WO2014101801A1 - 一种传输上行信息的方法、设备及系统 - Google Patents

一种传输上行信息的方法、设备及系统 Download PDF

Info

Publication number
WO2014101801A1
WO2014101801A1 PCT/CN2013/090598 CN2013090598W WO2014101801A1 WO 2014101801 A1 WO2014101801 A1 WO 2014101801A1 CN 2013090598 W CN2013090598 W CN 2013090598W WO 2014101801 A1 WO2014101801 A1 WO 2014101801A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission node
uplink transmission
time
determined
uplink
Prior art date
Application number
PCT/CN2013/090598
Other languages
English (en)
French (fr)
Inventor
赵亚利
许芳丽
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP13867568.1A priority Critical patent/EP2941055B1/en
Priority to US14/651,658 priority patent/US9781717B2/en
Publication of WO2014101801A1 publication Critical patent/WO2014101801A1/zh
Priority to US15/687,562 priority patent/US9974076B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method, device, and system for transmitting uplink information.
  • LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • the LTE-A system requires better compatibility with the LTE system, and the maximum bandwidth of the LTE system can reach 20 MHz.
  • Carrier Aggregation (CA) technology is introduced in the LTE-A system based on the need to improve the peak rate, compatibility with the LTE system, and full use of frequency resources.
  • each cell aggregated by the UE may include a pair of uplink/downlink carriers, or may only include downlink carriers, that is, only the number of downlink carriers allowed to be greater than or equal to the uplink carrier.
  • the number of uplink carriers is not allowed to be greater than the number of downlink carriers.
  • the LTE-A system also classifies the cell (Cell) of the carrier aggregation.
  • the cells configured for the UE can be classified into two types: a primary cell (Primary Cell, PCell) and a secondary cell. (Secondary Cell, SCell);
  • Primary Cell PCell
  • Secondary Cell SCell
  • RRC Radio Resource Control
  • the secondary cell is configured by the base station, and is mainly responsible for transmitting the service data of the UE.
  • LTE R10 defines a carrier aggregation scenario, including a heterogeneous network composed of a macro base station (Macro e B) and a local node, where the Macro eNB provides basic coverage, the local node provides hotspot coverage, and the local node includes radio remote access (Remote Radio Heads) , RRH ), relay (repeater), local base station (Local eNB), etc.
  • the downlink data of the UE may be sent to the UE through only one transmission node, or may be sent to the UE by two transmission nodes at the same time; similarly, the uplink data of the UE may also be sent only to one transmission node.
  • the downlink implementation simultaneously receives transmissions from two transmission nodes.
  • the data is relatively easy, but it is more difficult to achieve data transmission to two transmission nodes at the same time.
  • the uplink of the UE generally has only one transmitter, that is, it only supports sending uplink data to a single transmission node at the same time.
  • the uplink transmission of the UE is fixed on the PCell.
  • the PCell For heterogeneous networks, since the Macro eNB provides a wide range of coverage, the PCell generally selects the Cell under the Marco eNB.
  • the existing uplink transmission mechanism has the following disadvantages: the load of the Marco eNB is increased, the power consumption of the UE is increased, the uplink interference is increased, and the system throughput is reduced.
  • the uplink transmission mechanism of the existing UE increases the load of the Macro eNB, increases the uplink interference between the UEs, and is not conducive to the power saving of the UE.
  • the embodiments of the present invention provide a method, a device, and a system for transmitting uplink information, which are used to solve the problem that the uplink transmission mechanism of the existing UE increases the load of the Macro eNB, increases the uplink interference between the UEs, and is not conducive to the UE section. The problem of electricity.
  • the macro base station determines, from the transmission node connected to the UE, the uplink transmission node that is used to receive the uplink information of the UE;
  • the macro base station After receiving the effective time of the currently determined uplink transmission node, the macro base station receives the uplink information sent by the UE by using the currently determined uplink transmission node.
  • the embodiment of the present application can flexibly determine an appropriate uplink transmission node for uplink information transmission, thereby reducing the load of the macro base station, reducing uplink interference between UEs, improving system throughput, and saving The power of the UE.
  • the method further includes: the macro base station determining, according to the acquired capability information of the UE, the The UE supports single-node uplink transmission at the same time.
  • the macro base station may determine, according to the following steps, that the UE supports single-node uplink transmission at the same time: if the capability information carries first indication information indicating the number of radio frequencies (RF) included in the UE And the number of the first indication information indication is 1, the macro base station determines that the UE supports single-node uplink transmission at the same time; and if the capability information carries, is used to indicate whether the UE supports multiple timing advances
  • the second indication information of the (MTA) and the second indication information indicates that the UE does not support the MTA, and the macro base station determines that the UE supports single-node uplink transmission at the same time; a third indication information indicating whether the UE supports single-node uplink transmission at the same time, and the third indication information indicates that the UE supports single-node uplink transmission at the same time, and the macro base station determines that the UE is at the same moment Support single node uplink transmission.
  • MTA radio frequencies
  • the macro base station determines an uplink transmission node that is used to receive the uplink information of the UE, and further includes: the macro base station from a transmission node connected to the UE, Selecting a transmission node that meets the set selection principle as the currently determined uplink transmission node; or, after receiving the identifier information sent by the UE through the high layer signaling, the macro base station belongs to the cell corresponding to the identifier information
  • the transmission node is the uplink transmission node that is determined this time, wherein the identifier information is identifier information of one or more cells corresponding to the uplink transmission node selected by the UE, or the macro base station according to the The agreement rule between the UEs determines an uplink transmission node that is used to receive uplink information of the UE.
  • selection principle may include one or more of the following principles:
  • the macro base station determines a distance between the UE and each of the transmission nodes according to the current location information of the UE, and selects a transmission node with a minimum distance or not greater than the set distance threshold as the currently determined uplink transmission node;
  • the macro base station selects, according to the path loss information of the UE on each cell, a transmission node corresponding to a cell with a minimum path loss or not greater than a set path loss threshold as the currently determined uplink transmission node;
  • the macro base station selects, as the currently determined uplink transmission node, a transmission node corresponding to a cell whose reference signal receiving power RSRQ is the largest or whose value is greater than the set RSRQ threshold, according to the reference signal receiving condition of the UE on each cell;
  • the macro base station selects, according to the reference signal receiving situation of the UE on each cell, a transmission node corresponding to the cell whose receiving signal receiving RSRP value is the largest or whose value is greater than the set RSRP threshold, as the determined uplink transmission node.
  • the macro base station selects a transmission node corresponding to a cell with the largest channel state information (CQI) value or a value greater than the set CQI threshold as the current determined uplink according to the reference signal reception condition of the UE on each cell.
  • CQI channel state information
  • the macro base station is based on a sounding reference signal (Sounding Reference Signal) sent by the UE on each cell.
  • Sounding Reference Signal Sounding Reference Signal
  • the receiving shield of the SRS is selected as the uplink transmitting node determined by the cell corresponding to the cell whose SRS receiving shield value is the largest or whose value is greater than the set SRS threshold.
  • the method may further include: when the determining that the currently determined uplink transmission node is different from the last determined uplink transmission node, notifying the currently determined uplink transmission node to the UE by using the signaling, where the signaling is And carrying identifier information of one or more cells corresponding to the determined uplink transmission node.
  • the signaling is RRC signaling, medium access control (MAC) signaling or physical layer signaling.
  • MAC medium access control
  • the macro base station determines the uplink transmission node that is used to receive the uplink information of the UE, and may further include: if the UE is aggregated at the specified moment There is an uplink transmission requirement on the carrier, and the macro base station determines that the transmission node to which the component carrier belongs is the determined uplink transmission node.
  • the identifier information is a cell index number; or the identifier information is a combination of a downlink DL frequency point and a physical cell identifier PCI; or the identifier information is a cell global unique identifier ECGI.
  • the agreement rule comprises: selecting, according to each set change period, a different transmission node as each determined uplink transmission node.
  • the change period and the offset of different UEs are configured by the macro base station, or are pre-agreed by the macro base station and each UE.
  • the determining, by the macro base station, the effective time of the currently determined uplink transmitting node includes: determining, by the macro base station, the current time according to the time when the signaling is sent by itself and the effective time that the UE and the UE have agreed in advance.
  • the determined uplink transmission point is effective; or, if the signaling is the physical layer signaling, the macro base station uses the subframe where the physical layer signaling is located as the effective time of the current determined uplink transmission point; or And determining, by the macro base station, an effective time of the currently determined uplink transmission point according to the time when the UE sends the high layer signaling, and the effective time that the UE and the UE have agreed in advance; or, the macro base station is configured according to the current system frame number SFN. , the subframe number, the offset, and the change period corresponding to the uplink transmission node, determining the effective time of the determined uplink transmission node. .
  • the method further includes: the macro base station receiving by using the last determined uplink transmission node The uplink information sent by the UE; or the macro base station terminates uplink/downlink scheduling for the UE.
  • the method further includes: the macro base station separately The last determined uplink transmission node and the currently determined uplink transmission node listen to the uplink information sent by the UE; or the macro base station terminates the uplink/downlink scheduling of the UE.
  • a method for sending uplink information which is provided by the embodiment of the present application, includes:
  • the UE After the UE arrives at the determined effective time of the uplink transmission node, the UE sends the uplink information to the currently determined uplink transmission node.
  • the embodiment of the present application can flexibly determine an appropriate uplink transmission node to transmit uplink information, thereby reducing the load of the macro base station, reducing uplink interference between UEs, improving system throughput, and The power of the UE is saved.
  • the method further includes: the UE selecting, from the transmission node connected to the UE, a transmission node that meets the determined determination principle as the current determined An uplink transmission node; or, after receiving the identifier information that is sent by the macro base station, the UE determines that the transmission node to which the cell corresponding to the identifier information belongs is the determined uplink transmission node, where The identification information is identifier information of one or more cells of the uplink transmission node selected by the macro base station for the UE; or, the UE determines, according to an agreement rule with the macro base station, that the current is used for sending uplink The uplink transmission node of the information.
  • the determining principle may include one or more of the following principles:
  • the UE selects an uplink transmission node corresponding to the service and the area with the largest RSRP value or the value greater than the set RSRP threshold as the uplink transmission node determined this time according to the measurement result of each serving cell;
  • the UE selects an uplink transmission node corresponding to the serving cell with the largest RSRQ value or the value greater than the set RSRQ threshold as the currently determined uplink transmission node according to the measurement result of each serving cell;
  • the UE selects an uplink transmission node corresponding to the serving cell with the largest CQI value or the value greater than the set CQI threshold as the uplink transmission node determined this time according to the measurement result of each serving cell;
  • the UE selects an uplink transmission node corresponding to the serving cell with the smallest path loss value as the uplink transmission node determined this time according to the measurement result of each serving cell;
  • the UE determines the distance between itself and each transmission node according to its current location information, and selects the transmission node with the smallest distance as the determined uplink transmission node.
  • the method further The method includes: when the determining that the currently determined uplink transmission node is different from the last determined uplink transmission node, notifying the currently determined uplink transmission node to the macro base station by using high layer signaling, where the high layer signaling is And carrying identifier information of one or more cells corresponding to the uplink transmission node determined by the UE this time.
  • the identifier information is a cell index number; or the identifier information is a combination of a downlink DL frequency point and a physical cell identifier PCI; or the identifier information is ECGI.
  • the UE determines an uplink transmission node that is used to send uplink information, and includes The UE uses the transmission node to which the cell corresponding to the uplink scheduling information carried in the physical layer signaling belongs, as the uplink transmission node used for transmitting the uplink information.
  • the agreement rule comprises: selecting, according to each set change period, a different transmission node as each determined uplink transmission node.
  • a change period and an offset of different UEs may be configured by the macro base station, or by the macro base station Pre-agreed with each UE.
  • the determining, by the UE, the effective time of the currently determined uplink transmitting node the method specifically includes: determining, by the UE, the time according to the time when the UE sends the high layer signaling, and the effective time pre-agreed by the UE and the macro base station.
  • the UE determines, by the UE, the current determined uplink transmission node effective time according to the time when the macro base station sends the signaling, and the effective time that the macro base station pre-agreed with the macro base station; Or the time when the UE receives the identity information sent by the macro base station as the current uplink transmission node effective time; or if the signaling sent by the macro base station is physical layer signaling,
  • the UE uses the subframe in which the physical layer signaling is located as the current uplink transmission node effective time; or the UE according to the current system frame number SFN, the subframe number, the offset, and the uplink transmission node.
  • the change period determines the effective time of the currently determined uplink transmission node.
  • the method further includes: The uplink information sent by the UE to the uplink transmission node determined last time is sent.
  • the UE sends the uplink information to the currently determined uplink transmission node, and the method further includes: sending, by the UE, the uplink information on the uplink carrier corresponding to the currently determined uplink transmission node. .
  • the UE sends the uplink information on the uplink carrier corresponding to the determined uplink transmission node, and further includes: The UE selects a component carrier that belongs to the currently determined uplink transmission node and is configured with a PUCCH, and transmits PUCCH information.
  • PUCCH physical uplink control channel
  • the method further includes one or more of the following steps:
  • the UE deletes the uplink scheduling configuration corresponding to the last determined uplink transmission node that is saved by the UE; the UE saves the timing advance TA value of the cell or the timing advance group TAG corresponding to the last determined uplink transmission node;
  • the UE stops sending the SRS, the Dedicated Scheduling Request (DSR) and the CQI to the uplink transmission node determined last time;
  • the UE deletes the HARQ buffer of the cell corresponding to the last determined uplink transmission node saved by itself. Further, the determining, by the UE, the TA value of the cell corresponding to the currently determined uplink transmission node, further comprising: after determining, by the UE, the uplink transmission node that is used to send the uplink information, according to the received macro base The timing advance command sent by the station, the media access control unit TAC MAC CE, and the TA value of the cell or TAG corresponding to the previously determined uplink transmission node saved by the UE, determine the cell corresponding to the currently determined uplink transmission node. After the UE determines the uplink transmission node that is used to transmit the uplink information, the UE obtains the TA value of the cell corresponding to the currently determined uplink transmission node by using the random access RA procedure.
  • a first determining module configured to determine, from a transit node connected to the user equipment UE, an uplink transport node that is used to receive uplink information of the UE;
  • a second determining module configured to determine an effective time of the determined uplink transmitting node
  • the receiving module is configured to receive the uplink information sent by the UE by using the currently determined uplink transmitting node after the current effective time of the determined uplink transmitting node arrives.
  • the embodiment of the present application can flexibly determine an appropriate uplink transmission node for uplink information transmission, thereby reducing the load of the macro base station, reducing uplink interference between UEs, improving system throughput, and saving The power of the UE.
  • the first determining module is specifically configured to: select, from the transit node connected to the UE, a transport node that meets the set selection principle as the uplink transport node that is determined this time; or, After the identifier information sent by the UE is sent by the high-layer signaling, the transport node to which the cell corresponding to the identifier information belongs is the uplink transport node that is determined by the UE, where the identifier information is the uplink transport node selected by the UE. Corresponding identification information of one or more cells; or determining, according to an agreement rule with the UE, an uplink transmission node that is used to receive uplink information of the UE.
  • the first determining module is further configured to: after selecting a transmission node to which the cell that meets the set selection principle belongs, as the currently determined uplink transmission node, and determining the currently determined uplink transmission node Before the effective time, if it is determined that the determined uplink transmission node is different from the last determined uplink transmission node, the currently determined uplink transmission node is notified to the UE by using the signaling, and the signaling carries the original Identification information of one or more cells corresponding to the determined uplink transmission node.
  • the second determining module is specifically configured to: determine an effective time of the currently determined uplink transmission point according to a time when the signaling is sent by itself and an effective time that the UE and the UE have agreed in advance; or a time when the UE sends the HARQ ACK feedback or the RRC response message for the signaling as the current determined uplink transmission point effective time; or, if the signaling is physical layer signaling, the physical The subframe in which the layer signaling is located is used as the effective time of the currently determined uplink transmission node; or, the current determined transmission point is determined according to the time when the UE sends the high layer signaling and the effective time that the UE and the UE have agreed in advance.
  • the effective time of the uplink transmission node determined by the current system frame number SFN, the subframe number, the offset, and the change period corresponding to each uplink transmission node.
  • the receiving module may be specifically configured to: Notifying, by the signaling, the currently determined uplink transmission node to the UE and after determining the current uplink Before receiving the effective time of the transmitting node, receiving the uplink information sent by the UE by using the last determined uplink transmitting node; or terminating the uplink/downlink scheduling of the UE; if the second determining module receives the self-received The time at which the UE sends the HARQ ACK feedback or the RRC response message for the signaling is used as the current determined transmission point effective time; the receiving module may be specifically configured to: determine this time by using the signaling After the uplink transmission node notifies the UE and before the effective time of the currently determined uplink transmission node arrives, the uplink transmission node determined last time and the currently determined uplink transmission node respectively listen
  • another macro base station provided by the embodiment of the present application includes a processor and a radio unit:
  • the processor is configured to determine, from a transmission node connected to the user equipment UE, an uplink transmission node that is used to receive uplink information of the UE, and determine an effective time of the uplink transmission node that is determined this time;
  • the radio unit is configured to: after the current effective time of the determined uplink transmission node arrives, receive the uplink information sent by the UE by using the currently determined uplink transmission node.
  • the embodiment of the present application can flexibly determine an appropriate uplink transmission node for uplink information transmission, thereby reducing the load of the macro base station, reducing uplink interference between UEs, improving system throughput, and saving The power of the UE.
  • a first processing module configured to determine, from a transmission node connected to itself, an uplink transmission node that is used to send uplink information
  • a second processing module configured to determine an effective time of the currently determined uplink transmission node
  • a sending module configured to send uplink information to the currently determined uplink transmitting node after the current effective time of the determined uplink transmitting node arrives.
  • the embodiment of the present application can flexibly determine an appropriate uplink transmission node for uplink information transmission, thereby reducing the load of the macro base station, reducing uplink interference between UEs, improving system throughput, and saving The power of the UE.
  • the first processing module is specifically configured to: select, from the transmission node connected to itself, a transmission node that meets the determined determination principle as the uplink transmission node that is determined this time; or, after receiving the macro base
  • the transmission node to which the cell corresponding to the identifier information belongs is determined to be the determined uplink transmission node, where the identifier information is that the macro base station is the uplink transmission node selected by the UE.
  • the first processing module is further configured to: after selecting a transmission node that meets the determined determination principle as the currently determined uplink transmission node, and determining that the currently determined uplink transmission node is effective Before the moment, If it is determined that the determined uplink transmission node is different from the last determined uplink transmission node, the currently determined uplink transmission node is notified to the macro base station by using the high layer signaling, and the high layer signaling carries the current time.
  • the second processing module is specifically configured to: determine, according to a time when the high-level signaling is sent by itself, and an effective time pre-agreed by the macro base station, the current determined uplink transmission node effective time; or Determining the current determined uplink transmission node effective time at the time when the macro base station sends the signaling and the effective time pre-agreed by the macro base station and the macro base station; or, receiving the identity information sent by the macro base station As the current uplink transmission node effective time; or, if the signaling sent by the macro base station is physical layer signaling, the subframe in which the physical layer signaling is located is used as the uplink transmission determined this time. And determining, according to the current system frame number SFN, the subframe number, the offset, and the change period of the uplink transmission node, the effective time of the currently determined uplink transmission node.
