WO2014044221A1 - 热像诊断装置和热像诊断方法 - Google Patents

热像诊断装置和热像诊断方法 Download PDF

Info

Publication number
WO2014044221A1
WO2014044221A1 PCT/CN2013/083955 CN2013083955W WO2014044221A1 WO 2014044221 A1 WO2014044221 A1 WO 2014044221A1 CN 2013083955 W CN2013083955 W CN 2013083955W WO 2014044221 A1 WO2014044221 A1 WO 2014044221A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
data
reference image
thermal image
image
Prior art date
Application number
PCT/CN2013/083955
Other languages
English (en)
French (fr)
Inventor
王浩
Original Assignee
Wang Hao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50312528&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014044221(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wang Hao filed Critical Wang Hao
Priority to CN201380049277.7A priority Critical patent/CN104797913A/zh
Priority to US14/430,212 priority patent/US10068337B2/en
Priority to JP2015532295A priority patent/JP6286432B2/ja
Publication of WO2014044221A1 publication Critical patent/WO2014044221A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • A61B5/015By temperature mapping of body part
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/025Interfacing a pyrometer to an external device or network; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/07Arrangements for adjusting the solid angle of collected radiation, e.g. adjusting or orienting field of view, tracking position or encoding angular position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0859Sighting arrangements, e.g. cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/285Selection of pattern recognition techniques, e.g. of classifiers in a multi-classifier system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/98Detection or correction of errors, e.g. by rescanning the pattern or by human intervention; Evaluation of the quality of the acquired patterns
    • G06V10/987Detection or correction of errors, e.g. by rescanning the pattern or by human intervention; Evaluation of the quality of the acquired patterns with the intervention of an operator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/06Recognition of objects for industrial automation

