WO2014101725A1 - 发光装置及舞台灯系统 - Google Patents

发光装置及舞台灯系统 Download PDF

Info

Publication number
WO2014101725A1
WO2014101725A1 PCT/CN2013/090188 CN2013090188W WO2014101725A1 WO 2014101725 A1 WO2014101725 A1 WO 2014101725A1 CN 2013090188 W CN2013090188 W CN 2013090188W WO 2014101725 A1 WO2014101725 A1 WO 2014101725A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color
filter
color light
incident
Prior art date
Application number
PCT/CN2013/090188
Other languages
English (en)
French (fr)
Inventor
李屹
张权
李文超
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2014101725A1 publication Critical patent/WO2014101725A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/40Lighting for industrial, commercial, recreational or military use
    • F21W2131/406Lighting for industrial, commercial, recreational or military use for theatres, stages or film studios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors

Definitions

  • the utility model relates to the technical field of illumination and display, in particular to a light-emitting device and a stage lamp system. Background technique
  • LED stage light is a mature field of LED technology. Its color, low power, long life, safety and no radiation are the preferred stage lighting solutions.
  • LED stage lights generally use a red, green, and blue light source to mix and emit multiple colors of light.
  • 1 is an LED light source in the prior art, which can be used for a stage light source.
  • the light source includes a blue LED array 110, a green LED array 120, a red LED array 130, and a cross-type filter.
  • the sheet 140, the fly-eye lens pair 150, the condensing lens 160, and the emitted light of the three LED array light sources are combined by the cross-type filter 140, and the outgoing light of the cross-type filter 140 is multiplexed by the fly-eye lens 150 and then concentrated by the condensing lens. 160 collection.
  • the cross-type filter 140 has a certain size, which extends the optical path of the three sets of LED array optical channels.
  • the optical channel of the green LED array 120 shown in FIG. 1 has an ideal collimated light in the middle of the dotted line, and the actual divergent light in the solid line, it can be seen that the actual hair is emitted.
  • the cross-sectional area of the beam of the astigmatism passing through the cross-type filter becomes large, and when the pair of the re-eye lens 150 is incident on the condensing lens 160, the spot is further enlarged.
  • the technical problem mainly solved by the present invention is to provide a light-emitting device and a stage lamp system which can reduce the volume without significantly reducing the total energy of the outgoing light.
  • the embodiment of the present invention provides a light emitting device, comprising: a first light source for emitting first color light;
  • a second light source configured to emit a second color light of the first divergence angle, and an optical axis direction of the second color light is perpendicular to an optical axis direction of the first color light;
  • a light combining device configured to combine the first color light and the second color light, and emit the combined light along the optical axis direction of the first color light
  • a first filter located between the second light source and the light combining device, configured to receive the second color light that is normally incident, and transmit the second color light that is incident less than the first incident angle, and reflect the first color light and greater than The second color light incident at the incident angle is greater than or equal to the first divergence angle.
  • the complementary angle of the first divergence angle is greater than or equal to the second incident angle.
  • the illuminating device further comprises:
  • a third light source configured to emit a third color light of the second divergence angle, and an optical axis direction of the third color light is perpendicular to an optical axis direction of the first color light;
  • a second filter located between the third light source and the light combining device, for receiving the third color light that is normally incident, and transmitting the third color light that is smaller than the third incident angle, and reflecting the first color light and greater than the fourth color a third color light incident at an incident angle, the third incident angle being greater than or equal to the second divergence angle;
  • the light combining device is further configured to combine the first color light, the second color light, and the third color light, and emit the combined light in the optical axis direction of the first color light.
  • the first color light is red light
  • the second color light is green light
  • the third color light is blue light.
  • the light combining device is a cross type filter that combines the first color light, the second color light, and the third color light into the same light beam, and emits along the optical axis direction of the first color light.
  • the illuminating device further includes a third reflecting plate and a fourth reflecting plate relatively distributed on both sides of the light combining device, wherein the third reflecting plate and the fourth reflecting plate are parallel to the optical axis of the first light source and the optical axis of the second light source
  • the plane, and the first filter and the second filter form a closed optical channel.
  • the light emitting device further includes a first reflecting plate disposed on a side of the light combining device facing away from the first filter to reflect light incident on the first reflecting plate.
  • the illuminating device comprises a third reflecting plate and a fourth reflecting plate which are oppositely distributed on both sides of the light combining device, the third reflecting plate and the fourth reflecting plate being parallel to the optical axis of the first light source and the optical axis of the second light source The plane in which it reflects the incident light and compresses the beam on the plane perpendicular to the first filter.
  • the illuminating device comprises a fixing bracket, and the illuminating device and the first filter are fixed on the fixing bracket.
  • the first filter and the light combining device are in contact.
  • Embodiments of the present invention provide a stage light system including the above-described light emitting device. Compared with the prior art, the embodiment of the present invention has the following beneficial effects:
  • the second color light is perpendicularly incident on the first filter, and the first divergence angle of the second color light is controlled to be less than or equal to the first incident angle, because the first filter can transmit less than or equal to the first incident.
  • the second color light incident at an angle causes the second color light to transmit all of the first color filter to the light combining device.
  • the optical axis of the first color light emitted by the second light source is perpendicular to the optical axis of the second color light, and the optical axis of the first color light is incident perpendicular to the first color filter, and the second color light is reflected by the light combining device.
  • the rear optical axis direction is the same as the first color light, so that the second color light passes through the light combining device and the optical axis direction is parallel to the first color filter.
  • the reflected second color light has a certain divergence angle, and can be pushed out by a simple geometry, and the incident angle of the second color light reflected by the light combining device incident on the first filter is distributed at the complementary angle of the first divergence angle and Between 90 degrees. Since the first filter reflects the second color light incident at a greater angle than the second incident angle, as long as the portion The angle of incidence of the light is greater than the second angle of incidence and is reflected by the first filter.
  • the complementary angle of the first divergence angle is greater than the second incident angle, and all of the second color light reflected by the light combining device to the first filter is reflected by the first filter. In this way, compression of the second color light is achieved. Similarly, the light diverging into the first filter in the first color light is also reflected by the first filter, so that the light beam of the first color light is also compressed. Therefore, when the light emitted from the light combining device is out of the first filter, the cross-sectional area of the light beam is reduced, and the light does not cause a large loss.
  • FIG. 2 is a plan view showing the structure of an embodiment of the light-emitting device of the present invention
  • FIG. 3 is a schematic view showing the relationship between the light transmittance and the wavelength of the first filter in the embodiment shown in FIG. 2;
  • Figure 4 is a left side view of the light-emitting device of the embodiment shown in Figure 2;
  • FIG. 5 is a schematic structural view of still another embodiment of the light-emitting device of the present invention
  • FIG. 6 is a relationship between light transmittance and wavelength of the first filter in the embodiment shown in FIG. 5;
  • Figure 7 is a graph showing the relationship between the light transmittance and the wavelength of the second filter in the embodiment shown in Figure 5;
  • FIG. 8 is a schematic diagram showing the relationship between the light transmittance and the wavelength of the first filter when the first light source in the light-emitting device shown in FIG. 5 is a green light source;
