the application.
  • the object information is identity information of the representative object recognizable by the user, such as information representing the location, type, and location of the subject; but may also represent the subject. Type of information.
  • the subject identification information is not limited to being associated with the subject information.
  • aspects of the present invention may also be a computer (or a device such as a CPU, an MPU, etc.) of a system or device that performs the functions of the above-described embodiments by arranging and executing a program recorded on a storage device, and a system or device by the steps thereof
  • the computer is realized by, for example, a method of reading and executing a program recorded on a storage device to perform the functions of the above-described embodiments.
  • the program is provided to a computer or a thermal image device, for example, via a network or from various types of recording media (e.g., computer readable media) used as storage devices.
  • the present invention provides a computer program in which digital signals are recorded in a recording medium readable by a computer or a thermal image device, such as a hard disk, a memory or the like. After the program runs, perform the following steps:
  • the obtaining step is used for continuous shooting to obtain a thermal image data frame; a detecting step, configured to detect whether there is a specific subject thermal image based on the acquired thermal image data frame; and an image processing step, configured to generate, according to the detected thermal image data frame, the generated image with the reflected image detected by the detecting step
  • a specific subject thermal image is a dynamic infrared thermal image of the location located in the infrared thermal image.
  • Embodiments of the present invention also provide a readable storage medium storing a computer program for electronic data exchange, wherein the computer program causes a computer in the thermal image device to perform the following steps:
  • An obtaining step configured to continuously acquire a thermal image data frame
  • a detecting step configured to detect whether there is a specific subject thermal image based on the acquired thermal image data frame
  • the application of the object in the power industry is exemplified as a scenario, and it is also applicable to various industries in which infrared detection is widely used.
  • the above description is only a specific example (embodiment) of the invention, and various exemplary embodiments are not intended to limit the essence of the invention, and the above examples are merely examples, and the present invention is not limited thereto; the structure and structure in the above embodiment The operations may be changed as needed; and various embodiments may be substituted and combined to form further embodiments. Other modifications and changes may be made to the embodiments without departing from the spirit and scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Studio Devices (AREA)

Abstract

公开了一种热像匹配装置和热像匹配方法。热像匹配装置,包括:获取部(1),用于拍摄获取热像数据帧;检测部(8),用于基于获取的热像数据帧,检测是否具有特性被摄体热像;图像处理部(7),用于根据检测部检测的检测结果,基于所获取的热像数据帧,生成带有体现特定被摄体热像位于红外热像中的位置的标识的红外热像。还公开了使用该热像匹配装置的热像匹配方法。