Definitions

  • the thermal image diagnostic apparatus and thermal image diagnostic method of the present invention relate to a thermal image device, a thermal image processing device, and an application field of infrared detection. Background technique
  • the thermal imaging device images by receiving the infrared energy radiation of the subject.
  • the user needs to manually analyze the analysis region of the specific portion of the thermal image of the subject by subjective experience to obtain the thermal image analysis result, and the user passes Observe the subject thermal image and analysis results to diagnose the state of the subject.
  • the analysis area corresponds to a specific part of the infrared thermal image that needs to be analyzed, such as a point unit, a line, a surface, or the like, or a combination of a plurality of area units.
  • the analysis area F1 As shown in FIG. 6 that the analysis area should be located in the thermal image of the subject, when shooting When the next same subject is used, it is easy that the analysis area set in advance does not correspond to the correct part of the subject thermal image (such as the size of the subject thermal image, the position in the infrared thermal image, etc.). As a result, the analysis is too discrete and it is very difficult to diagnose.
  • the field operation of the analysis area setting is cumbersome and error-prone.
  • the number, type, position, size and other factors of the area units S01 and S02 in the analysis area F1 shown in Fig. 6 are changed, and the final analysis results may be different.
  • the above setting operation (for example, it is necessary to select the type of the analysis area such as a point, a line, a surface, and then the corresponding position of the thermal image of the object) is quite cumbersome; the setting of the analysis area depends on the user's analysis of the object. Understand to set up, different subjects have their own analysis parts, and technical requirements are high. Due to the above reasons, it is inconvenient to set up a complex analysis area.
  • the analysis mode setting depends on the user's analysis part, analysis method, and diagnosis method of the subject. The understanding of the settings, the user's technical requirements are extremely high.
  • the analysis mode represents an analytical calculation rule used for performing analysis analysis based on the thermal image data determined by the analysis region, for example, calculating a maximum temperature, an average temperature, a minimum temperature, a percentage content, and the like, and may also include each regional unit. The calculation relationship between the two is such as temperature difference.
  • the user Due to the reason of i, the user currently performs simple analysis operations based on experience. For example, in most cases, the highest temperature automatic capture is set, but this extensive method reduces the reference value of the analysis results at the time of shooting. Moreover, the analysis data obtained by the above reasons is too discrete, which makes it difficult to intelligently diagnose the subject at the time of shooting, and it is easy to miss the malfunction.
  • thermal imaging device that enables a set analysis area to facilitate capturing a next-like subject and to ensure the quality of the captured thermal image, and has functions related to analysis and diagnostic processing to enable analysis based on the analysis. As a result, the diagnosis is practical.
  • an analysis area for the thermal image of the subject.
  • it is convenient to set the analysis mode corresponding to the analysis area to obtain reliable analysis results.
  • the setting of the diagnostic rule relies on the user's deep understanding of the thermal imaging analysis and diagnosis of various subjects, and the technical requirements of the user are higher. If the setting of the diagnostic rule corresponding to the analysis mode can be solved, easily obtain accurate diagnostic results. It also enables ordinary users to achieve good infrared shooting skills.
  • the present invention provides a thermal image diagnostic apparatus and a thermal image diagnostic method, in which a reference image embodies a predetermined morphological feature of a subject is displayed in the infrared thermal image, and the reference image is used as a photographing subject.
  • the visual reference of the thermal image, and the analysis area and the analysis mode set analyze the thermal image of the subject, and diagnose the analysis result according to the prescribed diagnostic rule to obtain the diagnosis result.
  • thermo imaging diagnostic apparatus including,
  • An acquisition unit configured to acquire thermal image data; a reference image specifying unit configured to specify composition data for obtaining a reference image embodying a subject morphological feature; an analysis region determining unit configured to determine composition data of the analysis region; a position setting unit, configured to set a position parameter of the reference image in the infrared thermal image; an analysis area position setting unit, configured to set a position parameter of the analysis area in the infrared thermal image; a display control unit, configured to be controlled based on the specified a reference image obtained by constituting the data, which is displayed together with the infrared thermal image generated by the acquired thermal image data according to the positional parameter of the reference image; a thermal image analysis section for analyzing the region based on the positional parameter, according to a prescribed analysis mode,
  • the thermal image data acquired by the acquisition unit or the data obtained after the predetermined processing is analyzed to obtain an analysis result; the diagnosis unit is configured to obtain an analysis result according to the thermal image analysis unit, perform diagnosis according to a predetermined diagnosis rule, and obtain a diagnosis
  • the reference image can be used to assist the user in capturing a high-quality subject thermal image, and when the analysis area is set, it can facilitate the next-like subject to be photographed next, which ensures the correctness and consistency of the analysis and diagnosis. Sexuality makes it useful to set diagnostic rules for diagnosis.
  • the analysis mode includes at least one or a combination of the following:
  • the analysis mode can be set up automatically or simply according to the set composition data, which is convenient for complex analysis.
  • the diagnostic rule includes at least a diagnostic rule set based on the diagnostic rule associated with the analysis mode. Diagnosing according to the analysis mode and its associated diagnostic rules is achieved, which facilitates complex diagnosis and avoids the beneficial effects of setting diagnostic rules.
  • the object information selection unit is configured to select object information from the storage medium; the storage medium is configured to store at least one object information and composition data associated with the object information; The part designates the configuration data for obtaining the reference image based on the constituent data associated with the selected subject information; the analysis region determining unit determines the constituent data of the analysis region based on the constituent data associated with the selected subject information. . The correctness and convenience of the selected reference image and analysis area are ensured, and the user is selected according to the subject information recognized by the scene, thereby avoiding the beneficial effects such as confusion caused by data selection errors.
  • the reference image specifying unit and the analysis region determining unit determine the constituent data of the reference image and the analysis region based on the predetermined designation type of the constituent data. Achieve the benefits of easy operation.
  • constituent data of the reference image and the constituent data of the analysis region have a predetermined positional relationship, and the displayed reference image and the analysis region related to the analysis conform to the predetermined positional relationship.
  • the specifications and accuracy of the set reference image and analysis area are achieved, which is convenient for obtaining accurate analysis results and diagnostic results.
  • the reference image specifying unit and the analysis region determining unit determine the constituent data of the reference image and the constituent data of the analysis region based on the associated constituent data. Achieve the benefits of simple user operation.
  • the storage medium is configured to store at least one object information and composition data having a predetermined positional relationship associated with the object information; a subject information selection unit for selecting subject information; the reference image
  • the designation unit and the analysis region determination unit determine the configuration data of the reference image and the configuration data of the analysis region based on the configuration data having the predetermined positional relationship associated with the selected subject information.
  • the configuration data of the analysis area includes at least configuration data of an analysis area obtained based on the specified object, calculated according to a predetermined calculation rule, and/or processed according to a predetermined processing rule. Achieve precise analysis areas to ensure subsequent analysis, diagnostic accuracy, and the benefits of automatic or simple operation.
  • the analysis area is an analysis area provided based on a predetermined position having a predetermined positional relationship with a reference image. Achieve accurate and easy-to-adjust analysis areas to ensure subsequent analysis, diagnostic accuracy, and the benefits of automatic or simple operation.
  • the reference image position setting unit and the analysis region position setting unit set the positional parameter of the reference image and the analysis region in the infrared thermal image based on the predetermined position rule. Achieve the benefits of automatic setting for easy operation.
  • the storage medium is configured to store the constituent data and the associated location information, the location information representing the reference image obtained by the constituent data and/or the location information of the analysis region located in the infrared thermal image; the reference image location portion and The analysis area position setting unit sets the positional parameter of the reference image and/or the analysis area in the infrared thermal image based on the positional information associated with the constituent data of the designated reference image and the positional information associated with the constituent data of the analysis area. Achieve the benefits of automatic setting for easy operation.
  • the reference image position setting portion and the analysis region position setting portion set the positional parameters of the reference image and the analysis region according to one of the following manners: 1) first setting a position parameter of the reference image, and then according to the reference image and the analysis region Specify the positional relationship to set the positional parameter of the analysis area; 2) first set the positional parameter of the analysis area, and then set the positional parameter of the reference image according to the specified positional relationship between the reference image and the analysis area; 3) according to the reference image and/or Or the specified positional relationship between the analysis area and the main object, and the positional parameters of the main object, to set the positional parameters of the reference image and/or the analysis area. Achieve the benefits of simple operation and flexible analysis.
  • the storage medium is configured to store at least one object information and composition data associated with the object information, analysis mode information constituting the data association, and diagnostic rule information associated with the analysis mode;
  • the thermal image analysis unit is configured to The analysis region of the positional parameter analyzes the thermal image data acquired by the acquisition unit or the data obtained after the predetermined processing according to a predetermined analysis mode, and obtains an analysis result, where the analysis mode includes at least configuration data for obtaining the analysis region.
  • An analysis mode set by the associated analysis mode information; a diagnosis unit configured to obtain an analysis result according to the thermal image analysis unit, perform diagnosis according to a predetermined diagnosis rule, and obtain a diagnosis result, where the diagnosis rule includes at least the information according to the analysis mode information Diagnose rule information and obtain diagnostic rules.
  • the configuration unit has a configuration unit for specifying a type of configuration data of the reference image, a predetermined designation type of the analysis data of the analysis area, a position setting rule of the reference image and the analysis area, an analysis mode corresponding to the analysis area, and analysis.
  • the diagnostic rule corresponding to the pattern, at least one of which. It is convenient for the user to configure at least one of the reference image, the analysis area, the analysis mode, and the diagnosis rule to achieve the beneficial effects of subsequent reuse.
  • the recording unit is configured to record the predetermined recording information in association with the acquired thermal image data or the data obtained by the thermal image data. It is convenient for subsequent batch processing. When recording the obtained diagnostic results, the beneficial effect of the speed of batch processing can be accelerated.
  • the thermal imaging diagnosis method of the present invention comprises the following steps:
  • An obtaining step configured to obtain thermal image data
  • a reference image specifying step for specifying composition data for obtaining a reference image embodying a subject morphological feature
  • a reference image position setting step configured to set a position parameter of the reference image in the infrared thermal image
  • An analysis area location setting step configured to set a position parameter of the analysis area in the infrared thermal image
  • a display control step for controlling a reference image obtained based on the specified composition data, in accordance with a positional parameter of the reference image, together with the infrared thermal image generated by the acquired thermal image data;
  • a thermal image analysis step configured to analyze the thermal image data acquired in the obtaining step according to the analysis region according to the position parameter, and obtain an analysis result
  • a diagnostic step for obtaining an analysis result according to the thermal image analysis step, performing diagnosis according to a prescribed diagnosis rule, and obtaining a diagnosis result
  • Fig. 1 is a block diagram showing the electrical configuration of a thermal imaging device of the first embodiment.
  • Fig. 2 is an external view of the thermal image device of the first embodiment.
  • FIG. 3 is a schematic diagram showing an implementation of object information and composition data stored in a storage medium.
  • 4 is a schematic diagram showing the implementation of subject information and a plurality of types of constituent data, analysis patterns, and diagnostic rules stored in a storage medium.
  • 5 is an example of a reference image, wherein 501 is a display example in which a semi-transparent reference image and an infrared thermal image are collectively displayed; 502 is a display example in which a reference image representing an edge contour of a subject and an infrared thermal image are displayed together; 503 is A display example that collectively displays a reference image representing a subject texture and an infrared thermal image.
  • Fig. 6 is a display example showing a common display of an analysis area and an infrared thermal image of the prior art.
  • Fig. 7 is a display example in which a reference image (including an analysis area and an edge contour image) and an infrared thermal image are collectively displayed.
  • Fig. 8 is a view showing an example of display in which the analysis region F101 obtained by the processing and the reference image and the infrared thermal image of the present transparent image TU1 are displayed together.
  • Fig. 9 is a view showing a setting menu of the thermal image device of the first embodiment.
  • Fig. 10 is a schematic diagram of a setting menu interface of object processing.
  • Figure 11 is a schematic diagram of a setup menu interface for object calculation.
  • Fig. 12 is a view showing the action and effect of five kinds of analysis regions obtained by calculation or processing.
  • Figure 13 is a schematic diagram of a setup menu interface including a reference image, an analysis region, an analysis mode, and a diagnostic rule.
  • FIG. 14 is a schematic diagram of a switching setting menu interface including a reference image, an analysis area, an analysis mode, and a diagnosis rule.
  • 15 is a schematic diagram of a setting menu interface of an analysis mode and a diagnosis rule corresponding to an analysis area.
  • Fig. 16 is a control flow chart showing an example of a diagnosis mode.
  • Fig. 17 is a view showing a display interface for photographing and diagnosing the subject 1 using a reference image.
  • Fig. 18 is a flowchart showing a process of designating constituent data of a reference image.
  • Fig. 19 is a flow chart showing the position setting processing of the reference image.
  • Fig. 20 is a flow chart showing the process of determining the composition data of the analysis area.
  • Figure 21 is a flow chart for determining the analysis mode and the diagnosis rule.
  • Fig. 22 is a flow chart showing the processing of the position setting of the analysis area.
  • Fig. 23 is a control flow chart showing the diagnosis mode of the second embodiment.
  • Figure 24 is a diagram showing an example of a setting menu interface of the object calculation of Embodiment 3.
  • FIG. 25 is a schematic diagram of a setting menu interface of Embodiment 3 including a reference image, an analysis area, an analysis mode, and a diagnosis rule.
  • Fig. 26 is a view showing another setting menu interface of the analysis mode and the diagnosis rule corresponding to the analysis area of the third embodiment.
  • Fig. 27 is a control flow chart showing the diagnosis mode of the third embodiment.
  • Fig. 28 is a view showing a display interface for photographing and diagnosing the subject 1 using the reference image and the analysis region obtained by the calculation.
  • Figure 29 is a diagram showing the setting menu interface of the prescribed recording information of the fourth embodiment.
  • Figure 30 is a control flow chart showing a diagnosis mode with recording processing in the fourth embodiment.
  • Figure 31 is a diagram showing the file structure of a thermal image file in which recording information is stored in association with infrared data.
  • Fig. 32 is a view showing the effect of the infrared thermal image corresponding to the recorded thermal image data in the case of visual matching.
  • Fig. 33 is a block diagram showing an electrical configuration of an embodiment of a thermal diagnostic imaging system in which the thermal image processing apparatus 100 and the thermal image capturing apparatus 101 of the sixth embodiment are connected.
  • Fig. 34 is a view showing an implementation of a thermal image diagnosis system in which the thermal image processing apparatus 100 and the thermal image pickup apparatus 101 are connected.
  • thermal image data may be thermal image AD value data (for example, data obtained by AD conversion of an infrared detector output signal), or image data of an infrared thermal image, or array data of temperature values, or other thermal image based image. Data generated by AD value data, etc.
  • Embodiment 1 uses a thermal imaging device 13 as an example of a thermal imaging device.
  • Fig. 1 is a block diagram showing the electrical configuration of a thermal imaging device 13 of the embodiment.
  • the thermal imaging device 13 includes an imaging unit 1, an image processing unit 2, a display control unit 3, a display unit 4, a communication I/F 5, a temporary storage unit 6, a memory card I/F 7, a memory card 8, a flash memory 9, and a control unit 10.
  • the control unit 10 is connected to the corresponding portion of the data bus 12 by the control, and is responsible for the overall control of the thermal image device 13.
  • the control unit 10 is realized by, for example, a CPU, an MPU, a SOC: a programmable FPGA, or the like.
  • the imaging unit 1 is composed of an optical member (not shown), a lens driving member, an infrared detector, a signal preprocessing circuit, and the like.
  • the optical component consists of an infrared optical lens for focusing the received infrared radiation onto the infrared detector.
  • the lens driving section drives the lens in accordance with a control signal of the control section 10 to perform a focusing or zooming operation. In addition, it can also be a manually adjusted optical component.
  • Infrared detectors such as the infrared or non-cooling type of infrared focal plane detectors, convert infrared radiation through optical components into electrical signals.
  • the signal pre-processing circuit comprises a sampling circuit, an AD conversion circuit, a timing trigger circuit, etc., and the signal output from the infrared detector is sampled and processed in a predetermined period, and converted into digital thermal image data by the AD conversion circuit.
  • the thermal image data is, for example, 14-bit or 16-bit binary data (also referred to as an AD value).
  • the image processing unit 2 performs predetermined processing on the thermal image data obtained by the imaging unit 1, and the processing of the image processing unit 2 is converted to be suitable for display, such as correction, interpolation, pseudo color, synthesis, compression, decompression, and the like. Record processing with equal data.
  • the image processing unit 2 performs predetermined processing on the thermal image data obtained by the imaging unit 1 to obtain image data of the infrared thermal image. For example, the image processing unit 2 performs non-uniformity correction on the thermal image data obtained by the imaging unit 1 .
  • Predetermined processing such as interpolation, performing pseudo color processing on the predetermined processed thermal image data to obtain image data of the infrared thermal image; and an embodiment of the pseudo color processing, for example, based on the range or AD value of the thermal image data (AD value)
  • the setting range is to determine the corresponding pseudo color plate range, and the specific color value corresponding to the thermal image data in the pseudo color plate range is taken as the image data of the corresponding pixel position in the infrared thermal image, where the grayscale infrared image can be It is considered as a special case in the pseudo color image.
  • the image processing unit 2 obtains the compressed thermal image data in accordance with a predetermined compression process, and the thermal image data is recorded on a storage medium such as the memory card 8. Further, based on the control of the control unit 10, the image processing unit 2 performs various processes related to image processing, such as a process of changing the size of the image data by increasing or decreasing the pixels, for example, clipping processing of the image data; the image processing unit 2 For example, it may be implemented by a DSP or other microprocessor or a programmable FPGA, or may be integrated with the control unit 10.
  • the display control unit 3 displays the image data for display stored in the temporary storage unit 6 on the display unit 4 under the control of the control unit 10.
  • the display control unit 3 includes a VRAM, a VRAM control unit, a signal generation unit, and the like, and periodically reads out image data read from the temporary storage unit 6 and stored in the VMM under the control of the control unit 10 from the VRAM, and generates The video signal output is displayed on the display unit 4.
  • the display portion 4 serves as an example of a display portion.
  • the display unit may be another display device connected to the thermal image device 13, and the thermal image device 13 itself may have no display portion in the electrical configuration.
  • the display control unit 3 can be integrated with the image processing unit 2 or the control unit 10.
  • the communication I/F 5 is an interface that connects and exchanges data between the thermal imaging device 13 and an external device in accordance with a communication specification such as USB, 1394, or network.
  • a communication specification such as USB, 1394, or network.
  • an external device for example, a personal computer, a server, or a PDA (personal digital assistant device) can be cited. ), other thermal imaging devices, visible light imaging devices, storage devices, and the like.
  • the temporary storage unit 6 is a buffer memory that temporarily stores thermal image data output from the imaging unit 1 as a buffer memory for temporarily storing thermal image data output from the imaging unit 1, and functions as a work memory of the image processing unit 2 and the control unit 10, and temporarily stores the memory.
  • the data processed by the image processing unit 2 and the control unit 10. is not limited thereto, and a memory, a register, and the like included in the processor such as the control unit 10 and the image processing unit 2 may be interpreted as a temporary storage medium.
  • the memory card I/F 7 is an interface of the memory card 8, and a memory card 8 as a rewritable nonvolatile memory is connected to the memory card I/F 7, and is detachably attached to the main body of the thermal image device 13 In the card slot, data such as thermal image data is recorded in accordance with the control of the control unit 10.
  • the flash memory 9 stores programs for control and various data used in the control of each part.
  • the operation unit 11 is for the user to operate, and the control unit 10 executes the corresponding program based on the operation signal of the operation unit 11. Referring to Fig. 2, the operation unit 11 is illustrated.
  • the keys include a record key 21, a switch key 22, an analysis key 23, a menu key 24, a mode key 25, a machining key 26, a confirmation key 27, a direction key 28, an orientation key 29, and a playback key 30.
  • the recording key 21 is used for the recording operation; the switching key 22 is used for the switching operation; the analysis key 23 is used for analyzing the operation related to the diagnosis; the menu key 24 is used for the operation of entering or exiting the menu mode; Entering or exiting the diagnostic mode; the machining key 26 is used to enter or exit the machining mode; the confirmation key 27 is used to confirm the operation; the direction key 28 is used to select a menu item or the like; and the playback key 30 is used to enter or exit the playback mode.
  • the touch panel 31 or a voice recognition component (not shown) or the like may be employed to implement the related operations.
  • the storage medium reference image, composition data, morphological composition data, auxiliary composition data, analysis area, analysis mode, diagnosis rule, calculation object, machining object, main object, specified position and specified size, position parameter appearing in this document , position information, adaptive area, adaptive, etc. are explained.
  • the storage medium may be a storage medium in the thermal imaging device 13, such as a flash memory 9, a nonvolatile storage medium such as a memory card 8, a volatile storage medium such as the temporary storage portion 6, or the like, or may be wired or connected to the thermal imaging device 13.
  • Other storage media that are wirelessly connected such as storage media in other devices such as other storage devices, thermal imaging devices, computers, etc. that are wired or wirelessly connected to the communication I/F 5, or storage media of network destinations.
  • data constituting data or the like is stored in advance in the thermal image device 13 or a nonvolatile storage medium (e.g., the flash memory 9) connected thereto.
  • a reference image embodying the morphological feature of the subject for example, referring to the image of the common display of the reference image and the infrared thermal image shown in FIG. 5, the reference image TU1 (translucent) shown by 501, which reflects the texture of the object. It also embodies the outline of the subject, so it is more vivid and easy to understand.
  • This type of reference image such as the visible image of the subject, infrared thermal image, pre-drawn image containing features such as texture and contour, is usually translucent.
  • Display 502 shown reference image T1 (edge contour image, may be opaque or translucent), 503 reference image W1 (texture image, may be opaque or translucent), other pixel positions outside the overlapping position may be completely transparent Display infrared thermal image.
  • the morphological feature may be a morphological feature of the subject as a whole or a part.
  • the constituent data refers to constituent data related to the reference image, the analysis region, and the like, and may be vector graphics data, or dot matrix data, or both vector graphics data and dot matrix data, and dot matrix data, for example, may be dots.
  • the array image data may be dot matrix data such as thermal image data.
  • the constituent data may be divided into morphological constituent data and auxiliary constituent data; for obtaining the constituent data of the reference image embodies the morphological feature of the subject as shown in FIG.
  • the constitutive constituent data is embodied, and the reference image embodies the morphological feature may be
  • the data is composed of one or more forms, or the morphological data is obtained by combining the auxiliary constituent data; the constituent data for obtaining the reference image embodying the morphological feature may be one or more, but at least one morphological constituent data is included.
  • the configuration data other than the morphological configuration data is referred to as auxiliary configuration data.
  • the function of the auxiliary constituent data for example, for generating an analysis region, the analysis region F1 shown in Fig. 6, is an analysis region set in the prior art, but the reference in shooting is weak when used alone.
  • the auxiliary constituent data is stored in association with the thermal image data, and since the data amount of the morphological constituent data is relatively large, the auxiliary constituent data storing the auxiliary object having a predetermined positional relationship with the reference image can reduce the amount of stored data, when assisting When the object constituting the data represents the analysis area, the storage method is beneficial for subsequent batch processing.
  • the reference image is obtained by the morphological composition data and the auxiliary constituent data together, and the contour image T1 and the F1 analysis area shown in FIG. 7 are displayed together with the infrared thermal image, and the prompt is provided, which will enhance the reference effect of T1 and avoid The shortcoming of F1's weak reference.
  • At least one morphological composition data is stored in the storage medium.
  • the constituent data may be stored in the storage medium in the form of a file corresponding to a file such as a data file, a thermal image file, an image file, a graphic file, etc., and may be stored in the storage medium after being produced in an external computer, or may be stored in the storage medium by the thermal image device 13
  • the photographed thermal image data or the like is obtained by a prescribed process and stored in a storage medium.
  • the auxiliary constituent data is stored in advance in association with the morphological constituent data in the storage medium, and also stores a prescribed positional relationship between the objects obtained by the two.
  • the auxiliary constituent data can also be used as data of one attribute of the morphological constituent data.
  • the analysis area corresponds to the part of the infrared thermal image that needs to be analyzed, such as a point unit, a line, a surface, or the like, or a combination of a plurality of area units.
  • the analysis area used may be morphological composition data or auxiliary constituent data; preferably, the analysis area is determined from the constituent data stored in advance in the storage medium, or the processing algorithm may be combined by the specified processing object.
  • Table 3 an embodiment in which the constituent data stored in the storage medium is stored, that is, a plurality of subject information and one form constituent data associated with each subject information are stored. .
  • the plurality of subject information, the morphological data (T1 constituting data, T2 constituting data, and the like) corresponding to each subject information are associated with each other by Table 3.
  • the index information of the morphological data is stored in Table 3 (such as file name, etc.)
  • the way to associate, the corresponding storage index information (such as file name, etc.) is stored in the storage medium.
  • the subject information is information related to the subject, for example, a combination of one or more of information representing the location, type, number, name, and the like of the subject.
  • partially different subject information for example, subject 2 and subject 3 in Table 3
  • the composition information is stored in association with the morphological data as shown in Table 3, so that the user can take photos according to the scene recognition.
  • the selection of the body information avoids confusion caused by incorrect data selection and reduces data redundancy.
  • Table 4 Another preferred embodiment of the constituent data stored in the storage medium, that is, storing a plurality of subject information and a plurality of associated subject information, is described. Constitute the data.
  • a plurality of constituent data associated with a plurality of subject information (the types of the morphological constituent data are: reference 1, reference 2, types of auxiliary constituent data: auxiliary 1), and analysis of the constituent data for the auxiliary 1
  • Analysis mode information of "analysis mode 1" at the time of the region, analysis mode information of "analysis mode 2" corresponding to the analysis region obtained for each type of composition data, "diagnostic rule 1" corresponding to "analysis mode 1", “analysis Mode 2 "corresponding "Diagnostic Rule 2” is associated with Table 4.
  • the information of the predetermined positional relationship between the objects obtained by the respective constituent data associated with the same subject information is also stored.
  • the object constituting the data acquisition for example, a reference image constituting the data acquisition or a specific point, line, and surface representing the analysis region, wherein the predetermined positional relationship refers to a prescribed relative positional relationship.
  • the object constituting the data acquisition for example, a reference image constituting the data acquisition or a specific point, line, and surface representing the analysis region, wherein the predetermined positional relationship refers to a prescribed relative positional relationship.
  • the objects of the reference 2 and the auxiliary 1 type associated with the same subject information are respectively formed with respect to the reference 1 type.
  • the information specifying the positional relationship may be used as one attribute of the constituent data, or information of a predetermined positional relationship may be separately stored. Further, if the association information (e.g., file name or the like) constituting the data is stored in Table 4, the file constituting the data corresponding to the index information (e.g., file name, etc.) is stored in the storage medium.
  • various constituent data are classified and stored according to a predetermined type, for example, according to the display effect classification of the object obtained by the constituent data, the reference 1 corresponds to the contour, and the reference 2 corresponds to the previously processed infrared thermal image (for example, the local standard is The camera thermal image) and the auxiliary 1 correspond to the focus area. Further, it may be classified according to the purpose of shooting, data type (vector graphic data, dot matrix data), and the like; in addition, the classification is not limited to a single constituent data, and may be classified by combining a plurality of constituent data.
  • the constituent data may be stored in the form of a graphic file or an image file (for example, the corresponding subject information is included in the file name) in the storage medium, or a folder may be further used. Classify these files;
  • information on a predetermined positional relationship between objects obtained by the constituent data associated with the same subject information is stored in advance in the storage medium (flash memory 9); however, it may not be stored, for example, by the user.
  • a predetermined positional relationship between the objects is given, or a predetermined positional relationship between the objects is given by the default positional rule of the thermal imaging device 13.
  • the specified positional relationship with other objects the constituent data obtained by calculating and/or processing the specified object, and the specified object may be calculated by corresponding calculations.
  • the rules and processing rules determine, for example, the analysis area obtained by the contour scaling deformation, and the specified positional relationship with the contour can be determined by the base point, scaling and deformation rate of the scaling and deformation.
  • the prescribed positional relationship between the objects constituting the data is sometimes referred to as a prescribed positional relationship between the constituent data.
  • one object is a feature point (feature coordinate point) corresponding to another object, and when another object is displaced, the feature point follows the same displacement; when another object is scaled relative to the zoom base point Taking the scaled base point as a coordinate origin, the coordinate (X2, Y2) relative to the zoom base point after the feature point is scaled is equal to the coordinate of the feature point relative to the zoom base point before scaling (XI, YD multiplied by the zoom ratio S (X1*) S, Y1*S ) ;
  • the feature points are based on the same rotation base point, and the same rotation angle occurs, and the coordinates of the rotation point after the feature point is rotated (X2) , Y2 ) and the coordinate (X
  • the analysis mode represents the analytical calculation rule used to obtain the analysis result based on the thermal image data determined by the analysis region, and the temperature value calculation is taken as an example, such as calculating the highest temperature, the average temperature, the lowest temperature, the percentage content, and the like. Can also include regional units The calculation relationship between them is such as temperature difference. However, it is not limited to the calculation of the temperature value, and may be an analytical calculation rule relating to various analyses related to thermal image data or infrared thermal imaging.
  • the analysis mode information related to the analysis mode is previously stored in the storage medium in association with the corresponding constituent data, so as to be used when the constituent data is obtained by the analysis region (a method of association, an analysis mode, or a diagnosis rule may be included) As attribute information of the constituent data).
  • a method of association, an analysis mode, or a diagnosis rule may be included
  • the analysis mode information may be different for the same or different constituent data: as shown in Fig.
  • analysis mode 1 constituting the data type "auxiliary 1” association, analysis mode 1 for the subject 1
  • the information (F1 mode information) is calculated: Calculate (F1 constitutes the analysis area F1 of the data, with the area unit S01, S02) The highest temperature of the area unit S01 and the highest temperature of S02, and the difference between the maximum temperatures of S01 and S02.
  • the information of the analysis mode 1 of the subject 2 (F2 mode information) is: Calculate the difference between the average temperature and the maximum temperature in the region (the analysis region F2 in which the data is obtained) and the maximum temperature and the average temperature.
  • the analysis mode information may also be common to the same or different constituent data; for example, the information of the analysis mode 2, the highest temperature and the average temperature in the analysis region obtained for calculating the determined constituent data And the difference between the maximum temperature and the average temperature; Applicable to all the constituent data in Table 4, which can be used as an analysis mode in which each type of constituent data is associated.
  • the diagnostic rule is used by the diagnostic unit to obtain an analysis result according to the thermal image analysis unit, and perform diagnosis according to a predetermined diagnosis rule to obtain a diagnosis result.
  • the diagnosis is performed according to the diagnosis rule associated with the analysis mode, and the stored diagnosis rule information is pre-associated according to the analysis mode information corresponding to the analysis mode related to the analysis, and the obtained diagnosis rule is diagnosed.
  • diagnostic rule 1 associated with analysis mode 1 as an example:
  • the information of diagnostic rule 1 contains at least one diagnostic comparison relationship and diagnostic threshold corresponding to analysis mode 1 (F1 analysis mode); further, as in the power industry It is expected that the diagnosis will be directly obtained.
  • diagnostic thresholds and conclusions are respectively available.
  • Defect The difference between the maximum temperature of S01 and S02 is greater than 4 °C; (Defect: S01MAX-S02MAX>4°C or S02MAX-S01MAX>4°C)
  • the same analysis mode can correspond to one or more diagnostic rules.
  • the analysis mode is stored in association with the corresponding diagnosis rule; further, the diagnosis rule or the associated diagnosis basis, the detailed defect type, the defect degree, the processing suggestion, and the like are included in the diagnosis rule.
  • Diagnostic rule 2 associated with analysis mode 2 The difference between the highest temperature and the average temperature in the analysis area is less than 3 °C, and the others are defects.
  • the object information may not be
  • the association data and the like are stored in Table 4, and are stored in the storage medium of the thermal image device 13 as a general analysis mode and diagnostic rule.
  • the control unit 10 compares the diagnosis result obtained by the analysis with the diagnosis threshold in the diagnosis rule corresponding to the analysis mode, and compares the diagnosis threshold and the analysis result according to the diagnosis rule.
  • the comparison result is obtained to obtain a diagnosis result;
  • the output of the diagnosis result may be a control signal, for example, the control unit 10 serves as a notification control unit, for example, by displaying a character or an image (including an infrared thermal image, a reference image, etc.) in a display member or the like. Changes, light generated by the indicator light, audible indications, vibrations, etc., are included as long as the user can perceive it.
  • control display unit 4 displays the diagnosis result, and further, the diagnosis threshold value, the diagnosis basis, the defect type, the defect degree, the processing advice, and the like related to the diagnosis can be notified by a user such as a character. . Accordingly, these related data are stored in association with the data of the diagnostic rules.
  • the processing object can be obtained by processing.
  • the processing object may be morphological composition data stored in advance in the storage medium.
  • it may be morphological composition data represented by "reference 1" and "reference 2" shown in Table 4; for example, it may be heat in the memory card 8.
  • Image data, or thermal image data obtained by shooting, is processed.
  • the machining object and machining rules can be pre-configured.
  • the processing rule includes at least one or more image processing of "cutting", “threshold range extraction", and "edge extraction” on the processing object.
  • the processing performs, for example, one or more of predetermined image processing such as cropping, feature extraction (e.g., threshold range extraction, edge extraction), enhancement, filtering, pseudo color, color adjustment, and the like on the processing object.
  • Cut that is, extract the data of the processing object located in the clipping area.
  • Threshold range extraction extracting the data of the processing object in the threshold range; the expression range of the threshold range, for example: thermal image data AD value range, infrared thermal image color scale range, temperature threshold range, gray scale range
  • the brightness range, color range, etc. can be a pre-stored threshold range, and can be set and adjusted by the user. Its role, such as extracting the temperature band in the infrared thermal image (processing object) or The color acquisition obtains morphological composition data, for example, extracts pixels of a specific color in a visible light image (processing target) to obtain morphological configuration data, for example, extracts pixels of a specific AD value in thermal image data (processing target) to obtain morphological composition data.
  • the edge extraction process that is, extracting the data of the edge contour based on the processing object according to a prescribed algorithm.
  • the infrared thermal image processing object
  • the specified threshold range may be a pre-stored threshold range, or a binary image may be displayed, and the binarization threshold is manually performed.
  • the setting of the range for example, setting the range of the thermal image data AD value, the threshold range of the temperature, the gray scale range, the color scale range, and the like; and then, processing the connected area on the binarized image
  • edge detection processing is performed on the connected area to obtain edge contour data.
  • the obtained edge contour data can also be vectorized. For other specific processing methods, more mature methods in the industry can be used, and will not be described here.
  • the calculation object can obtain the auxiliary composition data through the calculation process.
  • the calculation object for example, can be one or more of "Base 1", “Base 2", “Aux 1” as shown in Table 4.
  • the calculation rule includes at least one or more of scaling, deforming, segmenting, halving, calculating an outer rectangle, calculating an inner rectangle, calculating a center line, calculating a feature point, and an envelope.
  • the user may specify the calculation target based on the selection of the reference image or the compositing object displayed on the display unit 4; the point, the line, and the surface having the predetermined positional relationship with the reference image may be set by the user and given.
  • the composition data is specified.
  • the specified position and the specified size refer to the position and size of the reference image in the infrared thermal image, or also include the angle of rotation.
  • the specific expression may be a specified position in the coordinate system of the display unit (display screen) and a parameter of a predetermined size (but falling in the infrared thermal image display window), or may be an infrared light located in the infrared thermal image display window.
  • the specified position in the coordinate system of the thermal image and the parameter of the specified size are also included in this case, the position setting portion (control portion 10) sets only the position where the reference image is located in the infrared thermal image, and the default display is performed in the original size, and is also regarded as setting the prescribed position and the prescribed size.
  • the positional parameter refers to a reference image in which the reference image is located in the infrared thermal image at a predetermined position and a predetermined size.
  • the analysis area it refers to the position of the analysis area in the infrared thermal image (for example, the case where the analysis area is a point), or also includes the size, or also includes the rotation angle.
  • the positional parameter in the embodiment may be a positional parameter in the coordinate system of the display part (display screen) (but falling in the infrared thermal image display window); or may be an infrared light located in the infrared thermal image display window.
  • the positional parameter in the coordinate system of the thermal image may be a positional parameter in the coordinate system of the display part (display screen) (but falling in the infrared thermal image display window); or may be an infrared light located in the infrared thermal image display window.
  • the location information for example, the location information associated with the constituent data, may be in the form of a location parameter, but may also be a rule for obtaining location parameters.
  • the main object when there are a plurality of constituent data having a predetermined positional relationship (such as related to a reference image), one or more objects constituting the data acquisition may be designated as a main object; when the main object is specified, the position setting portion , for setting a position parameter of the main object in the infrared thermal image, and then setting other objects in the infrared thermal image based on a predetermined positional relationship between the other object and the main object and a position parameter of the main object in the infrared thermal image Position parameter.
  • a predetermined positional relationship such as related to a reference image
  • the adaptive region is a predetermined region in the infrared thermal image.
  • the centered window region Z1 which is located in the infrared thermal image and is 90% proportional to the infrared thermal image is used as the adaptive region.
  • Adaptive which refers to the specified position of the adaptive object in the adaptive region (or a specified rotation angle), and the size of the non-overflow, aspect ratio fixed maximum scaling in the adaptive region is obtained, and the adaptive size is obtained.
  • the adaptive object is located at a predetermined position and a predetermined size in the infrared thermal image can be obtained.
  • the X-axis and ⁇ of the adaptive region Z1 size XI, Y1
  • the adaptive object the adaptive object original size X2, Y2,
  • the ratio of the axis, the ratio of the smaller one of X1/X2 and Y1/Y2 is selected as the zoom rate based on the center point of the adaptive object when the adaptive object is centered, thereby obtaining the position of the adaptive object in the infrared thermal image.
  • Adaptive objects such as analysis areas and reference images, use adaptive to set positional parameters, which facilitates specification and adjustment of positional parameters in the infrared thermal image such as analysis areas and reference images.