  • the sending module is further configured to: determine, after the first determining module determines the current uplink transmitting node that is used to send the uplink information, and before the effective time determined by the second determining module arrives, The uplink transmission node sends uplink information.
  • the second processing module further performs one or more of the following steps: deleting the last determined uplink transmission node that is saved by itself Upstream scheduling configuration; storing the TA value of the cell or TAG corresponding to the last determined uplink transmission node; stopping transmitting the SRS, DSR, and CQI to the uplink transmission node determined last time; determining the cell corresponding to the currently determined uplink transmission node The TA value is deleted; the HARQ cache corresponding to one or more cells of the last determined uplink transmission node saved by itself is deleted.
  • Another user equipment provided by the embodiment of the present application includes a processor and a radio frequency unit.
  • the processor is configured to: determine, from a transmission node connected to itself, an uplink transmission node that is used to send uplink information; determine an effective time of the currently determined uplink transmission node;
  • the radio unit is configured to send uplink information to the currently determined uplink transmission node after the current effective time of the determined uplink transmission node arrives.
  • the embodiment of the present application can flexibly determine an appropriate uplink transmission node for uplink information transmission, thereby reducing the load of the macro base station, reducing uplink interference between UEs, improving system throughput, and saving The power of the UE.
  • a macro base station configured to determine, from a transmission node connected to the user equipment UE, an uplink transmission node that is used to receive uplink information of the UE, determine an effective time of the currently determined uplink transmission node, and Receiving the uplink information sent by the UE by the currently determined uplink transmission node after the time when the effective time of the determined uplink transmission node arrives;
  • a UE configured to determine, from a transmission node connected to itself, an uplink transmission node that is used to send uplink information; Determining an effective time of the currently determined uplink transmission node; and sending the uplink information to the currently determined uplink transmission node after the current effective time of the determined uplink transmission node arrives.
  • FIG. 1 is a schematic flowchart of a method for receiving uplink information according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for sending uplink information according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of an interaction process between a macro base station and a UE in a first scenario according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an interaction process between a macro base station and a UE in a second scenario according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of an interaction process between a macro base station and a UE in a third scenario according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a macro base station according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another macro base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a user equipment according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another user equipment according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the embodiments of the present application can flexibly determine an appropriate uplink transmission node for uplink information transmission in a heterogeneous network, thereby reducing the load of the macro base station, reducing uplink interference between UEs, and improving system throughput. And save the power of the UE.
  • Pico (low power) base station Femto (home) base station, RRH, repeater, RN (relay device) and macro base station (Macro e B).
  • a method for receiving uplink information which is applied to a scenario in which the UE only supports single-node uplink transmission, as shown in FIG. 1 , includes the following steps:
  • Step 11 The macro base station determines, from the transmission node connected to the UE, an uplink transmission node that is used to receive uplink information of the UE.
  • Step 12 The macro base station determines an effective time of the determined uplink transmission node.
  • Step 13 After receiving the effective time of the currently determined uplink transmission node, the macro base station receives the uplink information sent by the UE by using the currently determined uplink transmission node.
  • the method before step 11, the method further includes:
  • the macro base station determines, according to the acquired capability information of the UE, that the UE supports single-node uplink transmission at the same time. Specifically, when the UE enters the RRC CONNECTED state from the RRC_IDLE, the macro base station needs to acquire the capability information of the UE, where the capability information of the UE includes the UE radio capability information and the network capability information of the UE.
  • the radio capability information of the UE includes the power level and the frequency bandwidth supported by the UE, and the network capability information of the UE includes the UE's support capability for the security algorithm.
  • the macro base station sends a capability query request to the UE through the air interface; correspondingly, after receiving the capability query request sent by the macro base station, the UE reports the capability information of the UE to the macro base station; or, the macro base station sends the mobility management entity to the mobility management entity.
  • the Management Entity sends a capability query request.
  • the MME returns the capability information of the UE to the macro base station.
  • the macro base station determines that the UE supports single-node uplink transmission at the same time, but is not limited to the following three modes:
  • Manner 1 If the capability information of the UE carries the first indication information indicating the number of RFs included in the UE, and the number of indications indicated by the first indication information is 1, the macro base station determines that the UE supports single node uplink at the same time. If the second indication information of the UE indicates that the UE supports the MTA, and the second indication information indicates that the UE does not support the MTA, the macro base station determines that the UE supports a single node at the same time. Uplink transmission
  • Manner 3 If the capability information of the UE carries the third indication information indicating whether the UE supports single-node uplink transmission at the same time, and the third indication information indicates that the UE supports single-node uplink transmission at the same time, the Acer The station determines that the UE supports single node uplink transmission at the same time.
  • the third indication information may be lbit data. For example, if the third indication information is "1", it indicates that the UE supports single-node uplink transmission at the same time; if the third indication information is "0", The UE does not support single-node uplink transmission at the same time.
  • step 11 may further include, but is not limited to, the following three modes:
  • step 11 further includes:
  • the macro base station selects, from the transmission node connected to the UE, a transmission node that satisfies the set selection principle as the currently determined uplink transmission node.
  • selection principle may be, but is not limited to, including one or more of the following principles:
  • the macro base station determines the distance between the UE and each transmission node according to the current location information of the UE, and selects a distance.
  • the transmission node with the minimum or not greater than the set distance threshold is used as the determined uplink transmission node, and the distance threshold is an empirical value, which can be determined according to actual needs;
  • the macro base station selects, according to the path loss information of the UE on each cell, a transmission node corresponding to the cell with the smallest or no path loss threshold, as the determined uplink transmission node, and the path loss threshold is an empirical value. Determine according to actual needs;
  • the macro base station selects, according to the reception condition of the reference signal of the UE on each cell, the transmission node corresponding to the cell whose reference signal received power (RSRP) is the largest or the value is not less than the set RSRP threshold.
  • the uplink transmission node, the RSRP threshold is an empirical value, which can be determined according to actual needs; the macro base station selects the reference signal receiving quantity (RSRQ) to obtain the maximum value according to the reference signal receiving condition of the UE in each cell or
  • the transmission node corresponding to the cell whose value is not less than the set RSRQ threshold is used as the uplink transmission node determined this time.
  • the RSRQ threshold is an empirical value, which can be determined according to actual needs.
  • the macro base station receives the reference signal according to the UE on each cell. And selecting, as the current determined uplink transmission node, the transmission node corresponding to the CQI value or the value of the CQI threshold that is not less than the set CQI threshold, the CQI threshold is an empirical value, and may be determined according to actual needs;
  • the macro base station selects the SRS receiving shield value according to the SRS receiving shield quantity sent by the UE on each cell, and selects the SRS receiving shield value to be the largest or the value is not less than the set SRS threshold.
  • the SRS threshold is an empirical value, which can be determined according to actual needs.
  • the method in the embodiment of the present application may further include:
  • the macro base station When the macro base station determines that the currently determined uplink transmission node is different from the last determined uplink transmission node, the macro base station notifies the UE of the determined uplink transmission node by using the signaling, and the signaling carries the uplink transmission node corresponding to the current determination. Identification information of one or more cells.
  • the signaling sent by the macro base station is Radio Resource Control (RRC) signaling, Media Access Control (MAC) signaling, or physical layer signaling, where physical layer signaling is physical.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • PDCCH downlink control channel
  • E-PDCCH evolved PDCCH
  • R-PDCCH relay PDCCH
  • the identifier information of the cell may be a cell index number; or may be a combination of a downlink (DL) frequency point and a physical cell identifier (PCI); or may be an EUTRAN Cell Global Identifier. , ECGI).
  • LCID Logical Channel Identifier
  • the macro base station notifies the UE of the currently determined uplink transmission node through physical layer signaling, including two indication methods: an explicit indication and an implicit indication; Method 1, explicit indication, specifically:
  • the macro base station carries the identification information of one or more cells of the determined uplink transmission node in the physical layer signaling;
  • the macro base station determines that the transmission node to which the member carrier belongs is the determined uplink transmission node;
  • the UE aggregates two UL member carriers (CCs), that is, CC1 and CC2. If T1, there are uplink transmission requirements on CC1 (such as Physical Uplink Shared Channel (PUSCH), physical layer uplink.
  • CC1 such as Physical Uplink Shared Channel (PUSCH), physical layer uplink.
  • the control channel Physical Uplink Control Channel, PUCCH) or SRS selects the transmission node corresponding to CC1 as the determined uplink transmission node.
  • the macro base station needs to ensure that the PUCCH, PUSCH, and SRS transmissions of multiple cells corresponding to different uplink transmission nodes do not conflict in time.
  • the effective time of the currently determined uplink transmission node determined by the macro base station includes but is not limited to one of the following manners:
  • the macro base station determines, according to the sending time of the signaling, and the effective time agreed by the macro base station and the UE in advance, the effective time of the currently determined uplink transmission point;
  • the method in the embodiment of the present application further includes:
  • the macro base station receives the uplink information sent by the UE by using the last determined uplink transmission node; or the macro base station terminates the uplink/downlink scheduling for the UE (except for the UL grant for transmitting the RRC response message).
  • the UE after receiving the identification information of the currently determined uplink transmission node sent by the macro base station and before the pre-set time, the UE sends the uplink information to the uplink transmission node determined last time.
  • the time at which the macro base station receives the HARQ ACK feedback or the RRC response message sent by the UE for the signaling is used as the determined uplink transmission point effective time;
  • the macro base station determines, according to the following steps, the effective time of the determined uplink transmission node:
  • the macro base station After receiving the RRC response message on the determined uplink transmission node, the macro base station determines that the determined effective time of the uplink transmission node arrives.
  • the method of the embodiment of the present application further includes:
  • the macro base station monitors the uplink information sent by the UE by using the last determined uplink transmission node and the currently determined uplink transmission node, respectively, or the macro base station terminates the uplink/downlink scheduling for the UE (except for the UL grant for transmitting the RRC response message) ).
  • the UE receives the identification information of the currently determined uplink transmission node sent by the macro base station, And determining, by the uplink transmitting node, the uplink information, and after receiving the identifier information of the currently determined uplink transmitting node that is sent by the macro base station, sending the uplink information to the determined uplink transmitting node.
  • the effective time of the currently determined uplink transmission node determined by the macro base station includes but is not limited to one of the following methods:
  • the macro base station determines, according to the sending time of the signaling, and the effective time agreed by the macro base station and the UE in advance, the effective time of the determined uplink transmission point;
  • the method in the embodiment of the present application further includes:
  • the macro base station receives the uplink information sent by the UE by using the last determined uplink transmission node; or the macro base station terminates the uplink/downlink scheduling of the UE.
  • the UE after receiving the identification information of the currently determined uplink transmission node sent by the macro base station and before the pre-set time, the UE sends the uplink information to the uplink transmission node determined last time.
  • the second method the time when the macro base station receives the HARQ ACK feedback or the RRC response message sent by the UE for the signaling is used as the determined uplink transmission point effective time;
  • the method of the embodiment of the present application further includes:
  • the macro base station monitors the uplink information sent by the UE by the last determined uplink transmission node and the currently determined uplink transmission node, respectively, or the macro base station terminates the uplink/downlink scheduling of the UE.
  • the UE before receiving the identification information of the currently determined uplink transmission node sent by the macro base station, the UE sends the uplink information to the uplink transmission node that is determined upward; and receives the determined uplink transmission node that is sent by the macro base station. After the information is identified, the uplink information is sent to the determined uplink transmission node.
  • the effective time of the currently determined uplink transmission node determined by the macro base station includes but is not limited to the following methods:
  • the macro base station determines that the subframe in which the physical layer signaling is located is the effective time of the determined uplink transmission node, that is, the current subframe is valid.
  • the macro base station in order to avoid the inconsistency between the macro base station and the UE due to the loss of the physical layer signaling, the macro base station simultaneously passes the determined uplink transmission node and the last determined uplink transmission node before receiving the ACK feedback. Receive upstream information.
  • step 11 further includes:
  • the macro base station After receiving the identifier information sent by the UE through the high layer signaling, the macro base station uses the transmission node to which the cell corresponding to the identifier information belongs as the uplink transmission node that is determined this time, where the identifier information is that the UE is the uplink transmission node selected by the UE.
  • the identifier information of the cell may be a cell index number; or may be a combination of a downlink frequency point and a PCI; or may be an ECGI.
  • the effective time of the determined uplink transmission node determined by the macro base station specifically includes:
  • the macro base station determines the effective time of the currently determined uplink transmission point according to the time when the UE sends the high layer signaling and the effective time agreed by the macro base station and the UE in advance.
  • the method in this embodiment of the present application further includes:
  • the macro base station receives the uplink information sent by the UE by using the last determined uplink transmission node; or the macro base station terminates the uplink/downlink scheduling of the UE.
  • the UE after transmitting the identification information of the currently determined uplink transmission node to the macro base station, and before the preset time comes, the UE sends the uplink information to the uplink transmission node determined last time.
  • the effective time of the determined uplink transmission node determined by the macro base station in step 12 specifically includes:
  • the macro base station determines the effective time of the currently determined uplink transmission point according to the time when the UE sends the high layer signaling and the effective time agreed by the macro base station and the UE in advance.
  • the method of the embodiment of the present application further includes:
  • the macro base station receives the uplink information sent by the UE by using the last determined uplink transmission node; or the macro base station terminates the uplink/downlink scheduling of the UE.
  • the UE after transmitting the identification information of the currently determined uplink transmission node to the macro base station, and before the preset time comes, the UE sends the uplink information to the uplink transmission node determined last time.
  • the macro base station determines, according to the agreement rule with the UE, the uplink transmission node that is used to receive the uplink information.
  • the agreed rules of the embodiments of the present application include, but are not limited to, the following manners: In each set change period, different transport nodes are selected as the uplink transmission node determined each time.
  • the change period and the offset of different UEs are configured by the macro base station, or are pre-determined by the macro base station and each UE.
  • the determining, by the macro base station, the effective time of the currently determined uplink transmitting node in the step 12 includes: the macro base station according to the current system frame number (SFN), the subframe number (subframe number), and the offset ( Offset) and the change cycle corresponding to each uplink transmission node, determining the effective time of the determined uplink transmission node.
  • SFN system frame number
  • subframe number subframe number
  • Offset offset
  • the change period corresponding to each uplink transmission node may be the same or different.
  • the macro base station determines that the current SFN and the subframe number satisfy the formula 1 is the effective time of the determined uplink transmission node, that is, the uplink transmission node is switched at the moment:
  • Equation 1 where (A) modulo ( B ) denotes the modulo operation of A for B.
  • the embodiment of the present application further provides a method for transmitting uplink information, which is applied to a scenario in which the UE only supports uplink transmission of a single node.
  • the method includes:
  • Step 21 The UE determines, from the transit node connected thereto, the uplink transmitting node that is used to send the uplink information.
  • Step 22 The UE determines the effective time of the determined uplink transmitting node.
  • Step 23 After the UE arrives at the determined effective time of the uplink transmission node, the UE sends the uplink information to the currently determined uplink transmission node.
  • the UE determines the uplink transmission node used for transmitting the uplink information, and includes the following three methods: mode A2: The macro base station selects a suitable transmission node for the UE as the determined uplink transmission node; specifically, step 21 further Includes:
  • the UE After receiving the identifier information sent by the macro base station by using the signaling, the UE determines that the transmission node to which the cell corresponding to the identifier information belongs is the determined uplink transmission node, where the identifier information is the uplink transmission node selected by the macro base station for the UE. Identification information of one or more cells.
  • step 22 the effective time of the currently determined uplink transmission node determined by the UE is:
  • the effective time of the uplink transmission node determined this time according to the time when the macro base station sends the signaling and the effective time agreed by the UE and the macro base station;
  • the time when the UE receives the identifier information sent by the macro base station is taken as the effective time of the uplink transmission node determined this time; or
  • the UE uses the subframe in which the physical layer signaling is located as the effective time of the uplink transmission node determined this time.
  • the method of the embodiment of the present application further includes: after the UE determines the uplink transmission node that is used to send the uplink information, and before the effective time of the current uplink transmission node arrives, the method of the embodiment of the present application further includes:
  • the uplink transmission node sent by the UE to the uplink determines the uplink information.
  • the UE selects a suitable transmission node for the UE as the uplink transmission node that is determined this time.
  • the step 22 further includes:
  • the UE selects, from among the transmission nodes connected thereto, a transmission node that satisfies the set determination principle as the uplink transmission node determined this time.
  • the determining principles may be, but are not limited to, including one or more of the following principles:
  • the UE selects an uplink transmission node corresponding to the serving cell with the largest RSRP value or a value greater than the set RSRP threshold as the current uplink transmission node according to the measurement result of each serving cell, and the RSRP threshold is an empirical value. Determine according to actual needs;
  • the UE selects an uplink transmission node corresponding to the serving cell with the largest RSRQ value or the value greater than the set RSRQ threshold as the current uplink transmission node according to the measurement result of each serving cell, and the RSRQ threshold is an empirical value. Determine according to actual needs;
  • the UE selects, according to the measurement result of each serving cell, an uplink transmission node corresponding to the serving cell whose CQI value is the largest or the value is greater than the set CQI threshold, and the CQI threshold is an empirical value. Determine according to actual needs;
  • the UE selects an uplink transmission node corresponding to the serving cell with the smallest path loss value as the uplink transmission node determined according to the measurement result of each serving cell, and the path loss threshold is an empirical value, which can be determined according to actual needs;
  • the UE determines the distance between the UE and each of the transit nodes according to the current location information, and selects the transport node with the smallest distance as the determined uplink transport node, and the distance threshold is an empirical value, which can be determined according to actual needs;
  • the method requires the UE to obtain the deployment information of the Marco e B and the local node (the RRH/repeater, etc.), and the deployment information may be notified by the Marco eNB to the UE.
  • the method of the embodiment of the present application further includes: when the UE determines that the determined uplink transmission node is different from the last determined uplink transmission node, The uplink transmission node that is determined this time is notified to the macro base station, and the high-level signaling carries the identification information of one or more cells corresponding to the determined uplink transmission node.
  • the high layer signaling sent by the UE is RRC signaling or MAC signaling.