Description

热像匹配装置和热像匹配方法
技术领域
本发明的热像匹配装置和热像匹配方法, 涉及红外检测的应用领域。
背景技术
自热像检测技术应用以来, 使用者一直困惑于对正确拍摄部位、 拍摄角度下被摄体成像 形态等的认知, 这取决于使用者的主观意念和经验, 导致目前如果要确保检测的质量则需边 拍摄边思考, 拍摄速度很慢, 如果加快速度则易遗漏关键拍摄部位或被摄体缺陷, 影响状态 评估的效果。 通常需要数年的实践积累, 使用者才能达到较高的检测水平。
本领域的技术人员一直在试图解决这个问题, 近来, 一些期望可以降低热像拍摄的技术 难度, 提高拍摄速度的手段为人公知。
存在这样的技术, 将体现了被摄体预定形态特征的参考图像与拍摄获得的红外热像进行 连续重叠显示, 使用者以该参考图像作为拍摄被摄体热像的视觉参照, 进行被摄体的拍摄, 来确保被摄体热像在红外热像中的形态特征的正确, 以保证了拍摄的质量。 例如专利文献申 请号: 201210008404. 6公开了这样的热像拍摄装置。
然而, 上述方式需要使用者通过视觉人工来判断参考图像和被摄体热像的匹配程度, 使 用者容易产生视觉上的疲劳, 并影响了拍摄的速度。
并且, 参考图像对使用者的拍摄有较大的局限性, 如对红外热像具有一定的遮挡, 并且, 对被摄体热像的热像位置、 尺寸、 角度有较大的限定, 反而增加了使用者的不便。
因此, 所理解需要一种热像装置, 其能解决现有技术问题。
发明内容
本发明提供一种热像匹配装置和热像匹配方法, 能检测所拍摄的红外热像中是否具有特 定被摄体热像, 当检测到特定被摄体热像时, 显示指示被摄体热像位置的标识, 来通知使用 者。 从而使拍摄的操作简单, 对使用者的技术要求降低, 拍摄质量和速度提高, 工作强度减 低, 并无需过度依赖使用者主观上的意念的有益效果; 利于进一步进行分析、 存储等处理或 操作。
为此, 本发明采用以下技术方案, 热像匹配装置, 包括: 获取部, 用于拍摄获取热像数 据帧; 检测部, 用于基于所获取的热像数据帧, 检测是否具有特定被摄体热像; 图像处理部, 用于根据检测部检测的检测结果, 基于所获取的热像数据帧, 生成带有体现特定被摄体热像 位于红外热像中的位置的标识的红外热像。
或采用以下技术方案, 热像匹配装置, 包括: 获取部, 用于获取热像数据帧; 检测部, 用于基于获取的热像数据帧, 检测是否具有特定被摄体热像; 图像处理部, 用于根据检测部 检测的检测结果, 基于所获取的热像数据帧, 生成带有体现特定被摄体热像位于红外热像中 的位置的标识的红外热像。
或采用以下技术方案, 热像匹配装置, 包括: 获取部, 用于获取热像数据帧; 检测部, 用于基于所获取的热像数据帧, 检测是否具有特定被摄体热像; 标识生成单元, 用于根据检 测部检测的检测结果及获取部获取的热像数据帧, 生成体现特定被摄体热像位于红外热像中 的位置的标识。
在采用上述技术方案的基础上, 本发明还可同时采用以下进一步的技术方案: 所述获取 部, 用于连续获取热像数据帧。 本发明的热像匹配方法, 包括: 获取步骤, 用于获取热像数据帧; 检测步骤, 用于基于 获取的热像数据帧, 检测是否具有特定被摄体热像; 图像处理步骤, 用于根据检测步骤检测 的检测结果, 基于所获取的热像数据帧, 生成带有体现特定被摄体热像位于红外热像中的位 置的标识的红外热像。
本发明的其他方面和优点将通过下面的说明书进行阐述。
附图说明:
图 1是表示本发明的实施例 1的热像记录装置的示例的热像装置 100的概略构成的框图。 图 2是实施例 1的热像装置 100的外型图。
图 3是实施例 1存储介质中存储的被摄体信息、 被摄体识别信息等的示意图。
图 4是检测窗口的示意图。
图 5是多个检测窗口检测的示意图。
图 6是实施例 1的处理过程的显示界面的显示例。
图 7是表示实施例 1的控制流程图。
图 8是被摄体轮廓、 分析区域作为标识的显示例。
图 9是表示实施例 2的控制流程图。
图 10是实施例 2的标识的显示例。
图 11是实施例 2检测到二个特定被摄体热像并分别生成的标识的显示例。
图 12是表示实施例 3的控制流程图。
具体实施方式
现在将根据附图详细说明本发明的典型实施例。 注意, 以下要说明的实施例用于更好地 理解本发明, 所以不限制本发明的范围, 并且可以改变本发明的范围内的各种形式。 而且, 虽然本发明在以下实施例中用于手持式的热像拍摄设备, 但对于本发明来说拍摄功能不是必 须的, 可以使用要进行特定被摄体检测的任意热像数据源。 因此本发明广泛用于读出和播放 或显示记录热像、 或者从外部接收和处理热像的热像处理设备。 所述热像处理设备包括如个 人计算机、 个人数字助理等各种装置。
实施例 1
实施方式 1的热像装置 100基于由拍摄部 1拍摄获得的热像数据帧, 依次检测获得的热 像数据帧与被摄体识别信息之间的相关度, 并且, 热像装置 100基于所检测到的特定被摄体 热像的位置, 生成标识, 对使用者进行通知。
图 1是表示本发明的实施例 1的热像匹配装置的示例的热像装置 100的概略构成的框图。 具体而言,热像装置 100具有拍摄部 1、临时存储部 2、闪存 3、通信 I/F4、存储卡 I/F5、 存储卡 6、 图像处理部 7、 检测部 8、 显示控制部 9、 显示部 10, 控制部 11、 操作部 12、 控 制部 11通过控制与数据总线 13与上述相应部分进行连接, 负责热像装置 100的总体控制。
拍摄部 1由未图示的光学部件、 镜头驱动部件、 红外探测器、 信号预处理电路等构成。 光学部件由红外光学透镜组成, 用于将接收的红外辐射聚焦到红外探测器。 镜头驱动部件根 据控制部 11的控制信号驱动透镜来执行聚焦或变焦操作。此外,也可为手动调节的光学部件。 红外探测器如制冷或非制冷类型的红外焦平面探测器, 把通过光学部件的红外辐射转换为电 信号。 信号预处理电路包括采样电路、 AD转换电路、 定时触发电路等, 将从红外探测器输出 的电信号在规定的周期内进行取样等信号处理, 经 AD转换电路转换为数字的热像信号, 该热 像信号例如为 14位或 16位的二进制数据 (又称为热像 AD值数据)。 在实施例 1中, 拍摄部
1作为获取部的实例, 用于拍摄获得热像数据帧。
所谓热像数据帧, 根据获取部不同的实施方式, 可以是热像信号 (红外探测器输出信号 经 AD转换后获得的热像 AD值数据), 或红外热像的图像数据, 或温度值的阵列数据, 或其他 基于热像信号生成的数据等。 在实施例 1中所谓的热像数据帧以热像信号为例。
临时存储部 2如 RAM、 DRAM等易失性存储器, 作为对拍摄部 1输出的热像数据帧进行临 时存储的缓冲存储器, 例如重复如下处理, 即将获取的热像数据帧临时存储规定时间份, 并 在由所述获取部 (拍摄部 1 ) 获取新的帧时, 删除旧的帧后存储新的热像数据帧; 同时, 作 为图像处理部 7、 检测部 8、 控制部 11等的工作存储器起作用, 暂时存储由图像处理部 7和 控制部 11进行处理的数据。 不限于此, 图像处理部 7、 检测部 8、 控制部 11等对应的处理器 内部包含的存储器或者寄存器等也可以解释为一种临时存储介质。
闪存 3, 存储有用于控制的程序, 以及各部分控制中使用的各种数据。 本实施例中, 如 图 3所示, 与计算相关度等有关的数据存储在存储介质如闪存 3中, 例如存储被摄体识别信 息的数据库(表 3), 将每个被摄体的被摄体信息、被摄体识别信息、规定的判断值相互对应, 存储在该数据库中, 此外, 也可以以特定格式的数据文件等来存储。 在此, 规定的判断值预 先存储在闪存 3中的表 3中, 但也可以为其他方式来准备, 如使用者设置的判断值。
被摄体信息为与被摄体有关的信息, 例如代表被摄体地点、 类型、 编号等的信息, 此外, 还可以例举被摄体有关的归属单位、分类等级(如电压等级、重要等级等)、型号、制造厂商、 性能和特性、 过去的拍摄或检修的履历、 制造日期、 使用期限等各种信息。 根据应用的不同 可以准备各种适用的被摄体信息。
通信 I/F4是例如按照 USB、 1394、 网络等通信规范, 将热像装置 100与外部装置进行连 接并数据交换的接口, 作为外部装置, 例如可以列举个人计算机、 服务器、 PDA (个人数字助 理装置)、 其他的热像装置、 可见光拍摄装置、 存储装置等。
存储卡 I/F5, 作为存储卡 6的接口, 在存储卡 I/F5上, 连接有作为可改写的非易失性 存储器的存储卡 6, 可自由拆装地安装在热像装置 100主体的卡槽内, 根据控制部 11的记录 控制单元 (省略图示) 的控制记录热像数据等数据。