  • the proposed adaptations are all based on the adaptive adaptation of the adaptive object in Z1 as an example of implementation.
  • the composite object may be a reference image displayed together with the infrared thermal image, for example, or may include a plurality of synthetic objects combined with an infrared thermal image or the like, depending on the embodiment of the display control. Among them, a single synthetic object can be obtained by one or more constituent data.
  • the position setting portion may set only the predetermined position and the predetermined size of the synthetic object in the infrared thermal image, without separately setting each of the constituent data obtained in the infrared heat. Position parameter in the image.
  • the position setting portion may respectively set positional parameters in which each of the compositing objects is located in the infrared thermal image.
  • Embodiment 1 The specific operation and control flow of Embodiment 1 will be described in detail below.
  • the control unit 10 initializes the internal circuit, and then enters the standby shooting mode, that is, the imaging unit 1 captures the thermal image data, and the image processing unit 2 specifies the thermal image data obtained by the imaging unit 1.
  • the processing is stored in the temporary storage unit 6, and the control unit 10 performs control of the display control unit 3 to continuously display the infrared thermal image as a moving image on the display unit 4. In this state, the control unit 10 continuously monitors whether or not the predetermined operation is performed. Switched to other mode processing or shutdown operation, if any, enters the corresponding processing control.
  • the display unit 4 displays the menu as shown in FIG.
  • the menu item is selected, the corresponding configuration interface is displayed.
  • the control unit 10 and the operation unit 11 and the like constitute an arrangement unit, and the control unit 10 performs corresponding display control in response to an operation signal of the user.
  • Composition data CD11 Displays information for selecting the constituent data.
  • the information constituting the data constitutes, for example, the type information of "reference 1" and “reference 2" from Table 4, and in addition, when there is other type information, for example, the specified processing object type is combined with the constituent data represented by the specific processing rule.
  • the type information is also displayed as the type information for selection.
  • Machining object CD12 For the user to select the composition data to be processed, it is obvious that one or more morphological data can be selected as the processing target.
  • Machining rules CD13 Used by the user to set the machining rules for the machining object;
  • the machining rules include the machining algorithm and related parameters. When the machining algorithm is selected, press the enter key and the parameter column will be displayed for input parameters (not shown).
  • Composition data CD21 Displays information for selecting the constituent data.
  • Information for selecting constituent data for example, obtains type information of "reference 1", “reference 2", and “auxiliary 1” from Table 4, and when there are other types of information, such as a specified calculation object type in combination with a specific calculation rule
  • the type information of the representative such as the specified machining object combined with the type information "reference 1 (machining)" represented by a specific machining algorithm, is also displayed as the type information for selection.
  • Computational object CD22 For the user to select a calculation object; Obviously, one or more constituent data can be selected as the calculation object, and the constituent data obtained by processing the machining object can be used as the calculation object.
  • Calculation Rule CD23 for the user to select and set the calculation rules for the calculation object; the calculation rules include the algorithm and related parameters, such as scaling, deformation, calculation feature points, aliquots, outsourcing rectangles, inscribed rectangles, centerlines, packages Algorithms such as lines, such as the base point of the scaling, the scaling factor, the base point of the deformation, the deformation rate (such as the aspect ratio, etc.), the calculation parameters of the feature points (such as the center point of the calculated contour), and the constituent data types based on the feature point settings. (such as points, lines, faces, etc.) and size, the number of equal parts and other parameters related to the algorithm, often press the enter key when the algorithm is selected, the parameter column will be displayed for input parameters (not shown).
  • One or more calculation rules can be selected for the selected calculation object.
  • the contour T1 constitutes data as a calculation object
  • the analysis region F101 obtained after scaling and deformation using the center point of the contour T1 as a base point can be used for analyzing and calculating a predetermined region on the subject body.
  • the temperature distribution reduces the impact of the surrounding environment on the assessment.
  • the contour T1 constitutes the data as the calculation object, and the algorithm parameter is 8 divisions, and the obtained 8 division analysis area F102 can be used to analyze the temperature distribution of different parts of the subject body.
  • the contour T1 constitutes the data as the calculation object, and the algorithm parameter is the calculation of the outer rectangle, and the obtained outer rectangle F103; can be used to analyze and measure the maximum temperature of the object, and can reduce the influence of the high temperature object in the background.
  • TU1 (TU1 is a local infrared thermal image) constitutes data as a processing object, and processing rules such as edge contour extraction, and the obtained edge contour analysis area F104 can be used to analyze and measure the maximum temperature of the object. It can reduce the effects of high temperature objects in the background.
  • TU1 (TU1 is a local infrared thermal image) is used as the processing object.
  • the processing rule is to extract the pixel above the specified temperature threshold (threshold range extraction), and the obtained analysis area F105 can be used. Analyze and calculate the characteristic parts of the subject.
  • the specified object can be processed and/or calculated to obtain the constituent data.
  • the configuration menus of "Object Machining CD1" and "Object Computation CD2" can also be merged into one configuration interface for the specified object (as shown in Figure 4 in advance).
  • the stored constituent data, the thermal image file in the memory card 8, the thermal image data obtained by the photographing, etc.) may select one or more processing rules, and/or select one or more calculation rules, processing and/or calculations. Can be collectively referred to as processing the specified object.
  • Diagnostic Configuration CD3 For the user to select, in the diagnostic mode, in the non-switching state, set the specified specification type, position rule, synthesis parameter, analysis mode, diagnostic rule, etc. of the constituent data related to the reference image and the analysis area.
  • Composition data CD31 Display information for selecting the constituent data, for example, obtain the type information of "Base 1", “Base 2", “Aux 1” from Table 4, and when there are other types of information, such as in "Object Processing”
  • the type of machining object set in CD1 is combined with the type information represented by the specific machining rule "Reference 1 (machining)", such as the type of calculation object set in “Object Calculation CD2” combined with the type information represented by the specific calculation rule "Base 1 (Calculation) ", also shown for selection.
  • Reference image CD32 For the user to select the composition data for obtaining the reference image.
  • One or more constituent data can be selected to obtain a reference image.
  • each object constituting the data is taken as a composite object, that is, when a plurality of constituent data are selected, the reference image will contain a plurality of composite objects; optionally, the reference image CD32, and long press confirmation
  • the key can be used as a composite object (not shown) in part or all of the selected constituent data.
  • Position Rule CD33 Used for the user to configure the position rule related to the positional parameter in the infrared thermal image such as the reference image and the analysis area;
  • Main object Select the composition data for obtaining the main object.
  • the main object can be selected from the constituent data CD 31, and it is obvious that it can be a main object obtained by constituting data such as a reference image.
  • the configuration data for obtaining the main object may be, for example, one or more of the following constituent data having a predetermined positional relationship: the configuration data associated with the configuration data and the configuration data, or may be based on the configuration.
  • the calculation object specified in the data or its associated constituent data is combined with a predetermined calculation rule to obtain the main object, or the main object is obtained based on the processing target specified in the morphological composition data in combination with a predetermined processing rule.
  • the set main object represents the area that needs to be emphasized.
  • the reference image can be transformed at different display positions to achieve different shooting purposes. Further, the user can select the reference image (one or more of the synthesized objects) displayed on the display section 4 as the main subject.
  • the positional parameters of other objects in the infrared thermal image are set based on the specified positional relationship between the other object and the main object and the positional parameter of the main object in the infrared thermal image.
  • the object obtained by the constituent data selected in "Reference Image CD32" and "Analysis Area CD35” sets its positional parameters according to their respective positional rules.
  • adaptive used to configure the location setting method of adaptive processing and specify adaptive objects. Select Adaptive, and then press and hold the Enter key to set the position, size, rotation angle of the adaptive area in the infrared image, and the position and rotation angle of the adaptive object in the adaptive area.
  • the centered window area of the infrared thermal image is set to 90% as the adaptive area, hereinafter referred to as Z 1
  • the adaptive object is centered in Z 1 .
  • the adaptive object can be selected from the constituent data CD31.
  • the specified position a position parameter for configuring the object obtained by the selected constituent data to be located in the infrared thermal image.
  • an input field (not shown) is displayed, and the user can input the position, size, and rotation angle of the object obtained by the selected constituent data in the infrared thermal image.
  • the default position can also be used, such as the upper left corner of the infrared thermal image, the original size, and the rotation angle of 0.
  • association selecting the item, the positional parameter that the object obtained by the constituent data will be located in the infrared thermal image is obtained according to the position information pre-associated with the selected constituent data.
  • Synthesis parameter CD34 a synthesis parameter for setting a reference image obtained by the selected constituent data and an infrared thermal image, such as a transparency ratio, a color, a line type (not shown), when the reference image has a plurality of composite objects
  • the synthesis order, etc. can also select the synthesis parameters associated with the constituent data.
  • Analysis Area CD35 The type used by the user to configure the analysis area.
  • the user can select the constituent data for obtaining the analysis area in the configuration data CD 31; in addition, when the "analysis area CD35" is selected and the confirmation key is long pressed, the setting interface as shown in FIG. 15 is displayed for the user to refer to the reference.
  • the range of the analysis area can also be set. Taking T 1 in Fig. 15 as an example, it can be set whether the analysis area is in the area of T1, outside the area of T1, or on the edge contour of T1.
  • the configuration data of the analysis area may be obtained based on the morphological composition data stored in the storage medium or the constitutive data constituting the data constituting the morphological composition; or may be a specified object in the constitutive data or the associated constituent data stored in the storage medium, According to the prescribed calculation rules and / or processing rules, the corresponding processing is obtained; one or more constituent data can be selected as the designated object to obtain the analysis area; in addition, the "point, line, and surface" analysis area can also be set by human operation, Since the settings can be made according to the reference image, the set analysis area is convenient for subsequent use. Which type of analysis area is used can be selected by the user according to the purpose of infrared detection.
  • the area units in the analysis area can be manually or automatically numbered (such as the frame area unit S01, S02 of F1 in Fig. 15).
  • the pre-stored constituent data may have respective numbers to facilitate the numbering as the analysis area.
  • Analysis mode and diagnostic rules CD36 For the user to configure the analysis mode corresponding to the analysis area, and analyze the diagnostic rules corresponding to the mode.
  • the alternative information is obtained, for example, from Analysis Diagnostic 1 (analysis mode 1 and its associated diagnostic rule 1), analytical diagnosis 2 (analysis mode 2 and its associated diagnostic rule 2) or other analysis modes and diagnostics stored in advance. Rule information;
  • Analysis Diagnostic 1 analysis mode 1 and its associated diagnostic rule 1
  • analytical diagnosis 2 analysis mode 2 and its associated diagnostic rule 2
  • Rule information In addition, when "Analyze mode and diagnostic rule CD36" is selected and the confirmation key is pressed long, the setting interface shown in Figure 15 is displayed.
  • the setting interface of the analysis area, the analysis mode, the diagnosis rule, and the like will be described with reference to FIG. 15, and the adjustment column SZ0, the analysis area setting column SZ1, the analysis mode, and the diagnosis rule setting column SZ2 having the analysis area are performed by taking the subject 1 as an example. Description.
  • the reference image and the analysis area are usually displayed for easy adjustment.
  • the reference image T1 selected in “Reference Image CD32” is displayed (reference 1)
  • the analysis area F1 (auxiliary 1) selected in the "analysis area CD35” in the adjustment column SZ0, the user can perform the reduction, change position, adjustment, and change on the area units S01, S02 in the analysis area F1 ( Point, line, face) type, or set a new area unit.
  • the analysis area setting column SZ1 is used to set the analysis area corresponding to the reference image T1, including setting points, lines, faces, and calculation rules similar to those in "object calculation CD1", and the calculation object can be defaulted as a reference image. T1.
  • Diagnostic rule setting column SZ2 used to set the analysis mode and diagnostic rule, where "area” is used to select the number of the area unit displayed in SZ0, for example: S01, S02 ; "Mode” such as: highest, lowest, average temperature "Compute” such as: force, subtraction, multiplication, division; “comparison” such as: greater than, less than, etc., “threshold” is the threshold for diagnosis; “relationship” such as and, or, etc.
  • the "comparative" relationship and the “threshold value” when the "comparative" relationship and the “threshold value” are not entered, it constitutes an analysis mode, such as entering a “comparative” relationship and a “threshold value”, which constitutes an analysis mode and corresponding diagnostic rules (or can be understood as having Diagnostic rules for analysis mode).
  • the configuration data of the reference image T1 After the setting is completed, the configuration data of the reference image T1, the composition data of the analysis area, and the predetermined positional relationship between the two (such as the positional parameter of the analysis area F1 located in the reference image T1), the analysis mode corresponding to the analysis area, and the analysis may be performed.
  • the diagnostic rules corresponding to the mode are stored in association with the recording medium, as recorded in Table 4 of the flash memory 9.
  • Switch CD4 Used to configure the configuration information related to the switching object when the switching key is pressed once in the diagnostic mode, for example, the reference image configured by "Diagnostic Configuration CD3" is displayed together with the infrared thermal image.
  • the configuration information of the switching for example, the type of the constituent data of the switched reference image, the synthesis parameters (such as the overlapping order, the transparency rate, the color), and the composition of the analysis region.
  • the type of data, the position rule, the analysis mode, the diagnosis rule, and the like may be one or more of the transformations, that is, the transformation of any one of CD31-CD36 in Fig.
  • the specific configuration items are the same as the "Diagnostic Configuration CD3", and the description is omitted. The difference is that there is also an infrared thermal image as the switching target.
  • the switch CD4 arrow Used to set (enhance, modify, delete) switching rules, for example, through the arrow to enter the next switching interface, to configure more switching object configuration information.
  • the specified record information will be stored in association with the infrared data.
  • the predetermined recording information is specified information, and the user can obtain the object information, the constituent data, the identity information constituting the data (such as the file name and number of the constituent data), the object obtained by the constituent data, the analysis region, the analysis mode, As a result of the analysis, one or more of the position information is used as the composition of the prescribed record information.
  • the purpose of the user's photographing is to detect the overall thermal field distribution of the subject and the key analysis portion (the area represented by the auxiliary 1).
  • the user's configuration is shown in Figure 13, reference image: "Base 1", “Aux 1”; Position Rule: Base 1 (primary object), adaptive zone Z1, adaptive centering; Synthesis parameters: The transparency ratio is 1, the reference 1 synthesis order is 1, the auxiliary 1 synthesis order is 2, and the color is the default.
  • the subject analysis focus area (the area represented by Auxiliary 1) will be approached.
  • the user's configuration through “Switch CD4" is shown in Figure 14, reference image: "Base 1", “Aux 1”; Position Rule: Aux 1 (primary object), Adaptive, Adaptive Zone Z1, Centered; Synthesis Parameters : The transparency ratio is 1, the base 1 synthesis order is 1, and the auxiliary 1 synthesis order is 2 ; analysis area: auxiliary 1, analysis mode and diagnostic rule: analysis mode 1 and corresponding diagnostic rule 1 (analytical diagnosis 1).
  • the configuration data of the part in Table 4 is used as an example of configuring the reference image and the analysis area.
  • the user can combine the calculation data according to the composition data in Table 4, which may be a combination of the calculation object specified by the calculation object, including the processing of the specified processing object.
  • Rules to configure the reference image for various effects and the analysis area for the analysis It is possible to obtain an analytical diagnostic configuration for different application uses, depending on at least one of the constituent data of the reference image, the positional rule, the synthetic parameters, the constituent data of the analysis region, the analysis mode, and the diagnostic rule.
  • By configuring the switch it is possible to obtain an analysis configuration for different uses and effects; by configuring the record, it is possible to obtain prescribed record information for different purposes.
  • the user can configure the reference image and the analysis area-related constituent data, position rules, synthesis parameters, analysis mode, and the "diagnostic configuration CD3" or "switch configuration CD4". Diagnostic rules, etc., can also be obtained for diagnostic configurations for different application purposes.
  • the control section 10 stores the set configuration associations in the flash memory 9 (for example, as a configuration file) as a default configuration of the subsequent thermal image device 13, and It does not need to be set once for each use, and then returns to the standby shooting state.
  • the control section 10 stores the set configuration associations in the flash memory 9 (for example, as a configuration file) as a default configuration of the subsequent thermal image device 13, and It does not need to be set once for each use, and then returns to the standby shooting state.
  • the control section 10 stores the set configuration associations in the flash memory 9 (for example, as a configuration file) as a default configuration of the subsequent thermal image device 13, and It does not need to be set once for each use, and then returns to the standby shooting state.
  • thermal imaging device 13 The overall functions of the thermal imaging device 13 are described below, including:
  • the acquisition unit for example, the imaging unit 1, is used to capture and obtain thermal image data.
  • the reference image specifying portion (control portion 10) is for designating constituent data for obtaining a reference image embodying the subject morphological feature; the constituent data of the reference image can be specified based on the constituent data stored in the storage medium. For example, it is possible to designate one morphological composition data related to a reference image from "reference 1", “reference 2", and "auxiliary 1" stored as shown in FIG. 4, or specify at least one morphological composition data.
  • the processing target form form data, or morphological data and auxiliary component data
  • the constituent data for obtaining the reference image embodying the morphological feature is specified based on the constituent data stored in the storage medium; for example, the constituent data for obtaining the reference image is selected from the constituent data stored in the storage medium; In the case of the morphological composition data obtained from the processing object specified in the constituent data stored in the storage medium and the processing rule; in addition, the calculation object and the calculation rule specified in the constituent data stored in the storage medium may be included.
  • the auxiliary constituent data is obtained and used together with the morphological composition data to obtain a reference image.
  • the applicable constituent data or the applicable reference image can be obtained by processing, calculation, or the like.
  • the specific designation method for example, the default constituent data can be selected. It is also possible to select constituent data according to the user's operation, such as selecting the constituent data according to the user's selection of the subject selection information in combination with the prescribed determination type of the constituent data; for example, according to the user's selection of the identity information constituting the data.
  • the composition data is selected; for example, the composition data corresponding to the button is selected according to the operation of the specific button. It is also possible to determine the constituent data corresponding to the trigger condition based on the prescribed trigger condition.
  • the reference image position setting portion (control portion 10) is for setting a positional parameter in which the reference image based on the specified constituent data is located in the infrared thermal image.
  • the specific location setting implementation manner for example, the location parameter of the reference image may be automatically set according to a specified location rule; for example, the constituent data represented by the location information may be based on the constituent data stored in the storage medium and its associated location information.
  • the obtained reference image will be located in the infrared thermal image, and the positional parameter obtained by the constituent data will be located in the infrared thermal image; or the adaptive image can be automatically set according to the specified adaptive region.
  • the positional parameter in the image firstly, the main object having a predetermined positional relationship with the reference image is determined, the positional parameter of the main object in the infrared thermal image is set, and then, based on the predetermined positional relationship between the reference image and the main object and the main object
  • a positional parameter located in the infrared thermal image to set a positional parameter of the reference image in the infrared thermal image may also be set according to the default designated position of the thermal imaging device 13.
  • the positional parameters of the reference image can also be set according to user operations such as the entered positional parameters.
  • control unit 10 for controlling a reference image of a predetermined size obtained based on the specified configuration data to be displayed together with an infrared thermal image generated by thermal image data obtained by the imaging unit according to a predetermined position;
  • the infrared thermal image generated by the thermal image data obtained by the imaging unit is continuously synthesized according to the predetermined position, and then the composite image of the reference image and the infrared thermal image is displayed for common display. .
  • it can be transparent according to regulations.
  • the rate is synthesized.
  • the predetermined transparency may be a fixed value, for example, may be a default value stored in the thermal image device 13, or may be stored by the user through the setting value of the operation unit 11, or the attribute of the composition data of the synthetic object. Rate information.
  • the transparency of a synthetic object represents the ratio of the synthetic pixels obtained by synthesizing the synthetic object to the background (for example, infrared thermal image).
  • the image data of the synthesized pixel is obtained based on "the image data of the synthetic object X, the transparency ratio of the synthetic object + the image data x of the background (l - the transparency of the synthetic object)". It also includes a parameter that does not set the transparency rate, which represents the default transparency rate of 1.
  • the synthesis processing is sequentially performed to obtain a final composite image according to the synthesis order of the respective synthetic objects and the corresponding transparency ratio; for example; , there are synthetic object 1 (synthesis order is 1) and synthetic object 2 (synthesis order is 2), then the synthetic object 1 is first synthesized according to its transparency and background to obtain the intermediate data "image data of synthetic object 1 X is synthesized with object 1 Transparency rate + background image data x (l - transparency ratio of composition object 1)", and then the composition object 2 is resynthesized and processed according to its transparency ratio, that is, the synthesized pixel obtained by the process is according to the following formula Obtained, the transparency ratio of the composite object 2* composite object 2 + the midway data * (the transparency ratio of the synthetic object 2).
  • the displayed image is obtained by selectively pseudo-color processing the captured thermal image data according to the pixel position of the reference image in the infrared thermal image.
  • the image data of the reference image at the overlapping pixel position is used as the image data of the superimposed image of the pixel position, and the thermal image data of the overlapping pixel position is no longer subjected to pseudo color conversion processing, except for the overlapping pixel positions.
  • the thermal image data is subjected to pseudo color conversion to obtain image data of the infrared thermal image, thereby generating a displayed image, which can speed up processing in some applications.
  • reference images such as edge contours
  • reference images or auxiliary objects that are desired to be processed in this manner may be pre-applied with corresponding identification information in the attributes of their constituent data.
  • the image is generated by subtracting a predetermined value from the thermal image data of the pixel position in the thermal image data, and then performing pseudo color processing or the like to generate a composite image.
  • An embodiment for example, determining a transparency ratio of a portion of the reference image to be synthesized based on a range of threshold intervals (such as a range of AD values) of the thermal image data obtained by the photographing, specifically, for example, a range of values within a threshold interval
  • the transparency of the reference image synthesized by the infrared thermal image is set to 0, and the setting outside the threshold interval is set to 1, to avoid the infrared thermal image of the important part (within the threshold range) being blocked.
  • the specified transparency rate may also be a changed value.
  • a display control unit that controls the display unit 4 to display a reference image and an infrared thermal image.
  • the image data of the other predetermined information is controlled to be displayed, for example, as shown in FIG.
  • the image 802 of the infrared thermal image is composed of an image 801 of other predetermined information.
  • the analysis area may be displayed, and it is preferable that the analysis area and the image portion of the morphological feature referred to as the reference are displayed in an area of at least one of a color, a transparency, and a line type.
  • the analysis region specifying unit is configured to determine the configuration data of the analysis region.
  • the analysis region determination unit determines the configuration data of the analysis region from the configuration data having a predetermined positional relationship with the configuration data of the reference image; for example, as shown in FIG. It is obvious that one or more constituent data can be specified from the "reference 1", “reference 2", and "auxiliary 1" stored in the flash memory 9 and have a specified positional relationship, and the analysis area can be obtained based on the specified object.
  • the processing rule and/or the calculation rule are used to obtain the composition data of the analysis area.
  • the specified object is the composition data of the reference image or the composition data of the object having a predetermined positional relationship with the reference image.
  • the constituent data of the analysis region may be determined based on the configuration data having the predetermined positional relationship according to the default positional rule, for example, the constituent data associated with the constituent data of the reference image (the predetermined positional relationship is not stored in advance, and the thermal image device 13 defaults.
  • the configuration data of the analysis area is determined by the positional rule and the predetermined positional relationship; the predetermined positional relationship between the reference image and the analysis area may be obtained by preliminarily storing information of a predetermined positional relationship of the storage medium, or may be set by the user.
  • the specified positional relationship between the constituent data obtained by calculation and/or processing of the specified object and the specified object or other object having a predetermined positional relationship with the specified object can be determined by the corresponding calculation rules, processing rules.
  • the specific determination method for example, the default constituent data can be selected. It is also possible to select constituent data according to the user's operation, such as selecting the constituent data according to the user's selection of the subject selection information in combination with the prescribed determination type of the constituent data; for example, according to the user's selection of the identity information constituting the data.
  • the composition data is selected; for example, the composition data corresponding to the button is selected according to the operation of the specific button. It is also possible to determine the constituent data corresponding to the trigger condition based on the prescribed trigger condition, and to obtain the analysis region.
  • the constituent data of the analysis region may be determined from the constituent data in which the positional relationship is not specified; for example, the composition of the analysis region is determined from the constituent data associated with the constituent data of the reference image (the predetermined positional relationship is not stored in advance) Data; the positional parameters of the two can be set by the user; in addition, the configuration data (such as points, lines, and faces) of the analysis area set by the user operation can also be determined. Since there is a reference to the reference image, it is much more convenient than the prior art.
  • An analysis area location setting unit configured to set a position parameter of the analysis area in the infrared thermal image;
  • the location parameter of the analysis area can be automatically set according to the specified location rule; for example, the analysis area obtained by the composition data represented by the location information may be located in the infrared based on the constituent data stored in the storage medium and its associated location information.
  • the position parameter in the thermal image is set as the position parameter of the analysis area obtained by the constituent data in the infrared thermal image; the position parameter of the analysis area located in the infrared thermal image may also be automatically set according to the specified adaptive area; Firstly, a main object having a predetermined positional relationship with the analysis area is determined, a position parameter of the main object in the infrared thermal image is set, and then, a predetermined positional relationship between the analysis area and the main object and a positional parameter of the main object in the infrared thermal image are determined. To set the position parameter of the analysis area in the infrared thermal image; the positional parameter of the analysis area can also be set according to the default specified position of the thermal image device 13, such as the default position parameter.
  • the positional parameters of the analysis area can also be set according to the user's operation (such as the entered position parameter).
  • the settings of the analysis area and the reference image may be in different order, for example, the analysis area position setting section, and the reference image set according to the reference image position setting section is located in the infrared The positional parameter in the thermal image, and the specified positional relationship between the reference image and the analysis area, to set the positional parameter of the analysis area in the infrared thermal image.
  • a reference image position setting unit configured to set a reference image in the infrared thermal image according to a position parameter of the analysis region set in the analysis region setting portion in the infrared thermal image and a predetermined positional relationship between the reference image and the analysis region Location and size.
  • the position parameter in the image is used to set the positional parameter of the analysis area and the reference image in the infrared thermal image.
  • the analysis region set based on the constituent data having a predetermined positional relationship with the constituent data of the reference image or the constituent data having the associated relationship may also be referred to as an analysis region corresponding to the reference image.
  • a thermal image analysis unit for generating thermal image data acquired by the acquisition unit (imaging unit 1) according to a predetermined analysis mode based on the analysis region of the position parameter (including data obtained by performing predetermined processing on the thermal image data) ) Analyze and obtain the analysis results.
  • the specified analysis mode includes at least one or a combination of the following:
  • an analysis mode obtained by analyzing the analysis mode information stored in association with the constituent data of the analysis area
  • the analysis mode enables a more flexible analysis and is useful for analyzing the application of regions in different positional parameters.
  • the analysis mode information associated with the corresponding calculation and/or processing rule, and/or the analysis mode information associated with the specified object is obtained.
  • Analysis mode In some cases (for example, the area obtained after the profile is deformed, the same analysis mode for calculating the highest temperature as the contour can be used), or the analysis mode information corresponding to the constituent data of the analysis area can be used to make the operation simple.
  • it may be another default mode of the thermal imaging device 13 or an analysis mode set by the user.
  • it is also possible to have the analysis mode of the above various embodiments at the same time.
  • the image processing unit 2 captures the obtained thermal image data or performs predetermined processing such as correction and interpolation based on the control of the control unit 10, based on the positional parameter in which the analysis region is located in the infrared thermal image, for example, extracts the set analysis.
  • the thermal image data determined by the region is subjected to temperature value conversion processing to obtain temperature values corresponding to the thermal image data, and then the obtained temperature values are analyzed and calculated according to the analysis mode. For example, if the maximum value is calculated, the largest temperature value among them is extracted as the analysis result.
  • the analysis area includes a plurality of area units, if the analysis area F1 in FIG.
  • the thermal image data in each area unit is sequentially converted and analyzed, and the area units are obtained.
  • the analysis result obtained by the calculation is stored in a predetermined area of the temporary storage unit 6 in association with the number of the area unit, and then the mutual relationship is calculated according to the correlation result of each unit in the analysis mode according to the analysis result of each area unit. Analysis results.
  • the process of converting the thermal image data in the analysis region into a temperature value may be to convert all the thermal image data in the analysis region into a temperature value; or to convert the predetermined partial thermal image data into a temperature value; It is possible to determine whether to convert the thermal image data according to different modes of calculating the highest, lowest, and average temperature in the analysis mode, whether to convert part of the thermal image data in the analysis area, or all; for example, when calculating the highest temperature in the analysis area, It is also possible to convert the maximum AD value into the temperature value for the magnitude of the comparative thermal image data AD value in the analysis area, and it is not necessary to convert all the thermal image data in the analysis area into the temperature value. In addition, the case where the algorithm is different is also included.
  • the AD value of the adjacent pixel of the maximum average value is not converted into the temperature by the average value of the AD values of the predetermined number of adjacent pixels instead of a single pixel.
  • the value, and the average value of the temperature values of the adjacent pixel thermal image data is taken as the highest temperature value.
  • the thermal image data is converted into a temperature value by a predetermined process, for example, according to the set emissivity of the object, the ambient temperature, the humidity, the distance from the thermal image device 13, and the like, and the temperature between the AD value and the temperature of the thermal image data.
  • the conversion factor is obtained by specifying a conversion formula to obtain a temperature value.
  • the thermal image data determined by the analysis area may be the thermal image data in the analysis units S01 and S02 as shown in FIG. 6, or may be the thermal image data outside the analysis units S01 and S02, or may be the analysis unit S01. , the thermal image data of the pixel where the line of S02 is located, the number of components of the analysis area may be predetermined According to the attribute.
  • the thermal image analysis is not limited to the conversion of thermal image data into temperature values, for example, can be converted into radiant energy values, gradation values, radiance values, etc. for analysis; obviously, the obtained heat
  • the analysis of the image data is not limited to the single-frame thermal image data, for example, the multi-frame thermal image data stored in the temporary storage unit 6, or the multi-frame thermal image data is integrated to obtain the processed one-frame thermal image data for analysis. The invention is equally applicable to these situations.
  • the diagnosis unit is configured to obtain an analysis result according to the thermal image analysis unit, perform diagnosis according to a predetermined diagnosis rule, and obtain a diagnosis result.
  • the diagnostic rule includes at least a diagnostic rule that is pre-associated based on the analysis mode, and a diagnostic rule that is set; for example, the obtained analysis mode and its associated diagnostic rule according to the information of the diagnostic rule associated with the analysis mode information.
  • Fig. 17 is a view showing a display interface for photographing and analyzing the diagnosis process of the subject 1 using the reference images composed of T1 and F1.
  • the user presses the mode button of the operation portion 11 to enter the diagnosis mode, and when the analysis button is pressed, the analysis diagnosis result can be viewed.
  • step A01 the control unit 10 continuously monitors whether the user has selected the diagnosis mode.
  • the display unit 4 displays a dynamic infrared thermal image.
  • the imaging angle and the distance are obtained as the infrared thermal image shown in 1701 of FIG. 17, and for the thermal image IR1 of the subject 1, the prior art user is confused by the shooting distance of the subject 1, and the shooting is performed.
  • Location, analysis locale, analysis mode settings, diagnostic rule settings, and more In order to ensure the correctness of the photographing of the subject 1 by the reference of the reference image, the analysis area setting, the convenience of the analysis mode and the diagnostic rule setting, and the correctness of the analysis diagnosis, the user selects the diagnosis mode through the operation unit 11, and proceeds to the step.
  • Step A02 the control unit 10 performs designation processing of the constituent data of the reference image. See steps S101-S 107 in Figure 18 for details.
  • Step A03 the control unit 10 performs setting processing of the positional parameter in which the reference image is located in the infrared thermal image. See steps S201-S203 in detail in Fig. 19.
  • step A04 the control unit 10 performs configuration data determination processing of the analysis area. See steps S301-S303 in detail in detail.
  • step A05 the control unit 10 performs a diagnosis rule determination process corresponding to the analysis mode and the analysis mode corresponding to the analysis region. See steps S401-S403 in Figure 21 for details.
  • step A06 the control unit 10 performs setting processing of the positional parameter in which the analysis area is located in the infrared thermal image. See step S501-S503 in detail in Figure 22 for details.
  • Step A07 acquiring thermal image data, transferring the captured thermal image data to the temporary storage unit 6;
  • step A08 analysis processing is performed, and based on the set analysis area F1, the thermal image data obtained by the imaging unit 1 is analyzed in accordance with a predetermined analysis mode to obtain an analysis result.
  • the thermal image data (the thermal image data in S01 and S02) determined by the analysis image processing unit 2 for the analysis region F1 (S01, S02) is converted into a temperature value, and the F1 analysis mode associated with the analysis region F1 is used.
  • the analysis mode of the information acquisition is calculated; and the analysis result data such as the highest temperature of the area units S01 and S02 and the temperature difference between S01 and S02 are stored in a predetermined area of the temporary storage unit 6.
  • step A09 a diagnosis process is performed.
  • the control unit 10 (as a diagnosis unit) compares the diagnosis result obtained by the analysis with the diagnosis threshold in the diagnosis rule corresponding to the analysis mode, and compares the diagnosis threshold with The results of the analysis are based on the comparisons in the diagnostic rules to obtain the diagnosis.
  • Step A10 the reference image obtained by the determined configuration data based on the predetermined size set by the position setting unit is displayed together with the infrared thermal image according to the predetermined position.
  • the constituent data is T1 data.
  • F1 constitute data, and the reference images (T1 and F1) obtained by the predetermined processing (such as scaling processing) are combined with the infrared thermal image according to the predetermined position, and the synthesized image data is stored in the temporary storage unit 6, and then, the control unit 10 Control, the reference image and the infrared thermal image are displayed on the display unit 4. As shown in display interface 1703.
  • Step Al l the control unit 10 detects whether a diagnosis notification instruction is received? If not, proceed to step A14 to determine whether to exit the diagnostic mode. If not, go back to step A07, and in step A08, A09, analyze the newly obtained thermal image data, and replace the analysis and diagnosis results with the previous analysis. The result of the diagnosis is stored in a predetermined area of the temporary storage unit 6. Then, in step A10, the reference image is displayed together with the infrared thermal image obtained by the captured thermal image data, reflecting the state in which the dynamic infrared thermal image obtained by continuous shooting and the reference image are continuously displayed.
  • the user Based on the visual reference of the contour image T1, the user understands the form requirements of the subject thermal image IR1 to be photographed and the imaging position, size, and angle in the infrared thermal image, and then adjusts the optical components of the thermal imaging device 13 and Shooting distance, angle, between subjects 1
  • the imaging position is such that the obtained subject thermal image IR1 and the contour image T1 are visually coincidently matched as shown in Fig. 17 (display interface 1704).
  • the user presses the analysis key and proceeds to step A12.
  • step A12 the analysis and the diagnosis result are displayed; as shown in Fig. 17 (display interface 1705), the analysis and diagnosis result J17 stored in the prescribed area is displayed on the display unit 4, and the user can easily make a judgment based on the analysis and the diagnosis result.
  • the present invention is not limited thereto, and may be omitted from display, for example, as a control signal for controlling the operation of other devices, or outputted from the communication interface I/F5.
  • the analysis area F1 is displayed, and may be configured not to be displayed.
  • Step A13 judging whether the switch key is pressed?
  • the corresponding switching is performed, for example, returning to step A02, according to the switching configuration: determining T1 and F1 constitute data to obtain a reference image, and analyzing area F1 as a main object, first setting analysis area F1 in infrared thermal image Position parameter, and then, according to the position and size of the analysis area F1, the reference image (including T1 and F1) is set at a predetermined position and a predetermined size in the infrared thermal image; the subject thermal image taken according to the reference image is as shown in FIG.
  • the analysis result shown in 1706 is different from that in 1705, and the temperature difference is increased to 4.5 (defect), whereby the user can make a diagnosis based on the diagnosis result of the analysis. For comprehensive judgment, avoid missing defects.
  • the analysis area F1 as the display effect of the main object represents the purpose of the maximum analysis of the Z1 adaptive area of the analysis part represented by the analysis area F1, and pays attention to the overflow of the contour T1, which is acceptable according to the application requirements.
  • different main objects can be set to represent the areas that need to be observed.
  • the positional parameters of the reference image or the analysis area in the infrared thermal image are configured according to the positional parameters of the main object located in the infrared thermal image. Convenient and flexible.
  • the switching is not limited to the transformation of the positional rules, and the switching may be one or more transformations of the reference image, the analysis region, the synthesis parameter, the analysis mode, the diagnosis rule, etc., to achieve different measurement or observation effects.
  • the switching process is a preferred mode, and the step A13 may be omitted.
  • step A14 it is judged whether to exit the diagnosis mode. If not, the process returns to step A07. If the user does not release the analysis key, in step A12, the real-time analysis obtained by the analysis and diagnosis process based on the thermal image data obtained by the step A07 is displayed. And the diagnosis result, such as the user release analysis button, displays the dynamic infrared thermal image and reference image.
  • step S101 it is judged whether or not there is default configuration data. If yes, the process goes to step S107, and the control unit 10 selects default configuration data; if not, the process proceeds to step S102.
  • step S102 the control unit 10 (subject information selection unit) displays a predetermined number of subject selection information at a predetermined position of the display unit 4 based on the table 4 stored in the flash memory 9; as shown by 1702 in Fig. 17 The subject selection information list LB.
  • step S103 the "subject 1" displayed on the display unit 4 is selected by the operation unit 11 based on the recognition of the subject 1 at the shooting scene, for example, the on-site equipment sign.
  • the control unit 10 selects subject information based on the selection of the subject selection information.