  • the identifier information of the cell in the embodiment of the present application is a cell index number; or a combination of a downlink DL frequency point and a PCI; or an ECGI.
  • the dedicated LCID needs to be introduced to the MAC signaling to identify that the MAC signaling is a transmitting node or a cell used to indicate the uplink transmission of the macro base station. of.
  • the UE determines the effective time of the currently determined uplink transmission node, and specifically includes: determining, by the UE, the currently determined uplink transmission node according to the time when the UE sends the high layer signaling and the effective time agreed by the UE and the macro base station in advance. Effective time.
  • the method in the embodiment of the present application further includes:
  • the uplink transmission node sent by the UE to the uplink determines the uplink information.
  • the mode C2 the UE determines, according to the agreement rule with the macro base station, the uplink transmission node that is used to send the uplink information.
  • the convention rules of the embodiments of the present application include, but are not limited to, the following manners: In each set change period, different transmission nodes are selected as the uplink transmission node determined each time.
  • the change period and the offset of different UEs are configured by the macro base station, or are pre-determined by the macro base station and each UE.
  • step 22 the UE determines that the determined effective time of the uplink transmission node is:
  • the UE determines the determined uplink according to the current system frame number (SFN), the subframe number (subframe number), the offset (offset), and the change period (cycle) corresponding to each uplink transmission node.
  • SFN system frame number
  • subframe number subframe number
  • offset offset
  • cycle change period
  • the UE determines that the current SFN and the subframe number satisfy the formula 1 and is the active time of the determined uplink transmission node, that is, the uplink transmission node is switched at the time.
  • the macro base station and the UE since the macro base station and the UE determine the uplink transmission node used for the uplink transmission by using the agreement rule, the macro base station and the UE do not need to perform signaling interaction, thereby saving system signaling overhead.
  • step 23 further includes:
  • the UE sends the uplink information on the uplink carrier corresponding to the determined uplink transmission node.
  • the UE sends the uplink information on the uplink carrier corresponding to the determined uplink transmission node, and further includes:
  • the UE selects the component carrier that belongs to the determined uplink transmission node and is configured with the PUCCH to transmit PUCCH information.
  • the method further includes one or more of the following steps:
  • the UE deletes the uplink scheduling configuration corresponding to the last determined uplink transmission node that is saved by the UE;
  • the UE saves the TA value of the cell or Timing Advance Group (TAG) corresponding to the last determined uplink transmission node;
  • TAG Timing Advance Group
  • the UE stops transmitting the SRS, DSR, and CQI to the uplink transmission node determined last time;
  • the UE deletes the hybrid automatic repeat request of the cell corresponding to the last determined uplink transmission node that it saves (Hybrid
  • the UE determines the TA value of the cell corresponding to the determined uplink transmission node, and further includes the following two methods:
  • the UE determines the uplink transmission node used for transmitting the uplink information, according to the received Timing Advance Command (TAC) MAC Control Unit (CE), and the previously saved UE.
  • TAC Timing Advance Command
  • CE MAC Control Unit
  • the TA value of the cell or the TAG corresponding to the uplink transmission node determines the TA value of the cell corresponding to the currently determined uplink transmission node;
  • the UE saves the TA value of the cell or TAG corresponding to the uplink transmission determined before, and the Timing Advance Timer (TAT) corresponding to the corresponding cell or TAG is not ⁇ Therefore any treatment;
  • the UE After the UE determines the uplink transmission node that is used to send the uplink information, the UE obtains the TA value of the cell corresponding to the determined uplink transmission node by using a random access (RA) process;
  • RA random access
  • the UE only saves the TA value of the cell or TAG corresponding to the uplink transmission node determined this time, and does not save the TA value of the cell or TAG corresponding to the previously determined uplink transmission node, and once the uplink transmission node changes, the previously determined The TAT of the cell or TAG corresponding to the uplink transmission node will stop running.
  • the method in the embodiment of the present application further includes:
  • the UE releases the SRS and/or PUCCH configuration corresponding to the last determined uplink transmission node.
  • Step 31 The Marco e B obtains the capability information of the UE, and determines, according to the obtained capability information, that the UE only supports single-node uplink transmission at the same time;
  • Step 32 The Marco eNB selects an uplink transmission node used by the current transmission according to the set selection principle;
  • Step 34a The UE determines an effective time of the newly selected uplink transmission node.
  • Step 34b The Marco eNB determines an effective time of the newly selected uplink transmission node.
  • Step 35 The UE performs uplink information transmission according to the uplink transmission node indicated by the Marco eNB.
  • the UE performs one or more of the following actions after the newly configured uplink transmission node takes effect according to the uplink transmission node indicated by the Marco eNB in step 33 and the effective time of the uplink transmission node determined in step 34a. :
  • the UE clears the HARQ buffer corresponding to the cell corresponding to the old uplink transmission node
  • the UE clears the configured UL grant corresponding to the old uplink transmission node
  • the UE stops transmitting the SRS, the DSR, and the CQI in the old uplink transmission node; further, the UE may also release the SRS/PUCCH configuration corresponding to the old uplink transmission node;
  • the UE reserves the TA value of the cell or TAG corresponding to the old transmission node
  • the UE determines the TA value of the cell corresponding to the new uplink transmission point.
  • step 34a and step 34b are not limited. Specifically, step 34a may be performed first, and then step 34b may be performed. Step 34b may be performed first, and then step 34a may be performed. Step 34a may also be performed simultaneously. Step 34b.
  • Implementation 2 The UE selects an appropriate uplink transmission node for the UE, as shown in FIG. 4, the transmission provided in this embodiment
  • the method of uplink information includes the following steps:
  • Step 41 The Marco e B determines that the UE supports only single-node uplink transmission at the same time according to the capability information reported by the UE.
  • Step 42 The Marco eNB selects a serving cell for the UE.
  • the Marco eNB selects a serving cell for the UE according to one or more of the following information:
  • the measurement result reported by the UE includes one or more of RSRP, RSRQ, and CQI;
  • the capability information of the UE reported by the UE for example, a frequency band combination that the UE can support;
  • Step 43 The Marco eNB notifies the UE of the serving cell configured for the UE;
  • Step 44 The UE selects a new uplink transmission node for the UE according to the determined determining principle.
  • Step 45 The UE reports the new uplink transmission node selected by the UE to the Marco eNB.
  • Step 46a The UE determines an effective time of the newly selected uplink transmission node.
  • Step 46b The Marco eNB determines an effective time of the newly selected uplink transmission node.
  • Step 47 The UE performs uplink transmission according to the new uplink transmission node selected by the UE.
  • the UE performs one or more of the following actions after the newly configured uplink transmission node takes effect according to the uplink transmission node selected by the UE in step 44 and the effective time of the uplink transmission node determined in step 46a; :
  • the UE clears the HARQ buffer corresponding to the cell corresponding to the old uplink transmission node
  • the UE clears the configured UL grant corresponding to the old uplink transmission node
  • the UE stops transmitting the SRS, the DSR, and the CQI in the old uplink transmission node; further, the UE may also release the SRS/PUCCH configuration corresponding to the old uplink transmission node;
  • the UE retains the TA value of the cell or TAG corresponding to the old uplink transmission node
  • the UE determines the TA value of the cell corresponding to the new uplink transmission point.
  • step 46a and step 46b are not limited. Specifically, step 46a may be performed first, and then step 46b may be performed. Step 46b may be performed first, and then step 46a may be performed. Step 46a may also be performed simultaneously. Step 46b.
  • Step 51 The Marco eNB determines that the UE supports only single-node uplink transmission at the same time according to the capability information reported by the UE.
  • Step 52 Marco e B selects a serving cell for the UE.
  • the Marco eNB selects a serving cell for the UE according to one or more of the following information:
  • the measurement result reported by the UE includes one or more of RSRP, RSRQ, and CQI;
  • the capability information of the UE reported by the UE for example, a frequency band combination that the UE can support;
  • Step 53 The Marco eNB notifies the UE of the serving cell configured for the UE;
  • Step 54a The UE selects a new uplink transmission node according to the set appointment rule.
  • Step 54b The Marco eNB selects a new uplink transmission node according to the agreement rule.
  • Step 55a The UE determines an effective time of the newly selected uplink transmission node.
  • Step 55b The Marco eNB determines an effective time of the newly selected uplink transmission node.
  • Step 56 The UE performs uplink transmission according to the newly selected uplink transmission node.
  • the UE performs one or more of the following behaviors after the newly configured uplink transmission node takes effect according to the uplink transmission node selected by the UE in step 54a and the effective time of the uplink transmission node determined in step 55a. :
  • the UE clears the HARQ buffer corresponding to the cell corresponding to the old uplink transmission node
  • the UE clears the configured UL grant corresponding to the old uplink transmission node
  • the UE stops transmitting the SRS, the DSR, and the CQI in the old uplink transmission node; further, the UE may also release the SRS/PUCCH configuration corresponding to the old uplink transmission node;
  • the UE reserves the TA value of the cell or TAG corresponding to the old transmission node
  • the UE determines the TA value of the cell corresponding to the new uplink transmission point.
  • step 54a and step 54b are not limited. Specifically, step 54a may be performed first, and then step 54b may be performed. Step 54b may be performed first, and then step 54a may be performed. Step 54a may also be performed simultaneously. Step 54b;
  • the execution sequence of the step 55a and the step 55b is not limited. Specifically, the step 55a may be performed first, and then the step 55b may be performed; or the step 55b may be performed first, and then the step 55a may be performed; and the step 55a and the step 55b may be simultaneously performed.
  • the above method processing flow can be implemented by a software program, which can be stored in a storage medium shield, and when the stored software program is called, the above method steps are performed.
  • a macro base station is also provided in the embodiment of the present application.
  • the principle of the macro base station solving the problem is similar to the method for receiving the uplink information shown in FIG. 1 . Therefore, the implementation of the macro base station can be referred to FIG. 1 . The implementation of the method shown, the repetition will not be repeated.
  • the macro base station provided by the embodiment of the present application includes:
  • the first determining module 61 is configured to determine, from the transmitting node connected to the user equipment UE, an uplink transmitting node that is used to receive uplink information of the UE.
  • the second determining module 62 is configured to determine an effective moment of the determined uplink transmitting node.
  • the receiving module 63 is configured to receive the uplink information sent by the UE by using the currently determined uplink transmitting node after the current effective time of the determined uplink transmitting node arrives.
  • the first determining module 61 is specifically configured to:
  • the transport node to which the cell corresponding to the identifier information belongs is the uplink transport node that is determined by the UE, where the identifier information is one or more of the uplink transport nodes selected by the UE. Identification information of the cells; or
  • the selection principle includes one or more of the following principles:
  • the transmission node corresponding to the cell whose reference signal received power RSRQ has the largest value or whose value is greater than the set RSRQ threshold is selected as the currently determined uplink transmission node; according to the UE in each cell The receiving signal of the reference signal is received, and the transmitting node corresponding to the cell whose receiving RSRC value is the largest or the value is greater than the set RSRP threshold is selected as the uplink transmitting node determined this time; according to the reference signal of the UE on each cell Receiving, selecting a transmission node corresponding to a cell whose channel state information CQI is the largest or having a value greater than a set CQI threshold as the uplink transmission node determined this time;
  • the transmitting node corresponding to the cell with the largest value of the SRS receiving value or the value greater than the set SRS threshold is selected as the determined uplink transmitting node.
  • the agreement rule includes: selecting, in each set change period, a different transmission node as the uplink transmission node determined each time.
  • the change period and offset of different UEs are configured by the macro base station, or are pre-agreed by the macro base station and each UE.
  • the first determining module 61 is further configured to:
  • the uplink transmission node After selecting the transmission node that satisfies the set selection principle as the currently determined uplink transmission node, and before determining the effective time of the currently determined uplink transmission node, if it is determined that the currently determined uplink transmission node is last determined.
  • the uplink transmission node is different, and the determined uplink transmission node is notified to the UE by using the signaling, and the signaling carries the identification information of one or more cells corresponding to the determined uplink transmission node.
  • the identifier information is a cell index number; or the identifier information is a combination of a downlink DL frequency point and a physical cell identifier PCI; or, the identifier information is ECGI.
  • the second determining module 62 is specifically configured to:
  • the time at which the HARQ ACK feedback or the RRC response message sent by the UE for the signaling is received is the effective time of the determined uplink transmission point;
  • the subframe in which the physical layer signaling is located is taken as the effective time of the currently determined uplink transmission node;
  • the effective time of the currently determined uplink transmission node is determined according to the current system frame number SFN, the subframe number, the offset, and the change period corresponding to each uplink transmission node.
  • the second determining module 62 is specifically configured to:
  • the effective time is the time when the UE receives the identity information sent by the macro base station, after receiving the RRC response message or the response ACK feedback on the determined uplink transmission node, the effective time of the currently determined uplink transmission node is determined.
  • the second determining module 62 determines the effective time of the currently determined uplink transmission point according to the sending time of the signaling sent by itself and the effective time that the UE and the UE have agreed in advance; correspondingly, the receiving module 63 is specifically configured to: After the current uplink transmission node is notified to the UE, and before the current effective time of the determined uplink transmission node arrives, the uplink information transmitted by the UE is received by the uplink transmission node determined last time; or the UE is terminated/ Downstream scheduling
  • the receiving module 63 is specifically configured to: After the signaling is notified to the UE by the determined uplink transmission node and before the effective time of the determined uplink transmission node arrives, the uplink transmission node that is determined last time and the uplink transmission node that is determined this time are respectively monitored by the UE. Uplink information; or terminate uplink/downlink scheduling for the UE.
  • another macro base station provided by the embodiment of the present application, as shown in FIG. 7, includes a processor 71 and a radio frequency unit 72:
  • the processor 71 is configured to: determine, from the transport node connected to the user equipment UE, the present time for receiving the
  • the radio frequency unit 72 is configured to: after the current effective time of the determined uplink transmission node arrives, receive the uplink information sent by the UE by using the currently determined uplink transmission node.
  • the embodiment of the present application can flexibly determine an appropriate uplink transmission node for uplink information transmission, thereby reducing the load of the macro base station, reducing uplink interference between UEs, improving system throughput, and saving The power of the UE.
  • a user equipment is also provided in the embodiment of the present application.
  • the method for solving the problem is similar to the method for sending the uplink information shown in FIG. 2, and therefore, the implementation of the user equipment can be referred to FIG. 2 The implementation of the method shown, the repetition will not be repeated.
  • the user equipment provided in this embodiment of the present application includes:
  • the first processing module 81 is configured to determine, from the transit node connected to itself, the uplink transmitting node that is used to send the uplink information.
  • the second processing module 82 is configured to determine an effective time of the determined uplink transmission node.
  • the sending module 83 is configured to send uplink information to the currently determined uplink transmitting node after the current effective time of the determined uplink transmitting node arrives.
  • the first processing module 81 is specifically configured to:
  • the transmission node to which the cell corresponding to the identifier information belongs is the determined uplink transmission node, where the identifier information is one of the uplink transmission nodes selected by the macro base station or Identification information of multiple cells; or
  • the uplink transmission node used for transmitting the uplink information is determined according to an agreement rule with the macro base station.
  • the determining principle includes one or more of the following principles:
  • the UE selects the RSRP value to be the largest or the value is greater than the set according to the measurement result of each serving cell.
  • the uplink transmission node corresponding to the serving cell of the RSRP threshold is used as the uplink transmission node determined this time;
  • the UE selects the RSRQ value to be the largest or the value is greater than the set according to the measurement result of each serving cell.
  • the uplink transmission node corresponding to the serving cell of the RSRQ threshold is used as the uplink transmission node determined this time;
  • the UE selects, according to the measurement result of each serving cell, the uplink transmission node corresponding to the service and the area whose CQI value is the largest or the value is greater than the set CQI threshold, as the determined uplink transmission node;
  • the UE selects an uplink transmission node corresponding to the serving cell with the smallest path loss value as the uplink transmission node determined this time according to the measurement result of each serving cell;
  • the UE determines the distance between itself and each transmission node according to its current location information, and selects the transmission node with the smallest distance as the determined uplink transmission node.
  • the agreement rule includes: selecting a different transmission node for each set change period. For each upstream transmission node determined.
  • the change period and offset of different UEs are configured by the macro base station, or are pre-agreed by the macro base station and each UE.
  • the first processing module 81 is further specifically configured to:
  • the uplink transmission node that is determined by the current high-level signaling is notified to the macro base station, and the high-level signaling carries the identification information of one or more cells corresponding to the determined uplink transmission node.
  • the identifier information is a cell index number; or the identifier information is a combination of a downlink DL frequency point and a physical cell identifier PCI; or, the identifier information is ECGI.
  • the second processing module 82 is specifically configured to:
  • the time when the identity information sent by the macro base station is received by itself is taken as the effective time of the uplink transmission node determined this time;
  • the subframe in which the physical layer signaling is located is used as the effective time of the uplink transmission node determined this time;
  • the effective time of the currently determined uplink transmission node is determined according to the current system frame number SFN, the subframe number, the offset, and the change period of the uplink transmission node.
  • the sending module 83 is further configured to: after the first processing module 71 determines the uplink transmission node that is used to send the uplink information, and before the effective time determined by the second processing module 82 arrives, send the uplink transmission node that is determined last time. Uplink information.
  • the sending module 83 is specifically configured to: send uplink information on an uplink carrier corresponding to the determined uplink transmitting node.
  • the sending module 83 is further configured to: if a physical uplink control channel PUCCH is configured on multiple component carriers in the aggregated carrier of the UE, select a component carrier that is allocated to the currently determined uplink transmitting node and configured with the PUCCH. PUCCH information.
  • the second processing module 82 further performs one or more of the following steps:
  • the HARQ cache corresponding to the serving cell of the last determined uplink transmission node saved by itself is deleted.
  • the sending module 83 is specifically configured to:
  • the MAC CE determines the TA value of the cell corresponding to the determined uplink transmission node;
  • the TA value of the cell corresponding to the determined uplink transmission node is obtained by the random access RA process.
  • the processor 91 is configured to: determine, from a transmission node connected to itself, an uplink transmission node that is used to send uplink information; determine an effective time of the currently determined uplink transmission node;
  • the radio frequency unit 92 is configured to: after the current effective time of the determined uplink transmission node arrives, send uplink information to the currently determined uplink transmission node.
  • the embodiment of the present application can flexibly determine an appropriate uplink transmission node for uplink information transmission, thereby reducing the load of the macro base station, reducing uplink interference between UEs, improving system throughput, and saving The power of the UE.
  • the embodiment of the present application further provides a communication system.
  • the communication system includes:
  • a macro base station 101 configured to determine, from a transmission node connected to the user equipment UE82, an uplink transmission node that is used to receive uplink information of the UE 82; determine an effective time of the currently determined uplink transmission node; and determine the current time of the uplink transmission node. After the effective time of the uplink transmission node arrives, the uplink information sent by the UE 82 is received by the determined uplink transmission node;
  • the UE 102 is configured to determine, from the transit node connected to itself, the uplink transmitting node that is used to send the uplink information, determine the effective time of the determined uplink transmitting node, and the effective time of the determined uplink transmitting node. After arrival, the uplink information is sent to the determined uplink transmission node.
  • the embodiment of the present application can flexibly determine an appropriate uplink transmission node for uplink information transmission, thereby reducing the load of the macro base station, reducing uplink interference between UEs, improving system throughput, and saving The power of the UE.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the application can be in the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • the present application is applicable to computer programs implemented on one or more computer usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is included. The form of the product.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本申请实施例公开了一种传输上行信息的方法、设备及系统,用于解决现有UE的上行传输的机制会增加Macro eNB的负荷,增加UE间的上行干扰且不利于UE节电的问题。本申请实施例的方法包括:宏基站从与UE连接的传输节点中,确定本次用于接收该UE的上行信息的上行传输节点;确定本次确定的上行传输节点的生效时刻;以及在本次确定的上行传输节点的生效时刻到来之后,通过本次确定的上行传输节点接收UE发送的上行信息。本申请实施例在异构网络下,能够灵活确定合适的上行传输节点进行上行信息的传输,从而降低了宏基站的负荷,降低了各UE间的干扰,提升了系统吞吐量,并且节省了UE的电量。