图像处理部 7用于对通过拍摄部 1获得的热像数据帧进行规定的处理, 例如其在显示定 时每次到来之际, 从临时存储在所述临时存储部 2的规定时间份的热像数据帧中, 选择并读 出每个规定时间间隔的帧; 图像处理部 7的处理如修正、 插值、 伪彩、 合成、 压缩、 解压等, 进行转换为适合于显示用、 记录用等数据的处理。 图像处理部 7例如可以采用 DSP或其他微 处理器或可编程的 FPGA等来实现, 或者, 也可与检测部 8、 控制部 11的处理器为一体。
图像处理部 7用于对拍摄部 1拍摄获得的热像数据帧 (热像信号) 实施规定的处理来获 得红外热像的图像数据。 具体而言, 例如, 图像处理部 7对拍摄部 1拍摄获得的热像数据帧 进行非均匀性校正、 插值等规定处理, 对规定处理后的热像数据帧进行伪彩处理, 获得红外 热像的图像数据; 伪彩处理的一种实施方式, 例如根据热像数据帧 AD值的范围或 AD值的设 定范围来确定对应的伪彩表范围, 将热像数据在伪彩板范围中对应的具体颜色值作为其在红 外热像中对应像素位置的图像数据。 从图像处理部 7伪彩处理后获得的图像数据传送到作为 缓冲存储器使用的临时存储部 2中。 另外, 图像处理部 7具备图像合成单元 (未图示), 所述图像合成单元基于标识生成部 7A所提供的标识数据, 与图像处理部 7生成的红外热像, 进行合成后产生合成图像的图像数 据。此外, 图像合成单元也可以是根据这样的处理, 即根据标识位于红外热像中的像素位置, 来对热像信号进行伪彩处理, 以生成体现了标识和红外热像的显示用图像数据 (类似重叠的 效果); 例如, 根据标识位于红外热像中的像素位置, 对该像素位置的热像信号不进行伪彩处 理, 将标识的像素位置以外的热像信号进行伪彩处理, 而后结合标识的图像数据, 来生成显 示用图像数据。
另外, 图像处理部 7具备标识生成单元 7A, 用于提供标识的数据。 所谓标识, 用于根据 检测到的被摄体热像的位置、 尺寸等参数, 来指示被摄体热像 (与被摄体识别信息匹配的被 摄体热像) 位于红外热像中的位置, 或还体现了被摄体热像的尺寸, 倾斜角度等其他信息。 标识可以是点、 线、 面各种形状; 优选的, 标识对应了特定的被摄体, 例如, 体现被摄体形 态特征的图像,例如轮廓图像,如图 8 ( a) 所示的重叠在被摄体热像上的轮廓图像 T1,便于直 观地观察匹配度; 例如, 体现了被摄体特定分析区域的图像, 如图 8 (b ) 所示的重叠在被摄 体热像上的分析区域 F1,便于直观地观察分析区域是否合适; 这时, 例如可将标识的数据及 标识与检测窗口的相对位置关系 (例如, 标识位于模板中的位置、 或还包括尺寸、 或还包括 倾斜角度), 预先与被摄体信息、 被摄体识别信息等相对应存储在表 3中; 或者, 也可以根据 所检测到的特定被摄体热像位于红外热像中的位置、 尺寸、 倾斜角度等, 来生成标识; 此外, 也可根据对检测窗口中的热像数据进行不同的处理, 来获得标识, 例如, 可进一步提取检测 窗口中的热像数据所包含的被摄体热像的轮廓来获得标识。
需要注意的是, 图像处理部 7也可将标识对应热像数据帧中的像素位置的像素, 进行与 生成红外热像的其他像数位置的热像信号的伪彩处理所不同的处理, 来生成带有体现该特定 被摄体热像标识的图像。 例如, 将检测窗口中的热像数据的特征像素位置 (例如轮廓位置) 进行不同于其他像素位置的伪彩转换, 作为显示的标识; 这种情况下, 在热像装置 100中可 以去除用来将标识图像与红外热像合成的图像合成单元。 又例如, 根据检测窗口的像素位置 来进行不同于其他像素位置的伪彩转换 (如不同的伪彩表), 作为显示的标识; 这种情况下, 在热像装置 100中或还可去除用来将标识图像与红外热像合成的图像合成单元, 或者还可去 除用于获得标识图像数据的标识生成单元 7A。
检测部 8基于获取的热像数据帧, 进行与被摄体识别信息之间的相关度计算; 例如, 检 测部 8基于控制部 11的控制,可以通过读取临时存储部 2中所存储的拍摄部 1拍摄获得的热 像数据帧, 或通过读取临时存储部 2中所存储的图像处理部对拍摄部 1拍摄获得的热像数据 帧进行规定处理获得的数据(例如伪彩处理获得的红外热像的图像数据), 来执行与所登记的 被摄体识别信息之间的相关度的检测处理。
在其他的实施方式中, 如也可以是外部输入的数据获得的, 例如通过 I/F4从其他热像装 置接收后解码获得的热像数据帧。 如也可以是从记录介质中的热像文件所获取的, 例如从存 储卡 6中读取热像文件而获得热像数据帧。
与检测处理有关的热像数据帧, 可以是热像信号, 或红外热像的图像数据, 或温度值的 阵列数据, 或其他基于热像信号获得的数据等。
在实施例 1中, 检测部 8例如包括特征登记单元、 检测窗口设置单元、 检测单元、 判断 单元 (未图示)。 特征登记单元, 用于登记用来相关度计算有关的被摄体识别信息。 例如, 可根据存储介 质中预先存储的被摄体识别信息来登记被摄体识别信息; 例如, 根据使用者的选择的被摄体 信息关联的被摄体识别信息, 来登记用于相关度计算的被摄体识别信息。 此外, 也可以由用 户来指定被摄体识别信息, 例如可以通过从显示图像中指定被摄体区域来获得被摄体识别信 息(例如模板数据, 或该区域提取的特征量)。所登记的被摄体识别信息例如被存储在临时存 储部 2的规定位置, 或存储时以标记与存储的其他被摄体识别信息区别。
所谓被摄体识别信息可以是用于模板匹配的模板数据(如模板图像); 此外, 被摄体识别 信息也可以是参数描述的特征量, 所谓特征量(点、 线、 面等特征), 例如, 为根据检测窗口 中所包含的像素的状态所决定的值, 如为特定检测窗口中的规定部分像素的比例、 像素值的 平均值、 特定被摄体的轮廓的中心点、 面积等。 例如, 对于表 3中的被摄体 1, 被摄体识别 信息为模板数据 301,对于表 3中的被摄体 2,被摄体识别信息为特征量 302。在具体应用中, 可以根据情况采用其中一种或多种被摄体识别信息方式的结合。
检测窗口设置单元,用于设置检测窗口。例如根据一定范围的检测区域(如图 5中的 Gl ), 在该检测区域 G1中设置多个检测窗口, 可以是多个不同尺寸的检测窗口, 也可以是近一步倾 斜后的检测窗口, 通常可根据拍摄质量的要求来预先设定检测窗口的尺寸、 倾斜等; 如图 4 所示, 其中图 4 (a) 为标准的检测窗口, 图 4 (b) 为根据缩小尺寸的检测窗口, 图 4 ( c) 为放大尺寸设置的检测窗口, 图 4 (A) 为按照规定角度倾斜而设置的检测窗口。 为了等于检 测窗口的尺寸, 此处模板图像以缩小或放大或还倾斜的状态被使用, 或者, 也可以准备及存 储尺寸等于窗口尺寸的模板图像以备使用。 此外, 也可将检测窗口中的热像数据以缩小或放 大或还倾斜的状态被使用, 以对应模板图像。 检测窗口不限定于方形, 也可以是其它形状, 例如可以根据模板图像的形状来定。
检测区域也可由使用者根据拍摄习惯来设置; 或者也可以是预存的如与被摄体信息关联 的; 也可以根据上次标识的位置生成的; 也可不设置特定的检测区域, 而将热像数据帧的范 围作为检测区域。 也可以是使用者指定的位置和尺寸来设置多个检测窗口。 并非必须设置多 个检测窗口, 也可以只设置一个检测窗口。
需要注意的是, 对于红外检测的应用领域, 例如变电站中充斥着大量外形类似, 但名称 不同的设备, 为避免误导使用者及误拍摄, 优选的是设置检测区域。 在红外热像上重叠显示 检测区域的标识, 使用者易于明白所拍摄的被摄体热像的大致位置、尺寸等, 便于拍摄参照。 但检测区域也可不显示。
检测单元, 将所检测的热像数据帧基于检测窗口中的热像数据, 与被摄体识别信息进行 比对, 获得用于评价类似程度的相关度的值。 当设置了多个检测窗口时, 例如可将其中检测 获得的最大相关度的值作为该热像数据帧的相关度的值。
检测部 8的检测处理可以是基于模板匹配的检测方式, 基于检测窗口中的热像数据与模 板图像进行相关度的计算和比较; 例如, 检测单元计算检测窗口中的红外热像的图像数据和 作为模板的红外热像的图像数据相互对应的位置的像素之间的差的和, 所计算出的差的和越 小, 相关度越高。
也可配置为提取特征量进行匹配的实施方式, 利用模板图像与检测窗口中的热像数据的 特征量之间的比较来确定相关度。 例如, 提取检测窗口中的被摄体图像的特定像素的比例, 与模板图像中的特定像素的比例越接近, 相关度越高。 检测部 8的检测处理也可以是基于参数描述的特征量的检测实施方式, 进行规定的运算 来获得检测窗口中的热像数据的特征量, 并与特征量的基准值(被摄体识别信息)进行比较, 来获得相关度的值。 例如, 所述特征量的基准值为特定像素值的像素的比例, 检测单元计算 检测窗口中的热像数据特定像素值的像素的比例, 与特征量的基准值进行比较, 来获得二者 之间的相关度的值。
