WO2020248561A1 - 一种折叠多光轴的激光手电照明系统及激光手电筒 - Google Patents

一种折叠多光轴的激光手电照明系统及激光手电筒 Download PDF

Info

Publication number
WO2020248561A1
WO2020248561A1 PCT/CN2019/125980 CN2019125980W WO2020248561A1 WO 2020248561 A1 WO2020248561 A1 WO 2020248561A1 CN 2019125980 W CN2019125980 W CN 2019125980W WO 2020248561 A1 WO2020248561 A1 WO 2020248561A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
laser
light
optical axis
conversion device
Prior art date
Application number
PCT/CN2019/125980
Other languages
English (en)
French (fr)
Inventor
陈国平
Original Assignee
广州光联电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州光联电子科技有限公司 filed Critical 广州光联电子科技有限公司
Publication of WO2020248561A1 publication Critical patent/WO2020248561A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21LLIGHTING DEVICES OR SYSTEMS THEREOF, BEING PORTABLE OR SPECIALLY ADAPTED FOR TRANSPORTATION
    • F21L4/00Electric lighting devices with self-contained electric batteries or cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/10Construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present invention relates to the technical field of flashlights, and more specifically, to a laser flashlight illumination system with folding multiple optical axes and a laser flashlight.
  • Hand-held lighting equipment is also called a flashlight. Because of its very good portability and mobility, it is widely used in many outdoor and other special applications, such as outdoor mountaineering, expeditions, police search and rescue, small space lighting and other scenes.
  • This kind of handheld lighting equipment is usually composed of a barrel and a barrel head.
  • the barrel has a built-in power supply battery.
  • the barrel head is equipped with a specific light-emitting device. It is used in the light-emitting device of a flashlight.
  • the most traditional is a low-power halogen bulb.
  • This kind of light source has good color rendering, but its brightness and efficiency have no advantages, and its short life span is its fatal disadvantage.
  • the second is the semiconductor lighting LED that has become popular in recent years. As a new light source, LED has high luminous efficiency, long life, and good stability. It has a trend of replacing traditional light sources in various application fields. However, due to its application in the flashlight field, it requires extremely high requirements for portability. Whether it is a traditional halogen lamp or an LED light source, it is not an ideal point light source. This adds a lot of difficulty to the secondary optics used in the flashlight field. The volume brings disadvantages.
  • the present invention aims to overcome the above-mentioned defects in the prior art and provide a folding multi-optical axis laser flashlight lighting system.
  • the flashlight including the lighting system makes full use of the laser’s excellent directivity and extremely high brightness to achieve high efficiency and long distance. At the same time of lighting, the risk of using high-power laser technology is greatly reduced, and the flashlight is small in size.
  • the technical solution adopted by the present invention is to provide a folded multi-optical axis laser flashlight illumination system, including an incident optical system, a wavelength conversion device, and an exit optical system;
  • the incident optical system includes a laser and an optical reflector,
  • the laser is used to emit the excitation light
  • an optical reflector is used to reflect the excitation light once to fold the beam to form a multi-optical axis and guide the folded excitation light to the wavelength conversion device;
  • the wavelength conversion device is used to absorb part of the excitation light to form a received laser;
  • the excitation light received by the laser and the excitation light not absorbed by the wavelength conversion device forms the illumination light and is emitted by the emission optical system;
  • the optical axis of the excitation light emitted by the laser does not coincide with the emission axis of the illumination light.
  • the reflection effect of an optical reflector makes the excitation light enter the wavelength conversion device after being folded by the multi-optical axis optical path, and the illuminating light formed after the wavelength conversion device is emitted by the exit optical system to achieve high-efficiency long-distance lighting effects Because the optical axis of the excitation light emitted by the laser and the exit optical axis of the illumination light do not coincide, the risk of using high-power laser technology is greatly reduced, and the laser is close to the point light source to make the flashlight small; in addition, an optical reflector is used to Compared with the use of multiple optical reflectors, the light beam is reflected to fold the light beam, which improves optical efficiency while reducing the complexity of flashlight design.
  • the optical reflector is a right-angle prism and the inclined surface of the right-angle prism is provided with a high-reflection dielectric film for reflecting blue excitation light.
  • the high-reflection dielectric film facilitates high-efficiency reflection of light
  • the high-reflection dielectric film is an optical film made of non-metallic compound coating materials.
  • the dielectric film corresponds to the metal film. Compared with the two, the dielectric film has the advantages of high adhesion, not easy to fall off, and low absorption.
  • the high-reflection dielectric film is the existing technology and will not be described in detail here.
  • the illumination system further includes an optical glass flat sheet or a diffusion sheet with a function of scattering light
  • the optical reflector is arranged on the flat optical glass sheet or a diffusion sheet with a function of scattering light.
  • the optical glass flat sheet or the diffuser sheet with the function of scattering light facilitates the installation and fixation of the optical reflector, and does not block the light, which facilitates the emission of the illuminating light.
  • the incident optical system further includes a first small lens arranged between the laser and the optical reflector, and the first small lens is used to focus the divergent blue excitation light emitted by the laser.
  • This arrangement makes it possible to reduce the cross-sectional area of the blue excitation beam at the position of the optical reflector during laser transmission, thereby reducing the area of the optical reflector.
  • a second small lens is provided between the optical reflector and the wavelength conversion device, and both the incident optical system and the exit optical system include the second small lens. This arrangement facilitates focusing the blue excitation light on the wavelength conversion device, so that the wavelength conversion device absorbs part of the excited light formed by the laser light and the unabsorbed excitation light to synthesize high-energy density illumination light.
  • the exit optical system further includes a light exit lens arranged at the outermost part of the light exit direction; the wavelength conversion device is located at the combined focal point of the light exit lens and the second small lens; the laser light and the excitation light not absorbed by the wavelength conversion device pass through The second small lens and the light emitting lens are collimated to form a nearly parallel illuminating light to emit.
  • Different light-emitting lens sizes and parameters can be selected according to the use requirements to change the illumination angle of the lighting system to achieve the needs of long and short distance changes.
  • the laser is arranged on the first optical axis
  • the exit optical axis of the illumination light is the second optical axis
  • the wavelength conversion device is located on the second optical axis
  • the first optical axis is arranged perpendicular to the second optical axis
  • the first optical axis is arranged perpendicular to the second optical axis
  • the first optical axis is arranged at a position intersecting the second optical axis.