  • the subject information in Table 4 is composed of attribute information of a plurality of attributes
  • by displaying and selecting the attribute information (subject selection information) of a plurality of attributes constituting the subject information To finally select the subject information.
  • “Subject 1" consists of attribute information "Substation 1", “Device Area 1", “Device 1” corresponding to the substation attribute, device area attribute, and device type attribute
  • the selection operation can be from the displayed "Substation 1" is selected from a predetermined number of subject selection information (attribute information) corresponding to the substation attribute
  • “device area 1" is selected from a predetermined number of subject selection information (attribute information) corresponding to the device area attribute.
  • Device 1 is selected from a predetermined number of subject selection information (attribute information) corresponding to the device type attribute to finally select "Subject 1".
  • the selection operation can be decomposed into multiple selection operations on the attribute information to finally select the subject information.
  • step S104 the control unit 10 determines whether or not the configuration data of the specified type is specified in the configuration data associated with the subject information corresponding to the selected subject selection information (for example, only one constituent data is associated);
  • control unit 10 specifies the composition data based on the subject information corresponding to the subject selection information selected by the user; for example, the object information as shown in FIG. 3 is stored in the flash memory 9. And the associated constituent data, the control unit 10 determines the T1 configuration data as the constituent data of the reference image in step S107.
  • step S107 the control unit 10 specifies the composition data as "T1 configuration data” and "F1 configuration data” based on "subject 1" and the predetermined designation type "reference 1" and "auxiliary 1". If no, that is, the subject information selected in step S103 is associated with a plurality of types of constituent data, and the predetermined designation type is not arranged, the process proceeds to step S105.
  • step S105 the control unit 10 causes the display unit 4 to display the identity information of each component data again by the user.
  • the identity information such as a file name, a number, a thumbnail, etc., related to the identity of the corresponding constituent data, for example, displaying thumbnails corresponding to the constituent data, for selection by the user, may select one or more of them.
  • Step S106 when the user makes a selection, the process proceeds to step S107.
  • Step S107 the reference image specifying section selects constituent data for obtaining the reference image. Then, the data of T1 and F1 is read from the flash memory 9, and includes a predetermined positional relationship with each other, and is transferred to the temporary storage unit 6.
  • the configuration data specified by the reference image specifying unit may be default configuration data; or may be specified based on the configuration data associated with the selected subject information; or further based on the specified type, based on the storage medium.
  • the data is configured to automatically determine the constituent data in which the specified type is specified; the purchase data of the reference image is specified based on the constituent data associated with the subject information, and may be selected from the constituent data associated with the subject information for obtaining a reference.
  • the constituent data of the image may be specified from the constituent data associated with the subject information, and the constituent data obtained by the processing may be designated as the constituent data for obtaining the reference image; or the user may select the identity information constituting the data. To specify the constituent data.
  • steps S102 and S103 are omitted in the above-described steps, and an embodiment in which the constituent data is selected in accordance with the identity information of the constituent data is constructed.
  • the subject information selecting step of steps S102, S103 can also be used as a step before the constituent data determining step of the reference image, and is not limited to the constituent data determining step of the reference image.
  • the composition data corresponding to the button is selected based on the operation of the specific button; and the composition data corresponding to the trigger condition is determined based on a predetermined trigger condition.
  • Step S201 the control unit 10 determines whether there is a predetermined position rule, and if so, proceeds to step S203. If no, the process proceeds to step S202.
  • step S202 a setting menu as shown in FIG. 9 and corresponding prompts are displayed, and the user is required to configure the location rule.
  • the location rules are recorded in flash 9 as a subsequent default configuration.
  • Step S203 setting a position parameter of the reference image in the infrared thermal image.
  • the positional parameter of the contour T1 in the infrared thermal image is calculated according to the centering position of the adaptive region Z1, and then according to the reference.
  • the specified positional relationship between the F1 portion of the image (including the contours T2 and F1) and the contour T1 to determine the positional parameter of F1 in the infrared thermal image; as defined by the positional relationship between the two and the contour T1 in the infrared thermal image The positional parameter, with the scaling base point of the contour T1 (such as the center point) as the scaling base point of F1, scales F1 with the same scaling rate as T1 to obtain its positional parameter in the infrared thermal image.
  • the user can input the positional parameter of the reference image without manual operation.
  • the thermal image device 13 automatically sets the reference image to a predetermined position in the infrared thermal image according to a predetermined position rule. And the specified size, while ensuring the size and position specification of the thermal image of the subject, making the operation simple.
  • composition data of the analysis area The determination processing of the composition data of the analysis area will be described with reference to Fig. 20 .
  • step S301 it is judged whether or not there is a predetermined designation type of the configuration data of the analysis area; if yes, the flow jumps to step S303, and the control unit 10 determines the configuration data of the analysis area based on the predetermined designation type. If no, the process proceeds to step S302.
  • step S302 the configuration data of the analysis area is configured, the setting menu shown in FIG. 9 and the corresponding prompt, or the setting column of the point, the line, and the surface are also displayed, and the user is required to set and select the type of the constituent data of the analysis area.
  • Step S303 determining composition data of the analysis area.
  • the predetermined determination type according to the constituent data of the analysis region is "auxiliary 1", and "F1 constituent data” is determined as the constituent data of the analysis region.
  • the determination of the composition data of the analysis area can be determined, for example, the composition data of the analysis area is automatically determined according to the selected object information in combination with the specified type of the composition data; for example, according to the user's identity information constituting the data. Selecting to determine the composition data of the analysis area; for example, selecting the composition data of the analysis area corresponding to the key according to the operation of the specific key. It is also possible to determine the composition data of the analysis region corresponding to the trigger condition based on the predetermined trigger condition to obtain the analysis region.
  • the acquisition data of the analysis area is determined based on the composition data associated with the object information, and the configuration data for obtaining the analysis area may be selected from the composition data associated with the object information, or may be associated with the object information.
  • the specified object in the data specifies the constituent data obtained by processing and/or calculation as the constituent data for obtaining the analysis region.
  • step S401 it is determined whether there is a predetermined analysis mode and a diagnosis rule; if yes, the process goes to step S403, the control unit 10 determines the predetermined analysis mode and the diagnosis rule; if not, the process proceeds to step S402.
  • step S402 the control is set to a setting menu as shown in FIG. 13, and the user is required to perform settings such as an analysis mode and a diagnosis rule.
  • the set association is stored in the temporary storage unit 6.
  • the analysis mode corresponding to the newly set analysis area and the diagnosis rule corresponding to the analysis mode may be The subject information is associated in the flash memory 9. For example, it is stored in Table 4. Used as a follow-up. Further, other analysis modes previously stored in the thermal imaging device 13 and their corresponding diagnostic rules and the like may be displayed for selection.
  • step S403 in the present embodiment, since "analysis diagnosis 1" is configured in advance, the analysis mode 1 (F1 mode information) in which F1 constitutes data association and the diagnosis rule 1 (F1 diagnosis rule) associated with analysis mode 1 are determined.
  • the analysis mode associated with the analysis area F1 and the diagnosis rules associated with the analysis mode avoid the trouble of the user setting operation on the spot, and when a plurality of analysis modes and combinations of diagnostic rules are associated, a plurality of complicated calculations can be performed.
  • the diagnostic rule corresponding to the analysis mode and the analysis mode corresponding to the analysis area, and the composition data of the analysis area may not be stored in advance, as may be obtained according to other predetermined analysis modes and diagnostic rules; It may be temporarily set in response to the setting operation of the user; the analysis mode corresponding to the analysis area and the diagnosis rule corresponding to the analysis mode may be other analysis modes stored in the thermal image device 13 in advance associated with the constituent data of the analysis area. And diagnostic rules, analysis modes temporarily set by the user, and diagnostic rules.
  • step S501 the control unit 10 determines whether there is a predetermined position rule, and if yes, the process goes to step S503. If not, go to step S502.
  • step S502 a setting menu as shown in FIG. 9 is displayed, and the user is required to set the position rule of the analysis area. When completed, the location determination rules for this type of analysis area are recorded in flash memory 9 as a subsequent default configuration.
  • Step S503 setting a position parameter of the analysis area in the infrared thermal image.
  • the location rule of the analysis area, the type of the main object is the reference 1
  • the main object adaptively calculates the positional parameter located in the infrared thermal image according to the centered position of the adaptive area Z1, and then according to the analysis area F1 and the contour
  • the specified positional relationship between T1 determines the positional parameter of the analysis area F1 in the infrared thermal image.
  • the type of the main object is auxiliary 1, and the main object (analysis area F1) adaptively calculates the positional parameter in the infrared thermal image according to the centered position of the adaptive area Z1, and then according to the analysis area F1 and The specified positional relationship between the contours T1 determines the positional parameters of the contour T1 in the infrared thermal image.
  • the main object may also be obtained by using reference data and constituent data outside the analysis area, that is, the analysis area and the reference image each set respective position parameters according to the main object.
  • the positional parameters of the reference image and the analysis area in the infrared thermal image are automatically set according to the prescribed positional rule, and the user can ensure the subject thermal image without manually inputting the positional parameters such as the analysis area. Simultaneous size and position specifications make operation simple.
  • the control unit 10 may determine the positional parameter in which the reference image and the analysis region are located in the infrared thermal image based on the positional parameter entered by the user through the operation portion.
  • step A02 designation of the constituent data of the reference image (step A02), position setting of the reference image (step A03), determination of the constituent data of the analysis region (step A04), position setting of the analysis region (step A06), analysis mode, and
  • the related processing of the determination of the diagnostic rule (step A05) and the like is described in a certain order of steps, but there may be various orders according to different embodiments, and is not limited to the processing order described in the embodiment.
  • the analysis and diagnosis process is always performed, and the analysis and diagnosis result is continuously updated, and the analysis and the diagnosis result are displayed when the user's diagnosis notification instruction is received; however, it may be configured to be performed when the analysis key is pressed. Processing for analysis and diagnosis; or analysis and diagnostic results can always be displayed and refreshed; or, only diagnostic results can be displayed without displaying the analysis results.
  • the position parameter of the reference image may also be adjusted to match the subject thermal image IR1 in the infrared thermal image.
  • the reference image position setting portion and the analysis region position setting portion are based on the user.
  • the adjusting operation is to change at least one of the position, the size, and the rotation angle of the reference image and the analysis area in the infrared thermal image, and keep the specified positional relationship of the two unchanged. For example, when one of them is adjusted, the other change according to the change of the adjusted position, size, and rotation angle is maintained to maintain the specified positional relationship between the two.
  • the reference image and the analysis data of the analysis area are specified by selecting the subject information, and it is convenient to select the reference image and the analysis area corresponding to the subject;
  • the display in the infrared thermal image is reflected a reference image of a predetermined morphological feature for facilitating imaging to obtain a standardized infrared thermal image; specifying composition data of the reference image and the analysis region by composition data having a predetermined positional relationship, and setting the analysis region to be specified and corresponding to the reference image
  • the normative position makes the analysis area with high accuracy according to the reference image, and the operation is simple; the subject thermal image is performed according to the analysis mode associated with the analysis area and the diagnostic rule associated with the analysis mode.
  • Embodiment 2 is a thermal imaging device 13 having the same configuration as that of Embodiment 1, in which a diagnostic control program different from Embodiment 1 is stored in the flash memory 9, and the display and retention of thermal image data are frozen in response to a user's diagnostic instruction. And performing analysis and diagnosis; and, the flash memory 9 stores the storage contents as shown in FIG. 4, and the configuration shown in FIG.
  • step B01 the control unit 10 continuously monitors whether the user has selected the diagnosis mode, and if so, proceeds to step B02.
  • Step B02 the control unit 10 performs determination processing of the constituent data of the reference image. See steps S101-S 107 in Figure 18 for details.
  • step B03 the control unit 10 performs setting processing of the positional parameter in which the reference image is located in the infrared thermal image. See steps S201-S203 in detail in Fig. 19.
  • Step B04 next, the captured thermal image data is transferred to the temporary storage portion 6;
  • Step B05 the reference image obtained by the specified component data according to the predetermined size set by the position setting unit is displayed together with the infrared thermal image according to the predetermined position. At this time, as shown in FIG. 1703.
  • step B06 it is judged whether the user has pressed the analysis key, and if not, the process returns to step B04-B05, that is, the image in which the reference image and the infrared thermal image obtained by the shooting are continuously combined is displayed.
  • the resulting thermal image IR1 and contour image T1 are obtained as shown in FIG. 17 (display interface 1703).
  • Step B07 in response to the operation, the thermal image data obtained in step B04 is held in a predetermined area of the temporary storage unit 6; or the composite image obtained in step B05 or the infrared thermal image is held in a predetermined area of the temporary storage unit 6, and the synthesis is performed.
  • the image (or the infrared thermal image) freezes the display.
  • step B08 the control unit 10 performs determination processing of the configuration data of the analysis area. See steps S301-S303 in detail in detail.
  • step B09 the control unit 10 performs an analysis mode corresponding to the analysis area and a determination process of the diagnosis rule corresponding to the analysis mode. See steps S401-S403 in Figure 21 for details.
  • step B10 the control unit 10 performs a setting process of the positional parameter in which the analysis area is located in the infrared thermal image. See step S501-S503 in detail in Figure 22 for details.
  • Step B1 l analyzing and analyzing the retained thermal image data, and storing the analysis result data such as the highest temperature of the regional units S01 and S02, and the temperature difference between S01 and S02, etc., into the temporary storage unit 6 region.
  • Step B12 a diagnosis process; and then the diagnosis unit compares the analysis result data with a threshold to obtain a diagnosis result.
  • step B13 the diagnosis result is notified.
  • the analysis diagnosis result J17 is displayed on the display unit 4 as indicated by the display interface 1704. The user can easily make a judgment based on the analysis of the diagnosis result. Further, it may not be displayed, for example, as analysis diagnostic result data supplied to other devices, which is output from the communication I/F 5. Or just notify the diagnosis.
  • Step B14 judging whether the analysis key is released? If it is released, it proceeds to step B15. If it is not released, it returns to step B13 and continues to display the analysis diagnosis result.
  • step B15 it is judged whether to exit the diagnosis mode. If not, the process returns to step B04, and if it is exited, the diagnosis mode is exited.
  • the user freezes and displays the infrared thermal image or the composite image in a state where the reference image and the infrared thermal image are visually matched, and performs analysis and diagnosis result display to ensure the correctness of the analysis.
  • the above process facilitates the analysis and diagnosis in infrared shooting, reduces the technical requirements of the user, improves the shooting speed, reduces the difficulty of diagnosis, and is simple to operate.
  • the third embodiment is the same thermal imaging device as that of the first embodiment.
  • the flash memory 9 stores contents as shown in Fig. 3 in advance.
  • the user's configuration set by "Computation Object CD2" is as shown in Figure 24, and the object is calculated: "Base 1", calculation rule: Based on the center
  • the scaling and deformation of the point are used to obtain the analysis area F101 subsequently.
  • the configuration of the user through the "Diagnostic Configuration CD2" is as shown in Fig. 25; and, as shown in Fig. 26, the analysis mode F101 and the T1 as the analysis area are configured for the analysis mode and the diagnosis rule.
  • Fig. 28 is a view showing a display interface for photographing and analyzing the diagnosis process of the subject 1 by using the contour image T1 and the analysis regions T1, F101.
  • the user's operation is: entering the diagnosis mode by pressing the mode key of the operation unit 11, and pressing the analysis key to view the analysis diagnosis result.
  • step C01 the control unit 10 continuously monitors whether the user has selected the diagnosis mode. If yes, go to step C02.
  • step C02 the control unit 10 performs designation processing of the constituent data of the reference image. Based on the table 3 stored in the flash memory 9, a predetermined number of subject selection information is displayed at a predetermined position of the display unit 4. When the user selects "subject 1", the T1 configuration data is designated.
  • step C03 the control unit 10 performs determination processing of the configuration data of the analysis area.
  • the reference 1 is used as a calculation target (scaling and deformation by the center point), and the constituent data of the analysis region F101 (including the relative positional relationship with T1) and the corresponding analysis unit number F101 are obtained.
  • the association is stored in a predetermined area of the temporary storage unit 6, wherein the area determined by T1 is also determined as the analysis area.
  • step C04 the control unit 10 performs the determination processing of the analysis mode corresponding to the analysis areas T1 and F101 and the analysis mode corresponding to the diagnosis rule. Specifically, according to the configuration in Fig. 26, the corresponding analysis mode and diagnosis rule are obtained.
  • step C05 the control unit 10 performs setting processing of a predetermined position and a predetermined size in which the reference image is located in the infrared thermal image.
  • the reference image T1 is set according to a predetermined position rule: "adaptive area Z1, adaptive centering" Positional parameter located in the infrared thermal image.
  • step C06 the control unit 10 performs setting processing of the positional parameter in which the analysis area is located in the infrared thermal image.
  • the positional parameters of the analysis regions T1 and F101 in the infrared thermal image are determined according to the positional parameter of the reference image T1 located in the infrared thermal image and the predetermined positional relationship between the analysis region and the reference image.
  • Step C07 next, the captured thermal image data is transferred to the temporary storage unit 6;
  • step C08 the analysis processing and the diagnosis processing are performed; that is, the analysis regions T1 and F101 based on the position parameters are analyzed, and the thermal image data obtained by the imaging unit is analyzed according to a predetermined analysis mode to obtain an analysis diagnosis result. That is, the image processing unit 2 converts the thermal image data (the thermal image data in the T1 and F101 regions) determined by the analysis regions T1 and F101 into a temperature value, and performs calculation based on the analysis mode corresponding to the analysis region, and then Diagnosing according to the diagnostic rule; storing the calculated analysis result data, such as the highest temperature of the regional units T1 and F101, and the temperature difference between T1 and F101, and the diagnosis result obtained by the diagnosis, into the predetermined area of the temporary storage unit 6. .
  • step C09 the reference image T1 obtained by the determined component data in accordance with the predetermined size set by the position setting unit is displayed together with the infrared thermal image in accordance with the predetermined position.
  • display interface 2802. It can be seen that there is a large difference between the subject thermal image IR1 and the reference image T1. It is conceivable that, if there is no reference image reference means, the shape of the subject thermal image IR1 captured by the user and the imaging in the infrared thermal image Position, size, and angle are difficult to grasp subjectively. Not only is it easy to miss important measurement sites, but it also leads to a series of cumbersome operations such as setting analysis areas.
  • step C10 the control unit 10 detects whether a diagnosis instruction is received. If not, proceed to step C12 to determine whether to exit the diagnostic mode. If not, go back to step C07, and in step C08, analyze and diagnose the obtained thermal image data, and store it in a predetermined area of the temporary storage unit 6, Replace the previous analytical diagnosis results. Then, in step C09, the reference image is displayed together with the infrared thermal image obtained by the captured thermal image data.
  • the thermal image device 13 is adjusted, the subject thermal image IR1 and the reference image T1 are visually coincidently matched as shown in Fig. 28 (display interface 2803). At this time, the user presses the analysis key and proceeds to step C11.
  • step C11 the analysis diagnosis result is displayed; as shown in (display interface 2804) in Fig. 28, the analysis diagnosis result J28 and the analysis area F101 stored in the predetermined area are displayed (the contents of the display can be specified).
  • the user can easily make a judgment based on the analysis of the diagnosis result.
  • analysis data for controlling the operation of other devices is output from the interface I/F 8.
  • the analysis area F101 is not displayed, and may be configured to be displayed.
  • step C12 it is judged whether to exit the diagnosis mode. If not, the process returns to step C07. If the user does not release the analysis key, in step C1, the real-time analysis diagnosis obtained by the analysis and processing of the thermal image data obtained by the step C07 is displayed. As a result, if the user releases the analysis key, a dynamic infrared image, a reference image is displayed.
  • the analysis area is calculated based on the reference image, and the convenience of the analysis area setting and the accuracy of the subsequent analysis diagnosis are ensured. It is obvious that the analysis areas T1 and F101 set as described above are in the prior art. Realization and its difficulties.
  • the above-mentioned embodiment has the advantages of facilitating the analysis of the analysis area, the analysis mode, and the diagnosis rule, reducing the technical requirements of the user, improving the shooting speed, and simplifying the operation.
  • step D01 the control unit 10 continuously monitors whether the user has selected the diagnosis mode, and proceeds to step D02.
  • the step D02 is the same as the step A02-A12 in the first embodiment, or the same as the step B02-B12 in the second embodiment, or the same as the steps C02-C11 in the third embodiment, and the description thereof is omitted.
  • step D03 the control unit 10 determines whether or not there is a recording instruction operation.
  • the control unit 10 determines whether or not there is a recording instruction operation.
  • the predetermined recording condition may be, for example, that the control unit 10 determines that the predetermined time interval is met, for example, the temperature value in the thermal image exceeds a predetermined threshold, for example, when a trigger signal of another sensor device connected to the thermal image device 13 is detected.
  • the recording condition automatically proceeds to step D04 even if there is no predetermined recording operation.
  • Step D04 record processing.
  • control unit 10 as the recording unit records the predetermined infrared data in association with the predetermined recording information in response to the recording instruction operation or in accordance with the predetermined recording condition. Then proceed to step D05.
  • the infrared data is data obtained by performing predetermined processing by the thermal image data obtained by the imaging unit acquired by the acquisition unit and/or the thermal image data obtained by the imaging unit.
  • the prescribed infrared data for example, the thermal image data (frame) obtained by the infrared detector reading the signal at the time (or a predetermined time after the operation) or the determination of the predetermined recording condition in response to the recording indication; for example; response recording indication
  • the predetermined thermal image data (frame) of the plurality of thermal image data frames temporarily stored in the temporary storage unit 6 when the operation or the determination of the predetermined recording condition is satisfied (or a predetermined time thereafter); for example, the thermal image data of the above case
  • the data obtained after the predetermined processing predetermined processing such as correction, interpolation, pseudo color, conversion to temperature value, pixel reduction, compression, etc., or a plurality of types
  • recording a specified number of multi-frame thermal images For example, a predetermined number of multi-frame thermal image data is subjected to predetermined processing of thermal image
  • the prescribed record information is as shown in FIG. 29, and may be, for example, one or more of the following information:
  • Selected subject information (partial information or all specified in the subject information);
  • composition data of the specified analysis area (or the identity information constituting the data such as the file name) and/or the location information of the analysis area located in the infrared thermal image.
  • constituent data or identity information such as a file name constituting the data
  • other positional information in which the object constituting the data is located in the infrared thermal image For example, for the specified object, the constituent data obtained by calculation and/or processing, and/or the positional information of the object obtained by the constituent data located in the infrared thermal image.
  • the position information is as follows, when the configuration is as shown in FIG. 13, the corresponding position information is obtained according to the position rule shown in FIG. 13; when the configuration shown in FIG. 14 is adopted, the corresponding position is obtained according to the position rule shown in FIG. location information.
  • the position information to be recorded is, for example, the adjusted position parameter.
  • the control unit 10 controls the operation in response to the recording instruction of the operation unit 11.
  • the signal is read by the infrared detector to obtain thermal image data, and the image processing unit 2 performs predetermined thermal image data compression processing on the thermal image data, or performs predetermined processing such as correction, interpolation, and the like on the thermal image data.
  • the compression processing is performed, and then it is determined whether or not predetermined recording information is stored in a predetermined area of the temporary storage unit. If so, the predetermined recording information stored in the predetermined area of the temporary storage unit 6 is associated with the compressed thermal image data to generate heat.
  • the image is recorded to the memory card 8, and the processing is ended. Alternatively, the compression may be performed after the predetermined recording information is added. If not, the compressed thermal image data generation thermal image file is recorded to the memory card 8.
  • the recorded storage medium is not limited to the memory card 8, the flash memory 9, and the like, and may be a network destination that communicates through the communication I/F 5.
  • the infrared data 3101 is thermal image data obtained by reading from the infrared detector in response to the recording indication operation or at a timing according to a prescribed recording condition;
  • the configuration includes the information of the record information 3102 including: subject 1, T1 composition data, F1 composition data, position information of the contour image T1, position information of the analysis area F1, analysis mode 1, analysis, and diagnosis result (response record)
  • the analysis diagnosis result specified at the time of indication may be the time of the embodiment 1, for example, the analysis diagnosis result specified after pressing the analysis key, such as the analysis result of the largest temperature difference); other additional information 3103 such as shooting Time and so on.
  • FIG. 32 is a schematic diagram of the infrared thermal image IR0 corresponding to the thermal image data recorded when the reference image T1 is visually matched, wherein the subject thermal image IR1 is located in the infrared thermal image IR0 at the position and size specification, and the position information of the T1 is It represents the positional parameter of IR1 in the infrared thermal image IR0.
  • F1 position information represents the positional parameter of F1 in the infrared thermal image IR0.
  • association record processing may also record the specified record information in an information file or an index file associated with the thermal image file, and the control unit 10 may generate the information file or the index file; in addition, according to the object information or Generating identity information of data, etc. to generate a thermal image file name.
  • the essence of the association record is to record the information needed for subsequent batch analysis. For example, recording the object information facilitates subsequent classification of the infrared data; recording the constituent data of the reference image and its position information for subsequent setting for batch analysis Analysis area; Recording the composition data of the analysis area and its position information facilitates subsequent rapid batch analysis, and records the analysis results and diagnosis results, which can reduce the processing time and processing burden in subsequent batch processing.
  • step D05 it is judged whether to exit the diagnosis mode. If not, return to step D02, repeat the above steps, the user can perform multiple recording operations, and if so, end.
  • the reference image and the analysis area are used to assist the photographing of the subject thermal image, the photographing quality is improved, and the related recording information related to the recording and the analysis diagnosis is facilitated for subsequent batch analysis and diagnosis.
  • an infrared thermal image for performing playback in the playback mode is stored, and a reference image, an analysis area setting, Adjust the control image for the reference image and analysis area, analysis and diagnosis.
  • selecting infrared data to be processed in a playback mode for example, selecting a thermal image file to be processed from the memory card 8 to obtain the thermal image data
  • the associated information is used to determine the analysis area, and then the infrared data is analyzed and diagnosed according to the specified analysis mode and diagnostic rules to obtain analysis and diagnosis results; or, the reference image reflecting the morphological characteristics of the object can be processed and processed.
  • the infrared thermal image obtained by the infrared data is displayed together, and the user can observe the visual matching degree of the reference image and the thermal image of the object. If not, the file name, number, thumbnail, etc. related to the identity of the displayed constituent data can be selected by the user; then, the reference image reflecting the morphological feature of the object and the infrared to be processed are The infrared thermal images obtained by the data are displayed together. If the visual subject thermal image matches the reference image, the analysis area having the specified positional relationship with the reference image, and the corresponding analysis mode and diagnostic rule can be called for analysis and diagnosis. If the matching degree is not high, the user can also adjust the position, size, and rotation angle of the reference image to match the subject thermal image in the infrared thermal image. When visual matching, determine that the reference image has a prescribed positional relationship. Analyze the area and then analyze and diagnose according to the specified analysis mode and diagnostic rules.
  • the present invention is not limited to the thermal imaging device with the photographing function, and the thermal image processing device (such as a computer, a personal digital assistant, a display device used in conjunction with a thermal image device of a photographing function, etc.) may be used as an example of the thermal image diagnostic device. Used to organize infrared data (such as thermal image files).
  • the present invention is not indispensable for the function of photographing the obtained thermal image data, and the present invention is also applicable to a thermal image processing apparatus or the like which receives and processes thermal image data (thermal image transmission data) from the outside.
  • the thermal image transmission data may be, for example, thermal image (AD value) data, and may be an infrared thermal image generated by thermal image data, may be compressed thermal image data, may be compressed infrared thermal image data, or the like.
  • Embodiment 6 uses a thermal image processing apparatus 100 as an example of a thermal image diagnostic apparatus.
  • FIG. 33 a block diagram showing an electrical configuration of an embodiment of a thermal image processing system in which the thermal image processing apparatus 100 and the thermal image pickup apparatus 101 are connected.
  • the thermal image processing apparatus 100 includes a communication interface 1, an auxiliary storage unit 2, a display unit 4, a RAM 4, a hard disk 5, and a CPU 7 in which the operation unit 6 is connected to the above-described components via a bus and performs overall control.
  • a personal computer, a personal digital assistant, a display device used in conjunction with a thermal imaging device, and the like can be exemplified.
  • the thermal image processing apparatus 100 receives the thermal image transmission data output from the thermal image capturing apparatus 101 connected to the thermal image processing apparatus 100 via the communication interface 1 based on the control of the CPU 7.
  • the communication interface 1 is configured to continuously receive the thermal image transmission data output by the thermal image capturing device 101; wherein, the receiving is performed by the relay device (the thermal image transmission data output by the thermal image capturing device 101 is transmitted through the relay device)
  • the thermal image transmits data; at the same time, it can also serve as a communication interface for controlling the thermal imaging device 101.
  • the communication interface 1 includes various wired or wireless communication interfaces on the thermal image processing apparatus 100, such as a network interface, a USB interface, a 1394 interface, a video interface, and the like.
  • the auxiliary storage unit 2 is a storage medium such as a CD-ROM or a memory card and an associated interface.
  • the display unit 4 is, for example, a liquid crystal display, and the display unit 4 may be another display connected to the thermal image processing apparatus 100, and the thermal image processing apparatus 100 itself may have no display in its electrical configuration.
  • the RAM 4 functions as a buffer memory for temporarily storing the thermal image transmission data received by the communication interface 1, and functions as a working memory of the CPU 7, and temporarily stores data processed by the CPU 7.
  • the hard disk 5 stores programs for control and various data used in the control.
  • the configuration other than the imaging unit 1 from the thermal imaging device 13 is substantially the same as that of the thermal image processing device 100, and it is obvious that the above embodiment is also applied by acquiring the thermal image transmission data. Therefore, the description of the embodiment is omitted.
  • the CPU 7 also performs a function of the image processing unit for performing predetermined processing on the received thermal image transmission data to obtain image data of the infrared thermal image, and the predetermined processing such as correction, interpolation, pseudo color, synthesis, compression, decompression Etc., conversion is performed to a process suitable for data for display, recording, and the like.
  • the CPU 7 transmits different types of data according to the thermal image. For example, when the received thermal image transmission data is compressed thermal image data, the specified processing, such as the CPU 7 decompresses the thermal image transmission data received by the acquisition unit.
  • Performing corresponding prescribed processing an embodiment, which obtains image data of the infrared thermal image by decompressing the compressed thermal image data (thermal image transmission data) and corresponding processing such as pseudo color processing, and further, the prescribed processing is as follows.
  • the decompressed thermal image transmission data is subjected to various predetermined processes such as correction and interpolation.
  • Another embodiment for example, when the received thermal image transmission data itself is already image data of the compressed infrared thermal image, is decompressed to obtain image data of the infrared thermal image.
  • the communication interface 1 receives the analog infrared thermal image
  • the image data of the infrared thermal image obtained by the conversion by the associated AD conversion circuit AD is controlled to be transmitted to the temporary storage unit 6.
  • the thermal image capturing device 101 may be various types of thermal image capturing devices for photographing an object and outputting thermal image transmission data.
  • an electrical block diagram of the thermal imaging device 101 is composed of a communication interface 10, an imaging unit 20, a flash memory 30, an image processing unit 40, a RAM 50, a CPU 60, and the like.
  • the CPU 60 controls the overall operation of the thermal image capturing apparatus 101, and the flash memory 30 stores control programs and various data used in each part of the control.
  • the imaging unit 20 includes an optical member, a driving member, a thermal image sensor, and a signal preprocessing circuit (not shown) for capturing thermal image data.
  • the thermal image data is temporarily stored in the RAM 50, and then subjected to predetermined processing (e.g., compression processing, etc.) by the image processing unit 40 (e.g., DSP) to obtain thermal image transmission data, which is output via the communication interface 10.
  • predetermined processing e.g., compression processing, etc.
  • the thermal image data output by the thermal imaging device 101 may be thermal image data after the predetermined processing, or may be image data of the thermal image (image data of the thermal image generated by the thermal image data).
  • One or more of the image data of the thermal image data or the thermal image is compressed by a predetermined format, and is collectively referred to as a thermal image transmission data.
  • the thermal image capturing device 101 is used to capture and output thermal image transmission data, which functions similarly to the imaging unit 1 in the thermal imaging device 13.
  • Fig. 34 is a view showing an implementation of a thermal image processing system in which the thermal image processing apparatus 100 and the thermal image capturing apparatus 101 are connected.
  • the thermal image capturing apparatus 101 is connected to the thermal image processing apparatus 100 by means of a pan-tilt or the like that is mounted on the detection vehicle, via a communication line such as a dedicated cable, or a wired or wireless LAN.
  • the user views and monitors the subject thermal image through the thermal image processing apparatus 100.
  • the thermal image capturing device 101 is connected to the thermal image processing device 100 to constitute an information recording system in the embodiment for capturing a subject to obtain thermal image AD data, and outputting thermal image transmission data.
  • the constituent data of the reference image and the constituent data of the analysis region have a predetermined positional relationship, and the displayed reference image and the analysis region related to the analysis conform to the predetermined positional relationship.
  • the reference image specifying unit and the analysis region specifying unit determine the constituent data of the reference image and the analysis region based on the configuration data having the predetermined positional relationship; for example, the constituent data having the predetermined positional relationship stored in advance in the storage medium is used to determine the two.
  • the constituent data of the analysis region for example, based on the constituent data obtained by processing and/or calculating the constituent data of the specified object such as the reference image, between the specified object and the constituent data obtained by processing and/or calculation
  • the specified positional relationship can be determined by the corresponding calculation and/or processing rules.
  • the predetermined positional relationship constituting the data may be given a prescribed positional relationship by the default positional rule of the thermal image device 13 (if the objects obtained by constructing the data are all centered and the original size is set to the positional parameter).
  • the configuration data having a predetermined positional relationship may be temporarily disposed, such as constituent data of the analysis region configured according to a predetermined positional relationship between the reference image and the analysis region, for example, the analysis region is located in the infrared thermal image according to the reference image.
  • a positional parameter an analysis area that is set based on a predetermined position in the reference image; a predetermined position, such as a coordinate position, which may be stored in advance in association with the constituent data of the reference image, or may be based on constituent data such as the reference image.
  • the analysis area is set by temporarily configuring the constituent data (such as points, lines, and faces) of the analysis area according to the coordinate position. Therefore, the analysis area may be an analysis area set based on a prescribed position having a prescribed positional relationship with the reference image.
  • the storage medium stores the constituent data of the reference image and the constituent data of the associated analysis region, and the position information of the reference image and the analysis region in the infrared thermal image; the reference image position setting and the analysis region position setting portion, according to The positional information of the reference image and the analysis area in the infrared thermal image is used to set the positional parameter of the reference image and the analysis area respectively in the infrared thermal image.
  • constituent data of the reference image and the analysis region may be determined from the constituent data in which the positional relationship is not specified; for example, the constituent data associated with the constituent data of the reference image or the constituent data associated with the same subject information may be selected.
  • the constituent data of the reference image and the constituent data of the analysis region, such as the predetermined positional relationship are not stored in advance; the positional parameters of the two can be set by the user, and it is more convenient than the prior art because of the reference of the reference image. a lot of.
  • aspects of the present invention can also be implemented by a computer (or a device such as a CPU, an MPU, etc.) of a system or device that performs the functions of the above-described embodiments by executing a program recorded on a storage device, and by a computer of the system or device by the steps thereof
  • a method of reading and executing a program recorded on a storage device to perform the functions of the above-described embodiments is realized.
  • the program is provided to the computer, for example, via a network or from various types of recording media (e.g., computer readable media) used as storage devices.
  • the functional blocks in the drawings may be implemented by hardware, software or a combination thereof, it is generally not necessary to provide a one-to-one correspondence to implement the structure of the functional blocks; for example, multiple software or hardware units may be implemented.
  • the processing and control functions of some or all of the components of the embodiments of the present invention may also be implemented in a dedicated circuit or a general purpose processor or a programmable FPGA.
  • the voice can be used to notify, correspondingly, the data of the voice library is stored (for example, the voice corresponding to the analysis result may be analyzed, or the voice data corresponding to the character may generate the corresponding voice according to the content of the analysis diagnosis result).
  • the configuration data of the reference image and the analysis region, the position setting embodiment of the reference image and the analysis region, the analysis mode, the determination embodiment of the diagnosis rule, and the setting implementation of the synthesis parameter are described. Mode, switch setting implementation, and these processes can be configured by the user.
  • the present invention is not limited thereto.
  • it may be an embodiment in which one or more of the above various settings are arranged when the thermal imaging device 13 is shipped, for example, the reference has been configured at the time of shipment.
  • the specified type of the constituent data of the image and analysis area, the positional rules of the reference image and the analysis area, the synthesis parameters, the analysis mode, and the implementation method of the diagnostic rule are automatically processed according to the configuration of the storage medium according to the configuration data in the storage medium. Implementation. Or, some items have been configured at the factory, and other parts of the configuration are performed by the user.
  • the above advantages are performed as a series of representative embodiments, and it is not necessarily required to achieve all of the advantages described above while implementing any of the products of the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Human Computer Interaction (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Data Mining & Analysis (AREA)
  • Quality & Reliability (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Radiation Pyrometers (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种热像诊断装置包括:获取部,用于获取热像数据;参考图像指定部,用于指定用于获得体现被摄体形态特征的参考图像的构成数据;分析区域确定部,用于确定分析区域的构成数据;参考图像位置设置部,用于设置参考图像位于红外热像中的位置参数;分析区域位置设置部,用于设置分析区域位于红外热像中的位置参数;显示控制部,用于控制将基于所指定的构成数据获得的参考图像,按照参考图像的位置参数,与获取的热像数据生成的红外热像共同显示;热像分析部,用于基于所述位置参数的分析区域,按照规定的分析模式,对获取部获取的热像数据进行分析,获得分析结果;诊断部,用于根据热像分析部获得分析结果,按照规定的诊断规则进行诊断,获得诊断结果。该热像诊断装置在红外热像中重叠显示体现了被摄体形态特征的参考图像,以该参考图像作为拍摄被摄体热像的视觉参照,并通过配置相应的分析区域和按照规定的诊断模式对被摄体热像进行诊断,获得诊断结果。

