WO2019157979A1 - 一种上行同步方法及装置 - Google Patents

一种上行同步方法及装置 Download PDF

Info

Publication number
WO2019157979A1
WO2019157979A1 PCT/CN2019/074264 CN2019074264W WO2019157979A1 WO 2019157979 A1 WO2019157979 A1 WO 2019157979A1 CN 2019074264 W CN2019074264 W CN 2019074264W WO 2019157979 A1 WO2019157979 A1 WO 2019157979A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
offset
tag
uplink
timing advance
Prior art date
Application number
PCT/CN2019/074264
Other languages
English (en)
French (fr)
Inventor
张长
曹永照
刘哲
彭金磷
李智
汪凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810302366.2A external-priority patent/CN110167133B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2020564999A priority Critical patent/JP7071543B2/ja
Priority to EP19755224.3A priority patent/EP3751917A4/en
Priority to BR112020016303-1A priority patent/BR112020016303A2/pt
Publication of WO2019157979A1 publication Critical patent/WO2019157979A1/zh
Priority to US16/991,189 priority patent/US11558841B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of information technology, and in particular, to an uplink synchronization method and apparatus.
  • FIG. 1 is a schematic diagram of uplink synchronization.
  • terminal 1 in order for the base station to receive uplink transmission at time T0, terminal 1 needs to send uplink transmission with TA1, and terminal 2 needs to send uplink transmission with TA2, so that the base station can simultaneously receive at time T0. Up to the uplink transmission from terminal 1 and terminal 2.
  • the TA and the duplex mode of the carrier There is a certain relationship between the TA and the duplex mode of the carrier.
  • the LTE (Long Term Evolution) system is used as an example.
  • the TA offset is also configured. ).
  • the absolute time of the uplink timing advance is equal to the uplink timing advance (ie, N TA + N TA offset ) multiplied by a time granularity unit T s . That is to say, the uplink timing advance includes two parts, one is the TA reference amount N TA and the other is the TA offset N TA offset .
  • TAGs Timing Advance Groups
  • the TA reference amount of each carrier in each TAG is the same, and the TA offset of all carriers in each TAG is the same. .
  • the TA reference amount of each carrier in each TAG is the same, but there may be different TA offsets for each carrier in one TAG, so in the NR system, different TA offsets are required for each carrier.
  • the quantity is solved, the problem that the uplink of the different terminals is not synchronized is solved.
  • the present application provides an uplink synchronization method and apparatus for solving the problem that the terminal uplink is out of synchronization in the NR system.
  • an embodiment of the present application provides an uplink synchronization method, where the method includes: receiving, by a communication device, a timing advance command sent by a network device, because the timing advance command includes a TA reference quantity, and the TA reference quantity is for a carrier in the TAG
  • the communication device may determine a TA offset of the carrier according to carrier information of the carrier, and then adjust the carrier based on a TA reference amount and a TA offset of the carrier. Uplink transmission timing.
  • the TA offset satisfies the following conditions:
  • the difference between the TA offsets of each two carriers in the TAG is a first difference
  • the TAG is as described in the TAG.
  • the difference between the TA offsets of each two carriers is a second difference
  • the first difference is the same as the second difference.
  • At least one carrier in the first type of TAG corresponds to the primary cell PCell or the primary secondary cell PSCell, and all carriers in the second type of TAG correspond to the secondary cell Scell, because the first difference is the same as the second difference, so the communication device
  • the uplink transmission on the TAG can ensure that the uplink transmission of other communication devices in the same cell on other TAGs is kept in uplink synchronization, and the signal interference caused by the NR due to uplink unsynchronization is avoided.
  • the communication device may first determine a maximum value of TA offsets of multiple carriers in the TAG, and then adjust multiple of the TAGs based on the TA reference amount and the maximum TA offset.
  • the uplink transmission timing of the carrier It can be seen that each carrier in the TAG adjusts the uplink transmission timing by using the TA reference amount and the maximum TA offset, so the first difference and the second difference are both zero, because other communication devices in the same cell can be guaranteed in other TAGs.
  • the uplink transmission on the uplink keeps the uplink synchronization.
  • the communication device may determine the TA offset of the carrier according to the frequency band in which the carrier is located, where the TA offset determined when the frequency band in which the carrier is located is less than the set frequency value
  • the TA offset determined when the frequency band in which the carrier is located is greater than or equal to the set frequency value, for example, 6 GHz as a demarcation point, and the TA offset of the carrier less than 6 GHz is about 13 us (equivalent to 25560 Tc)
  • the TA offset of the carrier greater than or equal to 6 GHz is about 7 us (equivalent to 13763 Tc).
  • the communications device may determine a TA offset of the respective carriers according to a subcarrier spacing of the carrier; where the subcarrier spacing of the carrier is determined to be less than a set value.
  • the TA offset is greater than the TA offset determined when the subcarrier spacing of the carrier is greater than or equal to the set value, for example, the subcarrier spacing is 15 kHz, the carrier offset of the carrier of 30 KHZ, 60 kHz is the same, and the subcarrier is the same.
  • the TA offset of the carrier with an interval of 120 kHz and other than 120 kHz is the same.
  • the corresponding TAG determined by the network side for the communication device may be characterized in that the subcarrier spacing corresponding to the carrier in the TAG is less than or equal to 60 kHz, or the subcarrier spacing corresponding to the carrier in the TAG. More than 60KHZ, that is, because the general subcarrier spacing is 15KHZ, the carrier offset of the carrier of 30KHZ, 60KHZ is the same, the subcarrier spacing is 120KHZ and the TA offset of other carriers greater than or equal to 120KHZ is the same, so that the division is Each carrier in the TAG generally does not have a different TA offset, thereby avoiding the problem of uplink out-of-synchronization.
  • a possible design is that, in the NR system, even if the TAG configured for the communication device on the network side is the first type of TAG, the communication device can still configure the TA offset in the TAG to be a different value, for example, There are two carriers in the TAG.
  • the TA offset of the carrier A is not configured with reference to the TA offset of the carrier B, or the TA value of the carrier A is different from the TA offset of the carrier B. Therefore, when the TAG is the first type of TAG, the first difference and the second difference can still be equal, and the uplink transmission of the different communication devices of the same cell on the same carrier is synchronized.
  • different uplink synchronization modes may be combined with each other, that is, the communication device may determine to adjust uplink synchronization based on the at least one condition described above.
  • the embodiment of the present application further provides an uplink synchronization method from the network side, where the method includes: determining, by the network device, the TA and TA offsets according to the uplink signal sent by the communication device, because the difference between the TA and the TA offset The value is the TA reference amount, and then the network device determines the TA reference amount according to the TA. At this time, the TA reference amount is for the carrier in the timing advance group TAG, and finally the network device sends a timing advance command to the communication device, in the timing advance command.
  • the TA reference amount is included, so that the communication device can perform uplink timing adjustment based on the TA reference amount and the TA offset determined by itself according to the same rule as the network side.
  • the TA offset satisfies the following conditions:
  • the difference between the TA offsets of each two carriers in the TAG is a first difference
  • the TAG is a second type of TAG
  • the TAG is as described in the TAG.
  • the difference between the TA offsets of the two carriers is the second difference
  • the first difference is the same as the second difference
  • at least one carrier of the first type of TAG corresponds to the primary cell PCell or the primary The secondary cell PSCell
  • all carriers in the second type of TAG correspond to the secondary cell SCell.
  • the uplink transmission of the communication device on the TAG can ensure uplink synchronization with other communication devices on the other TAGs in the same cell, thereby avoiding the NR due to uplink. Signal interference caused by out of sync.
  • the network device determines a TA reference amount according to the uplink timing advance amount and the maximum TA offset amount, where the maximum TA offset amount is in the TAG serving the communication device The maximum of the TA offsets of multiple carriers.
  • the network device may determine the TA offset of the carrier according to the frequency band in which the carrier is located, where the determined TA offset is greater when the frequency band in which the carrier is located is less than the set frequency value.
  • the TA offset determined when the frequency band in which the carrier is located is greater than or equal to the set frequency value, for example, 6 GHz as a demarcation point, and the TA offset of the carrier less than 6 GHz is about 13 us, which is greater than or equal to 6 GHz carrier.
  • the TA offset is approximately 7 us.
  • the network device may determine, according to the subcarrier spacing of the carrier, a TA offset of each carrier, where the subcarrier spacing of the carrier is determined to be less than a set value.
  • the TA offset is greater than the TA offset determined when the subcarrier spacing of the carrier is greater than or equal to the set value, for example, the subcarrier spacing is 15 kHz, the carrier offset of the carrier of 30 KHZ, 60 kHz is the same, and the subcarrier is the same.
  • the TA offset of the carrier with an interval of 120 kHz and other than 120 kHz is the same.
  • the corresponding TAG determined by the network device for the communication device may be characterized in that the subcarrier spacing corresponding to the carrier in the TAG is less than or equal to 60 kHz, or the subcarrier spacing corresponding to the carrier in the TAG. More than 60KHZ, that is, because the general subcarrier spacing is 15KHZ, the carrier offset of the carrier of 30KHZ, 60KHZ is the same, the subcarrier spacing is 120KHZ and the TA offset of other carriers greater than or equal to 120KHZ is the same, so that the division is Each carrier in the TAG generally does not have a different TA offset, thereby avoiding the problem of uplink out-of-synchronization.
  • a possible design is that, in the NR system, even if the TAG configured by the network device for the communication device is the first type of TAG, the communication device can still configure the TA offset in the TAG to be a different value, for example, There are two carriers in the TAG.
  • the TA offset of the carrier A is not configured with reference to the TA offset of the carrier B, or the TA value of the carrier A is different from the TA offset of the carrier B. Therefore, when the TAG is the first type of TAG, the first difference and the second difference can still be equal, and the uplink transmission of the different communication devices of the same cell on the same carrier is synchronized.
  • different uplink synchronization modes may be combined with each other, that is, the network device may adjust uplink synchronization based on the at least one condition described above.
  • the embodiment of the present application further provides a device, which has a function of implementing the behavior of the communication device in the example method of the first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or the software includes one or more modules corresponding to the functions described above.
  • the structure of the device includes a receiving unit and a processing unit, wherein the receiving unit is configured to receive a timing advance command sent by the network device, and the processing unit is configured to determine, according to carrier information of the carrier, a TA offset of the carrier; and adjusting an uplink transmission timing of the carrier according to the TA reference amount and a TA offset of the carrier.
  • the TA offset satisfies the following conditions:
  • the difference between the TA offsets of each two carriers in the TAG is a first difference
  • the TAG is a second type of TAG
  • the TAG is as described in the TAG.
  • the difference between the TA offsets of the two carriers is the second difference
  • the first difference is the same as the second difference
  • at least one carrier of the first type of TAG corresponds to the primary cell PCell or the primary The secondary cell PSCell
  • all carriers in the second type of TAG correspond to the secondary cell Scell.
  • the processing unit is specifically configured to:
  • the maximum TA offset amount is a maximum value of TA offsets of the plurality of carriers in the TAG serving the communication device .
  • the processing unit is specifically configured to:
  • the processing unit is specifically configured to: determine a TA offset of the carrier according to a frequency band in which the carrier is located;
  • the TA offset determined when the frequency band in which the carrier is located is smaller than the set frequency value is greater than the TA offset determined when the frequency band in which the carrier is located is greater than or equal to the set frequency value.
  • the processing unit is specifically configured to: determine a TA offset of each carrier according to a subcarrier spacing of the carrier;
  • the TA offset determined when the subcarrier spacing of the carrier is less than a set value is greater than the TA offset determined when the subcarrier spacing of the carrier is greater than or equal to the set value.
  • the subcarrier spacing corresponding to the carrier in the TAG is less than or equal to 60 kHz, or the subcarrier spacing corresponding to the carrier in the TAG is greater than 60 kHz, or one possible implementation is each of the TAGs.
  • the TA offset of the carrier is set independently.
  • these units may perform the corresponding functions in the foregoing method examples of the first aspect.
  • these units may perform the corresponding functions in the foregoing method examples of the first aspect.
  • the chip comprises: a processing unit and a communication unit
  • the processing unit may be, for example, a processor
  • the communication unit may be, for example, an input/output interface, a pin or Circuits, etc.
  • the processing unit may execute a computer-executed instruction stored by the storage unit to cause the uplink control information transmission method of any of the above aspects to be performed.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit outside the chip in the communication device, such as a read-only memory, other types that can store static information and instructions. Static storage devices, random access memories, and the like.
  • the embodiment of the present application further provides a device, which has a function of implementing network device behavior in the foregoing method example of the second aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or the software includes one or more modules corresponding to the functions described above.
  • the structure of the device includes a processing unit and a sending unit, wherein the processing unit is configured to determine an uplink timing advance and a TA offset according to the uplink signal sent by the communications device; and according to the uplink
  • the timing advance amount determines a TA reference amount, the TA reference amount is for a carrier in the timing advance group TAG, and the TA reference amount is a difference between the uplink timing advance amount and the TA offset
  • a sending unit is configured to: A timing advance command is transmitted to the communication device, wherein the timing advance command includes the TA reference amount.
  • the TA offset satisfies the following conditions:
  • the difference between the TA offsets of each two carriers in the TAG is a first difference
  • the TAG is a second type of TAG
  • the TAG is as described in the TAG.
  • the difference between the TA offsets of the two carriers is the second difference
  • the first difference is the same as the second difference
  • at least one carrier of the first type of TAG corresponds to the primary cell PCell or the primary The secondary cell PSCell
  • all carriers in the second type of TAG correspond to the secondary cell SCell.
  • the processing unit is specifically configured to: determine a TA offset of the carrier according to a frequency band in which the carrier is located;
  • the TA offset determined when the frequency band in which the carrier is located is smaller than the set frequency value is greater than the TA offset determined when the frequency band in which the carrier is located is greater than or equal to the set frequency value.
  • the processing unit is specifically configured to: determine a TA offset of each carrier according to a subcarrier spacing of the carrier;
  • the TA offset determined when the subcarrier spacing of the carrier is less than a set value is greater than the TA offset determined when the subcarrier spacing of the carrier is greater than or equal to the set value.
  • the subcarrier spacing corresponding to the carrier in the TAG is less than or equal to 60 kHz, or the subcarrier spacing corresponding to the carrier in the TAG is greater than 60 kHz, or one possible implementation is each of the TAGs.
  • the TA offset of the carrier is set independently.
  • the units may perform the corresponding functions in the foregoing method examples of the second aspect.
  • the units may perform the corresponding functions in the foregoing method examples of the second aspect.
  • the chip comprises: a processing unit and a communication unit
  • the processing unit may be, for example, a processor
  • the communication unit may be, for example, an input/output interface, a pin or Circuits, etc.
  • the processing unit may execute a computer-executed instruction stored by the storage unit to cause the uplink control information transmission method of any of the above aspects to be performed.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit outside the chip in the communication device, such as a read-only memory, other types that can store static information and instructions. Static storage devices, random access memories, and the like.
  • an embodiment of the present application provides an uplink synchronization method, where the method includes: the first network device requests a second network device to acquire a second TA reference quantity of the second uplink carrier in the second TAG, and the first a second TA offset, the first network device determining, according to the second TA reference amount and the second TA offset, a first TA reference amount of the first uplink carrier in the first TAG.
  • the first TAG corresponds to the first network device in the first communication system
  • the second TAG corresponds to the second network device in the second communication system
  • the first TA reference quantity determined by the first network device satisfies the first TA reference
  • the amount is greater than or equal to a difference between the second TA offset and the first TA offset of the first uplink carrier.
  • the first communication system is LTE
  • the second communication system is NR
  • the first uplink carrier is an LTE UL carrier
  • the second uplink carrier is an NR SUL carrier.
  • the second TA offset of the second uplink carrier is determined according to a TA offset of the UL carrier of the NR with the second uplink carrier and the serving cell.
  • the first communication system is NR
  • the second communication system is LTE
  • the first uplink carrier is an NR SUL carrier
  • the second uplink carrier is an LTE UL.
  • a carrier; the second TA offset of the second uplink carrier is determined according to a TA offset of the TDD carrier of the second uplink carrier and the TAG.
  • an embodiment of the present application provides an uplink synchronization method, where the method includes: the communication device receives a timing advance command sent by the first network device, where the timing advance command includes a first timing advance TA reference amount, where the a TA reference quantity is for a first uplink carrier in the first timing advance group TAG, and the first TA reference quantity is determined by a second TA reference quantity and a second TA offset quantity of the second uplink carrier, where the first TAG corresponds to The first network device in the first communication system, the second TAG corresponds to the second network device in the second communication system, so that the communication device adjusts the uplink transmission timing of the first uplink carrier according to the first TA reference amount.
  • the first communication system is LTE
  • the second communication system is NR
  • the first uplink carrier is an LTE UL carrier
  • the second uplink carrier is an NR SUL carrier.
  • the second TA offset of the second uplink carrier is determined according to a TA offset of the UL carrier of the NR with the second uplink carrier and the serving cell.
  • the first communication system is NR
  • the second communication system is LTE
  • the first uplink carrier is an NR SUL carrier
  • the second uplink carrier is an LTE UL.
  • a carrier; the second TA offset of the second uplink carrier is determined according to a TA offset of the TDD carrier of the second uplink carrier and the TAG.
  • the embodiment of the present application further provides a device, which has the function of implementing the behavior of the network device in the example method of the foregoing fifth aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or the software includes one or more modules corresponding to the functions described above.
  • the device includes a sending unit and a processing unit, where the sending unit is configured to send a request to the second network device, where the sending request is used to request to acquire the second uplink in the second TAG. a second TA reference quantity of the carrier and a second TA offset, the second TAG corresponding to the second network device in the second communication system, the processing unit, configured to use the second TA reference quantity and the second Determining, by the TA offset, a first TA reference quantity of the first uplink carrier in the first TAG, where the first TAG corresponds to the first network device in the first communication system; the sending unit is further used to the communication device A timing advance command including the first TA reference amount is transmitted.
  • the first TA reference quantity determined by the processing unit satisfies a difference between the first TA reference quantity and the second TA offset and the first TA offset of the first uplink carrier.
  • the communications device can adjust the uplink transmission timing of the first uplink carrier according to the first TA reference amount and the first TA offset.
  • the first communication system is LTE
  • the second communication system is NR
  • the first uplink carrier is an LTE UL carrier
  • the second uplink carrier is an NR SUL carrier.
  • the second TA offset of the second uplink carrier is determined according to a TA offset of the UL carrier of the NR with the second uplink carrier and the serving cell.
  • the first communication system is NR
  • the second communication system is LTE
  • the first uplink carrier is an NR SUL carrier
  • the second uplink carrier is an LTE UL.
  • a carrier; the second TA offset of the second uplink carrier is determined according to a TA offset of the TDD carrier of the second uplink carrier and the TAG.
  • the embodiment of the present application further provides a device, which has a function of implementing the behavior of the communication device in the example method of the sixth aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or the software includes one or more modules corresponding to the functions described above.
  • the structure of the device includes a receiving unit and a processing unit, wherein the receiving unit is configured to receive a timing advance command sent by the first network device, where the timing advance command includes a first timing advance TA reference amount,
  • the first TA reference amount is for a first uplink carrier in the first timing advance group TAG, and the first TA reference amount is determined by a second TA reference amount and a second TA offset of the second uplink carrier, where
  • the first TAG corresponds to the first network device in the first communication system, and the second TAG corresponds to the second network device in the second communication system, and the processing unit is configured to adjust according to the first TA reference quantity.
  • the uplink transmission timing of the first uplink carrier is configured to receive a timing advance command sent by the first network device, where the timing advance command includes a first timing advance TA reference amount,
  • the first TA reference amount is for a first uplink carrier in the first timing advance group TAG, and the first TA reference amount is determined by a second TA reference amount and a
  • the first TA reference quantity determined by the first network device satisfies a difference between the first TA reference quantity being greater than or equal to the difference between the second TA offset quantity and the first TA offset quantity of the first uplink carrier. .
  • the communications device can adjust the uplink transmission timing of the first uplink carrier according to the first TA reference amount and the first TA offset.
  • the first communication system is LTE
  • the second communication system is NR
  • the first uplink carrier is an LTE UL carrier
  • the second uplink carrier is an NR SUL carrier.
  • the second TA offset of the second uplink carrier is determined according to a TA offset of the UL carrier of the NR with the second uplink carrier and the serving cell.
  • the first communication system is NR
  • the second communication system is LTE
  • the first uplink carrier is an NR SUL carrier
  • the second uplink carrier is an LTE UL.
  • a carrier; the second TA offset of the second uplink carrier is determined according to a TA offset of the TDD carrier of the second uplink carrier and the TAG.
  • the embodiment of the present application provides an apparatus, including at least one processor, and at least one memory, where the processor is configured to perform the uplink synchronization method in any one of the foregoing first or second aspect, the memory Coupled with the processor.
  • an embodiment of the present application provides an apparatus, including at least one processor and at least one memory, the at least one memory being coupled to the at least one processor, the at least one memory for storing computer program code,
  • the computer program code includes computer instructions that, when the one or more processors execute the computer instructions, perform the uplink synchronization method of any of the above first or second aspects, or the fifth aspect Or the uplink synchronization method in any of the second aspects.
  • the embodiment of the present application provides an apparatus, including at least one processor, where the processor is configured to perform the uplink synchronization method in the foregoing first aspect or the second aspect, or the sixth aspect or the The uplink synchronization method in any of the six aspects.
  • the embodiment of the present application provides a chip, which is in the form of a device, and the chip may be any one of the above aspects.
  • the uplink synchronization method provided by the embodiment of the present application is applicable to the NR system, because when there are multiple different TA offsets for different carriers in the NR system, the uplink transmission of different users on the same carrier may be damaged. Synchronization, the embodiment of the present application determines the TA offset of each carrier in the TAG according to the carrier information of each carrier in the TAG, and then adjusts the TAG based on the TA reference amount and the TA offset of each carrier in the TAG.
  • the uplink synchronization method provided by the embodiment of the present application is applicable to a dual connectivity system. Because the network devices in different communication systems can interact with each other in a dual connectivity system, the LTE base station can be based on the TA reference amount of the NR base station. The TA offset determines the TA reference amount of the uplink carrier of the LTE, or the NR base station can determine the TA reference amount of the uplink carrier of the NR based on the TA reference amount and the TA offset of the LTE base station. Because the TA reference quantity received by the communication device satisfies the set condition, uplink synchronization is realized, and signal interference caused by uplink unsynchronization is avoided.
  • FIG. 1 is a schematic diagram of uplink synchronization provided by the prior art
  • FIG. 2 is a flowchart of a communication system architecture according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of uplink transmission of multiple terminals in carrier aggregation according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a method for performing an uplink synchronization process performed by a communication device according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a method for performing an uplink synchronization process performed by a network device according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram 1 of another apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram 1 of a communication device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a dual connectivity system according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a carrier of the same frequency point according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an uplink synchronization method on a network device side according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of an uplink synchronization method on a communication device side according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram 2 of a device according to an embodiment of the present disclosure.
  • FIG. 14 is a second schematic structural diagram of another apparatus according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the embodiments of the present application can be applied to existing cellular communication systems, such as global system for mobile communication (GSM), wideband code division multiple access (WCDMA), and long term evolution (long term evolution, In LTE) and other systems. It is also applicable to future wireless communication systems, suitable for 5G (fifth generation mobile communication system) systems, such as access networks using NR; cloud radio access network (CRAN) and other communication systems. Expanded into similar wireless communication systems, such as wIreless-fidelity (wifi), worldwide interoperability for microwave access (WiMAX), and 3gpp-related cellular systems.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and are not provided for the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are applicable to similar technical problems as the network architecture evolves and the new service scenarios appear.
  • FIG. 2 is a schematic diagram of a possible application scenario of the present invention, including at least one terminal 10 communicating with a radio access network (RAN).
  • the RAN includes at least one base station (BS), and for the sake of clarity, only one base station and one UE are shown.
  • the RAN is connected to a core network (CN).
  • the CN may be coupled to one or more external networks, such as the Internet, a public switched telephone network (PSTN), and the like.
  • PSTN public switched telephone network
  • a communication device also known as a terminal, User Equipment (UE), or a device that provides voice and/or data connectivity to a user, for example, a handheld device with wireless connectivity, an in-vehicle device Wait.
  • UE User Equipment
  • Common terminals include, for example, mobile phones, tablets, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • the communication device can be implemented by a chip.
  • communication devices are collectively referred to as UEs.
  • a network device such as a base station, which is also referred to as a Radio Access Network (RAN) device, which is a device that accesses a terminal to a wireless network, including but not limited to: an evolved Node B ( Evolved Node B, eNB), radio network controller (RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home base station (for example, Home evolved NodeB, or Home Node B, HNB for short), BaseBand Unit (BBU), base station (g NodeB, gNB), Transmitting and receiving point (TRP), transmission point ( Transmitting point, TP).
  • a Wifi Access Point (AP) or the like may also be included.
  • base stations for convenience of description, network devices are collectively referred to as base stations.
  • the UE needs to determine the transmission time of the uplink signal according to N TA and N TAoffset .
  • the absolute time of the uplink timing advance is equal to the uplink timing advance (ie, N TA + N TA offset in the formula) multiplied by one.
  • Time granularity unit T s The uplink timing advance adjustment includes two parts, one part is N TA , which means the TA reference quantity referred to in the embodiment of the present application, and the other part is N TAoffset , that is, the TA offset referred to in the embodiment of the present application.
  • the UE transmitting the uplink transmission on the ith uplink radio frame should be ahead of the UE on the corresponding downlink radio frame (N TA + N TAoffset ) ⁇ T c seconds.
  • the time granularity unit T c in the timing advance is different from the T s in the LTE.
  • the uplink timing advance adjustment has the same components, that is, the TA reference value N TA and the TA offset N TAoffset .
  • the TA reference amount of each carrier in each TAG is the same, and the uplink timing advance adjustment values of all carriers in each TAG are the same. Based on the composition and definition of the timing advance adjustment amount, in the carrier aggregation scenario in LTE and NR, whether each carrier uses the TA offset N TAoffset or which TA offset is used depends on the carrier information.
  • TA primary carrier offset corresponding N TAoffset refers TA offset if N TAoffset PSCell PCell or in single carrier mode, it uses.
  • the meaning of synchronization here is that the time points of the uplink subframes on the subframes in which the two carriers overlap at the same time are the same.
  • the cell is a high-level concept
  • the carrier is the concept of the physical layer.
  • the cell and the carrier have a corresponding relationship.
  • one cell may be configured to include a pair of uplink and downlink carriers, or only one downlink carrier.
  • a cell may be configured to include a pair of uplink and downlink carriers, or only one downlink carrier, or one downlink carrier, one uplink carrier, and one supplementary uplink carrier (SUL).
  • SUL supplementary uplink carrier
  • the embodiments provided in this application are used to implement uplink synchronization. Since the distance between different UEs and base stations is uncertain, uplink transmissions of different UEs in the same cell are required to be aligned in time. Otherwise, different terminals from the same cell are required. The uplink transmissions interfere with each other.
  • the UE can establish uplink synchronization with the base station by using a random access procedure. The base station detects that the UE sends a preamble signal, estimates the TA reference quantity by using the received preamble signal, and sends the TA reference quantity to the random access response.
  • the UE After receiving the random access response, the UE calculates the TA, so that the uplink signals sent by different UEs of the same cell on the same carrier reach the same base station at the same time.
  • the UE can also perform small-scale synchronization tracking and adjustment by measuring and tracking the pilot signals sent by the base station; the base station can also estimate and adjust the timing advance of the UE by measuring the uplink signal of the UE and pass the TAC. Notify the UE.
  • the base station determines that the UE may be out of synchronization, the UE may also be triggered to send a preamble signal to perform timing advance measurement and adjustment.
  • the meaning of uplink synchronization is: the uplink signals of multiple UEs on the same carrier, the delay difference to the base station is within a certain range, and the uplink signals of multiple UEs do not interfere with each other seriously, so as to affect the base station. Correct reception of the uplink signals.
  • the technical essence of the uplink timing advance is that the UE compensates the delay of the transmission of the transmitted signal in space by the timing advance.
  • Carrier aggregation is the aggregation of two or more component carriers (CCs) to support a larger transmission bandwidth.
  • This component carrier can also be referred to as a carrier.
  • a primary cell (PCell) and a secondary component (SCell) may be included.
  • the Pcell may be a cell in which the terminal communicates with the base station when the initial connection is established, or a cell in the RRC connection or reconfiguration, or determined by the base station or the terminal in the handover process, and is mainly used to implement RRC between the base station and the terminal. Communication.
  • the Scell may be a cell that the base station adds to serve the terminal when the RRC is reconfigured. For example, the RRC communication may not be implemented between the Scell and the terminal.
  • the primary component carrier (PCC) is the CC corresponding to the PCell
  • the secondary component carrier (SCC) is the CC corresponding to the Scell.
  • the UE when the UE is configured with multiple uplink carriers, the UE may be transmitted on different uplink carriers because the multiple uplink carriers may not be co-located on the network side or the beam directions on different carriers are different.
  • the timing advances are different, so different carriers are divided into different Timing Advance Groups (TAGs), all carriers in one TAG use the same TA reference amount, and different TAGs use different TA reference quantities.
  • TAGs Timing Advance Groups
  • the TAG is a pTAG in the embodiment of the present application.
  • the TAG is only included in the TAG. .
  • both the uplink and the downlink are in an always-on state, so there is no problem of uplink and downlink conversion, that is, the downlink sent by the base station side.
  • the frame/slot and the starting point of the downlink frame/slot received by the base station side may be the same, or the base station side downlink frame/slot boundary and the base station side uplink frame/slot boundary may be aligned, so the UE actually transmits the uplink transmission.
  • the uplink timing advance is equal to the TA reference amount in the TAC.
  • the uplink and downlink occupy different time slots. Therefore, when the transmission direction between the base station and the UE changes, that is, from the uplink transmission to the downlink transmission, or from the downlink transmission to the uplink transmission, a transition time is required to perform the handover. Therefore, for the TDD system, in order to ensure sufficient switching time for the uplink, a sufficient guard interval needs to be set for the handover.
  • the guard interval strictly includes two parts, one is the switching time from the uplink to the downlink, and the other is the downlink to the uplink. The switching time, the guard interval needs to cover these two parts, the latter part is closely related to TA offset.
  • the UE when the uplink transmission is switched to the downlink transmission, the UE needs to adjust based on the TA reference quantity, and the actual TA after the adjustment is the TA reference quantity plus the TA offset, so that after the UE uplink transmission is completed, both the UE and the base station have After sufficient time to complete the conversion, the base station can normally send the downlink signal after the conversion, and the UE can normally receive the downlink signal after the conversion. Therefore, for the TDD carrier, the uplink timing advance of the UE is equal to the TA reference amount in the TAC plus the TA offset.
  • the TA reference amount of each carrier in each TAG is the same, and the TA offset of all carriers in each TAG is also the same, so the actual TA adjustment amount of each carrier in one TAG (TA reference amount and TA offset) The sum of the quantities is also the same, so that the uplink signals of different UEs on each carrier can be synchronized by configuring the appropriate TA reference amount for different users.
  • the uplink timing advance of all carriers in each TAG may be different.
  • the TA offset values on different carriers are different, if the actual TA adjustment of each carrier in a TAG The amount is also different, so that the uplink signals of different users on the same carrier may cause asynchronous problems.
  • both UE1 and UE2 are configured with carrier aggregation, and both UE1 and UE2 are served by the cell 1, cell 2 and cell 3 of the co-station.
  • Cell 1, cell 2, and cell 3 all have uplink carriers. It is assumed that each of the uplink carriers corresponds to one uplink carrier.
  • the uplink carriers corresponding to cell 1, cell 2, and cell 3 are carrier CC1, carrier CC2, and carrier CC3. It is assumed that cell 1 is the primary serving cell of UE1, and cell 2 and cell 3 are the secondary serving cells of UE1; meanwhile, cell 1, cell 2 and cell 3 are both secondary serving cells of UE2.
  • carrier CC1, carrier CC2 and carrier CC3 are aggregated together to support a larger transmission bandwidth.
  • the network side groups three carriers according to the common station relationship, and configures TAGs for UE1 and UE2 respectively.
  • UE1 since cell 1 is the primary serving cell of UE1, UE1 corresponds to pTAG.
  • cell 1, cell 2, and cell 3 are both secondary cell of UE2, UE2 corresponds to sTAG.
  • the duplex mode of the cell 1 and the cell 2 is TDD
  • the duplex mode of the cell 3 is FDD
  • the carrier of the TDD mode of the duplex mode needs to be adjusted based on the TA reference amount, so there is a TA offset.
  • the base reference amount of the base station configured for pTAG is 1 us
  • the TA offset1 corresponding to cell 1 is 0.1 us
  • the TA offset2 corresponding to cell 2 is 0.2 us
  • the TA offset 3 corresponding to cell 3 is 0.0 us
  • the TA reference amount configured by the base station for the sTAG is 0.6 us
  • the TA offset1 corresponding to the cell 1 is 0.05 us
  • the TA offset2 corresponding to the cell 2 is 0.2 us
  • the TA offset 3 corresponding to the cell 3 is 0.0 us.
  • the LTE protocol provides that the communication device adjusts the uplink transmission timing of each carrier in the TAG according to the TA reference amount and the TA offset of the primary carrier. Therefore, in the pTAG, the TA offset actually used by each carrier and the TA offset of the primary carrier are used. the same. Assuming that the primary carrier is the carrier CC1, the actual offset value of the TA offset2 of the carrier CC2 is 0.1 us, and the actual offset value of the TA offset 3 of the carrier CC3 is 0.1 us. That is, the TA actual adjustment value of the carrier CC1 is 1.1 us, the TA actual adjustment value of the carrier CC2 is 1.1 us, and the TA actual adjustment value of the carrier CC3 is 1.1 us.
  • the duplex mode of the carrier CC1 and the carrier CC2 in the sTAG are also TDD, and the duplex mode of the carrier CC3 is also FDD.
  • the TA reference amount in the sTAG in the sTAG is 0.6 us, and the values corresponding to the TA offsets on the carrier CC1 and the carrier CC2 are different.
  • the TA offset1 of the carrier CC1 is 0.05 us, and the TA offset2 of the carrier CC2 is 0.2.
  • the actual TA adjustment value of the carrier CC1 is 0.65us
  • the actual TA adjustment value of the carrier CC2 is 0.8us
  • the duplex mode of the carrier CC3 is FDD, so the actual TA adjustment value of the carrier CC3 is equal to the TA reference amount, that is, 0.6. Us.
  • the uplink transmission sent by the UE1 on the carrier CC1 and on the carrier CC2 can reach the macro base station at the same time, and at this time, in the sTAG
  • the actual adjustment value of the carrier CC1 is 0.65us
  • the actual adjustment value of the carrier CC2 is 0.8us. If the UE2 transmits the uplink transmission on the carrier CC1 and arrives at the macro base station at the same time as the UE1, the UE2 sends an uplink signal on the carrier CC2.
  • the macro base station arrives at a relative advance of 0.15 s, and it is apparent that the uplink transmissions sent by UE1 and UE2 on carrier CC2 are not synchronized.
  • the difference between the actual adjustment value of the UE1 in the carrier CC1 and the actual adjustment value of the UE1 in the carrier CC2 is 1.1; the actual adjustment value of the UE2 in the carrier CC1 is 0.65us and the UE2 is in the carrier CC2.
  • the difference between the actual TA adjustment value of 0.8us is -0.15us, because the uplink synchronization requires different UEs to arrive at the macro base station simultaneously on the same CC, and the difference value 0 and the difference value -0.15us are different, if UE1 and UE2 are in On CC1, uplink synchronization is performed, and UE1 and UE2 are not uplink synchronized on carrier CC2.
  • the synchronization of uplink transmissions of different users on the same carrier may be destroyed.
  • the embodiment of the present application provides an uplink synchronization process, and a schematic flowchart is shown in FIG. 4 .
  • Step 401 The network device sends a timing advance command to the communications device, where the timing advance command includes a TA reference amount, and the TA reference amount is for a carrier in the TAG.
  • Step 402 The communications device determines a TA offset of the carrier according to the carrier information of the carrier.
  • Step 403 The communication device adjusts an uplink transmission timing of each carrier in the TAG according to the TA reference amount and the TA offset.
  • the TA offset of each carrier in the TAG determined by the communications device satisfies the following condition: when the TAG is the first type of TAG, the TA offset of each two carriers in the TAG The difference between the quantities, when the TAG is the second type of TAG, the difference in the TA offset of each of the two carriers in the TAG is the same.
  • the first type of TAG is also called pTAG
  • the second type of TAG is also called sTAG. That is, when the TAG is pTAG, the TA offset of the first carrier in the pTAG is between the TA offset of the second carrier.
  • the difference is the first difference, and when the TAG is sTAG, the difference between the TA offset of the first carrier in the sTAG and the TA offset of the second carrier is the second difference, the first difference and the second The difference is the same, where the first carrier and the second carrier are any two carriers in the TAG.
  • the TAG corresponding to the communication device may be a pTAG or an sTAG, that is, it may only correspond to one of the two, and of course, the TAG corresponding to the communication device is included in the pTAG.
  • the carrier corresponding to the communication device corresponds to the carrier included in the sTAG because the difference between the TA offset of each two carriers in the pTAG and the TA offset of each of the two carriers in the sTAG The values are the same, so different UEs can arrive at the base station simultaneously on the same CC.
  • UE2 receives the TAC from the macro base station, and the TAC includes the reference amount of sTAG of 0.6 us.
  • the UE2 configures the TA offset1 of the carrier CC1 in the sTAG to be 0.05us, the TA offset2 of the carrier CC2 to be 0.2us, the TA offset3 of the carrier CC3 to 0us, as shown in Table 3, and configure the pTAG according to the condition that the TA offset needs to be satisfied.
  • the TA offset1 of the medium carrier CC1 is 0.1 us
  • the TA offset2 of the carrier CC2 is 0.25 us
  • the TA offset 3 of the carrier CC3 is 0.05 us, as shown in Table 4.
  • the difference between TA offset1 of carrier CC1 and TA offset2 of carrier CC2 in sTAG is -0.15us, and the difference between TA offset1 of carrier CC1 and TA offset2 of carrier CC2 in pTAG is also -0.15us;
  • sTAG The difference between the TA offset2 of the carrier CC2 and the TA offset3 of the carrier CC3 is 0.2 us, and the difference between the TA offset1 of the carrier CC1 and the TA offset2 of the carrier CC2 in the pTAG is also 0.2 us;
  • the TA of the carrier CC1 in the sTAG The difference between offset1 and TA offset3 of carrier CC3 is 0.05 us, and the difference between TA offset1 of carrier CC1 and TA offset3 of carrier CC3 in pTAG is also 0.05 us.
  • the communication device adjusts the uplink transmission timing of each carrier in the TAG according to the TA reference amount and the TA offset of the primary carrier. Therefore, in the pTAG, the TA offset actually used by each carrier and the TA offset of the primary carrier are used. In the same manner, if the pTAG in Table 4 continues to use the LTE protocol, the uplink synchronization cannot be performed. Therefore, the TA offset of each carrier in the TAG is independently set in the embodiment of the present application. The so-called independent setting, assuming that there are two carriers in the pTAG, carrier A and carrier B, the terminal does not refer to the offset of carrier B when determining the TA offset of carrier A, or the terminal determines the TA offset of carrier A.
  • the carriers are configured with the same TA offset in both pTAG and sTAG.
  • the TA offset actually used by each carrier does not match the TA offset of the primary carrier.
  • the primary carrier is the carrier CC1
  • the actual offset value of the TA offset2 of the carrier CC2 is still 0.25us, which is the same as the TA offset used by the carrier CC2 in the sTAG
  • the actual value of the TA offset3 of the carrier CC3 is still 0.05us.
  • signal synchronization of different users on the same uplink carrier may also be implemented in other manners, for example, in a pTAG and an sTAG, a partial frame/slot boundary of a UE transmitting signals on different uplink carriers is the same. .
  • the reason here is that the partial frame/slot boundaries are the same, mainly considering the different slot lengths on different numerologies.
  • the problem to be solved by the embodiment of the present application is that for a TAG, if the TA offsets of different carriers in one TAG are different, how to determine a TA offset is such that all carriers use the same timing when timing advance is performed. The TA offset is adjusted for timing advance.
  • the TA offset is the TA offset corresponding to the PCell or PSCell.
  • the present invention therefore focuses on the determination of the TA offset used by virtually all carriers in the sTAG. Alternatively, this method is equally applicable to pTAG.
  • the communication device also adjusts the uplink transmission timing of each carrier in the TAG according to the TA reference amount and the maximum TA offset.
  • the so-called maximum TA offset refers to the TA offset of each carrier in the TAG. The maximum value in the quantity. For example, in FIG.
  • the current problems of Table 1 and Table 2 are: the difference between the actual adjustment value of the UE1 of the carrier CC1 of 1.1us and the actual adjustment value of the UE1 of the carrier CC2 of 1.1us is 0; The difference between the actual adjustment value of the TA of the carrier CC1 of 0.65us and the actual adjustment value of the UE2 of the carrier CC2 of 0.8us is -0.15us, and the difference is not equal, so UE1 and UE2 are not uplink synchronized on the carrier CC2.
  • UE2 can choose to use the maximum TA offset of 0.2us in sTAG to adjust the upload transmission timing of three carriers in sTAG, that is, the actual adjustment value of carrier CC1 in sTAG is 0.8us, and the actual adjustment of carrier CC2 The value is 0.8us, and the actual adjustment value of carrier CC3 is 0.8us, as shown in Table 5.
  • the difference between the actual adjustment value of the UE1 of the carrier CC1 of 1.1us and the actual adjustment value of the UE1 of the carrier CC2 of 1.1us is 0; the actual adjustment value of the UE2 of the carrier CC2 is 0.8us and the UE2 is at the carrier CC2.
  • the difference between the actual adjustment value of TA and 0.8us is also 0. Therefore, if UE1 and UE2 are uplink-synchronized on CC1 at this time, UE1 and UE2 are also uplink-synchronized on carrier CC2.
  • the base station can also configure the actual TA offset used by all carriers in the TAG by configuring the TA offset used in the sTAG for the user.
  • the communication device may determine that the TA offset of the carrier may be different according to different carrier information of the carrier.
  • the carrier information generally refers to Numerology, which is a parameter used by the communication system.
  • Communication systems (such as 5G) can support a variety of Numerology. Numerology can be defined by one or more of the following parameter information: subcarrier spacing, cyclic prefix (CP), time unit, bandwidth, and so on.
  • the subcarrier spacing may be 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz, and the like.
  • different subcarrier spacings may be integer multiples of 15 KHz. It can be understood that other values can also be designed.
  • the CP information may include a CP length and/or a CP type.
  • the CP can be a normal CP (NCP) or an extended CP (ECP).
  • the time unit is used to represent a time unit in the time domain, and may be, for example, a sampling point, a symbol, a minislot, a time slot, a subframe, or a radio frame.
  • the time unit information may include the type, length, or structure of the time unit.
  • the bandwidth can be a contiguous resource in the frequency domain.
  • the bandwidth may sometimes be referred to as a bandwidth part (BWP), a carrier bandwidth part, a subband bandwidth, a narrowband bandwidth, or other names. The name is not limited in this application.
  • one BWP includes consecutive K (K>0) subcarriers; or one BWP is a frequency domain resource in which N non-overlapping consecutive resource blocks (RBs) are located, and the subcarrier spacing of the RB may be 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, 480KHz or other values; or, one BWP is a frequency domain resource in which M consecutive non-overlapping consecutive resource block groups (RBGs) are located, and one RBG includes P consecutive ones.
  • RB the subcarrier spacing of the RB may be 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, 480KHz or other values, for example, an integer multiple of 2.
  • the carrier information can be defined by parameters such as subcarrier spacing and bandwidth
  • the TA offset determined according to different parameters may also be different. Several implementation manners are specifically described below.
  • Embodiment 1 The communication device determines, according to the subcarrier spacing of the respective carriers, a TA offset of each carrier, such as a carrier with a subcarrier spacing of 15 k, a carrier with a subcarrier spacing of 30 k, and a subcarrier spacing of 60 k.
  • the carrier offset is the same as the TA offset.
  • the carrier with the subcarrier spacing of 120k is the same as the TA offset of the carrier with the other subcarrier spacing greater than 120k.
  • Embodiment 2 For any carrier, the communication device determines whether the frequency band in which the carrier is located is less than a set frequency value; if less, the communication device determines that the TA offset of the carrier is a first threshold, otherwise, Is a second threshold, wherein the first threshold is greater than the second threshold. For example, with 6 GHz as the demarcation point, the TA offset of the carrier of less than 6 GHz is about 13 us, and the TA offset of the carrier of 6 GHz or more is about 7 us.
  • FIG. 5 exemplarily shows another uplink synchronization process provided by the present application, which is performed by a network device.
  • Step 501 The network device determines, according to the uplink signal sent by the communications device, an uplink timing advance and a TA offset, where the uplink timing advance and the TA offset are for a carrier in a timing advance group TAG, Each carrier is used to carry the uplink signal;
  • Step 502 The network device determines, according to the uplink timing advance quantity and the TA offset quantity, a TA reference quantity of the TAG, where the TA reference quantity is a difference between the uplink timing advance quantity and the TA offset quantity.
  • Step 503 The network device sends a timing advance command to the communications device, where the timing advance command includes the TA reference amount.
  • the TA reference quantity of the TAG determined by the network device is a difference between an uplink timing advance quantity of each carrier in the TAG and a TA offset quantity of the carrier, and the TA offset quantity satisfies the following conditions,
  • the difference between the TA offsets of every two carriers in the pTAG is the same as the difference between the TA offsets of the two carriers in the sTAG.
  • the network device receives the uplink signal sent by each communication device of the same cell, and the network device estimates the TA reference amount by using the received preamble signal by detecting that the UE sends a preamble signal, and additionally, the base station divides.
  • the carriers with the same offset value are placed in a group, so that the uplink unsynchronization of the terminal uplink transmission can be avoided.
  • the base station divides the pTAG and sTAG in FIG. 2
  • the same TA reference is used.
  • the carrier CC1 and the carrier CC2 of the same amount and the same TA offset are divided into one group as shown in Table 6 and Table 7.
  • FIG. 6 is a schematic structural diagram of a device provided by the foregoing application, where the device includes: a receiving unit. 601. Processing unit 602.
  • the receiving unit 601 is configured to receive a timing advance command sent by the network device, where the timing advance command includes a timing advance TA reference amount, where the TA reference amount is for a carrier in the timing advance group TAG;
  • the processing unit 602 is configured to determine a TA offset of the carrier according to the carrier information of the carrier, and adjust an uplink transmission timing of the carrier according to the TA reference amount and a TA offset of the carrier.
  • the TA offset satisfies the following conditions:
  • the difference between the TA offsets of each two carriers in the TAG is a first difference
  • the TAG is a second type of TAG
  • the TAG is as described in the TAG.
  • the difference between the TA offsets of the two carriers is the second difference
  • the first difference is the same as the second difference
  • at least one carrier of the first type of TAG corresponds to the primary cell PCell or the primary The secondary cell PSCell
  • all carriers in the second type of TAG correspond to the secondary cell Scell.
  • the processing unit 602 is configured to adjust uplink transmission timing of multiple carriers in the TAG according to the TA reference amount and the maximum TA offset.
  • the maximum TA offset is a maximum of the TA offsets of the plurality of carriers. For example, if the TA offset corresponding to the carrier A is 0.1 and the TA offset corresponding to the carrier B is 0.2, it is finally determined that the carrier A corresponds to the TA offset of 0.2 us, and the carrier B corresponds to the TA offset of 0.2 us.
  • the processing unit 602 is configured to determine a TA offset of the carrier according to a frequency band in which the carrier is located;
  • the TA offset determined when the frequency band in which the carrier is located is smaller than the set frequency value is greater than the TA offset determined when the frequency band in which the carrier is located is greater than or equal to the set frequency value.
  • the processing unit 602 determines, according to a subcarrier spacing of the carrier, a TA offset of each carrier.
  • the TA offset determined when the subcarrier spacing of the carrier is less than a set value is greater than the TA offset determined when the subcarrier spacing of the carrier is greater than or equal to the set value.
  • the subcarrier spacing corresponding to the carrier in the TAG is less than or equal to 60 kHz, or the subcarrier spacing corresponding to the carrier in the TAG is greater than 60 kHz.
  • the TA offsets of the respective carriers in the TAG are independently set.
  • these units may perform the corresponding functions in the foregoing method examples of the first aspect.
  • these units may perform the corresponding functions in the foregoing method examples of the first aspect.
  • the present application may divide a functional module into a communication device according to the above method example.
  • each functional module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the present application is schematic, and is only a logical function division, and may be further divided in actual implementation.
  • FIG. 7 is a schematic structural diagram of an apparatus provided by the application, where the device includes: Processing unit 701, sending unit 702, wherein:
  • the processing unit 701 is configured to determine an uplink timing advance amount and a TA offset according to the uplink signal sent by the communications device, and determine a TA reference amount according to the uplink timing advance amount, where the TA reference amount is in the timing advance group TAG a carrier, the TA reference quantity is a difference between the uplink timing advance amount and the TA offset amount;
  • the sending unit 702 is configured to send a timing advance command to the communications device, where the timing advance command includes the TA reference amount.
  • the TA offset satisfies the following conditions:
  • the difference between the TA offsets of each two carriers in the TAG is a first difference
  • the TAG is a second type of TAG
  • the TAG is as described in the TAG.
  • the difference between the TA offsets of the two carriers is the second difference
  • the first difference is the same as the second difference
  • at least one carrier of the first type of TAG corresponds to the primary cell PCell or the primary The secondary cell PSCell
  • all carriers in the second type of TAG correspond to the secondary cell SCell.
  • the processing unit 701 is specifically configured to: determine, according to the uplink timing advance amount and the maximum TA offset amount, a TA reference amount, where the maximum TA offset is for the communication device. The maximum of the TA offsets of the plurality of carriers in the TAG.
  • each carrier in the TAG adjusts the uplink transmission timing by using the TA reference amount and the maximum TA offset, so the first difference and the second difference are both zero, because other communication devices in the same cell can be guaranteed in other TAGs.
  • the uplink transmission on the uplink keeps the uplink synchronization.
  • the processing unit 701 is specifically configured to: determine a TA offset of the carrier according to a frequency band in which the carrier is located;
  • the TA offset determined when the frequency band in which the carrier is located is smaller than the set frequency value is greater than the TA offset determined when the frequency band in which the carrier is located is greater than or equal to the set frequency value.
  • the processing unit 701 is specifically configured to: determine, according to a subcarrier spacing of the carrier, a TA offset of each carrier;
  • the TA offset determined when the subcarrier spacing of the carrier is less than a set value is greater than the TA offset determined when the subcarrier spacing of the carrier is greater than or equal to the set value.
  • the subcarrier spacing corresponding to the carrier in the TAG is less than or equal to 60 kHz, or the subcarrier spacing corresponding to the carrier in the TAG is greater than 60 kHz.
  • the TA offsets of the respective carriers in the TAG are independently set.
  • the device may be used to implement the steps performed by the network device in the uplink synchronization method provided by the present application.
  • the device may be used to implement the steps performed by the network device in the uplink synchronization method provided by the present application.
  • the application may divide the functional modules of the network device according to the foregoing method example.
  • each functional module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the present application is schematic, and is only a logical function division, and may be further divided in actual implementation.
  • the preservation referred to in this application may be stored in one or more memories.
  • the one or more memories may be separate settings, or may be integrated in an encoder or decoder, a processor, a chip, a communication device, or a terminal.
  • the one or more memories may be separately provided in a part, and the part may be integrated in a decoder, a processor, a chip, a communication device, or a terminal.
  • the type of the memory may be any form of storage medium, and the present application does not limited.
  • the embodiment of the present application further provides a communication device, where the communication device includes a processor and a memory. Storing a computer program in the memory, the processor reading and executing the computer program stored in the memory, causing the communication device to implement a method performed by a communication device in the flow shown in FIG. 4, or The method performed by the network device in the flow shown in FIG. FIG. 8 is a schematic structural diagram of a communication device 800.
  • the device 800 can be used to implement the method described in the foregoing method embodiments. For details, refer to the description in the foregoing method embodiments.
  • the communication device 800 can be a chip, a base station, a terminal, or other network device.
  • the communication device 800 includes one or more processors 801.
  • the processor 801 can be a general purpose processor or a dedicated processor or the like. For example, it can be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (eg, base stations, terminals, or chips, etc.), execute software programs, and process data of the software programs.
  • one or more of the modules in FIGS. 6 and 7 may be implemented by one or more processors, or one or more processors and memories.
  • the communication device 800 includes one or more of the processors 801, and the one or more processors 801 can implement the uplink synchronization method described above, for example, the communication device can be a base station.
  • the communication device can be a base station.
  • the processor 801 can include instructions 803 (sometimes referred to as code or programs) that can be executed on the processor such that the communication device 800 performs the above-described implementation The method described in the example.
  • communication device 800 can also include circuitry that can implement the uplink synchronization functionality of the previous embodiments.
  • the communication device 800 may include one or more memories 802 on which instructions 804 are stored, the instructions being executable on the processor such that the communication device 800 performs the method described in the above method embodiments.
  • data may also be stored in the memory.
  • Instructions and/or data can also be stored in the optional processor.
  • the processor and the memory may be provided separately or integrated.
  • the “storage” described in the above embodiments may be in the storage memory 802, or may be stored in a memory or a storage device of other peripherals.
  • the communication device 800 may further include a transceiver 805 and an antenna 806.
  • the processor 801 may be referred to as a processing unit that controls a communication device (terminal or base station).
  • the transceiver 805 can be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device through the antenna 806.
  • the embodiment of the present application further provides a chip, the chip is connected to a memory, where the computer stores a computer program, where the chip is used to read and execute a computer program stored in the memory, so as to implement The method performed by the communication device in the illustrated flow, or the method performed by the network device in the flow shown in FIG. 5.
  • the embodiment of the present application further provides a computer storage medium, which stores program code, and the stored program code, when executed by the processor, is used to implement the communication device in the flow shown in FIG. 4 in the present application.
  • the embodiment of the present application further provides a computer storage medium storing program code.
  • the stored program code when executed by the processor, is used to implement the method of the network device in the flow shown in FIG. 5 in this application.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes computer software instructions that are loadable by a processor to implement the method of the communication device in the flow shown in FIG. 4 in the present application.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes computer software instructions that can be loaded by a processor to implement the method of the network device in the flow shown in FIG. 5 in the present application.
  • the embodiment of the present application further provides an uplink synchronization method, where the uplink synchronization method is applicable to a communication system that introduces a dual connectivity technology.
  • the so-called dual connectivity technique can be understood as a plurality of base stations simultaneously providing services to terminals.
  • one terminal can simultaneously connect to two base stations connected by non-ideal backward backhaul for data communication.
  • a typical scenario is that one base station is a macro station, and the other base station is a small station, a micro station or a small station.
  • macro stations and small stations are connected via a standard X2 interface.
  • Figure 9 is a topological view of a dual-connected control plane architecture.
  • the 901 is the primary base station MeNB, the MeNB may be the macro station, the 902 is the secondary base station SeNB, the SeNB may be the small cell, and the 903 is the core network device, such as the Mobility Management Entity (MME).
  • MME Mobility Management Entity
  • the signaling connection between the terminal, the MeNB and the MME may be, for example, a terminal having a Radio Resource Control (RRC) link and an S1 signaling link.
  • RRC Radio Resource Control
  • S1 Signaling link
  • the SeNB and the MeNB are connected through an X2 interface or an enhanced X2 port.
  • Carrier aggregation can be separately configured on the MeNB and the SeNB in FIG.
  • E-UTRAN Terrestrial Radio Access Network
  • NR new radio
  • the current E-UTRAN is adopted in consideration of the evolution procedure of the network.
  • NR is a secondary cell group.
  • NR can also be called a new generation network.
  • the currently supported EN-DC band (bandwidth) combination includes the following band combination:
  • LTE For example, it can be called band3, where the downlink can be 1805MHz-1880MHz, and the uplink can be 1710MHz ⁇ 1785MHz (which is an FDD band frequency division duplex bandwidth), including an uplink (UL) carrier.
  • UL uplink
  • NR Band 78 For example, it can be called Band 78, and both uplink and downlink can be 3300MHz to 3800MHz.
  • NR For example, it may be called Band 80, where the uplink may be 1710 MHz to 1785 MHz, including supplementary uplink (SUL).
  • SUL supplementary uplink
  • the SUL carrier of the NR and the UL (uplink) carrier of the LTE share the same spectrum resource.
  • an 1.8G LTE cell and an NR cell of one SUL carrier constitute an EN-DC.
  • the UE can work with the UL carrier of the LTE on the 1.8G carrier of the LTE band3, and can also use the 1.8 of the SUL band 80 of the NR.
  • G SUL carrier works.
  • the UL carrier of the LTE and the SUL carrier of the NR may be TDM time division multiplexed or FDM frequency division multiplexed on the 1.8G uplink frequency domain resource.
  • the SUL carrier of the NR and the UL carrier of the NR may be in the same TAG, and the TA offset of the SUL carrier of the NR is determined by the TA offset of the UL carrier of the NR.
  • an uplink resource may be used as a part of a carrier (including a carrier in a non-CA scenario and a CC in a CA scenario) for uplink transmission or a serving cell (including a serving cell in a CA scenario and a non-CA scenario).
  • the serving cell is the part used for uplink transmission.
  • the CC in the CA scenario may be a primary CC or a secondary CC
  • the serving cell in the CA scenario may be a primary cell (Pcell) or a secondary cell (Scell).
  • the uplink resource may also be referred to as an uplink carrier.
  • the part of the carrier or serving cell used for downlink transmission can be understood as a downlink resource or a downlink carrier.
  • a frequency resource used for uplink transmission on a carrier can be understood as the uplink resource or an uplink carrier; a frequency resource used for downlink transmission can be understood as a downlink resource or a downlink.
  • Carrier For example, in a time division duplex (TDD) system, a time domain resource used for uplink transmission on a carrier can be understood as the uplink resource or an uplink carrier; a time domain resource used for downlink transmission can be understood as a downlink resource. Or downlink carrier.
  • TDD frequency division duplex
  • TDD time division duplex
  • the cell is a high-level concept
  • the carrier is the concept of the physical layer.
  • the cell and the carrier have a corresponding relationship.
  • one cell may be configured to include a pair of uplink and downlink carriers, or only one downlink carrier.
  • a cell may be configured to include a pair of uplink and downlink carriers, or only one downlink carrier, or one downlink carrier, one uplink carrier, and one supplementary uplink carrier (SUL).
  • SUL supplementary uplink carrier
  • the TA1 of the LTE UL carrier is greater than or equal to the TA offset value on the SUL carrier, that is, TA1 ⁇ N TA-offset2 .
  • the TA1 received by the UE for the LTE UL may assume that the obtained TA1 is a TAoffset value greater than or equal to the SUL carrier.
  • the UE may add the SUL cell with the LTE UL co-frequency point as the PSCell to implement uplink synchronization.
  • the UE when the UE determines that the received TA2 is greater than or equal to N TA-offset1 -N TA-offset2 , the UE adds the SUL cell with the LTE UL co-frequency point as the PSCell to implement uplink synchronization.
  • the embodiment of the present application provides a schematic flowchart of a method for uplink synchronization, as shown in FIG.
  • Step 1101 The first network device sends a request to the second network device.
  • the first network device may request the second network device and the second TA offset of the second uplink carrier in the second TAG from the second network device, so as to obtain the foregoing information from the second network device.
  • Step 1102 The first network device determines, according to the second TA reference quantity and the second TA offset quantity of the second uplink carrier in the second TAG, a first TA reference quantity of the first uplink carrier in the first TAG.
  • Step 1103 The first network device sends a timing advance command including the first TA reference quantity to the communication device.
  • the first TAG corresponds to the first network device in the first communication system
  • the second TAG corresponds to the second network device in the second communication system.
  • the second TA offset may be a predefined fixed value, so the first network device may not request the second TA offset from the second network device.
  • the first communication system may be LTE
  • the second communication system is NR
  • the first communication system may be NR
  • the second communication system is LTE.
  • the first network device may be an LTE base station
  • the second network device may be an NR base station
  • the first uplink carrier may be an LTE UL carrier
  • the second uplink carrier may be Is the SUL carrier of NR.
  • the LTE base station acquires the TA reference amount and the TA offset of the SUL carrier of the NR from the NR base station, and then determines the TA reference amount of the UL carrier of the LTE according to the TA reference amount and the TA offset of the SUL carrier of the NR. .
  • the LTE base station may send the determined TA reference quantity to the communication device by using a timing advance command (TAC), and the communication device adjusts the uplink transmission of the UL carrier according to the TA reference quantity of the UL carrier and the TA offset quantity of the UL. timing.
  • TAC timing advance command
  • N TA1 TA1 + N TA-offset1 , where TA1 refers to the first reference amount in FIG. 11, and N TA-offset1 refers to the first offset in FIG.
  • N TA2 needs to be equal to N TA1 , so the LTE base station requests the NR base station to acquire TA2 and N TA-offset2 of the NR base station.
  • LTE base station determines TA1 greater than at least equal to the difference between the base station NR N TA-offset2 itself N TA-offset1, for example, equal to TA1 TA2 + N TA-offset2 -N TA -offset1.
  • N TA-offset1 is generally 0, and the TA1 delivered by the LTE base station is at least equal to or greater than the N TA-offset2 of the NR base station.
  • the N TA-offset2 of the NR base station SUL carrier is generally the same as the TA offset of the NR UL carrier of the SUL carrier in the same serving cell, so the N TA-offset2 and the SUL carrier are in the same serving cell.
  • the TA offset of the UL carrier of the NR is the same.
  • the same TAG is the second TAG of the second network device, and then the LTE UL carrier N TA-offset1 from 0 to TA shift amount becomes consistent with the LTE TDD carrier, at least greater than the time TA1 is equal to the difference between the base station NR N TA-offset2 itself N TA-offset1.
  • the first network device may be an NR base station
  • the second network device may be an LTE base station
  • the first uplink carrier may be an NR SUL carrier
  • the second uplink is The carrier may be a UL carrier of LTE.
  • the first uplink carrier may belong to the carrier of the same frequency point as the second uplink carrier.
  • the NR base station acquires the TA reference amount and the TA offset of the LTE UL carrier from the LTE base station, and the TA offset may be a protocol pre-defined, and then according to the LTE UL carrier TA reference amount and the TA offset.
  • the amount is determined by the TA reference amount of the SUL carrier of the NR.
  • the NR base station sends the determined TA reference quantity to the communication device through the TAC command, so that the communication device can adjust the uplink transmission timing of the SUL carrier according to the TA reference amount of the SUL carrier and the TA offset of the SUL.
  • N TA1 TA1 + N TA-offset1 , where TA1 refers to the second reference amount in FIG. 11, and N TA-offset1 refers to the second offset in FIG.
  • N TA2 needs to be equal to N TA1 .
  • a possible implementation manner is that the NR base station interacts with the LTE base station and actively acquires the TA1 and the N TA-offset1 of the LTE base station, and determines that the TA2 is greater than or equal to the relationship between the N TA-offset1 of the LTE base station and the NTA-offset2 of the LTE base station.
  • the difference for example TA2, is equal to TA1+N TA-offset1 -N TA-offset2 .
  • the first uplink carrier that is, the N TA-offset2 of the SUL carrier of the NR
  • N TA-offset2 A TA offset equal to the UL carrier of the NR within the same serving cell as the SUL carrier.
  • the second uplink carrier that is, the LTE UL carrier is usually an FDD type carrier, so N TA-offset1 is generally 0, so the TA1 delivered by the LTE base station is greater than or equal to the N TA-offset2 of the NR base station.
  • the same TAG is the second TAG of the second network device, and the TAG may be an sTAG or a pTAG.
  • the LTE UL carrier N TA-offset1 from 0 to TA shift amount becomes consistent with the LTE TDD carrier, e.g. TA2 greater than the difference between the LTE base station is equal to N TA-offset1 itself N TA-offset2.
  • first uplink carrier and the second uplink carrier in FIG. 11 may be carriers of the same frequency point, and may also be carriers that satisfy other frequency domain relationships, which are not specifically limited in this embodiment.
  • the embodiment of the present application further provides a schematic flowchart of a method for uplink synchronization from the communication device side, as shown in FIG. 12 .
  • Step 1201 The communication device receives a timing advance command sent by the first network device.
  • Step 1202 The communications device adjusts an uplink transmission timing of the first uplink carrier according to the first TA reference amount in the timing advance command.
  • the communication device operates in a dual connectivity mode, where the dual connectivity mode indicates that the communication device can simultaneously simultaneously correspond to the first uplink carrier in the first TAG and the second uplink in the second TAG.
  • the cell corresponding to the carrier establishes a connection.
  • the communications device adjusts an uplink transmission timing of the first uplink carrier according to the first TA reference amount in the timing advance command and the first TA offset of the first uplink carrier.
  • the first TA offset may be protocol pre-defined.
  • the first TAG corresponds to the first network device in the first communication system
  • the second TAG corresponds to the second network device in the second communication system.
  • the first communication system may be LTE
  • the second communication system is NR
  • the first communication system may be NR
  • the second communication system is LTE.
  • the first network device may be an LTE base station
  • the second network device may be an NR base station
  • the first uplink carrier refers to an LTE UL carrier
  • the second The uplink carrier refers to the SUL carrier of the NR.
  • the communication device receives the TAC command from the LTE base station, because the LTE base station is the TA reference quantity of the LTE UL carrier determined after the interaction with the NR base station.
  • the TA base station quantity satisfies SUL or greater.
  • the TA offset of the LTE UL carrier is 0, and if the TA offset of the SUL carrier of the NR is 13 us, the communication device determines the TA reference amount of the UL carrier. When the condition of 13us or more is satisfied, the uplink synchronization adjustment can be performed.
  • first uplink carrier and the second uplink carrier in FIG. 12 may be carriers of the same frequency point, and may also be carriers that satisfy other frequency domain relationships, which are not specifically limited in this embodiment.
  • the first network device may be an NR base station
  • the second network device may be an LTE base station
  • the first uplink carrier refers to an NR SUL carrier
  • the second The uplink carrier refers to the UL carrier of the LTE.
  • the communication device receives the TAC command from the NR base station, because the NR base station is the TA reference quantity of the SUL carrier of the NR determined after the interaction with the LTE base station, so the communication device receives Uplink synchronization may be achieved after the TA reference amount.
  • the TA base station quantity satisfies a difference between the TA offset of the UL carrier and the TA offset of the self SUL carrier, so that the communication device receives the TA offset of the SUL carrier of the NR. After that, it is determined that the TA reference amount of the SUL carrier satisfies the condition of a difference between the TA offset of the UL carrier and the TA offset of the UL carrier, and then the uplink synchronization can be adjusted.
  • FIG. 13 is a schematic structural diagram of a device provided by the present application.
  • the device includes: a sending unit 1301 and a processing unit 1302.
  • the units may perform corresponding functions in the method example on the first network device side in FIG. 11 .
  • the units may perform corresponding functions in the method example on the first network device side in FIG. 11 .
  • the detailed description in the method example Do not repeat them.
  • FIG. 14 is a schematic structural diagram of an apparatus provided by the application, where the device includes: The receiving unit 1401 and the processing unit 1402, in the implementation of the present application, may perform the corresponding functions in the example of the method on the communication device side in FIG. 12, and refer to the detailed description in the method example, and details are not described herein.
  • the embodiment of the present application further provides a communication device, where the communication device includes a processor and a memory.
  • a computer program is stored in the memory, and when the processor reads and executes the computer program stored in the memory, the communication device implements a method executed by the first network device in the flow shown in FIG. Or the method performed by the communication device in the flow shown in FIG.
  • FIG. 15 is a schematic structural diagram of a communication device 1500.
  • the device 1500 can be used to implement the method described in the foregoing method embodiments. For details, refer to the description in the foregoing method embodiments.
  • the communication device 1500 can be a chip, a base station, a terminal, or other network device.
  • the communication device 1500 includes one or more processors 1501.
  • the processor 1501 may be a general purpose processor or a dedicated processor or the like. For example, it can be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (eg, base stations, terminals, or chips, etc.), execute software programs, and process data of the software programs.
  • one or more of the elements of FIGS. 13 and 14 may be implemented by one or more processors, or by one or more processors and memories.
  • the communication device 1500 includes one or more of the processors 1501, and the one or more processors 1501 can implement the uplink synchronization method described above, for example, the communication device can be a base station.
  • the communication device can be a base station.
  • the processor 1501 can include instructions 1503 (sometimes referred to as code or programs) that can be executed on the processor such that the communication device 1500 performs the above-described implementation The method described in the example.
  • communication device 1500 can also include circuitry that can implement the uplink synchronization functionality of the previous embodiments.
  • the communication device 1500 may include one or more memories 1502 on which instructions 1504 are stored, the instructions being executable on the processor such that the communication device 1500 performs the method described in the above method embodiments.
  • data may also be stored in the memory.
  • Instructions and/or data can also be stored in the optional processor.
  • the processor and the memory may be provided separately or integrated.
  • the “storage” described in the foregoing embodiment may be in the storage memory 1502, or may be stored in a memory or a storage device of other peripherals.
  • the communication device 1500 may further include a transceiver 1505 and an antenna 1506.
  • the processor 1501 may be referred to as a processing unit that controls a communication device (terminal or base station).
  • the transceiver 1505 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device through the antenna 1506.
  • the embodiment of the present application further provides a chip, where the chip is connected to a memory, where the computer stores a computer program for reading and executing a computer program stored in the memory, so as to implement the computer program as shown in FIG.
  • the embodiment of the present application further provides a computer storage medium, which stores program code, and the stored program code, when executed by the processor, is used to implement the method of the first network device in the flow shown in FIG. 11 in the present application.
  • the embodiment of the present application further provides a computer storage medium storing program code.
  • the stored program code when executed by the processor, is used to implement the method of the communication device in the flow shown in FIG. 12 in this application.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes computer software instructions executable by a processor to implement the method of the first network device in the flow shown in FIG. 11 in the present application.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes computer software instructions that can be loaded by a processor to implement the method of the communication device in the flow shown in FIG. 12 in the present application.
  • embodiments of the present application can be provided as a method, apparatus (device), or computer program product.
  • the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects, which are collectively referred to herein as "module” or “system.”
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program is stored/distributed in a suitable medium, provided with other hardware or as part of the hardware, or in other distributed forms, such as over the Internet or other wired or wireless telecommunication systems.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行同步方法及装置,该方法包括:网络设备向通信设备发送定时提前命令,因为定时提前命令包括定时提前TA基准量,而且TA基准量针对定时提前组TAG中的载波,然后通信设备根据所述载波的载波信息,确定所述载波的TA偏移量,然后通信设备根据所述TA基准量和所述载波的TA偏移量,调整所述载波的上行传输定时,这样可以解决在NR系统中终端上行不同步的问题。

Description

一种上行同步方法及装置
本申请要求在2018年02月13日提交中国专利局、申请号为201810151028.3、发明名称为“一种上行同步方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中,以及本申请要求在2018年04月04日提交中华人民共和国知识产权局、申请号为201810302366.2、发明名称为“一种上行同步方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及信息技术领域,尤其涉及一种上行同步方法及装置。
背景技术
在无线通信系统中,信号传输要经过空口路径,到达接收端的时刻有一定延时。无线通信系统采用规定的帧结构进行传输,对于上行链路(终端到网络侧传输点)传输,多个终端在上行链路传输时由于路径不同有不同的传输时延,为了实现发送端和接收端定时关系一致,以使来自同一小区的不同终端的上行传输之间互不干扰,发送端需要有一定的定时提前量(Timing Adavance,TA)。图1为上行同步的示意图,如图所示,为了使基站在T0时刻接收上行传输,终端1需要以TA1发送上行传输,终端2需要以TA2发送上行传输,这样基站就可以在T0时刻同时接收到来自终端1和终端2的上行传输。
TA与载波的双工方式间还存在一定关系,以LTE(Long Term Evolution,长期演进)系统为例,对于时分双工(Time Division Duplexing,TDD)载波,还配置有TA偏移量(TA offset)。这时对于TDD载波来说,上行定时提前的绝对时间等于上行定时提前量(即N TA+N TA offset)乘以一个时间粒度单位T s。也就是说,上行定时提前量包括两部分,一部分是TA基准量N TA,另一部分是TA偏移量N TA offset。在LTE与NR中,均支持多个定时提前组(Timing Adavance Group,TAG),在LTE中每个TAG中的各个载波的TA基准量相同,每个TAG中所有载波的TA偏移量也相同。
然而在NR系统中,每个TAG中的各个载波的TA基准量相同,但是一个TAG中可能存在各个载波对应不同的TA偏移量,所以在NR系统中,需要在各个载波对应不同TA偏移量时解决不同终端上行不同步的问题。
发明内容
有鉴于此,本申请提供了一种上行同步方法及装置,用以解决在NR系统中终端上行不同步的问题。
第一方面,本申请实施例提供了一种上行同步方法,该方法包括:通信设备接收网络设备发送的定时提前命令,因为定时提前命令包括TA基准量,而且该TA基准量针对TAG中的载波,针对TAG中的任一个载波,所述通信设备根据所述载波的载波信息,可以确定所述载波的TA偏移量,然后基于TA基准量和载波的TA偏移量,调整所述载波的上行传输定时。这时当所述TAG包括多个载波时,所述TA偏移量会满足以下条件:
当所述TAG为第一类TAG时,所述TAG中每两个载波的TA偏移量的差值为第一差值,当所述TAG为第二类TAG时,所述TAG中所述每两个载波的TA偏移量的差值为第 二差值,所述第一差值与所述第二差值相同。
一般,第一类TAG中的至少一个载波对应主小区PCell或者主辅小区PSCell,第二类TAG中的所有载波对应辅小区Scell,因为第一差值与第二差值相同,所以该通信设备在该TAG上的上行传输,可以保证与同小区其它通信设备在其它TAG上的上行传输保持上行同步,避免了NR因为上行不同步造成的信号干扰。
在一种可能的设计中,所述通信设备可以先确定该TAG中多个载波的TA偏移量中的最大值,然后基于TA基准量和最大TA偏移量,来调整该TAG中多个载波的上行传输定时。可见TAG中的各个载波都是通过TA基准量和最大TA偏移量来调整上行传输定时,所以第一差值与第二差值都是零,因为可以保证与同小区其它通信设备在其它TAG上的上行传输保持上行同步。
在另一种可能的设计中,通信设备可以根据载波所在的频段,确定所述载波的TA偏移量,其中,当所述载波所在的频段小于设定频率值时确定出来的TA偏移量大于当所述载波所在的频段大于等于所述设定频率值时确定出来的TA偏移量,例如,以6GHZ为分界点,小于6GHZ的载波的TA偏移量约为13us(等同于25560Tc),大于等于6GHZ载波的TA偏移量约为7us(等同于13763Tc)。
在另一种可能的设计中,通信设备可以根据所述载波的子载波间隔,确定所述各个载波的TA偏移量;其中,当所述载波的子载波间隔小于设定值时确定出来的TA偏移量大于当所述载波的子载波间隔大于等于所述设定值时确定出来的TA偏移量,例如子载波间隔为15KHZ,30KHZ,60KHZ的载波的TA偏移量相同,子载波间隔为120KHZ和其他大于等于120KHZ的载波的TA偏移量相同。
在其它可能的设计中,网络侧为该通信设备确定的对应的TAG可以具有如下特点,即该TAG中的载波对应的子载波间隔小于等于60KHZ,或者所述TAG中的载波对应的子载波间隔大于60KHZ,也就是说,因为一般子载波间隔为15KHZ,30KHZ,60KHZ的载波的TA偏移量相同,子载波间隔为120KHZ和其他大于等于120KHZ的载波的TA偏移量相同,这样划分出来的TAG中的各个载波一般不会存在不同的TA偏移量,进而避免出现上行不同步的问题。
再者,还有一种可能的设计是,NR系统中,即使网络侧为通信设备配置的TAG是第一类TAG,通信设备仍然可以配置该TAG中的TA偏移量为不同的值,例如,TAG中有两个载波,载波A的TA偏移量不参考载波B的TA偏移量进行配置,或者是载波A的TA取值不同于载波B的TA偏移量。从而当TAG为第一类TAG时,仍然可以实现第一差值与第二差值相等,保证同一小区的不同通信设备在同一载波上的上行传输是同步的。
需要说明的是,在上述实施例中,不同的上行同步方式可以互相结合,也就是通信设备可以基于上述至少一种条件来确定调整上行同步。
第二方面,本申请实施例还从网络侧提供一种上行同步方法,该方法包括:网络设备根据通信设备发送的上行信号,确定TA和TA偏移量,因为TA与TA偏移量的差值是TA基准量,然后网络设备再根据TA确定出TA基准量,这时TA基准量针对定时提前组TAG中的载波,最后网络设备向所述通信设备发送定时提前命令,在定时提前命令中包括TA基准量,这样通信设备可以基于该TA基准量和自身按照与网络侧同样规则确定的TA偏移量进行上行定时调整。
需要说明的是,所述TAG包括多个载波时,所述TA偏移量满足以下条件:
当所述TAG为第一类TAG时,所述TAG中每两个载波的TA偏移量的差值为第一差值,当所述TAG为第二类TAG时,所述TAG中所述每两个载波的TA偏移量的差值为第二差值,所述第一差值与所述第二差值相同,所述第一类TAG中的至少一个载波对应主小区PCell或者主辅小区PSCell,所述第二类TAG中的所有载波对应辅小区SCell。
这样,因为第一差值与第二差值相同,所以该通信设备在该TAG上的上行传输,可以保证与同小区其它通信设备在其它TAG上的上行传输保持上行同步,避免了NR因为上行不同步造成的信号干扰。
在一种可能的设计中,所述网络设备根据所述上行定时提前量和最大TA偏移量确定TA基准量,所述最大TA偏移量是为所述通信设备服务的所述TAG中的多个载波的TA偏移量中的最大值。
在一种可能的设计中,网络设备可以根据载波所在的频段,确定所述载波的TA偏移量,其中,当所述载波所在的频段小于设定频率值时确定出来的TA偏移量大于当所述载波所在的频段大于等于所述设定频率值时确定出来的TA偏移量,例如,以6GHZ为分界点,小于6GHZ的载波的TA偏移量约为13us,大于等于6GHZ载波的TA偏移量约为7us。
在另一种可能的设计中,网络设备可以根据所述载波的子载波间隔,确定所述各个载波的TA偏移量;其中,当所述载波的子载波间隔小于设定值时确定出来的TA偏移量大于当所述载波的子载波间隔大于等于所述设定值时确定出来的TA偏移量,例如子载波间隔为15KHZ,30KHZ,60KHZ的载波的TA偏移量相同,子载波间隔为120KHZ和其他大于等于120KHZ的载波的TA偏移量相同。
在其它可能的设计中,网络设备为该通信设备确定的对应的TAG可以具有如下特点,即该TAG中的载波对应的子载波间隔小于等于60KHZ,或者所述TAG中的载波对应的子载波间隔大于60KHZ,也就是说,因为一般子载波间隔为15KHZ,30KHZ,60KHZ的载波的TA偏移量相同,子载波间隔为120KHZ和其他大于等于120KHZ的载波的TA偏移量相同,这样划分出来的TAG中的各个载波一般不会存在不同的TA偏移量,进而避免出现上行不同步的问题。
再者,还有一种可能的设计是,NR系统中,即使网络设备为通信设备配置的TAG是第一类TAG,通信设备仍然可以配置该TAG中的TA偏移量为不同的值,例如,TAG中有两个载波,载波A的TA偏移量不参考载波B的TA偏移量进行配置,或者是载波A的TA取值不同于载波B的TA偏移量。从而当TAG为第一类TAG时,仍然可以实现第一差值与第二差值相等,保证同一小区的不同通信设备在同一载波上的上行传输是同步的。
需要说明的是,在上述实施例中,不同的上行同步方式可以互相结合,也就是网络设备可以基于上述至少一种条件来调整上行同步。
第三方面,本申请实施例还提供了一种装置,该装置具有实现上述第一方面方法示例中通信设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或所述软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括接收单元、处理单元,其中,接收单元,用于接收网络设备发送的定时提前命令;处理单元,用于根据所述载波的载波信息,确定所述载波的TA偏移量;并根据所述TA基准量和所述载波的TA偏移量,调整所述载波的上行传输定时。
需要说明的是,当所述TAG包括多个载波时,所述TA偏移量满足以下条件:
当所述TAG为第一类TAG时,所述TAG中每两个载波的TA偏移量的差值为第一差值,当所述TAG为第二类TAG时,所述TAG中所述每两个载波的TA偏移量的差值为第二差值,所述第一差值与所述第二差值相同,所述第一类TAG中的至少一个载波对应主小区PCell或者主辅小区PSCell,所述第二类TAG中的所有载波对应辅小区Scell。
在一种可能的设计中,所述处理单元具体用于:
根据所述上行定时提前量和最大TA偏移量确定TA基准量,所述最大TA偏移量是为所述通信设备服务的所述TAG中的多个载波的TA偏移量中的最大值。
在一种可能的设计中,当所述TAG包括多个载波时,所述处理单元具体用于:
根据所述TA基准量和最大TA偏移量,调整所述TAG中多个载波的上行传输定时,所述最大TA偏移量为所述多个载波的TA偏移量中的最大值。
在另一种可能的设计中,所述处理单元具体用于:根据所述载波所在的频段,确定所述载波的TA偏移量;
其中,当所述载波所在的频段小于设定频率值时确定出来的TA偏移量大于当所述载波所在的频段大于等于所述设定频率值时确定出来的TA偏移量。
在第三种可能的设计中,所述处理单元具体用于:根据所述载波的子载波间隔,确定所述各个载波的TA偏移量;
其中,当所述载波的子载波间隔小于设定值时确定出来的TA偏移量大于当所述载波的子载波间隔大于等于所述设定值时确定出来的TA偏移量。
其中,一种可能的实现是所述TAG中的载波对应的子载波间隔小于等于60KHZ,或者所述TAG中的载波对应的子载波间隔大于60KHZ,或者一种可能的实现是所述TAG中各个载波的TA偏移量独立设置。
本申请实施中,这些单元可以执行上述第一方面方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在另一种可能的设计中,当该装置为通信设备内的芯片时,芯片包括:处理单元和通信单元,处理单元例如可以是处理器,通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使上述第一方面任意一项的上行控制信息传输方法被执行。可选地,存储单元为芯片内的存储单元,如寄存器、缓存等,存储单元还可以是通信设备内的位于芯片外部的存储单元,如只读存储器、可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器等。
第四方面,本申请实施例还提供了一种装置,该装置具有实现上述第二方面方法示例中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或所述软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,该装置的结构中包括处理单元、发送单元,其中,处理单元;用于根据通信设备发送的上行信号,确定上行定时提前量和TA偏移量;并根据所述上行定时提前量确定TA基准量,所述TA基准量针对定时提前组TAG中的载波,所述TA基准量为所述上行定时提前量与所述TA偏移量的差值,发送单元,用于向所述通信设备发送定时提前命令,其中,定时提前命令包括所述TA基准量。
需要说明的是,当所述TAG包括多个载波时,所述TA偏移量满足以下条件:
当所述TAG为第一类TAG时,所述TAG中每两个载波的TA偏移量的差值为第一差值,当所述TAG为第二类TAG时,所述TAG中所述每两个载波的TA偏移量的差值为第 二差值,所述第一差值与所述第二差值相同,所述第一类TAG中的至少一个载波对应主小区PCell或者主辅小区PSCell,所述第二类TAG中的所有载波对应辅小区SCell。
在一种可能的设计中,所述处理单元具体用于:根据所述载波所在的频段,确定所述载波的TA偏移量;
其中,当所述载波所在的频段小于设定频率值时确定出来的TA偏移量大于当所述载波所在的频段大于等于所述设定频率值时确定出来的TA偏移量。
在另一种可能的设计中,所述处理单元具体用于:根据所述载波的子载波间隔,确定所述各个载波的TA偏移量;
其中,当所述载波的子载波间隔小于设定值时确定出来的TA偏移量大于当所述载波的子载波间隔大于等于所述设定值时确定出来的TA偏移量。
其中,一种可能的实现是所述TAG中的载波对应的子载波间隔小于等于60KHZ,或者所述TAG中的载波对应的子载波间隔大于60KHZ,或者一种可能的实现是所述TAG中各个载波的TA偏移量独立设置。
本申请实施中,这些单元可以执行上述第二方面方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在另一种可能的设计中,当该装置为网络设备内的芯片时,芯片包括:处理单元和通信单元,处理单元例如可以是处理器,通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使上述第一方面任意一项的上行控制信息传输方法被执行。可选地,存储单元为芯片内的存储单元,如寄存器、缓存等,存储单元还可以是通信设备内的位于芯片外部的存储单元,如只读存储器、可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器等。
第五方面,本申请实施例提供的了一种上行同步方法,该方法包括:第一网络设备向第二网络设备请求获取第二TAG中第二上行载波的第二TA基准量和所述第二TA偏移量,第一网络设备根据所述第二TA基准量和所述第二TA偏移量,确定第一TAG中的第一上行载波的第一TA基准量。第一TAG对应第一通信制式下的第一网络设备,第二TAG对应第二通信制式下的第二网络设备,所以第一网络设备确定出来的第一TA基准量满足所述第一TA基准量大于等于所述第二TA偏移量与所述第一上行载波的第一TA偏移量之间的差值。这样,第一网络设备向通信设备发送包括第一TA基准量的定时提前命令后,通信设备就可以根据第一TA基准量和第一TA偏移量调整第一上行载波的上行传输定时。
在一种可能的设计中,当所述第一通信制式为LTE,所述第二通信制式为NR,所述第一上行载波为LTE的UL载波,所述第二上行载波为NR的SUL载波;所述第二上行载波的第二TA偏移量是根据与所述第二上行载波同服务小区的NR的UL载波的TA偏移量确定的。
在另一种可能的设计中,当所述第一通信制式为NR,所述第二通信制式为LTE,所述第一上行载波为NR的SUL载波,所述第二上行载波为LTE的UL载波;所述第二上行载波的第二TA偏移量是根据与所述第二上行载波同TAG的TDD载波的TA偏移量确定的。
第六方面,本申请实施例提供的了一种上行同步方法,该方法包括:通信设备接收第一网络设备发送的定时提前命令,因为定时提前命令包括第一定时提前TA基准量,所述第一TA基准量针对第一定时提前组TAG中的第一上行载波,且所述第一TA基准量由第 二上行载波的第二TA基准量和第二TA偏移量确定,第一TAG对应第一通信制式下的第一网络设备,第二TAG对应第二通信制式下的第二网络设备,这样通信设备根据所述第一TA基准量,调整所述第一上行载波的上行传输定时。
在一种可能的设计中,当所述第一通信制式为LTE,所述第二通信制式为NR,所述第一上行载波为LTE的UL载波,所述第二上行载波为NR的SUL载波;所述第二上行载波的第二TA偏移量是根据与所述第二上行载波同服务小区的NR的UL载波的TA偏移量确定的。
在另一种可能的设计中,当所述第一通信制式为NR,所述第二通信制式为LTE,所述第一上行载波为NR的SUL载波,所述第二上行载波为LTE的UL载波;所述第二上行载波的第二TA偏移量是根据与所述第二上行载波同TAG的TDD载波的TA偏移量确定的。
第七方面,本申请实施例还提供了一种装置,该装置具有实现上述第五方面方法示例中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或所述软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括发送单元、处理单元,其中,发送单元,用于向第二网络设备发送请求,所述发送请求用于请求获取第二TAG中第二上行载波的第二TA基准量和第二TA偏移量,所述第二TAG对应第二通信制式下的第二网络设备,处理单元,用于根据所述第二TA基准量和所述第二TA偏移量,确定第一TAG中的第一上行载波的第一TA基准量,所述第一TAG对应第一通信制式下的第一网络设备;所述发送单元,还用于向通信设备发送包括所述第一TA基准量的定时提前命令。
所以处理单元确定出来的第一TA基准量满足所述第一TA基准量大于等于所述第二TA偏移量与所述第一上行载波的第一TA偏移量之间的差值。这样,处理单元对应的网络设备向通信设备发送包括第一TA基准量的定时提前命令后,通信设备就可以根据第一TA基准量和第一TA偏移量调整第一上行载波的上行传输定时。
在一种可能的设计中,当所述第一通信制式为LTE,所述第二通信制式为NR,所述第一上行载波为LTE的UL载波,所述第二上行载波为NR的SUL载波;所述第二上行载波的第二TA偏移量是根据与所述第二上行载波同服务小区的NR的UL载波的TA偏移量确定的。
在另一种可能的设计中,当所述第一通信制式为NR,所述第二通信制式为LTE,所述第一上行载波为NR的SUL载波,所述第二上行载波为LTE的UL载波;所述第二上行载波的第二TA偏移量是根据与所述第二上行载波同TAG的TDD载波的TA偏移量确定的。
第八方面,本申请实施例还提供了一种装置,该装置具有实现上述第六方面方法示例中通信设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或所述软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括接收单元、处理单元,其中,接收单元,用于接收第一网络设备发送的定时提前命令,定时提前命令包括第一定时提前TA基准量,所述第一TA基准量针对第一定时提前组TAG中的第一上行载波,且所述第一TA基准量由第二上行载波的第二TA基准量和第二TA偏移量确定,所述第一TAG对应第一通信制式下的第一网络设备,所述第二TAG对应第二通信制式下的第二网络设备,这样,处理单 元,用于根据所述第一TA基准量,调整所述第一上行载波的上行传输定时。
所以第一网络设备确定出来的第一TA基准量满足所述第一TA基准量大于等于所述第二TA偏移量与所述第一上行载波的第一TA偏移量之间的差值。这样,第一网络设备向通信设备发送包括第一TA基准量的定时提前命令后,通信设备就可以根据第一TA基准量和第一TA偏移量调整第一上行载波的上行传输定时。
在一种可能的设计中,当所述第一通信制式为LTE,所述第二通信制式为NR,所述第一上行载波为LTE的UL载波,所述第二上行载波为NR的SUL载波;所述第二上行载波的第二TA偏移量是根据与所述第二上行载波同服务小区的NR的UL载波的TA偏移量确定的。
在另一种可能的设计中,当所述第一通信制式为NR,所述第二通信制式为LTE,所述第一上行载波为NR的SUL载波,所述第二上行载波为LTE的UL载波;所述第二上行载波的第二TA偏移量是根据与所述第二上行载波同TAG的TDD载波的TA偏移量确定的。
第九方面,本申请实施例提供了一种装置,包括至少一个处理器和至少一个存储器,所述处理器用于执行上述第一方面或第二方面任一项中的上行同步方法,所述存储器与所述处理器耦合。
第十方面,本申请实施例提供了一种装置,包括至少一个处理器和至少一个存储器,所述至少一个存储器与所述至少一个处理器耦合,所述至少一个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,所述装置执行上述第一方面或第二方面任一项中的上行同步方法,或者第五方面或第二方面任一项中的上行同步方法。
第十一方面,本申请实施例提供了一种装置,包括至少一个处理器,所述处理器用于执行上述第一方面或第二方面任一项中的上行同步方法,或者第六方面或第六方面任一项中的上行同步方法。
第十二方面,本申请实施例提供了一种芯片,该芯片以装置的形式存在,该芯片可以为上述方面中的任意一种装置。
本申请实施例提供的上行同步方法适用于NR系统,因为当NR系统中发生载波聚合的不同载波存在多个不同的TA偏移量时,可能会破坏不同用户在同一个载波上的上行传输的同步性,本申请实施例根据该TAG中的各个载波的载波信息,确定所述TAG中各个载波的TA偏移量,再基于TA基准量和该TAG中各个载波的TA偏移量,调整TAG中各个载波的上行传输定时,而且当所述TAG为第一类TAG时,所述TAG中每两个载波的TA偏移量的差值为第一差值,当所述TAG为第二类TAG时,所述TAG中所述每两个载波的TA偏移量的差值为第二差值,所述第一差值与所述第二差值相同。因为第一差值与第二差值相同,所以该通信设备在该TAG上的上行传输,可以保证与同小区其它通信设备在其它TAG上的上行传输保持上行同步,避免了NR因为上行不同步造成的信号干扰。
另一方面,本申请实施例提供的上行同步方法适用于双连接系统,因为双连接系统下,不同通信制式下的网络设备之间可以进行交互,所以LTE基站可以基于NR基站的TA基准量和TA偏移量,确定出LTE的上行载波的TA基准量,或者说,NR基站可以基于LTE基站的TA基准量和TA偏移量,确定出NR的上行载波的TA基准量。因为通信设备收到的TA基准量满足设定的条件,从而实现上行同步,避免了因上行不同步造成的信号干扰。
附图说明
图1为现有技术提供的一种上行同步的示意图;
图2为本申请实施例提供的一种通信系统架构流程图;
图3为本申请实施例提供的载波聚合下多终端上行传输示意图;
图4为本申请实施例提供的一种通信设备执行的上行同步流程方法示意图;
图5为本申请实施例提供的网络设备执行的上行同步流程方法示意图;
图6为本申请实施例提供的一种装置的结构示意图;
图7为本申请实施例提供的另一种装置的结构示意图一;
图8为本申请实施例提供的一种通信装置结构示意图一;
图9为本申请实施例提供的一种双连接系统结构示意图;
图10为本申请实施例提供的一种同频点载波示意图;
图11为本申请实施例提供的一种网络设备侧的上行同步方法示意图;
图12为本申请实施例提供的一种通信设备侧的上行同步方法示意图;
图13为本申请实施例提供的一种装置的结构示意图二;
图14为本申请实施例提供的另一种装置的结构示意图二;
图15为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例可以应用于现有的蜂窝通信系统,如全球移动通讯(global system for mobile communication,GSM),宽带码分多址(wideband code division multiple access,WCDMA),长期演进(long term evolution,LTE)等系统中。同时也适用于未来的无线通信系统,适用于5G(第五代移动通信系统)系统,如采用NR的接入网;云无线接入网(cloud radio access network,CRAN)等通信系统,也可以扩展到类似的无线通信系统中,如无线保真(wIreless-fidelity,wifi)、全球微波互联接入(worldwide interoperability for microwave access,WiMAX)、以及3gpp相关的蜂窝系统。
如图2所示,为本申请所适用的应用场景示意图,本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
图2示出了本发明的一种可能的应用场景示意图,包括至少一个终端10与无线接入网(radio access network,RAN)进行通信。所述RAN包括至少一个基站20(base station,BS),为清楚起见,图中只示出一个基站和一个UE。所述RAN与核心网络(core network,CN)相连。可选的,所述CN可以耦合到一个或者更多的外部网络(external network),例如英特网,公共交换电话网(public switched telephone network,PSTN)等。
为便于理解下面对本申请中涉及到的一些名词做些说明。
1)、通信设备,又称之为终端、用户设备(User Equipment,UE),或一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。该通信设备可 以由芯片得以实现。以下,为便于描述,通信设备统称为UE。
2)、网络设备,比如可以是基站,基站又称为无线接入网(Radio Access Network,RAN)设备是一种将终端接入到无线网络的设备,包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,简称:HNB)、基带单元(BaseBand Unit,BBU)、基站(g NodeB,gNB),传输点(Transmitting and receiving point,TRP),发射点(Transmitting point,TP)。此外,还可以包括Wifi接入点(Access Point,AP)等。以下,为便于描述,网络设备统称为基站。
在LTE中,TA基准量和TA偏移量如下:UE在第i个上行链路无线帧上发送上行传输应该比该UE在相应的下行无线帧上提前(N TA+N TAoffset)×T s秒,如果UE配置了SCG,那么0≤N TA≤4096,否则0≤N TA≤20512。对于FDD帧结构类型而言,N TAoffset=0,对于TDD帧结构类型而言,N TAoffset=624。
也就是说,UE需要根据N TA、N TAoffset来确定上行信号的发送时间,具体来说,上行定时提前的绝对时间等于上行定时提前量(即公式中的N TA+N TA offset)乘以一个时间粒度单位T s。上行定时提前调整量包括两部分,一部分是N TA,即是指本申请实施例中所指的TA基准量,另一部分是N TAoffset,即指本申请实施例中所指的TA偏移量。
在当前NR协议中,也有与LTE类似的定义。即UE在第i个上行链路无线帧上发送上行传输应该比该UE在相应的下行无线帧上提前(N TA+N TAoffset)×T c秒。
可见,NR中主要区别是定时提前中时间粒度单位T c与LTE中的T s不同。在LTE中时间粒度定义为T s=1/2048/15000秒,在NR中时间粒度定义为T c=1/4096/480000秒。除去时间单位的定义不同外,在LTE与NR中,上行定时提前调整量有相同的组成部分,即TA基准值N TA和TA偏移量N TAoffset
另外,在LTE与NR中,均支持多个TAG,每个TAG中的各个载波的TA基准量相同,每个TAG中所有载波的上行定时提前调整值相同。基于上述定时提前调整量的组成和定义,在LTE和NR中的载波聚合场景,每个载波是否使用TA偏移量N TAoffset,或者使用哪个TA偏移量,还要取决于载波信息。
在LTE中,对于包含主小区(PCell)或者主辅小区(PSCell)的TAG,该TAG中所有载波在进行定时提前调整时使用PCell或者PSCell对应的TA偏移量N TAoffset计算定时提前调整量;此处的主载波对应的TA偏移量N TAoffset指的是如果PCell或者PSCell工作在单载波模式下,其使用的TA偏移量N TAoffset。对于不包含PCell或PSCell的TAG,若该TAG内所有小区的双工方式相同,即该TAG内所有载波均为TDD载波,或者该TAG内所有载波均为FDD载波,则该组内所有载波上均使用TA偏移量N TAoffset=0来计算定时提前调整量。对于不包含PCell或者PSCell的TAG,若该TAG内存在两种双工方式的小区,及该TAG内同时存在FDD的小区和TDD的小区,则该TAG内所有载波均使用TA偏移量N TAoffset=624来计算定时提前调整量。从整个机制来看,该机制保证了对于任何一个UE,在任何一个TAG的不同上行载波上,其上行发送均是同步的。在此处同步的意义是特指两个载波时间重叠的子帧上的上行子帧的时间点相同。
然而在NR系统中,可能存在多个不同的TA偏移量,如果完全沿用上述LTE中的机制,可能会出现问题。主要原因是对不存在PCell或者PSCell的TAG,当该TAG中同时 存在TDD小区和FDD小区时,LTE中是使用TDD的TA偏移量的;但在NR中,不同TDD载波对应的TA偏移量可能不同,因此UE不知道如何选择TA偏移量,因此沿用LTE中的TA offset调整机制并不能保证每个TAG中的所有载波的TA均相同,可能会破坏不同用户在同一个载波上的上行信号的同步性。
需要指出的是,在LTE和NR中,小区是高层的概念,载波是物理层的概念。小区和载波有对应关系,如在LTE中,一个小区可以被配置为包含一对上下行载波,或只包含一个下行载波。在NR中,一个小区可以被配置为包含一对上下行载波,或只包含一个下行载波,或包含一个下行载波,一个上行载波和一个补充上行载波(supplementary uplink,SUL)。因为载波和小区的对应关系,一个载波只能属于一个小区,配置了小区就能找到相应的载波;反之亦然。因此在本发明中并不严格区分小区和载波的概念,二者在不引起混淆的情况下可以混用。
本申请所提供的实施例用以实现上行同步,由于不同的UE和基站间的距离是不确定的,同一小区的不同UE的上行传输在时间上要求是对齐的,否则来自同一小区的不同终端的上行传输之间互相干扰。目前UE可以通过随机接入过程同基站建立上行同步,基站检测到UE发送了前导码(preamble)信号,通过接收到的preamble信号估计出TA基准量,并通过随机接入响应发送TA基准量给UE,UE接收到随机接入响应之后,计算TA,从而实现同一小区的不同的UE在同一载波上发送的上行信号同时到达同一基站。建立RRC连接后,UE还可以通过测量和跟踪基站发送的导频信号,进行小范围的同步跟踪和调整;基站也可以通过测量UE的上行信号,对UE的定时提前进行估计和调整并通过TAC通知UE。在基站认定UE可能失步时,也可以触发UE发送preamble信号,进行定时提前测量和调整。所以说,上行同步的意义是:多个UE在同一个载波上的上行信号,到达基站的时延差在一定范围之内,多个UE的上行信号不会严重互相干扰以至于影响基站对多个上行信号的正确接收。上行定时提前的技术本质是UE通过定时提前预先补偿其发送信号在空间传输的时延。
本申请所提供的实施例适用于载波聚合场景,所谓载波聚合是将两个或更多的成员载波(Component Carrier,CC)聚合在一起以支持更大的传输带宽。该成员载波也可以称为载波。例如,针对载波聚合中的小区,可以包含主小区(Primary Component Cell,PCell)和辅小区(Secondary Component Cell,SCell)。具体地,Pcell可以是初始连接建立时,终端与基站进行通信的小区,或RRC连接或重配置时的小区,或在切换过程中由基站或终端确定,主要用于实现基站与终端间的RRC通信。Scell可以是RRC重配置时基站新增为终端提供服务的小区,例如Scell与终端间可以不实现RRC通信。主成员载波(Primary component carrier,PCC)是PCell对应的CC,辅成员载波(Secondary component carrier,SCC)是Scell对应的CC。
在载波聚合场景下,当UE配置有多个上行载波时,因多个上行载波在网络侧可能不共站,或者不同载波上的波束方向不同等原因,可能UE侧在不同上行载波上传输的定时提前量不同,因此将不同载波划分为不同的定时提前组(Timing Adavance Group,TAG),一个TAG内的所有载波使用相同的TA基准量,且不同TAG使用不同的TA基准量。如果一个TAG中包含了PCell或者PSCell,本申请实施例中称这种TAG为pTAG,如果一个TAG中不包含PCell或者PSCell,即该TAG中只包含SCell,本申请实施例中称该TAG为sTAG。
另外,定时提前量还与载波的双工方式之间存在一定的关系。
对于频分双工(Frequency Division Duplexing,FDD)载波,因为上行和下行在不同频率,上行链路和下行链路均处于一直存在的状态,因此没有上下行转换的问题,即基站侧发送的下行帧/时隙和基站侧接收的下行帧/时隙的起点可以相同,或者说基站侧下行帧/时隙边界和基站侧上行帧/时隙边界可以是对齐的,因此UE实际发送上行传输的上行定时提前量等于TAC中的TA基准量。
对于时分双工(Time Division Duplexing,TDD)载波,上行和下行占用不同的时隙。因此,基站和UE之间传输方向改变时,即从上行传输切换到下行传输,或从下行传输切换到上行传输时,均需要一段转换时间执行切换。因此对于TDD系统,为保证上行能有足够的切换时间,切换时需要留出足够的保护间隔,保护间隔严格来说包括了两部分,一部分是从上行到下行的切换时间,一部分是下行到上行的切换时间,保护间隔需要覆盖这两部分,后一部分和TA offset密切相关。因此从上行传输切换到下行传输时,UE需要在TA基准量的基础上进行调整,调整之后的实际TA即为TA基准量加上TA offset,这样使得UE上行传输完成后,UE和基站都有足够时间完成转换,基站能够在转换后正常发送下行信号,UE能够在转换后正常接收下行信号,所以对于TDD载波来说,UE的上行定时提前量等于TAC中的TA基准量加上TA offset。
在LTE中,每个TAG中的各个载波的TA基准量相同,每个TAG中所有载波的TA偏移量也相同,所以一个TAG中各个载波的实际TA调整量(TA基准量与TA偏移量之和)也相同,这样,可以通过给不同用户配置合适的TA基准量,使得在每一个载波上的不同UE的上行信号是同步的,然而在NR系统中,如果完全沿用LTE中的TA调整机制,因为可能存在多个不同的TA offset值,每个TAG中所有载波的上行定时提前量可能不相同,当不同载波上的TA offset值不同时,如果一个TAG中各个载波的实际TA调整量也不相同,这样不同用户在同一个载波上的上行信号可能会产生不同步的问题。
例如,对应共站服务下的用户设备UE1和UE2,且UE1和UE2均被配置了载波聚合,UE1和UE2均被共站的小区1,小区2和小区3服务。小区1,小区2,小区3均有上行载波,假设均对应一个上行载波,小区1,小区2,小区3分别对应的上行载波为载波CC1,载波CC2,载波CC3。假设小区1是UE1的主服务小区,小区2和小区3是UE1的辅服务小区;同时假设小区1,小区2和小区3均是UE2的辅服务小区。对于UE1和UE2来说,载波CC1、载波CC2和载波CC3聚合在一起以支持更大的传输带宽。网络侧根据共站关系对三个载波进行分组,为UE1和UE2分别配置TAG。对于UE1来说,因为小区1是UE1的主服务小区,所以UE1对应的是pTAG,同理,因为小区1,小区2,小区3均是UE2的辅服务小区,所以UE2对应的是sTAG。假设小区1和小区2的双工方式均为TDD,小区3的双工方式为FDD,双工方式为TDD的载波需要在TA基准量的基础上再进行调整,所以存在TA offset。已知,如表1所示,基站为pTAG配置的TA基准量为1us,小区1对应的TA offset1为0.1us,小区2对应的TA offset2为0.2us,小区3对应的TA offset3为0.0us;基站为sTAG配置的TA基准量为0.6us,小区1对应的TA offset1为0.05us,小区2对应的TA offset2为0.2us,小区3对应的TA offset3为0.0us。
因为LTE协议规定,所述通信设备根据TA基准量和主载波的TA偏移量,调整TAG中各个载波的上行传输定时,所以在pTAG中,各个载波实际使用的TA offset与主载波的TA offset相同。假设主载波为载波CC1,因此载波CC2的TA offset2实际使用值为0.1us, 载波CC3的TA offset3实际使用值为0.1us。即载波CC1的TA实际调整值是1.1us,载波CC2的TA实际调整值是1.1us,载波CC3的TA实际调整值是1.1us。
因为宏基站和小基站共享载波CC1、载波CC2和载波CC3,所以sTAG中的载波CC1和载波CC2的双工方式也均为TDD,且载波CC3的双工方式也为FDD。已知sTAG中sTAG中TA基准量为0.6us,载波CC1和载波CC2上的TA offset各自对应的值不同,如表2所示,载波CC1的TA offset1为0.05us,载波CC2的TA offset2为0.2us,即载波CC1的TA实际调整值是0.65us,载波CC2的TA实际调整值是0.8us,载波CC3的双工方式因是FDD,所以载波CC3的TA实际调整值等于TA基准量,即0.6us。
表1
Figure PCTCN2019074264-appb-000001
表2
Figure PCTCN2019074264-appb-000002
这样一来,因为载波CC1和载波CC2的TA实际调整值是1.1us,二者相同,所以UE1在载波CC1上和在载波CC2上发的上行传输可以同时到达宏基站,而这时,sTAG中的载波CC1的实际调整值是0.65us,载波CC2的实际调整值是0.8us,这时若UE2在载波CC1上发上行传输也与UE1一样同时到达宏基站,那么UE2在载波CC2上发上行信号就相对提前了0.15s到达宏基站,显然与UE1和UE2在载波CC2上发的上行传输不同步。
或者说,UE1在载波CC1的TA实际调整值1.1us与UE1在载波CC2的TA实际调整值1.1us之间的差值是0;UE2在载波CC1的TA实际调整值0.65us与UE2在载波CC2的TA实际调整值0.8us之间的差值是-0.15us,因为上行同步要求不同UE在同一CC同时到达宏基站,差值0与差值-0.15us不等,这时若UE1和UE2在CC1上是上行同步的,则UE1和UE2在载波CC2不是上行同步的。
所以说,当NR系统中发生载波聚合的不同载波存在多个不同的TA offset时,可能会破坏不同用户在同一个载波上的上行传输的同步性。
为了解决上述问题,本申请实施例提供一种上行同步流程,流程示意图如图4所示。
步骤401、网络设备向通信设备发送定时提前命令,其中,定时提前命令中包括TA基准量,该TA基准量针对TAG中的载波。
步骤402,通信设备根据该载波的载波信息,确定该载波的TA偏移量。
步骤403,通信设备根据TA基准量和该TA偏移量,调整TAG中各个载波的上行传输定时。
具体来说,在步骤402中,通信设备确定出来的TAG中各个载波的TA偏移量满足以下条件,当所述TAG为第一类TAG时,那么该TAG中每两个载波的TA偏移量的差值,所述TAG为第二类TAG时,该TAG中所述每两个载波的TA偏移量的差值相同。一般第一类TAG也称为pTAG,第二类TAG也称为sTAG,也就是说,TAG是pTAG时,pTAG中第一载波的TA偏移量与第二载波的TA偏移量之间的差值为第一差值,TAG是sTAG时,sTAG中第一载波的TA偏移量与第二载波的TA偏移量之间的差值为第二差值,第一差值与第二差值是相同的,这里第一载波和第二载波为TAG中的任意两个载波。
需要指出的是,针对一个通信设备而言,该通信设备对应的TAG可能是pTAG,或者是sTAG,也就是说只能对应二者之中的一个,当然通信设备对应的TAG是pTAG时所包含的载波与通信设备对应的TAG是sTAG时所包含的载波是一致的,因为pTAG中每两个载波的TA偏移量的差值与sTAG中所述每两个载波的TA偏移量的差值相同,所以不同UE就可以在同一CC同时到达基站。
比如说,如图3所示,UE2接收到来自宏基站的TAC,TAC中包括sTAG的基准量0.6us。UE2按照TA偏移量需要满足的条件,配置出sTAG中载波CC1的TA offset1为0.05us,载波CC2的TA offset2为0.2us,载波CC3的TA offset3为0us,表3所示,以及配置出pTAG中载波CC1的TA offset1为0.1us,载波CC2的TA offset2为0.25us,载波CC3的TA offset3为0.05us,如表4所示。可见,sTAG中载波CC1的TA offset1与载波CC2的TA offset2之间的差值为-0.15us,pTAG中载波CC1的TA offset1与载波CC2的TA offset2之间的差值也为-0.15us;sTAG中载波CC2的TA offset2与载波CC3的TA offset3之间的差值为0.2us,pTAG中载波CC1的TA offset1与载波CC2的TA offset2之间的差值也为0.2us;sTAG中载波CC1的TA offset1与载波CC3的TA offset3之间的差值为0.05us,pTAG中载波CC1的TA offset1与载波CC3的TA offset3之间的差值也为0.05us。
表3
Figure PCTCN2019074264-appb-000003
表4
Figure PCTCN2019074264-appb-000004
Figure PCTCN2019074264-appb-000005
考虑到LTE协议规定,通信设备是根据TA基准量和主载波的TA偏移量,调整TAG中各个载波的上行传输定时,所以在pTAG中,各个载波实际使用的TA offset与主载波的TA offset相同,如果表4中pTAG仍然延续使用LTE协议规定,则仍然无法做到上行同步,所以本申请实施例中规定TAG中各个载波的TA偏移量独立设置。所谓独立设置,假设说pTAG中有两个载波,载波A和载波B,终端在确定载波A的TA偏移量时不参考载波B的偏移量,或者终端在确定载波A的TA偏移量时,不与载波B的TA偏移量相同。其中一个简单的独立设置方式是,针对同一个载波,在pTAG中和sTAG中,该载波均配置为相同的TA偏移量。又比如说,表4中,pTAG中,各个载波实际使用的TA offset与主载波的TA offset并不一致。假设主载波为载波CC1,载波CC2的TA offset2实际使用值仍为0.25us,与载波CC2在sTAG中使用的TA偏移量相同,载波CC3的TA offset3实际使用值仍为0.05us。
在本申请实施例中,还可以通过其他方式实现不同用户在同一个上行载波上的信号同步,如规定在pTAG和sTAG中,一个UE在不同上行载波上发送信号的部分帧/时隙边界相同。此处之所以是部分帧/时隙边界相同,主要是考虑到不同numerology(载波信息)上的时隙长度不同。如载波CC1的子载波间隔为15kHz,一个时隙长度为1ms,载波CC2的子载波间隔为30kHz,一个时隙长度为0.5ms,则CC1上一个时隙与CC2上两个时隙相对应;CC1上一个时隙与CC2连续两个时隙中的第一个起点相同,与第二个的时隙的终点相同。针对本方案,本申请实施例要解决的问题是对于TAG,如果一个TAG中不同载波对应的TA偏移量不同,如何确定出一个TA偏移量使得所有载波在进行定时提前时,都使用相同的TA偏移量进行定时提前调整。当前pTAG中,该TA偏移量为PCell或者PSCell对应的TA偏移量。因此本发明主要讨论sTAG中实际所有载波使用的TA偏移量的确定方式。可选的,该方式也可同样适用于pTAG。
其中一个方式是,通信设备也根据所述TA基准量和最大TA偏移量,调整所述TAG中各个载波的上行传输定时,所谓最大TA偏移量指的是TAG中各个载波的TA偏移量中的最大值。比如说,在图3中,表1和表2当前存在的问题是:UE1在载波CC1的TA实际调整值1.1us与UE1在载波CC2的TA实际调整值1.1us之间的差值是0;UE2在载波CC1的TA实际调整值0.65us与UE2在载波CC2的TA实际调整值0.8us之间的差值是-0.15us,差值不等,所以UE1和UE2在载波CC2不是上行同步的。为了解决这一问题,UE2可以选择使用sTAG中最大TA偏移量0.2us,调整sTAG中三个载波的上传传输定时,即sTAG中的载波CC1的实际调整值是0.8us,载波CC2的实际调整值是0.8us,载波CC3的实际调整值为0.8us,如表5所示。这样,UE1在载波CC1的TA实际调整值1.1us与UE1在载波CC2的TA实际调整值1.1us之间的差值是0;UE2在载波CC2的TA实际调整值0.8us与UE2在载波CC2的TA实际调整值0.8us之间的差值也是0,所以说,若这时若UE1和UE2在CC1上是上行同步的,则UE1和UE2在载波CC2也是上行同步的。
表5
Figure PCTCN2019074264-appb-000006
Figure PCTCN2019074264-appb-000007
除上述确定所有载波上实际使用的TA偏移量的方法之外,也可选择sTAG中编号最小的即SCellIndex最小的SCell对应的TA偏移量,作为该sTAG中所有载波上实际的使用的TA偏移量。假设小区1的SCellIndex=5,小区2的SCellIndex=3,小区3的SCellIndex=6,则选择小区2的TA偏移量0.2us作为小区1,小区2,小区3的实际使用的TA偏移量,最后调整结果仍如图5所示。
除了预先规定的规则,基站还可以通过为用户配置sTAG中使用的TA偏移量的方式,通过配置指示该TAG中所有载波使用的实际TA偏移量。
在本申请实施例中,通信设备根据载波不同的载波信息,确定出来的载波的TA offset也可能不同。其中,载波信息一般指的是Numerology,Numerology为通信系统所采用的参数。通信系统(例如5G)可以支持多种Numerology。Numerology可以通过以下参数信息中的一个或多个定义:子载波间隔,循环前缀(cyclic prefix,CP),时间单位,带宽等。
示例性的,Numerology可以由子载波间隔和CP来定义。子载波间隔可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz等。例如,不同子载波间隔可以为15KHz的整数倍。可以理解,也可以设计为其他的值。CP信息可以包括CP长度和/或者CP类型。例如,CP可以为正常CP(normal CP,NCP),或者扩展CP(extended CP,ECP)。
其中,时间单位用于表示时域内的时间单元,例如可以为采样点,符号,微时隙,时隙,子帧,或者无线帧等等。时间单位信息可以包括时间单位的类型,长度,或者结构等。带宽(bandwidth)可以为频域上一段连续的资源。带宽有时可称为带宽部分(bandwidth part,BWP),载波带宽部分(carrier bandwidth part)、子带(subband)带宽、窄带(narrowband)带宽、或者其他的名称,本申请对名称并不做限定。例如,一个BWP包含连续的K(K>0)个子载波;或者,一个BWP为N个不重叠的连续的资源块(resource block,RB)所在的频域资源,该RB的子载波间隔可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz或其他值;或者,一个BWP为M个不重叠的连续的资源块组(resource block group,RBG)所在的频域资源,一个RBG包括P个连续的RB,该RB的子载波间隔可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz或其他值,例如为2的整数倍。
因为载波信息可以通过子载波间隔、带宽等参数定义,根据不同参数确定的TA offset也可能不同,以下具体描述几种实现方式。
实现方式一、通信设备根据所述各个载波的子载波间隔,确定所述各个载波的TA偏移量,如子载波间隔为15k的载波、子载波间隔为30k的载波、子载波间隔为60k的载波对应的TA offset相同,子载波间隔为120k的载波和其它子载波间隔大于120k的载波的TA offset相同,一般规定在一个TAG中不能同时存在小于等于60k的载波和子载波间隔大于60k的载波不。也就是说,一个TAG中要么只包括子载波间隔小于等于60k的多个载波,要么只包括子载波间隔大于60k的多个载波。
实现方式二、针对任意一个载波,通信设备判断所述载波所在的频段是否小于设定频 率值;若小于,则所述通信设备确定所述载波的TA偏移量为第一阈值,否则,则为第二阈值,其中,所述第一阈值大于所述第二阈值。例如,以6GHZ为分界点,小于6GHZ的载波的TA偏移量约为13us,大于等于6GHZ载波的TA偏移量约为7us。
图5示例性的示出了本申请提供的另一种上行同步流程,该方法由网络设备执行。
步骤501、网络设备根据通信设备发送的上行信号,确定上行定时提前量和TA偏移量,所述上行定时提前量和所述TA偏移量是针对一个定时提前组TAG中的载波,所述各个载波用于承载所述上行信号;
步骤502、网络设备根据所述上行定时提前量和TA偏移量,确定所述TAG的TA基准量,所述TA基准量为所述上行定时提前量与所述TA偏移量的差值。
步骤503、所述网络设备向所述通信设备发送定时提前命令,所述定时提前命令中包括所述TA基准量。
其中,网络设备所确定的该TAG的TA基准量为所述TAG中的每个载波的上行定时提前量与所述载波的TA偏移量的差值,而且该TA偏移量满足以下条件,所述pTAG中每两个载波的TA偏移量的差值与所述sTAG中所述每两个载波的TA偏移量的差值相同。
也就是说,网络设备接收到同一小区的各个通信设备发送的上行信号,网络设备通过检测到UE发送了前导码(preamble)信号,通过接收到的preamble信号估计出TA基准量,另外,基站划分的TAG时,就把TA offset值相同的载波放在一个组里面,这样就可以避免出现终端上行传输出现上行不同步的问题,例如基站在划分图2中pTAG和sTAG时,就将相同TA基准量和相同TA偏移量的载波CC1和载波CC2划分到一组中,如表6和表7所示。
表6
Figure PCTCN2019074264-appb-000008
表7
Figure PCTCN2019074264-appb-000009
除了基站主动调整TAG分组的方式之外,在本发明实施例中,TA偏移量的其它调整方式见通信设备侧列举的实施方式,在此不再赘述。
针对上述通信设备执行的传输方法流程,本申请提供一种装置,该装置的具体执行内容可参照上述方法实施,图6为本申请提供的一种装置的结构示意图,所述装置包括:接收单元601、处理单元602。
接收单元601,用于接收网络设备发送的定时提前命令,所述定时提前命令包括定时提前TA基准量,所述TA基准量针对定时提前组TAG中的载波;
处理单元602,用于根据所述载波的载波信息,确定所述载波的TA偏移量;并根据所述TA基准量和所述载波的TA偏移量,调整所述载波的上行传输定时。
当所述TAG包括多个载波时,所述TA偏移量满足以下条件:
当所述TAG为第一类TAG时,所述TAG中每两个载波的TA偏移量的差值为第一差值,当所述TAG为第二类TAG时,所述TAG中所述每两个载波的TA偏移量的差值为第二差值,所述第一差值与所述第二差值相同,所述第一类TAG中的至少一个载波对应主小区PCell或者主辅小区PSCell,所述第二类TAG中的所有载波对应辅小区Scell。
在一种实施例中,当所述TAG包括多个载波时,所述处理单元602,用于根据所述TA基准量和最大TA偏移量,调整所述TAG中多个载波的上行传输定时,所述最大TA偏移量为所述多个载波的TA偏移量中的最大值。例如载波A对应的TA偏移量是0.1,载波B对应的TA偏移量是0.2,则最终确定载波A对应TA偏移量为0.2us,载波B对应的TA偏移量是0.2us。
在另一种实施例中,所述处理单元602,用于根据所述载波所在的频段,确定所述载波的TA偏移量;
其中,当所述载波所在的频段小于设定频率值时确定出来的TA偏移量大于当所述载波所在的频段大于等于所述设定频率值时确定出来的TA偏移量。
在其它可能的实现中,所述处理单元602,根据所述载波的子载波间隔,确定所述各个载波的TA偏移量;
其中,当所述载波的子载波间隔小于设定值时确定出来的TA偏移量大于当所述载波的子载波间隔大于等于所述设定值时确定出来的TA偏移量。
其中,一种可能的实现是,所述TAG中的载波对应的子载波间隔小于等于60KHZ,或者所述TAG中的载波对应的子载波间隔大于60KHZ。或者,所述TAG中各个载波的TA偏移量独立设置。
本申请实施中,这些单元可以执行上述第一方面方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
本申请可以根据上述方法示例对通信设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
针对上述网络设备执行的上行同步方法流程,本申请提供了一种装置,该装置的具体执行内容可参照上述方法实施,图7为本申请提供的一种装置的结构示意图,所述装置包括:处理单元701、发送单元702,其中:
处理单元701,用于根据通信设备发送的上行信号,确定上行定时提前量和TA偏移量;并根据所述上行定时提前量确定TA基准量,所述TA基准量针对定时提前组TAG中的载波,所述TA基准量为所述上行定时提前量与所述TA偏移量的差值;
发送单元702,用于向所述通信设备发送定时提前命令,所述定时提前命令包括所述TA基准量。
需要说明的是,当所述TAG包括多个载波时,所述TA偏移量满足以下条件:
当所述TAG为第一类TAG时,所述TAG中每两个载波的TA偏移量的差值为第一差值,当所述TAG为第二类TAG时,所述TAG中所述每两个载波的TA偏移量的差值为第二差值,所述第一差值与所述第二差值相同,所述第一类TAG中的至少一个载波对应主小区PCell或者主辅小区PSCell,所述第二类TAG中的所有载波对应辅小区SCell。
在一种可能的设计中,所述处理单元701具体用于:根据所述上行定时提前量和最大TA偏移量确定TA基准量,所述最大TA偏移量是为所述通信设备服务的所述TAG中的多个载波的TA偏移量中的最大值。
可见TAG中的各个载波都是通过TA基准量和最大TA偏移量来调整上行传输定时,所以第一差值与第二差值都是零,因为可以保证与同小区其它通信设备在其它TAG上的上行传输保持上行同步。
在一种可能的设计中,所述处理单元701具体用于:根据所述载波所在的频段,确定所述载波的TA偏移量;
其中,当所述载波所在的频段小于设定频率值时确定出来的TA偏移量大于当所述载波所在的频段大于等于所述设定频率值时确定出来的TA偏移量。
在另一种可能的设计中,所述处理单元701具体用于:根据所述载波的子载波间隔,确定所述各个载波的TA偏移量;
其中,当所述载波的子载波间隔小于设定值时确定出来的TA偏移量大于当所述载波的子载波间隔大于等于所述设定值时确定出来的TA偏移量。
其中,一种可能的实现是,所述TAG中的载波对应的子载波间隔小于等于60KHZ,或者所述TAG中的载波对应的子载波间隔大于60KHZ。或者,所述TAG中各个载波的TA偏移量独立设置。
应理解,该装置可以用于实现本申请提供的上行同步方法中由网络设备执行的步骤,相关特征可以参照上文,此处不再赘述。
本申请可以根据上述方法示例对网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
本申请中涉及的保存,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、芯片、通信装置、或者终端。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、芯片、通信装置、或者终端中,存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
本申请实施例提供还一种通信装置,所述通信装置包括处理器和存储器。所述存储器 中存储有计算机程序,所述处理器读取并执行所述存储器中存储的计算机程序时,使得所述通信装置实现如图4所示的流程中的通信设备所执行的方法,或者图5所示的流程中的网络设备所执行的方法。图8给出了一种通信装置800的结构示意图,装置800可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述通信装置800可以是芯片,基站,终端或者其他网络设备。
所述通信装置800包括一个或多个处理器801。所述处理器801可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
在一种可能的设计中,如图6、图7中的一个或者多个模块可能由一个或者多个处理器来实现,或者一个或者多个处理器和存储器来实现。
在一种可能的设计中,所述通信装置800包括一个或多个所述处理器801,所述一个或多个处理器801可实现上述上行同步方法,例如该通信装置可以是基站。关于确定上行提前基准量和偏移量的处理可以参见图4和图5相关部分的描述,在此不再赘述。
可选的,在一种设计中,处理器801可以包括指令803(有时也可以称为代码或程序),所述指令可以在所述处理器上被运行,使得所述通信装置800执行上述实施例中描述的方法。在又一种可能的设计中,通信装置800也可以包括电路,所述电路可以实现前述实施例中的上行同步功能。
可选的,在一种设计中,所述通信装置800中可以包括一个或多个存储器802,其上存有指令804,所述指令可在所述处理器上被运行,使得所述通信装置800执行上述方法实施例中描述的方法。
可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选的,上述实施例中所述的“保存”可以是保存存储器802中,也可以是保存在其他的外设的存储器或者存储设备中。
可选的,所述通信装置800还可以包括收发器805以及天线806。所述处理器801可以称为处理单元,对通信装置(终端或者基站)进行控制。所述收发器805可以称为收发单元、收发机、收发电路、或者收发器等,用于通过天线806实现通信装置的收发功能.
上述装置实施例的具体实现方式与方法实施例相对应,其具体实现方式和有益效果和参加方式实施例的相关描述。
本申请实施例还提供一种芯片,所述芯片与存储器相连,所述存储器中存储有计算机程序,所述芯片用于读取并执行所述存储器中存储的计算机程序,以实现如图4所示的流程中的通信设备所执行的方法、或者图5所示的流程中的网络设备执行的方法。
本申请实施例还提供了一种计算机存储介质,储存程序代码,存储的程序代码在被处理器执行时用于实现本申请中如图4所示的流程中的通信设备的方法。
本申请实施例还提供了一种计算机存储介质,储存程序代码。存储的程序代码在被处理器执行时用于实现本申请中如图5所示的流程中的网络设备的方法。
本申请实施例还提供了计算机程序产品。该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现本申请中如图4所示的流程中的通信设备的方法。
本申请实施例还提供了计算机程序产品。该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现本申请中如图5所示的流程中的网络设备的方法。
本申请实施例还提供一种上行同步方法,该上行同步方法适用于引入双连接技术的通信系统。所谓双连接技术可以理解为多个基站同时向终端提供服务。或者,也可以针对在非理想后向回程前提下的载波聚合,例如一个终端可以同时连接到两个通过非理想后向回程相连的基站进行数据通讯。其中,一个典型的场景是一个基站是宏站,另外一个基站是小站、微站或小小站。例如,宏站和小站通过标准的X2接口相连。图9是双连接的控制面架构拓扑图。其中,901为主基站MeNB,MeNB也可以为宏站;902为辅基站SeNB,SeNB也可以为小蜂窝;903为核心网设备例如移动控制实体(Mobility Management Entity,MME)。终端、MeNB和MME之间的信令连接例如可以为一个终端有一个无线资源控制信令(Radio Resource Control,RRC)链路和一个S1信令链路。SeNB和MeNB之间通过X2接口相连或增强的X2口相连。
在图9中的MeNB和SeNB上可以分别配置载波聚合。对于陆地无线接入网(Terrestrial Radio Access Network,E-UTRAN)与新无线(new radio,NR)的双连接模式(简称为EN-DC模式),考虑到网络的演进步骤,目前默认E-UTRAN为主小区群组,NR为辅小区群组。NR也可以称为新一代网络。目前已经支持的EN-DC band(带宽)组合包括下面一个band组合:
LTE:例如可称为band3,其中下行可以为1805MHz-1880MHz,上行可以1710MHz~1785MHz(是一个FDD band频分双工带宽),包括上行(uplink,UL)载波。
NR Band 78:例如可以称为Band 78,其中上下行可以都是3300MHz~3800MHz。
NR:例如可以称为Band 80,其中上行可以为1710MHz~1785MHz,包括增补上行载波(supplementary uplink,SUL)。
可见NR的SUL载波和LTE的UL(上行)载波共享相同的频谱资源。举例而言,一个1.8G LTE小区和一个SUL载波的NR小区组成EN-DC。可选的,当NR的SUL载波和LTE的UL载波是同一个工作频点,即该UE在LTE band3的1.8G载波上可以使用LTE的UL载波工作、又可以使用NR的SUL band 80的1.8G SUL载波工作。此时,LTE的UL载波和NR的SUL载波在1.8G上行频域资源上既可以TDM时分复用、也可以FDM频分复用。图10是TDM时分复用的一个示例图。本发明实施例中,NR的SUL载波和NR的UL载波可以在同一个TAG中,NR的SUL载波的TA偏移量由NR的UL载波的TA偏移量确定。
本发明实施例中,上行资源可以理解为载波(包括非CA场景下的载波和CA场景下的CC)用于上行传输的部分或服务小区(包括CA场景下的服务小区和非CA场景下的服务小区)用于上行传输的部分。其中CA场景下的CC可以为主CC或辅CC,CA场景下的服务小区可以为主小区(primary cell,Pcell)或辅小区(Secondary cell,Scell)。该上行资源也可以称为上行载波。相应的,载波或服务小区用于下行传输的部分可以理解为下行资源或下行载波。例如,在频分双工(frequency division duplex,FDD)系统中,载波上用于上行传输的频率资源可以理解为该上行资源或上行载波;用于下行传输的频率资源可以理解为下行资源或下行载波。再如,在时分双工(time division duplex,TDD)系统中,载 波上用于上行传输的时域资源可以理解为该上行资源或上行载波;用于下行传输的时域资源可以理解为下行资源或下行载波。
需要指出的是,在LTE和NR中,小区是高层的概念,载波是物理层的概念。小区和载波有对应关系,如在LTE中,一个小区可以被配置为包含一对上下行载波,或只包含一个下行载波。在NR中,一个小区可以被配置为包含一对上下行载波,或只包含一个下行载波,或包含一个下行载波,一个上行载波和一个补充上行载波(supplementary uplink,SUL)。因为载波和小区的对应关系,一个载波只能属于一个小区,配置了小区就能找到相应的载波;反之亦然。因此在本发明中并不严格区分小区和载波的概念,二者在不引起混淆的情况下可以混用。
针对上述EN-DC双连接场景,由于LTE的FDD载波对应的N TA-offset1为0,UE在调整LTE UL载波上的定时提前值可以由TA基准量确定,即N TA1=TA1+N TA-offset1;而3.5G NR TDD载波的N TA-offset2为13us,UE在调整SUL上的定时提前值可以由TA基准量和TA offset确定,即N TA2=TA2+N TA-offset2。由于NR SUL和LTE UL是共享LTE UL的时频资源的,因此为了保证时域上的正交性,需要使得LTE UL的定时提前等于NR SUL的定时提前,即TA1+N TA-offset1=TA2+N TA-offset2,这里由于LTE为FDD载波,即N TA-offset1=0,而LTE、NR网络下发的TA调整值TA1、TA2都是大于等于0的。因此,为了保证两者相等,需要至少保证LTE UL载波的TA1是大于等于SUL载波上的TA offset值,即TA1≥N TA-offset2。UE接收到的针对于LTE UL的TA命令中会假设得到的TA1是大于等于SUL载波的TAoffset值。在本发明实施例中,可选的,对于LTE来说,UE判断收到的TA1大于等于N TA-offset2时,UE可以添加和LTE UL同频点的SUL小区作为PSCell,实现上行同步。对与NR来说,UE判断收到的TA2大于等于N TA-offset1-N TA-offset2时,UE添加和LTE UL同频点的SUL小区作为PSCell,实现上行同步。
基于上述原因,本申请实施例提供一种上行同步的方法流程示意图,如图11所示。
步骤1101、第一网络设备向第二网络设备发送请求。
在该步骤中,第一网络设备可以向第二网络设备请求第二TAG中第二上行载波的第二TA基准量和/或第二TA偏移量,从而自第二网络设备获取上述信息。
步骤1102,第一网络设备根据第二TAG中第二上行载波的第二TA基准量和第二TA偏移量,确定所述第一TAG中的第一上行载波的第一TA基准量。
步骤1103,第一网络设备向通信设备发送包括所述第一TA基准量的定时提前命令。
在上述步骤中,第一TAG对应第一通信制式下的第一网络设备,第二TAG则对应第二通信制式下的第二网络设备。第二TA偏移量可以是预先定义的固定值,所以第一网络设备可以不向第二网络设备请求该第二TA偏移量。例如针对EN-DC场景,第一通信制式可以是LTE,第二通信制式则是NR,或者第一通信制式可以是NR,第二通信制式则是LTE。
下文分别对两种场景进行说明。
场景一
当第一通信制式是LTE,第二通信制式是NR时,第一网络设备可以是LTE基站,第二网络设备可以是NR基站,第一上行载波可以是LTE的UL载波,第二上行载波可以是NR的SUL载波。这种场景下,LTE基站从NR基站获取NR的SUL载波的TA基准量和TA偏移量,然后根据NR的SUL载波的TA基准量和TA偏移量,确定LTE的UL载波的 TA基准量。LTE基站可以将确定的TA基准量通过定时提前命令(timing advance command,TAC)下发至通信设备,通信设备根据UL载波的TA基准量和UL的TA偏移量调整所述UL载波的上行传输定时。
比如说,NR的上行定时提前量N TA2=TA2+N TA-offset2,其中TA2指代图11中的第二基准量,N TA-offset2指代图11中的第二偏移量。因LTE的上行定时提前量N TA1=TA1+N TA-offset1,其中TA1指代图11中的第一基准量,N TA-offset1指代图11中的第一偏移量。为了实现上行同步,N TA2需要等于N TA1,故LTE基站向NR基站请求获取NR基站的TA2和N TA-offset2
一种可能的实现方式为,LTE基站确定TA1至少大于等于NR基站的N TA-offset2与自身N TA-offset1之间的差值,例如TA1等于TA2+N TA-offset2-N TA-offset1
另一种可能的实现方式为,当第一上行载波是FDD类型的载波,N TA-offset1一般为0,LTE基站下发的TA1至少要大于等于NR基站的N TA-offset2。需要说明的是NR基站SUL载波的N TA-offset2通常是与SUL载波在同一个服务小区内的NR的UL载波的TA偏移量一致,所以N TA-offset2与SUL载波在同一个服务小区内的NR的UL载波的TA偏移量相同。
再一种可能的实现中,若LTE的UL载波所在的同一个TAG中还有至少一个LTE TDD载波时,该同一个TAG即是第二网络设备的第二TAG,这时LTE的UL载波的N TA-offset1就从0变成与LTE TDD载波的TA偏移量一致,这时TA1至少要大于等于NR基站的N TA-offset2与自身N TA-offset1之间的差值。
场景二
当第一通信制式是NR,第二通信制式是LTE时,第一网络设备则可以是NR基站,第二网络设备则可以是LTE基站,第一上行载波可以是NR的SUL载波,第二上行载波可以是LTE的UL载波。此时,第一上行载波可以与第二上行载波属于同频点的载波。这种场景下,NR基站从LTE基站获取LTE的UL载波的TA基准量和TA偏移量,TA偏移量可以是协议预定义的,然后根据LTE的UL载波的TA基准量和TA偏移量,确定NR的SUL载波的TA基准量。NR基站将确定的TA基准量通过TAC命令下发至通信设备,这样通信设备就可以根据SUL载波的TA基准量和SUL的TA偏移量调整SUL载波的上行传输定时。
比如说,NR的上行定时提前量N TA2=TA2+N TA-offset2,其中TA2指代图11中的第一基准量,N TA-offset2指代图11中的第一偏移量。因LTE的上行定时提前量N TA1=TA1+N TA-offset1,其中TA1指代图11中的第二基准量,N TA-offset1指代图11中的第二偏移量。为了实现上行同步,那么N TA2需要等于N TA1。一种可能的实现方式为,NR基站通过与LTE基站交互,并主动获取LTE基站的TA1和N TA-offset1,确定出TA2大于等于LTE基站的N TA-offset1与自身N TA-offset2之间的差值,例如TA2等于TA1+N TA-offset1-N TA-offset2
一种可能的实现中,因为第一上行载波即NR的SUL载波的N TA-offset2通常是与SUL载波在同一个服务小区内的NR的UL载波的TA偏移量一致,所以N TA-offset2等于与SUL载波在同一个服务小区内的NR的UL载波的TA偏移量。第二上行载波即LTE的UL载波通常是FDD类型的载波,所以N TA-offset1一般为0,故LTE基站下发的TA1大于等于NR基站的N TA-offset2
一种可能的实现中,若LTE的UL载波所在的同一个TAG中还有至少一个LTE TDD载波时,该同一个TAG即是第二网络设备的第二TAG,该TAG可以是sTAG或pTAG, 这时LTE的UL载波的N TA-offset1就从0变成与LTE TDD载波的TA偏移量一致,例如TA2大于等于LTE基站的N TA-offset1与自身N TA-offset2之间的差值。
需要说明的是,图11中的第一上行载波和第二上行载波可以是同频点的载波,亦可以是满足其它频域关系的载波,本申请实施例中并不做具体限定。
另外,本申请实施例从通信设备侧还提供一种上行同步的方法流程示意图,如图12所示。
步骤1201、通信设备接收第一网络设备发送的定时提前命令。
步骤1202、通信设备根据定时提前命令中的第一TA基准量,调整所述第一上行载波的上行传输定时。
本发明实施例中,通信设备工作于双连接模式,所述双连接模式表示所述通信设备能够同时与第一TAG中的所述第一上行载波对应的小区和第二TAG中的第二上行载波对应的小区建立连接。
可选的,通信设备根据定时提前命令中的第一TA基准量,以及第一上行载波的第一TA偏移量,调整所述第一上行载波的上行传输定时。其中第一TA偏移量可以是协议预定义的。
另外,第一TAG对应第一通信制式下的第一网络设备,第二TAG则对应第二通信制式下的第二网络设备。例如针对EN-DC场景,第一通信制式可以是LTE,第二通信制式则是NR,或者第一通信制式可以是NR,第二通信制式则是LTE。
下文分别对两种场景进行说明。
场景一
当第一通信制式是LTE,第二通信制式是NR时,第一网络设备则可以是LTE基站,第二网络设备则可以是NR基站,第一上行载波则指的LTE的UL载波,第二上行载波则指的是NR的SUL载波。这种场景下,通信设备接收来自LTE基站的TAC命令,因为LTE基站是与NR基站交互后确定的LTE的UL载波的TA基准量,一种可能的实现是,该TA基站量满足大于等于SUL载波的TA偏移量与自身UL载波的TA偏移量的差值,这样通信设备收到该LTE的UL载波的TA偏移量之后,判断UL载波的TA基准量满足大于等于SUL载波的TA偏移量的条件,则可以进行上行同步的调整。
一种可能的实现中,当LTE UL载波为FDD载波时,LTE UL载波的TA偏移量为0,假设NR的SUL载波的TA偏移量为13us,则通信设备判断UL载波的TA基准量满足大于等于13us的条件时,则可以进行上行同步的调整。
需要说明的是,图12中的第一上行载波和第二上行载波可以是同频点的载波,亦可以是满足其它频域关系的载波,本申请实施例中并不做具体限定。
场景二
当第一通信制式是NR,第二通信制式是LTE时,第一网络设备则可以是NR基站,第二网络设备则可以是LTE基站,第一上行载波则指的NR的SUL载波,第二上行载波则指的是LTE的UL载波,这种场景下,通信设备接收来自NR基站的TAC命令,因为NR基站是与LTE基站交互后确定的NR的SUL载波的TA基准量,所以通信设备收到该TA基准量后可能实现上行同步。
在一种可能的实现中,该TA基站量满足大于等于UL载波的TA偏移量与自身SUL载波的TA偏移量的差值,这样通信设备收到该NR的SUL载波的TA偏移量之后,判断 SUL载波的TA基准量满足大于等于UL载波的TA偏移量与自身UL载波的TA偏移量的差值的条件后,则可以进行上行同步的调整。
在一种可能的实现中,NR的SUL载波的TA 偏移量是由与NR的SUL载波同服务小区的NR UL的TA偏移量确定,假设NR UL的TA偏移量为13us,若LTE的UL载波所在的同一个TAG中还有至少一个LTE TDD载波时,该同一个TAG即是第二网络设备的第二TAG,该TAG可以是sTAG或pTAG,这时LTE的UL载波的N TA-offset1就从0变成与LTE TDD载波的TA偏移量一致。假设LTE TDD载波的TA偏移量为20us,则NR基站下发至通信设备的TA基准量大于等于20us-13us=7us。
针对上述第一网络设备执行的上述同步流程,本申请实施例提供一种装置,该装置的具体执行内容可参照图11所示方法实施例,图13为本申请提供的一种装置的结构示意图,所述装置包括:发送单元1301、处理单元1302,本申请实施中,这些单元可以执行上述图11中第一网络设备侧的方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
针对上述通信设备执行的上行同步方法流程,本申请提供了一种装置,该装置的具体执行内容可参照上述方法实施,图14为本申请提供的一种装置的结构示意图,所述装置包括:接收单元1401、处理单元1402,本申请实施中,这些单元可以执行上述图12中通信设备侧的方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
本申请实施例提供还一种通信装置,所述通信装置包括处理器和存储器。所述存储器中存储有计算机程序,所述处理器读取并执行所述存储器中存储的计算机程序时,使得所述通信装置实现如图11所示的流程中的第一网络设备所执行的方法,或者图12所示的流程中的通信设备所执行的方法。图15给出了一种通信装置1500的结构示意图,装置1500可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述通信装置1500可以是芯片,基站,终端或者其他网络设备。
所述通信装置1500包括一个或多个处理器1501。所述处理器1501可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
在一种可能的设计中,如图13、图14中的一个或者多个单元可能由一个或者多个处理器来实现,或者一个或者多个处理器和存储器来实现。
在一种可能的设计中,所述通信装置1500包括一个或多个所述处理器1501,所述一个或多个处理器1501可实现上述上行同步方法,例如该通信装置可以是基站。关于确定上行提前基准量和偏移量的处理可以参见图11和图12相关部分的描述,在此不再赘述。
可选的,在一种设计中,处理器1501可以包括指令1503(有时也可以称为代码或程序),所述指令可以在所述处理器上被运行,使得所述通信装置1500执行上述实施例中描述的方法。在又一种可能的设计中,通信装置1500也可以包括电路,所述电路可以实现前述实施例中的上行同步功能。
可选的,在一种设计中,所述通信装置1500中可以包括一个或多个存储器1502,其上存有指令1504,所述指令可在所述处理器上被运行,使得所述通信装置1500执行上述方法实施例中描述的方法。
可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。 所述处理器和存储器可以单独设置,也可以集成在一起。
可选的,上述实施例中所述的“保存”可以是保存存储器1502中,也可以是保存在其他的外设的存储器或者存储设备中。
可选的,所述通信装置1500还可以包括收发器1505以及天线1506。所述处理器1501可以称为处理单元,对通信装置(终端或者基站)进行控制。所述收发器1505可以称为收发单元、收发机、收发电路、或者收发器等,用于通过天线1506实现通信装置的收发功能。
上述装置实施例的具体实现方式与方法实施例相对应,其具体实现方式和有益效果和参加方式实施例的相关描述。
本申请实施例还提供一种芯片,所述芯片与存储器相连,所述存储器中存储有计算机程序,所述芯片用于读取并执行所述存储器中存储的计算机程序,以实现如图11所示的流程中的第一网络设备所执行的方法、或者图12所示的流程中的通信设备执行的方法。
本申请实施例还提供了一种计算机存储介质,储存程序代码,存储的程序代码在被处理器执行时用于实现本申请中如图11所示的流程中的第一网络设备的方法。
本申请实施例还提供了一种计算机存储介质,储存程序代码。存储的程序代码在被处理器执行时用于实现本申请中如图12所示的流程中的通信设备的方法。
本申请实施例还提供了计算机程序产品。该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现本申请中如图11所示的流程中的第一网络设备的方法。
本申请实施例还提供了计算机程序产品。该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现本申请中如图12所示的流程中的通信设备的方法。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
本领域技术人员应明白,本申请的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式,这里将它们都统称为“模块”或“系统”。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机程序存储/分布在合适的介质中,与其它硬件一起提供或作为硬件的一部分,也可以采用其他分布形式,如通过Internet或其它有线或无线电信系统。
本申请是参照本申请实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程 图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (57)

  1. 一种上行同步方法,其特征在于,包括:
    通信设备接收网络设备发送的定时提前命令,所述定时提前命令包括定时提前TA基准量,所述TA基准量针对定时提前组TAG中的载波;
    所述通信设备根据所述载波的载波信息,确定所述载波的TA偏移量;
    所述通信设备根据所述TA基准量和所述载波的TA偏移量,调整所述载波的上行传输定时;
    当所述TAG包括多个载波时,所述TA偏移量满足以下条件:
    当所述TAG为第一类TAG时,所述TAG中每两个载波的TA偏移量的差值为第一差值,当所述TAG为第二类TAG时,所述TAG中所述每两个载波的TA偏移量的差值为第二差值,所述第一差值与所述第二差值相同,所述第一类TAG中的至少一个载波对应主小区PCell或者主辅小区PSCell,所述第二类TAG中的所有载波对应辅小区SCell。
  2. 根据权利要求1所述的方法,其特征在于,所述通信设备根据所述TA基准量和所述载波的TA偏移量,调整所述载波的上行传输定时,包括:
    当所述TAG包括多个载波时,所述通信设备根据所述TA基准量和最大TA偏移量,调整所述TAG中多个载波的上行传输定时,所述最大TA偏移量为所述多个载波的TA偏移量中的最大值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述通信设备根据所述载波的载波信息,确定所述载波的TA偏移量,包括:
    所述通信设备根据所述载波所在的频段,确定所述载波的TA偏移量;
    其中,当所述载波所在的频段小于设定频率值时确定出来的TA偏移量大于当所述载波所在的频段大于等于所述设定频率值时确定出来的TA偏移量。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述通信设备根据所述载波的载波信息,确定所述载波的TA偏移量,包括:
    所述通信设备根据所述载波的子载波间隔,确定所述各个载波的TA偏移量;
    其中,当所述载波的子载波间隔小于设定值时确定出来的TA偏移量大于当所述载波的子载波间隔大于等于所述设定值时确定出来的TA偏移量。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,还包括:
    所述TAG中的载波对应的子载波间隔小于等于60KHZ,或者所述TAG中的载波对应的子载波间隔大于60KHZ。
  6. 根据权利要求1至4任一项所述的方法,其特征在于,所述TAG中各个载波的TA偏移量独立设置。
  7. 一种上行同步方法,其特征在于,包括:
    网络设备根据通信设备发送的上行信号,确定上行定时提前量和TA偏移量;
    所述网络设备根据所述上行定时提前量和所述TA偏移量确定TA基准量,所述TA基准量针对定时提前组TAG中的载波,所述TA基准量为所述上行定时提前量与所述TA偏移量的差值;
    所述网络设备向所述通信设备发送定时提前命令,所述定时提前命令包括所述TA基准量;
    当所述TAG包括多个载波时,所述TA偏移量满足以下条件:
    当所述TAG为第一类TAG时,所述TAG中每两个载波的TA偏移量的差值为第一差值,当所述TAG为第二类TAG时,所述TAG中所述每两个载波的TA偏移量的差值为第二差值,所述第一差值与所述第二差值相同,所述第一类TAG中的至少一个载波对应主小区PCell或者主辅小区PSCell,所述第二类TAG中的所有载波对应辅小区SCell。
  8. 根据权利要求7所述的方法,其特征在于,所述网络设备根据所述上行定时提前量和所述TA偏移量确定TA基准量,包括:
    所述网络设备根据所述上行定时提前量和最大TA偏移量确定TA基准量,所述最大TA偏移量是为所述通信设备服务的所述TAG中的多个载波的TA偏移量中的最大值。
  9. 根据权利要求7或8所述的方法,其特征在于,所述网络设备根据通信设备发送的上行信号,确定TA偏移量,包括:
    所述网络设备根据所述上行信号中载波所在的频段,确定所述载波的TA偏移量;
    其中,当所述载波所在的频段小于设定频率值时确定出来的TA偏移量大于当所述载波所在的频段大于等于所述设定频率值时确定出来的TA偏移量。
  10. 根据权利要求7或8所述的方法,其特征在于,所述网络设备根据通信设备发送的上行信号,确定TA偏移量,包括:
    所述网络设备根据通信设备发送的上行信号中载波的子载波间隔,确定所述各个载波的TA偏移量;
    其中,当所述载波的子载波间隔小于设定值时确定出来的TA偏移量大于当所述载波的子载波间隔大于等于所述设定值时确定出来的TA偏移量。
  11. 根据权利要求7至10任一项所述的方法,其特征在于,还包括:
    所述TAG中的载波对应的子载波间隔小于等于60KHZ,或者所述TAG中的载波对应的子载波间隔大于60KHZ。
  12. 根据权利要求7至10任一项所述的方法,其特征在于,还包括:
    所述TAG中各个载波的TA偏移量独立设置。
  13. 一种装置,其特征在于,包括至少一个处理器和至少一个存储器,所述处理器用于执行如权利要求1-12任一项所述的上行同步方法,所述存储器与所述处理器耦合。
  14. 一种装置,其特征在于,该装置包括:
    接收单元,用于接收网络设备发送的定时提前命令,所述定时提前命令包括定时提前TA基准量,所述TA基准量针对定时提前组TAG中的载波;
    处理单元,用于根据所述载波的载波信息,确定所述载波的TA偏移量;并根据所述TA基准量和所述载波的TA偏移量,调整所述载波的上行传输定时;
    当所述TAG包括多个载波时,所述TA偏移量满足以下条件:
    当所述TAG为第一类TAG时,所述TAG中每两个载波的TA偏移量的差值为第一差值,当所述TAG为第二类TAG时,所述TAG中所述每两个载波的TA偏移量的差值为第二差值,所述第一差值与所述第二差值相同,所述第一类TAG中的至少一个载波对应主小区PCell或者主辅小区PSCell,所述第二类TAG中的所有载波对应辅小区Scell。
  15. 根据权利要求14所述的装置,其特征在于,当所述TAG包括多个载波时,所述处理单元具体用于:
    根据所述TA基准量和最大TA偏移量,调整所述TAG中多个载波的上行传输定时, 所述最大TA偏移量为所述多个载波的TA偏移量中的最大值。
  16. 根据权利要求14或15所述的装置,其特征在于,所述处理单元具体用于:
    根据所述载波所在的频段,确定所述载波的TA偏移量;
    其中,当所述载波所在的频段小于设定频率值时确定出来的TA偏移量大于当所述载波所在的频段大于等于所述设定频率值时确定出来的TA偏移量。
  17. 根据权利要求14至16任一项所述的装置,其特征在于,所述处理单元具体用于:
    根据所述载波的子载波间隔,确定所述各个载波的TA偏移量;
    其中,当所述载波的子载波间隔小于设定值时确定出来的TA偏移量大于当所述载波的子载波间隔大于等于所述设定值时确定出来的TA偏移量。
  18. 根据权利要求14至17任一项所述的装置,其特征在于,
    所述TAG中的载波对应的子载波间隔小于等于60KHZ,或者所述TAG中的载波对应的子载波间隔大于60KHZ。
  19. 根据权利要求14至17任一项所述的装置,其特征在于,
    所述TAG中各个载波的TA偏移量独立设置。
  20. 一种装置,其特征在于,该装置包括:
    处理单元,用于根据通信设备发送的上行信号,确定上行定时提前量和TA偏移量;并根据所述上行定时提前量确定TA基准量,所述TA基准量针对定时提前组TAG中的载波,所述TA基准量为所述上行定时提前量与所述TA偏移量的差值;
    发送单元,向所述通信设备发送定时提前命令,所述定时提前命令包括所述TA基准量;
    当所述TAG包括多个载波时,所述TA偏移量满足以下条件:
    当所述TAG为第一类TAG时,所述TAG中每两个载波的TA偏移量的差值为第一差值,当所述TAG为第二类TAG时,所述TAG中所述每两个载波的TA偏移量的差值为第二差值,所述第一差值与所述第二差值相同,所述第一类TAG中的至少一个载波对应主小区PCell或者主辅小区PSCell,所述第二类TAG中的所有载波对应辅小区SCell。
  21. 根据权利要求20所述的装置,其特征在于,所述处理单元具体用于:
    根据所述上行定时提前量和最大TA偏移量确定TA基准量,所述最大TA偏移量是为所述通信设备服务的所述TAG中的多个载波的TA偏移量中的最大值。
  22. 根据权利要求20所述的装置,其特征在于,所述处理单元具体用于:
    根据所述载波所在的频段,确定所述载波的TA偏移量;
    其中,当所述载波所在的频段小于设定频率值时确定出来的TA偏移量大于当所述载波所在的频段大于等于所述设定频率值时确定出来的TA偏移量。
  23. 根据权利要求20或22所述的装置,其特征在于,所述处理单元具体用于:
    根据所述载波的子载波间隔,确定所述各个载波的TA偏移量;
    其中,当所述载波的子载波间隔小于设定值时确定出来的TA偏移量大于当所述载波的子载波间隔大于等于所述设定值时确定出来的TA偏移量。
  24. 根据权利要求20至23任一项所述的装置,其特征在于,
    所述TAG中的载波对应的子载波间隔小于等于60KHZ,或者所述TAG中的载波对应的子载波间隔大于60KHZ。
  25. 根据权利要求20至23任一项所述的装置,其特征在于,
    所述TAG中各个载波的TA偏移量独立设置。
  26. 一种上行同步方法,其特征在于,包括:
    第一网络设备向第二网络设备请求获取第二TAG中第二上行载波的第二TA基准量和第二TA偏移量,所述第二TAG对应第二通信制式下的第二网络设备;
    所述第一网络设备根据所述第二TA基准量和所述第二TA偏移量,确定第一TAG中的第一上行载波的第一TA基准量,所述第一TAG对应第一通信制式下的第一网络设备;
    所述第一网络设备向通信设备发送包括所述第一TA基准量的定时提前命令。
  27. 根据权利要求26所述的方法,其特征在于,所述第一TA基准量大于等于所述第二TA偏移量与所述第一TA偏移量之间的差值。
  28. 根据权利要求26或27所述的方法,其特征在于,所述第一通信制式为LTE,所述第二通信制式为NR,所述第一上行载波为所述LTE的UL载波,所述第二上行载波为所述NR的SUL载波。
  29. 根据权利要求28所述的方法,其特征在于,还包括:
    所述第一网络设备根据所述NR的UL载波的TA偏移量确定所述第二上行载波的第二TA偏移量,其中,所述NR的UL载波与所述第二上行载波在同一服务小区。
  30. 根据权利要求26或27所述的方法,其特征在于,所述第一通信制式为NR,所述第二通信制式为LTE,所述第一上行载波为NR的SUL载波,所述第二上行载波为LTE的UL载波。
  31. 根据权利要求30所述的方法,其特征在于,还包括:
    所述第一网络设备根据时分双工TDD载波的TA偏移量确定所述第二上行载波的第二TA偏移量,其中,所述TDD载波与所述第二上行载波在同一TAG中。
  32. 一种上行同步方法,其特征在于,包括:
    通信设备接收第一网络设备发送的定时提前命令,所述定时提前命令包括第一定时提前TA基准量,所述第一TA基准量针对第一定时提前组TAG中的第一上行载波,且所述第一TA基准量由第二上行载波的第二TA基准量和第二TA偏移量确定,所述第一TAG对应第一通信制式下的第一网络设备,所述第二TAG对应第二通信制式下的第二网络设备;
    所述通信设备根据所述第一TA基准量,调整所述第一上行载波的上行传输定时。
  33. 根据权利要求32所述的方法,其特征在于,所述第一TA基准量大于等于所述第二TA偏移量与所述第一TA偏移量之间的差值。
  34. 根据权利要求32所述的方法,其特征在于,所述第一通信制式为LTE,所述第二通信制式为NR,所述第一上行载波为所述LTE的UL载波,所述第二上行载波为所述NR的SUL载波。
  35. 根据权利要求34所述的方法,其特征在于,所述第二上行载波的第二TA偏移量是根据所述NR的UL载波的TA偏移量确定的,其中,所述NR的UL载波与所述第二上行载波在同一服务小区。
  36. 根据权利要求32所述的方法,其特征在于,所述第一通信制式为NR,所述第二通信制式为LTE,所述第一上行载波为所述NR的SUL载波,所述第二上行载波为所述LTE的UL载波。
  37. 根据权利要求36所述的方法,其特征在于,所述第二上行载波的第二TA偏移量 是根据时分双工TDD载波的TA偏移量确定的,其中,所述TDD载波与所述第二上行载波在同一TAG中。
  38. 一种装置,其特征在于,包括至少一个处理器和至少一个存储器,所述处理器用于执行如权利要求26至37任一项所述的上行同步方法,所述存储器与所述处理器耦合。
  39. 一种装置,其特征在于,包括:
    发送单元,用于向第二网络设备发送请求,用于请求获取第二TAG中第二上行载波的第二TA基准量和第二TA偏移量,所述第二TAG对应第二通信制式下的第二网络设备;
    处理单元,用于根据所述第二TA基准量和所述第二TA偏移量,确定第一TAG中的第一上行载波的第一TA基准量,所述第一TAG对应第一通信制式下的第一网络设备;
    所述发送单元,还用于向通信设备发送包括所述第一TA基准量的定时提前命令。
  40. 根据权利要求39所述的装置,其特征在于,所述第一TA基准量大于等于所述第二TA偏移量与所述第一TA偏移量之间的差值。
  41. 根据权利要求39或40所述的装置,其特征在于,所述第一通信制式为LTE,所述第二通信制式为NR,所述第一上行载波为所述LTE的UL载波,所述第二上行载波为所述NR的SUL载波。
  42. 根据权利要求39所述的装置,其特征在于,所述处理单元,还用于根据所述NR的UL载波的TA偏移量确定所述第二上行载波的第二TA偏移量,其中,所述NR的UL载波与所述第二上行载波在同一服务小区。
  43. 根据权利要求39或40所述的装置,其特征在于,所述第一通信制式为NR,所述第二通信制式为LTE,所述第一上行载波为所述NR的SUL载波,所述第二上行载波为所述LTE的UL载波。
  44. 根据权利要求43所述的装置,其特征在于,所述处理单元,还用于根据时分双工TDD载波的TA偏移量确定所述第二上行载波的第二TA偏移量,其中,所述TDD载波与所述第二上行载波在同一TAG中。
  45. 一种装置,其特征在于,包括:
    接收单元,用于接收第一网络设备发送的定时提前命令,所述定时提前命令包括第一定时提前TA基准量,所述第一TA基准量针对第一定时提前组TAG中的第一上行载波,且所述第一TA基准量由第二上行载波的第二TA基准量和第二TA偏移量确定,所述第一TAG对应第一通信制式下的第一网络设备,所述第二TAG对应第二通信制式下的第二网络设备;
    处理单元,用于根据所述第一TA基准量,调整所述第一上行载波的上行传输定时。
  46. 根据权利要求45所述的装置,其特征在于,所述第一TA基准量大于等于所述第二TA偏移量与所述第一TA偏移量之间的差值。
  47. 根据权利要求45所述的装置,其特征在于,所述第一通信制式为LTE,所述第二通信制式为NR,所述第一上行载波为所述LTE的UL载波,所述第二上行载波为所述NR的SUL载波。
  48. 根据权利要求47所述的装置,其特征在于,所述第二上行载波的第二TA偏移量是根据NR的UL载波的TA偏移量确定的,其中,所述NR的UL载波与所述第二上行载波在同一服务小区。
  49. 根据权利要求45所述的装置,其特征在于,所述第一通信制式为NR,所述第二 通信制式为LTE,所述第一上行载波为所述NR的SUL载波,所述第二上行载波为所述LTE的UL载波。
  50. 根据权利要求49所述的装置,其特征在于,所述第二上行载波的第二TA偏移量是根据时分双工TDD载波的TA偏移量确定的,其中,所述TDD载波与所述第二上行载波在同一TAG中。
  51. 一种上行同步方法,其特征在于,包括:
    通信设备接收网络设备发送的定时提前命令,所述定时提前命令包括定时提前TA基准量,所述TA基准量针对定时提前组TAG中的载波;
    所述通信设备根据所述载波的载波信息,确定所述载波的TA偏移量;
    所述通信设备根据所述TA基准量和所述载波的TA偏移量,调整所述载波的上行传输定时;
    当所述TAG包含多个载波时,所述载波的TA偏移量为所述多个载波的TA偏移量中的最大值。
  52. 一种上行同步方法,其特征在于,包括:
    网络设备根据通信设备发送的上行信号,确定上行定时提前量和TA偏移量;
    所述网络设备根据所述上行定时提前量和最大TA偏移量确定TA基准量,所述最大TA偏移量是为所述通信设备服务的所述TAG中的多个载波的TA偏移量中的最大值;所述TA基准量针对定时提前组TAG中的载波,所述TA基准量为所述上行定时提前量与所述TA偏移量的差值;
    所述网络设备向所述通信设备发送定时提前命令,所述定时提前命令包括所述TA基准量。
  53. 一种装置,其特征在于,包括至少一个处理器和至少一个存储器,所述处理器用于执行如权利要求51或52所述的上行同步方法,所述存储器与所述处理器耦合。
  54. 一种装置,其特征在于,该装置包括:
    接收单元,用于接收网络设备发送的定时提前命令,所述定时提前命令包括定时提前TA基准量,所述TA基准量针对定时提前组TAG中的载波;
    处理单元,用于根据所述载波的载波信息,确定所述载波的TA偏移量;并根据所述TA基准量和所述载波的TA偏移量,调整所述载波的上行传输定时;
    当所述TAG包含多个载波时,所述载波的TA偏移量为所述多个载波的TA偏移量中的最大值。
  55. 一种装置,其特征在于,该装置包括:
    处理单元,用于根据通信设备发送的上行信号,确定上行定时提前量和TA偏移量;并根据所述上行定时提前量和最大TA偏移量确定TA基准量,所述最大TA偏移量是为所述通信设备服务的所述TAG中的多个载波的TA偏移量中的最大值;所述TA基准量针对定时提前组TAG中的载波,所述TA基准量为所述上行定时提前量与所述TA偏移量的差值;
    发送单元,向所述通信设备发送定时提前命令,所述定时提前命令包括所述TA基准量。
  56. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至12、26至37、以及51至52中任 一项所述的方法。
  57. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求1至12、26至37、以及51至52中任一项所述的方法。
PCT/CN2019/074264 2018-02-13 2019-01-31 一种上行同步方法及装置 WO2019157979A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020564999A JP7071543B2 (ja) 2018-02-13 2019-01-31 アップリンク同期方法及び装置
EP19755224.3A EP3751917A4 (en) 2018-02-13 2019-01-31 METHOD AND DEVICE FOR UPLINK SYNCHRONIZATION
BR112020016303-1A BR112020016303A2 (pt) 2018-02-13 2019-01-31 Método de sincronização de enlace ascendente, e aparelho
US16/991,189 US11558841B2 (en) 2018-02-13 2020-08-12 Uplink synchronization method, and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810151028.3 2018-02-13
CN201810151028 2018-02-13
CN201810302366.2A CN110167133B (zh) 2018-02-13 2018-04-04 一种上行同步方法及装置
CN201810302366.2 2018-04-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/991,189 Continuation US11558841B2 (en) 2018-02-13 2020-08-12 Uplink synchronization method, and apparatus

Publications (1)

Publication Number Publication Date
WO2019157979A1 true WO2019157979A1 (zh) 2019-08-22

Family

ID=67618956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074264 WO2019157979A1 (zh) 2018-02-13 2019-01-31 一种上行同步方法及装置

Country Status (1)

Country Link
WO (1) WO2019157979A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210392602A1 (en) * 2020-06-12 2021-12-16 Qualcomm Incorporated Scheduling time offset for non-terrestrial networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906134A (zh) * 2012-12-27 2014-07-02 电信科学技术研究院 一种传输上行信息的方法、设备及系统
CN104272821A (zh) * 2012-05-10 2015-01-07 瑞典爱立信有限公司 上行链路定时误差减小方法和装置
US20150011215A1 (en) * 2011-12-26 2015-01-08 Sharp Kabushiki Kaisha Terminal apparatus, base-station apparatus, communication system, method for controlling transmission of terminal apparatus, method for controlling transmission of base-station apparatus, integrated circuit installed in terminal apparatus, and integrated circuit installed in base-staiton apparatus
CN105790911A (zh) * 2014-12-26 2016-07-20 北京三星通信技术研究有限公司 一种上下行载波的配置方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150011215A1 (en) * 2011-12-26 2015-01-08 Sharp Kabushiki Kaisha Terminal apparatus, base-station apparatus, communication system, method for controlling transmission of terminal apparatus, method for controlling transmission of base-station apparatus, integrated circuit installed in terminal apparatus, and integrated circuit installed in base-staiton apparatus
CN104272821A (zh) * 2012-05-10 2015-01-07 瑞典爱立信有限公司 上行链路定时误差减小方法和装置
CN103906134A (zh) * 2012-12-27 2014-07-02 电信科学技术研究院 一种传输上行信息的方法、设备及系统
CN105790911A (zh) * 2014-12-26 2016-07-20 北京三星通信技术研究有限公司 一种上下行载波的配置方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3751917A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210392602A1 (en) * 2020-06-12 2021-12-16 Qualcomm Incorporated Scheduling time offset for non-terrestrial networks

Similar Documents

Publication Publication Date Title
CN110167133B (zh) 一种上行同步方法及装置
RU2728525C1 (ru) Система и способы конфигурирования оборудований пользователя с перекрывающимися ресурсами pucch для передачи запросов планирования
US11564184B2 (en) Timing method and apparatus
US11917570B2 (en) Reference timing delivery to user equipment with propagation delay compensation
EP3143807B1 (en) Determination of ue band and synchronization capability in dual connectivity
US11770729B2 (en) Distributed scheduling algorithm for CPRI over ethernet
US20200029291A1 (en) Adaptive Timing Adjustment Delay
US11800475B2 (en) Adaptation of maximum operational timing difference for intra-band multicarrier operation based on number of independent timing management groups
US11729802B2 (en) Techniques for addressing IAB node switching time
US20130272280A1 (en) Inter-System Carrier Aggregation
US20160065302A1 (en) Method and Apparatus for Communication
WO2019157979A1 (zh) 一种上行同步方法及装置
WO2019096273A1 (zh) 一种信息发送、接收的方法及装置
WO2023083125A1 (zh) 通信方法、装置及系统
US12022337B2 (en) Switching of transmission between cell groups
KR20240099364A (ko) 통신 방법, 장치 및 시스템
US20200413305A1 (en) Switching of transmission between cell groups
WO2017049487A1 (zh) 终端设备、网络设备、上行发送方法和上行接收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020564999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019755224

Country of ref document: EP

Effective date: 20200907

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020016303

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020016303

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200811