WO2014101152A1 - 一种制备不饱和醇的方法 - Google Patents

一种制备不饱和醇的方法 Download PDF

Info

Publication number
WO2014101152A1
WO2014101152A1 PCT/CN2012/087953 CN2012087953W WO2014101152A1 WO 2014101152 A1 WO2014101152 A1 WO 2014101152A1 CN 2012087953 W CN2012087953 W CN 2012087953W WO 2014101152 A1 WO2014101152 A1 WO 2014101152A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali metal
ketone
aldehyde
unsaturated alcohol
resin
Prior art date
Application number
PCT/CN2012/087953
Other languages
English (en)
French (fr)
Inventor
刘德铭
鲁向阳
密福远
Original Assignee
上海海嘉诺医药发展股份有限公司
大丰海嘉诺药业有限公司
上海创诺医药集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海海嘉诺医药发展股份有限公司, 大丰海嘉诺药业有限公司, 上海创诺医药集团有限公司 filed Critical 上海海嘉诺医药发展股份有限公司
Publication of WO2014101152A1 publication Critical patent/WO2014101152A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • C07C29/38Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones
    • C07C29/42Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones with compounds containing triple carbon-to-carbon bonds, e.g. with metal-alkynes

Definitions

  • the invention relates to a preparation method of unsaturated alcohol, in particular to a method for continuously preparing a block unsaturated alcohol with high conversion and high selectivity, and belongs to the technical field of organic chemistry.
  • Unsaturated alcohols are an important class of chemical and pharmaceutical intermediates, such as: 3,7-Dimethyl-1-octyl-3-ol in vitamins
  • the resin needs to be regenerated and then re-recycled. use.
  • the hydrous product is hydrogenated on a thin layer of catalyst, and finally the hydrogenated product is subjected to purification distillation.
  • the patented technology is not only complicated to operate, but also costly, and when the ketone is monoblocked by the NH 3 /KOH method, it needs to be carried out in a tubular reactor having a small diameter to obtain a good reaction effect, if industrialized.
  • the production of small pipe diameter requirements, the reaction tube must be very long to increase production capacity, so the total pressure drop in the pipe is inevitably large, and very unsuitable for industrial production.
  • Chinese patent ZL02818739.3 discloses a process for preparing a block of an unsaturated alcohol, comprising making formaldehyde, an aldehyde or a ketone (carbonyl) The compound is reacted with an block in the presence of ammonia and a strongly basic macroporous anion exchange resin, wherein the anion exchange resin is an anion exchange resin characterized by a polystyrene matrix and a quaternary ammonium group, and the yield of the LHSV of the patented technology is about 2.8711- 1 , continuous blocking time is about 200 hours, there is still a problem that the space-time yield is too low, and the resin needs to be activated and the regeneration frequency is too high, so it is also unfavorable for industrial production.
  • the anion exchange resin is an anion exchange resin characterized by a polystyrene matrix and a quaternary ammonium group
  • a method for preparing an unsaturated alcohol characterized in that: an aldehyde or a ketone is exchanged with an alkaloid or a liquid ammonia in an alkali metal hydroxide or an alkali metal alkoxide, and is exchanged with a strong basic macroporous anion.
  • the resin is subjected to a continuous reaction in a fixed bed of a catalytic bed.
  • the method includes the following steps:
  • reaction begins with the addition of liquid ammonia to remove the methanol from the strongly basic macroporous anion exchange resin, followed by the addition of an aldol/oxane solution, an aldehyde or a ketone, an alkali metal hydroxide or an alcohol solution of an alkali metal alkoxide. ;
  • the external temperature of the reactor is controlled to be 0 to 50 ° C, and the back pressure valve pressure is 1.0 to 3.0 MPa to carry out a continuous reaction.
  • the aldehyde or ketone has the general formula shown in Formula I
  • the unsaturated alcohol has the formula shown in Formula II:
  • the sum in the formula is independently represented by a hydrogen atom, a linear or branched, saturated or unsaturated alkyl group having 1 to 20 carbon atoms, a cycloalkyl group or a phenyl group.
  • the aldehyde is selected from the group consisting of formaldehyde or acetaldehyde
  • the ketone is selected from the group consisting of acetone, 6-methyl-2-heptanone, 6,10-dimethyl-alkyl ketone, 6,10 ,14-trimethyl-2-pentadecanone, 6,10-dimethyl ⁇ -en-2-one, 6-methyl-hept-5-en-2-one, 6,10-dimethyl Base-5,9- ⁇ -dien-2-one or 6,10,14-trimethyl-5,9,13-pentadecatrien-2-one.
  • the strongly basic macroporous anion exchange resin is selected from the group consisting of D201, D202, PA312, MP500, MSA-1, A500, SBMP 1, IRA900, PA308, HPA25, HPA75, A-161 or A641, Model resins are commercially available.
  • the alcohol solution of the alkali metal hydroxide or alkali metal alkoxide refers to a methanol solution of an alkali metal hydroxide or an alkali metal alkoxide.
  • the mass concentration of the alcohol solution of the alkali metal hydroxide or alkali metal alkoxide is lower than the saturation concentration of the alkali metal hydroxide or alkali metal alkoxide in the alcohol.
  • the alcohol solution of the alkali metal hydroxide or alkali metal alkoxide has a mass concentration of 5 to 20%.
  • the alkali metal hydroxide is selected from sodium hydroxide or potassium hydroxide; the alkali metal alkoxide is selected from the group consisting of sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide or potassium t-butoxide. .