Description

一种传输上行信息的方法、 设备及系统 本申请要求在 2012年 12月 27日提交中国专利局、 申请号为 201210581372.9、发明名称为
"一种传输上行信息的方法、设备及系统"的中国专利申请的优先权, 其全部内容通过引用结合 在本申请中。 技术领域 本申请涉及无线通信技术领域, 特别涉及一种传输上行信息的方法、 设备及系统。 背景技术 在长期演进增强(Long Term Evolution - Advanced, LTE-A ) 系统中, 系统峰值速率比 长期演进(Long Term Evolution, LTE ) 系统有较大的提高, 要求达到下行 lGbps, 上行 500Mbps; 同时, LTE-A系统要求和 LTE系统有较好的兼容性, LTE系统最大带宽能达到 20MHz。 基于提高峰值速率、 与 LTE系统兼容以及充分利用频率资源的需要, LTE-A系统 中引入了载波聚合(Carrier Aggregation, CA )技术。
对于支持 CA技术的用户设备 ( User Equipment, UE ) 来说, 该 UE可以同时聚合一 个或者多个小区的资源, 并可以同时在该些小区进行数据传输。 其中, UE 聚合的小区个 数由基站根据该 UE的业务需求进行配置。 在版本 10 ( R10 ) /版本 11 ( R11 )中, UE聚合 的每个小区可以包含一对上 /下行载波, 也可以仅包含下行载波, 即只允许下行载波的个数 大于等于上行载波的个数, 不允许出现上行载波的个数大于下行载波的个数。
LTE-A系统还对载波聚合的小区 (Cell )进行了分类, 根据 UE聚合的各个小区的功 能的不同, 为 UE 配置的小区可以分为两类: 主小区 (Primary Cell , PCell ) 及辅小区 ( Secondary Cell, SCell ); 其中, 载波聚合场景下, 每个 UE只有一个小区被定义为主小 区, 主小区由基站选择并通过无线资源控制 (Radio Resource Control, RRC )信令配置给 UE, 主要负责承载 UE所有载波上行控制信息的传输; UE聚合的除主小区之外的其它小 区都被称为辅小区, 辅小区由基站配置, 主要负责传输 UE的业务数据。
LTE R10定义了载波聚合场景, 包括由宏基站 (Macro e B )和本地节点组成的异构 网络, 其中, Macro eNB提供基本覆盖, 本地节点提供热点覆盖; 本地节点包括射频拉远 ( Remote Radio Heads, RRH )、 中继 (repeater ), 本地基站(Local eNB )等。 在载波聚合 异构网络场景下, UE的下行数据可以仅通过一个传输节点发送给 UE, 也可以同时由两个 传输节点发送给 UE; 类似的, UE的上行数据也可以仅发送到一个传输节点, 也可以同时 发送到两个传输节点。 但是, 从射频设计来看, 下行实现同时接收来自两个传输节点发送 的数据是比较容易的, 但是上行要实现同时向两个传输节点发送数据则比较困难。 目前, UE的上行一般只具有一个发射机, 即在同一时刻仅支持向单个传输节点发送上行数据。
对于在同一时刻仅支持单节点上行传输的 UE而言, 按照现有上行传输机制, 该 UE 的上行传输都会固定在 PCell上。 对于异构网络, 由于 Macro eNB提供大范围覆盖, 因此 PCell一般都会选择 Marco eNB下的 Cell。现有上行传输机制存在如下弊端:增加了 Marco eNB的负荷, 增加了 UE的功率消耗, 增加了上行千扰, 降低了系统吞吐量。
综上所述,现有 UE的上行传输的机制会增加 Macro eNB的负荷,增加 UE间的上行千扰 且不利于 UE节电。 发明内容 本申请实施例提供了一种传输上行信息的方法、 设备及系统, 用于解决现有 UE的上 行传输的机制会增加 Macro eNB的负荷,增加 UE间的上行千扰且不利于 UE节电的问题。
本申请实施例提供的一种接收上行信息的方法, 包括:
宏基站从与 UE连接的传输节点中, 确定本次用于接收所述 UE的上行信息的上行传 输节点;
所述宏基站确定本次确定的上行传输节点的生效时刻;
所述宏基站在所述本次确定的上行传输节点的生效时刻到来之后 , 通过所述本次确定 的上行传输节点接收所述 UE发送的上行信息。
本申请实施例在异构网络下, 能够灵活确定合适的上行传输节点进行上行信息的传 输, 从而降低了宏基站的负荷, 降低了各 UE间的上行千扰, 提高了系统吞吐量, 并且节 省了 UE的电量。
较佳地, 所述宏基站确定本次用于接收所述 UE的上行信息的上行传输节点之前, 所 述方法还包括: 所述宏基站根据获取到的所述 UE的能力信息, 确定所述 UE在同一时刻 支持单节点上行传输。
进一步的, 所述宏基站可以根据下列步骤确定所述 UE在同一时刻支持单节点上行传 输: 若所述能力信息中携带用于指示所述 UE包含的射频(RF ) 的数目的第一指示信息且 所述第一指示信息指示的数目为 1 , 所述宏基站确定所述 UE在同一时刻支持单节点上行 传输; 若所述能力信息中携带用于指示所述 UE是否支持多个定时提前量(MTA ) 的第二 指示信息, 且所述第二指示信息指示所述 UE不支持 MTA, 所述宏基站确定所述 UE在同 一时刻支持单节点上行传输; 若所述能力信息中携带用于指示所述 UE在同一时刻是否支 持单节点上行传输的第三指示信息, 且所述第三指示信息指示所述 UE在同一时刻支持单 节点上行传输, 所述宏基站确定所述 UE在同一时刻支持单节点上行传输。 基于上述任意方法实施例, 较佳地, 所述宏基站确定本次用于接收所述 UE的上行信 息的上行传输节点, 进一步包括: 所述宏基站从与所述 UE连接的传输节点中, 选择满足 设定的选择原则的传输节点作为本次确定的上行传输节点; 或者, 所述宏基站在接收到所 述 UE通过高层信令发送的标识信息后, 将所述标识信息对应的小区所属的传输节点作为 本次确定的上行传输节点, 其中, 所述标识信息为所述 UE为自身选择的上行传输节点对 应的一个或多个小区的标识信息; 或者, 所述宏基站根据与所述 UE之间的约定规则, 确 定本次用于接收所述 UE的上行信息的上行传输节点。
进一步的, 所述选择原则可以包括下列原则中的一种或多种:
所述宏基站根据 UE当前的位置信息, 确定 UE和各个传输节点之间的距离, 选择距 离最小或者不大于设定的距离阈值的传输节点作为本次确定的上行传输节点;
所述宏基站根据 UE在各个小区上的路损信息, 选择路损最小或者不大于设定的路损 阈值的小区对应的传输节点作为本次确定的上行传输节点;
所述宏基站根据 UE在各个小区上的参考信号接收情况,选择参考信号接收功率 RSRQ 取值最大或取值大于设定的 RSRQ阈值的小区对应的传输节点作为本次确定的上行传输节 点;
所述宏基站根据 UE在各个小区上的参考信号接收情况,选择参考信号接收盾量 RSRP 取值最大或取值大于设定的 RSRP阈值的小区对应的传输节点作为本次确定的上行传输节 所述宏基站根据 UE在各个小区上的参考信号接收情况, 选择信道状态信息(Channel Quality Information, CQI )取值最大或者取值大于设定的 CQI阈值的小区对应的传输节点 作为本次确定的上行传输节点;
所述宏基站根据 UE在各个小区上发送的探测参考信号 ( Sounding Reference Signal,
SRS )的接收盾量, 选择 SRS接收盾量取值最大或者取值大于设定的 SRS阈值的小区对应 的传输节点作为本次确定的上行传输节点。
进一步的, 所述宏基站选择满足设定的选择原则的传输节点作为本次确定的上行传 输节点之后, 且所述宏基站确定所述本次确定的上行传输节点的生效时刻之前, 所述方法 还可以包括: 所述宏基站在确定本次确定的上行传输节点与上一次确定的上行传输节点不 同时, 通过信令将本次确定的上行传输节点通知给所述 UE, 所述信令中携带所述本次确 定的上行传输节点对应的一个或者多个小区的标识信息。
较佳地, 所述信令为 RRC信令、 媒体接入控制 ( MAC )信令或物理层信令。
若所述信令为物理层信令; 所述宏基站确定本次用于接收所述 UE的上行信息的上行 传输节点, 还可以包括: 在指定的时刻, 若所述 UE聚合的任一成员载波上有上行传输需 求, 所述宏基站确定该成员载波所属的传输节点为本次确定的上行传输节点。 较佳地, 所述标识信息为小区索引号; 或者, 所述标识信息为下行 DL频点与物理小 区标识 PCI的组合; 或者, 所述标识信息为小区全球唯一标识 ECGI。
较佳地, 所述约定规则包括: 在每个设定的变更周期内, 选择不同的传输节点作为每 次确定的上行传输节点。
进一步的, 不同 UE的变更周期及偏移量由所述宏基站配置, 或者由所述宏基站与每 个 UE预先约定。
较佳地, 所述宏基站确定所述本次确定的上行传输节点的生效时刻, 具体包括: 所述 宏基站根据自身发送信令的时刻以及自身与 UE预先约定的生效时间确定所述本次确定的 上行传输点的生效时刻; 或者, 所述宏基站将自身接收到所述 UE发送的针对所述信令的 混合自动重传请求 HARQ应答 ACK反馈或者 RRC响应消息的时刻作为所述本次确定的上 行传输点生效时刻; 或者, 若所述信令为物理层信令, 所述宏基站将所述物理层信令所在 的子帧作为所述本次确定的上行传输点生效时刻; 或者, 所述宏基站根据所述 UE发送高 层信令的时刻以及自身与 UE预先约定的生效时间确定所述本次确定的上行传输点的生效 时刻; 或者, 所述宏基站根据当前系统帧号 SFN、 子帧号、 偏移量以及上行传输节点对应 的变更周期, 确定本次确定的上行传输节点的生效时刻。
较佳地, 若所述宏基站根据所述信令的发送时刻以及自身与 UE预先约定的生效时间 确定所述本次确定的上行传输点的生效时刻; 在所述宏基站通过信令将所述本次确定的上 行传输节点通知给所述 UE之后且在所述本次确定的上行传输节点的生效时刻到来之前, 所述方法还包括: 所述宏基站通过上一次确定的上行传输节点接收所述 UE发送的上行信 息; 或者, 所述宏基站终止对所述 UE的上 /下行调度。
较佳地, 若所述宏基站接将自身接收到所述 UE发送的针对所述信令的 HARQ ACK 反馈或者 RRC 响应消息的时刻作为所述本次确定的上行传输点生效时刻; 在所述宏基站 通过所述信令将本次确定的上行传输节点通知给所述 UE之后且在所述本次确定的上行传 输节点的生效时刻到来之前, 所述方法还包括: 所述宏基站分别通过上一次确定的上行传 输节点及本次确定的上行传输节点监听所述 UE发送的上行信息; 或者所述宏基站终止对 所述 UE的上 /下行调度。
本申请实施例提供的一种发送上行信息的方法, 包括:
UE从与自身连接的传输节点中, 确定本次用于发送上行信息的上行传输节点; 所述 UE确定所述本次确定的上行传输节点的生效时刻;
所述 UE在所述本次确定的上行传输节点的生效时刻到来之后, 向所述本次确定的上 行传输节点发送上行信息。
本申请实施例在异构网络下, 能够灵活确定合适的上行传输节点进行上行信息的传 输, 从而降低了宏基站的负荷, 降低了各 UE间的上行千扰, 提高了系统吞吐量, 并且节 省了 UE的电量。
较佳地, 所述 UE确定本次用于发送上行信息的上行传输节点, 进一步包括: 所述 UE从与自身连接的传输节点中, 选择满足设定的确定原则的传输节点作为本次 确定的上行传输节点; 或者, 所述 UE在接收到所述宏基站通过信令发送的标识信息后, 确定所述标识信息对应的小区所属的传输节点为本次确定的上行传输节点, 其中, 所述标 识信息为所述宏基站为所述 UE选择的上行传输节点的一个或者多个小区的标识信息; 或 者, 所述 UE根据与所述宏基站之间的约定规则, 确定本次用于发送上行信息的上行传输 节点。
进一步的, 所述确定原则可以包括下列原则中的一种或多种:
所述 UE根据自身对各个服务小区的测量结果, 选择 RSRP取值最大或取值大于设定 的 RSRP阈值的服务 、区对应的上行传输节点作为本次确定的上行传输节点;
所述 UE根据自身对各个服务小区的测量结果, 选择 RSRQ取值最大或取值大于设定 的 RSRQ阈值的服务小区对应的上行传输节点作为本次确定的上行传输节点;
所述 UE根据自身对各个服务小区的测量结果, 选择 CQI取值最大或取值大于设定的 CQI阈值的服务小区对应的上行传输节点作为本次确定的上行传输节点;
所述 UE根据自身在各个服务小区的测量结果, 选择路损取值最小的服务小区对应的 上行传输节点作为本次确定的上行传输节点;
所述 UE根据自身当前的位置信息, 确定自身与各个传输节点之间的距离, 并选择距 离最小的传输节点作为本次确定的上行传输节点。
较佳地, 所述 UE选择满足设定的确定原则的传输节点作为本次确定的上行传输节点 之后, 且所述 UE确定所述本次确定的上行传输节点的生效时刻之前, 所述方法还包括: 所述 UE在确定本次确定的上行传输节点与上一次确定的上行传输节点不同时, 通过高层 信令将本次确定的上行传输节点通知给所述宏基站, 所述高层信令中携带所述 UE本次确 定的上行传输节点对应的一个或者多个小区的标识信息。
进一步的, 所述标识信息为小区索引号; 或者, 所述标识信息为下行 DL频点与物理 小区标识 PCI的组合; 或者, 所述标识信息为 ECGI。
较佳地, 若所述宏基站发送的信令为物理层信令, 且所述物理层信令中携带上行调度 信息; 所述 UE确定本次用于发送上行信息的上行传输节点, 还包括: 所述 UE将所述物 理层信令中携带的上行调度信息对应的小区所属的传输节点作为本次用于发送上行信息 的上行传输节点。
较佳地, 所述约定规则包括: 在每个设定的变更周期内, 选择不同的传输节点作为每 次确定的上行传输节点。
进一步的, 不同 UE的变更周期及偏移量可以由所述宏基站配置, 或者由所述宏基站 与每个 UE预先约定。
较佳地, 所述 UE确定所述本次确定的上行传输节点的生效时刻,具体包括: 所述 UE 根据自身发送高层信令的时刻以及自身与所述宏基站预先约定的生效时间确定所述本次 确定的上行传输节点生效时刻; 或者, 所述 UE根据所述宏基站发送信令的时刻以及自身 与所述宏基站预先约定的生效时间确定所述本次确定的上行传输节点生效时刻; 或者, 所 述 UE将自身接收到所述宏基站发送的标识信息的时刻作为所述本次确定的上行传输节点 生效时刻; 或者, 若所述宏基站发送的信令为物理层信令, 所述 UE将所述物理层信令所 在的子帧作为所述本次确定的上行传输节点生效时刻; 或者, 所述 UE根据当前系统帧号 SFN、 子帧号、 偏移量以及上行传输节点的变更周期确定所述本次确定的上行传输节点的 生效时刻。
基于上述任意方法实施例, 较佳地, 在所述 UE确定本次用于发送上行信息的上行传 输节点之后且在所述本次确定的上行传输节点的生效时刻到来之前, 所述方法还包括: 所 述 UE向上一次确定的上行传输节点发送上行信息。
基于上述任意方法实施例, 较佳地, 所述 UE向所述本次确定的上行传输节点发送上 行信息, 进一步包括: 所述 UE在本次确定的上行传输节点对应的上行载波上发送上行信 息。
进一步的, 若所述 UE 的聚合载波中的多个成员载波上都配置了物理上行控制信道 PUCCH, 所述 UE在本次确定的上行传输节点对应的上行载波上发送上行信息, 进一步包 括: 所述 UE选择归属于所述本次确定的上行传输节点且配置有 PUCCH的成员载波上发 送 PUCCH信息。
基于上述任意方法实施例, 较佳地, 所述 UE确定所述本次确定的上行传输节点的生 效时刻之后, 所述方法还包括下列步骤中的一个或多个:
所述 UE删除自身保存的上一次确定的上行传输节点对应的上行调度配置; 所述 UE保存上一次确定的上行传输节点对应的小区或者定时提前量组 TAG的定时提 前量 TA值;
所述 UE 停止向上一次确定的上行传输节点发送 SRS、 专用调度请求 (Dedicated Scheduling Request, DSR ) 及 CQI;
所述 UE确定所述本次确定的上行传输节点对应的小区的 TA值;
所述 UE删除自身保存的上一次确定的上行传输节点对应的小区的 HARQ緩存。 进一步的, 所述 UE确定所述本次确定的上行传输节点对应的小区的 TA值, 进一步 包括: 所述 UE确定本次用于发送上行信息的上行传输节点后, 根据接收到的所述宏基站 发送的定时提前命令媒体接入控制单元 TAC MAC CE以及所述 UE保存的之前确定的上行 传输节点对应的小区或者 TAG的 TA值,确定所述本次确定的上行传输节点对应的小区的 TA值; 或者, 所述 UE确定本次用于发送上行信息的上行传输节点后, 通过随机接入 RA 过程获取本次确定的上行传输节点对应的小区的 TA值。
本申请实施例提供的宏基站, 包括:
第一确定模块,用于从与用户设备 UE连接的传输节点中,确定本次用于接收所述 UE 的上行信息的上行传输节点;
第二确定模块, 用于确定本次确定的上行传输节点的生效时刻;
接收模块, 用于在所述本次确定的上行传输节点的生效时刻到来之后, 通过所述本次 确定的上行传输节点接收所述 UE发送的上行信息。
本申请实施例在异构网络下, 能够灵活确定合适的上行传输节点进行上行信息的传 输, 从而降低了宏基站的负荷, 降低了各 UE间的上行千扰, 提高了系统吞吐量, 并且节 省了 UE的电量。
较佳地, 所述第一确定模块具体用于: 从与所述 UE连接的传输节点中, 选择满足设 定的选择原则的传输节点作为本次确定的上行传输节点; 或者, 在接收到所述 UE通过高 层信令发送的标识信息后, 将所述标识信息对应的小区所属的传输节点作为本次确定的上 行传输节点, 其中, 所述标识信息为所述 UE为自身选择的上行传输节点对应的一个或多 个小区的标识信息; 或者, 根据与所述 UE之间的约定规则, 确定本次用于接收所述 UE 的上行信息的上行传输节点。
较佳地, 所述第一确定模块还用于: 在选择满足设定的选择原则的小区所属的传输节 点作为本次确定的上行传输节点之后, 且在确定所述本次确定的上行传输节点的生效时刻 之前, 若确定本次确定的上行传输节点与上一次确定的上行传输节点不同, 通过信令将本 次确定的上行传输节点通知给所述 UE, 所述信令中携带所述本次确定的上行传输节点对 应的一个或者多个小区的标识信息。
较佳地, 所述第二确定模块具体用于: 根据自身发送信令的时刻以及自身与 UE预先 约定的生效时间确定所述本次确定的上行传输点的生效时刻;或者,将自身接收到所述 UE 发送的针对所述信令的 HARQ ACK反馈或者 RRC响应消息的时刻作为所述本次确定的上 行传输点生效时刻; 或者, 若所述信令为物理层信令, 将所述物理层信令所在的子帧作为 本次确定的上行传输节点的生效时刻; 或者, 根据所述 UE发送高层信令的时刻以及自身 与 UE预先约定的生效时间确定所述本次确定的上行传输点的生效时刻; 或者, 根据当前 系统帧号 SFN、 子帧号、 偏移量以及每个上行传输节点对应的变更周期, 确定本次确定的 上行传输节点的生效时刻。
进一步的, 若所述第二确定模块根据自身发送信令的时刻以及自身与 UE预先约定的 生效时间确定所述本次确定的上行传输点的生效时刻; 所述接收模块具体可以用于: 在通 过所述信令将所述本次确定的上行传输节点通知给所述 UE之后且在所述本次确定的上行 传输节点的生效时刻到来之前, 通过上一次确定的上行传输节点接收所述 UE发送的上行 信息; 或者终止对所述 UE的上 /下行调度; 若所述第二确定模块将自身接收到所述 UE发 送的针对所述信令的 HARQ ACK反馈或者 RRC响应消息的时刻作为所述本次确定的上行 传输点生效时刻; 所述接收模块具体可以用于: 在通过所述信令将本次确定的上行传输节 点通知给所述 UE之后且在所述本次确定的上行传输节点的生效时刻到来之前, 分别通过 上一次确定的上行传输节点及本次确定的上行传输节点监听所述 UE发送的上行信息; 或 者终止对所述 UE的上 /下行调度。
基于与方法同样的发明构思, 本申请实施例提供的另一种宏基站, 包括处理器和射频 单元:
该处理器被配置为:从与用户设备 UE连接的传输节点中,确定本次用于接收所述 UE 的上行信息的上行传输节点; 确定本次确定的上行传输节点的生效时刻;
该射频单元被配置为: 在所述本次确定的上行传输节点的生效时刻到来之后, 通过所 述本次确定的上行传输节点接收所述 UE发送的上行信息。
本申请实施例在异构网络下, 能够灵活确定合适的上行传输节点进行上行信息的传 输, 从而降低了宏基站的负荷, 降低了各 UE间的上行千扰, 提高了系统吞吐量, 并且节 省了 UE的电量。
本申请实施例提供的用户设备, 包括:
第一处理模块, 用于从与自身连接的传输节点中, 确定本次用于发送上行信息的上行 传输节点;
第二处理模块, 用于确定所述本次确定的上行传输节点的生效时刻;
发送模块, 用于在所述本次确定的上行传输节点的生效时刻到来之后, 向所述本次确 定的上行传输节点发送上行信息。
本申请实施例在异构网络下, 能够灵活确定合适的上行传输节点进行上行信息的传 输, 从而降低了宏基站的负荷, 降低了各 UE间的上行千扰, 提高了系统吞吐量, 并且节 省了 UE的电量。
较佳地, 所述第一处理模块具体用于: 从与自身连接的传输节点中, 选择满足设定的 确定原则的传输节点作为本次确定的上行传输节点; 或者, 在接收到所述宏基站通过信令 发送的标识信息后, 确定所述标识信息对应的小区所属的传输节点为本次确定的上行传输 节点, 其中, 所述标识信息为所述宏基站为 UE选择的上行传输节点的一个或多个小区的 标识信息; 或者, 根据与所述宏基站之间的约定规则, 确定本次用于发送上行信息的上行 传输节点。
较佳地, 所述第一处理模块具体还用于: 在选择满足设定的确定原则的传输节点作为 本次确定的上行传输节点之后 , 且在确定所述本次确定的上行传输节点的生效时刻之前, 若确定本次确定的上行传输节点与上一次确定的上行传输节点不同时, 通过高层信令将本 次确定的上行传输节点通知给所述宏基站, 所述高层信令中携带所述本次确定的上行传输 节点对应的一个或多个小区的标识信息。
较佳地, 所述第二处理模块具体用于: 根据自身发送高层信令的时刻以及自身与所述 宏基站预先约定的生效时间确定所述本次确定的上行传输节点生效时刻; 或者, 根据所述 宏基站发送信令的时刻以及自身与所述宏基站预先约定的生效时间确定所述本次确定的 上行传输节点生效时刻; 或者, 将自身接收到所述宏基站发送的标识信息的时刻作为所述 本次确定的上行传输节点生效时刻; 或者, 若所述宏基站发送的信令为物理层信令, 将所 述物理层信令所在的子帧作为所述本次确定的上行传输节点生效时刻; 或者, 根据当前系 统帧号 SFN、 子帧号、 偏移量以及上行传输节点的变更周期确定所述本次确定的上行传输 节点的生效时刻。