  • the optical axis of the blue excitation light deflected by the optical reflector coincides with the emission axis of the illumination light, but the propagation direction is opposite; this setting makes the optical axis of the blue excitation light emitted by the laser perpendicular to the emission axis of the illumination light.
  • the specular reflection area of the optical reflector is larger than the cross-sectional area of the incident blue excitation light beam, and the projection area of the specular reflection area of the optical reflector on the second optical axis perpendicular to the second optical axis is smaller than that of the illumination beam emitted after passing through the second small lens. 1/3 of the cross-sectional area of the second optical reflector, and less than 1/2 of the cross-sectional area of the largest diameter of the second small lens.
  • the optical reflector is arranged on the second optical axis to block the emitted illumination light. Therefore, it is necessary to minimize the area of the optical reflector on the premise that the incident blue excitation light is satisfied to increase the emission efficiency of the illumination light.
  • the wavelength conversion device is a yellow phosphorous phosphor sheet.
  • the yellow phosphorous phosphor is excited by part of the excitation light to form a laser.
  • the present invention also provides another folded multi-optical axis laser flashlight illumination system, including the aforementioned incident optical system, wavelength conversion device, and exit optical system; the incident optical system is multiple and arranged around the wavelength conversion device; and all incident optical systems A second small lens is arranged between the overall structure formed by the optical reflector in the system and the wavelength conversion device, and both the incident optical system and the exit optical system include the second small lens.
  • the above solution can be used to realize high-efficiency long-distance or ultra-long-distance lighting, while reducing the risk of using high-power laser technology, and the flashlight is small in size.
  • a dichroic mirror is usually used as a light combining device to obtain the illuminating light, which is designed on the coating of the dichroic mirror.
  • a reflective film for blue excitation light, and the reflective film is highly transparent to yellow light.
  • the yellow light emitted by the wavelength conversion device and the Lambertian secondary light source formed are recombined on the dichroic mirror to form the required illuminating light.
  • This solution requires the dichroic mirror to split and combine the light.
  • the light function is equivalent to two optical systems, which will increase the corresponding design volume of the product, which is inconvenient to carry, and loses the greatest significance of portability.
  • the above scheme has the use of a dichroic mirror as a light combining device to couple the light of multiple lasers. In order to achieve the ultra-long distance lighting effect, it can just solve the problem of large product volume caused by the dichroic mirror as a light combining device.
  • the laser is a semiconductor laser device that can emit blue excitation light and is arranged on the first optical axis.
  • the excitation light emitted by the laser is focused along the first optical axis by a first small lens, and then the first optical axis is aligned with
  • An optical reflector is arranged at the intersection of the second optical axis to deflect the focused blue excitation light, and the deflected blue excitation light optical axis coincides with the emission light optical axis of the illumination light, and the propagation direction is opposite.
  • the blue excitation light is guided to the wavelength conversion device (yellow phosphorous phosphor sheet), and the wavelength conversion device is excited by part of the blue excitation light to form a laser.
  • the excitation light absorbed by the conversion device is collimated by the second small lens and the light-emitting lens to form a nearly parallel illuminating light, so as to achieve the effect of high-efficiency long-distance illumination of the white laser flashlight.
  • Another object of the present invention is to provide a laser flashlight with folded multi-optical axis, including a barrel and a barrel head, the barrel head is provided with the above-mentioned lighting system; the barrel is provided with a battery for providing power to the laser, and the barrel is provided There are switches used to control the turning on and off of the laser.
  • the reflection effect of an optical reflector makes the excitation light enter the wavelength conversion device after being folded by the multi-optical axis optical path.
  • the illuminating light formed after the wavelength conversion device is emitted by the exit optical system to achieve high-efficiency long-distance lighting effects.
  • the optical axis of the excitation light and the exit optical axis of the illumination light do not coincide, which greatly reduces the risk of using high-power laser technology, and the laser is close to the point light source to make the flashlight small; in addition, an optical reflector is used to reflect the beam to Compared with the use of multiple optical reflectors, the folded beam improves optical efficiency while reducing the complexity of flashlight design.
  • Fig. 1 is a schematic diagram of a laser flashlight illumination system with folded multi-optical axes in Embodiment 1.
  • Fig. 2 is a schematic diagram of a laser flashlight illumination system with folded multi-optical axis in Embodiment 2.
  • FIG. 3 is a schematic diagram of an optical system that uses a dichroic mirror to combine the blue excitation light emitted by a plurality of lasers to obtain illumination light in the prior art in Embodiment 2.
  • this embodiment provides a folded multi-optical axis laser flashlight illumination system, including an incident optical system, a wavelength conversion device 901, and an exit optical system;
  • the incident optical system includes a laser 201 and an optical reflector, the laser 201 is used to emit blue excitation light, and an optical reflector is used to reflect the blue excitation light once to fold the beam to form multiple optical axes and guide the folded blue excitation light to the wavelength conversion device 901;
  • the wavelength conversion device 901 is used to Part of the excitation light is absorbed to form the received laser; the received laser and the excitation light not absorbed by the wavelength conversion device 901 form the illuminating light which is emitted by the exit optical system; the optical axis of the blue excitation light emitted by the laser 201 does not coincide with the exit optical axis of the illuminating light .
  • the reflection effect of an optical reflector makes the blue excitation light enter the wavelength conversion device 901 after being folded by the multi-optical axis optical path, and the illumination light formed after the wavelength conversion device 901 is emitted by the exit optical system, achieving high efficiency and long distance.
  • the lighting effect of the distance because the optical axis of the blue excitation light emitted by the laser 201 and the exit optical axis of the illuminating light do not coincide, the risk of using high-power laser technology is greatly reduced, and the laser is close to the point light source to make the flashlight small;
  • using one optical reflector 403 to reflect the light beam to fold the light beam improves optical efficiency while reducing the complexity of flashlight design.
  • the optical reflector 403 is a right-angle prism and the inclined surface of the right-angle prism is provided with a high-reflection dielectric film for reflecting blue excitation light.
  • the high-reflection dielectric film facilitates high-efficiency reflection of light
  • the high-reflection dielectric film is an optical film made of non-metallic compound coating materials.
  • the dielectric film corresponds to the metal film. Compared with the two, the dielectric film has the advantages of high adhesion, not easy to fall off, and low absorption.