  • the alkali metal hydroxide is selected from the group consisting of potassium hydroxide; and the alkali metal alkoxide compound is selected from the group consisting of potassium methoxide or potassium t-butoxide.
  • the mass concentration of the b block in the block/ammonia solution is 10 to 30%.
  • the mass concentration of the b block in the block/ammonia solution is 15 to 25%.
  • step b) controlling the mass flow ratio of the block/ammonia solution to the aldehyde or ketone of 2:1 to 5:1, the alcohol solution of the alkali metal hydroxide or the alkali metal alkoxide with the aldehyde or ketone
  • the mass flow ratio is 0.02:1 ⁇ 0.2:1.
  • step b) controlling the mass flow ratio of the block/ammonia solution to the aldehyde or ketone is 3:1 to 4:1, an alkali metal hydroxide or an alkali metal alkoxide alcohol solution and an aldehyde or
  • the mass flow ratio of the ketone is 0.05:1 to 0.1:1.
  • the molar ratio of aldehyde or ketone to ethyl block is 1:2 to 1:5, and the molar ratio of aldehyde or ketone to liquid ammonia is 1:10 to 1:20, aldehyde or ketone and alkali metal hydroxide Or the molar ratio of the alkali metal alkoxide is 1: 0.001 to 1: 0.1.
  • the molar ratio of the aldehyde or ketone to the alkali metal hydroxide or alkali metal alkoxide For 1: 0.003 ⁇ 1: 0.03.
  • step c) controls the external temperature of the reactor at 5 to 30 ° C, and the back pressure valve pressure is 1.0 to 2.5 MPa.
  • the present invention has the following significant advancements and benefits:
  • the invention can fix aldehyde or ketone with ethyl bromide and liquid ammonia by using strong alkaline macroporous anion exchange resin as catalytic bed under the promotion of alkali metal hydroxide or alkali metal alkoxide.
  • a continuous reaction of up to 2000 hours in the bed is achieved, and it is known from the prior art that aldehyde or ketone with ethyl bromide and liquid ammonia is not promoted by alkali metal hydroxide or alkali metal alkoxide.
  • the space-time yield can reach 7.08h - after 2000 hours of continuous operation, the catalytic activity of the resin is still high, and the conversion rate of the raw material can still be above 96% (GC area%).
  • the property is above 99% (GC area%), which is very beneficial for industrial production, which can greatly shorten the production cycle and save energy consumption;
  • the present invention has significant advances and unexpected effects over the prior art and is of great value for the industrial production of unsaturated alcohols. detailed description
  • the catalytic activity gradually decreases during the use of the resin.
  • the residual amount of the ketone or aldehyde of the raw material is gradually increased, generally in the continuous use for 100 to 200 hours. After that, the conversion rate will decrease by 20 to 30%.
  • it is necessary to reactivate the resin but frequent activation and regeneration will be very unfavorable for the quality stability and production cost of industrial production.
  • the present invention provides a method for preparing an unsaturated alcohol, which is used for promoting the catalysis of an aldehyde or a ketone with an ethylbenzene or a liquid ammonia in an alkali metal hydroxide or an alkali metal alkoxide.
  • the macroporous anion exchange resin is subjected to a continuous reaction in a fixed bed of the catalytic bed.
  • the method includes the following steps:
  • reaction begins with the addition of liquid ammonia to remove the methanol from the strongly basic macroporous anion exchange resin, followed by the addition of an aldol/oxane solution, an aldehyde or a ketone, an alkali metal hydroxide or an alcohol solution of an alkali metal alkoxide. ;
  • the external temperature of the reactor is controlled to be 0 to 50 ° C, and the back pressure valve pressure is 1.0 to 3.0 MPa to carry out a continuous reaction.
  • the aldehyde or ketone has the general formula shown in Formula I, and the unsaturated alcohol has the formula of Formula II:
  • aldehyde is preferably selected from the group consisting of formaldehyde or acetaldehyde
  • the ketone is preferably selected from the group consisting of acetone, 6-methyl-2-heptanone, 6,10-dimethyl-alkyl ketone, 6,10, 14-three.
  • Methyl-2-pentadecanone 6,10-dimethyl ⁇ -en-2-one, 6-methyl-hept-5-en-2-one, 6,10-dimethyl-5, 9H ⁇ -dien-2-one or 6,10,14-trimethyl-5,9,13-pentadecatrien-2-one.
  • the alkali metal hydroxide may be sodium hydroxide or potassium hydroxide, and the potassium hydroxide is more active and is generally formulated into a solution to facilitate continuous feed.
  • the alkali metal hydroxide can be formulated into an aqueous solution or an alcohol solution, and if it is used in an aqueous solution, it will have an effect on the recovery of ammonia.
  • a high carbon number ketone or aldehyde and ammonia block solution reacts with an aqueous alkali metal hydroxide solution to generate a small amount of insoluble matter, which may block the pipeline when it is severe; Solution.
  • the alcohol solution of the alkali metal alkoxide can also prolong the catalytic life of the resin, such as an aqueous solution of sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide and potassium t-butoxide, wherein potassium methoxide and potassium t-butoxide are used.
  • a methanol solution is more preferred.
  • the concentration of sodium hydroxide or potassium hydroxide alcohol solution is generally 1 ⁇ 30%, as long as it is within its saturated concentration. When the concentration is too low, the amount of alcohol added will increase. If the concentration is too high, it may be because In winter, the temperature is low and solids are precipitated, so it is appropriate to control the concentration to 5 to 20%.
  • the mass flow ratio of the block/ammonia solution to the aldehyde or ketone is preferably 2: 1 to 5: 1, preferably 3:1 to 4: 1; an alcohol solution of an alkali metal hydroxide or an alkali metal alkoxide with an aldehyde Or the mass flow ratio of the ketone is recommended to be 0.02: 1 to 0.2: 1, preferably 0.05: 1 to 0.1: 1.
  • the molar ratio of ketone or aldehyde to block B is recommended to be 1:2 ⁇ 1:5, and the molar ratio of ketone or aldehyde to liquid ammonia is recommended to be 1 : 10 ⁇ 1:20; cocatalyst alkali metal hydroxide or alkali metal alkoxide
  • the molar ratio of the base compound to the ketone or aldehyde is preferably 0.001 to 0.1, preferably 0.003 to 0.03.
  • the raw material ketone or aldehyde, ammonia clot, and alkali solution may be fed from above the resin bed or from below, and the reaction temperature is 0 to 50 ° C, preferably 5 to 30 ° C.
  • a back pressure valve is added to the end of the reactor to control the pressure inside the reaction bed to be 0 to 3.0 MPa, preferably 1 to 2.5 MPa.
  • the liquid ammonia and the ethylene block are mixed into a certain concentration solution.
  • the liquid from the back pressure valve is concentrated by film
  • a certain amount of terminator is added, the layer is washed, and separated by a known method, and the film can be concentrated and distilled, or can be continuously rectified by a rectification column, or can be removed first by steam distillation. Boiling, and then vacuum distillation to obtain a higher purity lump alcohol.
  • the resin used as the catalytic bed is a strongly basic macroporous anion exchange resin which can prevent structural collapse due to its permanent internal pores and a high degree of crosslinking. And the macropores make the migration of substances in the particles easier, so the reaction rate is usually faster.
  • the resin type of the resin used may be D201, D202, PA312, MP500, MSA-1, A500, SBMP l, IRA900, PA308, HPA25, HPA75, A-161 or A641, and the above resins are commercially available.
  • the resin is activated by a known method before use, and the activated resin is carried away with anhydrous methanol to remove residual water in the resin, and then a metering pump is used to carry a certain amount of liquid ammonia to carry away the methanol.
  • the resin can be used continuously for 2000 hours while maintaining a sufficiently high catalytic activity.
  • the resin was rinsed with a 5% potassium hydroxide/methanol solution for 10 hours, then with methanol for 8 hours, and then with liquid ammonia for 6 hours, and the activity returned to normal.
  • the resin in the present invention can be pretreated as follows:
  • the flow rate is about 0.9 ⁇ 1.0cm/min, and the pH of the effluent is about 6;
  • the flow rate is about 0.9 ⁇ 1.0cm/min, and the pH of the effluent is about 8;
  • the liquid level is made higher than the resin layer by 1 cm to ensure that there is no bubble in the resin layer.
  • the resin in the present invention can be activated and regenerated as follows:
  • the raw material ketone or aldehyde and the block/ammonia solution were interrupted, and the resin was rinsed with a 5% potassium hydroxide/methanol solution at a rate of 2.0 L/h for 10 hours; then the resin was rinsed with methanol at a rate of 5.0 L/h. Hours; re-injection of liquid ammonia, flow rate of 1.0L / h, rinse resin for 6 hours.
  • the lower end of the vessel was fed with 6-methyl-2-heptanone at a flow rate of 6.4 L/h, and a 15 wt% potassium hydroxide/methanol solution was also introduced from the lower end of the reactor at a flow rate of 80 mL/h to control the external temperature of the reactor.
  • 18 ⁇ 20 °C, back pressure valve pressure is 1.2 ⁇ 1.3MPa, continuous operation for 2000 hours.
  • the invention can be used to catalyze the aldehyde or ketone with ethyl bromide and liquid ammonia in the strong basic macroporous anion exchange resin by the promotion of alkali metal hydroxide or alkali metal alkoxide.
  • the continuous reaction of up to 2000 hours in the fixed bed of the bed, after the space-time yield of 7.08h - 2000 hours after continuous operation the catalytic activity of the resin is still high, and the conversion rate of the raw material can still be 96% ( Above the GC area%), the selectivity is above 99% (GC area%), which not only greatly reduces the activation regeneration frequency of the resin, but also prolongs the service life of the resin, and also greatly shortens the production cycle and saves the time.
  • the energy consumption simplifies the operation, reduces the cost, and ensures the stable quality of the industrial production. Therefore, the method of the invention has important value for the industrial production of the unsaturated alcohol, and has remarkable progress and unexpected effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种制备不饱和醇的方法,其特征在于:使醛或酮与乙块、液氨在碱金属氢氧化物或碱金属烷氧基化合物的助催化下,在用强碱性大孔阴离子交换树脂作为催化床层的固定床中进行连续化反应。本发明可实现长达2000小时以上的连续化反应,在连续运行2000小时后,树脂的催化活性仍较高,仍可使原料的转化率在96%以上,选择性在99%以上,相对于现有技术不仅大大降低了树脂的活化再生频率,延长了树脂的使用寿命,而且也大大縮短了生产周期,节约了能耗,简化了操作,降低了成本,保证了工业化生产的质量稳定,因此,本发明方法对不饱和醇的工业化生产具有重要价值,具有显著性进步和出人意料的效果。

Description

一种制备不饱和醇的方法 技术领域
本发明涉及不饱和醇的一种制备方法, 尤其是涉及一种高转化率、 高选择性地连续化 制备块属不饱和醇的方法, 属于有机化学技术领域。 说
背景技术
不饱和醇是一类重要的化工和医药中间体, 例如: 3,7-二甲基 -1-辛块 -3-醇在维生素 书
A和维生素 E的合成中充当了重要角色。 至今, 该类化合物一般用 Favorskii发明的方法 通过醛或酮与乙块的縮合来制备。 例如: 中国专利 ZL99118175.1 公开了一种连续制 备块属醇化合物的方法, 所述方法是首先在没有液氨和碱金属氢氧化物的存在下使 乙块在非质子传递溶剂中饱和, 然后在 LHSV为 0.1-5.0 的条件下提供反应混合物, 在强碱性氢氧化季铵阴离子交换树脂的存在下在非质子传递溶剂中在约 10-30千克 / 厘米 2的压力和约 20-50°C的温度下使含 -CH2COCH2-基团的酮与乙块縮合。 该专利通 过实施例中实验证明: 当在 LHSV=0.2-0.3的最优反应条件下进行乙块化反应时, 不 论哪一种酮, 可使酮的转化率保持在 75-90%; 且当 LHSV=0.2时, 丙酮的转化率稳 定地保持在 75%以上的时间约为 160小时, 反应进行 160小时后, 丙酮的转化率开 始降低到 65%以下, 这时需要对树脂进行再生, 然后重新使用。 可见该专利技术的 时空产率太低, 连续块化时间仅为 160小时, 树脂需活化再生频率太高, 且所用的非质子 传递溶剂 (DMF、 DMSO或 N-甲基吡咯烷酮) 的沸点较高, 增加了产物与溶剂的分离难度 和能耗, 因此, 该专利技术不适合工业化要求。 中国专利 ZL02116738.9公开了一种制备 ct, β -不饱和高碳醇的制备方法, 所述方法是首先用 ΝΗ3/ΚΟΗ法将酮单乙块化, 然后在 氢存在下, 在含 Pd的薄层催化剂上将块属醇加氢, 最后对加氢产物进行纯化蒸馏。 该专利技术不仅操作复杂, 成本高, 且在用 NH3/KOH法将酮单乙块化时, 需在管径 较小的管式反应器中进行, 才能得到较好反应效果, 若在工业化生产中维持较小管径要求, 反应管必然很长才能提高产能, 这样管内总的压力降必然很大, 也非常不适合工业化生产。 中国专利 ZL02818739.3公开了一种制备块属不饱和醇的方法, 包括使甲醛、 醛或酮 (羰基 化合物) 与乙块在氨和强碱性大孔阴离子交换树脂存在下反应, 其中阴离子交换树脂是以 聚苯乙烯基体和季铵基团为特征的阴离子交换树脂, 该专利技术的 LHSV的产率约为 2.8711-1, 连续块化时间约为 200小时, 仍然存在时空产率太低、树脂需活化再生频率太高的 问题, 因此也同样不利于工业化生产。
由上述研究可知: 用碱性树脂作为块化反应的催化剂对工业化生产来说, 存在的最大 问题就是树脂在使用过程中, 催化活性会逐渐下降, 在相同停留时间的情况下, 原料酮或 醛剩余量逐渐增加, 一般在连续使用 100〜200小时后, 转化率会下降 20〜30%, 为了恢复 其活性需要对树脂重新活化再生, 但频繁的活化再生会对工业化生产的质量稳定及生产成 本均是非常不利的。
因此, 研究一种高转化率、 高选择性地连续化制备不饱和醇的方法成为了本领域的研 究热点, 也成为了工业领域啓需攻克的难题。 发明内容
针对现有技术存在的上述问题, 本发明的目的是提供一种可实现高转化率、 高选择性 地连续化制备不饱和醇的方法。
为实现上述发明目的, 本发明采用的技术方案如下:
一种制备不饱和醇的方法, 其特征在于: 使醛或酮与乙块、 液氨在碱金属氢氧化物或 碱金属烷氧基化合物的助催化下, 在用强碱性大孔阴离子交换树脂作为催化床层的固定床 中进行连续化反应。
作为一种优选方案, 所述方法包括如下步骤:
a)将经活化处理后的强碱性大孔阴离子交换树脂加入固定床中;
b) 反应开始先加入液氨将强碱性大孔阴离子交换树脂中的甲醇带出, 然后加入乙块 / 氨溶液, 醛或酮, 碱金属氢氧化物或碱金属烷氧基化合物的醇溶液;
c)控制反应器外温在 0〜50°C、 背压阀压力为 1.0〜3.0MPa, 进行连续化反应。
作为进一步优选方案, 所述的醛或酮的通式如式 I所示, 所述的不饱和醇的通式如 式 II所示:
Figure imgf000003_0001
式中的 和 分别独立地表示为氢原子, 含 1〜20个碳原子的直链或支链、 饱和或不饱和 的烷基, 环烷基或苯基。
作为更进一步优选方案, 所述的醛选自甲醛或乙醛, 所述的酮选自丙酮, 6-甲基 -2-庚 酮, 6,10-二甲基 ^—烷酮, 6,10,14-三甲基 -2-十五烷酮, 6,10-二甲基 ^—烯 -2-酮, 6- 甲基-庚 -5-烯 -2-酮, 6,10-二甲基 -5,9- ^一二烯 -2-酮或 6,10,14-三甲基 -5,9,13-十五碳三烯 -2- 酮。
作为进一步优选方案,所述的强碱性大孔阴离子交换树脂选自 D201, D202, PA312, MP500, MSA-1 , A500, SBMP 1 , IRA900, PA308, HPA25, HPA75, A-161或 A641 , 上 述型号的树脂均可市购获得。
作为进一步优选方案, 所述的碱金属氢氧化物或碱金属烷氧基化合物的醇溶液是指 碱金属氢氧化物或碱金属烷氧基化合物的甲醇溶液。
作为进一步优选方案, 碱金属氢氧化物或碱金属烷氧基化合物的醇溶液的质量浓度 低于所述碱金属氢氧化物或碱金属烷氧基化合物在所述醇中的饱和浓度。
作为更进一步优选方案, 所述的碱金属氢氧化物或碱金属烷氧基化合物的醇溶液的 质量浓度为 5〜20%。
作为进一步优选方案, 所述的碱金属氢氧化物选自氢氧化钠或氢氧化钾; 所述的碱 金属烷氧基化合物选自甲醇钠, 甲醇钾, 乙醇钠, 乙醇钾或叔丁醇钾。
作为更进一步优选方案, 所述的碱金属氢氧化物选自氢氧化钾; 所述的碱金属烷氧基 化合物选自甲醇钾或叔丁醇钾。
作为进一步优选方案, 所述的乙块 /氨溶液中的乙块质量浓度为 10〜30%。
作为更进一步优选方案, 所述的乙块 /氨溶液中的乙块质量浓度为 15〜25%。
作为进一步优选方案, 步骤 b)控制乙块 /氨溶液与醛或酮的质量流量比为 2:1〜5:1, 碱金属氢氧化物或碱金属烷氧基化合物的醇溶液与醛或酮的质量流量比为 0.02:1〜0.2:1。
作为更进一步优选方案, 步骤 b)控制乙块 /氨溶液与醛或酮的质量流量比为 3:1〜 4:1 , 碱金属氢氧化物或碱金属烷氧基化合物的醇溶液与醛或酮的质量流量比为 0.05:1〜 0.1:1。
作为进一步优选方案, 醛或酮与乙块的摩尔比为 1 :2〜1 :5,醛或酮与液氨的摩尔比为 1:10〜1 :20, 醛或酮与碱金属氢氧化物或碱金属烷氧基化合物的摩尔比为 1: 0.001〜1 : 0.1。
作为更进一步优选方案, 醛或酮与碱金属氢氧化物或碱金属烷氧基化合物的摩尔比 为 1 : 0.003〜1 : 0.03。
作为进一步优选方案, 步骤 c)控制反应器外温在 5〜30°C, 背压阀压力为 1.0〜 2.5MPa。
与现有技术相比, 本发明具有如下显著性进步和有益效果:
1) 本发明通过在碱金属氢氧化物或碱金属烷氧基化合物的助催化下, 可使醛或酮与乙 块、液氨在用强碱性大孔阴离子交换树脂作为催化床层的固定床中实现长达 2000小时以上 的连续化反应, 而由现有技术可知: 在未采用碱金属氢氧化物或碱金属烷氧基化合物的助 催化下, 醛或酮与乙块、 液氨在强碱性大孔阴离子交换树脂作用下只能进行不足 200小时 的连续化反应; 可见本发明方法大大降低了树脂的活化再生频率, 延长了树脂的使用寿命, 不仅简化了操作, 节约了成本, 而且保证了工业化生产的质量稳定;
2) 采用本发明技术, 还可实现在时空产率达 7.08h- 连续运行 2000小时后, 树脂的 催化活性仍较高, 仍可使原料的转化率在 96% (GC面积%) 以上, 选择性在 99% (GC面积 %) 以上, 这对工业化生产来说是非常有利的, 可大大縮短生产周期和节约能耗;
总之, 本发明相对于现有技术具有显著性进步和出人意料的效果, 对不饱和醇的工业 化生产具有重要价值。 具体实施方式
由于用碱性树脂作为块化反应的催化剂, 存在树脂在使用过程中, 催化活性会逐渐下 降, 在相同停留时间的情况下, 原料酮或醛剩余量逐渐增加, 一般在连续使用 100〜200小 时后, 转化率会下降 20〜30%, 为了恢复其活性需要对树脂重新活化再生, 但频繁的活化 再生会对工业化生产的质量稳定及生产成本均是非常不利的。
本发明为了解决上述问题, 提供了一种制备不饱和醇的方法, 使醛或酮与乙块、 液氨 在碱金属氢氧化物或碱金属烷氧基化合物的助催化下, 在用强碱性大孔阴离子交换树脂作 为催化床层的固定床中进行连续化反应。
作为一种优选方案, 所述方法包括如下步骤:
a)将经活化处理后的强碱性大孔阴离子交换树脂加入固定床中;
b) 反应开始先加入液氨将强碱性大孔阴离子交换树脂中的甲醇带出, 然后加入乙块 / 氨溶液, 醛或酮, 碱金属氢氧化物或碱金属烷氧基化合物的醇溶液;
c)控制反应器外温在 0〜50°C、 背压阀压力为 1.0〜3.0MPa, 进行连续化反应。 所述的醛或酮的通式如式 I所示, 所述的不饱和醇的通式如式 II所示:
R
Figure imgf000006_0001
式中的 和 分别独立地表示为氢原子, 含 1〜20个碳原子的直链或支链、 饱和或不饱和 的烷基, 环烷基或苯基。所述的醛优先选自甲醛或乙醛, 所述的酮优先选自丙酮, 6-甲基 -2- 庚酮, 6,10-二甲基 ^—烷酮, 6,10,14-三甲基 -2-十五烷酮, 6,10-二甲基 ^—烯 -2-酮, 6-甲基-庚 -5-烯 -2-酮, 6,10-二甲基 -5,9H ^—二烯 -2-酮或 6,10,14-三甲基 -5,9,13-十五碳三烯 -2- 酮。
碱金属氢氧化物可以是氢氧化钠也可以是氢氧化钾, 而氢氧化钾的活性更高些, 一般 是配成溶液使用, 以方便连续化进料。 碱金属氢氧化物可以配成水溶液, 也可以配成醇溶 液, 若配成水溶液使用, 会对氨的回收造成一定影响。 同时, 高碳原子数的酮或醛和氨块 溶液与碱金属氢氧化物水溶液反应会有少量不溶物产生, 严重时会堵塞管道; 配成醇溶液 后无此现象发生, 因此, 优选为醇溶液。 另外, 用碱金属烷氧基化合物的醇溶液同样也可 以延长树脂的催化寿命, 如甲醇钠、 甲醇钾、 乙醇钠、 乙醇钾和叔丁醇钾的醇溶液, 其中 甲醇钾和叔丁醇钾的甲醇溶液是更优选的。
氢氧化钠或氢氧化钾醇溶液的质量浓度一般为 1〜30%, 只要在其饱和浓度之内即可, 浓度太低时加入的醇的量就会增加, 浓度太高则有可能会因为冬天温度较低而析出固体, 因此将浓度控制在 5〜20%比较合适。
乙块 /氨溶液与醛或酮的质量流量比推荐为 2: 1〜5: 1, 优选为 3:1〜4: 1; 碱金属氢氧化 物或碱金属烷氧基化合物的醇溶液与醛或酮的质量流量比推荐为 0.02: 1〜0.2: 1, 优选为 0.05: 1〜0.1 : 1。
酮或醛与乙块的摩尔比推荐为 1 :2〜1 :5, 酮或醛与液氨的摩尔比推荐为 1 :10〜1 :20; 助 催化剂碱金属氢氧化物或碱金属烷氧基化合物与酮或醛的摩尔比推荐为 0.001〜0.1,优选为 0.003〜0.03。
原料酮或醛、 氨块液、 碱溶液可以从树脂床层的上方进料也可以从下方进料, 反应温 度为 0〜50°C, 优选为 5〜30°C。 反应器的末端加背压阀, 控制反应床层内部的压力为 0〜 3.0MPa, 优选为 l〜2.5MPa。
反应开始前先将液氨和乙块配成一定浓度的溶液。 从背压阀出来的料液经过薄膜浓縮 回收氨后, 再加入一定量的终止剂, 洗涤分层, 通过公知的方法进行分离, 可以用薄膜浓 縮蒸馏, 也可以用精馏塔连续精馏, 还可以用水蒸气蒸馏法先脱掉高沸, 再减压精馏得到 纯度较高的块醇物。
作为催化床层的树脂选用强碱性大孔阴离子交换树脂, 可因其具有永久性内部孔洞和 较高程度的交联, 可防止结构坍塌。 且大孔使得颗粒内物质迁移变得较为容易, 因此通常 反应速率较快。所用树脂的商品型号可选为 D201, D202, PA312, MP500, MSA-1 , A500, SBMP l , IRA900, PA308, HPA25, HPA75, A-161或 A641 , 上述树脂均可以市购获得。
树脂在使用前先用公知的方法进行活化, 活化好的树脂用无水甲醇将树脂内残留的水 分带走, 然后再用计量泵流入一定量的液氨将甲醇带走。 用本发明的方法, 树脂可以连续 使用 2000小时还能维持足够高的催化活性。 所述树脂用 5%的氢氧化钾 /甲醇溶液冲洗 10 小时, 然后再用甲醇冲洗 8小时, 再流入液氨 6小时, 活性即可恢复正常。
本发明中的树脂可按如下方法进行预处理:
①在一带有微孔砂芯的玻璃交换柱中加入树脂, 用 1N氢氧化钠缓慢流过, 流速约为 0.18〜0.20cm/min, 用量约为树脂体积的 3〜4倍, 以每小时 1.5倍床层体积流过;
②用去离子水冲洗, 流速约为 0.9〜1.0cm/min, 洗至出水 pH为 8左右;
③用 1N 盐酸流过树脂, 用量及流速与①相同;
④用去离子水冲洗, 流速约为 0.9〜1.0cm/min, 至出水 pH为 6左右;
⑤用 1N氢氧化钠缓慢流过树脂,流速约为 0.18〜0.20cm/min,用量约为树脂体积的 3〜 4倍, 以每小时 1.5倍床层体积流过;
⑥用去离子水冲洗, 流速约为 0.9〜1.0cm/min, 至出水 pH为 8左右;
⑦用无水甲醇过柱洗涤, 流速约为 0.9〜1.0cm/min, 用量为树脂床层体积的 4〜5倍;
⑧在每次转换试剂时, 使液面高出树脂层 lcm, 以保证树脂层中无气泡。
本发明中的树脂可按如下方法进行活化再生:
中断通入原料酮或醛和乙块 /氨溶液, 用 5%的氢氧化钾 /甲醇溶液以 2.0L/h的速率冲洗 树脂 10小时;然后再用甲醇以 5.0L/h的速率冲洗树脂 8小时;再流入液氨,流量为 1.0L/h, 冲洗树脂 6小时即可。
下面结合实施例和对比例对本发明做进一步详细、 完整地说明:
实施例
将按上述方法活化过的树脂 5.0升加入长为 3米, 内径为 50毫米的不锈钢固定床 (体 积为 5.89升)中, 反应开始先流入液氨将甲醇带出, 液氨量为 23升, 然后从固定床的下端 流入 20wt%的乙块 /氨溶液, 流量为 29L/h, 同时从反应器的下端以 6.4L/h的流量流入 6-甲 基 -2-庚酮, 15wt%的氢氧化钾 /甲醇溶液以 80mL/h的流量也从反应器的下端进入, 控制反 应器外温在 18〜20°C, 背压阀压力为 1.2〜1.3MPa, 连续运行 2000小时。
经分析:
连续运行 500小时后, 产物的 GC纯度如下: 3,7-二甲基 -1-辛块 -3-醇为 96.23%, 6-甲基 -2-庚酮为 3.25%, 二醇物为 0.14%, 对应的时空产率 LHSV=7.08h- 在时空产率 LHSV仍保持不变的情况下连续运行 1000小时后,产物的 GC纯度如下: 3,7-二甲基小辛块 -3-醇为 95.61%, 6-甲基 -2-庚酮为 3.86%, 二醇物为 0.11%;
在时空产率仍保持不变的情况下连续运行 2000小时后, 产物的 GC纯度如下: 3,7- 二甲基小辛块—3-醇为 94.82%, 6-甲基 -2-庚酮为 4.36%, 二醇物为 0.08%;
由上实验结果可见: 采用本发明方法, 在连续运行 2000小时后, 树脂的催化活性仍较 高, 原料的转化率仍在 96% (GC面积%) 以上, 选择性在 99% (GC面积%) 以上。
对比例 (不加助催化剂)
将按上述方法活化过的树脂 5.0升加入长为 3米, 内径为 50毫米的不锈钢固定床 (体 积为 5.89升)中, 反应开始先流入液氨将甲醇带出, 液氨量为 23升, 然后从固定床的下端 流入 20wt%的乙块 /氨溶液, 流量为 10.2L/h, 同时从反应器的下端以 2.25L/h的流量流入 6- 甲基 -2-庚酮,不加助催化剂溶液,控制反应器外温在 18〜20°C,背压阀压力为 1.2〜1.3MPa, 连续运行 1000小时。
经分析:
连续运行 200小时后, 产物的 GC纯度如下: 3,7-二甲基 -1-辛块 -3-醇为 96.35%, 6-甲基 -2-庚酮为 2.87%, 二醇物为 0.26%, 对应的时空产率 LHSV=2.49h- 在时空产率 LHSV仍保持不变的情况下连续运行 400小时后, 产物的 GC纯度如下: 3,7-二甲基小辛块 -3-醇为 91.86%, 6-甲基 -2-庚酮为 6.72%, 二醇物为 0.22%;
连续运行 600小时后, 产物的 GC纯度如下: 3,7-二甲基 -1-辛块 -3-醇为 85.92%, 6-甲 基 -2-庚酮为 12.85%, 二醇物为 0.18%;
连续运行 800小时后, 产物的 GC纯度如下: 3,7-二甲基 -1-辛块 -3-醇为 79.87%, 6-甲 基 -2-庚酮为 18.56%, 二醇物为 0.12%;
连续运行 1000小时后, 产物的 GC纯度如下: 3,7-二甲基 -1-辛块 -3-醇为 73.12%, 6-甲 基 -2-庚酮为 25.42%, 二醇物为 0.10%;
综上所述可见: 本发明通过在碱金属氢氧化物或碱金属烷氧基化合物的助催化下, 可 使醛或酮与乙块、 液氨在用强碱性大孔阴离子交换树脂作为催化床层的固定床中实现长达 2000小时以上的连续化反应, 在时空产率达 7.08h- 连续运行 2000小时后, 树脂的催化活 性仍较高, 仍可使原料的转化率在 96% ( GC面积%) 以上, 选择性在 99% (GC面积%) 以 上, 相对于现有技术不仅大大降低了树脂的活化再生频率, 延长了树脂的使用寿命, 而且 也大大縮短了生产周期, 节约了能耗, 简化了操作, 降低了成本, 保证了工业化生产的质 量稳定, 因此, 本发明方法对不饱和醇的工业化生产具有重要价值, 具有显著性进步和出 人意料的效果。
最后有必要在此说明的是: 以上实施例只用于对本发明的技术方案作进一步详细地说 明, 不能理解为对本发明保护范围的限制, 本领域的技术人员根据本发明的上述内容作出 的一些非本质的改进和调整均属于本发明的保护范围。

Claims

权 利 要 求 书
1、 一种制备不饱和醇的方法, 其特征在于: 使醛或酮与乙块、 液氨在碱金属氢氧化物 或碱金属烷氧基化合物的助催化下, 在用强碱性大孔阴离子交换树脂作为催化床层的固定 床中进行连续化反应。
2、 根据权利要求 1 所述的制备不饱和醇的方法, 其特征在于, 所述方法包括如下 步骤:
a) 将经活化处理后的强碱性大孔阴离子交换树脂加入固定床中;
b) 反应开始先加入液氨将强碱性大孔阴离子交换树脂中的甲醇带出, 然后加入乙块 / 氨溶液, 醛或酮, 碱金属氢氧化物或碱金属烷氧基化合物的醇溶液;
c) 控制反应器外温在 0〜50°C、 背压阀压力为 1.0〜3.0MPa, 进行连续化反应。
3、 根据权利要求 1或 2所述的制备不饱和醇的方法, 其特征在于, 所述的醛或酮的 通式如式 I所示, 所述的不饱和醇的通式如式 II所示:
Figure imgf000010_0001
式中的 和1 2分别独立地表示为氢原子, 含 1〜20个碳原子的直链或支链、 饱和或不饱和 的烷基, 环烷基或苯基。
4、 根据权利要求 3所述的制备不饱和醇的方法, 其特征在于: 所述的醛选自甲醛或 乙醛; 所述的酮选自丙酮, 6-甲基 -2-庚酮, 6,10-二甲基 -2H ^—烷酮, 6,10,14-三甲基 -2-十五 烷酮, 6,10-二甲基 ^—烯 -2-酮, 6-甲基-庚 -5-烯 -2-酮, 6,10-二甲基 -5,9- ^—二烯 -2-酮或 6,10,14-三甲基 -5,9,13-十五碳三烯 -2-酮。
5、根据权利要求 1或 2所述的制备不饱和醇的方法, 其特征在于: 所述的强碱性大 孔阴离子交换树脂选自 D201, D202, PA312, MP500, MSA-1 , A500, SBMP 1 , IRA900, PA308, HPA25, HPA75, A-161或 A641。
6、 根据权利要求 1或 2所述的制备不饱和醇的方法, 其特征在于: 所述的碱金属氢 氧化物选自氢氧化钠或氢氧化钾; 所述的碱金属烷氧基化合物选自甲醇钠, 甲醇钾, 乙醇 钠, 乙醇钾或叔丁醇钾。
7、 根据权利要求 2所述的制备不饱和醇的方法, 其特征在于: 所述的碱金属氢氧化 物或碱金属烷氧基化合物的醇溶液是指碱金属氢氧化物或碱金属烷氧基化合物的甲醇溶 液。
8、 根据权利要求 2 所述的制备不饱和醇的方法, 其特征在于: 所述的乙块 /氨溶液 中的乙块质量浓度为 10〜30%。
9、 根据权利要求 2所述的制备不饱和醇的方法, 其特征在于: 步骤 b)控制乙块 /氨 溶液与醛或酮的质量流量比为 2:1〜5:1,碱金属氢氧化物或碱金属烷氧基化合物的醇溶液与 醛或酮的质量流量比为 0.02:1〜0.2:1。
10、 根据权利要求 2 所述的制备不饱和醇的方法, 其特征在于: 醛或酮与乙块的摩 尔比为 1:2〜1:5, 醛或酮与液氨的摩尔比为 1:10〜1:20, 醛或酮与碱金属氢氧化物或碱金属 烷氧基化合物的摩尔比为 1: 0.001〜1: 0.1。
PCT/CN2012/087953 2012-12-27 2012-12-30 一种制备不饱和醇的方法 WO2014101152A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210581456.2 2012-12-27
CN201210581456.2A CN103896731B (zh) 2012-12-27 2012-12-27 一种制备不饱和醇的方法

Publications (1)

Publication Number Publication Date
WO2014101152A1 true WO2014101152A1 (zh) 2014-07-03

Family

ID=50988361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087953 WO2014101152A1 (zh) 2012-12-27 2012-12-30 一种制备不饱和醇的方法

Country Status (2)

Country Link
CN (1) CN103896731B (zh)
WO (1) WO2014101152A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095331A (zh) * 2018-01-29 2019-08-06 中国辐射防护研究院 一种未使用树脂的实验用预处理装置和预处理方法
CN110540489B (zh) * 2019-09-17 2022-09-02 凯莱英生命科学技术(天津)有限公司 乙炔与酮类化合物进行加成反应的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3801653A (en) * 1970-04-21 1974-04-02 Basf Ag Manufacture of acetylene monoalcohols
CN1242968C (zh) * 2001-09-28 2006-02-22 Dsmip资产有限公司 乙炔化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1852410B1 (en) * 2006-04-25 2009-01-21 DSM IP Assets B.V. Transport of ethyne in form of alpha-alkynols as ethyne precursors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3801653A (en) * 1970-04-21 1974-04-02 Basf Ag Manufacture of acetylene monoalcohols
CN1242968C (zh) * 2001-09-28 2006-02-22 Dsmip资产有限公司 乙炔化方法

Also Published As

Publication number Publication date
CN103896731B (zh) 2016-09-14
CN103896731A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
CN102285891B (zh) 一种由芳香硝基化合物催化加氢制备芳胺的方法
CN104355975B (zh) 一种丙酮两步法合成甲基异丁基酮的方法
WO2020140414A1 (zh) 一种不饱和酮的制备方法
UA124171C2 (uk) Спосіб епоксидування пропену
TW201200494A (en) Process for preparing neopentyl glycol
CN110143849B (zh) 一种炔醇的制备方法
WO2014101152A1 (zh) 一种制备不饱和醇的方法
JP2007517882A (ja) 1,3−ブチレングリコールを製造するための方法
JP4464131B2 (ja) エチニル化法
CN102093180B (zh) 一种连续生产不饱和醛化合物的方法
CN103724172B (zh) 二丙酮醇的合成工艺
CN105622336A (zh) 一种制备1,4-丁炔二醇的方法
CN101565361B (zh) 一种催化氧气氧化醇制备羰基化合物的方法
KR102273086B1 (ko) 2,3-부탄다이올을 제조하기 위한 방법
CN103450010B (zh) 一种制备环己基甲酸的方法
WO2018094691A1 (zh) 一种丙烯酸和丙烯酸甲酯的制备方法
CN114632543A (zh) 一种乙醇氨化脱氢制备乙腈催化剂及其制备方法、应用
CN112574016A (zh) 一种苯丙醛合成α-甲基肉桂醛的方法
CN110498731A (zh) 甲基环己烷氧化联产环己甲醛、环己甲醇及环己甲酸的方法及装置
CN109438200A (zh) 金属催化剂制备3,3-二甲基丁醛的合成工艺
CN108299199A (zh) 一种可食用香料香兰素的制备方法
CN111995566B (zh) 一种2-羟乙基吡啶的合成方法
CN112479871B (zh) 一种由甲基庚烯酮合成香叶酸的方法
CN212335075U (zh) 一种高选择性制备1,3-丁二醇的系统
EP2610237B1 (en) Process to produce branched unsaturated aldehydes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890733

Country of ref document: EP

Kind code of ref document: A1