优选的方式, 采用轮廓图像作为匹配的模板, 检测部 8例如通过以下的处理来检测热像 数据帧中是否具有特定被摄体, 首先, 检测部 8提取位于检测窗口中的热像数据, 按照 AD值 的预定阀值对读取的检测窗口中的热像数据进行二值化; 接着, 提取该二值图像的具有预定 像素值 (1或 0) 的像素相连通的连通图像; 而后判断该连通图像是否具有预定范围的大小; 如果判断出该连通图像的大小在预定范围内, 则近一步在提取的连通图像与所登记的模板之 间执行比较处理, 例如计算二者之间的重叠面积在各自总面积中的比例之和, 由此, 获得所 提取热像数据与模板之间相关度。
判断单元, 将相关度根据规定的判断值 (例如与被摄体识别信息一起对应预存的) 进行 判断; 例如, 当搜索到与模板之间的类似程度的相关度的值超过了判断值时, 将该帧判断为 包含有特定被摄体热像的帧, 即检测到特定被摄体热像, 来获得检测结果。 在此, 规定的判 断值预先存储在闪存 3中的表 3中, 但也可以为其他方式, 如使用者设置的判断值。
对于检测的示例, 如图 5所示, 检测部 8从热像数据帧 501的规定检测区域 G1的左上角 到右下角移动窗口 J1以进行检测, 剪切窗口中的热像数据, 并检测其与模板图像 T1的相关 度。 具体而言, 窗口 J1从左端向右以规定值的窗口位移(例如一个像素)逐步地移动, 并在 到达右端后, 被设置返回左端并向下移动窗口位移, 以及随后再次逐步地向右移动。 为高精 度地检测被摄体, 检测的窗口尺寸、 窗口位移、 窗口的倾斜角度的变换范围被预先定义, 例 如窗口尺寸的变化范围从 150 X 50像素到 120 X 40像素,窗口位移的变化范围从 10个像素到 1个像素, 窗口的倾斜角度的变化范围为基于中心点的 0° 到 10° 。检测部 8逐次的, 每次 5 个像素地改变窗口尺寸, 并每次 1个像素地改变窗口位移, 并每次 2° 地改变窗口倾斜角度。 检测部 8进行模板图像 T1和热像数据帧 501的相关度计算; 在完成所有检测窗口的检测后, 从中选择相关度最高的检测窗口所获得的相关度的值, 作为该热像数据帧 501对应的相关度 的值。
注意, 可以基于被摄体识别信息, 来计算热像数据帧的相关度的各种方法, 上述例举的 处理仅是可使用方法的示例。
显示控制部 9, 用于将临时存储部 2所存储的显示用的图像数据显示在显示部 10。例如, 在拍摄待机模式中, 连续显示拍摄获得的热像数据帧生成的红外热像; 在回放模式, 显示从 存储卡 6读出和扩展的红外热像, 此外, 还可显示各种设定信息。 具体而言, 显示控制部 9 具有 VRAM、 VRAM控制单元、 信号生成单元 (未图示) 等, 并且, 信号生成单元在控制部 11 的控制下, 从 VRAM中定期读出图像数据 (从临时存储部 2读出并存储到 VRAM的图像数据), 产生视频信号输出, 显示在显示部 10。 在热像装置 100中, 显示部 10例如是液晶显示装置。 不限于此, 显示部 10还可以是与热像装置 100连接的其他显示装置, 而热像装置 100自身的 电气结构中可以没有显示部, 这时显示控制部 9也可作为图像输出部件的实例。
另外, 在实施例中, 显示部 10用于在检测到具有大于规定的判断值的相关度的热像数据 帧时, 进行通知; 除了以标识的方式来指示被摄体热像的位置外, 例如以文字和图像进行警 告, 显示相关度的信息, 例如显示规定时间内最大相关度的热像数据帧获得的红外热像 (与 动态的红外热像共同显示), 或者还伴随着文字、 图像的透明率、 颜色、 尺寸、 闪烁、 的变化 等方式来进行通知。 其中, 相关度的信息, 例如可以将相关度的值换算为示意匹配程度的便 于使用者理解的信息, 进行显示; 例如根据相关度的值与百分比的规定的对照表, 或计算的 方式(例如一种实施方式, 将所提取的特定被摄体轮廓与作为模板的轮廓 T1重叠面积在各自 总面积中的比例之和, 除以 200%, 即可换算为相关度的百分比值)将相关度的值换算为百分 比值; 也可以是其他的方式, 例如直接将计算相关度的值显示等。 为便于说明, 在下文中, 将相关度的值、 评价值、 等换算的百分比值作为示例, 但实际中并不必须换算成百分比值。 优选的, 相关度的信息可显示在标识上。
此外, 还可以伴随或单独的其他通知方式, 例如通过热像装置 100中的振动部件、 指示 灯 (未图示), 分析部件 (未图示), 诊断部件 (未图示), 基于控制部 11的控制, 在检测到 最大相关度的热像数据帧时, 也可由指示灯产生灯光变化, 由振动装置产生震动, 由分析部 件进行分析并显示分析结果, 由诊断部件进行诊断并显示诊断结果, 红外热像的伪彩色变化; 或同时以上述方式之一或多个进行通知, 只要是使用者可以感知的方式都可。 其中, 通知的 方式可以持续规定的时间。
控制部 11控制了热像装置 100的整体的动作,在存储介质例如闪存 3中存储有用于控制 的程序, 以及各部分控制中使用的各种数据。控制部 11例如由 CPU、 MPU、 S0C、可编程的 FPGA 等来实现。 在本实施例中, 控制部 11、 显示部 10等还作为被摄体信息选择部的构成, 用来 选择被摄体信息。
操作部 12: 用于使用者进行各种指示操作, 或者输入设定信息等各种操作, 控制部 11 根据操作部 12的操作信号, 执行相应的程序。 参考图 2来说明操作部 12, 提供使用者操作 的按键有记录键 1、 调焦键 2、 确认键 3、 回放键 4、 菜单健 5、 方向键 6等; 此外, 也可采 用触摸屏 7或语音识别部件 (未图示) 等来实现相关的操作。
参见图 7来说明热像装置 100的检测模式的控制流程, 参考图 6来说明拍摄过程中的显 示界面的变化。 本应用场景如使用者手持热像装置 100对变电站的被摄体进行拍摄。 控制部 11基于闪存 3中存储的控制程序, 以及各部分控制中使用的各种数据, 控制了热像装置 100 的整体的动作及执行多种模式处理的控制。在接通电源后,控制部 11进行内部电路的初始化, 而后, 进入待机拍摄模式, 即拍摄部 1拍摄获得热像数据帧, 存储在临时存储部 2中; 图像 处理部 7将拍摄部 1拍摄获得的热像数据帧进行规定的处理, 存储在临时存储部 2的规定区 域中, 显示部 10上以动态图像形式连续显示红外热像, 在此状态, 控制部 11实施其控制, 持续监视是否按照预定操作切换到了其他模式的处理或进行了关机操作, 如果有, 则进入相 应的处理控制。 检测模式的控制步骤如下:
步骤 A01, 控制部 11持续监视使用者是否选择了检测模式。
在待机拍摄状态, 显示部 10显示动态的红外热像, 以往使用者会困惑于被摄体热像 IR1 的形态特征和在其所在的红外热像中的成像位置、 大小、 角度, 为保证拍摄质量规范, 通过 操作部 12的预定操作选择检测模式, 当控制部 11检测到使用者选择了检测模式 (步骤 A01 : 是), 则进入检测模式处理。
在步骤 A02, 特征登记单元登记用于匹配的模板数据 Tl。例如, 控制部 11基于闪存 3中 存储的表 3, 将被摄体信息生成的被摄体指示信息显示在显示部 10, 当使用者根据拍摄现场 的被摄体 "被摄体 1 ", 通过操作部 12来选择显示部 10上所显示的 "被摄体 1 ", 特征登记单 元根据使用者的选择, 就确定了用来匹配的被摄体识别信息, 从闪存 3中读取模板数据 301, 传送到临时存储部 2。
步骤 A03, 获取热像数据帧, 将拍摄部 1拍摄获得的热像数据帧传送到临时存储部 2; 接着, 在步骤 A04, 读取临时存储部 2中例如由拍摄部 1即时拍摄获得的热像数据帧, 检测窗口设置单元, 设置检测窗口。 例如, 基于规定的检测区域 G1的左上角, 首先设置了检 测窗口;
步骤 A05, 进行检测窗口中的热像数据与被摄体识别信息之间的相关度计算的处理。 检测部 8基于检测窗口设置单元所设置的检测窗口,抽取位于该检测窗口中的热像数据, 根据特征登记单元所登记的模板, 计算二者之间的相关度。 例如, 根据检测窗口中的热像数 据所提取的特定被摄体热像的轮廓, 与轮廓图像 T1 (模板数据 301获得的模板图像) 的轮廓 对比, 计算二者之间的重叠面积在各自总面积中的比例之和。
并且, 在步骤 A06, 存储所得到的相关度的值。
在步骤 A07中, 检测部 8判断在热像数据帧中设置检测窗口时, 是否已经针对所有检测 窗口计算了相关度。 如果剩余还没有计算相关度的区域 (步骤 A07中为否) 则回到步骤 A04 中, 检测窗口设置单元在预定方向上将检测窗口的位置偏移预定像素数, 将该位置设置为检 测窗口的下一位置, 并重复后续的处理。
此外, 从热像数据帧中搜索与模板类似的帧部分时, 对于放大及缩小、 以及将检测窗口 倾斜规定角度后的检测窗口时, 也进行类似上述说明的检测处理。
如果已经针对要在热像数据帧中设置的所有检测窗口计算了相关度 (步骤 A07中为是), 则在步骤 A08中获得检测到的最大相关度的值及所对应的检测窗口的位置参数。