Description

热像诊断装置和热像诊断方法
技术领域
本发明的热像诊断装置和热像诊断方法,涉及热像装置、 热像处理装置, 以及红外检测的应用领域。 背景技术
热像装置通过接收被摄体的红外能量辐射来成像, 目前, 使用者需要依靠主观经验来人工设置针对被 摄体热像特定部位的分析区域进行分析, 来获得热像分析结果, 使用者通过观察被摄体热像和分析结果来 诊断被摄体的状态。 其中, 分析区域对应了红外热像中需要分析的特定部位, 例如点、 线、 面等区域单元 或多个区域单元的组合。
首先, 即便设置了分析区域, 使用仍非常不便, 因为对于使用者而言, 其无法从如图 6所示的分析区 域 F1 直观理解到分析区域应该位于被摄体热像中的位置, 当拍摄下一相同的被摄体时, 容易由于预先设 置的分析区域未对应于被摄体热像的正确部位(如被摄体热像拍摄的大小、 位于红外热像中的位置不同等 原因), 而导致分析离散性过大, 进行诊断非常困难。
其次, 分析区域设置的现场操作即繁琐又容易出错, 如图 6所示的分析区域 F1中区域单元 S01、 S02 的编号、 种类、 位置、 大小等因素改变, 最终的分析结果都可能不同, 人工的上述设置操作 (例如需要选 择分析区域的类型如点、 线、 面, 而后放置在被摄体热像的相应位置)相当繁琐; 分析区域的设置需要依 靠使用者对被摄体的分析部位的理解来进行设置, 不同被摄体有各自的分析部位, 技术要求高。 由于上述 原因, 不便进行复杂分析区域的设置。
再则,设置分析区域对应的分析模式也是繁琐的操作,分析模式的设置不同,会得出不同的分析结果; 分析模式的设置需要依靠使用者对被摄体的分析部位、 分析方法、 诊断方法的理解来进行设置, 对使用者 的技术要求极高。 分析模式代表了基于分析区域所决定的热像数据进行规定分析获得分析结果所采用的分 析计算规则, 例如计算最高温度、 平均温度、 最低温度、 百分比含量等, 以及, 还可包括各区域单元之间 的计算关系如温差等。
由于 i述原因, 目前使用者凭经验进行简单的分析操作, 如多数情况下, 设置最高温自动捕捉, 但这 种粗放的方式, 使拍摄时的分析结果参考价值减低。 并且, 由于上述原因所获得的分析数据离散性太大, 导致在拍摄时对被摄体的智能诊断非常困难, 容易遗漏故障。
因此, 所理解需要一种热像装置, 其能使设置的分析区域便于拍摄下一同类被摄体并确保拍摄的热像 质量, 并具有与分析和诊断处理有关的功能, 以使能根据分析结果进行诊断具有可实用性。
进一步能便于设置针对被摄体热像的分析区域。 再进一步能便于设置分析区域对应的分析模式, 以获 得可靠的分析结果。 更近一步, 对于诊断规则的设置需要依靠使用者对各种被摄体热像分析诊断的深刻理 解, 对使用者的技术要求更高, 如能解决分析模式对应的诊断规则的设置问题, 则能方便地获得精确的诊 断结果。 使普通使用者也能达到良好的红外拍摄技能水平。
发明内容
针对现有技术存在的缺陷,本发明提供一种热像诊断装置和热像诊断方法, 在红外热像中显示体现了 被摄体预定形态特征的参考图像, 以该参考图像作为拍摄被摄体热像的视觉参照, 并所设置的分析区域和 分析模式对被摄体热像进行分析, 并按照规定的诊断规则对分析结果进行诊断, 获得诊断结果。 由此, 使 进行诊断具有可实用性, 普通使用者也能达到良好的拍摄技能水平。
为此, 本发明采用以下技术方案, 热像诊断装置, 包括,
获取部, 用于获取热像数据; 参考图像指定部, 用于指定用于获得体现被摄体形态特征的参考图像的 构成数据; 分析区域确定部, 用于确定分析区域的构成数据; 参考图像位置设置部, 用于设置参考图像位 于红外热像中的位置参数; 分析区域位置设置部, 用于设置分析区域位于红外热像中的位置参数; 显示控 制部, 用于控制将基于所指定的构成数据获得的参考图像, 按照参考图像的位置参数, 与获取的热像数据 生成的红外热像共同显示; 热像分析部, 用于基于所述位置参数的分析区域, 按照规定的分析模式, 对获 取部获取的热像数据或规定处理后获得的数据进行分析, 获得分析结果; 诊断部, 用于根据热像分析部获 得分析结果, 按照规定诊断规则进行诊断, 获得诊断结果。 由于有参考图像的参照, 能辅助使用者拍摄高 质量的被摄体热像, 并且当设置了分析区域后, 可便于接着拍摄的下一同类被摄体, 能保证分析诊断的正 确性和一致性, 使设置诊断规则进行诊断具有可实用性的有益效果。
进一步, 所述分析模式至少包括如下情况中的一种或一种以上的组合:
1 ) 基于所确定的分析区域的构成数据关联的分析模式信息, 而获得的分析模式;
2 ) 基于与获得分析区域的位置参数相关的位置规则或位置信息所关联的分析模式信息, 而获得的分 析模式;
3 ) 当分析区域的构成数据为指定对象计算和 /或加工获得时, 根据相应的计算和 /或加工规则关联的 分析模式信息, 和 /或指定对象关联的分析模式信息, 而获得的分析模式。 达到了能根据所设置的构成数据自动或简便的操作设置分析模式, 便于进行复杂分析的有益效果。 进一步, 所述诊断规则至少包含基于所述分析模式关联的诊断规则, 而设置的诊断规则。 达到了根据 分析模式及其关联的诊断规则进行诊断, 便于进行复杂诊断、 避免设置诊断规则的有益效果。
进一步, 具有被摄体信息选择部, 用于从存储介质中选择被摄体信息; 所述存储介质用于存储至少一 个被摄体信息及被摄体信息关联的构成数据; 所述参考图像指定部基于所选择的被摄体信息关联的构成数 据, 来指定用于获得参考图像的构成数据; 分析区域确定部, 基于所选择的被摄体信息关联的构成数据, 来确定分析区域的构成数据。 达到了确保所选择的参考图像和分析区域的正确性和便利性, 便于使用者根 据现场认知的被摄体信息进行选用, 避免了构成数据选用错误导致的困惑等的有益效果。
进一步, 所述参考图像指定部和分析区域确定部, 基于构成数据的规定指定类型, 来确定参考图像和 分析区域的构成数据。 达到操作简便的有益效果。
进一步, 所述参考图像的构成数据和分析区域的构成数据具有规定位置关系, 所显示的参考图像和与 分析有关的分析区域符合所述规定位置关系。 达到所设置的参考图像和分析区域规范和准确, 便于后续获 得精确的分析结果和诊断结果的有益效果。
进一步, 所述参考图像指定部和分析区域确定部基于关联的构成数据, 来确定参考图像的构成数据和 分析区域的构成数据。 达到使用者操作简单的有益效果。
进一步, 所述存储介质, 用于存储至少一个被摄体信息及被摄体信息关联的具有规定位置关系的构成 数据; 被摄体信息选择部, 用于选择被摄体信息; 所述参考图像指定部和分析区域确定部基于所选择的被 摄体信息关联的具有规定位置关系的构成数据, 来确定参考图像的构成数据和分析区域的构成数据。
进一步, 所述分析区域的构成数据至少包含基于所指定对象, 按照规定计算规则计算和 /或按照规定 加工规则加工, 而获得的分析区域的构成数据。 达到确保精准的分析区域, 以确保后续的分析、 诊断的精 确性, 并可自动或简单操作的有益效果。
进一步, 所述分析区域为基于与参考图像具有规定位置关系的规定位置, 而设置的分析区域。 达到确 保精准并便于调节的分析区域, 以确保后续的分析、 诊断的精确性, 并可自动或简单操作的有益效果。
进一步, 所述参考图像位置设置部和分析区域位置设置部, 基于规定的位置规则, 来设置参考图像和 分析区域位于红外热像中的位置参数。 达到可自动设置使操作简单的有益效果。
进一步, 存储介质, 用于存储构成数据及其关联的位置信息, 所述位置信息代表该构成数据获得的参 考图像和 /或分析区域位于红外热像中的位置信息; 所述参考图像位置部和分析区域位置设置部, 根据所 指定的参考图像的构成数据关联的位置信息和分析区域的构成数据关联的位置信息, 来设置参考图像和 / 或分析区域位于红外热像中的位置参数。 达到可自动设置使操作简单的有益效果。
进一步, 所述参考图像位置设置部和分析区域位置设置部按照如下方式中的一项来设置参考图像和分 析区域的位置参数; 1 ) 先设置参考图像的位置参数, 而后根据参考图像与分析区域的规定位置关系, 来 设置分析区域的位置参数; 2 ) 先设置分析区域的位置参数, 而后根据参考图像与分析区域的规定位置关 系, 来设置参考图像的位置参数; 3) 根据参考图像和 /或分析区域与主对象的规定位置关系, 及主对象的 位置参数, 来设置参考图像和 /或分析区域的位置参数。 达到操作简单、 分析灵活的有益效果。
进一步, 所述存储介质用于存储至少一个被摄体信息及被摄体信息关联的构成数据、 构成数据关联的 分析模式信息、 分析模式关联的诊断规则信息; 热像分析部, 用于基于所述位置参数的分析区域, 按照规 定的分析模式, 对获取部获取的热像数据或规定处理后获得的数据进行分析, 获得分析结果, 所述分析模 式至少包含用于获得分析区域的构成数据所关联的分析模式信息而设置的分析模式; 诊断部, 用于根据热 像分析部获得分析结果, 按照规定诊断规则进行诊断, 获得诊断结果, 所述诊断规则至少包含按照所述分 析模式信息关联的诊断规则信息, 获得诊断规则。 当选择了被摄体信息后, 可自动或简便的操作即进行上 述确定的处理, 达到了便于选择正确的参考图像、 分析区域、 分析模式、 诊断规则, 并且操作简单的有益 效果。
进一步, 具有配置部, 用于使用者配置参考图像的构成数据的规定指定类型、 分析区域的构成数据的 规定指定类型、 参考图像和分析区域的位置设置规则、 分析区域所对应的分析模式、 分析模式所对应的诊 断规则, 其中至少之一。 便于使用者配置参考图像、 分析区域、 分析模式、 诊断规则中的至少一项, 达到 利于后续重复使用的有益效果。
具有记录部, 用于将规定记录信息与所获取的热像数据或热像数据规定处理后获得的数据关联记录。 便于后续的批处理, 当记录所获得的诊断结果, 能加快批处理的速度的有益效果。 本发明的热像诊断方法, 包括如下步骤:
获取步骤, 用于获取热像数据;
参考图像指定步骤, 用于指定用于获得体现被摄体形态特征的参考图像的构成数据;
分析区域确定步骤, 用于确定分析区域的构成数据;
参考图像位置设置步骤, 用于设置参考图像位于红外热像中的位置参数;
分析区域位置设置步骤, 用于设置分析区域位于红外热像中的位置参数;
显示控制步骤, 用于控制将基于所指定的构成数据获得的参考图像, 按照参考图像的位置参数, 与获 取的热像数据生成的红外热像共同显示;
热像分析步骤, 用于基于所述位置参数的分析区域, 按照规定的分析模式, 对获取步骤获取的热像数 据进行分析, 获得分析结果;
诊断步骤, 用于根据热像分析步骤获得分析结果, 按照规定诊断规则进行诊断, 获得诊断结果。 本发明的其他方面和优点将通过下面的说明书进行阐述。
附图说明:
图 1是实施例 1的热像装置的电气结构的框图。
图 2是实施例 1的热像装置的外型图。
图 3是存储介质中存储的被摄体信息和构成数据的实施示意图。
图 4是存储介质中存储的被摄体信息和多个类型的构成数据、 分析模式、 诊断规则的实施示意图。 图 5为参考图像的例子, 其中 501是代表半透明的参考图像、 红外热像共同显示的显示例; 502是代 表被摄体边缘轮廓的参考图像、 红外热像共同显示的显示例; 503是代表被摄体纹理的参考图像、 红外热 像共同显示的显示例。
图 6是代表现有技术的分析区域、 红外热像共同显示的显示例。
图 7是参考图像 (包括分析区域和边缘轮廓图像)、 红外热像共同显示的显示例。
图 8是代表加工获得的分析区域 F101与本透明图像 TU1构成的参考图像、 红外热像共同显示的显示 例。
图 9是实施例 1的热像装置设置菜单的示意图。
图 10是对象加工的设置菜单界面的示意图。
图 11是对象计算的设置菜单界面的示意图。
图 12是举例了 5种通过计算或加工, 获得的分析区域的作用和效果。
图 13是包括参考图像、 分析区域、 分析模式、 诊断规则的设置菜单界面的示意图。
图 14是包括参考图像、 分析区域、 分析模式、 诊断规则的切换设置菜单界面的示意图。
图 15是分析区域对应的分析模式、 诊断规则的设置菜单界面的示意图。
图 16是表示诊断模式的一个示例的控制流程图。
图 17为利用参考图像对被摄体 1进行拍摄、 诊断过程的显示界面的示意图。
图 18为参考图像的构成数据的指定处理流程图。
图 19为参考图像的位置设置处理流程图。
图 20为分析区域的构成数据的确定处理流程图。
图 21为分析模式、 诊断规则的确定处理流程图。
图 22为分析区域的位置设置处理流程图。
图 23是表示实施例 2的诊断模式的控制流程图。
图 24是实施例 3的对象计算的设置菜单界面的实例的示意图。
图 25是实施例 3包括参考图像、 分析区域、 分析模式、 诊断规则的设置菜单界面的示意图。
图 26是实施例 3的分析区域对应的分析模式、 诊断规则的另一设置菜单界面的示意图。
图 27是表示实施例 3的诊断模式的控制流程图。
图 28为实施例 3利用参考图像、 计算获得的分析区域对被摄体 1进行拍摄、 诊断过程的显示界面的 示意图。
图 29是实施例 4的规定记录信息的设置菜单界面的示意图。
图 30是表示实施例 4带有记录处理的诊断模式的一种控制流程图。 图 31为规定记录信息与红外数据关联存储的热像文件的文件结构示意。
图 32为视觉匹配时, 记录的热像数据对应的红外热像的效果示意。
图 33为实施例 6的热像处理装置 100和热像拍摄装置 101连接构成的热像诊断系统的一种实施的电 气结构的框图。
图 34为热像处理装置 100和热像拍摄装置 101连接构成的热像诊断系统的一种实施的示意图。
具体实施方式
参考附图来说明本发明的实施方式。 注意, 以下要说明的实施例用于更好地理解本发明, 而不限制本 发明的范围, 并且可以改变成本发明范围内的各种形式。 其中, 所谓热像数据, 可以是热像 AD值数据(例 如红外探测器输出信号经 AD转换后获得的数据), 或红外热像的图像数据, 或温度值的阵列数据, 或其他 基于热像 AD值数据生成的数据等。 实施例 1以热像装置 13作为热像诊断装置的实例。
参考图 1来说明实施例 1的热像装置 13的结构。 图 1是实施例的热像装置 13的电气结构的框图。 热像装置 13具有拍摄部 1、 图像处理部 2、 显控部 3、 显示部 4、 通信 I/F5、 临时存储部 6、 存储卡 I/F7、 存储卡 8、 闪存 9、 控制部 10、 操作部 11, 控制部 10通过控制与数据总线 12与上述相应部分进行 连接, 负责热像装置 13的总体控制。 控制部 10例如由 CPU、 MPU、 S0C:、 可编程的 FPGA等来实现。
拍摄部 1由未图示的光学部件、 镜头驱动部件、 红外探测器、 信号预处理电路等构成。 光学部件由红 外光学透镜组成, 用于将接收的红外辐射聚焦到红外探测器。 镜头驱动部件根据控制部 10的控制信号驱 动透镜来执行聚焦或变焦操作。 此外, 也可为手动调节的光学部件。 红外探测器如制冷或非制冷类型的红 外焦平面探测器,把通过光学部件的红外辐射转换为电信号。信号预处理电路包括采样电路、 AD转换电路、 定时触发电路等, 将从红外探测器输出的电信号在规定的周期内进行取样等信号处理, 经 AD转换电路转 换为数字的热像数据, 该热像数据例如为 14位或 16位的二进制数据 (又称为 AD值)。
图像处理部 2用于对通过拍摄部 1获得的热像数据进行规定的处理, 图像处理部 2的处理如修正、 插 值、 伪彩、 合成、 压缩、 解压等,进行转换为适合于显示用、 记录用等数据的处理。 图像处理部 2用于对 拍摄部 1拍摄获得的热像数据实施规定的处理来获得红外热像的图像数据, 例如, 图像处理部 2对拍摄部 1拍摄获得的热像数据进行非均匀性校正、 插值等规定处理, 对规定处理后的热像数据进行伪彩处理, 获 得红外热像的图像数据; 伪彩处理的一种实施方式, 例如根据热像数据 (AD值) 的范围或 AD值的设定范 围来确定对应的伪彩板范围, 将热像数据在伪彩板范围中对应的具体颜色值作为其在红外热像中对应像素 位置的图像数据, 在此, 灰度红外图像可以视为伪彩图像中的一种特例。 并且, 基于控制部 10的记录指 示, 图像处理部 2用于将热像数据按照规定的压缩处理获得压缩后的热像数据, 而后该热像数据被记录到 如存储卡 8等存储介质。 此外, 基于控制部 10的控制, 图像处理部 2执行与图像处理相关的各种处理, 例如使像素的增减来改变图像数据尺寸的处理, 例如对图像数据的剪切处理; 图像处理部 2例如可以采用 DSP或其他微处理器或可编程的 FPGA等来实现, 或者, 也可与控制部 10为一体。
显控部 3根据控制部 10进行的控制,执行将临时存储部 6所存储的显示用的图像数据显示在显示部 4。 具体而言, 显控部 3具有 VRAM、 VRAM控制单元、 信号生成单元等, 从 VRAM中定期读出在控制部 10的控 制下, 从临时存储部 6读出并存储到 VMM的图像数据, 产生视频信号输出, 显示在显示部 4。在热像装置 13中, 显示部 4作为显示部的实例。 不限于此, 显示部还可以是与热像装置 13连接的其他显示装置, 而 热像装置 13自身的电气结构中可以没有显示部。 显控部 3可与图像处理部 2或控制部 10为一体。
通信 I/F5是例如按照 USB、 1394、 网络等通信规范, 将热像装置 13与外部装置进行连接并数据交换 的接口, 作为外部装置, 例如可以列举个人计算机、 服务器、 PDA (个人数字助理装置)、 其他的热像装置、 可见光拍摄装置、 存储装置等。
临时存储部 6如 RAM、 DRAM等易失性存储器, 作为对拍摄部 1输出的热像数据进行临时存储的缓冲存 储器, 同时, 作为图像处理部 2和控制部 10的工作存储器起作用, 暂时存储由图像处理部 2和控制部 10 进行处理的数据。不限于此, 控制部 10、 图像处理部 2等处理器内部包含的存储器或者寄存器等也可以解 释为一种临时存储介质。
存储卡 I/F7, 作为存储卡 8的接口, 在存储卡 I/F7上, 连接有作为可改写的非易失性存储器的存储 卡 8, 可自由拆装地安装在热像装置 13主体的卡槽内, 根据控制部 10的控制记录热像数据等数据。
闪存 9, 存储有用于控制的程序, 以及各部分控制中使用的各种数据。 操作部 11 : 用于使用者进行操作, 控制部 10根据操作部 11的操作信号, 执行相应的程序。 参考图 2 来说明操作部 11, 按键有记录键 21、 切换键 22、 分析键 23、 菜单健 24、 模式键 25、 加工键 26、 确认键 27、 方向键 28、 方位键 29、 回放键 30等; 其中, 记录键 21用于进行记录操作; 切换键 22用于切换操作; 分析键 23用于分析诊断有关的操作; 菜单健 24用于进入或退出菜单模式的操作; 模式按键 25用于进入 或退出诊断模式; 加工键 26用于进入或退出加工模式; 确认键 27用于确认操作; 方向键 28用于进行菜 单条目等的选择; 回放键 30用于进入或退出回放模式。不限于此,也可采用触摸屏 31或语音识别部件(未 图示) 等来实现相关的操作。
下面, 对本文中出现的存储介质、 参考图像、 构成数据、 形态构成数据、 辅助构成数据、 分析区域、 分析模式、 诊断规则、 计算对象、 加工对象、 主对象、 规定位置和规定尺寸、 位置参数、 位置信息、 自适 应区域、 自适应等名词进行解释。
存储介质, 可以是热像装置 13中的存储介质, 如闪存 9、 存储卡 8等非易失性存储介质, 临时存储部 6等易失性存储介质; 还可以是与热像装置 13有线或无线连接的其他存储介质, 如通过与通信 I/F5有线 或无线连接的其他装置如其他存储装置、 热像装置、 电脑等中的存储介质或网络目的地的存储介质。 优选 的, 构成数据等数据预先存储在热像装置 13中或与其连接的非易失性存储介质 (如闪存 9)。
体现了被摄体形态特征的参考图像, 例如, 参考图 5所示的参考图像与红外热像的共同显示的图像, 501所示的参考图像 TU1 (半透明), 体现了被摄体的纹理, 还体现了被摄体的轮廓, 因而, 比较生动易于 理解, 该类参考图像, 例如被摄体的可见光图像、 红外热像、 预先绘制包含了纹理和轮廓等特征的图像, 通常为半透明显示; 502所示的参考图像 T1 (边缘轮廓图像, 可以不透明或半透明)、 503所示的参考图像 W1 (纹理图像, 可以不透明或半透明), 在重叠位置以外的其他像素位置可以全透明显示红外热像。 形态 特征可以是被摄体整体或局部的形态特征。
构成数据, 是指与参考图像、分析区域等有关的构成数据, 可以是矢量图形数据, 也可以是点阵数据, 或同时包含有矢量图形数据和点阵数据, 点阵数据, 例如可以是点阵图像数据, 可以是如热像数据等的点 阵数据。 构成数据可分为形态构成数据和辅助构成数据; 用于获得如图 5所示的, 体现了被摄体形态特征 的参考图像的构成数据称为形态构成数据, 体现了形态特征的参考图像可以由一个或多个形态构成数据, 或形态构成数据结合辅助构成数据来获得; 用来获得体现了形态特征的参考图像的构成数据可以是一个或 一个以上, 但其中至少包括一个形态构成数据。
辅助构成数据,在实施例中,形态构成数据以外的构成数据称为辅助构成数据。辅助构成数据的作用, 例如用于生成分析区域, 如图 6所示的分析区域 F1 , 为现有技术设置的分析区域, 但单独使用时在拍摄中 的参照性弱。 此外, 在记录处理时与热像数据关联存储辅助构成数据, 由于形态构成数据的数据量相对较 大, 存储与参考图像具有规定位置关系的辅助对象的辅助构成数据可以减少存储数据量, 当辅助构成数据 获得的对象代表了分析区域的时, 该存储方式有益于后续的批处理。
优选的, 由形态构成数据和辅助构成数据共同来获得参考图像, 参考图 7所示的轮廓图像 T1与 F1分 析区域与红外热像共同显示, 提供该提示, 将提升 T1的参照效果, 并避免了 F1参照性弱的缺点。
在实施例中, 存储介质中至少存储了一个形态构成数据。 构成数据可以以一个构成数据对应一个文件 如数据文件、 热像文件、 图像文件、 图形文件等形式存储在存储介质中, 可以是外部计算机中制作后存储 在存储介质的, 也可由热像装置 13拍摄的热像数据等经规定处理获得并存储于存储介质。 也可如以数据 库的方式来存储构成数据, 构成数据作为特定字段对应的数据存储; 此外, 还可将多个构成数据存储在一 个数据文件。 优选的方式, 辅助构成数据预先与形态构成数据相关联存储在存储介质, 并且还存储了二者 获得的对象之间的规定位置关系。 其中, 辅助构成数据也可作为形态构成数据的一个属性的数据。
分析区域对应了红外热像中需要分析的部位, 例如点、 线、 面等区域单元或多个区域单元的组合。 在 实施例中, 用来获得分析区域可以是形态构成数据, 或辅助构成数据; 优选的, 从预先存储在存储介质中 的构成数据来确定分析区域, 此外, 也可是由指定加工对象结合加工算法来获得的分析区域, 或也可是由 指定计算对象按照规定算法计算获得分析区域。
参考图 3所示的表(以下称为表 3 ), 来说明存储介质中存储的构成数据的一种实施方式, 即存储多个 被摄体信息及各被摄体信息关联的一个形态构成数据。 多个被摄体信息, 各被摄体信息对应的形态构成数 据 (T1构成数据、 T2构成数据等), 通过表 3进行关联; 此外, 如果是通过在表 3中存储形态构成数据的 索引信息 (如文件名等) 进行关联的方式, 则在存储介质中还相应存储了索引信息 (如文件名等) 对应的 形态构成数据的文件。 其中, 被摄体信息为与被摄体有关的信息, 例如代表被摄体地点、 类型、 编号、 名 称等的信息之一或多个的组合。 表 3中, 部分不同的被摄体信息 (例如表 3中的被摄体 2、 被摄体 3 ) 关 联了相同的构成数据。 在红外检测的场合, 常存在大量外形相同的不同被摄体, 采用如表 3所示的被摄体 信息与形态构成数据关联的方式来存储构成数据, 便于使用者根据现场认知的被摄体信息进行选用, 避免 了构成数据选用错误导致的困惑, 并能降低数据冗余。
参考图 4所示的表(以下称为表 4), 来说明存储介质中存储的构成数据的另一种优选实施方式, 即存 储多个被摄体信息及各被摄体信息关联的多个构成数据。 如表 4所示, 多个被摄体信息关联的多个构成数 据 (形态构成数据的类型有: 基准 1、 基准 2, 辅助构成数据的类型有: 辅助 1 ), 针对辅助 1构成数据获 得分析区域时 的 "分析模式 1 " 的分析模式信息, 针对各类型构成数据获得的分析区域时对应的 "分析 模式 2 "的分析模式信息, "分析模式 1 "对应的 "诊断规则 1 ", "分析模式 2"对应的 "诊断规则 2 "通过 表 4进行关联。 其中, 还存储了同一被摄体信息关联的各构成数据获得的对象之间的规定位置关系的信息
(未图示); 其中, 构成数据获得的对象, 例如构成数据获得的参考图像或代表分析区域的特定点、 线、 面, 其中规定位置关系是指规定的相对位置关系。 具体而言, 例如, 存储原始状态下(未发生位移、 缩放、 旋转的状态下), 同一被摄体信息关联的基准 2、辅助 1类型的构成数据获得的对象分别相对于基准 1类型 的构成数据获得的对象的位置信息 (坐标位置、 或还有尺寸、 或还有旋转角度的信息); 此外, 规定位置 关系也可以是这样的表现形式, 存储各类型的对象分别位于同一参照系中 (例如红外热像中) 的位置信息 (坐标位置、 或还有尺寸、 旋转角度的信息)。 在表 4中, 规定位置关系的信息可作为构成数据的一个属 性, 也可以单独存储的规定位置关系的信息。 此外, 如果通过在表 4中存储构成数据的索引信息 (如文件 名等) 进行关联的方式, 在存储介质中还相应存储了索引信息 (如文件名等)对应的构成数据的文件。 在 表 4中, 各种构成数据按照规定类型来分类存储, 例如按照构成数据获得的对象的显示效果分类, 基准 1 对应了轮廓、 基准 2对应了事先加工的红外热像 (例如局部的标准被摄体热像)、 辅助 1对应了重点关注 区域。 此外, 还可按照拍摄用途、 数据类型 (矢量图形数据、 点阵数据) 等来分类; 此外, 分类并不限于 对单个的构成数据, 还可对多个构成数据的组合构成来分类。 此外, 并不限于表 4的实施形式, 例如也可 在存储介质中以图形文件、 图像文件 (如文件名中包含了对应的被摄体信息) 的形式来存储构成数据, 或 进一步采用文件夹对这些文件进行分类;
虽然, 如表 4的实施方式, 在存储介质 (闪存 9) 中预先存储同一被摄体信息关联的构成数据获得的 对象之间的规定位置关系的信息; 但也可以不存储, 例如由使用者赋予对象之间的规定位置关系, 或者由 热像装置 13的默认位置规则来赋予对象之间的规定位置关系。 此外, 如对于计算获得的构成数据及加工 获得的构成数据, 与其他对象之间的规定位置关系, 对指定对象进行计算和 /或加工获得的构成数据, 与 指定对象之间可以由相应的计算规则、 加工规则来决定, 例如由轮廓缩放变形后获得的分析区域, 其与轮 廓的规定位置关系, 可由缩放及变形的基点、 缩放及变形率来决定。 在下文中, 构成数据获得的对象之间 的规定位置关系, 有时也称为构成数据之间的规定位置关系。
基于对象 (或构成数据) 之间的规定位置关系, 以二个对象为例, 可根据其中一个对象位于红外热像 中的位置参数 (位置、 或还包括尺寸、 旋转角度), 通过保持二者相对的规定位置关系不变, 来设置另一 个对象位于红外热像中的位置参数 (位置、 或还包括尺寸、 旋转角度)。 例如当其中之一位移时, 另一对 象以相同的位移, 以保持二者的相对位置不变; 当其中之一发生尺寸缩放时, 另一对象基于相同的基点, 随之发生相同的缩放, 以保持二者的大小比例不变; 当其中之一发生旋转角度,另一对象基于相同的基点, 随之发生相同的旋转角度, 以保持二者之间的相对旋转角度不变。 特殊的情况下, 例如一个对象为另一对 象对应的特征点 (特征坐标点), 当另一对象发生位移时, 该特征点随之发生相同的位移; 当另一对象相 对于缩放基点缩放时, 以该缩放基点作为坐标原点, 特征点缩放后相对于该缩放基点的坐标(X2, Y2 ) 等 于该特征点缩放前相对于该缩放基点的坐标(XI , YD乘以缩放率 S (X1*S, Y1*S ) ; 当另一对象发生旋转 角度 P (如逆时针), 特征点基于相同的旋转基点, 随之发生相同的旋转角度, 特征点旋转后相对于该旋转 基点的坐标(X2, Y2 )与该特征点旋转前相对于该旋转基点的坐标(Xl, YD的关系: (X2, Y2 ) = (XlcosP- YlsinP, YlcosP+ XlsinP)。
分析模式代表了基于分析区域所决定的热像数据进行规定分析获得分析结果所采用的分析计算规则, 以温度值计算为例, 如计算最高温度、 平均温度、 最低温度、 百分比含量等, 以及, 还可包括各区域单元 之间的计算关系如温差等。 但不限于于温度值的计算, 可以是涉及热像数据或红外热像有关的各种分析的 分析计算规则。
优选的, 与分析模式有关的分析模式信息预先与相对应的构成数据关联存储在存储介质, 以便于该构 成数据获得分析区域时使用 (关联的一种方式, 分析模式、 或还包括诊断规则可作为该构成数据的属性信 息)。 这样便于准备复杂的分析区域及分析模式进行分析而操作简单。 对于不同的被摄体信息, 分析模式 信息可以针对相同或不同构成数据为不同: 如图 4中, 构成数据类型 "辅助 1 "关联的 "分析模式 1 ", 对 于被摄体 1的分析模式 1的信息 (F1模式信息) 为计算: 计算 (F1构成数据获得的分析区域 F1 , 具有区 域单元 S01、 S02 ) 区域单元 S01的最高温度与 S02的最高温度, 及 S01和 S02最高温度的差值。 而被摄体 2的分析模式 1的信息 (F2模式信息) 为: 计算 (F2构成数据获得的分析区域 F2 ) 区域内的平均温度与 最高温度, 及最高温度与平均温度的差值。 对于不同的被摄体信息, 分析模式信息也可以是针对相同或不 同的构成数据所通用的; 如分析模式 2的信息, 为计算所确定的构成数据获得的分析区域内的最高温度与 平均温度, 及最高温度与平均温度的差值; 适用于表 4中所有的构成数据所通用, 可作为各类型的构成数 据均关联的分析模式。
诊断规则, 用于诊断部根据热像分析部获得分析结果, 按照规定诊断规则进行诊断, 获得诊断结果。 优选的, 根据分析模式关联的诊断规则进行诊断, 如根据与分析有关的分析模式对应的分析模式信息预先 关联存储的诊断规则信息, 获得的诊断规则进行诊断。
以分析模式 1关联的诊断规则 1为例: 诊断规则 1的信息(F1诊断规则)包含了对应分析模式 1 (F1 分析模式) 的至少一个诊断比较关系和诊断阀值; 进一步, 如在电力行业, 期望直接得到诊断的结论, 对 被摄体的正常、 关注、 缺陷 3种 (也可能是一种或多于 3种) 情况, 分别具有对应的诊断阀值及结论。 以 被摄体 1的诊断规则 1 (F1诊断规则) 为例, 包括:
1 )正常: S01和 S02最高温度的差值小于 2°C ; (正常: S01MAX- S02MAX<2 °C或 S02MAX- S01MAX<2°C )
2 ) 关注: S01和 S02最高温度的差值小于等于 4°C, 大于等于 2°C ; (关注: 2≤SS01MAX-S02MAX≤S4°C 或 2 S02MAX- S01MAX 4°C )
3 )缺陷: S01和 S02最高温度的差值大于 4°C ; (缺陷: S01MAX- S02MAX>4°C或 S02MAX- S01MAX>4°C ) 显然, 同一分析模式可以对应有一个或多个诊断规则,优选的,分析模式与对应的诊断规则关联存储; 进一步, 诊断规则中或关联有结论对应的诊断依据、 详细的缺陷类型、 缺陷程度、 处理建议等。 而分析模 式 2关联的诊断规则 2 : 分析区域中的最高温度与平均温度的差值小于 3 °C为正常, 其他为缺陷; 对于分 析模式 2及诊断规则 2也可以不与被摄体信息、 构成数据等关联存储在表 4中, 而存储在热像装置 13的 存储介质中作为通用的分析模式和诊断规则。
诊断处理具体而言, 例如, 控制部 10 (作为诊断部), 根据分析得到的分析结果, 与分析模式对应的 诊断规则中的诊断阀值进行比较,将该诊断阀值与分析结果依据诊断规则中的比较关系,来得到诊断结果; 诊断结果的输出可以是控制信号, 例如控制部 10作为通知控制部, 例如通过显示部件等中以文字或图像 (包括红外热像、 参考图像等) 的显示变化、 有指示灯产生的光、 声音提示、 振动等, 只要是使用者可以 感知的方法都包含在内。 优选的方式, 控制显示部 4将诊断结论进行显示, 进一步, 还可将与诊断有关的 诊断阀值、 诊断依据、 缺陷类型、 缺陷程度、 处理建议等以文字等使用者能感知的方式进行通知。 相应的, 这些相关的数据与诊断规则的数据关联存储。
加工对象, 按照规定的加工规则, 可通过加工处理获得形态构成数据。 加工对象, 可以是存储介质中 预先存储的形态构成数据, 例如, 可以是表 4中所示 "基准 1 "、 "基准 2 "代表的形态构成数据; 例如, 也可以是存储卡 8中的热像文件、 或拍摄获得的热像数据作为加工对象。 加工对象和加工规则可以是预先 配置的。 优选的, 所述加工规则至少包括对加工对象进行 "剪切"、 "阀值范围提取"、 "边缘提取" 中的 一种或一种以上的图像处理。 所述加工例如对所述加工对象执行规定的图像处理例如剪切、 特征提取 (如 阀值范围提取、 边缘提取)、 增强、 滤波、 伪彩、 色彩调整等中的一种或一种以上。
剪切, 即提取加工对象位于剪切区域中的数据。
阀值范围提取, 对加工对象位于阀值范围的数据进行提取; 阀值范围的表现形式, 例如: 热像数据 AD 值范围、 红外热像的色标范围、 温度的阀值范围、 灰度范围、 亮度范围、 颜色范围等, 可以是预存的阀值 范围, 也可由使用者进行阀值范围的设置和调节。 其作用, 例如提取红外热像 (加工对象) 中的温度带或 颜色带来获得形态构成数据,例如提取可见光图像(加工对象)中的特定颜色的像素来获得形态构成数据, 例如提取热像数据 (加工对象) 中的特定 AD值的像素来获得形态构成数据。
边缘提取处理, 即依据规定的算法, 基于加工对象来提取边缘轮廓的数据。 例如按照规定的阀值范围 对红外热像(加工对象)进行二值化; 其中, 规定的阀值范围可以是预存的阀值范围, 也可显示二值图像, 由人工进行二值化阀值范围的设定, 所述阀值范围例如设置热像数据 AD值范围、 温度的阀值范围、 灰度 范围、 色标范围等; 而后, 对二值化处理后的图像, 进行连通区域的处理; 接着, 对连通区域进行边缘检 测处理, 得到边缘轮廓数据。 进一步, 还可对获得的边缘轮廓数据进行矢量化处理。 对于其他具体加工处 理方法可采用业内比较成熟的方法,在这里不再赘述。
计算对象, 按照规定的计算规则, 可通过计算处理获得辅助构成数据。 计算对象, 例如, 可以是表 4 中所示 "基准 1 "、 "基准 2"、 "辅助 1 "中的一个或多个。 所述计算规则至少包括对计算对象进行缩放、 变 形、 分割、 等分、 计算外包矩形、 计算内切矩形、 计算中心线、 计算特征点、 包络线中的一种或一种以上。 此外, 使用者还可基于对显示部 4显示的参考图像或合成对象的选择, 来指定计算对象; 也可由使用者设 置并赋予了与参考图像之间具有规定位置关系的点、 线、 面的构成数据中来指定。
规定位置和规定尺寸, 是指参考图像位于红外热像中的位置和尺寸, 或还包括旋转角度。 其具体的表 现形式可以是位于显示部(显示屏) 的坐标系中的规定位置和规定尺寸的参数(但落在红外热像显示窗口 中), 也可以是位于红外热像显示窗口中的红外热像的坐标系中的规定位置和规定尺寸的参数。 也包括这 种情况,位置设置部(控制部 10)仅设置了参考图像位于红外热像中的位置,而默认以原始尺寸进行显示, 也视为设置了规定位置和规定尺寸。
位置参数, 对于体现了形态特征的参考图像, 是指参考图像位于红外热像中的规定位置和规定尺寸。 对于分析区域, 是指分析区域位于红外热像中的位置 (例如分析区域为点的情况), 或还包括尺寸, 或还 包括旋转角度。 实施例中的位置参数, 其具体表现形式可以是位于显示部(显示屏) 的坐标系中位置参数 (但落在红外热像显示窗口中); 也可以是位于红外热像显示窗口中的红外热像的坐标系中的位置参数。
位置信息, 例如, 与构成数据关联的位置信息, 其表现形式可以是位置参数, 但也可以是获得位置参 数的规则。
主对象, 当有多个 (如与参考图像有关的) 具有规定位置关系的构成数据时, 可以指定之中一个或多 个构成数据获得的对象作为主对象; 当指定了主对象, 位置设置部, 用于设置主对象位于红外热像中的位 置参数, 而后, 基于其他对象与主对象之间的规定位置关系及主对象位于红外热像中的位置参数, 来设置 其他对象位于红外热像中的位置参数。
自适应区域, 为红外热像中的规定区域, 例如在实施例中, 以位于红外热像中, 红外热像 90%比例的 居中窗口区域 Z1 , 作为自适应区域。
自适应, 是指自适应对象在自适应区域中的指定位置 (或还有规定旋转角度), 进行在自适应区域中 非溢出的、 纵横比固定的最大化缩放而获得自适应后的尺寸, 从而可获得自适应对象位于红外热像中的规 定位置和规定尺寸的位置设置实施方式。 以自适应对象在 Z1中居中自适应的具体实施方式为例来说明, 计算自适应区域 Z1 (尺寸 XI, Y1 ) 与自适应对象 (自适应对象原始尺寸 X2、 Y2,) 的 X轴、 Υ轴比值, 选 取 X1/X2和 Y1/Y2中较小的一个轴的比值,作为自适应对象居中时基于自适应对象中心点的缩放率, 由此, 获得自适应对象位于红外热像中的位置参数。 自适应对象, 例如分析区域、 参考图像, 采用自适应来设置 位置参数, 便于规范和调整分析区域、 参考图像等位于红外热像中的位置参数。 在下面的实施例中, 所提 到的自适应, 均以自适应对象在 Z1中居中自适应作为实施的例子。