较佳地, 所述发送模块还用于: 在所述第一确定模块确定本次用于发送上行信息的上 行传输节点之后且在所述第二确定模块确定的生效时刻到来之前, 向上一次确定的上行传 输节点发送上行信息。
较佳地, 所述第二处理模块在确定所述本次确定的上行传输节点的生效时刻之后, 还 执行下列步骤中的一个或多个: 删除自身保存的上一次确定的上行传输节点对应的上行调 度配置; 保存上一次确定的上行传输节点对应的小区或 TAG的 TA值; 停止向上一次确定 的上行传输节点发送 SRS、 DSR及 CQI; 确定所述本次确定的上行传输节点对应的小区的 TA值;删除自身保存的上一次确定的上行传输节点的一个或多个小区对应的 HARQ緩存。
本申请实施例提供的另一种用户设备, 包括处理器和射频单元。
该处理器被配置为: 从与自身连接的传输节点中, 确定本次用于发送上行信息的上行 传输节点; 确定所述本次确定的上行传输节点的生效时刻;
该射频单元被配置为: 在所述本次确定的上行传输节点的生效时刻到来之后, 向所述 本次确定的上行传输节点发送上行信息。
本申请实施例在异构网络下, 能够灵活确定合适的上行传输节点进行上行信息的传 输, 从而降低了宏基站的负荷, 降低了各 UE间的上行千扰, 提高了系统吞吐量, 并且节 省了 UE的电量。
本申请实施例提供的通信系统, 包括:
宏基站, 用于从与用户设备 UE连接的传输节点中, 确定本次用于接收所述 UE的上 行信息的上行传输节点; 确定本次确定的上行传输节点的生效时刻; 及在所述本次确定的 上行传输节点的生效时刻到来之后, 通过所述本次确定的上行传输节点接收所述 UE发送 的上行信息;
UE, 用于从与自身连接的传输节点中, 确定本次用于发送上行信息的上行传输节点; 确定所述本次确定的上行传输节点的生效时刻; 及在所述本次确定的上行传输节点的生效 时刻到来之后 , 向所述本次确定的上行传输节点发送上行信息。
本申请实施例在异构网络下, 能够灵活确定合适的上行传输节点进行上行信息的传 输, 从而降低了宏基站的负荷, 降低了各 UE 间的上行千扰, 提高了系统吞吐量, 并且节 省了 UE的电量。 附图说明 图 1为本申请实施例提供的接收上行信息的方法流程示意图;
图 2为本申请实施例提供的发送上行信息的方法流程示意图;
图 3为本申请实施例第一种场景下宏基站与 UE的交互过程示意图;
图 4为本申请实施例第二种场景下宏基站与 UE的交互过程示意图;
图 5为本申请实施例第三种场景下宏基站与 UE的交互过程示意图;
图 6为本申请实施例提供的一种宏基站的示意图;
图 7为本申请实施例提供的另一种宏基站的示意图;
图 8为本申请实施例提供的一种用户设备示意图;
图 9为本申请实施例提供的另一种用户设备示意图;
图 10为本申请实施例提供的通信系统示意图。 具体实施方式 本申请实施例在异构网络下, 能够灵活确定合适的上行传输节点进行上行信息的传 输, 从而降低了宏基站的负荷, 降低了各 UE间的上行千扰, 提高了系统吞吐量, 并且节 省了 UE的电量。
下面结合附图对本申请实施例进行详细说明。
本申请实施例的上行信息包括但不限于下列信息中的一种或多种:
SRS、 DSR及 CQI。
本申请实施例的传输节点包括但不限于下列中的一个或多个:
Pico (低功率)基站、 Femto (家庭)基站、 RRH、 repeater, RN (中继设备)及宏基 站( Macro e B )。
本申请实施例提供的一种接收上行信息的方法, 应用于 UE仅支持单节点上行传输的 场景, 参见图 1所示, 包括以下步骤:
步骤 11、 宏基站从与 UE连接的传输节点中, 确定本次用于接收该 UE的上行信息的 上行传输节点; 步骤 12、 宏基站确定本次确定的上行传输节点的生效时刻;
步骤 13、宏基站在该本次确定的上行传输节点的生效时刻到来之后, 通过该本次确定 的上行传输节点接收 UE发送的上行信息。
本申请实施例中, 在步骤 11之前, 还包括:
宏基站根据获取到的 UE的能力信息, 确定该 UE在同一时刻支持单节点上行传输。 具体的, 当 UE从 RRC_IDLE (空闲)进入 RRC CONNECTED (连接)状态时, 宏 基站需要获取 UE的能力信息, UE的能力信息包括 UE的无线能力 ( UE radio capability ) 信息和 UE的网络能力信息。 其中, UE的无线能力信息包括该 UE支持的功率等级及频率 带宽等, UE的网络能力信息包括该 UE对于安全算法的支持能力等。
进一步, 宏基站通过空口向 UE发送能力查询请求; 相应的, UE在接收到宏基站发送 的能力查询请求后, 向宏基站上报该 UE 的能力信息; 或者, 宏基站向移动性管理实体 ( Mobile Management Entity, MME )发送能力查询请求; 相应的, MME在接收到宏基站 发送的能力查询请求后, 向宏基站返回 UE的能力信息。
进一步, 宏基站确定 UE在同一时刻支持单节点上行传输包括但不仅限于以下三种方 式:
方式一、若 UE的能力信息中携带用于指示该 UE包含的 RF的数目的第一指示信息且 该第一指示信息指示的数目为 1 , 则宏基站确定该 UE在同一时刻支持单节点上行传输; 方式二、若 UE的能力信息中携带用于指示该 UE是否支持 MTA的第二指示信息, 且 该第二指示信息指示该 UE不支持 MTA, 则宏基站确定 UE在同一时刻支持单节点上行传 输;
方式三、 若 UE的能力信息中携带用于指示该 UE在同一时刻是否支持单节点上行传 输的第三指示信息, 且该第三指示信息指示该 UE在同一时刻支持单节点上行传输, 则宏 基站确定该 UE在同一时刻支持单节点上行传输。
具体的, 该第三指示信息可以为 lbit数据, 例如, 若第三指示信息为 "1" , 则表示该 UE在同一时刻支持单节点上行传输; 若第三指示信息为 "0" , 则表示该 UE在同一时刻不 支持单节点上行传输。
本实施例中, 步骤 11进一步可以但不仅限于包括以下三种方式:
方式 Al、由宏基站为 UE选择合适的传输节点作为本次确定的上行传输节点;具体的, 步骤 11进一步包括:
宏基站从与 UE连接的传输节点中, 选择满足设定的选择原则的传输节点作为本次确 定的上行传输节点。
进一步, 选择原则可以但不仅限于包括下列原则中的一种或多种:
宏基站根据 UE当前的位置信息, 确定该 UE和各个传输节点之间的距离, 选择距离 最小或不大于设定的距离阈值的传输节点作为本次确定的上行传输节点, 该距离阈值为经 验值, 可根据实际需要确定;
宏基站根据 UE在各个小区上的路损信息, 选择路损最小或不大于设定的路损阈值的 小区对应的传输节点作为本次确定的上行传输节点, 该路损阈值为经验值, 可根据实际需 要确定;
宏基站根据 UE在各个小区上的参考信号接收情况,选择参考信号接收功率( Reference Signal Received Power, RSRP )取值最大或取值不小于设定的 RSRP阈值的小区对应的传 输节点作为本次确定的上行传输节点, 该 RSRP阈值为经验值, 可根据实际需要确定; 宏基站根据 UE在各个小区上的参考信号接收情况,选择参考信号接收盾量( Reference Signal Received Quality, RSRQ )取值最大或取值不小于设定的 RSRQ阈值的小区对应的 传输节点作为本次确定的上行传输节点, 该 RSRQ阈值为经验值, 可根据实际需要确定; 宏基站根据 UE在各个小区上的参考信号接收情况, 选择 CQI取值最大或取值不小于 设定的 CQI阈值的小区对应的传输节点作为本次确定的上行传输节点,该 CQI阈值为经验 值, 可根据实际需要确定; 及
宏基站根据 UE在各个小区上发送的 SRS接收盾量,选择 SRS接收盾量取值最大或取 值不小于设定的 SRS阈值, 该 SRS阈值为经验值, 可根据实际需要确定。
进一步, 该方式下, 在步骤 11之后, 且在步骤 12之前, 本申请实施例的方法还可以 包括:
宏基站在确定本次确定的上行传输节点与上一次确定的上行传输节点不同时, 通过信 令将本次确定的上行传输节点通知给 UE, 该信令中携带本次确定的上行传输节点对应的 一个或多个小区的标识信息。
优选的, 宏基站发送的信令为无线资源控制 (Radio Resource Control, RRC )信令、 媒体接入控制 (Media Access Control, MAC )信令或物理层信令, 其中, 物理层信令为物 理下行控制信道 ( Physical Downlink Control Channel , PDCCH )、 演进型 PDCCH ( Evolved-PDCCH, E-PDCCH )或中继 PDCCH ( Relay-PDCCH, R-PDCCH )等。
优选的, 小区的标识信息可以为小区索引号; 也可以为下行(DL )频点与物理小区标 识( Physical Cell Identifier, PCI )的组合;还可以为 EUTRAN小区全球标识( E-UTRAN Cell Global Identifier, ECGI )。
进一步,若宏基站通过 MAC信令通知 UE本次确定的上行传输节点,还需要对该 MAC 信令引入专用的逻辑信道标识( Logical Channel Identifier, LCID ) 以标识该 MAC信令是 用于指示 UE上行传输使用的传输节点或者小区的。
进一步, 若宏基站通过物理层信令通知 UE本次确定的上行传输节点, 包括显式指示 及隐式指示两种指示方法; 方法 1、 显式指示, 具体为:
宏基站在该物理层信令中携带本次确定的上行传输节点的一个或多个小区的标识信 息;
方法 2、 隐式指示, 具体为:
在指定的时刻, 若 UE聚合的任一成员载波上有上行传输需求, 宏基站确定该成员载 波所属的传输节点为本次确定的上行传输节点;
例如, UE聚合了两个 UL成员载波(Componet Carrier, CC ), 即 CC1和 CC2; 如果 T1时刻, CC1上有上行传输需求(如物理上行共享信道( Physical Uplink Shared Channel, PUSCH )、 物理层上行控制信道(Physical Uplink Control Channel, PUCCH )或 SRS ), 则 选择 CC1对应的传输节点为本次确定的上行传输节点。
进一步, 釆用隐式指示时, 宏基站需要保证不同的上行传输节点对应的多个小区的 PUCCH、 PUSCH及 SRS的传输在时间上没有冲突。
进一步, 该方式下, 若宏基站发送的信令为 RRC信令, 步骤 12中, 宏基站确定的本 次确定的上行传输节点的生效时刻包括但不限于下列方式中的一种:
第一种方式、 宏基站根据该信令的发送时刻以及该宏基站与 UE预先约定的生效时间 确定本次确定的上行传输点的生效时刻;
进一步, 宏基站通过信令将本次确定的上行传输节点通知给 UE之后且在预先设定的 生效时刻到来之前, 本申请实施例的方法还包括:
宏基站通过上一次确定的上行传输节点接收该 UE发送的上行信息; 或者宏基站终止 对该 UE的上 /下行调度(用于传输 RRC响应消息的 UL grant除外)。
相应的, UE在接收到宏基站发送的本次确定的上行传输节点的标识信息之后且在预 先设定的时刻到来之前, 向上一次确定的上行传输节点发送上行信息。
第二种方式、 宏基站将其接收到 UE发送的针对该信令的 HARQ ACK反馈或者 RRC 响应消息的时刻作为本次确定的上行传输点生效时刻;
进一步, 宏基站根据下列步骤确定本次确定的上行传输节点的生效时刻:
宏基站在本次确定的上行传输节点上接收到 RRC 响应消息后, 确定本次确定的上行 传输节点的生效时刻到来。
进一步, 宏基站通过信令将本次确定的上行传输节点通知给 UE之后, 且在本次确定 的上行传输节点的生效时刻到来之前, 本申请实施例的方法还包括:
宏基站分别通过上一次确定的上行传输节点及本次确定的上行传输节点监听该 UE发 送的上行信息;或者宏基站终止对该 UE的上 /下行调度(用于传输 RRC响应消息的 UL grant 除外)。
相应的, UE在接收到宏基站发送的本次确定的上行传输节点的标识信息之前, 向上 一次确定的上行传输节点发送上行信息; 且在接收到宏基站发送的本次确定的上行传输节 点的标识信息之后 , 向本次确定的上行传输节点发送上行信息。
进一步, 该方式下, 若宏基站发送的信令为 MAC信令, 步骤 12中, 宏基站确定的本 次确定的上行传输节点的生效时刻包括但不限于下列方法中的一种:
第一种方法、 宏基站根据该信令的发送时刻以及该宏基站与 UE预先约定的生效时间 确定本次确定的上行传输点的生效时刻;
进一步, 宏基站通过信令将本次确定的上行传输节点通知给 UE之后且在预先设定的 时刻到来之前, 本申请实施例的方法还包括:
宏基站通过上一次确定的上行传输节点接收该 UE发送的上行信息; 或者宏基站终止 对该 UE的上 /下行调度。
相应的, UE在接收到宏基站发送的本次确定的上行传输节点的标识信息之后且在预 先设定的时刻到来之前, 向上一次确定的上行传输节点发送上行信息。
第二种方法、 宏基站将其接收到 UE发送的针对该信令的 HARQ ACK反馈或者 RRC 响应消息的时刻作为本次确定的上行传输点生效时刻;
进一步, 宏基站通过信令将本次确定的上行传输节点通知给 UE之后, 且在本次确定 的上行传输节点的生效时刻到来之前, 本申请实施例的方法还包括:
宏基站分别通过上一次确定的上行传输节点及本次确定的上行传输节点监听该 UE发 送的上行信息; 或者宏基站终止对该 UE的上 /下行调度。
相应的, UE在接收到宏基站发送的本次确定的上行传输节点的标识信息之前, 向上 一次确定的上行传输节点发送上行信息; 且在接收到宏基站发送的本次确定的上行传输节 点的标识信息之后 , 向本次确定的上行传输节点发送上行信息。
进一步, 该方式下, 若宏基站发送的信令为物理层信令, 步骤 12 中, 宏基站确定的 本次确定的上行传输节点的生效时刻包括但不限于下列方法:
宏基站确定该物理层信令所在的子帧为本次确定的上行传输节点的生效时刻, 即本子 帧生效。
需要说明的是,为了避免由于物理层信令的丢失而导致的宏基站与 UE的理解不一致, 宏基站在收到 ACK反馈之前同时通过本次确定的上行传输节点及上一次确定的上行传输 节点接收上行信息。
方式 B1、由 UE为该 UE选择合适的传输节点作为本次确定的上行传输节点,具体的, 步骤 11进一步包括:
宏基站在接收到 UE通过高层信令发送的标识信息后, 将该标识信息对应的小区所属 的传输节点作为本次确定的上行传输节点, 其中, 标识信息为 UE为该 UE选择的上行传 输节点对应的一个或多个小区的标识信息。 优选的, 小区的标识信息可以为小区索引号; 也可以为下行频点与 PCI的组合; 还可 以为 ECGI。
进一步, 该方式下, 若 UE发送的高层信令为 RRC信令, 步骤 12中, 宏基站确定的 本次确定的上行传输节点的生效时刻具体包括:
宏基站根据 UE发送高层信令的时刻以及该宏基站与 UE预先约定的生效时间确定本 次确定的上行传输点的生效时刻。
进一步, 宏基站接收 UE发送的本次确定的上行传输节点的标识信息之后且在本次确 定的上行传输节点的生效时刻到来之前, 本申请实施例的方法还包括:
宏基站通过上一次确定的上行传输节点接收该 UE发送的上行信息; 或者宏基站终止 对该 UE的上 /下行调度。
相应的, UE在向宏基站发送本次确定的上行传输节点的标识信息之后且在预先设定 的时刻到来之前, 向上一次确定的上行传输节点发送上行信息。
进一步, 该方式下, 若 UE发送的高层信令为 MAC信令, 步骤 12中, 宏基站确定的 本次确定的上行传输节点的生效时刻具体包括:
宏基站根据 UE发送高层信令的时刻以及该宏基站与 UE预先约定的生效时间确定本 次确定的上行传输点的生效时刻。
进一步, 宏基站接收 UE发送的本次确定的上行传输节点的标识信息之后且在本次确 定的上行传输点的生效时刻到来之前, 本申请实施例的方法还包括:
宏基站通过上一次确定的上行传输节点接收该 UE发送的上行信息; 或者宏基站终止 对该 UE的上 /下行调度。
相应的, UE在向宏基站发送本次确定的上行传输节点的标识信息之后且在预先设定 的时刻到来之前, 向上一次确定的上行传输节点发送上行信息。
方式 Cl、宏基站根据与 UE之间的约定规则, 确定本次用于接收上行信息的上行传输 节点;
本申请实施例的约定规则包括但不限于下列方式: 在每个设定的变更周期内, 选择不 同的传输节点作为每次确定的上行传输节点。
其中, 不同 UE的变更周期及偏移量由宏基站配置, 或者由宏基站与每个 UE预先约 定。
进一步, 步骤 12中宏基站确定本次确定的上行传输节点的生效时刻具体包括: 宏基站才艮据当前系统帧号( System Frame Number, SFN )、 子帧号( subframe number )、 偏移量(offset ) 以及每个上行传输节点对应的变更周期 (cycle ), 确定本次确定的上行传 输节点的生效时刻。
其中, 每个上行传输节点对应的变更周期可以相同, 也可以不同。 例如,宏基站确定当前 SFN和子帧号满足公式一的时刻为本次确定的上行传输节点的 生效时刻, 即在该时刻进行上行传输节点的切换:
[(SFN * 10) + subframe number] modulo (Cycle) = (Offset) modulo (Cycle)
……公式一; 其中, (A ) modulo ( B )表示 A对于 B的取模运算。
基于上述实施例, 本申请实施例还提供了一种发送上行信息的方法, 应用于 UE仅支 持单节点上行传输的场景, 参见图 2所示, 该方法包括:
步骤 21、 UE从与其连接的传输节点中, 确定本次用于发送上行信息的上行传输节点; 步骤 22、 UE确定本次确定的上行传输节点的生效时刻;
步骤 23、 UE在本次确定的上行传输节点的生效时刻到来之后, 向本次确定的上行传 输节点发送上行信息。
进一步, UE确定本次用于发送上行信息的上行传输节点, 包括以下三种方式: 方式 A2、由宏基站为 UE选择合适的传输节点作为本次确定的上行传输节点;具体的, 步骤 21进一步包括:
UE在接收到宏基站通过信令发送的标识信息后, 确定该标识信息对应的小区所属的 传输节点为本次确定的上行传输节点, 其中, 标识信息为宏基站为该 UE选择的上行传输 节点的一个或多个小区的标识信息。
进一步, 步骤 22中, UE确定的本次确定的上行传输节点的生效时刻为:
UE根据宏基站发送信令的时刻以及该 UE与宏基站预先约定的生效时间确定本次确 定的上行传输节点生效时刻; 或者,
UE将其接收到宏基站发送的标识信息的时刻作为本次确定的上行传输节点生效时刻; 或者,
若宏基站发送的信令为物理层信令, UE将该物理层信令所在的子帧作为本次确定的 上行传输节点生效时刻。
进一步, 在 UE确定本次用于发送上行信息的上行传输节点之后且在本次确定的上行 传输节点的生效时刻到来之前, 本申请实施例的方法还包括:
UE向上一次确定的上行传输节点发送上行信息。
由于该方式与上述方式 A1相对应, 请参阅方式 A1的具体实施, 此处不再赘述。 方式 B2、由 UE为该 UE选择合适的传输节点作为本次确定的上行传输节点,具体的, 步骤 22进一步包括:
UE从与其连接的传输节点中, 选择满足设定的确定原则的传输节点作为本次确定的 上行传输节点。
进一步, 确定原则可以但不仅限于包括下列原则中的一种或多种: UE根据其对各个服务小区的测量结果,选择 RSRP取值最大或取值大于设定的 RSRP 阈值的服务小区对应的上行传输节点作为本次确定的上行传输节点, 该 RSRP阈值为经验 值, 可根据实际需要确定;
UE根据其对各个服务小区的测量结果,选择 RSRQ取值最大或取值大于设定的 RSRQ 阈值的服务小区对应的上行传输节点作为本次确定的上行传输节点, 该 RSRQ阈值为经验 值, 可根据实际需要确定;
UE根据其对各个服务小区的测量结果, 选择 CQI取值最大或取值大于设定的 CQI阈 值的服务小区对应的上行传输节点作为本次确定的上行传输节点, 该 CQI阈值为经验值, 可根据实际需要确定;
UE根据其在各个服务小区的测量结果, 选择路损取值最小的服务小区对应的上行传 输节点作为本次确定的上行传输节点, 该路损阈值为经验值, 可根据实际需要确定; 及
UE根据其当前的位置信息,确定该 UE与各个传输节点之间的距离, 并选择距离最小 的传输节点作为本次确定的上行传输节点, 该距离阈值为经验值, 可根据实际需要确定; 具体的, 该方式要求 UE需要获取 Marco e B以及本地节点 ( RRH/repeater等) 的部署信 息 , 该部署信息可以由 Marco eNB通知 UE。
进一步, 该方式下, 在步骤 21之后且在步骤 22之前, 本申请实施例的方法还包括: UE在确定本次确定的上行传输节点与上一次确定的上行传输节点不同时, 通过高层 信令将本次确定的上行传输节点通知给宏基站, 该高层信令中携带本次确定的上行传输节 点对应的一个或多个小区的标识信息。
优选的, UE发送的高层信令为 RRC信令或 MAC信令。
优选的, 本申请实施例中小区的标识信息为小区索引号;也可以为下行 DL频点与 PCI 的组合; 还可以为 ECGI。
进一步,若 UE通过 MAC信令通知宏基站本次确定的上行传输节点,还需要对该 MAC 信令引入专用的 LCID以标识该 MAC信令是用于指示宏基站上行传输使用的传输节点或 者小区的。
进一步, 该方式下, UE确定的本次确定的上行传输节点的生效时刻具体包括: UE根据其发送高层信令的时刻以及该 UE与宏基站预先约定的生效时间确定本次确 定的上行传输节点生效时刻。
进一步, 在步骤 21 之后且在本次确定的上行传输节点的生效时刻到来之前, 本申请 实施例的方法还包括:
UE向上一次确定的上行传输节点发送上行信息。
方式 C2、 UE根据与宏基站之间的约定规则, 确定本次用于发送上行信息的上行传输 节点; 本申请实施例的约定规则包括但不限于下列方式: 在每个设定的变更周期内, 选择不 同的传输节点作为每次确定的上行传输节点。
其中, 不同 UE的变更周期及偏移量由宏基站配置, 或者由宏基站与每个 UE预先约 定。
进一步, 步骤 22中 UE确定本次确定的上行传输节点的生效时刻包括:
UE才艮据当前系统帧号 ( System Frame Number, SFN )、 子帧号 ( subframe number )、 偏移量(offset ) 以及每个上行传输节点对应的变更周期 (cycle ), 确定本次确定的上行传 输节点的生效时刻。
例如, UE确定当前 SFN和子帧号满足公式一的时刻为本次确定的上行传输节点的生 效时刻, 即在该时刻进行上行传输节点的切换。