  • FIG. 9 is a schematic diagram showing the relationship between the light transmittance and the wavelength of the second filter when the first light source in the light-emitting device shown in FIG. 5 is a green light source;
  • FIG. 10 is a schematic structural view of still another embodiment of the light emitting device of the present invention. detailed description
  • Embodiment 1 is analyzed in detail below in conjunction with the accompanying drawings and embodiments.
  • the light-emitting device includes a first light source 210, a second light source 220, a light combining device 230, and a first color filter 240.
  • the first light source 210 may emit the first color light LI.
  • the first light source 210 includes a first LED array 211 and a first collimating lens array 212, and the first LED array 211 is a yellow LED array, and the first color light L1 It is yellow light.
  • the first collimating lens array 212 collimates the outgoing light of the first LED array 211.
  • the second light source 220 emits the second color light L2 of the first divergence angle.
  • the second light source 220 includes the second LED array 221 and the second collimating lens array 222, and the second LED array 221 is a blue LED array, the second The color light L2 is blue light.
  • the first light source 210 and the second light source 220 are placed vertically such that the optical axis direction of the second color light L2 is perpendicular to the optical axis direction of the first color light L1.
  • the light combining device 230 is a filter that reflects blue light and transmits yellow light.
  • the filter 230 is placed at an angle of 45 degrees with the first light source 210 and the second light source 220, respectively, and can transmit the yellow light L2 and rotate the blue light L1 by 90 degrees, thereby combining the two into the same light path, and obtaining a white mixture. Light, and the outgoing direction of the mixed light is consistent with the yellow light L2.
  • the first color filter 240 is disposed between the second light source 220 and the light combining device 230 while designing the optical properties of the first color filter 240.
  • 3 is a schematic diagram showing the relationship between the light transmittance and the wavelength of the first filter 240.
  • the spectrum of the yellow light in FIG. 3 is the spectrum of the light L1 emitted from the first light source 210, and the blue light is The second light source 220 emits the light of the light L2.
  • the incident angle of the incident light is the first incident angle
  • the first incident angle is a small angle
  • the light transmittance curve of the first filter 240 is as indicated by a solid line.
  • a filter 240 can transmit the blue light L2 and reflect the yellow light L1.
  • the incident angle of the incident light becomes the second incident angle ⁇ 2
  • the second incident angle ⁇ 2 is a large angle
  • the light of the first filter 240 is transparent.
  • the over-rate curve will drift toward the short-wave direction.
  • the first filter 240 can simultaneously reflect the yellow light L1 and the blue light L2, so the first filter 240 can transmit the blue light L2 incident less than the first incident angle Pi. And reflecting the yellow light L1 and the blue light L2 incident greater than the second incident angle ⁇ 2 .
  • the first color filter 240 and the second light source 220 are placed in parallel such that the second color light L2 is perpendicularly incident on the first color filter 240, and the second color light L2 is controlled.
  • the first divergence angle is less than or equal to the first incident angle ⁇ ⁇ because the first color filter 240 can transmit the second color light L2 that is incident less than or equal to the first incident angle, and the second color light L2 All of the first filter 240 is transmitted to the light combining device 230.
  • the second color light L2 Since the optical axis of the second color light L2 is incident perpendicular to the first color filter 240, the second color light L2 is reflected by the light combining device 230 to rotate the light propagation direction by 90 degrees, and the optical axis direction of the reflected light and the first color filter are The sheets 240 are parallel. Further, since the divergence angle of the reflected second color light L2 is the same as that before the reflection, the incident angle distribution of the second color light L2 reflected by the light combining device 230 incident on the first color filter 240 can be derived by a simple geometric relationship. Between the complementary angle of the first divergence angle on and 90 degrees.
  • the second incident angle beta] 2 the second color light L2 is incident reflects greater than the first filter 240, so long as part of the second color light L2 incident angle greater than a second incident angle ⁇ 2, the first filter can be 240 reflections.
  • the complementary angle of the first divergence angle is greater than the second incident angle ⁇ 2 , and all of the second color light L2 reflected by the light combining device 230 to the first filter 240 is reflected by the first filter 240 .
  • the compression of the second color light L2 is achieved.
  • the optical axis of the first color light L1 coincides with the optical axis of the reflected second color light L2, and the light diverging to the first color filter 240 in the first color light L1 is also first.
  • the filter 240 is reflected, so that the light beam of the first color light L1 is also compressed as it is. Therefore, when the outgoing light of the light combining means 230 is reduced with respect to the absence of the first filter, the cross-sectional area of the light beam is reduced, and the light does not cause a large loss.
  • the first incident angle and the second incident angle ⁇ 2 of the first filter 240 can be designed according to actual conditions.
  • the first divergence angle of the second color light emitted by the second light source 220 is 10 degrees
  • the first incident angle 0 may be designed to be 10 degrees so that the second color light is completely transmitted
  • the first incident angle 3 is The angle is 80 degrees
  • the second incident angle ⁇ 2 may be set to be 70 degrees so that the second color light incident at a large angle is totally reflected by the first filter.
  • the incident angle of incident light increases from 10 degrees to 70 degrees, the curve of the transmittance of the filter will drift more than 100 nm, which is larger than the range of the blue light in Fig. 3, so the filter with optical properties can meet the requirements. Designed.
  • the placement orientation of the first filter 240 also affects its compression of the first color light L1 and the second color light L2.
  • the first filter 240 and the light combining device 230 are Pick up.
  • the coated surface of the first filter 240 Preferably, the first color light L1 is not incident on the base of the first filter 240 to cause Fresnel loss, nor is it due to the presence of the base of the first filter 240. The thickness produces a beam spread within the substrate.
  • the first color filter 240 can only compress the first color light L1 to the side of the first color filter 240.
  • the light combining device 230 is opposite to the first color filter 240.
  • a first reflecting plate 250 is disposed on one side to reflect light incident on the first reflecting plate 250, thereby compressing the light beam of the first color light L1.
  • 4 is a left side view of the light emitting device in the embodiment shown in FIG. 2.
  • the light emitting device may further be provided with a third reflecting plate 260 and a fourth reflecting plate oppositely on the upper and lower sides of the light combining device 250. 270 (not shown in Figure 2).
  • the optical axis of the first light source and the optical axis of the second light source intersect at a point to form a plane, and the third reflecting plate 260 and the fourth reflecting plate 270 are parallel to the optical axis of the first light source and the plane of the optical axis of the second light source.
  • the incident light may be reflected on the plane perpendicular to the first filter 240 to compress the light beam.
  • the third reflecting plate 260 and the fourth reflecting plate 270 on the upper and lower sides of the light combining device 230 and the first filter 240 and the first reflecting plate 250 respectively located on the left and right sides are not provided with the second reflecting plate.
  • the arrangement of the third reflector and the fourth reflector is also advantageous for compressing the beam.
  • the light combining device 230 can be fixed by a fixing bracket.
  • the first filter 240 and the light combining device 230 are fixed on the same fixing bracket, which facilitates the fixing of the relative positions of the two.
  • first light source 210 and the second light source 220 in this embodiment can also emit other color lights, and only the optical properties of the light combining device 230 and the first filter 240 need to be changed at this time.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 5 is a schematic structural view of still another embodiment of the light emitting device of the present invention.
  • the light emitting device includes a first light source 310, a second light source 320, a light combining device 340, and a first color filter 350.
  • the first reflecting plate 370 is not limited to two, and the light-emitting device may further include a larger number of light sources.
  • FIG. 5 is a schematic structural view of still another embodiment of the light emitting device of the present invention. As shown in FIG. 5, the light emitting device includes a first light source 310, a second light source 320, a light combining device 340, and a first color filter 350.
  • the first reflecting plate 370 is not limited to two, and the light-emitting device may further include a larger number of light sources.
  • FIG. 5 is a schematic structural view of still another embodiment of the light emitting device of the present invention.
  • the light emitting device includes a first light source 310, a second light source 320, a
  • the light-emitting device in this embodiment is different from the light-emitting device shown in FIG. 2 in that:
  • the light emitting device further includes a third light source 330, the third light source 330 emitting a second divergence angle ⁇ 2 of the third color light L3, and the third color light L3 optical axis direction perpendicular to the first color light L1 The direction of the optical axis.
  • the first light source 310 is a red LED array light source
  • the second light source 320 is a green LED array light source
  • the third light source 330 is a blue LED array light source
  • the first color light L1 is red light
  • the second color light L2 is Green light
  • the third color light L3 is blue light.
  • the light combining device 340 in this embodiment is two filters arranged in parallel, and one of the filters is used to merge the first color light L1 and the second color light L2 into the same optical path, and the other filter The combined light of the first color light L1 and the second color light L2 is combined with the third color light L3 to be emitted into the same optical path.
  • the first light source 320 and the second light source 330 are located on the same side of the light combining device 340, so that the light emitting device has a longer length, but the size is reduced in the width direction.
  • the light of the red light in the figure is the light emitted by the first light source 310.
  • the light language, the light of the green light is the spectrum of the light emitted by the second light source 320, and the light of the blue light is the spectrum of the light emitted by the third light source 330.
  • the incident angle of the incident light is the first incident angle
  • the light transmittance curve of the first filter 350 is as shown by the solid line, and can transmit green light and blue light to reflect red light, and the incident angle of the incident light is second.
  • the second incident angle ⁇ 2 is much larger than the first incident angle ⁇ ⁇
  • the light transmittance curve of the first filter 350 is as shown by a broken line, and can reflect green light and red light to transmit blue light, so A filter 350 can transmit green light incident less than the first incident angle, reflect red light, and green light incident greater than the second incident angle ⁇ 2 . Similar to the first filter 240 shown in FIG. 2, the first filter 350 can function to compress the light beams of the second color light L2 and the first color light L1.
  • the light emitting device is further provided with a second filter 360, which is located between the light combining device 340 and the third light source 330.
  • FIG. 7 is a graph showing the relationship between the light transmittance and the wavelength of the second filter 360 in the embodiment shown in FIG. 5. As shown in FIG. 7, the light of the red light in the figure is the light emitted by the first light source 310.
  • the vocabulary, the spectrum of the green light is the spectrum of the light emitted by the second light source 320, and the optical language of the blue light is the utterance of the light emitted by the third light source 330.
  • the transmittance curve can transmit blue light and reflect red light and green light.
  • the incident angle of incident light is the fourth incident angle ⁇ 4
  • the third incident angle ⁇ 3 is much larger than the fourth incident angle ⁇ 4 .
  • the light transmittance curve of the second filter 360 is as shown by a broken line, and can reflect green light, red light, and blue light at the same time. Therefore, the second filter 360 can transmit blue light incident less than the first incident angle, and reflect red light. Green light and blue light incident above the second incident angle ⁇ 2 .
  • the third color light L3 is disposed to be perpendicularly incident to the second filter 360, and controls the second divergence angle ⁇ 2 of the third color light L3 to be less than or equal to the third incident angle ⁇ 3 . Since the second filter 360 can transmit the second color light L2 incident at least equal to the third incident angle ⁇ 3 , the third color light L3 is entirely transmitted through the second filter 360 to the light combining device.
  • the second filter 360 may compress the first color light L1 and the reflected third color light L3, and as shown in FIG. 7, the second color light L2 incident on the second filter may also be The second filter 360 reflects, and the second filter 360 also compresses the second color light L2.
  • the light-emitting device is further provided with a second reflection plate 380, which is distributed opposite to the second filter plate 360 on both sides of the light combining device 340, and can be reflected Light incident on the second reflecting plate 380 to compress the light beam.
  • the illuminating device in this embodiment can also provide a reflecting plate on the upper and lower sides of the illuminating device 340 to reduce the light divergence of the upper and lower sides, which will not be described herein.
  • the first source emits long wavelength light relative to the other sources.
  • the first light source of the light emitting device is a red light source
  • the second light source and the third light source are a blue light source and a green light source, which is the first light source compared with the conventional light emitting device.
  • the conventional light-emitting device uses the green light source as the first light source because the spectral range of the green light is between the red light and the blue light, and the filter of the light combining device only needs to be designed as a high-pass or low-pass filter. Yes, it is simpler to design or produce.
  • the red light is used as the first light source, and the filter in the light combining device is designed as a band pass filter. Although the design difficulty is increased, the first filter or the first filter is improved. The ability of the second filter to compress the incident beam.
  • the first light source is taken as a green light source as an example for detailed description.
  • the first light source 310 of the light emitting device in FIG. 5 is a green light source
  • the second light source 320 is The blue light source
  • the third light source 330 is a red light source.
  • the relationship between the light transmittance and the wavelength of the first filter 350 is as shown in FIG. 8.
  • the first filter 350 transmits green light and reflects blue light and red light; when the incident light is incident at a large angle of the second incident angle 0 2 , the transmittance curve of the first filter 350 drifts to the short-wave direction and transmits blue light. Reflects green and red light.
  • the relationship between the light transmittance and the wavelength of the second filter 360 is as shown in FIG. 9.
  • the second filter 360 transmits red light and reflects blue light. And the green light; when the incident light is incident at a large angle of the fourth incident angle ⁇ 4 , the transmittance curve of the second filter 360 drifts toward the short wave direction, and the band pass region is drifted from the red light spectral region to the green light.
  • the second filter 360 can reflect blue, green, and red light in the region between the spectrum and the red spectrum.
  • the width of the band pass region is at least close to the spectral range of the red light spectrum, and the peak distance between the green light spectrum and the red light spectrum is relatively close, so the incident light is at the second incident angle.
  • FIG. 10 is a schematic structural view of still another embodiment of a light emitting device according to the present invention.
  • the light emitting device includes a first light source 410, a second light source 420, a third light source 430, a light combining device 440, and a first filter.
  • the illuminating device in this embodiment is different from the illuminating device shown in FIG. 5 in that: the light combining device 440 in this embodiment is a cross type filter, and thus the second light source 420 and the third light source 430 are distributed in the combined light.
  • the opposite sides of the device 440 are more advantageous for the compact structure of the light-emitting device, and there is no need to provide a reflector to compress the light beam.
  • a third reflecting plate and a fourth reflecting plate may be disposed here, and the third reflecting plate and the fourth reflecting plate are oppositely distributed on both sides of the light combining device and parallel to the first light source.
  • the plane of the optical axis and the optical axis of the second source, and the first filter 450 and the second filter 460 form a closed optical path to better compress the beam.
  • Embodiments of the present invention also provide a stage light system including a light emitting device, which may have the structure and function in the above embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

一种发光装置及舞台灯系统,包括第一光源(210),用于出射第一颜色光(L1);第二光源(220),用于出射第一发散角(α1)的第二颜色光(L2),且该第二颜色光(L2)的光轴方向垂直于第一颜色光(L1)的光轴方向;合光装置(230),用于将第一颜色光(L1)、第二颜色光(L2)进行合光,并将合光后的光沿第一颜色光(L1)的光轴方向出射;第一滤光片(240),位于第二光源(220)与合光装置(230)之间,用于接收垂直入射的第二颜色光(L2),并透射小于第一入射角(β1)入射的第二颜色光(L2),反射第一颜色光(L1)和大于第二入射角入射的第二颜色光(L2),第一入射角(β1)大于或者等于第一发散角(α1)。该发光装置和舞台灯系统可以减小体积且不会明显降低出射光的总能量。

Description

发光装置及舞台灯系统
技术领域
本实用新型涉及照明及显示技术领域, 特别是涉及一种发光装置及 舞台灯系统。 背景技术
随着近几年困扰全球的能源紧张, 全球气候变暖等问题逐步加剧, 半导体 LED光源以其节能, 环保, 光亮及色温可控等优点, 已在各行各 业上特别是在照明、 投影显示领域有着广泛应用, 大有取代传统光源的 趋势。 LED舞台灯是一种 LED技术应用比较成熟的领域, 其色彩丰富、 低功率、 高寿命, 安全无辐射, 是一种优选的舞台灯方案。
LED舞台灯一般是利用红绿蓝三色的光源来混合发出多种颜色光。 图 1为现有技术中一种 LED光源, 该 LED光源可用于舞台灯光源, 如 图 1所示, 光源包括蓝光 LED阵列 110,绿光 LED阵列 120、红光 LED 阵列 130,十字型滤光片 140、复眼透镜对 150,聚光镜头 160,三个 LED 阵列光源的出射光通过十字型滤光片 140来合光, 十字型滤光片 140的 出射光经过复眼透镜 150匀光后被聚光镜头 160收集。
但是, 实际上, 包括 LED在内的绝大部分光源的出射光都是具有一 定发散角度的, 即使经过准直透镜阵列的调整, 出射光也不可能完全是 准直的。 而十字型滤光片 140有一定尺寸,延长了三组 LED阵列光通道 的光程。例如图 1中所示的绿光 LED阵列 120的光通道, 中间的点划线 表示的理想的准直光的情况, 而实线表示的实际的发散光的情况, 可以 看出, 实际的发散光经过十字型滤光片的光束截面积变大了, 而且当经 过复眼透镜对 150入射至聚光镜头 160时,光斑进一步扩大了。红光 LED 阵列 110和蓝光 LED阵列 130的出射光也是如此。因此为了收集从 LED 发出的全部光线,需要一个比较大的聚光镜头 160来聚光,聚光镜头 160 的尺寸要远远大于 LED的发光尺寸。 特别在大功率 LED系统中, 为了 获得比较高的光源光通量输出, 需要很多的 LED, 再加上十字型滤光片 140 的光学扩展量的损失, 这样会造成后端的聚光镜头会非常大, 一方 面造成聚光镜头的成本变的很高, 另一方面灯具的尺寸也会非常大, 限 制了光源的使用性。 实用新型内容
本实用新型主要解决的技术问题是提供一种可以减小体积且不会 明显降低出射光总能量的发光装置及舞台灯系统。
本实用新型实施例提供了一种发光装置, 其特征在于, 包括: 第一光源, 用于出射第一颜色光;
第二光源, 用于出射第一发散角的第二颜色光, 且该第二颜色光的 光轴方向垂直于第一颜色光的光轴方向;
合光装置, 用于将第一颜色光、 第二颜色光进行合光, 并将合光后 的光沿第一颜色光的光轴方向出射;
第一滤光片, 位于第二光源与合光装置之间, 用于接收垂直入射的 第二颜色光, 并透射小于第一入射角入射的第二颜色光, 反射第一颜色 光和大于第二入射角入射的第二颜色光, 第一入射角大于或者等于第一 发散角。
优选地, 第一发散角的余角大于等于第二入射角。
优选地, 发光装置还包括:
第三光源, 用于出射第二发散角的第三颜色光, 且该第三颜色光的 光轴方向垂直于第一颜色光的光轴方向;
第二滤光片, 位于第三光源与合光装置之间, 用于接收垂直入射的 第三颜色光, 并透射小于第三入射角入射第三颜色光, 反射第一颜色光 和大于第四入射角入射的第三颜色光, 第三入射角大于等于第二发散 角;
合光装置还用于将第一颜色光、第二颜色光、第三颜色光进行合光, 并将合光后的光沿第一颜色光的光轴方向出射。 优选地, 第一颜色光为红光, 第二颜色光为绿光, 第三颜色光为蓝 光。
优选地,合光装置为十字型滤光片,该十字型滤光片将第一颜色光、 第二颜色光和第三颜色光合并成同一光束, 并沿第一颜色光的光轴方向 出射, 发光装置还包括相对分布在合光装置两侧的第三反射板和第四反 射板, 该第三反射板和第四反射板平行于第一光源的光轴和第二光源的 光轴所在的平面, 且与第一滤光片和第二滤光片构成一个封闭的光通 道。
优选地, 发光装置还包括第一反射板, 该第一反射板设置在合光装 置的背向第一滤光片的一侧, 以反射入射到该第一反射板的光。
优选地, 发光装置包括相对分布在合光装置两侧的第三反射板和第 四反射板, 该第三反射板和第四反射板平行于第一光源的光轴和第二光 源的光轴所在的平面, 以在垂直第一滤光片的平面上反射入射光并压缩 光束。
优选地, 发光装置包括一固定支架, 合光装置与第一滤光片固定在 该固定支架上。
优选地, 第一滤光片和合光装置相接。
本实用新型实施例提供了一种舞台灯系统, 包括上述发光装置。 与现有技术相比, 本实用新型实施例具有如下有益效果:
本实用新型实施例中, 第二颜色光垂直入射第一滤光片, 且控制第 二颜色光的第一发散角小于等于第一入射角, 由于第一滤光片可以透射 小于等于第一入射角入射的第二颜色光, 使得第二颜色光全部透射第一 滤光片至合光装置。 由于第二光源出射的第一颜色光的光轴垂直于第二 颜色光的光轴, 又由于第一颜色光光轴垂直于第一滤光片入射, 且第二 颜色光经合光装置反射后的光轴方向与第一颜色光相同, 因此第二颜色 光经合光装置后光轴方向和第一滤光片平行。 反射后的第二颜色光存在 一定发散角, 通过简单的几何, 可以推出, 被合光装置反射的第二颜色 光入射于第一滤光片的入射角度分布在第一发散角的余角和 90度之间。 由于第一滤光片反射大于第二入射角入射的第二颜色光, 因此只要部分 光的入射角大于第二入射角, 就能被第一滤光片反射。 优选的, 第一发 散角的余角大于第二入射角, 此时所有经合光装置反射到第一滤光片的 第二颜色光会被第一滤光片反射。 这样, 就实现了第二颜色光的压缩。 同理, 第一颜色光中发散到第一滤光片的光同样会被第一滤光片反射, 从而第一颜色光的光束也被压缩了。 因此, 合光装置的出射光相对于没 有第一滤光片时, 光束截面积减小了, 并且光没有产生较大损失。 附图说明
图 1为现有技术中一种 LED光源;
图 2为本实用新型发光装置的一个实施例的结构的俯视图; 图 3为图 2所示实施例中第一滤光片的光透过率和波长的关系示意 图;
图 4为图 2所示实施例中发光装置的左视图;
图 5为本实用新型的发光装置的又一个实施例的结构示意图; 图 6为图 5所示的实施例中第一滤光片的光透过率和波长的关系曲 线;
图 7为图 5所示的实施例中第二滤光片的光透过率和波长的关系曲 线;
图 8为图 5所示的发光装置中的第一光源为绿光光源时的第一滤光 片的光透过率和波长的关系示意图;
图 9为图 5所示的发光装置中的第一光源为绿光光源时的第二滤光 片的光透过率和波长的关系示意图;
图 10为本实用新型的发光装置的又一个实施例的结构示意图。 具体实施方式
下面结合附图及实施方式来对本实用新型的实施例进行详细分析。 实施例一:
图 2为本实用新型发光装置的一个实施例的结构的俯视图, 如图 2 所示, 发光装置包括第一光源 210、 第二光源 220、 合光装置 230、 第一 滤光片 240。 第一光源 210可以出射第一颜色光 LI , 具体地, 第一光源 210包括 第一 LED阵列 211和第一准直透镜阵列 212, 第一 LED阵列 211为黄 光 LED阵列,第一颜色光 L1为黄光。为了减少光源出射光的发散程度, 第一准直透镜阵列 212对第一 LED阵列 211的出射光进行准直。
第二光源 220出射第一发散角 的第二颜色光 L2, 类似地, 第二 光源 220包括第二 LED阵列 221和第二准直透镜阵列 222, 第二 LED 阵列 221为蓝光 LED阵列, 第二颜色光 L2为蓝光。 第一光源 210和第 二光源 220垂直放置, 以使得第二颜色光 L2的光轴方向垂直于第一颜 色光 L1的光轴方向。
合光装置 230为滤光片, 该滤光片 230可以反射蓝光, 透射黄光。 该滤光片 230分别与第一光源 210、 第二光源 220成 45度角放置, 可以 透射黄光 L2且将蓝光 L1旋转 90度,从而将二者合并成同一光路出射, 并可以得到白色混合光, 并且混合光的出射方向与黄光 L2—致。
为了实现对第二颜色光 L2的压缩作用, 第一滤光片 240被设置于 第二光源 220与合光装置 230之间, 同时对第一滤光片 240的光学性质 进行设计。 图 3为第一滤光片 240的光透过率和波长的关系示意图, 如 图 3所示, 图 3中的黄光的光谱为第一光源 210出射光 L1的光谱, 蓝 光的光语为第二光源 220出射光 L2的光语, 当入射光的入射角度为第 一入射角 时, 第一入射角 为小角度, 第一滤光片 240的光透过率 曲线如实线所示, 第一滤光片 240可以透射蓝光 L2而反射黄光 L1 , 当 入射光的入射角度变为第二入射角 β2时, 第二入射角 β2为大角度, 第 一滤光片 240的光透过率曲线会向短波方向漂移, 其如虚线所示, 第一 滤光片 240可以同时反射黄光 L1和蓝光 L2, 因此第一滤光片 240可以 透射小于第一入射角 Pi入射的蓝光 L2,反射黄光 L1和大于第二入射角 β2入射的蓝光 L2。
如图 2所示, 在本实施例中, 第一滤光片 240和第二光源 220平行 放置, 以使得第二颜色光 L2垂直入射第一滤光片 240, 且控制第二颜色 光 L2的第一发散角 小于等于第一入射角 βΐ 由于第一滤光片 240可 以透射小于等于第一入射角 入射的第二颜色光 L2,第二颜色光 L2会 全部透射第一滤光片 240至合光装置 230。
由于第二颜色光 L2光轴垂直于第一滤光片 240入射, 所以第二颜 色光 L2经合光装置 230反射使光传播方向旋转 90度后,反射光的光轴 方向与第一滤光片 240平行。 又由于反射后的第二颜色光 L2的发散角 与反射前相同, 通过简单的几何关系可以推出, 被合光装置 230反射的 第二颜色光 L2入射于第一滤光片 240的入射角度分布在第一发散角 on 的余角和 90度之间。 由于第一滤光片 240反射大于第二入射角 β2入射 的第二颜色光 L2 , 因此只要部分第二颜色光 L2的入射角大于第二入射 角 β2, 就能被第一滤光片 240反射。 优选的, 第一发散角 的余角大于 第二入射角 β2, 此时所有经合光装置 230反射到第一滤光片 240的第二 颜色光 L2会被第一滤光片 240反射。 这样, 就实现了第二颜色光 L2的 压缩。
同时, 如图 2所示, 第一颜色光 L1光轴与反射后的第二颜色光 L2 光轴重合, 由于第一颜色光 L1 中发散到第一滤光片 240的光同样会被 第一滤光片 240反射, 因此第一颜色光 L1的光束也被同样地被压缩了。 因此, 合光装置 230的出射光相对于没有第一滤光片时, 光束截面积减 小了, 并且光没有产生较大损失。
这里需要说明的是,第一滤光片 240的第一入射角 和第二入射角 β2可以根据实际情况进行设计。 例如, 当第二光源 220出射的第二颜色 光的第一发散角为 10度,此时可以设计第一入射角度 0为 10度以使得 第二颜色光全部透射, 第一入射角 3 的余角为 80度, 可以设置第二入 射角 β2为 70度以使得大角度入射的第二颜色光会被第一滤光片全部反 射。 当入射光线的入射角从 10度增加到 70度时, 滤光片的透过率的曲 线会漂移 lOOnm以上, 大于图 3中的蓝光光语范围, 因此光学性质符合 要求的滤光片是可以被设计出来。
实际上, 第一滤光片 240 的放置方位也会影响其对第一颜色光 L1 和第二颜色光 L2的压缩作用。 当第一滤光片 240和合光装置 230距离 越近, 二者之间的间隙越小,从间隙损失光的可能性越小, 因此优选地, 第一滤光片 240与合光装置 230相接。 同时, 第一滤光片 240的镀膜面 优选地面向合光装置 230,此时第一颜色光 L1既不会入射到第一滤光片 240的基底内而造成菲涅尔损失, 也不会由于第一滤光片 240的基底存 在一定厚度而在基底内产生光束扩散。
显然, 本实施例中第一滤光片 240只能压缩第一颜色光 L1靠近第 一滤光片 240—侧, 为了进一步压缩光束, 在合光装置 230的与第一滤 光片 240相对的一侧设置有第一反射板 250, 以反射入射到该第一反射 板 250的光, 进而压缩第一颜色光 L1的光束。 图 4为图 2所示实施例 中发光装置的左视图, 如图 4所示, 发光装置还可以进一步地在合光装 置 250的上下两侧相对地设置第三反射板 260和第四反射板 270 (在图 2中未画出)。 第一光源的光轴和第二光源的光轴相交于一点, 构成一个 平面, 第三反射板 260和第四反射板 270平行于第一光源的光轴和第二 光源的光轴所在的平面, 可以在垂直第一滤光片 240的该平面上反射入 射光, 以压缩光束。 这样合光装置 230上下两侧的第三反射板 260、 第 四反射板 270与分别位于左右两侧的第一滤光片 240和第一反射板 250 在没有设置第二反射板的情况下, 第三反射板和第四反射板的设置也是 有利于压缩光束的。
另外, 合光装置 230可以利用一个固定支架进行固定, 优选地, 第 一滤光片 240和合光装置 230固定在同一个固定支架上, 有利于二者的 相对位置的固定。
值得指出的是, 本实施例中的第一光源 210、 第二光源 220还可以 出射其它颜色光, 此时只需要对应改变合光装置 230和第一滤光片 240 的光学性质即可。
实施例二:
本实用新型中发光装置的光源数量并不仅限于两个, 发光装置还可 以包括更多数量的光源。 例如, 图 5为本实用新型的发光装置的又一个 实施例的结构示意图, 如图 5所示, 发光装置包括第一光源 310、 第二 光源 320、 合光装置 340、 第一滤光片 350、 第一反射板 370。
本实施例中的发光装置与图 2的所示的发光装置的不同点在于: 本实施例中, 发光装置还包括第三光源 330, 第三光源 330出射第 二发散角 α2的第三颜色光 L3 ,且该第三颜色光 L3的光轴方向垂直于第 一颜色光 L1的光轴方向。具体地,第一光源 310为红光 LED阵列光源, 第二光源 320为绿光 LED阵列光源, 第三光源 330为蓝光 LED阵列光 源, 第一颜色光 L1为红光, 第二颜色光 L2为绿光, 第三颜色光 L3为 蓝光。
本实施例中的合光装置 340为平行设置的两个滤光片, 其中的一个 滤光片用于将第一颜色光 L1和第二颜色光 L2合并成同一光路出射,另 一个滤光片用于将第一颜色光 L1和第二颜色光 L2的合光与第三颜色光 L3合并成同一光路出射。 第一光源 320和第二光源 330位于合光装置 340 的同一侧, 这样发光装置虽然长度较长, 但是在宽度方向上尺寸减 小了。
图 6为图 5所示的实施例中第一滤光片 350的光透过率和波长的关 系曲线,如图 6所示, 图中的红光的光语为第一光源 310出射光的光语, 绿光的光语为第二光源 320出射光的光谱, 蓝光的光语为第三光源 330 出射光的光谱。 当入射光的入射角度为第一入射角 时, 第一滤光片 350 的光透过率曲线如实线所示, 可以透射绿光和蓝光而反射红光, 当 入射光的入射角度为第二入射角 β2时, 第二入射角 β2远大于第一入射 角 βΐ 第一滤光片 350的光透过率曲线如虚线所示, 可以反射绿光和红 光而透射蓝光, 因此第一滤光片 350可以透射小于第一入射角 入射的 绿光, 反射红光和大于第二入射角 β2入射的绿光。 与图 2所示的第一滤 光片 240类似, 第一滤光片 350可以起到压缩第二颜色光 L2和第一颜 色光 L1光束的作用。
为了减少第三光源 330的光束扩散, 发光装置还设置了第二滤光片 360, 该第二滤光片 360位于合光装置 340和第三光源 330之间。 图 7 为图 5所示的实施例中第二滤光片 360的光透过率和波长的关系曲线, 如图 7所示, 图中的红光的光语为第一光源 310出射光的光语, 绿光的 光谱为第二光源 320出射光的光谱, 蓝光的光语为第三光源 330出射光 的光语。 当入射光的入射角度为第三入射角 β3时, 第二滤光片 360的光 透过率曲线如实线所示, 可以透射蓝光而反射红光和绿光, 当入射光的 入射角度为第四入射角 β4时, 第三入射角 β3远大于第四入射角 β4, 第 二滤光片 360的光透过率曲线如虚线所示, 可以同时反射绿光、 红光和 蓝光, 因此第二滤光片 360可以透射小于第一入射角 入射的蓝光, 反 射红光、 绿光和大于第二入射角 β2入射的蓝光。
与第一滤光片 350的作用方式类似, 第三颜色光 L3被设置垂直入 射第二滤光片 360, 且控制第三颜色光 L3的第二发散角 α2小于等于第 三入射角 β3,由于第二滤光片 360可以透射小于等于第三入射角 β3入射 的第二颜色光 L2, 使得第三颜色光 L3全部透射第二滤光片 360至合光 装置。 第二滤光片 360可以对第一颜色光 L1和反射后的第三颜色光 L3 进行压缩, 而且如图 7所示, 入射到第二滤光片的 360第二颜色光 L2 同样会被第二滤光片 360反射, 第二滤光片 360对第二颜色光 L2也会 有压缩作用。
同样为了进一步对第三颜色光 L3压缩光束, 发光装置还设置了第 二反射板 380, 该第二反射板 380与第二滤光片 360相对地分布在合光 装置 340的两侧,可以反射入射到该第二反射板 380的光,以压缩光束。 另外, 本实施例中的发光装置同样可以在合光装置 340的上下两侧设置 反射板, 以减少上下两侧的光发散, 在此就不再赘述。
在上述两个实施例中, 第一光源相对于其它光源都出射长波长的 光。 以实施例二举例来说, 发光装置的第一光源是红光光源, 而第二光 源和第三光源为蓝光光源和绿光光源, 这相对于传统发光装置将绿光光 源作为第一光源是完全不同的。 传统的发光装置将绿光光源作为第一光 源是由于绿光的光谱范围位于红光光语和蓝光光语之间, 合光装置的滤 光片只需要设计成高通或者低通滤光片即可, 无论设计还是生产都比较 简单。 而第二实施例中, 红光作为第一光源, 此时合光装置中的滤光片 要设计成带通滤光片, 虽然增加了设计难度, 但是这里却会提高第一滤 光片或者第二滤光片的对入射光束的压缩能力。 下面以第一光源为绿光 光源为例进行伴细说明。
当图 5中的发光装置的第一光源 310为绿光光源, 第二光源 320为 蓝光光源, 第三光源 330为红光光源, 此时第一滤光片 350的光透过率 与波长的关系曲线设计如图 8所示, 在入射光以第一入射角 小角度 入射时, 第一滤光片 350透射绿光, 反射蓝光和红光; 在入射光以第二 入射角 0 2大角度入射时, 第一滤光片 350 的透过率曲线向短波方向漂 移, 透射蓝光, 反射绿光和红光。 第二滤光片 360的光透过率与波长的 关系曲线设计如图 9所示, 在入射光以第三入射角 β 3小角度入射时, 第二滤光片 360透射红光, 反射蓝光以及绿光; 在入射光以第四入射角 β 4大角度入射时, 第二滤光片 360 的透过率曲线向短波方向漂移, 此 时带通区域由位于红光光谱区域漂移至绿光光谱与红光光谱之间的区 域, 第二滤光片 360可以反射蓝光、 绿光和红光。 但是由于为了透过绝 大部分的红光, 带通区域的宽度至少要与红光光谱波长范围接近, 而绿 光光谱和红光光谱的波峰距离又比较近, 因此入射光以第二入射角 β 4 入射时, 带通区域内会覆盖部分绿光或者红光的光语区域, 从而使得部 分短波长的红光或者长波长的绿光透射, 从而造成光损失或者光束扩 散。 特别是当红光光谱比较宽或者红光光谱和绿光光谱的波峰距离比较 近时, 损失或者扩散的红光或者绿光更多。
实施例三
图 10 为本实用新型的发光装置的又一个实施例的结构示意图, 如 图 10所示, 发光装置包括第一光源 410、 第二光源 420、 第三光源 430、 合光装置 440、 第一滤光片 450、 第二滤光片 460。
本实施例中的发光装置与图 5所示的发光装置的不同点在于: 本实 施例中的合光装置 440为十字型滤光片, 因此第二光源 420和第三光源 430分布在合光装置 440的相对的两侧, 这样更有利于发光装置的结构 紧凑, 并且不需要再设置反射板来压缩光束。 例外, 这里也可以设置第 三反射板和第四反射板(图中未画出), 第三反射板和第四反射板相对 分布在所述合光装置两侧, 且平行于第一光源的光轴和第二光源的光轴 所在的平面, 且与第一滤光片 450和第二滤光片 460构成一个封闭的光 通道, 以更好的压缩光束。
本说明书中各个实施例釆用递进的方式描述, 每个实施例重点说明 的都是与其他实施例的不同之处, 各个实施例之间相同相似部分互相参 见即可。
本发明实施例还提供一种舞台灯系统, 包括发光装置, 该发光装置 可以具有上述各实施例中的结构与功能。
以上所述仅为本实用新型的实施方式, 并非因此限制本实用新型的 专利范围, 凡是利用本实用新型说明书及附图内容所作的等效结构或等 效流程变换, 或直接或间接运用在其他相关的技术领域, 均同理包括在 本实用新型的专利保护范围内。

Claims

权 利 要 求 书
1、 一种发光装置, 其特征在于, 包括:
第一光源, 用于出射第一颜色光;
第二光源, 用于出射第一发散角的第二颜色光, 且该第二颜色光的 光轴方向垂直于所述第一颜色光的光轴方向;
合光装置, 用于将所述第一颜色光、 第二颜色光进行合光, 并将合 光后的光沿所述第一颜色光的光轴方向出射;
第一滤光片, 位于所述第二光源与所述合光装置之间, 用于接收垂 直入射的第二颜色光, 并透射小于第一入射角入射的第二颜色光, 反射 第一颜色光和大于第二入射角入射的第二颜色光, 所述第一入射角大于 或者等于所述第一发散角。
2、 根据权利要求 1 所述的发光装置, 其特征在于, 所述发光装置 还包括:
第三光源, 用于出射第二发散角的第三颜色光, 且该第三颜色光的 光轴方向垂直于所述第一颜色光的光轴方向;
第二滤光片, 位于所述第三光源与所述合光装置之间, 用于接收垂 直入射的第三颜色光, 并透射小于第三入射角入射第三颜色光, 反射第 一颜色光和大于第四入射角入射的第三颜色光, 所述第三入射角大于等 于所述第二发散角;
所述合光装置还用于将所述第一颜色光、 第二颜色光、 第三颜色光 进行合光, 并将合光后的光沿所述第一颜色光的光轴方向出射。
3、 根据权利要求 1 所述的发光装置, 其特征在于: 所述第一发散 角的余角大于等于第二入射角。
4、 根据权利要求 2所述的发光装置, 其特征在于: 所述第一颜色 光为红光, 第二颜色光为绿光, 第三颜色光为蓝光。
5、 根据权利要求 4 所述的发光装置, 其特征在于: 所述合光装置 为十字型滤光片, 该十字型滤光片将所述第一颜色光、 第二颜色光和第 三颜色光合并成同一光束, 并沿所述第一颜色光的光轴方向出射, 所述 发光装置还包括相对分布在所述合光装置两侧的第三反射板和第四反 射板, 该第三反射板和第四反射板平行于所述第一光源的光轴和第二光 源的光轴所在的平面, 且与所述第一滤光片和第二滤光片构成一个封闭 的光通道。
6、 根据权利要求 1 所述的发光装置, 其特征在于: 所述发光装置 还包括第一反射板, 该第一反射板设置在所述合光装置的背向所述第一 滤光片的一侧, 以反射入射到该第一反射板的光。
7、 根据权利要求 1 所述的发光装置, 其特征在于: 所述发光装置 包括相对分布在所述合光装置两侧的第三反射板和第四反射板, 该第三 反射板和第四反射板平行于所述第一光源的光轴和第二光源的光轴所 在的平面, 以在垂直所述第一滤光片的平面上反射入射光并压缩光束。
8、 根据权利要求 1 所述的发光装置, 其特征在于: 所述发光装置 包括一固定支架, 所述合光装置与所述第一滤光片固定在该固定支架 上。
9、 根据权利要求 1 所述的发光装置, 其特征在于: 所述第一滤光 片和所述合光装置相接。
10、 一种舞台灯系统, 其特征在于, 包括如权利要求 1至 9任一项 所述的发光装置。
PCT/CN2013/090188 2012-12-26 2013-12-23 发光装置及舞台灯系统 WO2014101725A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210574763.8A CN103900020B (zh) 2012-12-26 2012-12-26 发光装置及舞台灯系统
CN2012105747638 2012-12-26

Publications (1)

Publication Number Publication Date
WO2014101725A1 true WO2014101725A1 (zh) 2014-07-03

Family

ID=50991512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090188 WO2014101725A1 (zh) 2012-12-26 2013-12-23 发光装置及舞台灯系统

Country Status (2)

Country Link
CN (1) CN103900020B (zh)
WO (1) WO2014101725A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205301793U (zh) * 2015-12-01 2016-06-08 深圳市光峰光电技术有限公司 一种照明系统
US10837619B2 (en) 2018-03-20 2020-11-17 Ledengin, Inc. Optical system for multi-emitter LED-based lighting devices
CN111174180B (zh) * 2020-01-19 2022-04-26 平行现实(杭州)科技有限公司 一种大动态范围光束转向装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209140A (ja) * 2000-01-26 2001-08-03 Seiko Epson Corp プロジェクタ及びこれに用いられる光学装置
CN201218433Y (zh) * 2008-05-28 2009-04-08 上海飞锐光电科技有限公司 Led红、绿、蓝三色光的双通道合色系统
CN101598298A (zh) * 2008-06-05 2009-12-09 台达电子工业股份有限公司 光源转换装置及包含该光源转换装置的光源装置
CN101813290A (zh) * 2009-02-20 2010-08-25 红蝶科技(深圳)有限公司 三基色半导体照明装置及使用其的微型投影光学引擎
CN201599583U (zh) * 2009-06-05 2010-10-06 深圳市光峰光电技术有限公司 舞台灯光照明设备
CN101988630A (zh) * 2009-07-31 2011-03-23 深圳市光峰光电技术有限公司 舞台灯光照明系统及其提供高亮度白光的方法
US20120133903A1 (en) * 2010-11-30 2012-05-31 Panasonic Corporation Light source device and projection display apparatus
CN102645827A (zh) * 2011-11-16 2012-08-22 深圳市光峰光电技术有限公司 光源系统及投影装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740288A (en) * 1995-02-22 1998-04-14 E-Tek Dynamics, Inc. Variable polarization beam splitter, combiner and mixer
JP2000155291A (ja) * 1998-11-19 2000-06-06 Nikon Corp ライトバルブ照明装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209140A (ja) * 2000-01-26 2001-08-03 Seiko Epson Corp プロジェクタ及びこれに用いられる光学装置
CN201218433Y (zh) * 2008-05-28 2009-04-08 上海飞锐光电科技有限公司 Led红、绿、蓝三色光的双通道合色系统
CN101598298A (zh) * 2008-06-05 2009-12-09 台达电子工业股份有限公司 光源转换装置及包含该光源转换装置的光源装置
CN101813290A (zh) * 2009-02-20 2010-08-25 红蝶科技(深圳)有限公司 三基色半导体照明装置及使用其的微型投影光学引擎
CN201599583U (zh) * 2009-06-05 2010-10-06 深圳市光峰光电技术有限公司 舞台灯光照明设备
CN101988630A (zh) * 2009-07-31 2011-03-23 深圳市光峰光电技术有限公司 舞台灯光照明系统及其提供高亮度白光的方法
US20120133903A1 (en) * 2010-11-30 2012-05-31 Panasonic Corporation Light source device and projection display apparatus
CN102645827A (zh) * 2011-11-16 2012-08-22 深圳市光峰光电技术有限公司 光源系统及投影装置

Also Published As

Publication number Publication date
CN103900020B (zh) 2016-06-08
CN103900020A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
US10365552B2 (en) Light source employing a wavelength conversion device with a light introducing device and a light collecting device
US11592159B2 (en) Light source system and lighting apparatus
CN205644002U (zh) 发光装置及相关投影系统与照明系统
CN104111532A (zh) 发光装置及相关光源系统
GB2477569A (en) Lamp having a phosphor.
WO2020001057A1 (zh) 光源装置
WO2013029422A1 (zh) 光源、合光装置及带该光源的投影装置
WO2011011981A1 (zh) Led舞台灯光照明设备及其改善颜色均匀性的方法
WO2017198034A1 (zh) 一种光源系统及其投影设备、照明装置
WO2020248561A1 (zh) 一种折叠多光轴的激光手电照明系统及激光手电筒
WO2014101725A1 (zh) 发光装置及舞台灯系统
WO2020248560A1 (zh) 一种存在多光轴的激光手电筒光学系统及激光手电筒
CN108107658B (zh) 光源系统、投影系统及照明装置
CN106950785B (zh) 一种光源装置及照明装置
WO2024098853A1 (zh) 一种照明装置
WO2020151630A1 (zh) 发光装置及舞台灯系统
WO2012006952A1 (zh) 光学系统
US8439520B2 (en) Color-configurable lighting assembly
WO2020248344A1 (zh) 一种折叠多光轴的激光手电筒光学系统及激光手电筒
WO2021012883A1 (zh) 一种照明装置及汽车大灯
CN214840175U (zh) 一种大功率白光激光模组
CN210179360U (zh) 一种存在多光轴的激光手电筒光学系统及激光手电筒
WO2021103892A1 (zh) 照明装置及照明系统
CN203585861U (zh) 光源
CN211577576U (zh) 光源装置、显示设备和照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/11/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13869723

Country of ref document: EP

Kind code of ref document: A1