并且, 在步骤 A09, 如果该相关度小于规定的判断值, 则检测部 8判断没有检测到特定被摄 体热像, 回到步骤 A03, 也可配置为到步骤 Al l , 如未退出则回到 A03; 重复后续的处理, 显 示的红外热像如图 6 ( a)、 (b)所示, 由于未在检测区域 G1 中检测到匹配的被摄体热像, 则 显示的红外热像中没有标识的指示。 当在步骤 A09检测到的相关度大于规定的判断值, 则进 入步骤 A10。
步骤 A10, 在此, 根据相关度最大的检测窗口的位置生成标识, 例如直接根据检测窗口 的位置和尺寸生成标识。 将生成的标识与该热像数据帧获得的红外热像进行合成如重叠, 而 后进行显示, 如图 6 ( c)、 图 6 (d)所示的标识 B1和 B2。
并且, 所检测到的被摄体热像的位置、 尺寸、 倾斜角度等位置参数, 并不限定于检测窗 口的位置参数, 例如, 进一步提取检测窗口中的热像数据的特征, 例如提取被摄体轮廓, 来 获得更为精确的位置参数, 并根据该位置参数来设置标识。
步骤 Al l , 判断是否退出检测模式, 如退出, 则结束, 如未退出, 则回到步骤 A03, 重复 上述的处理。 这样, 对连续拍摄获得的热像数据帧, 当检测到相关度高于规定的判断值的热 像数据帧时, 能不断地通知使用者, 即根据检测到的被摄体的使用者就不必需通过人为的主 观判断被摄体热像的形态特征等, 能达到减轻拍摄工作量、 避免拍摄错误部位、 角度的有益 效果。
需要指出的是, 检测部 8基于获取部连续获取的热像数据帧, 检测是否具有特定被摄体 热像, 并计算特定被摄体热像有关的规定信息; 例如, 可以是对连续获取的热像数据帧依次 全部进行检测处理, 也可以只读取规定间隔的热像数据帧进行检测处理; 或者对读取的热像 数据帧或检测窗口中的热像数据检测前进行了缩小处理等; 以此, 能减轻伴随着检测的处理 负担。
并且, 生成带有体现该特定被摄体热像位于红外热像中的位置的标识的图像, 并不限定 于将检测出被摄体热像的该热像数据帧获得的红外热像与由此生成的标识来获得, 也可将后 续例如规定时间的新获得的热像数据帧获得的红外热像与该标识来获得。
或者, 对是否检测到特定的被摄体热像, 并不限于相关度的值与判断值之间的比较, 也 可变更为例如根据检测获得的规定信息和 /或基于规定信息获得的评价值及对应的比较值的 比较结果, 作为检测到特定被摄体热像的依据。 所述规定信息, 至少包括特定被摄体热像的 位置、 尺寸、 倾斜角度、 分析值、 相关度的值中的一种或任意组合的信息。
如上所述, 在本实施例中, 由于设定了规定的检测区域, 能便于使用者理解拍摄的范围, 当检测到相关度高于规定值的热像数据帧时, 对其中的被摄体热像的位置等予以通知, 使用 者观察到该标识, 就知道拍摄了符合要求的被摄体热像, 可进行下一步的存储、 分析等处理 和操作, 能达到大幅度降低视觉对准的操作难度, 大幅度降低拍摄的体力强度的有益效果。 普通使用者容易掌握这种拍摄技能。
实施例 2
实施例 2与实施例 1的不同之处在于, 所述检测部 8, 用于基于获取的热像数据帧, 检 测所述热像数据帧中的特定被摄体热像的规定信息; 所述图像处理部 7, 根据检测部 8检测 获得的规定信息, 来生成体现相同或不同形态效果的标识, 所述不同的形态效果的标识, 至 少包括颜色、 线形、 粗细、 透明率、 形状、 内容(例如不同的颜色构成等)、 闪烁状态、 亮度、 构成数据、 位置、 尺寸、 旋转角度、 提示信息之一的不同, 优选的, 采用被摄体的轮廓、 被 摄体对应的分析区域。 其中, 所述规定信息, 至少包括特定被摄体热像的位置、 尺寸、 倾斜 角度、 分析值、 相关度的值中的一种或任意组合的信息。
在红外检测的领域, 由于考虑到被摄体热像在红外热像中的位置、 尺寸、 倾斜角度等的 不同, 对应了不同的拍摄质量; 因此, 例如考虑被摄体热像位于热像数据帧中的位置、 尺寸、 倾斜角度等因素, 作为生成相应不同形态的标识的因素, 来提示使用者注意拍摄的质量。
并且, 检测部 8还具有检测分析值的功能单元, 所谓的分析值例如对所检测的热像数据 帧或检测到的被摄体热像按照规定算法获得的分析值;例如由检测窗口中的热像数据 AD值计 算获得的温度值, 规定算法例如计算规定的分析区域中的最高、 最低、 平均温度值; 也可以 是不同的分析区域中温度的比较值, 例如温差; 当检测到被摄体热像中具有大于规定的比较 值 (例如缺陷的阀值) 的分析值时, 代表被摄体具有缺陷, 那么, 应引起使用者的重视; 这 时的特定的标识将立即引起使用者的注意, 对红外检测的意义重大。 其中, 分析值并不限定 于温度值, 例如, 也可以是 AD值、 伪彩热像中的颜色值、 特定像数值的比例, 或还将这些数 值按照规定公式计算获得的值等。
由此, 当检测部 8被配置为检测被摄体热像的多个规定信息时, 图像处理部 7可以根据 检测部 8检测获得的规定信息, 来生成体现相同或不同形态效果的标识。
其中, 可以根据规定信息与标识数据的对照表来生成标识。 例如, 不同的位置、 尺寸、 旋转角度对应了不同的透明率、 线型等, 不同的分析值对应了不同的颜色, 不同的相关度的 值对应了不同的形状, 由此, 来生成标识。 如图 10中所示, 示例了不同的检测窗口的位置、 尺寸、 倾斜角度所对应的标识形态为例; 其中, 图 10 (a) 检测窗口 (作为标识) 所对应的 形态为虚线, 而图 10 (b) 检测窗口 (作为标识) 所对应的形态为实线。
例如, 如图 11中所示, 在此, 检测部 8检测到多个被摄体时, 图像处理部 7可以生成带 有针对各个被摄体的标识; 由于检测部 8检测到被摄体热像 IR2中具有高于规定值的热像数 据的 AD值, 其中高于等于规定值的分析值对应了红色, 而小于规定值的分析值对应了蓝色; 由此,将 IR2的标识显示为红色(实线作为示意),而 IR1的标识显示为蓝色(虚线作为示意)。 此外, 也可根据这种情况配置为仅显示 IR2的标识。
并且, 可以通过规定信息来获得综合的评价值; 例如, 可以采用所检测的规定信息中的 特定信息对应了不同的系数, 而由所检测的规定信息中的其他的规定信息结合该系数来获得 评价值; 例如, 可以采用不同的规定信息所占的权重, 通过加权来获得评价值。 可以通过各 种不同的计算方式来获得最终的评价值。
而后, 图像处理部 7 (标识生成单元 7A) 例如根据评价值与标识数据的对照表来生成标 识。 将各个区间对应的标识颜色、 线型、 透明率、 闪烁或不同的标识类型 (如方、 圆、 轮廓、 分析区域等) 等对标识进行区分的参数或数据。
例如, 如图 10中所示, 假定图 10 (a) 检测窗口 J2的所对应的 0. 95, 而图 10 (b) 检 测窗口 J1的窗口系数为 0. 8, 评价值 =相关度的值 X窗口系数, 因此, 当二个窗口中检测到 相关度一样的特定被摄体热像时, 相关度的值结合检测窗口 J2的评价值 (例如换算为 95%) 将大于相关度的值结合检测窗口 J1的评价值 (例如换算为 80%), 根据评价值所对应的线型 (95%对应实线, 80%对应虚线) 来获得不同形态的标识。
此外, 例如也可生成根据所检测的规定信息中的部分信息获得的评价值, 根据该评价值 及未参与生成评价值的规定信息, 与标识数据的对照表来生成标识。
优选的,根据不同的被摄体来预先准备规定信息和 /或规定信息获得的评价值与标识数据 之间的对照表, 并与表 3中被摄体信息、 被摄体识别信息等对应存储。
此外, 即便是不同的规定信息和 /或规定信息获得的评价值也可以生成相同的标识, 但提 示信息不同, 例如提示信息的内容、 颜色、 字体、 透明率、 闪烁等不同; 提示信息可以是标 识的一部分, 也可以显示在显示部的其他区域。
参见图 9来说明实施例 2的热像装置 100的检测模式的控制流程 (其中与实施例 1类同 的步骤赋予了与图 7中相同的标记), 参考图 10来说明拍摄过程中的显示界面的变化。
步骤 A01-步骤 A07, 类同于实施例 1的步骤 A01-A07, 省略了说明;
步骤 B08, 检测部 8, 获得热像数据帧中的规定数量的检测窗口的相关度的值及其对应的 位置参数;
步骤 B09, 如果规定数量的检测窗口获得的相关度都小于规定的判断值, 则检测部 8判 断没有检测到特定被摄体热像, 则继续显示红外热像, 并回到步骤 B03, 重复后续的处理, 当在步骤 B09检测到的相关度大于规定的判断值, 则进入步骤 B10。
与实施例 1的不同之处在于, 并不限于选择相关度最大的检测窗口中所获得的相关度的 值作为该热像数据帧所对应的相关度的值, 也可以选择规定数量的检测窗口获得的相关度的 值, 并且, 当从具有规定距离的多个检测窗口中, 检测到相关度大于规定的判断值时, 意味 着检测到多个类似的被摄体。 步骤 B10, 检测部 8对相关度大于规定的判断值的检测窗口中的热像数据, 进行进一步 检测, 获得与生成标识有关的规定信息例如分析值等。 此外, 也可从检测窗口中提取被摄体 的轮廓, 来获得更为精确的被摄体热像的位置、 尺寸、 旋转角度等的参数。
步骤 Bl l, 图像处理部 7, 根据所获得的规定信息, 例如根据评价值与标识的对照表, 来 生成相应的标识。 其中, 当检测部 8检测到多个被摄体时, 可生成各自对应的标识。 (如图 11中所示)
而后, 将生成的标识与该热像数据帧获得的红外热像进行合成如重叠, 而后进行显示。 此外, 也可不生成不同形态的标识, 而将检测到的规定信息及评价值等换算为便于使用 者理解的提示信息, 进行显示; 例如将评价值换算为百分比作为示例 (将评价值换算为百分 比等), 也可以是其他的方式, 例如直接将计算评价值显示等。 或者生成不同的标识, 还显示 评价值的信息。 如图 10所示, 图 10 ( a) 中所显示的评价值 80% (对应显示虚线的标识框); 图 10 (b ) 中所显示的评价值 95% (对应显示实线的标识框)。
并且, 还可以其他的方式来通知特定的评价值或检测到的特定信息, 例如, 当检测到分 析值大于规定的比较值时, 还伴随着指示灯的闪烁。 其中, 通知的方式可以持续规定的时间。 通知部也可以是热像装置 100中的振动部件、 指示灯 (未图示), 分析部件 (未图示), 诊断 部件 (未图示), 基于控制部 11的控制, 在检测到特定的热像数据帧时, 也可由指示灯产生 灯光变化, 由振动装置产生震动, 由分析部件进行分析并显示分析结果, 由诊断部件进行诊 断并显示诊断结果; 或同时以上述方式之一或多个进行通知, 只要是使用者可以感知的方式 都可。
步骤 B12, 判断是否退出检测模式, 如退出则结束, 如未退出则回到步骤 A02, 重复上述 的处理。 这样, 对连续拍摄获得的热像数据帧, 当检测到相关度高于规定的判断值的热像数 据帧时, 能不断地通知使用者, 并且, 根据所检测到的规定信息, 能示意不同视觉效果的标 识, 能进一步达到减轻拍摄工作量、 避免拍摄错误部位、 提示特定检测结果的有益效果。
实施例 2的变形, 在有些应用的情况下, 对拍摄是否检测到特定的被摄体热像, 并不限 于相关度的值与判断值之间的比较,也可变更为例如根据检测获得的规定信息和 /或评价值及 对应的比较值的比较结果, 作为检测到特定被摄体热像的依据, 或作为标识生成的依据。
如上所述, 在本实施例中, 由于考虑了特定被摄体热像的位置、 尺寸、 倾斜角度、 分析 值、 相关度的值中的一种或任意组合的信息, 来生成标识, 能及时地提示使用者对特定情况 予以注意, 能达到大幅度降低视觉对准的操作难度, 大幅度降低拍摄的体力强度, 提高最终 获得的热像数据帧的质量的有益效果。 普通使用者容易掌握这种拍摄技能。 当然, 实施本发 明的实施方式的任一产品并不一定需要同时达到以上所述的所有优点。
实施例 3
实施例 3, 与上述实施例 1, 2的不同之处在于, 所述热像装置 100的回放模式下, 对被 摄体热像进行检测的实施方式,本实施例同样适用于冻结状态下对被摄体热像的标识的设置, 及后续例如热像处理装置 (例如计算机) 读取热像文件时, 对被摄体热像的标识的设置。
步骤 G01, 获取热像数据帧, 例如, 使用者进行冻结图像时的记录操作, 将拍摄部 1拍 摄获得的即时的热像数据帧保持在临时存储部 2;
步骤 G02, 对该热像数据帧进行检测, 在此, 检测获得与被摄体热像的信息。 (类同实施 例 1的 A03-A08, 省略了说明)。 步骤 G03, 根据检测到的信息, 来生成带有标识的图像。 (类同实施例 1的 A10, 或实施 例 2的 B10-B12, 省略了说明)。
在上述实施例中各自说明了作为的示例的热像装置 100。 本发明不仅适用于带有拍摄功 能的热像装置如各种便携拍摄或在线拍摄的热像装置, 还适用于各种热像处理装置, 如从外 部连续接收和处理热像 (如按时序获取热像数据帧) 的热像处理装置 (如计算机、 个人数字 助理、 与拍摄功能的热像装置配套使用的显示装置等), 该热像处理装置例如为计算机, 通过 通信口 (获取部的例子, 例如按照 USB、 1394、 网络等通信规范, 将热像处理装置与外部设 备连接) 与热像装置进行有线或无线连接, 通过连续接受与其连接的热像装置输出的热像数 据帧, 来实现一个实施例子, 其检测处理等处理方式与上述实施方式类同, 省略了说明。
不限于拍摄或从外部获取热像数据帧, 也可作为热像装置或热像处理装置中的一个构成 部件或功能模块, 例如从其他部件来获取热像数据帧, 这时, 也构成本发明的实施方式。
并且, 可以不仅检测整个被摄体的整体区域, 而且检测将被摄体划分为多个部件构成的 多个检测窗口, 这样, 能够更精确检测; 其中, 对于各部件, 与整体相同, 准备对应的被摄 体识别信息 (可以是模板或特征量) 。 也可以是这样的实施方式, 检测单元, 也可根据被摄 体识别信息, 并根据多个被摄体识别信息所对应的判断值, 来获得判断结果, 例如, 根据多 个特征量的加权, 来获得最终的判断结果。 也可以是这样的实施方式, 检测单元, 也可根据 多个被摄体识别信息, 先计算其中的一个特征量与热像数据帧的比较结果, 当大于规定的阀 值, 并计算下一个被摄体识别信息与热像数据帧的比较结果, 根据多次比较, 来获得最终的 判断结果。 注意, 可以使用检测特定被摄体热像的各种方法, 在该实施例中的处理仅是可使 用方法的示例。
在上述的例子, 是按照一定的步骤次序来描述, 但根据不同的实施方式可以有各种先后 顺序, 并不限于上述例子所描述的处理次序。 当控制部 11和图像处理部等包含了多个处理器 时, 还可能存在部分步骤适用的并行处理。
存储被摄体识别信息等的存储介质, 可以是热像装置 100中的存储介质, 如闪存 3、 存 储卡 6等非易失性存储介质, 临时存储部 2等易失性存储介质; 还可以是与热像装置 100有 线或无线连接的其他存储介质,如通过与通信 I/F4有线或无线连接的其他装置如其他存储装 置、 热像装置、 电脑等中的存储介质或网络目的地的存储介质。
采用被摄体信息关联被摄体识别信息的实施方式, 为优选的方式, 可根据应用的不同可 以准备各种适用的被摄体信息。 例如对于电力行业的应用, 优选的, 被摄体信息为使用者可 辨识的代表被摄体的身份信息, 如代表被摄体地点、 类型、 相别的信息; 但也可以是代表被 摄体类型的信息。 显然, 被摄体识别信息并不限于必须与被摄体信息关联。
本发明的方面还可以通过独处和执行记录在存储装置上的程序来执行上述实施例的功能 的系统或设备的计算机 (或诸如 CPU、 MPU等的装置)、 以及通过其步骤由系统或设备的计 算机通过例如读出和执行记录在存储装置上的程序来执行上述实施例的功能而知性的方法来 实现。 为此目的, 例如经由网络或从用作存储装置的各种类型的记录介质 (例如, 计算机可 读介质) 中将程序提供至计算机或热像装置。
本发明提供一种计算机程序, 计算机程序构成的数字信号记录在计算机或热像装置可读 的记录介质中, 例如硬盘、 存储器等中。 该程序运行后执行如下步骤:
获取步骤, 用于连续拍摄获取热像数据帧; 检测步骤, 用于基于获取的热像数据帧, 检测是否具有特定被摄体热像; 图像处理步骤, 用于根据检测步骤检测的检测结果, 基于所获取的热像数据帧, 生成带 有体现特定被摄体热像位于红外热像中的位置的标识的动态红外热像。
本发明的实施方式还提供一种可读存储介质, 其存储用于电子数据交换的计算机程序, 其中, 所述计算机程序使得热像装置中的计算机执行如下步骤:
获取步骤, 用于连续获取热像数据帧;
检测步骤, 用于基于获取的热像数据帧, 检测是否具有特定被摄体热像;
图像处理步骤, 用于根据检测步骤检测的检测结果, 基于所获取的热像数据帧, 生成带 有体现特定被摄体热像位于红外热像中的位置的标识的动态红外热像。
虽然, 可以通过硬件、 软件或其结合来实现附图中的功能块, 但通常不需要设置以一对 一的对应方式来实现功能块的结构。 可以通过一个软件或硬件模块来实现多个功能的块。 或 也可通过多个软件或硬件单元来实现一个功能的块。 此外, 也可以用专用电路或通用处理器 或可编程的 FPGA实现本发明的实施方式中的部分或全部部件的处理和控制功能。
此外, 实施例中以电力行业的被摄体应用作为场景例举, 也适用在红外检测的各行业广 泛运用。 上述所描述的仅为发明的具体例子(实施方式), 各种例举说明不对发明的实质内容 构成限定, 而且, 上述实例仅是示例, 本发明不限于此; 在上述实施例中的结构和操作可以 根据需要改变; 并且, 各种实施方式进行相应的替换和组合, 可构成更多的实施方式。 所属 领域的技术人员在阅读了说明书后可对具体实施方式进行其他的修改和变化, 而不背离发明 的实质和范围。

Claims

1、 热像匹配装置, 包括:
获取部, 用于拍摄获取热像数据帧;
检测部, 用于基于所获取的热像数据帧, 检测是否具有特定被摄体热像;
图像处理部, 用于根据检测部检测的检测结果, 基于所获取的热像数据帧, 生成带有体 现特定被摄体热像位于红外热像中的位置的标识的红外热像。
2、 热像匹配装置, 包括:
获取部, 用于获取热像数据帧;
检测部, 用于基于获取的热像数据帧, 检测是否具有特定被摄体热像;
图像处理部, 用于根据检测部检测的检测结果, 基于所获取的热像数据帧, 生成带有体 现特定被摄体热像位于红外热像中的位置的标识的红外热像。
3、 热像匹配装置, 包括:
获取部, 用于获取热像数据帧;
检测部, 用于基于所获取的热像数据帧, 检测是否具有特定被摄体热像;
标识生成单元, 用于根据检测部检测的检测结果及获取部获取的热像数据帧, 生成体现 特定被摄体热像位于红外热像中的位置的标识。
4、 如权利要求 1-3任意一项所述的热像匹配装置, 其特征在于,
所述获取部, 用于连续获取热像数据帧。
5、 如权利要求 1-3任意一项所述的热像匹配装置, 其特征在于, 具有
被摄体信息选择部, 用于基于存储介质存储的被摄体信息来选择被摄体信息; 所述存储 介质用于存储被摄体信息及其关联的被摄体识别信息;
所述检测部, 用于根据所选择的被摄体信息关联的被摄体识别信息, 来检测是否具有特 定被摄体热像。
6、 如权利要求 1-3任意一项所述的热像匹配装置, 其特征在于, 所述检测部, 用于基于 热像数据帧中的规定的检测区域, 来进行检测。
7、 如权利要求 1-3任意一项所述的热像匹配装置, 其特征在于,
所述检测部检测出与所述特定被摄体热像有关的规定信息; 所述图像处理部, 用于根据 检测部检测的规定信息和 /或基于所述规定信息得到的评价值,生成带有体现特定被摄体热像 位于红外热像中的位置的标识的图像。
8、 如权利要求 7所述的热像匹配装置, 其特征在于, 所述规定信息, 至少包括特定被摄 体热像的位置、 尺寸、 倾斜角度、 分析值、 相关度的值中的一种或任意组合的信息。
9、 如权利要求 8所述的热像匹配装置, 其特征在于,
所述图像处理部,根据检测部检测获得的规定信息和 /或基于所述规定信息得到的评价值 及获取部获取的热像数据帧, 来生成带有体现相同或不同形态效果的标识的红外热像, 所述 不同的形态效果的标识, 至少包括颜色、 线形、 粗细、 透明率、 形状、 内容、 闪烁状态、 亮 度、 构成数据、 位置、 尺寸、 旋转角度、 提示信息之一的不同。
10、 如权利要求 1-3任意一项所述的热像匹配装置, 其特征在于, 所述标识还体现特定 被摄体热像位于红外热像中的尺寸、 旋转角度、 形态特征, 其中的一项或多项。
11、 如权利要求 1-3任意一项所述的热像匹配装置, 其特征在于, 具有显示控制部, 用 于控制使显示图像处理部处理获得的图像。
12、 如权利要求 1-3任意一项所述的热像匹配装置, 其特征在于, 所述热像匹配装置为 便携式热像装置。
13、 热像匹配方法, 包括:
获取步骤, 用于拍摄获取热像数据帧;
检测步骤, 用于基于所获取的热像数据帧, 检测是否具有特定被摄体热像;
图像处理步骤, 用于根据检测步骤检测的检测结果, 基于所获取的热像数据帧, 生成带 有体现特定被摄体热像位于红外热像中的位置的标识的红外热像。
14、 热像匹配方法, 包括:
获取步骤, 用于获取热像数据帧;
检测步骤, 用于基于获取的热像数据帧, 检测是否具有特定被摄体热像;
图像处理步骤, 用于根据检测步骤检测的检测结果, 基于所获取的热像数据帧, 生成带 有体现特定被摄体热像位于红外热像中的位置的标识的红外热像。
15、 如权利要求 1-3任意一项所述的热像匹配方法, 其特征在于,
所述获取步骤, 用于连续获取热像数据帧。
16、 如权利要求 1-3任意一项所述的热像匹配方法, 其特征在于, 具有
被摄体信息选择步骤, 用于基于存储介质存储的被摄体信息来选择被摄体信息; 所述存 储介质用于存储被摄体信息及其关联的被摄体识别信息;
所述检测步骤, 用于根据所选择的被摄体信息关联的被摄体识别信息, 来检测是否具有 特定被摄体热像。
17、 如权利要求 1-3任意一项所述的热像匹配方法, 其特征在于,
所述检测步骤检测出与所述特定被摄体热像有关的规定信息; 所述图像处理步骤, 用于 根据检测步骤检测的规定信息和 /或基于所述规定信息得到的评价值,生成带有体现特定被摄 体热像位于红外热像中的位置的标识的图像。
18、 如权利要求 7所述的热像匹配方法, 其特征在于, 所述规定信息, 至少包括特定被 摄体热像的位置、 尺寸、 倾斜角度、 分析值、 相关度的值中的一种或任意组合的信息。
19、 如权利要求 8所述的热像匹配方法, 其特征在于,
所述图像处理步骤,根据检测步骤检测获得的规定信息和 /或基于所述规定信息得到的评 价值及获取步骤获取的热像数据帧,来生成带有体现相同或不同形态效果的标识的红外热像, 所述不同的形态效果的标识, 至少包括颜色、 线形、 粗细、 透明率、 形状、 内容、 闪烁状态、 亮度、 构成数据、 位置、 尺寸、 旋转角度、 提示信息之一的不同。
20、 如权利要求 1-3任意一项所述的热像匹配方法, 其特征在于, 所述标识还体现特定 被摄体热像位于红外热像中的尺寸、 旋转角度、 形态特征, 其中的一项或多项。
21、 如权利要求 1-3任意一项所述的热像匹配方法, 其特征在于, 具有显示控制步骤, 用于控制使显示图像处理步骤处理获得的图像。
PCT/CN2013/090632 2012-12-27 2013-12-27 热像匹配装置和热像匹配方法 WO2014101811A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/758,253 US20150358559A1 (en) 2012-12-27 2013-12-27 Device and method for matching thermal images

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210584242.0 2012-12-27
CN201210584242 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014101811A1 true WO2014101811A1 (zh) 2014-07-03

Family

ID=50992180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090632 WO2014101811A1 (zh) 2012-12-27 2013-12-27 热像匹配装置和热像匹配方法

Country Status (3)

Country Link
US (1) US20150358559A1 (zh)
CN (1) CN103900714A (zh)
WO (1) WO2014101811A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776543A (zh) * 2012-09-21 2014-05-07 杭州美盛红外光电技术有限公司 热像分析装置和热像分析方法
CN112539843B (zh) * 2020-12-11 2023-06-02 平安科技(深圳)有限公司 检测温度的方法、装置和计算机设备
CN116437164A (zh) * 2023-06-13 2023-07-14 中国南方电网有限责任公司超高压输电公司广州局 热像仪、热像仪监控方法、装置、计算机设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546960A (zh) * 2003-12-05 2004-11-17 广州科易光电技术有限公司 红外线热成像图像及可见光图像复合视频实时显控装置
US7924312B2 (en) * 2008-08-22 2011-04-12 Fluke Corporation Infrared and visible-light image registration
CN102538974A (zh) * 2012-01-12 2012-07-04 杭州美盛红外光电技术有限公司 热像显示装置、热像显示系统和热像显示方法
CN102525381A (zh) * 2010-12-16 2012-07-04 奥林巴斯株式会社 图像处理装置、图像处理方法及计算机可读取的记录装置
CN102538980A (zh) * 2012-01-12 2012-07-04 杭州美盛红外光电技术有限公司 热像装置和热像拍摄方法
CN102564607A (zh) * 2012-01-12 2012-07-11 杭州美盛红外光电技术有限公司 热像装置和热像规范拍摄方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101247147B1 (ko) * 2007-03-05 2013-03-29 디지털옵틱스 코포레이션 유럽 리미티드 디지털 영상 획득 장치에서의 얼굴 탐색 및 검출
JP5354767B2 (ja) * 2007-10-17 2013-11-27 株式会社日立国際電気 物体検知装置
US8599264B2 (en) * 2009-11-20 2013-12-03 Fluke Corporation Comparison of infrared images
US8933886B2 (en) * 2010-06-17 2015-01-13 Panasonic Intellectual Property Corporation Of America Instruction input device, instruction input method, program, recording medium, and integrated circuit
JP5818409B2 (ja) * 2010-06-17 2015-11-18 キヤノン株式会社 眼底撮像装置及びその制御方法
US20130155249A1 (en) * 2011-12-20 2013-06-20 Fluke Corporation Thermal imaging camera for infrared rephotography

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546960A (zh) * 2003-12-05 2004-11-17 广州科易光电技术有限公司 红外线热成像图像及可见光图像复合视频实时显控装置
US7924312B2 (en) * 2008-08-22 2011-04-12 Fluke Corporation Infrared and visible-light image registration
CN102525381A (zh) * 2010-12-16 2012-07-04 奥林巴斯株式会社 图像处理装置、图像处理方法及计算机可读取的记录装置
CN102538974A (zh) * 2012-01-12 2012-07-04 杭州美盛红外光电技术有限公司 热像显示装置、热像显示系统和热像显示方法
CN102538980A (zh) * 2012-01-12 2012-07-04 杭州美盛红外光电技术有限公司 热像装置和热像拍摄方法
CN102564607A (zh) * 2012-01-12 2012-07-11 杭州美盛红外光电技术有限公司 热像装置和热像规范拍摄方法

Also Published As

Publication number Publication date
CN103900714A (zh) 2014-07-02
US20150358559A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
WO2016112704A1 (zh) 调节投影仪焦距的方法和装置、计算机存储介质
WO2014044221A1 (zh) 热像诊断装置和热像诊断方法
WO2014101803A1 (zh) 红外选择装置和红外选择方法
WO2015078418A1 (zh) 决定装置和决定方法
WO2014101811A1 (zh) 热像匹配装置和热像匹配方法
WO2014101804A1 (zh) 热像选择装置和热像选择方法
WO2015096824A1 (zh) 分析装置和分析方法
US20160112656A1 (en) Thermal imaging device, analyzing device, thermal image photographing method, and analyzing method
WO2014044201A1 (zh) 热成像信息记录装置和热成像信息记录方法
WO2014101805A1 (zh) 红外挑选装置和红外挑选方法
US10163214B2 (en) Device and method for analyzing thermal images
CN104655636B (zh) 热像分析装置、配置装置和热像分析方法、配置方法
WO2014101809A1 (zh) 热像检测装置和热像检测方法
WO2014190928A1 (zh) 热像分析装置和热像分析方法
WO2015074628A1 (zh) 分析对比装置和分析对比方法
CN116358711A (zh) 红外匹配更新装置和红外匹配更新方法
CN114838829A (zh) 热像选择通知装置和热像选择通知方法
WO2015074627A1 (zh) 热像整理装置、记录装置、整理系统和热像整理方法、记录方法
CN115993191A (zh) 热像匹配更新装置和热像匹配更新方法
WO2014101802A1 (zh) 热像挑选装置和热像挑选方法
CN105021290B (zh) 拍摄装置、伪彩设置装置和拍摄方法、伪彩设置方法
CN114923580A (zh) 红外选择通知装置和红外选择通知方法
CN114923582A (zh) 热像挑选通知装置和热像挑选通知方法
WO2013174291A1 (zh) 红外摄影装置和红外摄影方法
CN105157742B (zh) 识别装置和识别方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14758253

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13868309

Country of ref document: EP

Kind code of ref document: A1