方式 C1及方式 C2中, 由于宏基站与 UE通过约定规则确定本次上行传输所用的上行 传输节点, 因此, 宏基站与 UE之间不需要进行信令交互, 从而节省了系统信令开销。
本申请实施例中, 步骤 23进一步包括:
UE在本次确定的上行传输节点对应的上行载波上发送上行信息。
进一步, 若 UE的聚合载波中的多个成员载波上都配置了 PUCCH, UE在本次确定的 上行传输节点对应的上行载波上发送上行信息, 进一步包括:
UE选择归属于本次确定的上行传输节点且配置有 PUCCH的成员载波上发送 PUCCH 信息。
本申请实施例中, 步骤 22之后, 该方法还包括下列步骤中的一个或多个:
UE删除其保存的上一次确定的上行传输节点对应的上行调度配置;
UE 保存上一次确定的上行传输节点对应的小区或定时提前量组 (Timing Advance Group , TAG ) 的 TA值;
UE停止向上一次确定的上行传输节点发送 SRS、 DSR及 CQI;
UE确定本次确定的上行传输节点对应的小区的 TA值; 及
UE删除其保存的上一次确定的上行传输节点对应的小区的混合自动重传请求( Hybrid
Automatic Repeat Request, HARQ )緩存。
需要说明的是, 本申请实施例不对上述五个步骤的执行顺序进行限制。
进一步, UE确定本次确定的上行传输节点对应的小区的 TA值,进一步包括以下两种 方式:
一、 UE确定本次用于发送上行信息的上行传输节点后, 根据接收到的宏基站发送的 定时提前命令 ( Timing Advance Command, TAC ) MAC控制单元( Control Element, CE ), 以及 UE之前保存的上行传输节点对应的小区或 TAG的 TA值确定本次确定的上行传输节 点对应的小区的 TA值; 该方式下,在上行传输节点变更时, UE保存之前确定的上行传输对应的小区或者 TAG 的 TA值, 且对相应的小区或者 TAG对应的定时提前量定时器(Timing Advance Timer, TAT ) 不^故任何处理;
二、 UE确定本次用于发送上行信息的上行传输节点后,通过随机接入( Random Access, RA )过程获取本次确定的上行传输节点对应的小区的 TA值;
该方式下, UE仅保存本次确定的上行传输节点对应的小区或者 TAG的 TA值, 不保 存之前确定的上行传输节点对应的小区或者 TAG的 TA值, 并且一旦上行传输节点变更, 之前确定的上行传输节点对应的小区或者 TAG的 TAT将停止运行。
优选的, 步骤 22之后, 本申请实施例的方法还包括:
UE释放上次确定的上行传输节点对应的 SRS和 /或 PUCCH配置。
下面结合不同场景下的具体实施例进行说明。
实施一、 宏基站为 UE选择合适的上行传输节点, 参见图 3所示, 本实施例提供的传 输上行信息的方法包括以下步骤:
步骤 31、 Marco e B获取 UE的能力信息, 并根据获取到的能力信息确定该 UE在同 一时刻仅支持单节点上行传输;
步骤 32、 Marco eNB根据设定的选择原则为该 UE选择本次传输使用的上行传输节点; 步骤 33、 Marco eNB将新选择的上行传输节点通知给 UE;
步骤 34a、 UE确定新选择的上行传输节点的生效时刻;
步骤 34b、 Marco eNB确定新选择的上行传输节点的生效时刻;
步骤 35、 UE按照 Marco eNB指示的上行传输节点进行上行信息的传输。
进一步, UE根据步骤 33中 Marco eNB指示的上行传输节点以及步骤 34a中确定的该 上行传输节点的生效时刻, 在新配置的上行传输节点生效之后, UE还执行下列行为中的 一种或多种:
UE清空旧的上行传输节点对应的小区对应的 HARQ buffer;
UE清空旧的上行传输节点对应的 configured UL grant;
UE停止在旧的上行传输节点发送 SRS、 DSR以及 CQI; 进一步, UE还可以释放旧的 上行传输节点对应的 SRS/PUCCH配置;
UE保留旧传输节点对应的小区或者 TAG的 TA值;
UE确定新上行传输点对应的小区的 TA值。
本实施例中, 不对步骤 34a和步骤 34b的执行顺序进行限制, 具体的: 可以先执行步 骤 34a, 再执行步骤 34b; 也可以先执行步骤 34b, 再执行步骤 34a; 还可以同时执行步骤 34a和步骤 34b。
实施二、 UE为该 UE选择合适的上行传输节点, 参见图 4所示, 本实施例提供的传输 上行信息的方法包括以下步骤:
步骤 41、 Marco e B根据 UE上报该 UE的能力信息, 确定该 UE在同一时刻仅支持 单节点上行传输;
步骤 42、 Marco eNB为 UE选择服务小区 ( serving cell );
具体的, Marco eNB根据下列信息中的一种或多种, 为 UE选择 serving cell:
UE上报的测量结果, 该测量结果包括 RSRP、 RSRQ、 CQI中的一种或多种;
UE上 4艮的该 UE的位置信息;
UE上报的该 UE的能力信息, 如, 该 UE可以支持的频带组合;
Marco eNB下各个小区的负荷、 千扰情况。
步骤 43、 Marco eNB将为 UE配置的 serving cell通知给该 UE;
其中, 由于 PCell在 RRC连接建立或者传输节点切换时已经选定, 因此, 这里仅包含 Scell的配置。
步骤 44、 UE根据设定的确定原则, 为该 UE选择新的上行传输节点;
步骤 45、 UE向 Marco eNB上报该 UE选择的新的上行传输节点;
步骤 46a、 UE确定新选择的上行传输节点的生效时刻;
步骤 46b、 Marco eNB确定新选择的上行传输节点的生效时刻;
步骤 47、 UE按照该 UE选择的新的上行传输节点进行上行传输。
进一步, UE根据步骤 44中该 UE选择的上行传输节点以及步骤 46a中确定的该上行 传输节点的生效时刻, 在新配置的上行传输节点生效之后, UE还执行下列行为中的一种 或多种:
UE清空旧的上行传输节点对应的小区对应的 HARQ buffer;
UE清空旧的上行传输节点对应的 configured UL grant;
UE停止在旧的上行传输节点发送 SRS、 DSR以及 CQI; 进一步, UE还可以释放旧的 上行传输节点对应的 SRS/PUCCH配置;
UE保留旧的上行传输节点对应的小区或者 TAG的 TA值;
UE确定新上行传输点对应的小区的 TA值。
本实施例中, 不对步骤 46a和步骤 46b的执行顺序进行限制, 具体的: 可以先执行步 骤 46a, 再执行步骤 46b; 也可以先执行步骤 46b, 再执行步骤 46a; 还可以同时执行步骤 46a和步骤 46b。
实施三、 UE为该 UE选择合适的上行传输节点, 参见图 5所示, 本实施例提供的传输 上行信息的方法包括以下步骤:
步骤 51、 Marco eNB根据 UE上报该 UE的能力信息, 确定该 UE在同一时刻仅支持 单节点上行传输; 步骤 52、 Marco e B为 UE选择服务小区 ( serving cell );
具体的, Marco eNB根据下列信息中的一种或多种, 为 UE选择 serving cell:
UE上报的测量结果, 该测量结果包括 RSRP、 RSRQ、 CQI中的一种或多种;
UE上 4艮的该 UE的位置信息;
UE上报的该 UE的能力信息, 如, 该 UE可以支持的频带组合;
Marco eNB下各个小区的负荷、 千扰情况。
步骤 53、 Marco eNB将为 UE配置的 serving cell通知给该 UE;
其中, 由于 PCell在 RRC连接建立或者传输节点切换时已经选定, 因此, 这里仅包含 Scell的配置。
步骤 54a、 UE根据设定的约定规则, 选择新的上行传输节点;
步骤 54b、 Marco eNB根据该约定规则, 选择新的上行传输节点;
步骤 55a、 UE确定新选择的上行传输节点的生效时刻;
步骤 55b、 Marco eNB确定新选择的上行传输节点的生效时刻;
步骤 56、 UE按照新选择的上行传输节点进行上行传输。
进一步, UE根据步骤 54a中该 UE选择的上行传输节点以及步骤 55a中确定的该上行 传输节点的生效时刻, 在新配置的上行传输节点生效之后, UE还执行下列行为中的一种 或多种:
UE清空旧的上行传输节点对应的小区对应的 HARQ buffer;
UE清空旧的上行传输节点对应的 configured UL grant;
UE停止在旧的上行传输节点发送 SRS、 DSR以及 CQI; 进一步, UE还可以释放旧的 上行传输节点对应的 SRS/PUCCH配置;
UE保留旧传输节点对应的小区或者 TAG的 TA值;
UE确定新上行传输点对应的小区的 TA值。
本实施例中, 不对步骤 54a和步骤 54b的执行顺序进行限制, 具体的: 可以先执行步 骤 54a, 再执行步骤 54b; 也可以先执行步骤 54b, 再执行步骤 54a; 还可以同时执行步骤 54a和步骤 54b;
不对步骤 55a和步骤 55b的执行顺序进行限制, 具体的: 可以先执行步骤 55a, 再执 行步骤 55b;也可以先执行步骤 55b,再执行步骤 55a;还可以同时执行步骤 55a和步骤 55b。
上述方法处理流程可以用软件程序实现, 该软件程序可以存储在存储介盾中, 当存储 的软件程序被调用时, 执行上述方法步骤。
基于同一发明构思, 本申请实施例中还提供了一种宏基站, 由于该宏基站解决问题的 原理与图 1所示的接收上行信息的方法相似, 因此该宏基站的实施可以参见图 1所示的方 法的实施, 重复之处不再赘述。 参见图 6所示, 本申请实施例提供的宏基站, 包括:
第一确定模块 61 , 用于从与用户设备 UE连接的传输节点中, 确定本次用于接收 UE 的上行信息的上行传输节点;
第二确定模块 62, 用于确定本次确定的上行传输节点的生效时刻;
接收模块 63 , 用于在本次确定的上行传输节点的生效时刻到来之后, 通过本次确定的 上行传输节点接收 UE发送的上行信息。
进一步, 第一确定模块 61具体用于:
从与 UE连接的传输节点中, 选择满足设定的选择原则的传输节点作为本次确定的上 行传输节点; 或者
在接收到 UE通过高层信令发送的标识信息后, 将标识信息对应的小区所属的传输节 点作为本次确定的上行传输节点, 其中, 标识信息为 UE为自身选择的上行传输节点的一 个或多个小区的标识信息; 或者
根据与 UE之间的约定规则, 确定本次用于接收 UE的上行信息的上行传输节点。 本申请实施例中, 选择原则包括下列原则中的一种或多种:
根据 UE当前的位置信息, 确定 UE和各个传输节点之间的距离, 选择距离最小或者 不大于设定的距离阈值的传输节点作为本次确定的上行传输节点;
根据 UE在各个小区上的路损信息, 选择路损最小或者不大于设定的路损阈值的小区 对应的传输节点作为本次确定的上行传输节点;
根据 UE在各个小区上的参考信号接收情况, 选择参考信号接收功率 RSRQ取值最大 或取值大于设定的 RSRQ阈值的小区对应的传输节点作为本次确定的上行传输节点; 根据 UE在各个小区上的参考信号接收情况, 选择参考信号接收盾量 RSRP取值最大 或取值大于设定的 RSRP阈值的小区对应的传输节点作为本次确定的上行传输节点; 根据 UE在各个小区上的参考信号接收情况, 选择信道状态信息 CQI取值最大或者取 值大于设定的 CQI阈值的小区对应的传输节点作为本次确定的上行传输节点; 及
根据 UE在各个小区上发送的探测参考信号 SRS的接收盾量,选择 SRS接收盾量取值 最大或者取值大于设定的 SRS阈值的小区对应的传输节点作为本次确定的上行传输节点。
本申请实施例中, 约定规则包括: 在每个设定的变更周期内, 选择不同的传输节点作 为每次确定的上行传输节点。
优选的, 不同 UE的变更周期及偏移量由宏基站配置, 或者由宏基站与每个 UE预先 约定。
进一步, 第一确定模块 61还用于:
在选择满足设定的选择原则的传输节点作为本次确定的上行传输节点之后 , 且在确定 本次确定的上行传输节点的生效时刻之前, 若确定本次确定的上行传输节点与上一次确定 的上行传输节点不同, 通过信令将本次确定的上行传输节点通知给 UE, 该信令中携带本 次确定的上行传输节点对应的一个或多个小区的标识信息。
优选的,标识信息为小区索引号; 或者,标识信息为下行 DL频点与物理小区标识 PCI 的组合; 或者, 标识信息为 ECGI。
进一步, 第二确定模块 62具体用于:
根据自身发送信令的时刻以及自身与 UE预先约定的生效时间确定本次确定的上行传 输点的生效时刻; 或者
将自身接收到 UE发送的针对该信令的 HARQ ACK反馈或者 RRC响应消息的时刻作 为本次确定的上行传输点生效时刻; 或者
若自身发送的信令为物理层信令, 将该物理层信令所在的子帧作为本次确定的上行传 输节点的生效时刻; 或者
根据 UE发送高层信令的时刻以及自身与 UE预先约定的生效时间确定本次确定的上 行传输点的生效时刻; 或者
根据当前系统帧号 SFN、 子帧号、 偏移量以及每个上行传输节点对应的变更周期, 确 定本次确定的上行传输节点的生效时刻。
进一步, 第二确定模块 62具体用于:
若生效时刻为 UE接收到宏基站发送的标识信息的时刻, 在本次确定的上行传输节点 上接收到 RRC响应消息或应答 ACK反馈后, 确定本次确定的上行传输节点的生效时刻到 来。
进一步, 若第二确定模块 62根据自身发送信令的发送时刻以及自身与 UE预先约定的 生效时间确定本次确定的上行传输点的生效时刻; 相应的, 接收模块 63 具体用于: 在通 过信令将本次确定的上行传输节点通知给 UE之后且在本次确定的上行传输节点的生效时 刻到来之前, 通过上一次确定的上行传输节点接收 UE发送的上行信息; 或者终止对 UE 的上 /下行调度;
若第二确定模块 62将自身接收到 UE发送的针对该信令的 HARQ ACK反馈或者 RRC 响应消息的时刻作为本次确定的上行传输点生效时刻; 相应的, 接收模块 63 具体用于: 在通过信令将本次确定的上行传输节点通知给 UE之后且在本次确定的上行传输节点的生 效时刻到来之前,分别通过上一次确定的上行传输节点及本次确定的上行传输节点监听 UE 发送的上行信息; 或者终止对 UE的上 /下行调度。
基于与方法同样的发明构思, 本申请实施例提供的另一种宏基站, 如图 7所示, 包括 处理器 71和射频单元 72:
该处理器 71被配置为: 从与用户设备 UE连接的传输节点中, 确定本次用于接收所述
UE的上行信息的上行传输节点; 确定本次确定的上行传输节点的生效时刻; 该射频单元 72被配置为: 在所述本次确定的上行传输节点的生效时刻到来之后, 通 过所述本次确定的上行传输节点接收所述 UE发送的上行信息。
本申请实施例在异构网络下, 能够灵活确定合适的上行传输节点进行上行信息的传 输, 从而降低了宏基站的负荷, 降低了各 UE间的上行千扰, 提高了系统吞吐量, 并且节 省了 UE的电量。
基于同一发明构思, 本申请实施例中还提供了一种用户设备, 由于该用户设备解决问 题的原理与图 2所示的发送上行信息的方法相似, 因此该用户设备的实施可以参见图 2所 示的方法的实施, 重复之处不再赘述。
参见图 8所示, 本申请实施例提供的用户设备包括:
第一处理模块 81 , 用于从与自身连接的传输节点中, 确定本次用于发送上行信息的上 行传输节点;
第二处理模块 82, 用于确定本次确定的上行传输节点的生效时刻;
发送模块 83 , 用于在本次确定的上行传输节点的生效时刻到来之后, 向本次确定的上 行传输节点发送上行信息。
进一步, 第一处理模块 81具体用于:
从与自身连接的传输节点中, 选择满足设定的确定原则的传输节点作为本次确定的上 行传输节点; 或者
在接收到宏基站通过信令发送的标识信息后, 确定标识信息对应的小区所属的传输节 点为本次确定的上行传输节点, 其中, 标识信息为宏基站为自身选择的上行传输节点的一 个或多个小区的标识信息; 或者
根据与宏基站之间的约定规则, 确定本次用于发送上行信息的上行传输节点。
本申请实施例中, 确定原则包括下列原则中的一种或多种:
UE根据自身对各个服务小区的测量结果, 选择 RSRP 取值最大或取值大于设定的
RSRP阈值的服务小区对应的上行传输节点作为本次确定的上行传输节点;
UE根据自身对各个服务小区的测量结果, 选择 RSRQ 取值最大或取值大于设定的
RSRQ阈值的服务小区对应的上行传输节点作为本次确定的上行传输节点;
UE根据自身对各个服务小区的测量结果, 选择 CQI取值最大或取值大于设定的 CQI 阈值的服务 、区对应的上行传输节点作为本次确定的上行传输节点;
UE根据自身在各个服务小区的测量结果, 选择路损取值最小的服务小区对应的上行 传输节点作为本次确定的上行传输节点; 及
UE根据自身当前的位置信息, 确定自身与各个传输节点之间的距离, 并选择距离最 小的传输节点作为本次确定的上行传输节点。
本申请实施例中, 约定规则包括: 在每个设定的变更周期内, 选择不同的传输节点作 为每次确定的上行传输节点。
优选的, 不同 UE的变更周期及偏移量由宏基站配置, 或者由宏基站与每个 UE预先 约定。
进一步, 第一处理模块 81具体还用于:
在选择满足设定的确定原则的传输节点作为本次确定的上行传输节点之后 , 且在确定 本次确定的上行传输节点的生效时刻之前, 若确定本次确定的上行传输节点与上一次确定 的上行传输节点不同时, 通过高层信令将本次确定的上行传输节点通知给宏基站, 高层信 令中携带本次确定的上行传输节点对应的一个或多个小区的标识信息。
优选的,标识信息为小区索引号; 或者,标识信息为下行 DL频点与物理小区标识 PCI 的组合; 或者, 标识信息为 ECGI。
进一步, 第二处理模块 82具体用于:
根据自身发送高层信令的时刻以及自身与宏基站预先约定的生效时间确定本次确定 的上行传输节点生效时刻; 或者
根据宏基站发送信令的时刻以及自身与宏基站预先约定的生效时间确定本次确定的 上行传输节点生效时刻; 或者
将自身接收到宏基站发送的标识信息的时刻作为本次确定的上行传输节点生效时刻; 或者
若宏基站发送的信令为物理层信令, 将该物理层信令所在的子帧作为本次确定的上行 传输节点生效时刻; 或者
根据当前系统帧号 SFN、 子帧号、 偏移量以及上行传输节点的变更周期确定本次确定 的上行传输节点的生效时刻。
进一步, 发送模块 83还用于: 在第一处理模块 71确定本次用于发送上行信息的上行 传输节点之后且在第二处理模块 82确定的生效时刻到来之前, 向上一次确定的上行传输 节点发送上行信息。
进一步, 发送模块 83 具体用于: 在本次确定的上行传输节点对应的上行载波上发送 上行信息。
优选的,发送模块 83还用于: 若 UE的聚合载波中的多个成员载波上都配置了物理上 行控制信道 PUCCH,选择归属于本次确定的上行传输节点且配置有 PUCCH的成员载波上 发送 PUCCH信息。
进一步, 第二处理模块 82在确定本次确定的上行传输节点的生效时刻之后, 还执行 下列步骤中的一个或多个:
删除自身保存的上一次确定的上行传输节点对应的上行调度配置;
保存上一次确定的上行传输节点对应的小区或 TAG的 TA值; 停止向上一次确定的上行传输节点发送 SRS、 DSR及 CQI;
确定本次确定的上行传输节点对应的小区的 TA值; 及
删除自身保存的上一次确定的上行传输节点的服务小区对应的 HARQ緩存。
进一步, 发送模块 83具体用于:
确定本次用于发送上行信息的上行传输节点后, 根据接收到的宏基站发送的 TAC
MAC CE, 以及自身保存的之前确定的上行传输节点对应的小区或 TAG的 TA值确定本次 确定的上行传输节点对应的小区的 TA值; 或者
确定本次用于发送上行信息的上行传输节点后, 通过随机接入 RA过程获取本次确定 的上行传输节点对应的小区的 TA值。
本申请实施例提供的另一种用户设备, 如图 9所示, 包括处理器 91和射频单元 92。 该处理器 91 被配置为: 从与自身连接的传输节点中, 确定本次用于发送上行信息的 上行传输节点; 确定所述本次确定的上行传输节点的生效时刻;
该射频单元 92被配置为: 在所述本次确定的上行传输节点的生效时刻到来之后, 向 所述本次确定的上行传输节点发送上行信息。
本申请实施例在异构网络下, 能够灵活确定合适的上行传输节点进行上行信息的传 输, 从而降低了宏基站的负荷, 降低了各 UE间的上行千扰, 提高了系统吞吐量, 并且节 省了 UE的电量。
基于上述实施例, 本申请实施例还提供了一种通信系统, 参见图 10 所示, 该通信系 统包括:
宏基站 101 , 用于从与用户设备 UE82连接的传输节点中, 确定本次用于接收 UE82 的上行信息的上行传输节点; 确定本次确定的上行传输节点的生效时刻; 及在本次确定的 上行传输节点的生效时刻到来之后, 通过本次确定的上行传输节点接收 UE82发送的上行 信息;
UE102, 用于从与自身连接的传输节点中, 确定本次用于发送上行信息的上行传输节 点; 确定本次确定的上行传输节点的生效时刻; 及在本次确定的上行传输节点的生效时刻 到来之后 , 向本次确定的上行传输节点发送上行信息。
本申请实施例在异构网络下, 能够灵活确定合适的上行传输节点进行上行信息的传 输, 从而降低了宏基站的负荷, 降低了各 UE间的上行千扰, 提高了系统吞吐量, 并且节 省了 UE的电量。
本领域内的技术人员应明白, 本申请的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本申请可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本申请可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等)上实施的计算机程 序产品的形式。
本申请是参照根据本申请实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本申请范围的所有变更和修改。
显然, 本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和 范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内, 则本申请也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种接收上行信息的方法, 其特征在于, 该方法包括:
宏基站从与用户设备 UE连接的传输节点中, 确定本次用于接收所述 UE的上行信息 的上行传输节点;