合成对象, 根据显示控制的实施方式不同, 与红外热像共同显示的参考图像, 例如可以为一个或包含 有多个与红外热像等进行合成的合成对象。 其中, 单个合成对象可以由一个或多个构成数据来获得。 当由 多个构成数据来获得一个合成对象时, 位置设置部可仅设置该合成对象位于红外热像中的规定位置和规定 尺寸, 而不需分别设置每一个构成数据获得的对象分别位于红外热像中的位置参数。 当参考图像包含有多 个合成对象时, 位置设置部可分别设置每一个合成对象分别位于红外热像中的位置参数。
下面来详细介绍实施例 1的具体操作和控制流程。 在此, 假设闪存 9中存储了如图 4所示的内容。 本 应用场景例如对变电站的被摄体进行拍摄。 接通电源后, 控制部 10进行内部电路的初始化, 而后, 进入 待机拍摄模式, 即拍摄部 1拍摄获得热像数据, 图像处理部 2将拍摄部 1拍摄获得的热像数据进行规定的 处理, 存储在临时存储部 6中, 控制部 10执行对显控部 3的控制, 使显示部 4上以动态图像形式连续显 示红外热像, 在此状态, 控制部 10持续监视是否按照预定操作切换到了其他模式的处理或进行了关机操 作, 如果有, 则进入相应的处理控制。
当使用者按下了菜单键, 进入菜单模式, 显示部 4显示如图 9所示的菜单。 当选中其中的菜单项, 则 显示相应的配置界面。 控制部 10与操作部 11等构成了配置部, 控制部 10响应使用者的操作信号, 进行 相应的显示控制。
参考图 10所示的配置界面, 来说明 "对象加工 CD1 " 菜单项, 用于使用者指定加工对象及设置 (增 加、 修改、 删除) 加工规则。
构成数据 CD11 :显示供选择构成数据的信息。供选择构成数据的信息例如从表 4中获得 "基准 1 "、 "基 准 2 " 的类型信息, 此外, 当有其他的类型信息, 例如指定的加工对象类型结合特定加工规则所代表的构 成数据的类型信息, 也显示作为供选择的类型信息。
加工对象 CD12 : 用于使用者选择作为加工对象的构成数据, 显然, 可以选择一个或多个形态构成数据 作为加工对象。
加工规则 CD13 : 用于使用者设置针对加工对象的加工规则; 加工规则包括加工算法及相关参数, 在选 中加工算法时长按确认键, 将显示参数栏供录入参数 (未图示)。
参考图 11所示的配置界面, 来说明 "对象计算 CD2 "菜单项,用于使用者选择计算对象并设置(增加、 修改、 删除) 计算规则。
构成数据 CD21 :显示供选择构成数据的信息。供选择构成数据的信息例如从表 4中获得 "基准 1 "、 "基 准 2 "、 "辅助 1 " 的类型信息, 此外, 当有其他的类型信息, 例如指定的计算对象类型结合特定计算规则 所代表的类型信息, 例如指定的加工对象结合特定加工算法所代表的类型信息 "基准 1 (加工) ", 也显示 作为供选择的类型信息。
计算对象 CD22 : 用于使用者选择计算对象; 显然, 可以选择一个或多个构成数据作为计算对象, 并可 将加工对象加工获得的构成数据作为计算对象。
计算规则 CD23 : 用于使用者选择和设置针对计算对象的计算规则; 计算规则包括算法及相关参数, 算 法例如缩放、 变形 、 计算特征点、 等分、 外包矩形、 内切矩形、 中心线、 包络线等的算法, 参数例如缩 放的基点、 缩放率, 变形的基点、 变形率(如纵横比等), 特征点 (例如计算轮廓的中心点) 的计算参数, 基于特征点设置的构成数据类型 (如点、 线、 面等) 及尺寸, 等分的数量等与算法相关的参数, 在选中算 法时常按确认键, 将显示参数栏供录入参数(未图示)。 对所选择的计算对象可选择一个或多个计算规则。
参考图 12来说明通过计算和 /或加工, 获得的分析区域等的作用和效果。
参考图 12 ( 101 ) 所示, 将轮廓 T1构成数据作为计算对象, 以轮廓 T1的中心点作为基点, 进行缩放 和变形后, 获得的分析区域 F101 ; 可用于分析计算被摄体本体上规定区域的温度分布, 减少周围环境对评 估的影响。
参考图 12 ( 102 )所示, 将轮廓 T1构成数据作为计算对象, 算法参数为进行 8等分, 获得的 8等分的 分析区域 F102 ; 可用于分析被摄体本体不同部分的温度分布。
参考图 12 ( 103),将轮廓 T1构成数据作为计算对象,算法参数为计算外包矩形,获得的外包矩形 F103; 可用于分析测量被摄体的最高温度, 可以减少背景中的高温物体的影响。
参考图 12 ( 104), 将 TU1 (TU1为局部红外热像)构成数据作为加工对象, 加工规则如边缘轮廓提取, 获得的边缘轮廓的分析区域 F104,可用于分析测量被摄体的最高温度,可以减少背景中的高温物体的影响。
参考图 12 ( 105 ), 将 TU1 (TU1为局部红外热像) 构成数据作为加工对象, 加工规则如提取规定温度 阀值以上的像素点 (阀值范围提取), 获得的分析区域 F105, 可用于对被摄体特征部位进行分析计算。
显然, 可对指定对象进行加工和 /或计算来获得构成数据, 此外, "对象加工 CD1 "和 "对象计算 CD2 " 的配置菜单也可以合并为一个配置界面, 对指定对象(如图 4中预先存储的构成数据、 存储卡 8中的热像 文件、 拍摄获得的热像数据等) 可以选择一种或多种加工规则, 和 /或, 选择一种或多种计算规则, 加工 和 /或计算可以统称为对指定对象进行处理。 此外, 也可以仅配置有关的加工规则或计算规则, 而并不指 向特定的构成数据; 例如作为默认配置, 适用于后续所选择的构成数据。
参考图 13所示的配置界面, 来说明 "诊断配置 CD3 " 的配置。 "诊断配置 CD3 ": 用于使用者选择在诊断模式中, 非切换状态下, 设置与参考图像及分析区域有关的 构成数据的规定指定类型、 位置规则、 合成参数、 分析模式、 诊断规则等。
构成数据 CD31: 显示供选择构成数据的信息, 例如从表 4中获得"基准 1 "、 "基准 2 "、 "辅助 1 " 的 类型信息, 此外, 当有其他的类型信息, 如在 "对象加工 CD1 " 中设置的加工对象类型结合特定加工规则 所代表的类型信息 "基准 1 (加工) ", 如在 "对象计算 CD2 " 中设置的计算对象类型结合特定计算规则所 代表的类型信息 "基准 1 (计算) ", 也显示供选择。
参考图像 CD32 : 用于使用者选择用于获得参考图像的构成数据。可以选择一个或多个构成数据来获得 参考图像。 在本实施例中, 将每一个构成数据获得的对象均作为一个合成对象, 即当选择了多个构成数据 时, 参考图像将包含多个合成对象; 也可选中参考图像 CD32, 并长按确认键, 可将所选择的构成数据中的 部分或全部作为一个合成对象 (未图示)。
位置规则 CD33 :用于使用者配置与参考图像、分析区域等位于红外热像中的位置参数有关的位置规则; 主对象: 选择用于获得主对象的构成数据。 从图 12中可见, 主对象可以从构成数据 CD31中选择, 显 然, 可以是参考图像等构成数据获得的主对象。 即, 用来获得主对象的构成数据, 例如可以是具有规定位 置关系的下面的构成数据中的一个或多个: 形态构成数据、 形态构成数据关联的构成数据, 此外, 也可以 基于从形态构成数据或其关联的构成数据中指定的计算对象结合规定计算规则来获得主对象, 或基于从形 态构成数据中指定的加工对象结合规定加工规则来获得主对象。 通常所设置的主对象代表了需要重点观察 的区域, 通过变换主对象, 能实现参考图像在不同显示位置上的变换, 来实现不同的拍摄目的。 此外, 使 用者还可选择在显示部 4显示的参考图像 (其中的合成对象之一或多个), 来作为主对象。
当指定了主对象, 基于其他对象与主对象之间的规定位置关系及主对象位于红外热像中的位置参数, 来设置其他对象位于红外热像中的位置参数。 当没有指定主对象, 在 "参考图像 CD32 "、 "分析区域 CD35 " 中所选择的构成数据获得的对象按照各自的位置规则来设置其位置参数。
其中, 自适应: 用于配置自适应处理的位置设置方式及指定自适应对象。 选中自适应, 而后长按确认 键, 可设置自适应区域位于红外热像中的位置、 尺寸、 旋转角度, 以及自适应对象位于自适应区域中的位 置和旋转角度。 本例中, 设置红外热像 90%比例的居中窗口区域作为自适应区域, 以下简称 Z 1 , 自适应对 象在 Z 1中, 居中自适应。 自适应对象可以从构成数据 CD31中选择。
其中, 指定位置: 用于配置所选择的构成数据获得的对象位于红外热像中的位置参数。 当使用者选中 "指定位置栏", 则显示输入栏(未图示), 使用者可输入所选择的构成数据获得的对象在红外热像中的位 置、 尺寸、 旋转角度。 当均不输入时, 也可以默认位置, 如起点为红外热像的左上角、 尺寸为原始尺寸、 旋转角度为 0。
其中, 关联: 选择该项, 则将根据所选择的构成数据预先关联的位置信息, 来获得该构成数据获得的 对象将位于红外热像中的位置参数。
合成参数 CD34 : 用于设置所选择的构成数据获得的参考图像与红外热像的合成参数, 合成参数如透 明率、 颜色、 线型 (未图示)、 当参考图像有多个合成对象时的合成次序等, 也可选择与构成数据关联的 合成参数。
分析区域 CD35 : 用于使用者配置分析区域的类型。 使用者可以在构成数据 CD31中选择用于获得分析 区域的构成数据; 此外, 当选中 "分析区域 CD35 "并长按确认键, 则显示如图 15所示的设置界面, 用于 使用者根据参考图像或红外热像中来设置 "点"、 "线"、 "面"的分析区域。 此外, 还可设置分析区域的范 围, 以图 15中的 T 1为例, 可以设置分析区域是位于 T1的区域内, 还是 T1的区域外, 还是 T 1的边缘轮 廓上。
分析区域的构成数据, 可以基于存储介质中存储的形态构成数据或该形态构成数据关联的构成数据来 获得; 也可以是基于存储介质中存储的形态构成数据或关联的构成数据中的指定对象, 按照规定计算规则 和 /或加工规则, 进行相应处理来获得; 可选择一个或多个构成数据作为指定对象来获得分析区域; 此外, 也可人为操作设置的 "点、 线、 面"分析区域, 由于可根据参考图像进行设置, 所设置的分析区域便于后 续的使用。 采用哪一种分析区域的设置方式可以由使用者根据红外检测的目的来选择。 注意, 配置分析区 域时, 可对分析区域中的区域单元进行人工或自动编号(如图 15中的 F1具有的框形区域单元 S01、 S02 ), 或者预先存储的构成数据可有各自的编号, 以便于作为分析区域时的编号。 当完成分析区域的配置, 可进 一步设置该分析区域对应的分析模式及分析模式对应的诊断规则。
分析模式及诊断规则 CD36: 用于使用者配置分析区域所对应的分析模式, 分析模式对应的诊断规则。 供选择的信息例如从表 4中获得分析诊断 1 (分析模式 1及其关联的诊断规则 1 )、 分析诊断 2 (分析模式 2及其关联的诊断规则 2 ) 或预先存储的其它分析模式和诊断规则的信息; 此外, 当选中 "分析模式及诊 断规则 CD36"并长按确认键, 则显示如图 15所示的设置界面。
参考图 15来说明分析区域、 分析模式、 诊断规则等的设置界面, 具有分析区域的调整栏 SZ0、 分析区 域设置栏 SZ1、 分析模式及诊断规则设置栏 SZ2等, 以被摄体 1为例进行说明。
调整栏 SZ0中, 为调整分析区域与参考图像之间的规定位置关系, 通常将显示参考图像和分析区域, 便于调整, 本例中显示在 "参考图像 CD32 "中选择的参考图像 T1 (基准 1 ), 及在 "分析区域 CD35 " 中选 择的分析区域 F1 (辅助 1 ), 调整栏 SZ0中, 使用者可以对分析区域 F1中的区域单元 S01、 S02进行如减 少、 改变位置、 调整、 改变 (点、 线、 面) 种类, 或设置新的区域单元。
分析区域设置栏 SZ1, 用于设置参考图像 T1所对应的分析区域, 包括设置点、 线、 面、 和类同于 "对 象计算 CD1 " 中的计算规则等, 这时计算对象可默认为参考图像 T1。
诊断规则设置栏 SZ2, 用于设置分析模式和诊断规则, 其中的 "区域 "用于选择在 SZ0中显示的区域 单元的编号, 例如: S01、 S02 ; "模式"如: 最高、 最低、 平均温度等; "计算"如: 力口、 减、 乘、 除; "比 较"如: 大于、 小于等比较关系, "阀值"为用于诊断的阀值; "关系"如与、 或、 非等 ϋ辑关系, 此外, 还可有信息选择或录入栏 (未图示), 用于输入诊断依据、 缺陷类型、 缺陷程度、 处理建议。
其中, 当不录入 "比较"关系和 "阀值"时, 构成了分析模式, 如录入 "比较"关系和 "阀值"时, 构成了分析模式及对应的诊断规则 (或可理解为带有分析模式的诊断规则)。 当设置完成确认后, 可将将 参考图像 T1 的构成数据、 分析区域的构成数据、 二者的规定位置关系 (如分析区域 F1位于参考图像 T1 的位置参数)、分析区域对应的分析模式、分析模式对应的诊断规则关联存储到记录介质, 如记录到闪存 9 的表 4中。
切换 CD4: 用于配置在诊断模式中, 例如 "诊断配置 CD3 "所配置的参考图像与红外热像共同显示的 状态下, 按动一次切换键时, 与切换对象有关的配置信息。参考图 14所示的配置界面, 来说明 "切换 CD4" 的配置,切换的配置信息例如切换的参考图像的构成数据的类型、合成参数(如重叠次序、透明率、颜色)、 分析区域的构成数据的类型、 位置规则、 分析模式、 诊断规则等, 可以是其中一项或多项的变换, 即可以 是图 14中 CD31-CD36中任意一项的变换, 来获得不同使用效果的诊断配置。 具体配置项目与 "诊断配置 CD3 "类同, 省略了说明, 不同在于, 还可有红外热像作为切换对象。在切换 CD4中的箭头: 用于设置(增 力口、 修改、删除)切换规则, 例如通过箭头可以进入下一切换的界面, 来配置更多的切换对象的配置信息。
参考图 29所示的配置界面, 来说明 "记录设置 CD5 "的配置; 用于使用者设置, 在记录时, 将与红外 数据关联存储的规定记录信息。 规定记录信息为规定的记录信息, 使用者可以从被摄体信息、 构成数据、 构成数据的身份信息 (如构成数据的文件名、 编号等)、 构成数据获得的对象、 分析区域、 分析模式、 分 析结果, 位置信息中的一项或多项作为规定记录信息的构成。
在实施例 1中, 使用者的拍摄目的, 是检测被摄体的整体热场分布, 及重点分析部位 (辅助 1所代表 的区域)。 为方便地实现该检测目的, 使用者的配置如图 13所示, 参考图像: "基准 1 "、 "辅助 1 "; 位置 规则: 基准 1 (主对象), 自适应区域 Z1, 自适应居中; 合成参数: 透明率为 1, 基准 1合成次序为 1, 辅 助 1合成次序为 2, 颜色等为默认。 分析区域: 辅助 1, 分析模式及诊断规则: 分析模式 1及对应的诊断 规则 1 (分析诊断 1 )。
如果发现可疑之处, 还将走近拍摄被摄体重点分析部位 (辅助 1所代表的区域)。 使用者通过 "切换 CD4" 的配置如图 14所示, 参考图像: "基准 1 "、 "辅助 1 "; 位置规则: 辅助 1 (主对象)、 自适应, 自适 应区域 Z1 , 居中; 合成参数: 透明率为 1, 基准 1合成次序为 1, 辅助 1合成次序为 2 ; 分析区域: 辅助 1, 分析模式及诊断规则: 分析模式 1及对应的诊断规则 1 (分析诊断 1 )。
即按一下切换键, 由 "基准 1 (主对象)、 辅助 1 "与红外热像共同显示切换为 "基准 1、 辅助 1 (主 对象) "与红外热像的共同显示; 再按一下, 则回到 "基准 1 (主对象)、 辅助 1 "与红外热像的共同显示 的显示状态。 采用不同的主对象, 代表了不同的关注重点的控制方式。 虽然, 在实施例 1中, 以表 4中部分的构成数据作为来配置参考图像和分析区域的例子。 但显然, 通 过对图 9-15所示的菜单的上述说明, 使用者可根据表 4中的构成数据, 包括可以是将指定的计算对象结 合计算规则, 包括可以是将指定的加工对象结合加工规则, 来配置各种不同效果的参考图像和分析作用的 分析区域。 参考图像的构成数据、 位置规则、 合成参数中、 分析区域的构成数据、 分析模式、 诊断规则至 少之一的不同, 就可能获得不同应用用途的分析诊断配置。 通过对切换的配置就可就可获得不同用途和效 果的分析配置; 通过对记录的配置就可获得不同用途的规定记录信息。
此外, 即便当如图 3所示的构成数据时, 使用者可通过 "诊断配置 CD3 "或 "切换配置 CD4"来配置 参考图像和分析区域相关的构成数据、 位置规则、 合成参数、 分析模式、 诊断规则等, 也能获得不同应用 用途的诊断配置。
当完成设置操作, 按下确认键, 控制部 10 (配置部)将所设置的各项配置关联存储在闪存 9中 (例如 作为一个配置文件), 作为之后热像装置 13的默认配置, 而并不需要每次使用都设置一次, 而后, 回到待 机拍摄状态。 需要注意的是, 尽管示例了可由使用者进行相关配置的实施方式; 但不限于此, 也可以是这 样的实施方式, 即热像装置 13在出厂时, 即配置好了上述各种处理的相关配置, 而不需要使用者进行任 何人工设置; 或者在外部计算机中配置完毕, 在拍摄前将配置文件装载到热像装置 13 ; 或者, 由使用者进 行上述说明的部分内容的配置。
下面介绍热像装置 13的总体功能, 包括:
获取部, 例如拍摄部 1, 用于拍摄获得热像数据。
参考图像指定部 (控制部 10), 用于指定用于获得体现被摄体形态特征的参考图像的构成数据; 可以 基于存储介质中存储的构成数据,来指定参考图像的构成数据。例如,可以从如图 4所示存储的"基准 1 "、 "基准 2"、 "辅助 1 " 中, 指定与参考图像有关的一个形态构成数据, 也可以指定至少包含一个形态构 成数据在内的多个构成数据; 也可以基于存储的构成数据 "基准 1 "、 "基准 2 " 中, 指定加工对象 (形态 构成数据,或形态构成数据与辅助构成数据)结合规定的加工规则所代表的形态构成数据"基准 1 (加工) "; 也可以指定计算对象结合规定的计算规则所代表的辅助构成数据 "基准 1 (计算)"及一个形态构成数据来 获得体现形态特征的参考图像。 此外, 也可基于拍摄获得的热像数据来指定参考图像的构成数据。 总之, 基于存储介质中存储的构成数据, 来指定用于获得体现形态特征的参考图像的构成数据; 例如从存储介质 存储的构成数据中选择用于获得参考图像的构成数据; 此外, 还包括这种情况, 从存储介质存储的构成数 据中指定的加工对象及加工规则来获得的形态构成数据; 此外, 还包括这种情况, 也可从存储介质存储的 构成数据中指定的计算对象及计算规则来获得辅助构成数据并与形态构成数据一起来获得参考图像。 除了 预先存储的构成数据, 还可通过加工、 计算等方式, 来获得适用的构成数据或由此获得适用的参考图像。
具体的指定方式, 例如可以选择默认的构成数据。 也可以根据使用者的操作来选择构成数据, 如根据 使用者的对被摄体选择信息的选择结合构成数据的规定确定类型来选择构成数据; 如根据使用者对构成数 据的身份信息的选择来选择构成数据; 如根据对特定按键的操作来选择该按键对应的构成数据。 也可以基 于规定的触发条件, 来确定与该触发条件对应的构成数据。
参考图像位置设置部 (控制部 10), 用于设置基于所指定的构成数据获得的体现形态特征的参考图像 位于红外热像中的位置参数。 具体的位置设置实施方式, 如可按照规定的位置规则来自动设置参考图像的 位置参数; 例如可以基于存储介质中存储的构成数据及其关联的位置信息, 将所述位置信息所代表的构成 数据获得的参考图像将位于红外热像中的位置参数, 设置为该构成数据获得的参考图像将位于红外热像中 的位置参数; 也可以按照规定的自适应区域, 来自动设置参考图像位于红外热像中的位置参数; 也可以先 确定与参考图像具有规定位置关系的主对象, 设置主对象位于红外热像中的位置参数, 而后, 基于参考图 像与主对象之间的规定位置关系及主对象位于红外热像中的位置参数, 来设置参考图像位于红外热像中的 位置参数; 也可以按照热像装置 13默认的指定位置来设置参考图像的位置参数。
此外, 也可以按照使用者操作 (如录入的位置参数) 来设置参考图像的位置参数。
显示控制部 (控制部 10), 用于控制将基于所指定的构成数据获得的规定尺寸的参考图像, 按照规定 位置, 与拍摄部拍摄获得的热像数据生成的红外热像共同显示; 与红外热像的共同显示,有多种实施方式。
当参考图像为一个合成对象时, 按照所述规定位置, 与拍摄部拍摄获得的热像数据生成的红外热像连 续合成, 而后控制将参考图像与红外热像的合成图像显示, 来实现共同显示。 在此, 可以按照规定的透明 率进行合成。 规定的透明率, 可以是固定的值, 例如可以是热像装置 13中存储的默认值、 或由使用者通 过操作部 11的设置值、 或获得合成对象的构成数据的属性中存放了关于透明率的信息。 合成对象的透明 率, 代表了合成时, 合成对象与背景 (例如, 红外热像) 合成获得的合成像素中所占的比率。 例如, 当由 一个合成对象与背景合成时, 根据 "合成对象的图像数据 X合成对象的透明率 +背景的图像数据 x (l - 合成对象的透明率)"来获得合成像素点的图像数据。 此外也包括当不设置透明率的参数, 即代表默认透 明率 1。
一种实施方式, 当有多个需要与背景 (例如, 红外热像)合成的合成对象时, 按照各合成对象的合成 次序和对应的透明率, 逐次进行合成处理来获得最终的合成图像; 例如, 有合成对象 1 (合成次序为 1 ) 和合成对象 2 (合成次序为 2 ), 则先将合成对象 1按照其透明率与背景合成获得中途数据 "合成对象 1的 图像数据 X合成对象 1的透明率 +背景的图像数据 x (l -合成对象 1的透明率) ", 而后, 将合成对象 2按 照其透明率与所述中途数据再次合成处理, 即, 该处理获得的合成像素根据下式获得, 合成对象 2*合成对 象 2的透明率 +中途数据 * ( 1-合成对象 2的透明率)。
一种实施方式, 根据参考图像在红外热像中的像素位置来对拍摄获得的热像数据进行选择性的伪彩处 理而获得显示的图像。 具体而言, 例如以处于重叠像素位置的参考图像的图像数据作为该像素位置的重叠 图像的图像数据, 对重叠像素位置的热像数据不再进行伪彩转换的处理, 仅对重叠像素位置以外的热像数 据进行伪彩转换来获得红外热像的图像数据, 以此生成显示的图像, 在某些应用中可加快处理速度。 适用 于例如边缘轮廓的参考图像, 对于希望以这种方式进行处理的参考图像或辅助对象可在其构成数据的属性 中事先附加相应标识信息。 也可将参照图像对应热像数据中的像素位置的热像数据, 进行与其他像数位置 的热像数据的伪彩处理所不同的处理, 例如不同伪彩板的伪彩处理, 例如对参照图像对应热像数据中的像 素位置的热像数据减去规定值后再进行伪彩处理等, 来生成合成图像。
一种实施方式, 例如, 根据拍摄获得的热像数据的阀值区间范围 (如 AD值范围) 来确定与其合成的 参考图像部分的透明率, 具体而言, 例如将与位于阀值区间范围的红外热像合成的参考图像的透明率设置 为 0, 阀值区间范围外的设置为 1, 来避免重要的部分 (阀值区间范围内) 的红外热像被遮挡。 在此, 规 定的透明率, 也可以是变化的值。
显示控制部, 控制显示部 4显示参考图像、 红外热像, 当显示界面配置为还显示其他规定信息时, 控 制显示其他规定信息的图像数据, 例如图 8中所示, 显示图像由参考图像与红外热像的图像 802与其他规 定信息的图像 801构成。 其中, 也可以显示分析区域, 优选将分析区域与作为基准参照的形态特征的图像 部分以颜色、 透明率、 线型至少之一的区域方式进行显示。
分析区域确定部, 用于确定分析区域的构成数据, 优选的, 分析区域确定部从与参考图像的构成数据 具有规定位置关系的构成数据, 来确定分析区域的构成数据; 例如图 13所示, 显然可从闪存 9中存储的 具有规定位置关系并关联的 "基准 1 "、 "基准 2 "、 "辅助 1 "中, 指定一个或多个构成数据来获得分析区 域; 也可以基于指定对象结合规定加工规则和 /或规定计算规则, 来获得分析区域的构成数据, 优选的, 所述指定对象为参考图像的构成数据或与参考图像具有规定位置关系的对象的构成数据。 此外, 可根据默 认的位置规则而具有规定位置关系的构成数据来确定分析区域的构成数据, 例如从参考图像的构成数据关 联的构成数据 (没有预先存储规定位置关系, 由热像装置 13默认的位置规则而赋予规定位置关系) 中确 定分析区域的构成数据; 参考图像与分析区域的规定位置关系, 可以是预先存储在存储介质的规定位置关 系的信息来获得, 也可以是使用者设置的, 也可以由热像装置 13 的默认位置规则来赋予; 此外, 对指定 对象进行计算和 /或加工获得的构成数据, 与指定对象或与指定对象具有规定位置关系的其他对象之间的 规定位置关系, 可以由相应的计算规则、 加工规则来决定。
具体的确定方式, 例如可以选择默认的构成数据。 也可以根据使用者的操作来选择构成数据, 如根据 使用者的对被摄体选择信息的选择结合构成数据的规定确定类型来选择构成数据; 如根据使用者对构成数 据的身份信息的选择来选择构成数据; 如根据对特定按键的操作来选择该按键对应的构成数据。 也可以基 于规定的触发条件, 来确定与该触发条件对应的构成数据, 等来获得分析区域。
此外, 也可从没有规定位置关系的构成数据中确定分析区域的构成数据; 例如, 从与参考图像的构成 数据关联的构成数据 (之间没有预先存储规定位置关系) 中, 确定分析区域的构成数据; 可以由使用者来 设置二者的位置参数; 此外, 也可根据使用者操作设置的分析区域的构成数据 (如点、 线、 面) 来确定。 由于有参考图像的参照, 因此比现有技术还是要方便许多。
分析区域位置设置部, 用于设置分析区域位于红外热像中的位置参数; 如可按照规定的位置规则来自动设置分析区域的位置参数; 例如可以基于存储介质中存储的构成数据 及其关联的位置信息, 将所述位置信息所代表的构成数据获得的分析区域将位于红外热像中的位置参数, 设置为该构成数据获得的分析区域位于红外热像中的位置参数; 也可以按照规定的自适应区域, 来自动设 置分析区域位于红外热像中的位置参数; 也可以先确定与分析区域具有规定位置关系的主对象, 设置主对 象位于红外热像中的位置参数, 而后, 基于分析区域与主对象之间的规定位置关系及主对象位于红外热像 中的位置参数, 来设置分析区域位于红外热像中的位置参数; 也可以按照热像装置 13默认的指定位置, 例如默认的位置参数来设置分析区域的位置参数。
此外, 也可以按照使用者操作 (如录入的位置参数) 来设置分析区域的位置参数。
需要注意的是, 分析区域和参考图像的设置 (构成数据的确定、 位置参数设置) 可以有不同的次序, 例如, 分析区域位置设置部, 用于根据参考图像位置设置部设置的参考图像位于红外热像中的位置参数, 及参考图像与分析区域之间的规定位置关系, 来设置分析区域位于红外热像中的位置参数。 参考图像位置 设置部, 用于根据分析区域设置部设置的分析区域位于红外热像中的位置参数, 及参考图像与分析区域之 间的规定位置关系, 来设置参考图像位于红外热像中的规定位置和规定尺寸。 也可以先确定与分析区域、 参考图像具有规定位置关系的主对象, 设置主对象位于红外热像中的位置参数, 而后, 基于二者与主对象 之间的规定位置关系及主对象位于红外热像中的位置参数, 来设置分析区域和参考图像位于红外热像中的 位置参数。
根据与参考图像的构成数据具有规定位置关系的构成数据或具有关联关系的构成数据, 来设置的分析 区域, 也可称为参考图像对应的分析区域。
热像分析部, 用于基于所述位置参数的分析区域, 按照规定的分析模式, 对获取部 (拍摄部 1 ) 获取 的热像数据 (包括对所述热像数据进行规定处理后获得的数据) 进行分析, 获得分析结果。 优选的, 规定 的分析模式, 至少包含如下情况中的一种或一种以上的组合:
1 ) 基于所确定的分析区域的构成数据关联的分析模式信息, 而设置的分析模式;
例如与分析区域的构成数据关联存储的分析模式信息而获得的分析模式;
2 )基于获得分析区域的位置参数的位置规则或位置信息所关联的分析模式信息, 而设置的分析模式; 根据获得分析区域的位置参数的位置规则或位置信息所关联的分析模式信息, 来获得分析模式, 能起到更 加灵活的分析, 便于分析区域在不同的位置参数上变换时的应用。
3 )此外, 当分析区域的构成数据为指定对象计算和 /或加工获得时, 根据相应的计算和 /或加工规则 关联的分析模式信息, 和 /或指定对象关联的分析模式信息, 而获得的分析模式。 在某些情况下 (例如轮 廓变形后获得的区域, 可采用与轮廓相同的计算最高温度的分析模式), 也可作为该分析区域的构成数据 对应的分析模式信息, 以使操作简单。
此外, 也可以为热像装置 13 的其他默认或由使用者操作设置的分析模式。 显然, 也可同时有上述多 种实施方式的分析模式。
以温度分析为例来说明具体的实施方式。 如基于控制部 10的控制, 图像处理部 2对拍摄部 1拍摄获 得的热像数据或还进行规定处理如修正、 插值, 基于分析区域位于红外热像中的位置参数, 例如提取所设 置的分析区域所决定的热像数据, 进行温度值的转换处理, 获得这些热像数据对应的温度值, 而后对得到 的温度值, 按照分析模式进行分析计算。 例如计算其中最大值, 则提取其中最大的温度值作为分析结果。 当分析区域包含多个区域单元时, 如图 6中的分析区域 F1有区域单元 S01、 S02, 则依次对各区域单元中 的热像数据, 进行温度值的转换和进行分析, 获得各区域单元的分析结果, 将计算获得的分析结果与区域 单元的编号关联存储在临时存储部 6的规定区域, 而后根据各区域单元的分析结果, 按照分析模式中各单 元的相互关系, 来计算获得相互关系的分析结果。
此外, 对分析区域中的热像数据进行转换为温度值的处理, 可以是将分析区域中所有的热像数据都转 换为温度值; 也可以是规定的部分热像数据转换为温度值; 还可以是根据分析模式中计算最高、 最低、 平 均温度等不同的模式, 来决定对热像数据的转换, 是转换分析区域中的一部分热像数据, 还是全部; 如计 算分析区域中最高温度时, 也可针对分析区域中比较热像数据 AD值的大小, 将其中最大的 AD值转换为温 度值, 而并不必须将分析区域中的热像数据全部转化为温度值。 此外, 也包括算法不同的情况, 例如计算 最高温度时, 并不以单个像素而是以规定数量的相邻像素的 AD值的平均值, 将最大平均值的相邻像素的 AD值转换为温度值, 并将该相邻像素热像数据的温度值的平均值作为最高温度值。 其中, 热像数据经过规 定处理转换为温度值, 实施方式例如根据设置的被摄体的辐射系数、 环境温度、 湿度、 与热像装置 13 的 距离等以及热像数据的 AD值与温度之间的转换系数, 通过规定转换公式, 得到温度值。 此外, 分析区域 所决定的热像数据, 如图 6所示, 可以是分析单元 S01、 S02内的热像数据, 也可以是分析单元 S01、 S02 外的热像数据, 也可以是分析单元 S01、 S02 的线条所在像素的热像数据, 可预先规定分析区域的构成数 据的该属性。
此外, 对于热像分析并不限于将热像数据转换为温度值来进行的, 例如, 可以转换为辐射能量值、 灰 度值、 辐射率值等进行分析的情况; 显然, 对所获取的热像数据进行分析, 不限于单帧热像数据, 例如对 临时存储部 6中存储的多帧热像数据, 或对多帧热像数据进行积分运算获得该处理后的一帧热像数据进行 分析; 本发明同样适用于这些情况。
诊断部, 用于根据热像分析部获得分析结果, 按照规定诊断规则进行诊断, 获得诊断结果。 优选的, 所述诊断规则至少包含基于所述分析模式预先关联的诊断规则, 而设置的诊断规则; 例如根据分析模式信 息关联的诊断规则的信息, 所获得的分析模式及其关联的诊断规则。
参考图 16的流程图来说明实施例 1的控制步骤。 图 17为利用 T1和 F1构成的参考图像对被摄体 1进 行拍摄和分析诊断过程的显示界面示意图。 本实施例中, 使用者按下操作部 11 的模式键进入诊断模式, 当按下分析键可查看分析诊断结果。
步骤 A01, 控制部 10持续监视使用者是否选择了诊断模式。在待机拍摄状态, 显示部 4显示动态的红 外热像。 这时的拍摄角度、 距离获得如图 17的 1701所示的红外热像, 对其中被摄体 1的热像 IR1, 在现 有技术使用者会困惑于拍摄被摄体 1的拍摄距离、 拍摄部位、 分析区域设置、 分析模式设置、 诊断规则设 置等。 为通过参考图像的参照来保证对被摄体 1拍摄的正确性、 分析区域设置、 分析模式和诊断规则设置 的便利性、 分析诊断的正确性, 使用者通过操作部 11选择诊断模式, 进入步骤 A02。
步骤 A02, 控制部 10进行参考图像的构成数据的指定处理。 详细见图 18中的步骤 S101-S 107。
步骤 A03, 控制部 10进行参考图像位于红外热像中的位置参数的设置处理。 详细见图 19中的步骤 S201- S203。
步骤 A04, 控制部 10进行分析区域的构成数据确定处理。 详细见图 20中的步骤 S301-S303。
步骤 A05, 控制部 10进行分析区域对应的分析模式和分析模式对应的诊断规则确定处理。 详细见图 21中的步骤 S401-S403。
步骤 A06, 控制部 10进行分析区域位于红外热像中的位置参数的设置处理。 详细见图 22中的步骤 S501-S503 o
步骤 A07, 获取热像数据, 将拍摄获得的热像数据传送到临时存储部 6;
步骤 A08, 进行分析处理, 基于所设置的分析区域 F1, 按照规定的分析模式, 对拍摄部 1拍摄获得的 热像数据进行分析,获得分析结果。如控制图像处理部 2对分析区域 F1 ( S01、 S02 )所决定的热像数据(S01、 S02中的热像数据), 转换为温度值的处理, 并根据分析区域 F1所关联的 F1分析模式信息获得的分析模式 进行计算; 将计算得到的分析结果数据如区域单元 S01、 S02的最高温度, 以及 S01、 S02之间的温差等分 析结果存放到临时存储部 6的规定区域。
步骤 A09, 进行诊断处理; 具体而言, 例如, 控制部 10 (作为诊断部), 根据分析得到的分析结果, 与分析模式对应的诊断规则中的诊断阀值进行比较, 将该诊断阀值与分析结果依据诊断规则中的比较关 系, 来得到诊断结果。
步骤 A10, 将所确定的构成数据基于位置设置部所设置的规定尺寸获得的参考图像, 按照规定位置, 与红外热像共同显示, 具体而言, 在本实施例中, 构成数据为 T1构成数据和 F1构成数据, 将经规定处理 (如缩放处理等) 获得的参考图像 (T1和 F1 ) 按照规定位置与红外热像合成, 将合成的图像数据存放在 临时存储部 6, 接着, 控制部 10控制, 将参考图像和红外热像显示在显示部 4。 如显示界面 1703所示。 可以看出被摄体热像 IR1与轮廓图像 T1之间存在较大差异, 可以想象, 如没有体现被摄体形态特征的参 考图像的参照手段, 使用者拍摄的被摄体热像 IR1的形态和在红外热像中的成像位置、 大小、 角度, 难以 主观把握, 不但容易遗漏重点测量部位, 而且导致设置分析区域的操作繁琐, 并且如果没有轮廓图像 T1 的形态参照, F1的参照效果很弱。
步骤 Al l , 控制部 10检测是否接收到诊断通知指示? 如无则进入步骤 A14判断是否退出诊断模式, 如 没有退出, 则回到步骤 A07, 并在步骤 A08、 A09, 对新获得的热像数据进行分析, 并将分析和诊断的结果 替换之前的分析和诊断的结果, 存储在临时存储部 6的规定区域。 而后, 在步骤 A10, 将参考图像与拍摄 获得的热像数据获得的红外热像共同显示, 反映了连续拍摄获得的动态的红外热像与参考图像连续显示的 状态。
使用者根据轮廓图像 T1的视觉参照, 就理解了需要拍摄的被摄体热像 IR1的形态要求和在红外热像 中的成像位置、 大小、 角度, 而后通过调整热像装置 13的光学部件和被摄体 1之间的拍摄距离、 角度、 成像位置, 使得到的如图 17中(显示界面 1704)被摄体热像 IR1与轮廓图像 T1在视觉上处于重合匹配状 态。 这时, 使用者按下分析键, 进入步骤 A12。
步骤 A12, 显示分析和诊断结果; 如图 17中 (显示界面 1705 ) 所示, 将存储在规定区域中的分析和 诊断结果 J17显示在显示部 4, 使用者根据分析和诊断结果便于作出判断。 但不限于此, 也可以不显示, 例如作为或输出控制其他设备动作的控制信号从通信接口 I/F5输出。 需要注意的是, 在图 17的显示界面 1703和 1704中, 分析区域 F1显示, 也可配置为不显示。
步骤 A13, 判断是否按下了切换键?
如按动, 则进行相应的切换, 如回到步骤 A02, 根据切换配置: 确定 T1和 F1构成数据来获得参考图 像, 并将分析区域 F1作为主对象, 先设置分析区域 F1位于红外热像中的位置参数, 而后, 根据分析区域 F1的位置和尺寸来设置参考图像 (包括 T1和 F1 )位于红外热像中的规定位置和规定尺寸; 根据参考图像 拍摄的被摄体热像如图 17中的 1706所示, 并且, 由于拍摄距离的不同, 1706所示分析诊断结果与 1705 中的不同, 温差增至 4. 5 (缺陷), 由此, 使用者能根据该分析的诊断结果, 作为更为全面的判断, 避免遗 漏缺陷。
将分析区域 F1设置为主对象的显示效果, 代表了对分析区域 F1所代表的分析部位的 Z1自适应区域 中最大化显示的拍摄分析目的, 注意轮廓 T1部分溢出, 符合应用需求而可接受。 根据测量目的等的不同, 可设置不同的主对象来代表了需要重点观察的区域, 根据主对象位于红外热像中的位置参数来配置参考图 像或分析区域位于红外热像中的位置参数, 即方便又灵活。
此外, 切换并不限于位置规则的变换, 切换的, 可以是参考图像、 分析区域, 合成参数、 分析模式、 诊断规则等的其中一个或多个的变换, 可达到不同的测量或观察效果。 切换处理为一优选方式, 也可无切 换步骤 A13。
步骤 A14, 判断是否退出诊断模式, 如未退出, 则回到步骤 A07, 如使用者未释放分析键,在步骤 A12, 显示根据步骤 A07拍摄获得的热像数据经分析诊断处理获得的实时的分析和诊断结果, 如使用者释放分析 键, 则显示动态的红外热像和参考图像。
参考图 18来说明参考图像的构成数据的指定处理。
步骤 S101 , 判断是否有默认的构成数据, 如有, 则跳到步骤 S107, 控制部 10选择默认的构成数据; 如无, 则进入步骤 S102。
步骤 S102, 控制部 10 (被摄体信息选择部)基于闪存 9中存储的表 4, 使显示部 4的规定位置显示规 定数量的被摄体选择信息; 如图 17中的 1702所示的被摄体选择信息列表 LB。
步骤 S103, 接着, 根据对拍摄现场的被摄体 1 的认知, 例如现场的设备指示牌, 通过操作部 11对显 示部 4上所显示的 "被摄体 1 "予以选择。 控制部 10根据对被摄体选择信息的选择来选择被摄体信息。
此外, 当表 4中的被摄体信息由多个属性的属性信息组合构成时, 通过对构成被摄体信息的多个属性 的属性信息(被摄体选择信息) 的显示和多次选择, 来最终选择被摄体信息。 例如, 假定 "被摄体 1 "由 对应了变电站属性、 设备区属性、 设备类型属性的属性信息 "变电站 1 "、 "设备区 1 "、 "设备 1 "构成, 选 择操作可以是从所显示的变电站属性对应的规定数量的被摄体选择信息 (属性信息) 中选择 "变电站 1 ", 而后, 从设备区属性对应的规定数量的被摄体选择信息(属性信息) 中选择 "设备区 1 ", 接着, 从设备类 型属性对应的规定数量的被摄体选择信息 (属性信息) 中选择 "设备 1 ", 来最终选择 "被摄体 1 "。 选择 操作可以分解为对属性信息的多次选择操作来最终选择被摄体信息。
步骤 S104, 接着, 控制部 10判断所选择的被摄体选择信息对应的被摄体信息关联的构成数据中, 是 否有规定指定类型的构成数据 (如仅关联了一个构成数据);
如仅关联了一个构成数据, 控制部 10将根据使用者选择的被摄体选择信息对应的被摄体信息来指定 构成数据; 例如当闪存 9中存储了如图 3所示的被摄体信息及其关联的构成数据, 则在步骤 S107, 控制部 10将 T1构成数据确定为参考图像的构成数据。
当闪存 9中存储了如图 4所示的被摄体信息及其关联的多个类型的构成数据, 在本实施例中, 由于事 先设置了构成数据的规定指定类型,则跳到步骤 S 107,控制部 10将根据"被摄体 1 ",及规定指定类型"基 准 1 " "辅助 1 ", 指定构成数据为 "T1构成数据" "F1构成数据"。 如否, 即步骤 S103中选择的被摄体信 息关联了多个类型的构成数据, 并且并未配置规定指定类型, 则进入步骤 S105。 步骤 S105, 控制部 10使显示部 4显示各构成数据的身份信息由使用者再次进行选择。所述身份信息, 如代表其对应的构成数据的身份标识有关的文件名、 编号、 缩略图等, 例如显示构成数据对应的缩略图, 供使用者选择, 可以选择其中的一个或多个。
步骤 S106, 当使用者进行了选择, 则进入步骤 S107。
步骤 S107, 参考图像指定部选择用于获得参考图像的构成数据。 而后, 从闪存 9中读取 Tl、 F1构成 数据, 包括相互之间的规定位置关系, 传送到临时存储部 6。
上述的实施方式, 参考图像指定部指定的构成数据, 可以是默认的构成数据; 或者基于所选择的被摄 体信息关联的构成数据来指定; 或进一步根据规定指定类型, 基于存储介质中存储的构成数据, 来自动确 定其中符合规定指定类型的构成数据; 基于被摄体信息关联的构成数据来指定参考图像的购成数据, 可以 是从被摄体信息关联的构成数据中选择用于获得参考图像的构成数据, 也可以从被摄体信息关联的构成数 据中指定加工对象, 将加工获得的构成数据指定为用于获得参考图像的构成数据; 或者, 由使用者选择构 成数据的身份信息, 来指定构成数据。 此外, 当存储介质中的构成数据未有与其关联的被摄体信息, 则上 述步骤中省略步骤 S102, S103 , 构成了按照构成数据的身份信息来选择构成数据的实施方式。 并且, 步骤 S 102, S 103的被摄体信息选择步骤也可作为如参考图像的构成数据确定步骤之前的一个步骤, 而并不限定 在参考图像的构成数据确定步骤中。 此外, 如根据对特定按键的操作来选择该按键对应的构成数据; 如基 于规定的触发条件, 来确定与该触发条件对应的构成数据。
参考图 19来说明参考图像位于红外热像中的位置参数的设置处理。
步骤 S201 , 控制部 10判断是否有规定的位置规则, 如果有, 则跳到步骤 S203。 如果否, 则进入步骤 S202。
步骤 S202, 显示如图 9所示的设置菜单, 及相应的提示, 要求使用者配置位置规则。 当完成后, 将位 置规则记录在闪存 9中, 作为后续的默认配置。
步骤 S203, 设置参考图像位于红外热像中的位置参数。
本实施例中, 根据预先设置的位置规则, 即主对象的类型为 "基准 1 ", 按照自适应区域 Z1的居中位 置进行自适应来计算轮廓 T1位于红外热像中的位置参数, 而后根据参考图像 (包括轮廓 T2和 F1 ) 的 F1 部分与轮廓 T1之间的规定位置关系, 来确定 F1在红外热像中的位置参数; 如根据二者的规定位置关系及 轮廓 T1位于红外热像中的位置参数, 以轮廓 T1的缩放基点 (如中心点)作为 F1的缩放基点, 对 F1以相 同于 T1的缩放率进行缩放来获得其位于红外热像中的位置参数。 以上的位置设置方式, 使用者可以不需 要进行人工操作, 来输入参考图像的位置参数, 在拍摄时, 由热像装置 13根据规定的位置规则来自动设 置参考图像位于红外热像中的规定位置和规定尺寸, 在确保被摄体热像的尺寸和位置规范的同时, 使操作 简单。
参考图 20来说明分析区域的构成数据的确定处理。
步骤 S301 , 判断是否有分析区域的构成数据的规定指定类型; 如有, 则跳到步骤 S303, 控制部 10根 据规定指定类型来确定分析区域的构成数据。 如否, 则进入步骤 S302。
步骤 S302, 配置分析区域的构成数据, 如图 9所示的设置菜单, 和相应的提示, 或还显示点、 线、 面 的设置栏, 要求使用者设置和选择分析区域的构成数据的类型。
步骤 S303, 确定分析区域的构成数据。
在本实施例中, 由于使用者选择了被摄体 1,根据分析区域的构成数据的规定的确定类型为"辅助 1 ", 将 "F1构成数据"确定为分析区域的构成数据。
分析区域构成数据的确定, 如可以确定默认的构成数据, 如根据选择的被摄体信息结合构成数据的规 定指定类型来自动确定分析区域的构成数据; 如根据使用者对构成数据的身份信息的选择来确定分析区域 的构成数据; 如根据对特定按键的操作来选择该按键对应的分析区域的构成数据。 也可以基于规定的触发 条件, 来确定与该触发条件对应的分析区域的构成数据, 来获得分析区域。 基于被摄体信息关联的构成数 据来确定分析区域的购成数据, 可以是从被摄体信息关联的构成数据中选择用于获得分析区域的构成数 据, 也可以从被摄体信息关联的构成数据中指定对象, 将加工和 /或计算获得的构成数据指定为用于获得 分析区域的构成数据。
参考图 21来说明分析模式及诊断规则的确定处理。 步骤 S401, 判断是否有规定的分析模式和诊断规则; 如有, 则跳到步骤 S403, 控制部 10将规定的分 析模式和诊断规则予以确定; 如无, 则进入步骤 S402。
步骤 S402, 控制使如图 13所示的设置菜单, 要求使用者进行分析模式和诊断规则等的设置。 当设置 了分析区域对应的分析模式和诊断规则后, 将所设置的关联存储在临时存储部 6中, 此外, 也可将新设置 的分析区域对应的分析模式、 该分析模式对应的诊断规则与被摄体信息关联保存在闪存 9中。 例如存储在 表 4中。 作为后续使用。 此外, 也可将热像装置 13中预先存储的其他分析模式及其对应的诊断规则等, 进行显示供选择。
步骤 S403, 在本实施例中, 由于事先配置了 "分析诊断 1 ", 将 F1构成数据关联的分析模式 1 (F1模 式信息)、 分析模式 1关联的诊断规则 1 (F1诊断规则) 予以确定。
采用分析区域 F1 关联的分析模式及该分析模式关联的诊断规则, 避免使用者现场设置操作的麻烦, 并且, 当关联了多个分析模式和诊断规则组合时, 可以进行多种复杂的计算。 此外, 与分析区域所对应的 分析模式和分析模式对应的诊断规则, 与分析区域的构成数据也可以没有预先关联存储的情况, 如可根据 其他预定的分析模式和诊断规则来获得; 此外, 还可以是响应使用者的设置操作而临时设置的; 分析区域 所对应的分析模式、 分析模式对应的诊断规则, 可以是与分析区域的构成数据预先关联存储的、 热像装置 13中其他的分析模式和诊断规则、 使用者临时设置的分析模式和诊断规则等这些情况。
参考图 22来说明分析区域位于红外热像中的位置参数的设置处理。
步骤 S501 , 控制部 10判断是否有规定的位置规则, 是则跳到步骤 S503。 如否则进入步骤 S502。 步骤 S502, 显示如图 9所示的设置菜单, 要求使用者设置分析区域的位置规则。 当完成后, 将该类型 的分析区域的位置确定规则记录在闪存 9中, 作为后续的默认配置。
步骤 S503, 设置分析区域位于红外热像中的位置参数。 本实施例中, 分析区域的位置规则, 主对象的 类型为基准 1, 主对象按照自适应区域 Z1的居中位置, 自适应来计算位于红外热像中的位置参数, 而后根 据分析区域 F1与轮廓 T1之间的规定位置关系, 来确定分析区域 F1在红外热像中的位置参数。 在切换状 态下, 则主对象的类型为辅助 1, 主对象 (分析区域 F1 ) 按照自适应区域 Z1的居中位置, 自适应来计算 其位于红外热像中的位置参数, 而后根据分析区域 F1与轮廓 T1之间的规定位置关系, 来确定轮廓 T1在 红外热像中的位置参数。
此外, 主对象还可以是参考图像、 分析区域之外的构成数据来获得, 即分析区域和参考图像均根据主 对象来设置各自的位置参数。
在拍摄时, 根据规定的位置规则来自动设置参考图像和分析区域位于红外热像中的位置参数, 使用者 可以不需要进行人工操作输入分析区域等的位置参数等, 在确保被摄体热像的尺寸和位置规范的同时, 使 操作简单。 不限于此, 控制部 10也可基于使用者通过操作部录入的位置参数来确定参考图像和分析区域 位于红外热像中的位置参数。
此外, 关于参考图像的构成数据的指定 (步骤 A02 )、 参考图像的位置设置 (步骤 A03 )、 分析区域的 构成数据的确定 (步骤 A04)、 分析区域的位置设置 (步骤 A06)、 分析模式和诊断规则的确定 (步骤 A05 ) 等的相关的处理, 是按照一定的步骤次序来描述, 但根据不同的实施方式可以有各种先后顺序, 并不限于 实施例中所描述的处理次序。
此外, 本实施例中, 始终进行分析诊断处理, 并不断更新分析诊断结果, 在接收到使用者的诊断通知 指示时, 显示分析和诊断结果; 但也可配置为, 在按下分析键时才进行分析和诊断的处理; 或者分析和诊 断结果也可始终进行显示和刷新; 或者, 也可仅显示诊断结果, 而不显示分析结果。
此外, 如图 1703所示, 也可调整参考图像的位置参数去匹配红外热像中的被摄体热像 IR1, 优选的, 所述参考图像位置设置部和分析区域位置设置部, 根据使用者的调整操作来改变参考图像和分析区域位于 红外热像中的位置、 尺寸、 旋转角度中的至少之一, 并保持二者的规定位置关系不变。 例如调整其中之一 时, 另一根据调整的位置、 尺寸、 旋转角度的变化进行的相同变化, 以保持二者的规定位置关系不变。
如上所述, 实施例 1中, 通过选择被摄体信息来指定参考图像和分析区域的构成数据, 便于选择与被 摄体对应的参考图像和分析区域; 在红外热像中显示体现了被摄体预定形态特征的参考图像, 便于拍摄获 得规范的红外热像; 通过具有规定位置关系的构成数据中来指定参考图像和分析区域的构成数据, 使所设 置的分析区域规范并与参考图像具有对应位置的规范性, 使根据参考图像参照拍摄的红外热像, 分析区域 具有极高的准确性, 操作简单; 按照分析区域关联的分析模式及该分析模式关联的诊断规则对被摄体热像 进行分析诊断, 解决了分析模式和诊断规则设置的问题, 达到操作简单、 对使用者的技术要求降低、 拍摄 速度提高、 不易遗漏缺陷、 便于复杂分析诊断等的有益效果。 由此, 使普通使用者也能达到良好的拍摄技 能水平。
实施例 2
实施例 2为具有与实施例 1所示的结构相同的热像装置 13,闪存 9中存储了不同于实施例 1的诊断控 制程序, 响应使用者的诊断指示, 将冻结显示和保持热像数据, 并进行分析诊断; 并且, 闪存 9中存储如 图 4所示的存储内容, 及如图 13所示的配置。
参考图 23来说明控制流程。
步骤 B01, 控制部 10持续监视使用者是否选择了诊断模式, 如是, 进入步骤 B02。
步骤 B02, 控制部 10进行参考图像的构成数据的确定处理。 详细见图 18中的步骤 S101-S 107。
步骤 B03, 控制部 10进行参考图像位于红外热像中的位置参数的设置处理。 详细见图 19中的步骤 S201- S203。
步骤 B04, 接着, 将拍摄获得的热像数据传送到临时存储部 6;
步骤 B05, 将所指定的构成数据按照位置设置部所设置的规定尺寸获得的参考图像, 根据规定位置, 与红外热像共同显示。 这时, 如图 1703所示。
步骤 B06, 判断使用者是否进行了按下了分析键, 如无, 则回到步骤 B04-B05, 即显示参考图像与拍 摄获得的红外热像连续合成的图像。 当使用者通过调整热像装置 13的光学部件和被摄体 1之间的拍摄距 离、 角度、 成像位置, 使得到的如图 17中 (显示界面 1703 )被摄体热像 IR1与轮廓图像 T1在视觉上处于 重合匹配状态。 这时, 使用者按下分析键, 进入下一步。
步骤 B07, 响应该操作,将步骤 B04获得的热像数据保持在临时存储部 6的规定区域; 或还将步骤 B05 获得合成图像、 或红外热像保持在临时存储部 6的规定区域, 将合成图像 (或该红外热像) 冻结显示。
步骤 B08, 控制部 10进行分析区域的构成数据的确定处理。 详细见图 20中的步骤 S301-S303。
步骤 B09, 控制部 10进行分析区域对应的分析模式和该分析模式对应的诊断规则的确定处理。详细见 图 21中的步骤 S401-S403。
步骤 B10, 控制部 10进行分析区域位于红外热像中的位置参数的设置处理。 详细见图 22中的步骤 S501-S503 o
步骤 Bl l, 对所保持的热像数据进行分析处理, 将得到的分析结果数据如区域单元 S01、 S02的最高温 度, 以及 S01、 S02之间的温差等分析结果存放到临时存储部 6的规定区域。
步骤 B12, 诊断处理; 而后诊断部对该分析结果数据与阀值进行比较, 获得诊断结果。
步骤 B13, 通知诊断结果, 在本实施例中, 将分析诊断结果 J17显示在显示部 4, 如显示界面 1704所 示。 使用者根据分析诊断结果便于作出判断。 此外, 也可以不显示, 例如作为提供给其他装置的分析诊断 结果数据从通讯 I/F5输出。 或者仅通知诊断结果。
步骤 B14, 判断是否释放了分析键? 如释放, 则进入步骤 B15, 如未释放, 则回到步骤 B13, 继续显示 分析诊断结果。
步骤 B15, 判断是否退出诊断模式, 如未退出, 则回到步骤 B04, 如退出, 则退出诊断模式。
如上所述, 与实施例 1不同, 使用者在参考图像和红外热像视觉匹配的状态下, 冻结显示红外热像或 合成图像, 进行分析和诊断结果显示, 确保了分析的正确性。 上述过程便于红外拍摄中的分析诊断, 对使 用者的技术要求降低, 拍摄速度提高, 降低了诊断的难度, 操作简单。
实施例 3
实施例 3为与实施例 1结构相同的热像装置 13, 闪存 9中预先存储如图 3所示的内容。
为分析被摄体本体中特定区域如被摄体边缘的热场分布, 使用者通过 "计算对象 CD2"设置的配置如 图 24所示, 计算对像: "基准 1 ", 计算规则: 基于中心点的缩放、 变形, 用来后续获得分析区域 F101。 使用者通过"诊断配置 CD2 "的配置如图 25所示; 并且, 如图 26所示, 对计算获得的分析区域 F101和作 为分析区域的 T1进行了分析模式和诊断规则的配置。
参考图 27的流程图来说明实施例 3的诊断模式的控制步骤。图 28为利用轮廓图像 T1和分析区域 Tl、 F101对被摄体 1进行拍摄和分析诊断过程的显示界面示意图。本实施例中, 使用者的操作是: 通过按下操 作部 11的模式键进入诊断模式, 当按下分析键查看分析诊断结果。
步骤 C01, 控制部 10持续监视使用者是否选择了诊断模式。 如是, 进入步骤 C02。 步骤 C02, 控制部 10进行参考图像的构成数据的指定处理。 基于闪存 9中存储的表 3, 使显示部 4的 规定位置显示规定数量的被摄体选择信息, 当使用者选择了 "被摄体 1 ", 则将 T1构成数据予以指定。
步骤 C03, 控制部 10进行分析区域的构成数据的确定处理。 具体而言, 根据图 24中的配置, 基准 1 作为计算对象 (以中心点进行缩放和变形), 获得分析区域 F101的构成数据 (包括与 T1的相对位置关系) 及相应的分析单元的编号 F101关联存储在临时存储部 6的规定区域, 其中将 T1所决定的区域也确定为分 析区域。
步骤 C04, 控制部 10进行分析区域 Tl、 F101对应的分析模式和分析模式对应诊断规则的确定处理。 具体而言, 根据图 26中的配置, 获得所对应的分析模式和诊断规则。
步骤 C05, 控制部 10进行参考图像位于红外热像中的规定位置和规定尺寸的设置处理, 具体而言, 根 据规定的位置规则: "自适应区域 Z1, 自适应居中", 来设置参考图像 T1位于红外热像中的位置参数。
步骤 C06, 控制部 10进行分析区域位于红外热像中的位置参数的设置处理。 根据参考图像 T1位于红 外热像中的位置参数, 及分析区域与参考图像的规定位置关系, 来确定分析区域 Tl、 F101位于红外热像 中的位置参数。
步骤 C07, 接着, 将拍摄获得的热像数据传送到临时存储部 6;
步骤 C08, 进行分析处理和诊断处理; 即基于上述位置参数的分析区域 Tl、 F101 , 按照规定的分析模 式, 对拍摄部拍摄获得的热像数据进行分析, 获得分析诊断结果。 即图像处理部 2对分析区域 Tl、 F101 所决定的热像数据 (Tl、 F101 区域中的热像数据), 转换为温度值的处理, 并根据分析区域所对应的分析 模式进行计算, 而后, 按照诊断规则进行诊断,; 将计算得到的分析结果数据如区域单元 Tl、 F101的最高 温度, 以及 Tl、 F101之间的温差等分析结果、 诊断获得的诊断结果存放到临时存储部 6的规定区域。
步骤 C09, 将所确定的构成数据按照位置设置部所设置的所述规定尺寸获得的参考图像 T1 , 按照所述 规定位置, 与红外热像共同显示。 如显示界面 2802所示。 可以看出被摄体热像 IR1与参考图像 T1之间存 在较大差异, 可以想象, 如没有参考图像参照手段, 使用者拍摄的被摄体热像 IR1的形态和在红外热像中 的成像位置、 大小、 角度, 难以主观把握, 不但容易遗漏重点测量部位, 而且导致设置分析区域等的一系 列的繁琐操作。
步骤 C10, 控制部 10检测是否接收到诊断指示? 如无则进入步骤 C12判断是否退出诊断模式, 如没有 退出, 则回到步骤 C07, 并在步骤 C08, 对获得的热像数据进行分析和诊断, 并存储在临时存储部 6的规 定区域, 将之前的分析诊断结果替换。 而后, 在步骤 C09, 将参考图像与拍摄获得的热像数据获得的红外 热像进行共同显示。 当通过调整热像装置 13使得到的如图 28中(显示界面 2803 )被摄体热像 IR1与参考 图像 T1在视觉上处于重合匹配状态。 这时, 使用者按下分析键, 进入步骤 Cll。
步骤 Cll, 显示分析诊断结果; 如图 28中 (显示界面 2804) 所示, 将存储在规定区域中的分析诊断 结果 J28及分析区域 F101显示(可规定显示的内容)。 使用者根据分析诊断结果便于作出判断。 但不限于 此, 也可以不显示, 例如作为控制其他设备动作的分析数据从接口 I/F8输出。 需要注意的是, 在图 28的 显示界面 2802和 2803中, 分析区域 F101不显示, 也可配置为显示。
步骤 C12, 判断是否退出诊断模式, 如未退出, 则回到步骤 C07, 如使用者未释放分析键,在步骤 Cl l, 显示根据步骤 C07拍摄获得的热像数据经分析处理获得的实时分析诊断结果, 如使用者释放分析键, 则显 示动态的红外图像、 参考图像。
如上所述, 在本实施例 3中, 根据参考图像来计算获得分析区域, 确保了分析区域设置的便利性和后 续分析诊断的精确性, 显然上述设置的分析区域 Tl、 F101在现有技术中实现及其困难。 上述实施方式到 达便于分析区域、 分析模式、 诊断规则的设置, 对使用者的技术要求降低, 拍摄速度提高, 操作简单的有 益效果。
实施例 4
本实施例是在具有与图 1所示的结构相同的热像装置 13中, 存储了执行记录处理的控制程序。 规定 记录信息的配置如图 29所示。 参考图 30来说明本实施例的流程图;
步骤 D01, 控制部 10持续监视使用者是否选择了诊断模式, 如是进入步骤 D02。
步骤 D02, 与实施例 1中的步骤 A02-A12类同, 或与实施例 2中的步骤 B02-B12类同, 或与实施例 3 中的步骤 C02-C11类同, 省略其说明。
步骤 D03, 控制部 10判断是否有记录指示操作。 以实施例 1为例, 显示部 4显示如图 17中的显示界 面 1705所示时, 使用者按下操作部 11的记录键, 进入下一步。 不限与此, 也可由控制部 10基于其他规 定的记录条件, 例如可以是控制部 10判断符合规定的时间间隔、 例如对热像中的温度值超过规定阀值、 例如当检测到与热像装置 13连接的其他传感器件的触发信号等规定的记录条件, 即便没有预定的记录操 作, 也自动进入步骤 D04。
步骤 D04, 记录处理。
作为记录部的控制部 10, 响应记录指示操作或按照规定的记录条件, 将规定的红外数据与规定记录信 息进行关联记录。 而后进入步骤 D05。
其中, 所述红外数据为通过 (获取部获取) 拍摄部拍摄获得的热像数据和 /或通过拍摄部拍摄获得的 热像数据进行规定处理后获得的数据。 规定的红外数据, 例如, 响应记录指示操作或判断符合规定的记录 条件的时刻 (或之后的规定时刻), 由红外探测器读取信号所获得的热像数据 (帧); 例如; 响应记录指示 操作或判断符合规定的记录条件的时刻(或之后的规定时刻) 临时存储部 6中临时存储的多个热像数据帧 中的规定的热像数据 (帧); 例如, 上述情况的热像数据进行规定的处理后获得的数据 (规定的处理例如 修正、 插值、 伪彩、 转换为温度数值、 降像素、 压缩等处理的一种或同时多种); 例如, 记录规定数量的 多帧热像数据; 例如, 规定数量的多帧热像数据经过规定处理获得的热像数据 (帧), 如对临时存储部 6 中存储的多帧热像数据进行积分运算获得该处理后的一帧热像数据; 例如可以是上述这些情况获得的红外 数据之一或多种, 例如, 红外数据包括热像数据获得的各像素的温度值、 红外热像的图像数据。
其中, 规定记录信息如图 29中所示, 例如, 可以是以下信息中的一种或一种以上:
1 ) 选择的被摄体信息 (被摄体信息中规定的部分信息或全部);
2 )所指定的参考图像的构成数据 (或构成数据的身份信息如文件名)和 /或参考图像位于红外热像中 的位置信息。
3 )所指定的分析区域的构成数据 (或构成数据的身份信息如文件名)和 /或分析区域位于红外热像中 的位置信息。
4) 与参考图像或分析区域具有规定位置关系的其他构成数据 (或构成数据的身份信息如文件名), 和 /或其他构成数据获得的对象位于红外热像中的位置信息。如对指定对象,计算和 /或加工获得的构成数据, 和 /或, 该构成数据获得的对象位于红外热像中的位置信息。
5 ) 分析区域对应的分析模式。
6 ) 分析结果。
7 ) 分析模式对应的诊断规则
8 ) 诊断结果
上述的位置信息, 当采用如图 13所示配置时, 按照图 13所示的位置规则获得相应的位置信息; 当采 用如图 14所示配置时, 按照图 14所示的位置规则获得相应的位置信息。 显然, 当分析区域等出现位置参 数的调整变化时, 应记录的位置信息如调整后的位置参数。
一种关联记录的实施方式, 将规定记录信息作为规定格式的红外数据的信息附加; 具体而言, 一种实 施方式 (实施例 1时), 响应操作部 11的记录指示操作, 控制部 10控制, 由红外探测器读取信号, 获得 热像数据, 使图像处理部 2对该热像数据实施规定的热像数据压缩处理, 或者对该热像数据实施规定的处 理如修正、 插值等处理后进行压缩处理, 而后判断临时存储部的规定区域是否存储了规定的记录信息, 如 有, 则使临时存储部 6的规定区域中存储的规定记录信息和压缩后的热像数据相关联, 生成热像文件记录 到存储卡 8, 结束该处理; 此外, 也可在附加了规定记录信息后再进行压缩。 如无, 则将压缩的热像数据 生成热像文件记录到存储卡 8。 记录的存储介质不限于存储卡 8、 闪存 9等, 也可以是通过通信 I/F5通讯 的网络目的地。
见图 31中的一种热像文件结构的示意图; 其中, 红外数据 3101为响应记录指示操作或按照规定的记 录条件的时刻从红外探测器读取而获得的热像数据; 根据如图 29中的配置, 规定记录信息 3102包含的信 息有: 被摄体 1、 T1构成数据、 F1构成数据、 轮廓图像 T1的位置信息、 分析区域 F1的位置信息、 分析模 式 1、 分析和诊断结果 (响应记录指示时规定的分析诊断结果, 对于实施例 1, 可以是该时刻的, 如也可 在按下分析键后规定的分析诊断结果,如温差最大的分析诊断结果);其他附加信息 3103如拍摄的时间等。
图 32为与参考图像 T1视觉匹配时所记录的热像数据所对应的红外热像 IR0的示意图, 其中被摄体热 像 IR1位于红外热像 IR0中的位置和尺寸规范, T1的位置信息即代表了 IR1位于红外热像 IR0中的位置参 数。 "F1的位置信息"代表 F1位于红外热像 IR0中的位置参数。
此外, 关联记录处理, 还可将与规定记录信息记录在与热像文件关联的信息文件或索引文件中等, 控 制部 10可生成该信息文件或索引文件; 此外, 还可根据被摄体信息或构成数据的身份信息等来生成热像 文件名。 关联记录的实质是记录便于后续的批处理分析所需要的信息, 例如, 记录被摄体信息便于后续对 红外数据归类; 记录参考图像的构成数据及其位置信息便于后续设置进行批处理分析的分析区域; 记录分 析区域的构成数据及其位置信息便于后续快速批处理分析, 记录分析结果和诊断结果, 则能降低后续批处 理时的处理时间和处理负担。
步骤 D05, 判断是否退出诊断模式。 如无, 则回到步骤 D02, 重复上述步骤, 使用者可进行多次记录 操作, 如是则结束。
如上所述, 由于采用参考图像、 分析区域来辅助对被摄体热像的拍摄, 提高了拍摄质量, 而关联记录 与分析诊断等有关的规定记录信息, 便于后续的批处理分析诊断。
实施例 5
本实施例是在具有与图 1所示的结构相同的热像装置 13中, 在闪存 9中, 存储了用于回放模式下, 执行对回放的红外热像, 进行参考图像、 分析区域设置、 调整参考图像和分析区域、 分析和诊断的控制程 序。
一种实施的示例, 在回放模式中选择需要处理的红外数据 (例如, 从存储卡 8中选择需要处理的热像 文件, 所获得的热像数据); 先判断红外数据 (帧) 是否有关联的与分析区域、 参考图像等有关的信息, 例如, 与红外数据关联保存的构成数据、 参考图像或分析区域的位置参数、 构成数据的身份信息、 被摄体 信息等, 如有, 则可根据关联的这些信息来确定分析区域, 而后根据规定的分析模式和诊断规则, 对红外 数据进行分析和诊断, 获得分析和诊断结果; 或者, 也可将体现被摄体形态特征的参考图像与需要处理的 红外数据获得的红外热像共同显示, 使用者可观察参考图像与被摄体热像的视觉匹配程度。 如无, 则可使 显示的供选择的构成数据的身份标识有关的文件名、 编号、 缩略图等, 由使用者进行选择; 而后, 将体现 被摄体形态特征的参考图像与需要处理的红外数据获得的红外热像共同显示。 如果, 视觉上被摄体热像与 参考图像相匹配, 则可调用与参考图像具有规定位置关系的分析区域, 及相应的分析模式和诊断规则, 进 行分析诊断。 如果匹配度不高, 使用者还可进行参考图像的位置、 大小、 旋转角度的调整, 去匹配红外热 像中的被摄体热像, 当视觉匹配时, 确定与参考图像具有规定位置关系的分析区域, 而后按照规定的分析 模式及诊断规则进行分析诊断。
不限于带有拍摄功能的热像装置, 本实施例也可以热像处理装置(如计算机、 个人数字助理、 与拍摄 功能的热像装置配套使用的显示装置等) 作为热像诊断装置的实例, 用于对红外数据 (如热像文件) 的整 理。
实施例 6
对于本发明拍摄获得热像数据的功能不是必不可少的, 本发明还可应用于从外部接收和处理热像数据 (热像传输数据) 的热像处理装置等。 所述热像传输数据, 例如可以是热像 (AD值)数据, 可以是热像数据 生成的红外热像,可以是压缩后的热像数据,可以是压缩红外热像的数据等。实施例 6以热像处理装置 100 作为热像诊断装置的实例。
参考图 33为热像处理装置 100和热像拍摄装置 101连接构成的热像处理系统的一种实施的电气结构 的框图。
热像处理装置 100具有通信接口 1、 辅助存储部 2、 显示部 4、 RAM4, 硬盘 5、 操作部 6通过总线与上 述部件连接并进行整体控制的 CPU7。 作为热像处理装置 100, 可以例举个人计算机、 个人数字助理、 与热 像拍摄装置配套使用的显示装置等作为例子。 热像处理装置 100, 基于 CPU7的控制, 通过通信接口 1接收 与热像处理装置 100连接的热像拍摄装置 101输出的热像传输数据。
通信接口 1, 用于连续接收热像拍摄装置 101输出的热像传输数据; 其中, 包括接收通过中继装置来 发送的 (由热像拍摄装置 101输出的热像传输数据通过中继装置来发送的) 热像传输数据; 同时, 还可作 为对热像拍摄装置 101进行控制的通信接口。 在此, 通信接口 1包括热像处理装置 100上的各种有线或无 线通信接口, 如网络接口、 USB接口、 1394接口、 视频接口等。
辅助存储部 2, 例如 CD-R0M、 存储卡等存储介质及相关的接口。
显示部 4如液晶显示器, 显示部 4还可以是与热像处理装置 100连接的其他显示器, 而热像处理装置 100自身的电气结构中可以没有显示器。
RAM4作为对通信接口 1接收的热像传输数据进行临时存储的缓冲存储器, 同时, 作为 CPU7的工作存 储器起作用, 暂时存储由 CPU7进行处理的数据。
硬盘 5中存储有用于控制的程序, 以及控制中使用的各种数据。 从热像装置 13中除去拍摄部 1以外的结构与热像处理装置 100大致相同, 显然通过获取热像传输数 据, 同样适用上述实施例。 因此省略了实施方式的说明。
其中, CPU7还执行了图像处理部的功能, 用于对接收的热像传输数据实施规定的处理而获得红外热像 的图像数据, 规定的处理如修正、 插值、 伪彩、 合成、 压缩、 解压等,进行转换为适合于显示用、 记录用 等数据的处理。 其中, CPU7根据热像传输数据的不同格式, 一种实施方式, 例如, 当接收的热像传输数据 为压缩的热像数据, 规定的处理如 CPU7对获取部接收的热像传输数据进行解压并进行相应的规定处理; 一种实施方式, 对压缩热像数据 (热像传输数据) 解压后相应的规定处理如伪彩处理, 来获得红外热像的 图像数据, 此外, 规定的处理还如在解压后的热像传输数据进行校正、 插值等规定的各种处理。 另一种实 施方式, 例如, 当接收的热像传输数据本身已是压缩的红外热像的图像数据, 则解压来获得红外热像的图 像数据。 又一种实施方式, 例如, 当通信接口 1接收的是模拟的红外热像时, 控制将经相关 AD转换电路 AD转换后获得数字的红外热像的图像数据, 传送到临时存储部 6。
热像拍摄装置 101可以是各种类型的热像拍摄装置,其用于对被摄体进行拍摄,并输出热像传输数据。 见图 15中热像拍摄装置 101的电气框图, 由通信接口 10、 拍摄部 20、 闪存 30、 图像处理部 40、 RAM50, CPU60等构成。 其中, CPU60控制了热像拍摄装置 101的整体的动作, 闪存 30中存储了控制程序以及各部 分控制中使用的各种数据。 拍摄部 20包括未图示的光学部件、 驱动部件、 热像传感器、 信号预处理电路, 用于拍摄获得热像数据。 该热像数据暂时存储在 RAM50中, 而后经图像处理部 40 (如 DSP ) 经过规定处理 (如压缩处理等) 后获得热像传输数据, 经通信接口 10输出。 根据设计和使用目的的不同, 例如, 热像 拍摄装置 101输出的热像数据可以是规定处理后的热像数据, 也可以是热像的图像数据(热像数据生成的 热像的图像数据), 热像数据或热像的图像数据经规定格式压缩后的数据等之一或多种, 统称热像传输数 据。 在此, 热像拍摄装置 101用于拍摄并输出的热像传输数据, 其作用类似热像装置 13中的拍摄部 1。
图 34为热像处理装置 100和热像拍摄装置 101连接构成的热像处理系统的一种实施的示意图。
热像拍摄装置 101采用云台等架设在检测车辆, 经由专用电缆等通信线、 或有线和无线的方式构成的 局域网等方式与热像处理装置 100进行连接。 使用者通过热像处理装置 100进行观看和监测被摄体热像。 热像拍摄装置 101, 与热像处理装置 100连接构成实施方式中的信息记录系统, 用于对被摄体进行拍摄获 得热像 AD数据, 并输出热像传输数据。
综上所述, 优选的, 所述参考图像的构成数据和分析区域的构成数据具有规定位置关系, 所显示的参 考图像和与分析有关的分析区域符合所述规定位置关系。 参考图像指定部和分析区域确定部基于具有规定 位置关系的构成数据, 来确定参考图像和分析区域的构成数据; 例如从存储介质中预先存储的具有规定位 置关系的构成数据中, 来确定二者的构成数据; 例如根据对指定对象如参考图像的构成数据的加工和 /或 计算获得的构成数据中, 来确定分析区域的构成数据, 对于指定对象与加工和 /或计算获得的构成数据之 间的规定位置关系, 可以由相应的计算和 /或加工规则来决定。 此外, 构成数据的规定位置关系, 也可以 由热像装置 13默认的位置规则 (如构成数据获得的对象均为居中且原始尺寸来设置位置参数) 来赋予规 定位置关系。
并且, 具有规定位置关系的构成数据也可以是临时配置的, 如根据参考图像与分析区域的规定位置关 系来配置的分析区域的构成数据, 例如, 分析区域为根据参考图像位于红外热像中的位置参数, 基于参考 图像中的规定位置, 而设置的分析区域; 规定位置例如坐标位置, 该坐标位置可以是预先与参考图像的构 成数据关联存储的, 也可以是根据如参考图像的构成数据进行计算和 /或加工获得的, 根据坐标位置来临 时配置分析区域的构成数据 (如点、 线、 面) 而设置分析区域。 因此, 分析区域可为基于与参考图像具有 规定位置关系的规定位置, 而设置的分析区域。
并且, 当存储介质存储参考图像的构成数据及其关联的分析区域的构成数据, 及参考图像与分析区域 位于红外热像中的位置信息; 所述参考图像位置设置和分析区域位置设置部, 根据参考图像和分析区域位 于红外热像中的位置信息, 来设置参考图像和分析区域分别位于红外热像中的位置参数。
此外, 也可从没有规定位置关系的构成数据中来确定参考图像和分析区域的构成数据; 例如, 从与参 考图像的构成数据关联的构成数据, 或同一被摄体信息关联的构成数据中选择的参考图像的构成数据和分 析区域的构成数据, 如之间没有预先存储规定位置关系; 可以由使用者来设置二者的位置参数, 由于有参 考图像的参照, 因此比现有技术还是要方便许多。 本发明的方面还可以通过执行记录在存储装置上的程序来执行上述实施例的功能的系统或设备的计 算机 (或诸如 CPU、 MPU等的装置)、 以及通过其步骤由系统或设备的计算机通过例如读出和执行记录在存 储装置上的程序来执行上述实施例的功能而知性的方法来实现。 为此目的, 例如经由网络或从用作存储装 置的各种类型的记录介质 (例如, 计算机可读介质) 中将程序提供至计算机。
虽然, 可以通过硬件、 软件或其结合来实现附图中的功能块, 但通常不需要设置以一对一的对应方式 来实现功能块的结构; 例如可通过一个软件或硬件单元来实现多个功能的块, 或也可通过多个软件或硬件 单元来实现一个功能的块。 此外, 也可以用专用电路或通用处理器或可编程的 FPGA实现本发明的实施方 式中的部分或全部部件的处理和控制功能。
优选的, 可采用语音的方式来通知, 相应的, 存储了语音库的数据(如可以是分析诊断结果对应的语 音, 或字符对应的语音数据根据分析诊断结果的内容来生成对应的语音)。
需要注意的是, 尽管在实施例中介绍了多种对参考图像和分析区域的构成数据、 参考图像和分析区域 的位置设置实施方式、 分析模式、 诊断规则的确定实施方式、 合成参数的设置实施方式、 切换的设置实施 方式, 并可由使用者对这些处理进行配置。 但不限于此, 例如, 也可以是这样的实施方式, 即在热像装置 13出厂时, 即配置好了上述多种设置中的一项或一项以上组合, 例如出厂时已配置好了参考图像和分析区 域的构成数据的规定指定类型、 参考图像和分析区域的位置规则、 合成参数、 分析模式、 诊断规则的实施 方式, 在使用中, 根据存储介质中的构成数据自动根据出厂配置进行处理的实施方式。 或者, 出厂时已配 置好了部分项目, 由使用者进行其他部分的配置。 在此, 上述优点是作为一系列的代表性的实施方式操作 被执行的, 实施本发明的实施方式的任一产品并不一定需要同时达到以上所述的所有优点。
此外, 实施例中以电力行业的被摄体应用作为场景例举, 也适用在红外检测的各行业广泛运用。 上述所描述的仅为发明的具体实施方式, 各种例举说明不对发明的实质内容构成限定, 所属领域的技 术人员在阅读了说明书后可对具体实施方式进行其他的修改和变化, 而不背离发明的实质和范围。

Claims

权 利 要 求 书
1、 热像诊断装置, 包括,
获取部, 用于获取热像数据;
参考图像指定部, 用于指定用于获得体现被摄体形态特征的参考图像的构成数据; 分析区域确定部, 用于确定分析区域的构成数据;
参考图像位置设置部, 用于设置参考图像位于红外热像中的位置参数;
分析区域位置设置部, 用于设置分析区域位于红外热像中的位置参数;
显示控制部, 用于控制将基于所指定的构成数据获得的参考图像, 按照参考图像的位置 参数, 与获取的热像数据生成的红外热像共同显示;
热像分析部, 用于基于所述位置参数的分析区域, 按照规定的分析模式, 对获取部获取 的热像数据进行分析, 获得分析结果;
诊断部, 用于根据热像分析部获得分析结果, 按照规定的诊断规则进行诊断, 获得诊断 结果。
2、 如权利要求 1所述的热像诊断装置, 其特征在于, 所述分析模式至少包括如下情况中 的一种或一种以上的组合:
1 ) 基于所确定的分析区域的构成数据关联的分析模式信息, 而获得的分析模式;
2) 基于与获得分析区域的位置参数相关的位置规则或位置信息所关联的分析模式信息, 而获得的分析模式;
3)当分析区域的构成数据为指定对象计算和 /或加工获得时, 根据相应的计算和 /或加工 规则关联的分析模式信息, 和 /或指定对象关联的分析模式信息, 而获得的分析模式。
3、 如权利要求 1-2任意一项所述的热像诊断装置, 其特征在于, 所述诊断规则至少包含 基于所述分析模式关联的诊断规则, 而设置的诊断规则。
4、 如权利要求 1所述的热像诊断装置, 其特征在于, 具有
被摄体信息选择部, 用于从存储介质中选择被摄体信息; 所述存储介质用于存储至少一 个被摄体信息及被摄体信息关联的构成数据;
所述参考图像指定部基于所选择的被摄体信息关联的构成数据, 来指定用于获得参考图 像的构成数据; 分析区域确定部, 基于所选择的被摄体信息关联的构成数据, 来确定分析区 域的构成数据。
5、 如权利要求 1, 4所述的热像诊断装置, 其特征在于,
所述参考图像指定部基于构成数据的规定指定类型, 来确定参考图像的构成数据; 和 / 或所述分析区域确定部, 基于构成数据的规定指定类型, 来确定分析区域的构成数据。
6、 如权利要求 1, 4所述的热像诊断装置, 其特征在于, 所述参考图像的构成数据和分 析区域的构成数据具有规定位置关系, 所显示的参考图像和与分析有关的分析区域符合所述 规定位置关系。
7、 如权利要求 1所述的热像诊断装置, 其特征在于, 所述参考图像指定部和分析区域确 定部基于关联的构成数据, 来确定参考图像的构成数据和分析区域的构成数据。
8、 如权利要求 4所述的热像诊断装置, 其特征在于, 所述存储介质, 用于存储至少一个 被摄体信息及被摄体信息关联的具有规定位置关系的构成数据; 被摄体信息选择部, 用于选择被摄体信息; 所述参考图像指定部和分析区域确定部基于 所选择的被摄体信息关联的具有规定位置关系的构成数据, 来确定参考图像的构成数据和分 析区域的构成数据。
9、 如权利要求 1, 4所述的热像诊断装置, 其特征在于, 所述分析区域的构成数据至少 包括基于所指定对象, 按照规定加工规则加工和 /或按照规定计算规则计算, 而获得的构成数 据。
10、 如权利要求 1, 4所述的热像诊断装置, 其特征在于, 所述分析区域为基于与参考图 像具有规定位置关系的规定位置, 而设置的分析区域。
11、 如权利要求 1, 4所述的热像诊断装置, 其特征在于,
所述参考图像位置设置部和分析区域位置设置部, 基于规定的位置规则, 来设置参考图 像和分析区域位于红外热像中的位置参数。
12、 如权利要求 1, 4所述的热像诊断装置, 其特征在于, 存储介质, 用于存储构成数据 及其关联的位置信息,所述位置信息代表该构成数据获得的参考图像和 /或分析区域位于红外 热像中的位置信息; 当该构成数据被指定为参考图像的构成数据时, 所述参考图像位置部, 根据该构成数据关联的位置信息, 来设置该构成数据获得的参考图像位于红外热像中的位置 参数; 当该构成数据被确定为分析区域的构成数据时, 所述分析区域位置设置部, 根据该构 成数据关联的位置信息, 来设置该构成数据获得的分析区域位于红外热像中的位置参数。
13、 如权利要求 1, 4所述的热像诊断装置, 其特征在于, 所述参考图像位置设置部和分 析区域位置设置部按照如下方式中的一项来设置参考图像和分析区域的位置参数;
1 )分析区域位置设置部, 根据参考图像位置设置部设置的参考图像的位置参数, 及参考 图像与分析区域的规定位置关系, 来设置分析区域的位置参数;
2)参考图像位置设置部, 根据分析区域位置设置部设置的分析区域的位置参数, 及参考 图像与分析区域的规定位置关系, 来设置参考图像的位置参数;
3) 根据参考图像和 /或分析区域与主对象的规定位置关系, 及主对象位于红外热像中的 位置参数, 来设置参考图像和 /或分析区域的位置参数。
14、 如权利要求 4所述的热像诊断装置, 其特征在于, 所述存储介质用于存储至少一个 被摄体信息及被摄体信息关联的构成数据、 构成数据关联的分析模式信息、 分析模式信息关 联的诊断规则信息;
热像分析部, 用于基于所述位置参数的分析区域, 按照规定的分析模式, 对获取部获取 的热像数据进行分析, 获得分析结果, 所述分析模式至少包含用于获得分析区域的构成数据 所关联的分析模式信息而获得的分析模式;
诊断部, 用于根据热像分析部获得分析结果, 按照规定诊断规则进行诊断, 获得诊断结 果, 所述诊断规则至少包含按照所述分析模式信息关联的诊断规则信息而获得的诊断规则。
15、 如权利要求 1所述的热像诊断装置, 其特征在于, 具有存储介质, 用于存储至少一 个被摄体信息及其关联的多个构成数据、 构成数据之间的规定位置关系、 构成数据关联的分 析模式信息, 分析模式信息关联的诊断规则信息;
被摄体信息选择部, 用于选择被摄体信息;
参考图像指定部, 根据所选择的被摄体信息, 基于该被摄体信息关联的构成数据, 来指 定用于获得参考图像的构成数据; 分析区域确定部, 用于根据所被选择的摄体信息, 基于该被摄体信息关联的构成数据, 来确定分析区域的构成数据;
所显示的参考图像和与分析有关的分析区域, 符合参考图像的构成数据和分析区域的构 成数据之间的规定位置关系;
热像分析部, 用于基于所述位置参数的分析区域, 按照规定的分析模式, 对获取部获取 的热像数据进行分析, 获得分析结果, 所述分析模式至少包含用于获得分析区域的构成数据 所关联的分析模式信息而获得的分析模式;
诊断部, 用于根据热像分析部获得分析结果, 按照规定的诊断规则进行诊断, 获得诊断 结果, 所述诊断规则至少包含按照所述分析模式信息关联的诊断规则的信息, 而获得的诊断 规则。
16、 如权利要求 1, 4所述的热像诊断装置, 其特征在于, 具有通知控制部, 用于控制对 诊断结果进行通知。
17、 如权利要求 1所述的热像诊断装置, 其特征在于, 具有配置部, 用于使用者配置参 考图像的构成数据的规定指定类型、 分析区域的构成数据的规定指定类型、 参考图像和分析 区域的规定位置关系、 参考图像和分析区域的位置设置规则、 合成参数、 分析区域所对应的 分析模式、 分析模式所对应的诊断规则, 其中至少之一。
18、 如权利要求 1, 4所述的热像诊断装置, 其特征在于, 所述热像诊断装置为手持式热 像仪, 所述获取部为拍摄部, 用于连续拍摄获取热像数据。
19、 如权利要求 1所述的热像诊断装置, 其特征在于, 具有记录部, 用于将规定记录信 息与所获取的热像数据或热像数据规定处理后获得的数据关联记录。
20、 如权利要求 19所述的热像诊断装置, 其特征在于, 所述规定记录信息至少包含诊断 结果的信息, 或分析结果和诊断规则的信息。
21、 如权利要求 4, 8, 14, 15任意一项所述的热像分析装置, 其特征在于, 所述存储介 质为热像分析装置中的非易失性存储介质, 或与热像分析装置连接的非易失性存储介质。
22、 热像诊断方法, 包括,
获取步骤, 用于获取热像数据;
参考图像指定步骤, 用于指定用于获得体现被摄体形态特征的参考图像的构成数据; 分析区域确定步骤, 用于确定分析区域的构成数据;
参考图像位置设置步骤, 用于设置参考图像位于红外热像中的位置参数;
分析区域位置设置步骤, 用于设置分析区域位于红外热像中的位置参数;
显示控制步骤, 用于控制将基于所指定的构成数据获得的参考图像, 按照参考图像的位 置参数, 与获取的热像数据生成的红外热像共同显示;
热像分析步骤, 用于基于所述位置参数的分析区域, 按照规定的分析模式, 对获取步骤 获取的热像数据进行分析, 获得分析结果;
诊断步骤, 用于根据热像分析步骤获得分析结果, 按照规定诊断规则进行诊断, 获得诊 断结果。
22、 如权利要求 22所述的热像诊断方法, 其特征在于, 所述分析模式至少包括如下情况 中的一种或一种以上的组合:
1 ) 基于所确定的分析区域的构成数据关联的分析模式信息, 而获得的分析模式; 2 )基于获得分析区域的位置参数的位置规则或位置信息所关联的分析模式信息, 而获得 的分析模式;
3 )当分析区域的构成数据为指定对象计算和 /或加工获得时, 根据相应的计算和 /或加工 规则关联的分析模式信息, 和 /或指定对象关联的分析模式信息, 而获得的分析模式。
23、 如权利要求 22所述的热像诊断方法, 其特征在于, 所述诊断规则至少包含基于所述 分析模式关联的诊断规则, 而设置的诊断规则。
24、 如权利要求 22所述的热像诊断方法, 其特征在于, 所述参考图像的构成数据和分析 区域的构成数据具有规定位置关系, 所显示的参考图像和与分析有关的分析区域符合所述规 定位置关系。
25、 如权利要求 22所述的热像诊断方法, 其特征在于,
所述参考图像位置设置步骤和分析区域位置设置步骤, 基于规定的位置规则, 来设置参 考图像和分析区域位于红外热像中的位置参数。
26、 如权利要求 22所述的热像诊断方法, 其特征在于, 具有存储介质, 用于存储至少一 个被摄体信息及其关联的多个构成数据、 构成数据之间的规定位置关系、 构成数据关联的分 析模式信息, 分析模式关联的诊断规则信息;
被摄体信息选择步骤, 用于选择被摄体信息;
参考图像指定步骤, 根据所选择的被摄体信息, 基于该被摄体信息关联的构成数据, 来 指定用于获得参考图像的构成数据;
分析区域确定步骤, 用于根据所被选择的摄体信息, 基于该被摄体信息关联的构成数据, 来确定分析区域的构成数据;
所显示的参考图像和与分析有关的分析区域, 符合参考图像的构成数据和分析区域的构 成数据之间的规定位置关系;
热像分析步骤, 用于基于所述位置参数的分析区域, 按照规定的分析模式, 对获取步骤 获取的热像数据进行分析, 获得分析结果, 所述分析模式至少包含用于获得分析区域的构成 数据所关联的分析模式信息, 而获得的分析模式;
诊断步骤, 用于根据热像分析步骤获得分析结果, 按照规定诊断规则进行诊断, 获得诊 断结果, 所述诊断规则至少包含按照所述分析模式信息关联的诊断规则的信息, 而获得的诊 断规则。
PCT/CN2013/083955 2012-09-21 2013-09-22 热像诊断装置和热像诊断方法 WO2014044221A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380049277.7A CN104797913A (zh) 2012-09-21 2013-09-22 热像诊断装置和热像诊断方法
US14/430,212 US10068337B2 (en) 2012-09-21 2013-09-22 Device and method for diagnosing thermal images
JP2015532295A JP6286432B2 (ja) 2012-09-21 2013-09-22 熱画像診断装置および熱画像診断方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210356230.2 2012-09-21
CN201210356230 2012-09-21

Publications (1)

Publication Number Publication Date
WO2014044221A1 true WO2014044221A1 (zh) 2014-03-27

Family

ID=50312528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083955 WO2014044221A1 (zh) 2012-09-21 2013-09-22 热像诊断装置和热像诊断方法

Country Status (4)

Country Link
US (1) US10068337B2 (zh)
JP (2) JP6286432B2 (zh)
CN (3) CN104797913A (zh)
WO (1) WO2014044221A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014044219A1 (zh) * 2012-09-21 2014-03-27 Wang Hao 热像分析装置和热像分析方法
CN104655636B (zh) 2013-11-25 2021-11-23 杭州美盛红外光电技术有限公司 热像分析装置、配置装置和热像分析方法、配置方法
WO2015074628A1 (zh) * 2013-11-25 2015-05-28 王浩 分析对比装置和分析对比方法
CN105262943A (zh) * 2014-04-29 2016-01-20 杭州美盛红外光电技术有限公司 热像记录装置、热像处理装置和热像记录方法、热像处理方法
CN105208299A (zh) * 2014-04-29 2015-12-30 杭州美盛红外光电技术有限公司 热像拍摄装置、热像处理装置和热像拍摄方法、热像处理方法
JP6872703B2 (ja) * 2016-10-17 2021-05-19 パナソニックIpマネジメント株式会社 プログラム生成方法、プログラム生成装置および制御プログラム
WO2018073899A1 (ja) * 2016-10-18 2018-04-26 株式会社オプティム コンピュータシステム、植物の診断方法及びプログラム
US10643328B2 (en) * 2016-10-31 2020-05-05 Optim Corporation Computer system, and method and program for diagnosing objects
JP6592613B2 (ja) * 2016-10-31 2019-10-16 株式会社オプティム コンピュータシステム、植物の診断方法及びプログラム
CN107463471B (zh) * 2017-07-21 2020-11-10 北京小米移动软件有限公司 诊断终端屏幕的方法及装置
CL2018002477A1 (es) * 2018-08-30 2018-10-19 SL CAPITAL SpA Sistema y método para la detección y digitalización del hormigón en estado fresco usando tecnología infraroja y funciones matemáticas de tendencia.
CN111695227B (zh) * 2019-03-13 2024-02-20 宁波方太厨具有限公司 一种灶具加热均匀性评价方法
CN110223274B (zh) * 2019-05-23 2022-03-25 电子科技大学 一种基于乘性模糊的红外技术缺陷重构与特征提取方法
CN110390663B (zh) * 2019-05-23 2022-03-25 电子科技大学 基于红外热成像的信息熵乘性模糊缺陷特征分析重构方法
CN110426125A (zh) * 2019-05-29 2019-11-08 陕西飞机工业(集团)有限公司 一种飞机装配、维修工具防丢方法
CN112001879B (zh) * 2019-06-18 2023-07-14 杭州美盛红外光电技术有限公司 气体检测装置和气体检测方法
CN111624229B (zh) * 2020-05-15 2023-03-17 嘉兴恒创电力设计研究院有限公司明绘分公司 一种基于红外成像的带电设备故障智能诊断方法
CN111798407B (zh) * 2020-05-15 2024-05-21 国网浙江省电力有限公司嘉兴供电公司 一种基于神经网络模型的带电设备故障诊断方法
CN112857588B (zh) * 2021-03-01 2022-02-01 中国空气动力研究与发展中心超高速空气动力研究所 一种风洞试验模型表面温度的红外热成像测量装置
KR102621964B1 (ko) * 2021-07-02 2024-01-10 한국항공우주산업 주식회사 적외선 촬영을 이용한 인공위성 구조체의 열성능 평가 방법 및 적외선 촬영을 이용한 인공위성 구조체의 히터 연결 상태 점검 방법
CN113591721B (zh) * 2021-08-02 2022-01-25 山东省交通科学研究院 一种利用无人机确定新摊铺沥青路面取芯点位置的方法
CN113687156B (zh) * 2021-08-07 2022-09-20 郑州海威光电科技有限公司 一种利用红外热图辅助判断电力设备隐患的方法
CN113741395A (zh) * 2021-09-06 2021-12-03 深圳市星卡科技有限公司 基于热成像技术的故障诊断方法、装置和计算机设备
KR102412835B1 (ko) * 2021-11-19 2022-06-24 이화전기공업 주식회사 무정전 전원장치의 화재 예측 기기
CN115639248A (zh) * 2022-12-22 2023-01-24 天津思睿信息技术有限公司 一种用于建筑外墙质量检测的系统及方法
CN117930319B (zh) * 2024-03-19 2024-06-11 中国科学院合肥物质科学研究院 基于一维碳纤维复合材料的强流粒子束束散角测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038701A (ja) * 2004-07-28 2006-02-09 Nikon Corp データの連結合成方法及び連結合成プログラム
CN101716945A (zh) * 2010-01-14 2010-06-02 广州科易光电技术有限公司 铁路机车车轴红外热像监测方法及系统
CN102538980A (zh) * 2012-01-12 2012-07-04 杭州美盛红外光电技术有限公司 热像装置和热像拍摄方法
CN102538974A (zh) * 2012-01-12 2012-07-04 杭州美盛红外光电技术有限公司 热像显示装置、热像显示系统和热像显示方法
CN102564607A (zh) * 2012-01-12 2012-07-11 杭州美盛红外光电技术有限公司 热像装置和热像规范拍摄方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032727A (en) * 1990-09-14 1991-07-16 Digital Equipment Corporation Product defect detection using thermal ratio analysis
AU2002340508A1 (en) * 2002-09-26 2004-04-19 Siemens Aktiengesellschaft Method and apparatus for monitoring a technical installation, especially for carrying out diagnosis
JP2005016991A (ja) * 2003-06-24 2005-01-20 Railway Technical Res Inst 赤外線構造物診断システム
US7732768B1 (en) * 2006-03-02 2010-06-08 Thermoteknix Systems Ltd. Image alignment and trend analysis features for an infrared imaging system
JP2008045888A (ja) * 2006-08-11 2008-02-28 Chugoku Electric Power Co Inc:The 過熱診断装置
JP2008045889A (ja) * 2006-08-11 2008-02-28 Chugoku Electric Power Co Inc:The 過熱診断システムおよび過熱診断プログラム
JP2008073228A (ja) * 2006-09-21 2008-04-03 Ge Medical Systems Global Technology Co Llc 画像診断システムおよびその操作装置
US8229160B2 (en) * 2008-01-03 2012-07-24 Apple Inc. Systems and methods for identifying objects and providing information related to identified objects
JP5292477B2 (ja) * 2010-01-22 2013-09-18 株式会社日立製作所 診断装置及び診断方法
CN101819239B (zh) * 2010-04-06 2012-05-02 嘉兴学院 基于三维温度场快速构建的变压器故障诊断系统
CN202141769U (zh) * 2011-07-20 2012-02-08 唐江 一种变压器状态在线监测及故障诊断系统
CN102354329B (zh) * 2011-07-25 2013-08-28 广州科易光电技术有限公司 带电设备红外数据库智能诊断管理系统
US8659408B2 (en) * 2012-05-22 2014-02-25 Delphi Technologies, Inc. Object detection system and method using a camera and a multiple zone temperature sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038701A (ja) * 2004-07-28 2006-02-09 Nikon Corp データの連結合成方法及び連結合成プログラム
CN101716945A (zh) * 2010-01-14 2010-06-02 广州科易光电技术有限公司 铁路机车车轴红外热像监测方法及系统
CN102538980A (zh) * 2012-01-12 2012-07-04 杭州美盛红外光电技术有限公司 热像装置和热像拍摄方法
CN102538974A (zh) * 2012-01-12 2012-07-04 杭州美盛红外光电技术有限公司 热像显示装置、热像显示系统和热像显示方法
CN102564607A (zh) * 2012-01-12 2012-07-11 杭州美盛红外光电技术有限公司 热像装置和热像规范拍摄方法

Also Published As

Publication number Publication date
CN104797913A (zh) 2015-07-22
CN103776542A (zh) 2014-05-07
JP2015529336A (ja) 2015-10-05
US20150254860A1 (en) 2015-09-10
CN103776542B (zh) 2021-04-20
CN103674281A (zh) 2014-03-26
JP2018087823A (ja) 2018-06-07
JP6286432B2 (ja) 2018-02-28
US10068337B2 (en) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2014044221A1 (zh) 热像诊断装置和热像诊断方法
JP6272634B2 (ja) 熱画像装置および熱画像標準撮影方法
JP6419233B2 (ja) 熱画像装置および熱画像撮影方法
EP2849427B1 (en) Infrared recording device and infrared recording method
CN103776539B (zh) 分析装置和分析方法
EP3006911A1 (en) Thermal imaging device, analysis device and thermal image photography method and analysis method
JP2015534364A (ja) 熱画像情報記録装置および熱画像情報記録方法
WO2015096824A1 (zh) 分析装置和分析方法
JP5152317B2 (ja) プレゼンテーション制御装置及びプログラム
CN114324347B (zh) 热像分析装置、配置装置和热像分析方法、配置方法
CN103674274A (zh) 热像记录控制装置和热像记录控制方法
US20150358559A1 (en) Device and method for matching thermal images
WO2015074628A1 (zh) 分析对比装置和分析对比方法
WO2014044220A1 (zh) 测量模式选择装置和测量模式选择方法
US20150334314A1 (en) Device and method for detecting thermal images
WO2013174288A1 (zh) 影像摄影装置和影像摄影方法
WO2013174291A1 (zh) 红外摄影装置和红外摄影方法
WO2013174294A1 (zh) 影像摄影装置和影像摄影方法
CN113688860A (zh) 图像视觉匹配装置和图像视觉匹配方法
CN112945388A (zh) 热像和可见光匹配装置和显示匹配方法
WO2013174285A1 (zh) 热像摄影装置和热像摄影方法
WO2014044202A1 (zh) 红外信息显示控制装置和红外信息显示控制方法
CN113125016A (zh) 红外记录控制装置和红外记录控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532295

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14430212

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839168

Country of ref document: EP

Kind code of ref document: A1