  • the high-reflection dielectric film is the existing technology and will not be described in detail here.
  • the illumination system further includes an optical glass flat sheet 1001 or a diffusion sheet with a light scattering function, and the optical reflector 403 is arranged on the optical glass flat sheet 1001 or a diffusion sheet with a light scattering function.
  • the optical glass flat sheet 1001 or the diffuser sheet with the function of scattering light facilitates the installation and fixation of the optical reflector 403 without blocking the light, which facilitates the emission of the illumination light.
  • the incident optical system further includes a first small lens 301 arranged between the laser 201 and the optical reflector 403, and the first small lens 301 is used to focus the divergent blue excitation light emitted by the laser 201.
  • This arrangement enables the excitation light to be focused on the wavelength conversion device 901 via the incident optical system, and during the laser transmission process, the cross-sectional area of the blue excitation beam at the position of the optical reflector 403 can be reduced, thereby reducing the area of the optical reflector 403 .
  • a second small lens 501 is provided between the optical reflector 403 and the wavelength conversion device 901, and both the incident optical system and the exit optical system include the second small lens 501.
  • This arrangement facilitates focusing the blue excitation light on the wavelength conversion device 901 so that the wavelength conversion device 901 absorbs part of the excited light formed by the laser light and the unabsorbed excitation light to synthesize high-energy density illumination light.
  • the exit optical system also includes a light exit lens 601 located at the outermost part of the light exit direction; the wavelength conversion device 901 is located at the combined focal point of the light exit lens 601 and the second small lens 501; The light is collimated by the second small lens 501 and the light emitting lens 601 to form a nearly parallel illuminating light and exit.
  • Different sizes and parameters of the light-emitting lens 601 can be selected according to use requirements to change the illumination angle of the optical system to achieve the requirements of long and short distance changes.
  • the laser 201 is set on the first optical axis 701, the exit optical axis of the illumination light is the second optical axis 702, and the wavelength conversion device 901 is located on the second optical axis 702; the first optical axis 701 is arranged perpendicular to the second optical axis 702 , And the optical reflector 403 is arranged at the intersection of the first optical axis 701 and the second optical axis 702.
  • the optical axis of the blue excitation light deflected by the optical reflector 403 coincides with the emission axis of the illumination light, but the propagation direction is opposite; this setting makes the optical axis of the blue excitation light emitted by the laser 201 perpendicular to the emission axis of the illumination light , Can prevent the use risk of direct emission of blue excitation light, and prevent accidents when using laser flashlight.
  • the specular reflection area of the optical reflector 403 is larger than the cross-sectional area of the incident blue excitation beam, and the projection area of the specular reflection area of the optical reflector 403 on the second optical axis 702 is smaller than that of the illumination beam emitted after passing through the second small lens 501 1/3 of the cross-sectional area at the position of the second optical reflector 402 is smaller than 1/2 of the cross-sectional area at the largest diameter of the second small lens 501.
  • the optical reflector 403 is arranged on the second optical axis 702 to block the emitted illumination light, so the area of the optical reflector 403 needs to be minimized on the premise of meeting the incident blue excitation light to increase the emission efficiency of the illumination light.
  • the wavelength conversion device 901 is a yellow phosphorous phosphor sheet.
  • the yellow phosphorous phosphor is excited by part of the excitation light to form a laser.
  • the laser 201 is a semiconductor laser device that can emit blue excitation light and is arranged on the first optical axis 701.
  • the excitation light emitted by the laser 201 passes through the first small lens along the first optical axis 701. 301 is focused, and then an optical reflector 403 is set at the intersection of the first optical axis 701 and the second optical axis 702 to deflect the focused blue excitation light, and the deflected blue excitation light optical axis and the illumination light
  • the optical axes of the outgoing light coincide, and the propagation direction is opposite.
  • the blue excitation light is guided to the wavelength conversion device 901 (yellow phosphorous phosphor sheet), and the wavelength conversion device 901 is excited by part of the blue excitation light to form a received laser, which is affected by the laser and
  • the excitation light that is not absorbed by the wavelength conversion device 901 is collimated by the second small lens 501 and the light-emitting lens 601 to form a nearly parallel illuminating light to emit, so as to achieve the effect of high-efficiency long-distance illumination of the white laser flashlight 100.
  • This embodiment also provides a folding multi-optical axis laser flashlight, which includes a barrel body and a barrel head.
  • the barrel head is provided with the above-mentioned lighting system; the barrel body is provided with a battery for providing power to the laser, and the barrel body is provided for control Switch for turning the laser on and off.
  • the setting of the switch is convenient to turn on and turn off the flashlight.
  • This embodiment provides another folded multi-optical axis laser flashlight illumination system, as shown in FIG. 2, including the incident optical system, wavelength conversion device 901, and exit optical system described in Embodiment 1; it is the same as that of Embodiment 1.
  • the difference is that there are multiple incident optical systems and are arranged around the wavelength conversion device 901; and the overall structure formed by the optical reflectors 403 in all incident optical systems and the wavelength conversion device 901 are provided with a second small lens 501, the incident optical system Both the exit optical system and the exit optical system include the second small lens 501.
  • This embodiment can be used to achieve high-efficiency long-distance or ultra-long-distance lighting, while reducing the risk of using high-power laser technology, and the flashlight is small in size.
  • a dichroic mirror 2001 is usually used as a light combining device to obtain illumination light.
  • a reflective film for blue excitation light is designed on the coating of the dichroic mirror 2001, and the reflective film is highly transparent to yellow light.
  • the yellow light emitted by the wavelength converter device 901 and the Lambertian secondary light source formed are recombined on the dichroic mirror 2001 to form the required illuminating light.
  • This solution requires a dichroic mirror
  • the function of light splitting and light combining in 2001 is equivalent to two optical systems, which will increase the corresponding design volume of the product, which is inconvenient to carry and loses the greatest significance of portability.
  • this embodiment has the use of a dichroic mirror as a light combining device for coupling
  • the light of multiple lasers can achieve ultra-long-distance lighting effects, and at the same time, it can solve the problem of large product volume caused by dichroic mirrors as light combining devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种折叠多光轴的激光手电照明系统及激光手电筒,照明系统包括入射光学系统、波长转换装置(901)及出射光学系统;入射光学系统包括激光器(201)及一个光学反射器,激光器(201)用于发出激发光,一个光学反射器用于对激发光进行一次反射以折叠光束形成多光轴并引导折叠后的激发光至波长转换装置(901);波长转换装置(901)用于吸收部分激发光形成受激光;受激光和未被波长转换装置(901)吸收的激发光形成照明光由出射光学系统出射;激光器(201)发出的激发光所在光轴和照明光的出射光轴不重合。一个光学反射器使得激发光通过多光轴光路的折叠后进入波长转换装置(901)形成照明光,实现高效率远距离照明效果的同时,降低使用大功率激光技术风险,且手电筒体积小。

Description

一种折叠多光轴的激光手电照明系统及激光手电筒 技术领域
本发明涉及手电筒技术领域,更具体地,涉及一种折叠多光轴的激光手电照明系统及激光手电筒。
背景技术
手持式照明设备又称为手电筒,由于其具有非常好的便携的可移动性,在许多户外及其他特种应用场合得到广泛使用,如户外登山、探险、警用搜救、小空间照明等场景。
这种手持式的照明设备通常又由筒体及筒头组成,筒体内置供电电池,筒头上设有特定的发光器件,应用于手电筒的发光器件,最为传统的是小功率的卤素灯泡,这类光源显色好,但亮度及效率不具优势,而且寿命短是其致命的缺点。其次是近些年流行起来的半导体照明LED,LED作为新兴的光源,发光效率高、寿命长、稳定性好,在各应用领域有取而代之传统光源的趋势。但由于应用于手电筒领域,其要求便携性的极高要求,无论是传统的卤素灯还是LED光源,都不是理想的点光源,这给应用于手电筒领域的二次光学增加不少难度,给手电筒的体积带来不利因素。
所以更新型的半导体激光技术的发展应用又给新型手电筒带来新机,由于半导体激光器的极好的方向性,接近于点光源作为理想光源,且激光具有高亮度的特性,所以在应用于手电筒这种指向性照明的应用领域的优势尤其突出。基于激光器的这两个特点,可以大大地缩小手电筒的体积及使光照射距离更远。
但激光存在的另一个问题就是激光的安全问题,也正是由于激光的高亮度特性,其能量密度非常地高,在使用如此大功率的激光器时,由于使用不慎容易对相关人员的眼睛或皮肤造成严重的伤害,甚至引起火灾、烫伤等严重的伴随伤害,尤其是对使用者眼睛不可逆转的伤害,所以在使用大功率激光时需要尤其谨慎。
技术问题
本发明旨在克服上述现有技术中的缺陷,提供一种折叠多光轴的激光手电照明系统,包括该照明系统的手电筒充分利用激光极好方向性和极高亮度的特点实现高效率远距离照明的同时,大大地降低了使用大功率激光技术的风险,且手电筒体积小。
技术解决方案
为达到上述目的,本发明采取的技术方案是:提供一种折叠多光轴的激光手电照明系统,包括入射光学系统、波长转换装置及出射光学系统;入射光学系统包括激光器及一个光学反射器,激光器用于发出激发光,一个光学反射器用于对激发光进行一次反射以折叠光束形成多光轴并引导折叠后的激发光至波长转换装置;波长转换装置用于吸收部分激发光形成受激光;受激光和未被波长转换装置吸收的激发光形成照明光由出射光学系统出射;激光器发出的激发光所在光轴和照明光的出射光轴不重合。
上述方案中,一个光学反射器的反射作用使得激发光通过多光轴光路的折叠后进入波长转换装置,经波长转换装置后形成的照明光由出射光学系统出射,实现高效率远距离的照明效果,由于激光器发出的激发光所在光轴和照明光的出射光轴不重合,大大地降低了使用大功率激光技术的风险,且激光接近点光源使得手电筒体积小;另外,使用一个光学反射器对光束进行反射以折叠光束相比于使用多个光学反射器,提高光学效率的同时降低手电筒设计复杂程度。
优选地,所述光学反射器为直角棱镜且直角棱镜的斜面上设有用于反射蓝色激发光的高反介质膜。直角棱镜相比于普通光学反射镜片,安装更方便,且安装后的固定更稳固;高反介质膜便于光线的高效率反射,高反介质膜为非金属的化合镀膜材料制作的光学薄膜,与介质膜相对应的有金属膜,两者相比,介质膜具有高附着力、不易脱落、吸收吸收低等优点;高反介质膜为现有技术,在此不再详述。
优选地,所述照明系统还包括光学玻璃平片或具有散射光线功能的扩散片,光学反射器设于光学玻璃平片或具有散射光线功能的扩散片上。光学玻璃平片或具有散射光线功能的扩散片便于光学反射器的安装固定,且不会阻挡光线,便于照明光的出射。
优选地,所述入射光学系统还包括设于激光器和光学反射器之间的第一小透镜,第一小透镜用于将激光器发出的发散蓝色激发光进行聚焦。这样设置使得激光在传输过程中,能减小在光学反射器位置的蓝色激发光束的截面积,进而缩小光学反射器的面积。
进一步优选地,光学反射器与波长转换装置之间设有第二小透镜,入射光学系统及出射光学系统均包括所述第二小透镜。这样设置便于将蓝色激发光聚焦于波长转换装置上,以便于波长转换装置吸收部分激发光形成的受激光与未吸收的激发光合成高能量密度的照明光。
更进一步优选地,出射光学系统还包括设于光出射方向最外部的出光透镜;波长转换装置位于出光透镜与第二小透镜的组合焦点上;受激光和未被波长转换装置吸收的激发光经由第二小透镜及出光透镜准直后形成近平行的照明光出射。可根据使用需求选择不同的出光透镜尺寸及参数进行搭配,以变换该照明系统的照射角度,实现远近距离变化的需求。
优选地,激光器设于第一光轴上,照明光的出射光轴为第二光轴,波长转换装置位于第二光轴上;第一光轴垂直第二光轴设置,且第一光轴与第二光轴相交位置设置所述光学反射器。经光学反射器偏转后的蓝色激发光光轴与照明光的出射光轴重合,但传播方向相反;这样设置使得激光器发出的蓝色激发光所在光轴与照明光的出射光轴垂直,可以防止蓝色激发光直接射出的使用风险,进而防止激光手电筒使用的意外事故。
进一步优选地,光学反射器镜面反射面积大于入射蓝色激发光束的截面积,且光学反射器镜面反射面积在垂直第二光轴上的投影面积小于经第二小透镜后出射的照明光束在第二光学反射器位置截面积上的1/3,并小于第二小透镜直径最大处截面积的1/2。光学反射器设置在第二光轴上会对出射的照明光进行遮挡,所以需要在满足入射蓝色激发光的前提上尽量缩小光学反射器的面积,以增加照明光的出射效率。
优选地,波长转换装置为黄磷荧光粉片。黄磷荧光粉受部分激发光激发形成受激光。
本发明还提供了另一种折叠多光轴的激光手电照明系统,包括上述的入射光学系统、波长转换装置及出射光学系统;入射光学系统为多个并围绕波长转换装置设置;且所有入射光学系统中的光学反射器形成的整体结构与波长转换装置之间设有第二小透镜,入射光学系统及出射光学系统均包括所述第二小透镜。
上述方案能用于实现高效率远距离或超远距离照明,同时降低使用大功率激光技术的风险,且手电筒体积小。
现有技术中为了实现超远距离照明,需要使用多个激光器来偶合成单束光出射,此时通常使用二向色镜作为合光装置来获取照明光,在二向色镜的镀膜上设计针对蓝色激发光的反射膜,且该反射膜对黄色光线高透,蓝色激发光入射至二向色镜上时,第一部分蓝色激发光被反射引导到波长转换装置上,第二部分蓝色激发光被二向色镜透射引导到朗伯型散射体上形成朗伯型次光源。这样在波长转换装置上受激辐射出的黄光和形成的朗伯型次光源在二向色镜上重新合光,形成所需要的照明光,这种方案由于需要二向色镜进行分光合光作用,相当于两个光学系统,会增大产品的相应设计体积,不方便携带,失去了便携性的最大意义,而上述方案具有使用二向色镜作为合光装置耦合多个激光器的光以实现超远距离照明效果的同时,恰好能解决二向色镜作为合光装置时导致的产品体积大的问题。
所述激光器为可发射出蓝色激发光的半导体激光器件并设于第一光轴上,激光器所辐射出的激发光沿第一光轴经第一小透镜进行聚焦,然后第一光轴与第二光轴相交位置设置的光学反射器来使聚焦后的蓝色激发光发生偏转,经偏转后的蓝色激发光光轴与照明光的出射光光轴重合,并且传播方向相反。这样,通过光学反射器的偏转光路,蓝色激发光被引导到波长转换装置(黄磷荧光粉片)上,波长转换装置受部分蓝色激发光激发后形成受激光,受激光和未被波长转换装置吸收的激发光经由第二小透镜及出光透镜准直后形成近平行的照明光出射,以达到白色激光手电筒实现高效率远距离照明的效果。
本发明的另一个目的,在于提供一种折叠多光轴的激光手电筒,包括筒体及筒头,筒头内设有上述照明系统;筒体内设有为激光器提供电能的电池,筒体上设有用于控制激光器打开和关闭的开关。
有益效果
与现有技术相比,本发明的有益效果为:
一个光学反射器的反射作用使得激发光通过多光轴光路的折叠后进入波长转换装置,经波长转换装置后形成的照明光由出射光学系统出射,实现高效率远距离的照明效果,由于激光器发出的激发光所在光轴和照明光的出射光轴不重合,大大地降低了使用大功率激光技术的风险,且激光接近点光源使得手电筒体积小;另外,使用一个光学反射器对光束进行反射以折叠光束相比于使用多个光学反射器,提高光学效率的同时降低手电筒设计复杂程度。
附图说明
图1为实施例1一种折叠多光轴的激光手电照明系统的示意图。
图2为实施例2一种折叠多光轴的激光手电照明系统的示意图。
图3为实施例2中现有技术中使用二向色镜来对多个激光器发出的蓝色激发光进行合光获取照明光的光学系统的示意图。
附图标识:201激光器;301第一小透镜;403光学反射器;501第二小透镜;601出光透镜;701第一光轴;702第二光轴;901波长转换装置;1001光学玻璃平片;2001二向色镜。
本发明的实施方式
本发明附图仅用于示例性说明,不能理解为对本发明的限制。为了更好说明以下实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明的可能省略是可以理解的。
实施例 1
如图1所示,本实施例提供了一种折叠多光轴的激光手电照明系统,包括入射光学系统、波长转换装置901及出射光学系统;入射光学系统包括激光器201及一个光学反射器,激光器201用于发出蓝色激发光,一个光学反射器用于对蓝色激发光进行一次反射以折叠光束形成多光轴并引导折叠后的蓝色激发光至波长转换装置901;波长转换装置901用于吸收部分激发光形成受激光;受激光和未被波长转换装置901吸收的激发光形成照明光由出射光学系统出射;激光器201发出的蓝色激发光所在光轴和照明光的出射光轴不重合。
本发明中,一个光学反射器的反射作用使得蓝色激发光通过多光轴光路的折叠后进入波长转换装置901,经波长转换装置901后形成的照明光由出射光学系统出射,实现高效率远距离的照明效果,由于激光器201发出的蓝色激发光所在光轴和照明光的出射光轴不重合,大大地降低了使用大功率激光技术的风险,且激光接近点光源使得手电筒体积小;另外,使用一个光学反射器403对光束进行反射以折叠光束相比于使用多个光学反射器,提高光学效率的同时降低手电筒设计复杂程度。
其中,所述光学反射器403为直角棱镜且直角棱镜的斜面上设有用于反射蓝色激发光的高反介质膜。直角棱镜相比于普通光学反射镜片,安装更方便,且安装后的固定更稳固;高反介质膜便于光线的高效率反射,高反介质膜为非金属的化合镀膜材料制作的光学薄膜,与介质膜相对应的有金属膜,两者相比,介质膜具有高附着力、不易脱落、吸收吸收低等优点;高反介质膜为现有技术,在此不再详述。
另外,所述照明系统还包括光学玻璃平片1001或具有散射光线功能的扩散片,光学反射器403设于光学玻璃平片1001或具有散射光线功能的扩散片上。光学玻璃平片1001或具有散射光线功能的扩散片便于光学反射器403的安装固定,且不会阻挡光线,便于照明光的出射。
其中,所述入射光学系统还包括设于激光器201和光学反射器403之间的第一小透镜301,第一小透镜301用于将激光器201发出的发散蓝色激发光进行聚焦。这样设置使激发光经由入射光学系统聚焦于波长转换装置901上,且激光在传输过程中,能减小在光学反射器403位置的蓝色激发光束的截面积,进而缩小光学反射器403的面积。
另外,光学反射器403与波长转换装置901之间设有第二小透镜501,入射光学系统及出射光学系统均包括所述第二小透镜501。这样设置便于将蓝色激发光聚焦于波长转换装置901上,以便于波长转换装置901吸收部分激发光形成的受激光与未吸收的激发光合成高能量密度的照明光。
其中,出射光学系统还包括设于光出射方向最外部的出光透镜601;波长转换装置901位于出光透镜601与第二小透镜501的组合焦点上;受激光和未被波长转换装置901吸收的激发光经由第二小透镜501及出光透镜601准直后形成近平行的照明光出射。可根据使用需求选择不同的出光透镜601尺寸及参数进行搭配,以变换该光学系统的照射角度,实现远近距离变化的需求。
另外,激光器201设于第一光轴701上,照明光的出射光轴为第二光轴702,波长转换装置901位于第二光轴702上;第一光轴701垂直第二光轴702设置,且第一光轴701与第二光轴702相交位置设置所述光学反射器403。经光学反射器403偏转后的蓝色激发光光轴与照明光的出射光轴重合,但传播方向相反;这样设置使得激光器201发出的蓝色激发光所在光轴与照明光的出射光轴垂直,可以防止蓝色激发光直接射出的使用风险,进而防止激光手电筒使用的意外事故。
其中,光学反射器403镜面反射面积大于入射蓝色激发光束的截面积,且光学反射器403镜面反射面积在垂直第二光轴702上的投影面积小于经第二小透镜501后出射的照明光束在第二光学反射器402位置截面积上的1/3,并小于第二小透镜501直径最大处截面积的1/2。光学反射器403设置在第二光轴702上会对出射的照明光进行遮挡,所以需要在满足入射蓝色激发光的前提上尽量缩小光学反射器403的面积,以增加照明光的出射效率。
本实施例中,波长转换装置901为黄磷荧光粉片。黄磷荧光粉受部分激发光激发形成受激光。
本实施例中,所述激光器201为可发射出蓝色激发光的半导体激光器件并设于第一光轴701上,激光器201所辐射出的激发光沿第一光轴701经第一小透镜301进行聚焦,然后第一光轴701与第二光轴702相交位置设置的光学反射器403来使聚焦后的蓝色激发光发生偏转,经偏转后的蓝色激发光光轴与照明光的出射光光轴重合,并且传播方向相反。这样,通过光学反射器403的偏转光路,蓝色激发光被引导到波长转换装置901(黄磷荧光粉片)上,波长转换装置901受部分蓝色激发光激发后形成受激光,受激光和未被波长转换装置901吸收的激发光经由第二小透镜501及出光透镜601准直后形成近平行的照明光出射,以达到白色激光手电筒100实现高效率远距离照明的效果。
本实施例还提供了一种折叠多光轴的激光手电筒,包括筒体及筒头,筒头内设有上述照明系统;筒体内设有为激光器提供电能的电池,筒体上设有用于控制激光器打开和关闭的开关。开关的设置便于打开和关闭该手电筒。
实施例 2
本实施例提供了另一种折叠多光轴的激光手电照明系统,如图2所示,包括实施例1所述的入射光学系统、波长转换装置901及出射光学系统;其与实施例1的区别在于:入射光学系统为多个并围绕波长转换装置901设置;且所有入射光学系统中的光学反射器403形成的整体结构与波长转换装置901之间设有第二小透镜501,入射光学系统及出射光学系统均包括所述第二小透镜501。
本实施例能用于实现高效率远距离或超远距离照明,同时降低使用大功率激光技术的风险,且手电筒体积小。
现有技术中为了实现超远距离照明,需要使用多个激光器来偶合成单束光出射,如图3所示,此时通常使用二向色镜2001作为合光装置来获取照明光,在二向色镜2001的镀膜上设计针对蓝色激发光的反射膜,且该反射膜对黄色光线高透,蓝色激发光入射至二向色镜2001上时,第一部分蓝色激发光被反射引导到波长转换装置901上,第二部分蓝色激发光被二向色镜2001透射引导到朗伯型散射体上形成朗伯型次光源。这样在波长转换器装置901上受激辐射出的黄光和形成的朗伯型次光源在二向色镜2001上重新合光,形成所需要的照明光,这种方案由于需要二向色镜2001进行分光合光作用,相当于两个光学系统,会增大产品的相应设计体积,不方便携带,失去了便携性的最大意义,而本实施例具有使用二向色镜作为合光装置耦合多个激光器的光以实现超远距离照明效果的同时,恰好能解决二向色镜作为合光装置时导致的产品体积大的问题。
显然,本发明的上述实施例仅仅是为清楚地说明本发明技术方案所作的举例,而并非是对本发明的具体实施方式的限定。凡在本发明权利要求书的精神和原则之内所作的任何修改、等同替换和改进等,均应被包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种折叠多光轴的激光手电照明系统,其特征在于,包括入射光学系统、波长转换装置(901)及出射光学系统;入射光学系统包括激光器(201)及一个光学反射器(403),激光器(201)用于发出激发光,一个光学反射器(403)用于对激发光进行一次反射以折叠光束并引导折叠后的激发光至波长转换装置(901);波长转换装置(901)用于吸收部分激发光形成受激光;受激光和未被波长转换装置(901)吸收的激发光形成照明光由出射光学系统出射;激光器(201)发出的激发光所在光轴和照明光的出射光轴不重合。
  2. 根据权利要求1所述的一种折叠多光轴的激光手电照明系统,其特征在于,所述光学反射器(403)为直角棱镜且直角棱镜的斜面上设有用于反射蓝色激发光的高反介质膜。
  3. 根据权利要求1所述的一种折叠多光轴的激光手电照明系统,其特征在于,所述照明系统还包括光学玻璃平片(1001)或具有散射光线功能的扩散片,光学反射器(403)设于光学玻璃平片(1001)或具有散射光线功能的扩散片上。
  4. 根据权利要求1所述的一种折叠多光轴的激光手电照明系统,其特征在于,所述入射光学系统还包括设于激光器(201)和光学反射器(403)之间的第一小透镜(301),第一小透镜(301)用于将激光器(201)发出的发散蓝色激发光进行聚焦。
  5. 根据权利要求4所述的一种折叠多光轴的激光手电照明系统,其特征在于,光学反射器(403)与波长转换装置(901)之间设有第二小透镜(501),入射光学系统及出射光学系统均包括所述第二小透镜(501)。
  6. 根据权利要求5所述的一种折叠多光轴的激光手电照明系统,其特征在于,出射光学系统还包括设于光出射方向最外部的出光透镜(601);波长转换装置(901)位于出光透镜(601)与第二小透镜(501)的组合焦点上;受激光和未被波长转换装置(901)吸收的激发光经由第二小透镜(501)及出光透镜(601)准直后形成近平行的照明光出射。
  7. 根据权利要求5所述的一种折叠多光轴的激光手电照明系统,其特征在于,激光器(201)设于第一光轴(701)上,照明光的出射光轴为第二光轴(702),波长转换装置(901)位于第二光轴(702)上;第一光轴(701)垂直第二光轴(702)设置,且第一光轴(701)与第二光轴(702)相交位置设置所述光学反射器(403)。
  8. 根据权利要求6所述的一种折叠多光轴的激光手电照明系统,其特征在于,光学反射器(403)镜面反射面积大于入射蓝色激发光束的截面积,且光学反射器(403)镜面反射面积在垂直第二光轴(702)上的投影面积小于经第二小透镜(501)后出射的照明光束在光学反射器(403)位置的截面积上的1/3,并小于第二小透镜(501)直径最大处截面积的1/2。
  9. 一种折叠多光轴的激光手电照明系统,其特征在于,包括权利要求1至8任一项所述的入射光学系统、波长转换装置(901)及出射光学系统;入射光学系统为多个并围绕波长转换装置(901)设置;且所有入射光学系统中的光学反射器(403)形成的整体结构与波长转换装置(901)之间设有第二小透镜(501),入射光学系统及出射光学系统均包括所述第二小透镜(501)。
  10. 一种折叠多光轴的激光手电筒,包括筒体及筒头,其特征在于,筒头内设有权利要求1至9任一项所述的照明系统;筒体内设有为激光器提供电能的电池,筒体上设有用于控制激光器打开和关闭的开关。
PCT/CN2019/125980 2019-06-13 2019-12-17 一种折叠多光轴的激光手电照明系统及激光手电筒 WO2020248561A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910511575.2A CN110107827A (zh) 2019-06-13 2019-06-13 一种折叠多光轴的激光手电照明系统及激光手电筒
CN201910511575.2 2019-06-13

Publications (1)

Publication Number Publication Date
WO2020248561A1 true WO2020248561A1 (zh) 2020-12-17

Family

ID=67494971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125980 WO2020248561A1 (zh) 2019-06-13 2019-12-17 一种折叠多光轴的激光手电照明系统及激光手电筒

Country Status (2)

Country Link
CN (1) CN110107827A (zh)
WO (1) WO2020248561A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107827A (zh) * 2019-06-13 2019-08-09 广州光联电子科技有限公司 一种折叠多光轴的激光手电照明系统及激光手电筒
CN110715192A (zh) * 2019-11-27 2020-01-21 广州市超亮电子科技有限公司 蓝色激光转化为白光点光源的装置
JP7400417B2 (ja) * 2019-11-29 2023-12-19 株式会社リコー 光源光学系、光源装置及び画像表示装置
CN113028307A (zh) * 2019-12-09 2021-06-25 深圳市中光工业技术研究院 手电筒

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130329409A1 (en) * 2012-06-06 2013-12-12 Coast Cutlery Company Integrated optic and bezel for flashlight
CN205880483U (zh) * 2016-04-06 2017-01-11 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN205880479U (zh) * 2016-04-06 2017-01-11 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN205880480U (zh) * 2016-04-06 2017-01-11 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN106369485A (zh) * 2016-09-03 2017-02-01 超视界激光科技(苏州)有限公司 激光探照灯
CN110107827A (zh) * 2019-06-13 2019-08-09 广州光联电子科技有限公司 一种折叠多光轴的激光手电照明系统及激光手电筒

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102294317B1 (ko) * 2015-01-30 2021-08-26 엘지이노텍 주식회사 발광 장치
CN106151931B (zh) * 2015-04-14 2018-02-16 承奕科技股份有限公司 具同调性发光单元的可切换光源组件
CN205880478U (zh) * 2016-04-06 2017-01-11 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN106195671A (zh) * 2016-09-03 2016-12-07 超视界激光科技(苏州)有限公司 激光模组
CN109839793B (zh) * 2017-11-28 2021-01-29 中强光电股份有限公司 投影机及其照明系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130329409A1 (en) * 2012-06-06 2013-12-12 Coast Cutlery Company Integrated optic and bezel for flashlight
CN205880483U (zh) * 2016-04-06 2017-01-11 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN205880479U (zh) * 2016-04-06 2017-01-11 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN205880480U (zh) * 2016-04-06 2017-01-11 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN106369485A (zh) * 2016-09-03 2017-02-01 超视界激光科技(苏州)有限公司 激光探照灯
CN110107827A (zh) * 2019-06-13 2019-08-09 广州光联电子科技有限公司 一种折叠多光轴的激光手电照明系统及激光手电筒

Also Published As

Publication number Publication date
CN110107827A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2020248561A1 (zh) 一种折叠多光轴的激光手电照明系统及激光手电筒
US11035528B2 (en) Light emitting device with diffuser and light reflector and projection system having the same
US7843642B2 (en) Systems and methods for providing compact illumination in head mounted displays
EP2752701B1 (en) Light source and projection device with the light source
CN104049445A (zh) 发光装置及投影系统
TW201235620A (en) Colour-tunable light source unit with phosphor element
TWI432780B (zh) 光源系統
US20060158902A1 (en) Ultra compact illumination system for display systems
KR102428356B1 (ko) 광원 장치
CN107270151B (zh) 一种发光装置及激光照明灯
GB2477569A (en) Lamp having a phosphor.
WO2020248560A1 (zh) 一种存在多光轴的激光手电筒光学系统及激光手电筒
JP3110203U (ja) 瞬時オンのプロジェクタ
US10267473B2 (en) Lighting device for vehicle having a reflective fluorescent body and prism
WO2020248344A1 (zh) 一种折叠多光轴的激光手电筒光学系统及激光手电筒
CN106950785B (zh) 一种光源装置及照明装置
WO2021017375A1 (zh) 一种多功能用途的便携式激光照明系统及激光手电筒
CN101907235A (zh) 多灯合成照明装置以及使用了该装置的投射式显示装置
CN211316062U (zh) 一种激光照明灯
WO2021031474A1 (zh) 一种便携式多色激光照明系统
CN210179360U (zh) 一种存在多光轴的激光手电筒光学系统及激光手电筒
CN210153594U (zh) 一种多功能用途的便携式激光照明系统及激光手电筒
CN210179355U (zh) 一种存在多光轴的激光手电照明系统及激光手电筒
CN111059488B (zh) 照明装置及照明系统
WO2014101725A1 (zh) 发光装置及舞台灯系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932638

Country of ref document: EP

Kind code of ref document: A1