所述宏基站确定本次确定的上行传输节点的生效时刻;
所述宏基站在所述本次确定的上行传输节点的生效时刻到来之后 , 通过所述本次确定 的上行传输节点接收所述 UE发送的上行信息。
2、如权利要求 1所述的方法, 其特征在于, 所述宏基站确定本次用于接收所述 UE的 上行信息的上行传输节点之前, 所述方法还包括:
所述宏基站根据获取到的所述 UE的能力信息, 确定所述 UE在同一时刻支持单节点 上行传输。
3、如权利要求 2所述的方法, 其特征在于, 所述宏基站根据下列方式确定所述 UE在 同一时刻支持单节点上行传输:
若所述能力信息中携带用于指示所述 UE包含的射频 RF的数目的第一指示信息且所 述第一指示信息指示的数目为 1 , 所述宏基站确定所述 UE在同一时刻支持单节点上行传 输;
若所述能力信息中携带用于指示所述 UE是否支持多个定时提前量 MTA的第二指示信 息, 且所述第二指示信息指示所述 UE不支持 MTA, 所述宏基站确定所述 UE在同一时刻 支持单节点上行传输;
若所述能力信息中携带用于指示所述 UE在同一时刻是否支持单节点上行传输的第三 指示信息, 且所述第三指示信息指示所述 UE在同一时刻支持单节点上行传输, 所述宏基 站确定所述 UE在同一时刻支持单节点上行传输。
4、如权利要求 1所述的方法, 其特征在于, 所述宏基站确定本次用于接收所述 UE的 上行信息的上行传输节点, 进一步包括:
所述宏基站从与所述 UE连接的传输节点中, 选择满足设定的选择原则的传输节点作 为本次确定的上行传输节点; 或者,
所述宏基站在接收到所述 UE通过高层信令发送的标识信息后, 将所述标识信息对应 的小区所属的传输节点作为本次确定的上行传输节点, 其中, 所述标识信息为所述 UE为 自身选择的上行传输节点对应的一个或多个小区的标识信息; 或者,
所述宏基站根据与所述 UE之间的约定规则, 确定本次用于接收所述 UE的上行信息 的上行传输节点。
5、 如权利要求 4 所述的方法, 其特征在于, 所述选择原则包括下列原则中的一种或 多种:
所述宏基站根据 UE当前的位置信息, 确定 UE和各个传输节点之间的距离, 选择距 离最小或者不大于设定的距离阈值的传输节点作为本次确定的上行传输节点;
所述宏基站根据 UE在各个小区上的路损信息, 选择路损最小或者不大于设定的路损 阈值的小区对应的传输节点作为本次确定的上行传输节点;
所述宏基站根据 UE在各个小区上的参考信号接收情况,选择参考信号接收功率 RSRQ 取值最大或取值大于设定的 RSRQ阈值的小区对应的传输节点作为本次确定的上行传输节 所述宏基站根据 UE在各个小区上的参考信号接收情况,选择参考信号接收盾量 RSRP 取值最大或取值大于设定的 RSRP阈值的小区对应的传输节点作为本次确定的上行传输节 所述宏基站根据 UE在各个小区上的参考信号接收情况, 选择信道状态信息 CQI取值 最大或者取值大于设定的 CQI阈值的小区对应的传输节点作为本次确定的上行传输节点; 所述宏基站根据 UE在各个小区上发送的探测参考信号 SRS 的接收盾量, 选择 SRS 接收盾量取值最大或者取值大于设定的 SRS 阈值的小区对应的传输节点作为本次确定的 上行传输节点。
6、 如权利要求 4 所述的方法, 其特征在于, 所述宏基站选择满足设定的选择原则的 传输节点作为本次确定的上行传输节点之后 , 且所述宏基站确定所述本次确定的上行传输 节点的生效时刻之前, 所述方法还包括:
所述宏基站在确定本次确定的上行传输节点与上一次确定的上行传输节点不同时, 通 过信令将本次确定的上行传输节点通知给所述 UE, 所述信令中携带所述本次确定的上行 传输节点对应的一个或者多个小区的标识信息。
7、 如权利要求 6所述的方法, 其特征在于, 所述信令为无线资源控制 RRC信令、 媒 体接入控制 MAC信令或物理层信令。
8、 如权利要求 7 所述的方法, 其特征在于, 若所述信令为物理层信令; 所述宏基站 确定本次用于接收所述 UE的上行信息的上行传输节点, 还包括:
在指定的时刻, 若所述 UE聚合的任一成员载波上有上行传输需求, 所述宏基站确定 该成员载波所属的传输节点为本次确定的上行传输节点。
9、 如权利要求 6 所述的方法, 其特征在于, 所述标识信息为小区索引号; 或者, 所 述标识信息为下行 DL频点与物理小区标识 PCI的组合; 或者, 所述标识信息为小区全球 唯一标识 ECGI。
10、 如权利要求 4所述的方法, 其特征在于, 所述约定规则包括: 在每个设定的变更 周期内, 选择不同的传输节点作为每次确定的上行传输节点。
11、如权利要求 10所述的方法, 其特征在于, 不同 UE的变更周期及偏移量由所述宏 基站配置, 或者由所述宏基站与每个 UE预先约定。
12、 如权利要求 4所述的方法, 其特征在于, 所述宏基站确定所述本次确定的上行传 输节点的生效时刻, 具体包括:
所述宏基站根据自身发送信令的时刻以及自身与 UE预先约定的生效时间确定所述本 次确定的上行传输点的生效时刻; 或者,
所述宏基站将自身接收到所述 UE发送的针对所述信令的混合自动重传请求 HARQ应 答 ACK反馈或者 RRC响应消息的时刻作为所述本次确定的上行传输点生效时刻; 或者, 若所述信令为物理层信令, 所述宏基站将所述物理层信令所在的子帧作为所述本次确 定的上行传输点生效时刻; 或者,
所述宏基站根据所述 UE发送高层信令的时刻以及自身与 UE预先约定的生效时间确 定所述本次确定的上行传输点的生效时刻; 或者,
所述宏基站根据当前系统帧号 SFN、 子帧号、 偏移量以及上行传输节点对应的变更周 期, 确定本次确定的上行传输节点的生效时刻。
13、 如权利要求 12 所述的方法, 其特征在于, 若所述宏基站根据所述信令的发送时 刻以及自身与 UE预先约定的生效时间确定所述本次确定的上行传输点的生效时刻; 在所 述宏基站通过信令将所述本次确定的上行传输节点通知给所述 UE之后且在所述本次确定 的上行传输节点的生效时刻到来之前, 所述方法还包括:
所述宏基站通过上一次确定的上行传输节点接收所述 UE发送的上行信息; 或者, 所述宏基站终止对所述 UE的上 /下行调度。
14、如权利要求 12所述的方法, 其特征在于, 若所述宏基站将自身接收到所述 UE发 送的针对所述信令的 HARQ ACK反馈或者 RRC响应消息的时刻作为所述本次确定的上行 传输点生效时刻; 在所述宏基站通过所述信令将本次确定的上行传输节点通知给所述 UE 之后且在所述本次确定的上行传输节点的生效时刻到来之前, 所述方法还包括:
所述宏基站分别通过上一次确定的上行传输节点及本次确定的上行传输节点监听所 述 UE发送的上行信息; 或者,
所述宏基站终止对所述 UE的上 /下行调度。
15、 一种发送上行信息的方法, 其特征在于, 该方法包括:
用户设备 UE从与自身连接的传输节点中, 确定本次用于发送上行信息的上行传输节 所述 UE确定所述本次确定的上行传输节点的生效时刻;
所述 UE在所述本次确定的上行传输节点的生效时刻到来之后, 向所述本次确定的上 行传输节点发送上行信息。
16、 如权利要求 15所述的方法, 其特征在于, 所述 UE确定本次用于发送上行信息的 上行传输节点, 进一步包括:
所述 UE从与自身连接的传输节点中, 选择满足设定的确定原则的传输节点作为本次 确定的上行传输节点; 或者,
所述 UE在接收到所述宏基站通过信令发送的标识信息后, 确定所述标识信息对应的 小区所属的传输节点为本次确定的上行传输节点, 其中, 所述标识信息为所述宏基站为所 述 UE选择的上行传输节点的一个或者多个小区的标识信息; 或者,
所述 UE根据与所述宏基站之间的约定规则, 确定本次用于发送上行信息的上行传输 节点。
17、 如权利要求 16 所述的方法, 其特征在于, 所述确定原则包括下列原则中的一种 或多种:
所述 UE根据自身对各个服务小区的测量结果, 选择 RSRP取值最大或取值大于设定 的 RSRP阈值的服务 、区对应的上行传输节点作为本次确定的上行传输节点;
所述 UE根据自身对各个服务小区的测量结果, 选择 RSRQ取值最大或取值大于设定 的 RSRQ阈值的服务小区对应的上行传输节点作为本次确定的上行传输节点;
所述 UE根据自身对各个服务小区的测量结果, 选择 CQI取值最大或取值大于设定的 CQI阈值的服务小区对应的上行传输节点作为本次确定的上行传输节点;
所述 UE根据自身在各个服务小区的测量结果, 选择路损取值最小的服务小区对应的 上行传输节点作为本次确定的上行传输节点;
所述 UE根据自身当前的位置信息, 确定自身与各个传输节点之间的距离, 并选择距 离最小的传输节点作为本次确定的上行传输节点。
18、 如权利要求 16所述的方法, 其特征在于, 所述 UE选择满足设定的确定原则的传 输节点作为本次确定的上行传输节点之后 , 且所述 UE确定所述本次确定的上行传输节点 的生效时刻之前, 所述方法还包括:
所述 UE在确定本次确定的上行传输节点与上一次确定的上行传输节点不同时, 通过 高层信令将本次确定的上行传输节点通知给所述宏基站, 所述高层信令中携带所述 UE本 次确定的上行传输节点对应的一个或者多个小区的标识信息。
19、 如权利要求 18 所述的方法, 其特征在于, 所述标识信息为小区索引号; 或者, 所述标识信息为下行 DL频点与物理小区标识 PCI的组合; 或者, 所述标识信息为 ECGI。
20、 如权利要求 16 所述的方法, 其特征在于, 若所述宏基站发送的信令为物理层信 令, 且所述物理层信令中携带上行调度信息; 所述 UE确定本次用于发送上行信息的上行 传输节点, 还包括: 所述 UE将所述物理层信令中携带的上行调度信息对应的小区所属的传输节点作为本 次用于发送上行信息的上行传输节点。
21、 如权利要求 16 所述的方法, 其特征在于, 所述约定规则包括: 在每个设定的变 更周期内, 选择不同的传输节点作为每次确定的上行传输节点。
22、如权利要求 21所述的方法, 其特征在于, 不同 UE的变更周期及偏移量由所述宏 基站配置, 或者由所述宏基站与每个 UE预先约定。
23、如权利要求 16所述的方法, 其特征在于, 所述 UE确定所述本次确定的上行传输 节点的生效时刻, 具体包括:
所述 UE根据自身发送高层信令的时刻以及自身与所述宏基站预先约定的生效时间确 定所述本次确定的上行传输节点生效时刻; 或者,
所述 UE根据所述宏基站发送信令的时刻以及自身与所述宏基站预先约定的生效时间 确定所述本次确定的上行传输节点生效时刻; 或者,
所述 UE将自身接收到所述宏基站发送的标识信息的时刻作为所述本次确定的上行传 输节点生效时刻; 或者,
若所述宏基站发送的信令为物理层信令, 所述 UE将所述物理层信令所在的子帧作为 所述本次确定的上行传输节点生效时刻; 或者,
所述 UE根据当前系统帧号 SFN、 子帧号、 偏移量以及上行传输节点的变更周期确定 所述本次确定的上行传输节点的生效时刻。
24、如权利要求 15所述的方法, 其特征在于, 在所述 UE确定本次用于发送上行信息 的上行传输节点之后且在所述本次确定的上行传输节点的生效时刻到来之前, 所述方法还 包括:
所述 UE向上一次确定的上行传输节点发送上行信息。
25、如权利要求 15所述的方法, 其特征在于, 所述 UE向所述本次确定的上行传输节 点发送上行信息, 进一步包括:
所述 UE在本次确定的上行传输节点对应的上行载波上发送上行信息。
26、如权利要求 25所述的方法, 其特征在于, 若所述 UE的聚合载波中的多个成员载 波上都配置了物理上行控制信道 PUCCH,所述 UE在本次确定的上行传输节点对应的上行 载波上发送上行信息, 进一步包括:
所述 UE选择归属于所述本次确定的上行传输节点且配置有 PUCCH的成员载波上发 送 PUCCH信息。
27、如权利要求 15所述的方法, 其特征在于, 所述 UE确定所述本次确定的上行传输 节点的生效时刻之后 , 所述方法还包括下列步骤中的一个或多个:
所述 UE删除自身保存的上一次确定的上行传输节点对应的上行调度配置; 所述 UE保存上一次确定的上行传输节点对应的小区或者定时提前量组 TAG的定时提 前量 TA值;
所述 UE停止向上一次确定的上行传输节点发送 SRS、 专用调度请求 DSR及 CQI; 所述 UE确定所述本次确定的上行传输节点对应的小区的 TA值;
所述 UE删除自身保存的上一次确定的上行传输节点对应的小区的 HARQ緩存。
28、如权利要求 27所述的方法, 其特征在于, 所述 UE确定所述本次确定的上行传输 节点对应的小区的 TA值, 进一步包括:
所述 UE确定本次用于发送上行信息的上行传输节点后, 根据接收到的所述宏基站发 送的定时提前命令媒体接入控制单元 TAC MAC CE以及所述 UE保存的之前确定的上行传 输节点对应的小区或者 TAG的 TA值, 确定所述本次确定的上行传输节点对应的小区的 TA值; 或者
所述 UE确定本次用于发送上行信息的上行传输节点后, 通过随机接入 RA过程获取 本次确定的上行传输节点对应的小区的 TA值。
29、 一种宏基站, 其特征在于, 该宏基站包括:
第一确定模块,用于从与用户设备 UE连接的传输节点中,确定本次用于接收所述 UE 的上行信息的上行传输节点;
第二确定模块, 用于确定本次确定的上行传输节点的生效时刻;
接收模块, 用于在所述本次确定的上行传输节点的生效时刻到来之后, 通过所述本次 确定的上行传输节点接收所述 UE发送的上行信息。
30、 如权利要求 29所述的宏基站, 其特征在于, 所述第一确定模块具体用于: 从与所述 UE连接的传输节点中, 选择满足设定的选择原则的传输节点作为本次确定 的上行传输节点; 或者
在接收到所述 UE通过高层信令发送的标识信息后, 将所述标识信息对应的小区所属 的传输节点作为本次确定的上行传输节点, 其中, 所述标识信息为所述 UE为自身选择的 上行传输节点对应的一个或多个小区的标识信息; 或者
根据与所述 UE之间的约定规则, 确定本次用于接收所述 UE的上行信息的上行传输 节点。
31、 如权利要求 30所述的宏基站, 其特征在于, 所述第一确定模块还用于: 在选择满足设定的选择原则的小区所属的传输节点作为本次确定的上行传输节点之 后, 且在确定所述本次确定的上行传输节点的生效时刻之前, 若确定本次确定的上行传输 节点与上一次确定的上行传输节点不同, 通过信令将本次确定的上行传输节点通知给所述 UE, 所述信令中携带所述本次确定的上行传输节点对应的一个或者多个小区的标识信息。
32、 如权利要求 30所述的宏基站, 其特征在于, 所述第二确定模块具体用于: 根据自身发送信令的时刻以及自身与 UE预先约定的生效时间确定所述本次确定的上 行传输点的生效时刻; 或者
将自身接收到所述 UE发送的针对所述信令的 HARQ ACK反馈或者 RRC响应消息的 时刻作为所述本次确定的上行传输点生效时刻; 或者
若所述信令为物理层信令, 将所述物理层信令所在的子帧作为本次确定的上行传输节 点的生效时刻; 或者
根据所述 UE发送高层信令的时刻以及自身与 UE预先约定的生效时间确定所述本次 确定的上行传输点的生效时刻; 或者
根据当前系统帧号 SFN、 子帧号、 偏移量以及每个上行传输节点对应的变更周期, 确 定本次确定的上行传输节点的生效时刻。
33、 如权利要求 32 所述的宏基站, 其特征在于, 若所述第二确定模块根据自身发送 信令的时刻以及自身与 UE预先约定的生效时间确定所述本次确定的上行传输点的生效时 刻; 所述接收模块具体用于: 在通过所述信令将所述本次确定的上行传输节点通知给所述 UE之后且在所述本次确定的上行传输节点的生效时刻到来之前, 通过上一次确定的上行 传输节点接收所述 UE发送的上行信息; 或者终止对所述 UE的上 /下行调度;
若所述第二确定模块将自身接收到所述 UE发送的针对所述信令的 HARQ ACK反馈或 者 RRC 响应消息的时刻作为所述本次确定的上行传输点生效时刻; 所述接收模块具体用 于: 在通过所述信令将本次确定的上行传输节点通知给所述 UE之后且在所述本次确定的 上行传输节点的生效时刻到来之前, 分别通过上一次确定的上行传输节点及本次确定的上 行传输节点监听所述 UE发送的上行信息; 或者终止对所述 UE的上 /下行调度。
34、 一种宏基站, 其特征在于, 包括处理器和射频单元:
所述处理器被配置为: 从与用户设备 UE连接的传输节点中, 确定本次用于接收所述 UE的上行信息的上行传输节点; 确定本次确定的上行传输节点的生效时刻;
所述射频单元被配置为: 在所述本次确定的上行传输节点的生效时刻到来之后, 通过 所述本次确定的上行传输节点接收所述 UE发送的上行信息。
35、 一种用户设备, 其特征在于, 该用户设备包括:
第一处理模块, 用于从与自身连接的传输节点中, 确定本次用于发送上行信息的上行 传输节点;
第二处理模块, 用于确定所述本次确定的上行传输节点的生效时刻;
发送模块, 用于在所述本次确定的上行传输节点的生效时刻到来之后, 向所述本次确 定的上行传输节点发送上行信息。
36、 如权利要求 35所述的用户设备, 其特征在于, 所述第一处理模块具体用于: 从与自身连接的传输节点中, 选择满足设定的确定原则的传输节点作为本次确定的上 行传输节点; 或者
在接收到所述宏基站通过信令发送的标识信息后, 确定所述标识信息对应的小区所属 的传输节点为本次确定的上行传输节点, 其中, 所述标识信息为所述宏基站为 UE选择的 上行传输节点的一个或多个小区的标识信息; 或者
根据与所述宏基站之间的约定规则, 确定本次用于发送上行信息的上行传输节点。
37、 如权利要求 36所述的用户设备, 其特征在于, 所述第一处理模块具体还用于: 在选择满足设定的确定原则的传输节点作为本次确定的上行传输节点之后 , 且在确定 所述本次确定的上行传输节点的生效时刻之前, 若确定本次确定的上行传输节点与上一次 确定的上行传输节点不同时, 通过高层信令将本次确定的上行传输节点通知给所述宏基 站, 所述高层信令中携带所述本次确定的上行传输节点对应的一个或多个小区的标识信 息。
38、 如权利要求 35所述的用户设备, 其特征在于, 所述第二处理模块具体用于: 根据自身发送高层信令的时刻以及自身与所述宏基站预先约定的生效时间确定所述 本次确定的上行传输节点生效时刻; 或者
根据所述宏基站发送信令的时刻以及自身与所述宏基站预先约定的生效时间确定所 述本次确定的上行传输节点生效时刻; 或者
将自身接收到所述宏基站发送的标识信息的时刻作为所述本次确定的上行传输节点 生效时刻; 或者
若所述宏基站发送的信令为物理层信令, 将所述物理层信令所在的子帧作为所述本次 确定的上行传输节点生效时刻; 或者
根据当前系统帧号 SFN、 子帧号、 偏移量以及上行传输节点的变更周期确定所述本次 确定的上行传输节点的生效时刻。
39、 如权利要求 35所述的用户设备, 其特征在于, 所述发送模块还用于: 在所述第一确定模块确定本次用于发送上行信息的上行传输节点之后且在所述第二 确定模块确定的生效时刻到来之前, 向上一次确定的上行传输节点发送上行信息。
40、 如权利要求 35 所述的用户设备, 其特征在于, 所述第二处理模块在确定所述本 次确定的上行传输节点的生效时刻之后 , 还执行下列步骤中的一个或多个:
删除自身保存的上一次确定的上行传输节点对应的上行调度配置;
保存上一次确定的上行传输节点对应的小区或 TAG的 TA值;
停止向上一次确定的上行传输节点发送 SRS、 DSR及 CQI;
确定所述本次确定的上行传输节点对应的小区的 TA值;
删除自身保存的上一次确定的上行传输节点的一个或多个小区对应的 HARQ緩存。
41、 一种用户设备, 其特征在于, 包括处理器和射频单元: 所述处理器被配置为: 从与自身连接的传输节点中, 确定本次用于发送上行信息的上 行传输节点; 确定所述本次确定的上行传输节点的生效时刻;
所述射频单元被配置为: 在所述本次确定的上行传输节点的生效时刻到来之后, 向所 述本次确定的上行传输节点发送上行信息。
42、 一种通信系统, 其特征在于, 该通信系统包括:
宏基站, 用于从与用户设备 UE连接的传输节点中, 确定本次用于接收所述 UE的上 行信息的上行传输节点; 确定本次确定的上行传输节点的生效时刻; 及在所述本次确定的 上行传输节点的生效时刻到来之后, 通过所述本次确定的上行传输节点接收所述 UE发送 的上行信息;
UE, 用于从与自身连接的传输节点中, 确定本次用于发送上行信息的上行传输节点; 确定所述本次确定的上行传输节点的生效时刻; 及在所述本次确定的上行传输节点的生效 时刻到来之后 , 向所述本次确定的上行传输节点发送上行信息。
PCT/CN2013/090598 2012-12-27 2013-12-26 一种传输上行信息的方法、设备及系统 WO2014101801A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13867568.1A EP2941055B1 (en) 2012-12-27 2013-12-26 Method and device for transmitting uplink information
US14/651,658 US9781717B2 (en) 2012-12-27 2013-12-26 Method, device and system for transmitting uplink information
US15/687,562 US9974076B2 (en) 2012-12-27 2017-08-28 Method, device and system for transmitting uplink information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210581372.9A CN103906134B (zh) 2012-12-27 2012-12-27 一种传输上行信息的方法、设备及系统
CN201210581372.9 2012-12-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/651,658 A-371-Of-International US9781717B2 (en) 2012-12-27 2013-12-26 Method, device and system for transmitting uplink information
US15/687,562 Division US9974076B2 (en) 2012-12-27 2017-08-28 Method, device and system for transmitting uplink information

Publications (1)

Publication Number Publication Date
WO2014101801A1 true WO2014101801A1 (zh) 2014-07-03

Family

ID=50997236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090598 WO2014101801A1 (zh) 2012-12-27 2013-12-26 一种传输上行信息的方法、设备及系统

Country Status (4)

Country Link
US (2) US9781717B2 (zh)
EP (1) EP2941055B1 (zh)
CN (1) CN103906134B (zh)
WO (1) WO2014101801A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615794A (zh) * 2015-05-22 2018-01-19 株式会社Ntt都科摩 用户装置
CN107852199A (zh) * 2015-08-10 2018-03-27 英特尔Ip公司 用于上行链路波束跟踪的增强型探测参考信令

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428753B (zh) * 2012-05-24 2017-05-24 电信科学技术研究院 一种进行上行转移的方法、系统和设备
KR101600955B1 (ko) * 2014-07-16 2016-03-08 에스케이텔레콤 주식회사 기지국장치 및 기지국장치의 동작 방법
JP6455757B2 (ja) * 2014-12-15 2019-01-23 パナソニックIpマネジメント株式会社 無線基地局装置、無線通信システム、及び基地局割当方法
US9585153B2 (en) * 2014-12-18 2017-02-28 Alcatel-Lucent Usa Inc. Method and apparatus for improved carrier aggregation access control
WO2016168975A1 (zh) * 2015-04-20 2016-10-27 华为技术有限公司 数据发送方法和设备
CN106576249B (zh) * 2015-07-29 2019-11-26 华为技术有限公司 反馈信息的发送装置、接收装置及方法
US10455558B2 (en) * 2016-05-13 2019-10-22 Qualcomm Incorporated Handling for interruption due to carrier switching and carrier switching capability indication
CN114172621A (zh) * 2016-11-02 2022-03-11 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备
JPWO2019098059A1 (ja) * 2017-11-15 2020-10-01 三菱電機株式会社 通信システム、通信端末装置および通信ノード
CN110167133B (zh) 2018-02-13 2021-08-13 华为技术有限公司 一种上行同步方法及装置
WO2019157979A1 (zh) * 2018-02-13 2019-08-22 华为技术有限公司 一种上行同步方法及装置
WO2019232796A1 (zh) * 2018-06-08 2019-12-12 富士通株式会社 参数配置方法以及装置、通信系统
CN111416694B (zh) * 2019-01-07 2023-01-13 中国移动通信有限公司研究院 一种上行数据传输的方法和设备
US11937193B2 (en) * 2020-04-01 2024-03-19 Qualcomm Incorporated Timing improvements for wireless communications systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026852A (zh) * 2004-06-16 2007-08-29 富士通株式会社 移动终端
CN101867964A (zh) * 2009-04-17 2010-10-20 大唐移动通信设备有限公司 一种确定协作传输节点的方法及系统、装置
CN101925156A (zh) * 2009-06-10 2010-12-22 中兴通讯股份有限公司 上行导频信道位置改变过程中保证数据传输的方法及系统
CN102461030A (zh) * 2009-06-08 2012-05-16 Lg电子株式会社 使用载波聚合的通信方法及其设备
CN102711186A (zh) * 2012-05-10 2012-10-03 中国科学院计算技术研究所 CoMP上行链路中时间提前调整参考节点选取的方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102474878B (zh) * 2009-08-17 2014-06-25 上海贝尔股份有限公司 随机接入方法和使用该方法的基站、中继节点和系统
EP2481249B1 (en) * 2009-09-25 2018-12-26 BlackBerry Limited Multi-carrier network operation
US20120106404A1 (en) * 2010-11-01 2012-05-03 Qualcomm Incorporated Fdd and tdd carrier aggregation
EP2684402B1 (en) * 2011-03-08 2020-02-05 Panasonic Intellectual Property Corporation of America Propagation delay difference reporting for multiple component carriers
US9392599B2 (en) * 2011-04-01 2016-07-12 Mitsubishi Electric Corporation Communication system
US8937918B2 (en) * 2011-10-29 2015-01-20 Ofinno Technologies, Llc Efficient special subframe allocation
US8964683B2 (en) * 2012-04-20 2015-02-24 Ofinno Technologies, Llc Sounding signal in a multicarrier wireless device
US9398480B2 (en) * 2012-11-02 2016-07-19 Telefonaktiebolaget L M Ericsson (Publ) Methods of obtaining measurements in the presence of strong and/or highly varying interference

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026852A (zh) * 2004-06-16 2007-08-29 富士通株式会社 移动终端
CN101867964A (zh) * 2009-04-17 2010-10-20 大唐移动通信设备有限公司 一种确定协作传输节点的方法及系统、装置
CN102461030A (zh) * 2009-06-08 2012-05-16 Lg电子株式会社 使用载波聚合的通信方法及其设备
CN101925156A (zh) * 2009-06-10 2010-12-22 中兴通讯股份有限公司 上行导频信道位置改变过程中保证数据传输的方法及系统
CN102711186A (zh) * 2012-05-10 2012-10-03 中国科学院计算技术研究所 CoMP上行链路中时间提前调整参考节点选取的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2941055A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615794A (zh) * 2015-05-22 2018-01-19 株式会社Ntt都科摩 用户装置
CN107615794B (zh) * 2015-05-22 2021-04-20 株式会社Ntt都科摩 用户装置
CN107852199A (zh) * 2015-08-10 2018-03-27 英特尔Ip公司 用于上行链路波束跟踪的增强型探测参考信令
US10826661B2 (en) 2015-08-10 2020-11-03 Apple Inc. Enhanced sounding reference signaling for uplink beam tracking
CN107852199B (zh) * 2015-08-10 2021-03-26 苹果公司 用于上行链路波束跟踪的增强型探测参考信令
US11646766B2 (en) 2015-08-10 2023-05-09 Apple Inc. Enhanced sounding reference signaling for uplink beam tracking

Also Published As

Publication number Publication date
CN103906134A (zh) 2014-07-02
CN103906134B (zh) 2018-07-20
US9974076B2 (en) 2018-05-15
EP2941055A1 (en) 2015-11-04
EP2941055B1 (en) 2018-05-02
US9781717B2 (en) 2017-10-03
US20170359822A1 (en) 2017-12-14
US20150334705A1 (en) 2015-11-19
EP2941055A4 (en) 2015-12-23

Similar Documents

Publication Publication Date Title
WO2014101801A1 (zh) 一种传输上行信息的方法、设备及系统
US11929859B2 (en) Transmission of downlink control information indicating a slot format
US11659497B2 (en) Method and apparatus for performing and reporting measurements by user equipment configured with multiple carriers in mobile communication systems
US20230292183A1 (en) Handover request messaging and handling
JP6805119B2 (ja) セルのオンオフ手順に関するセルモードおよびcsiフィードバック規則のインジケーション
JP6600439B1 (ja) 無線デバイスおよび無線ネットワークにおける不連続受信
CN105900521B (zh) 无线通信的方法和装置
TWI532400B (zh) 在使用載波聚合之不連續接收模式中操作之方法及裝置
TW202031004A (zh) 用於新無線電載波聚合的次細胞休眠
JP2019068467A (ja) 部分および完全サブフレームにおける制御チャネル構成
CN107210880B (zh) 用于处理二级调度请求的方法和装置
WO2016119174A1 (zh) 多载波聚合通信方法和设备
US20190045458A1 (en) User terminal, radio base station and radio communication method
WO2011157091A1 (zh) 多载波系统的测量配置和上报方法及设备
WO2013123872A1 (zh) 一种配置和同步扩展载波的方法、系统及设备
WO2011050564A1 (zh) 一种发送系统信息的方法、系统和设备
JP2023537479A (ja) 拡張クロスキャリアスケジューリングのためのdci処理
WO2016065562A1 (zh) 一种管理无线资源的方法、装置及系统
WO2017193386A1 (zh) 一种计数方法及装置
WO2014139439A1 (zh) 一种基站间测量时的通信处理方法及设备
TWI551176B (zh) A method, system and apparatus for carrying out uplink transfer
WO2015168896A1 (zh) 测量报告的发送方法、装置以及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14651658

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013867568

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE