WO2014101009A1 - 信道参数估计方法及装置、评估信道传播环境的方法及装置 - Google Patents

信道参数估计方法及装置、评估信道传播环境的方法及装置 Download PDF

Info

Publication number
WO2014101009A1
WO2014101009A1 PCT/CN2012/087556 CN2012087556W WO2014101009A1 WO 2014101009 A1 WO2014101009 A1 WO 2014101009A1 CN 2012087556 W CN2012087556 W CN 2012087556W WO 2014101009 A1 WO2014101009 A1 WO 2014101009A1
Authority
WO
WIPO (PCT)
Prior art keywords
snapshot
channel
delay
power
paths
Prior art date
Application number
PCT/CN2012/087556
Other languages
English (en)
French (fr)
Inventor
李雪
种稚萌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/087556 priority Critical patent/WO2014101009A1/zh
Priority to CN201280027882.XA priority patent/CN103703730B/zh
Publication of WO2014101009A1 publication Critical patent/WO2014101009A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • H04L25/0216Channel estimation of impulse response with estimation of channel length

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel parameter estimation method and apparatus, and a method and apparatus for evaluating a channel propagation environment.
  • the information contained in the wireless propagation channel includes: the number of paths, the delay of each path, the wave level and pitch angle, the wave level and pitch angle, the Doppler, and the polarization information.
  • the channel impulse response can be obtained by using the channel measurement device, and the channel parameters can be obtained by the path number setting and the channel parameter estimation algorithm.
  • the expected maximum value of the generalized subspace alternate in the prior art SAGE, Space Alternating Generalized In the Expectation-maximization algorithm, the setting of the path number is only an empirical value, and the number of paths to be estimated for each snapshot is the same, and it is not possible to adaptively adjust according to changes in the scene.
  • the delay response according to the channel delay response, the delay response in a certain dynamic range is divided into multiple multipath packets, and a certain number of multipaths are estimated in these multipath packets to obtain a relatively comprehensive Channel estimation parameters.
  • the inventor of the present application found in the long-term research and development that the above-mentioned prior art cannot set the number of paths to correspond to the changed snapshot, and the estimated path is concentrated around the time delay with the highest power or around several time delay points. Affects the accuracy of the estimate and the convergence speed is slow.
  • the technical problem to be solved by the present invention is to provide a channel parameter estimation method and apparatus, and a method and a device for evaluating a channel propagation environment, which can improve the accuracy and convergence speed of channel parameter estimation.
  • a first aspect of the present invention provides a channel parameter estimation method, comprising determining the snapshot according to a delay point corresponding to a power peak within a preset range that has been found in the delay power spectrum data of the same snapshot.
  • the estimated number of paths required according to the determined number of paths required for the snapshot, channel parameter estimation algorithm is used to estimate channel parameters for each path of the estimated number of paths required by the snapshot Until the channel parameters of each path of all snapshots of the channel are estimated.
  • the preset range is a preset delay range or a preset power range.
  • the determining is based on a preset range found in the delay power spectrum data of the same snapshot
  • the time delay point corresponding to the power peak, before the step of determining the estimated number of paths required by the snapshot includes: obtaining average delay power spectrum data of all subchannels under the same snapshot; according to the obtained location Deriving the power spectrum data, obtaining the maximum power under the snapshot or the maximum power and the average noise level under the snapshot; according to the maximum power of the snapshot or the maximum power and average of the snapshot And determining, by the noise level, the preset power range; searching, in the time delay power spectrum data, a delay point corresponding to a power peak in the preset power range.
  • the time delay point is determined by determining the number of paths required for the delay point corresponding to the power peak to be a preset number.
  • a second aspect of the present invention provides a method for evaluating a channel propagation environment, comprising: determining, according to a delay point corresponding to a power peak within a preset range that has been found in a time-lapse power spectrum data of the same snapshot The number of paths required for the snapshot; the path number estimation algorithm is used to determine each path of the estimated number of paths required by the snapshot according to the determined number of paths required for the snapshot Performing channel parameter estimation until estimating channel parameters of each path of all snapshots of the channel; performing statistics on channel parameters of each path of all snapshots obtained by the estimation, obtaining statistical results of the channel, to evaluate the The propagation environment of the channel.
  • a third aspect of the present invention provides a channel parameter estimating apparatus, the apparatus comprising: a first determining module and a parameter estimating module; and the first determining module is configured to use the delay power spectrum data in the same snapshot
  • the time delay point corresponding to the power peak in the preset range is determined, the estimated number of paths required for the snapshot is determined, and the estimated number of paths required for the snapshot is sent to the parameter estimation module;
  • the parameter estimation module is configured to receive the estimated number of paths required by the snapshot sent by the first determining module, and use a channel parameter estimation algorithm according to the determined number of paths to be determined by the snapshot.
  • the channel parameter estimation is performed for each of the required number of paths under the snapshot until the channel parameters of each path of all snapshots of the channel are estimated.
  • the preset range is a preset delay range or a preset power range.
  • the device further includes: an obtaining module, an obtaining module, a second determining module, and a searching module;
  • the module is configured to obtain average delay power spectrum data of all subchannels in the same snapshot, and send the delay power spectrum data to the obtaining module;
  • the obtaining module is configured to receive, send by the acquiring module Delay power spectrum data, according to the obtained delay power spectrum data, obtaining maximum power under the snapshot or maximum power and average noise level under the snapshot, and transmitting to the second determining module a maximum power of the snapshot or a maximum power and an average noise level of the snapshot;
  • the second determining module is configured to receive a maximum power or the snapshot of the snapshot sent by the obtaining module The maximum power and the average noise level, determining the preset power range according to the maximum power under the snapshot or the maximum power and the average noise level of the snapshot, and
  • the module sends the preset power range;
  • the searching module is configured to receive a preset power range sent by the second
  • the apparatus further includes a third Determining a module, wherein the third determining module is configured to: in the delay power spectrum data of the same snapshot, distinguish two multipaths of a preset distance in time delay, according to the same snapshot The delay point corresponding to the power peak in the preset range that has been found in the delay power spectrum data, and the estimated number of paths required to determine the delay point corresponding to the power peak is a preset number.
  • a fourth aspect of the present invention provides an apparatus for evaluating a channel propagation environment, the apparatus comprising: a first determining module, a parameter estimating module, and a statistical result obtaining module; and the first determining module is configured to be based on the same snapshot Determining a time delay point corresponding to a power peak within a preset range that has been found in the power spectrum data, determining an estimated number of paths required for the snapshot, and determining an estimated number of paths required by the snapshot
  • the parameter estimation module sends: the parameter estimation module is configured to receive the estimated number of paths required by the snapshot sent by the first determining module, and use the channel parameter according to the determined number of paths required for the snapshot.
  • the estimation algorithm performs channel parameter estimation for each of the required diameters of the snapshot, until the channel parameters of each path of all snapshots of the channel are estimated, and the method is sent to the statistical result obtaining module.
  • a fifth aspect of the present invention provides a channel parameter estimating apparatus, the apparatus comprising a processor and a memory coupled to the processor; the memory storing time-lapse power spectrum data of all snapshots in the channel, the same fast Taking time delay point information corresponding to the power peak within the preset range found in the delay power spectrum data and a channel parameter estimation algorithm program; the processor is configured to use the delay power spectrum data in the same snapshot Determining a time delay point corresponding to a power peak within a preset range, determining an estimated number of paths required by the snapshot, and storing the path number in a memory; the processor is further configured to perform according to the Determining the estimated number of paths required by the snapshot, using a channel parameter estimation algorithm to estimate channel parameters for each of the required diameters of the snapshot, until each channel of the channel is estimated to be obtained The channel parameters of the path and store the channel parameters in memory.
  • the present invention determines the estimated time delay point according to the delay point corresponding to the power peak found in the same power snapshot delay power spectrum data.
  • the number of paths thereby determining the number of paths required for the snapshot, and determining the number of paths that the snapshot needs to be estimated, and adaptively determining the number of paths to be estimated according to the specific data of each snapshot; using channel parameters
  • the estimation algorithm performs channel parameter estimation for each of the required diameters of the snapshot. In this way, it is possible to set an appropriate number of paths for each snapshot, thereby improving the accuracy and convergence speed of channel parameter estimation.
  • FIG. 1 is a flow chart of an embodiment of a channel parameter estimation method according to the present invention.
  • Figure 2 is a time delay power spectrum of a snapshot in the channel
  • FIG. 3 is a flowchart of an embodiment of a channel parameter estimation method according to the present invention.
  • FIG. 4 is a flowchart of still another embodiment of a channel parameter estimation method according to the present invention.
  • FIG. 5 is a flow chart of an embodiment of a method for evaluating a channel propagation environment of the present invention
  • FIG. 6 is a schematic structural diagram of an embodiment of a channel parameter estimating apparatus according to the present invention.
  • FIG. 7 is a schematic structural diagram of another embodiment of a channel parameter estimating apparatus according to the present invention.
  • FIG. 8 is a schematic structural diagram of still another embodiment of a channel parameter estimating apparatus according to the present invention.
  • FIG. 9 is a schematic structural diagram of an apparatus for evaluating a channel propagation environment according to the present invention.
  • Figure 10 is a block diagram showing another embodiment of the channel parameter estimating apparatus of the present invention.
  • FIG. 1 is a flowchart of an implementation manner of a channel parameter estimation method according to the present invention, including:
  • Step S101 Determine the estimated number of paths required for the snapshot according to the delay point corresponding to the power peak within the preset range that has been found in the delay power spectrum data of the same snapshot.
  • a snapshot is a unit of segmentation analysis of measured data in the time domain.
  • the channel's characteristic parameters are consistent, and the channel impulse response remains stable.
  • multipath refers to the propagation of radio signals from a transmitting antenna to a receiving antenna through multiple paths, such as the scattering of air waves by the atmosphere, the reflection and refraction of the ionosphere by radio waves, and the surface objects of mountains, buildings, etc. Reflection can cause multipath propagation.
  • the multipath effect refers to the interference delay effect caused by the multipath transmission phenomenon in the radio wave propagation channel.
  • Latency is the time it takes for a message or packet to travel from one end of the network to the other.
  • Each propagation path changes with time, and the relationship between the component fields participating in the interference changes with time, thereby causing a random variation of the synthesized wave field, thereby forming a fading of the total receiving field.
  • the mobile channel Due to the multipath of the mobile communication channel, the motion of the mobile station and the different scattering environments, the mobile channel causes dispersion in time, frequency and angle, and the delay power spectrum (PDP, Power) Delay Profile) is used to describe the dispersion of the channel over time, that is, to describe the change relationship of power delay. See Figure 2, which is the time-delay power spectrum of a snapshot in the channel.
  • the preset range find the power peak in the delay power spectrum data of the same snapshot, so that the delay point corresponding to the power peak can be found, and the estimated number of paths required for each delay point can be determined, thereby The number of paths required for the snapshot is further determined, that is, the number of paths required for the snapshot is equal to the sum of the estimated number of paths required for each delay point.
  • the preset range includes but is not limited to a preset delay range or a preset power range. For example, if a preset delay range is given in the delay power spectrum, the delay point corresponding to the power peak in the preset delay range can be found; the preset power range is given in the delay power spectrum. , the delay point corresponding to the power peak in the preset power range can be found.
  • the power peak has more than one delay point in the preset range, and the probability of focusing on the vicinity of the maximum power peak is small, so that the estimated diameter required for the snapshot is not completely concentrated in the maximum power peak. In the vicinity, the occurrence of pseudo-paths can be greatly reduced, and the accuracy of channel estimation is increased.
  • Step S102 Perform channel parameter estimation for each path of the required estimated number of paths under the snapshot according to the determined number of paths required for the snapshot, and use the channel parameter estimation algorithm to estimate all the snapshots of the channel. Channel parameters for each path.
  • the channel parameter estimation algorithm may perform channel parameter estimation for each of the required diameters of the snapshot.
  • Channel parameter estimation algorithms include, but are not limited to, SAGE algorithm, initialization, and search for improved SAGE algorithms (ISIS, Initialization) And Searching Improved SAGE).
  • ISIS Initialization
  • Searching Improved SAGE The use of the above channel parameter estimation algorithm for channel parameter estimation of each path is a prior art, and thus will not be described herein.
  • Channel parameters include: delay, angle, Doppler, polarization matrix, and so on.
  • the channel parameters of each path of all snapshots of the channel are obtained.
  • the time delay power spectrum data of each snapshot is different.
  • the delay points corresponding to the power peaks in the preset range found by each snapshot are not the same.
  • the estimated number of paths required for each snapshot is also different. Therefore, the embodiment of the present invention can give an appropriate estimated path number for each snapshot, that is, an adaptive adjustment can be made to the estimation of the number of paths according to the change of the scene.
  • the present invention determines the number of paths to be estimated for the delay point based on the time delay point corresponding to the power peak found in the delay power spectrum data of the same snapshot, thereby determining the estimated number of paths required for the snapshot.
  • the method for determining the number of paths that the snapshot needs to estimate may adaptively determine the number of paths to be estimated according to the specific data of each snapshot; and using the channel parameter estimation algorithm to estimate the number of paths required for the snapshot. Channel parameters are estimated for each path. In this way, it is possible to set an appropriate number of paths for each snapshot, thereby improving the accuracy and convergence speed of channel parameter estimation.
  • FIG. 3 is a flowchart of another embodiment of a channel parameter estimation method according to the present invention, including:
  • Step S201 Acquire average time delay power spectrum data of all subchannels under the same snapshot.
  • the transceiver end usually uses multi-element antennas, which poll the transmit and receive signals in a time-division manner, that is, only one antenna transmits a signal at a certain time to receive signals and becomes a sub-channel.
  • the transmitting antenna has 7 receiving antennas, and the same snapshot includes 3 antennas in turn.
  • the data is added and then divided by 336 to obtain the average delay power spectrum data for all subchannels under the snapshot.
  • Step S202 Obtain the maximum power under the snapshot or the maximum power and the average noise level of the snapshot according to the acquired delay power spectrum data.
  • the maximum power under the snapshot can be found; if the noise region is selected, the average noise level under the snapshot can also be obtained.
  • the noise area is selected to be between -80 and -72 decibels, and all the power values of the area are added, and then divided by the number of data, which is the average noise level under the snapshot.
  • Step S203 Determine a preset power range according to the maximum power under the snapshot or the maximum power and the average noise level under the snapshot.
  • the obtained quickly captured power P max is the maximum, determined that the preset power range, for example: preset power P max in the range between 20dB and subtracting P max, or predetermined power range to 15dB subtracting P max P max of And so on.
  • the preset power range is between P noise plus 3 dB to P max , or the preset power range is at P Noise plus 5dB to P max and so on.
  • Step S204 Find the delay point corresponding to the power peak in the preset power range in the delay power spectrum data.
  • the average delay power spectrum data of all the subchannels in the snapshot can be used to find the delay point corresponding to the power peak in the preset power range.
  • step S201 to step S204 are to search for a delay point within a preset power range, and may also search for a time peak corresponding to the power peak data in the average delay power spectrum data of the subchannel under the snapshot according to the preset delay range. Delay. Or you can find the delay point within the preset range according to other conditions, which will not be described here.
  • Step S205 Determine the estimated number of paths required for the snapshot according to the delay point corresponding to the power peak within the preset range that has been found in the delay power spectrum data of the same snapshot.
  • the preset range find the power peak in the delay power spectrum data of the same snapshot, so that the delay point corresponding to the power peak can be found, and the estimated number of paths required for each delay point can be determined, thereby The number of paths required for the snapshot is further determined, that is, the number of paths required for the snapshot is equal to the sum of the estimated number of paths required for each delay point.
  • the preset range includes but is not limited to a preset delay range or a preset power range.
  • Step S206 Perform channel parameter estimation for each path of the required number of paths under the snapshot according to the determined number of paths required by the determined snapshot, until the channel is estimated to obtain all the snapshots of the channel.
  • the channel parameters of the path are
  • the channel parameter estimation algorithm may perform channel parameter estimation for each of the required diameters of the snapshot.
  • Channel parameter estimation algorithms include, but are not limited to, SAGE algorithm, initialization, and search for improved SAGE algorithms (ISIS, Initialization) And Searching Improved SAGE).
  • ISIS Initialization
  • Searching Improved SAGE The use of the above channel parameter estimation algorithm for channel parameter estimation of each path is a prior art, and thus will not be described herein.
  • the channel parameters of each path of all snapshots of the channel are obtained.
  • the time delay power spectrum data of each snapshot is different.
  • the delay points corresponding to the power peaks in the preset range found by each snapshot are not the same.
  • the estimated number of paths required for each snapshot is also different. Therefore, the embodiment of the present invention can give an appropriate estimated path number for each snapshot, that is, an adaptive adjustment can be made to the estimation of the number of paths according to the change of the scene.
  • the present invention determines the number of paths required for the delay point based on the delay point corresponding to the power peak found in the delay power spectrum data of the same snapshot, thereby determining the estimated path required for the snapshot.
  • Number the way to determine the number of paths that the snapshot needs to be estimated, the number of paths to be estimated can be adaptively determined according to the specific data of each snapshot; the number of paths required for the snapshot is determined by the channel parameter estimation algorithm. Channel parameters are estimated for each of the paths. In this way, it is possible to set an appropriate number of paths for each snapshot, thereby improving the accuracy and convergence speed of channel parameter estimation.
  • FIG. 4 is a flowchart of still another embodiment of a channel parameter estimation method according to the present invention, including:
  • Step S301 In the delay power spectrum data of the same snapshot, if the two multipaths of the preset preset distance are distinguished on the delay, according to the delay spectrum power spectrum data in the same snapshot
  • the time delay point corresponding to the power peak in the preset range, and the estimated number of paths required to determine the delay point corresponding to the power peak is a preset number.
  • the two multipaths of the preset distance are distinguished on the delay, the power peaks in the preset range that have been found in the delay power spectrum data of the same snapshot are used.
  • the estimated number of paths required to determine the delay point corresponding to the power peak is a preset number.
  • the base station In the environment of urban macro cell and suburban macro cell, the base station has a high position, the surrounding environment is relatively empty, and there are few scatterers.
  • the channel measurement device with relatively large bandwidth is used, for example, when the channel is measured by a channel measurement device with 100M bandwidth.
  • two multipaths with a difference of 3 meters can be distinguished in the delay.
  • each found delay point is only A path needs to be estimated, which can prevent the estimation of the pseudo path, improve the accuracy of the channel estimation, and reduce the time of channel parameter estimation, and can be used in real-time online channel data analysis.
  • Step S302 Determine the estimated number of paths required for the snapshot according to the delay point corresponding to the power peak within the preset range that has been found in the delay power spectrum data of the same snapshot.
  • the power peak in the delay power spectrum data of the same snapshot is found, so that the delay point corresponding to the power peak can be found, because the estimated diameter required for each delay point is determined in step S301.
  • the number is a predetermined number, so that the number of paths required for the snapshot can be further determined, that is, the number of paths required for the snapshot is equal to the sum of the predetermined number of paths required for each delay point.
  • the preset range includes but is not limited to a preset delay range or a preset power range. For example, if a preset delay range is given in the delay power spectrum, the delay point corresponding to the power peak in the preset delay range can be found; the preset power range is given in the delay power spectrum. , the delay point corresponding to the power peak in the preset power range can be found.
  • the power peak has more than one delay point in the preset range, and the probability of focusing on the vicinity of the maximum power peak is small, so that the estimated diameter required for the snapshot is not completely concentrated in the maximum power peak. In the vicinity, the occurrence of pseudo-paths can be greatly reduced, and the accuracy of channel estimation is increased.
  • Step S303 Perform channel parameter estimation for each path of the required number of paths under the snapshot according to the determined number of paths required for the snapshot, and use the channel parameter estimation algorithm to estimate all the snapshots of the channel. Channel parameters for each path.
  • the channel parameters of each path of all snapshots of the channel are obtained.
  • the time delay power spectrum data of each snapshot is different.
  • the delay points corresponding to the power peaks in the preset range found by each snapshot are not the same.
  • the estimated number of paths required for each snapshot is also different. Therefore, the embodiment of the present invention can give an appropriate estimated path number for each snapshot, that is, an adaptive adjustment can be made to the estimation of the number of paths according to the change of the scene.
  • the present invention determines the number of paths to be estimated for the delay point based on the time delay point corresponding to the power peak found in the delay power spectrum data of the same snapshot, thereby determining the estimated number of paths required for the snapshot.
  • the method for determining the number of paths that the snapshot needs to estimate may adaptively determine the number of paths to be estimated according to the specific data of each snapshot; and using the channel parameter estimation algorithm to estimate the number of paths required for the snapshot. Channel parameters are estimated for each path. In this way, it is possible to set an appropriate number of paths for each snapshot, thereby improving the accuracy and convergence speed of channel parameter estimation.
  • FIG. 5 is a flowchart of an embodiment of a method for evaluating a channel propagation environment according to the present invention, including:
  • Step S401 Determine the estimated number of paths required for the snapshot according to the delay point corresponding to the power peak within the preset range that has been found in the delay power spectrum data of the same snapshot.
  • Step S402 Perform channel parameter estimation for each path of the required number of paths under the snapshot by using a channel parameter estimation algorithm according to the determined number of paths required for the determined snapshot, until it is estimated that all snapshots of the channel are obtained.
  • the channel parameters of the path are obtained.
  • Step S403 Perform statistics on the channel parameters of each path of all the snapshots obtained by the estimation, and obtain statistical results of the channels to evaluate the propagation environment of the channel.
  • the present invention determines the number of paths to be estimated for the delay point based on the time delay point corresponding to the power peak found in the delay power spectrum data of the same snapshot, thereby determining the estimated number of paths required for the snapshot.
  • the method for determining the number of paths that the snapshot needs to estimate may adaptively determine the number of paths to be estimated according to the specific data of each snapshot; and using the channel parameter estimation algorithm to estimate the number of paths required for the snapshot.
  • the channel parameter estimation is performed for each path, and the channel parameters of each path of all the snapshots obtained by the estimation are counted, and the statistical result of the channel is obtained to evaluate the propagation environment of the channel. In this way, it is possible to set an appropriate number of paths for each snapshot, thereby improving the accuracy and convergence speed of the channel parameter estimation, and making a correct evaluation of the channel quality and the propagation environment.
  • FIG. 6 is a schematic structural diagram of an embodiment of a channel parameter estimating apparatus according to the present invention.
  • the apparatus includes: a first determining module 101 and a parameter estimating module 102.
  • the first determining module 101 is configured to determine, according to a delay point corresponding to a power peak within a preset range that has been found in the delay power spectrum data of the same snapshot, the estimated number of paths required for the snapshot, and The estimated number of paths required for the snapshot is sent to the parameter estimation module 102.
  • the preset range find the power peak in the delay power spectrum data of the same snapshot, so that the delay point corresponding to the power peak can be found, and the estimated number of paths required for each delay point can be determined, thereby The number of paths required for the snapshot is further determined, that is, the number of paths required for the snapshot is equal to the sum of the estimated number of paths required for each delay point.
  • the preset range includes but is not limited to a preset delay range or a preset power range. For example, if a preset delay range is given in the delay power spectrum, the delay point corresponding to the power peak in the preset delay range can be found; the preset power range is given in the delay power spectrum. , the delay point corresponding to the power peak in the preset power range can be found.
  • the power peak has more than one delay point in the preset range, and the probability of focusing on the vicinity of the maximum power peak is small, so that the estimated diameter required for the snapshot is not completely concentrated in the maximum power peak. In the vicinity, the occurrence of pseudo-paths can be greatly reduced, and the accuracy of channel estimation is increased.
  • the parameter estimation module 102 is configured to receive the number of paths required for the snapshot sent by the first determining module 101, and use the channel parameter estimation algorithm to determine the number of paths required according to the determined snapshot. Channel parameters are estimated for each of the estimated path counts until the channel parameters for each of the paths for all snapshots of the channel are estimated.
  • the channel parameters of each path of all snapshots of the channel are obtained.
  • the time delay power spectrum data of each snapshot is different.
  • the delay points corresponding to the power peaks in the preset range found by each snapshot are not the same.
  • the estimated number of paths required for each snapshot is also different. Therefore, the embodiment of the present invention can give an appropriate estimated path number for each snapshot, that is, an adaptive adjustment can be made to the estimation of the number of paths according to the change of the scene.
  • the present invention determines the number of paths to be estimated for the delay point based on the time delay point corresponding to the power peak found in the delay power spectrum data of the same snapshot, thereby determining the estimated number of paths required for the snapshot.
  • the method for determining the number of paths that the snapshot needs to estimate may adaptively determine the number of paths to be estimated according to the specific data of each snapshot; and using the channel parameter estimation algorithm to estimate the number of paths required for the snapshot. Channel parameters are estimated for each path. In this way, it is possible to set an appropriate number of paths for each snapshot, thereby improving the accuracy and convergence speed of channel parameter estimation.
  • FIG. 7 is a schematic structural diagram of another embodiment of a channel parameter estimating apparatus according to the present invention.
  • the apparatus includes: an obtaining module 201, an obtaining module 202, a second determining module 203, a searching module 204, a first determining module 205, and parameters.
  • Estimation module 206 is a schematic structural diagram of another embodiment of a channel parameter estimating apparatus according to the present invention.
  • the obtaining module 201 is configured to obtain average delay power spectrum data of all subchannels under the same snapshot, and send the delayed power spectrum data to the obtaining module.
  • the obtaining module 202 is configured to receive the delay power spectrum data sent by the obtaining module 201, and obtain the maximum power under the snapshot or the maximum power and the average noise level under the snapshot according to the acquired delay power spectrum data, and determine the second noise.
  • Module 203 sends the maximum power under the snapshot or the maximum power and average noise level under the snapshot.
  • the maximum power under the snapshot can be found; if the noise region is selected, the average noise level under the snapshot can also be obtained.
  • the second determining module 203 is configured to receive the maximum power or the maximum power and the average noise level under the snapshot obtained by the obtaining module 202, according to the maximum power under the snapshot or the maximum power and the average noise level under the snapshot. A preset power range is determined and a preset power range is sent to the lookup module 204.
  • the obtained quickly captured power P max is the maximum, determined that the preset power range, for example: P max in the preset power range between 20dB and subtracting P max, or predetermined power range to 15dB subtracting P max P max of And so on.
  • the preset power range is between P noise plus 3 dB to P max , or the preset power range is at P Noise plus 5dB to P max and so on.
  • the searching module 204 is configured to receive the preset power range sent by the second determining module 203, and search for the delay point corresponding to the power peak in the preset power range in the delay power spectrum data.
  • the foregoing module searches for a delay point within a preset power range, and may also find a delay point corresponding to a power peak in the average delay power spectrum data of the subchannel under the snapshot according to a preset delay range. Or you can find the delay point within the preset range according to other conditions, which will not be described here.
  • the first determining module 205 is configured to determine, according to a delay point corresponding to a power peak within a preset range that has been found in the delay power spectrum data of the same snapshot, the estimated number of paths required for the snapshot, and The estimated number of paths required for the snapshot is sent to the parameter estimation module 206.
  • the preset range find the power peak in the delay power spectrum data of the same snapshot, so that the delay point corresponding to the power peak can be found, and the estimated number of paths required for each delay point can be determined, thereby The number of paths required for the snapshot is further determined, that is, the number of paths required for the snapshot is equal to the sum of the estimated number of paths required for each delay point.
  • the preset range includes but is not limited to a preset delay range or a preset power range.
  • the parameter estimation module 206 is configured to receive the number of paths required for the snapshot sent by the first determining module 205, and use the channel parameter estimation algorithm to determine the number of paths required according to the determined snapshot. Channel parameters are estimated for each of the estimated path counts until the channel parameters for each of the paths for all snapshots of the channel are estimated.
  • the channel parameter estimation algorithm may perform channel parameter estimation for each of the required diameters of the snapshot.
  • Channel parameter estimation algorithms include, but are not limited to, SAGE algorithm, initialization, and search for improved SAGE algorithms (ISIS, Initialization) And Searching Improved SAGE).
  • ISIS Initialization
  • Searching Improved SAGE The use of the above channel parameter estimation algorithm for channel parameter estimation of each path is a prior art, and thus will not be described herein.
  • the present invention determines the number of paths to be estimated for the delay point based on the time delay point corresponding to the power peak found in the delay power spectrum data of the same snapshot, thereby determining the estimated number of paths required for the snapshot.
  • the method for determining the number of paths that the snapshot needs to estimate may adaptively determine the number of paths to be estimated according to the specific data of each snapshot; and using the channel parameter estimation algorithm to estimate the number of paths required for the snapshot. Channel parameters are estimated for each path. In this way, it is possible to set an appropriate number of paths for each snapshot, thereby improving the accuracy and convergence speed of channel parameter estimation.
  • FIG. 8 is a schematic structural diagram of still another embodiment of a channel parameter estimation apparatus according to the present invention.
  • the apparatus includes: a third determining module 301, a first determining module 302, and a parameter estimating module 303.
  • the third determining module 301 is configured to: when the two multipaths of the preset preset distance are distinguished on the delay in the delay power spectrum data of the same snapshot, according to the delay power spectrum data in the same snapshot The time delay point corresponding to the power peak in the preset range is found, and the estimated number of paths required to determine the delay point corresponding to the power peak is a preset number.
  • the two multipaths of the preset distance are distinguished on the delay, the power peaks in the preset range that have been found in the delay power spectrum data of the same snapshot are used.
  • the estimated number of paths required to determine the delay point corresponding to the power peak is a preset number.
  • the base station In the environment of urban macro cell and suburban macro cell, the base station has a high position, the surrounding environment is relatively empty, and there are few scatterers.
  • the channel measurement device with relatively large bandwidth is used, for example, when the channel is measured by a channel measurement device with 100M bandwidth.
  • two multipaths with a difference of 3 meters can be distinguished in the delay.
  • each found delay point is only A path needs to be estimated, which can prevent the estimation of the pseudo path, improve the accuracy of the channel estimation, and reduce the time of channel parameter estimation, and can be used in real-time online channel data analysis.
  • the first determining module 302 is configured to determine, according to a delay point corresponding to the power peak in the preset range that has been found in the delay power spectrum data of the same snapshot, the estimated number of paths required for the snapshot, and The estimated number of paths required for the snapshot is sent to the parameter estimation module 303.
  • the parameter estimation module 303 is configured to receive the number of paths required for the snapshot sent by the first determining module 302, and use the channel parameter estimation algorithm to determine the number of paths required according to the determined snapshot. Channel parameters are estimated for each of the estimated path counts until the channel parameters for each of the paths for all snapshots of the channel are estimated.
  • the present invention determines the number of paths to be estimated for the delay point based on the time delay point corresponding to the power peak found in the delay power spectrum data of the same snapshot, thereby determining the estimated number of paths required for the snapshot.
  • the method for determining the number of paths that the snapshot needs to estimate may adaptively determine the number of paths to be estimated according to the specific data of each snapshot; and using the channel parameter estimation algorithm to estimate the number of paths required for the snapshot. Channel parameters are estimated for each path. In this way, it is possible to set an appropriate number of paths for each snapshot, thereby improving the accuracy and convergence speed of channel parameter estimation.
  • FIG. 9 is a schematic structural diagram of an apparatus for evaluating a channel propagation environment according to the present invention.
  • the apparatus includes: a first determining module 401, a parameter estimating module 402, and a statistical result obtaining module 403.
  • the first determining module 401 is configured to determine, according to a delay point corresponding to the power peak in the preset range that has been found in the delay power spectrum data of the same snapshot, the estimated number of paths required for the snapshot, and the fast The number of paths that need to be estimated is sent to the parameter estimation module 402.
  • the parameter estimation module 402 is configured to receive the number of paths required for the snapshot sent by the first determining module 401, and use the channel parameter estimation algorithm to estimate the path required for the snapshot according to the determined number of paths required for the snapshot. Channel parameters are estimated for each of the numbers until the channel parameters for each path of all snapshots of the channel are estimated, and the channel parameters for each path of all snapshots of the obtained channel are estimated to be sent to the statistical result obtaining module 403.
  • the statistical result obtaining module 403 is configured to receive the channel parameters of each path of all the snapshots of the channel obtained by the parameter estimation module 402, and perform statistics on the obtained channel parameters of each path of all the snapshots to obtain the statistical result of the channel. To assess the propagation environment of the channel.
  • the present invention determines the number of paths to be estimated for the delay point based on the time delay point corresponding to the power peak found in the delay power spectrum data of the same snapshot, thereby determining the estimated number of paths required for the snapshot.
  • the method for determining the number of paths that the snapshot needs to estimate may adaptively determine the number of paths to be estimated according to the specific data of each snapshot; and using the channel parameter estimation algorithm to estimate the number of paths required for the snapshot.
  • the channel parameter estimation is performed for each path, and the channel parameters of each path of all the snapshots obtained by the estimation are counted, and the statistical result of the channel is obtained to evaluate the propagation environment of the channel. In this way, it is possible to set an appropriate number of paths for each snapshot, thereby improving the accuracy and convergence speed of the channel parameter estimation, and making a correct evaluation of the channel quality and the propagation environment.
  • FIG. 10 is a schematic structural diagram of still another embodiment of a channel parameter estimating apparatus according to the present invention.
  • the apparatus includes a processor 601 and a memory 602 coupled to the processor 601.
  • the memory 602 stores delay power spectrum data of all snapshots in the channel, delay point information corresponding to the power peaks in the preset range found in the same snapshot power spectrum data, and a channel parameter estimation algorithm program. .
  • the processor 601 is configured to determine, according to a delay point corresponding to a power peak within a preset range that has been found in the delay power spectrum data of the same snapshot, the number of paths required for the snapshot, and the number of paths Stored in memory 602.
  • the processor 601 is further configured to perform channel parameter estimation on each path of the required estimated number of paths under the snapshot by using a channel parameter estimation algorithm according to the determined number of paths required for the determined snapshot, until the channel is estimated to be fast.
  • the channel parameters for each path are taken and the channel parameters are stored in memory 602.
  • the present invention determines the number of paths to be estimated for the delay point based on the time delay point corresponding to the power peak found in the delay power spectrum data of the same snapshot, thereby determining the estimated number of paths required for the snapshot.
  • the method for determining the number of paths that the snapshot needs to estimate may adaptively determine the number of paths to be estimated according to the specific data of each snapshot; and using the channel parameter estimation algorithm to estimate the number of paths required for the snapshot. Channel parameters are estimated for each path. In this way, it is possible to set an appropriate number of paths for each snapshot, thereby improving the accuracy and convergence speed of channel parameter estimation.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device implementations described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the present embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (ROM, Read-Only) Memory, random access memory (RAM), disk or optical disk, and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本发明公开了一种信道参数估计方法及装置,该方法包括根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述快拍所需要估计的径数;根据所述已确定的所述快拍所需要估计的径数,利用信道参数估计算法对所述快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数。通过上述方式,本发明能够提高信道参数估计的准确性和收敛速度。

Description

信道参数估计方法及装置、评估信道传播环境的方法及装置
【技术领域】
本发明涉及通信技术领域,特别是涉及一种信道参数估计方法及装置、评估信道传播环境的方法及装置。
【背景技术】
信道是制约通信系统性能的主要因素之一,它在各种通信制式下的链路仿真以及系统仿真的算法性能起着至关重要的作用。无线传播信道中包含的信息有:径的数目、每条径的时延、波发水平和俯仰角、波达水平和俯仰角、多普勒以及极化信息。
利用信道测量设备可以得到信道冲击响应,通过对径数设置以及信道参数估计算法可以得到上述信道参数。在现有技术广义子空间交替的期望最大值(SAGE,Space Alternating Generalized Expectation-maximization)算法中,径数的设置只是一个经验值,每一个快拍要估计的径数都是一样的,不能够根据场景的变化进行自适应的调整。在另一现有技术中,根据信道时延响应,对在一定动态范围内的时延响应分为多个多径包,通过在这些多径包中估计一定数量的多径,得到相对全面的信道估计参数。
本申请的发明人在长期的研发中发现,上述现有技术对径数的设置不能够对应于变化的快拍,估计的径会集中在功率最大的时延周围或者几个时延点周围,影响估计的准确性,且收敛速度慢。
【发明内容】
本发明主要解决的技术问题是提供一种信道参数估计方法及装置、评估信道传播环境的方法及装置,能够提高信道参数估计的准确性和收敛速度。
本发明的第一方面提供一种信道参数估计方法,包括根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述快拍所需要估计的径数;根据所述已确定的所述快拍所需要估计的径数,利用信道参数估计算法对所述快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数。
在第一方面的第一种可能的实现方式中,所述预设范围是预设时延范围或预设功率范围。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述快拍所需要估计的径数的步骤之前,包括:获取所述同一个快拍下所有子通道的平均的时延功率谱数据;根据获取的所述时延功率谱数据,获得所述快拍下的最大功率或所述快拍下的最大功率和平均噪声水平;根据所述快拍下的最大功率或所述快拍下的最大功率和平均噪声水平,确定所述预设功率范围;在所述时延功率谱数据中查找所述预设功率范围内的功率峰值所对应的时延点。
结合第一方面或第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述快拍所需要估计的径数的步骤之前,包括:在所述同一个快拍的时延功率谱数据中,若在时延上区分出相差预设距离的两条多径,则根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述功率峰值所对应的时延点所需要估计的径数为预设数量。
本发明的第二方面是提供一种评估信道传播环境的方法,包括:根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述快拍所需要估计的径数;根据所述已确定的所述快拍所需要估计的径数,利用信道参数估计算法对所述快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数;对所述估计获得的所有快拍的每个径的信道参数进行统计,获得所述信道的统计结果,以评估所述信道的传播环境。
本发明的第三方面是提供一种信道参数估计装置,所述装置包括:第一确定模块和参数估计模块;所述第一确定模块用于根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述快拍所需要估计的径数,并将所述快拍所需要估计的径数向所述参数估计模块发送;所述参数估计模块用于接收所述第一确定模块发送的所述快拍所需要估计的径数,根据所述已确定的所述快拍所需要估计的径数,利用信道参数估计算法对所述快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数。
在第三方面的第一种可能的实现方式中,所述预设范围是预设时延范围或预设功率范围。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述装置还包括:获取模块、获得模块、第二确定模块以及查找模块;所述获取模块用于获取所述同一个快拍下所有子通道的平均的时延功率谱数据,并向所述获得模块发送所述时延功率谱数据;所述获得模块用于接收所述获取模块发送的时延功率谱数据,根据获取的所述时延功率谱数据,获得所述快拍下的最大功率或所述快拍下的最大功率和平均噪声水平,并向所述第二确定模块发送所述快拍下的最大功率或所述快拍下的最大功率和平均噪声水平;所述第二确定模块用于接收所述获得模块发送的所述快拍下的最大功率或所述快拍下的最大功率和平均噪声水平,根据所述快拍下的最大功率或所述快拍下的最大功率和平均噪声水平,确定所述预设功率范围,并向所述查找模块发送所述预设功率范围;所述查找模块用于接收所述第二确定模块发送的预设功率范围,在所述时延功率谱数据中查找所述预设功率范围内的功率峰值所对应的时延点。
结合第三方面或第三方面的第一种可能的实现方式或第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述装置还包括第三确定模块,所述第三确定模块用于在所述同一个快拍的时延功率谱数据中,在时延上区分出相差预设距离的两条多径时,根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述功率峰值所对应的时延点所需要估计的径数为预设数量。
本发明的第四方面提供一种评估信道传播环境的装置,所述装置包括:第一确定模块、参数估计模块以及统计结果获得模块;所述第一确定模块用于根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述快拍所需要估计的径数,并将所述快拍所需要估计的径数向所述参数估计模块发送;参数估计模块用于接收所述第一确定模块发送的所述快拍所需要估计的径数,根据所述已确定的所述快拍所需要估计的径数,利用信道参数估计算法对所述快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数,并向所述统计结果获得模块发送所述估计获得的信道所有快拍的每个径的信道参数;统计结果获得模块用于接收所述参数估计模块发送的所述估计获得的信道所有快拍的每个径的信道参数,对所述获得的所有快拍的每个径的信道参数进行统计,获得所述信道的统计结果,以评估所述信道的传播环境。
本发明的第五方面提供一种信道参数估计装置,所述装置包括处理器和与所述处理器耦合的存储器;所述存储器存储有信道中所有快拍的时延功率谱数据、同一个快拍下时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点信息以及信道参数估计算法程序;所述处理器用于根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述快拍所需要估计的径数,并将所述径数存入存储器;所述处理器进一步用于根据所述已确定的所述快拍所需要估计的径数,利用信道参数估计算法对所述快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数,并将所述信道参数存入存储器。
本发明的有益效果是:区别于现有技术的情况,本发明根据在同一个快拍的时延功率谱数据中已找到的功率峰值所对应的时延点,确定时延点所需要估计的径数,从而确定该快拍所需要估计的径数,这种确定快拍需要估计的径数的方式,可以根据每个快拍的具体数据自适应的确定需要估计的径数;利用信道参数估计算法对该快拍下所需要估计的径数中的每个径进行信道参数估计。通过这种方式,能够对每个快拍设置合适的径数,从而提高信道参数估计的准确度和收敛速度。
【附图说明】
图1是本发明信道参数估计方法一实施方式的流程图;
图2是信道中某个快拍的时延功率谱;
图3是本发明信道参数估计方法一实施方式的流程图;
图4是本发明信道参数估计方法又一实施方式的流程图;
图5是本发明评估信道传播环境的方法一实施方式的流程图;
图6是本发明信道参数估计装置一实施方式的结构示意图;
图7是本发明信道参数估计装置另一实施方式的结构示意图;
图8是本发明信道参数估计装置又一实施方式的结构示意图;
图9是本发明评估信道传播环境的装置一实施方式的结构示意图;
图10是本发明信道参数估计装置又一实施方式的结构示意图。
【具体实施方式】
下面结合附图和实施方式对本发明进行详细的说明。
参阅图1,图1是本发明信道参数估计方法一实施方式的流程图,包括:
步骤S101:根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定该快拍所需要估计的径数。
快拍是在时域上实测数据的分段分析的单位。在同一个快拍内,信道的特征参数一致,信道冲击响应保持平稳的状态。在无线信道中,多径指无线电信号从发射天线经过多个路径抵达接收天线的传播现象,例如大气层对电波的散射、电离层对电波的反射和折射,以及山峦、建筑等地表物体对电波的反射都会造成多径传播。多径效应是指电波传播信道中的多径传输现象所引起的干涉延时效应。
时延是指一个报文或分组从网络的一端传送到另一端所需要的时间。在实际的无线电波传播信道中,常有许多时延不同的传输路径。各条传播路径会随时间变化,参与干涉的各分量场之间的相互关系也就随时间而变化,由此引起合成波场的随机变化,从而形成总的接收场的衰落。
由于移动通信信道的多径、移动台的运动和不同的散射环境,使得移动信道在时间上、频率上和角度上造成了色散,时延功率谱(PDP,Power Delay Profile)用于描述信道在时间上的色散,即描述功率随时延的变化关系,请参见图2,图2是信道中某个快拍的时延功率谱。
在预设范围内,找到同一个快拍的时延功率谱数据中的功率峰值,从而可以找到该功率峰值所对应的时延点,确定每个时延点所需要估计的径数,从而可以进一步确定快拍所需要估计的径数,即快拍所需要估计的径数等于每个时延点所需要估计的径数之和。
其中,预设范围包括但不限于预设时延范围或预设功率范围。比如,在时延功率谱中给出预设的时延范围,则可以找到该预设的时延范围内功率峰值所对应的时延点;在时延功率谱中给出预设的功率范围,则可以找到该预设的功率范围内功率峰值所对应的时延点。
如图2所示,在预设范围0至1微秒之间有六个功率峰值,分别是峰1至峰6,这六个功率峰值分别对应6个时延点A、B、C、D、E以及F,如果每个时延点所需要估计的径数都是2,那么该快拍所需要估计的径数是12;在预设范围-65至-50分贝之间有三个功率峰值,分别是峰1、峰2和峰3,对应的时延点分别是A、B和C,如果每个时延点所需要估计的径数都是2,那么该快拍所需要估计的径数是6。
一般而言,在预设范围内该功率峰值所对应的时延点不止一个,且集中在最大功率峰值的附近的概率很小,这样快拍所需要估计的径不会完全集中在最大功率峰值的附近,可以大大减少伪径的出现,增加信道估计的准确性。
步骤S102:根据已确定的该快拍所需要估计的径数,利用信道参数估计算法对该快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数。
在确定了快拍所需要估计的径数后,根据信道参数估计算法即可对该快拍下所需要估计的径数中的每个径进行信道参数估计。信道参数估计算法包括但不限于SAGE算法、初始化和搜索改进的SAGE算法(ISIS,Initialization and Searching Improved SAGE)等。采用上述信道参数估计算法进行每个径的信道参数估计,是现有技术,因而本文中不再赘述。
信道参数包括:时延、角度、多普勒、极化矩阵等等。
根据该方法直到获得信道所有快拍的每个径的信道参数。每个快拍的时延功率谱数据不一样,每个快拍找到的预设范围内的功率峰值所对应的时延点是不一样的,每个快拍所需要估计的径数也是不一样的,因此,本发明实施方式可以对每个快拍给出合适的估计径数,即可以根据场景的变化,对径数的估计做出自适应的调整。
本发明根据在同一个快拍的时延功率谱数据中已找到的功率峰值所对应的时延点,确定时延点所需要估计的径数,从而确定该快拍所需要估计的径数,这种确定快拍需要估计的径数的方式,可以根据每个快拍的具体数据自适应的确定需要估计的径数;利用信道参数估计算法对该快拍下所需要估计的径数中的每个径进行信道参数估计。通过这种方式,能够对每个快拍设置合适的径数,从而提高信道参数估计的准确度和收敛速度。
参阅图3,图3是本发明信道参数估计方法另一实施方式的流程图,包括:
步骤S201:获取同一个快拍下所有子通道的平均的时延功率谱数据。
提取出同一个快拍下所有子通道的信道冲击响应数据,对该快拍下所有子通道的时延功率谱数据进行平均,即可获得该快拍下所有子通道的平均的时延功率谱数据。
实测系统中,收发端通常使用多单元天线,这些天线是以时分的方式轮询切换发射和接收信号的,即在某一个时刻只有一个天线发射信号一个天线接收信号,成为一个子通道。
例如,实测信道时发送天线7根接收天线16根,同一个快拍下包含3次天线轮流切换,那么子通道的个数是7*16*3=336,将336个子通道的时延功率谱数据相加,然后除以336,即可获得该快拍下所有子通道的平均的时延功率谱数据。
步骤S202:根据获取的时延功率谱数据,获得该快拍下的最大功率或该快拍下的最大功率和平均噪声水平。
在获得该快拍下所有子通道的平均的时延功率谱数据后,即可找到该快拍下的最大功率;如果选取噪声区域,还可以获得该快拍下的平均噪声水平。
例如,如图2所示,选取噪声区域是-80至-72分贝之间,将该区域的所有功率值相加,然后除以数据的个数,即为该快拍下的平均噪声水平。
步骤S203:根据该快拍下的最大功率或该快拍下的最大功率和平均噪声水平,确定预设功率范围。
获得该快拍下的最大功率P max ,确定预设功率范围,例如:预设功率范围在P max 减去20dB到P max 之间,或预设功率范围在P max 减去15dB到P max 之间等等。
或者,获得该快拍下的最大功率P max 和平均噪声水平P noise ,确定预设功率范围,例如:预设功率范围在P noise 加上3dB到P max 之间,或预设功率范围在P noise 加上5dB到P max 之间等等。
步骤S204:在时延功率谱数据中查找预设功率范围内的功率峰值所对应的时延点。
确定预设功率范围后,在该快拍下所有子通道的平均的时延功率谱数据中即可查找该预设功率范围内的功率峰值所对应的时延点。
上述步骤S201至步骤S204是查找预设功率范围内的时延点,也可以根据预设的时延范围查找该快拍下有子通道的平均的时延功率谱数据中功率峰值所对应的时延点。或者也可以根据其它的条件查找预设范围内的时延点,在此不再赘叙。
步骤S205:根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定快拍所需要估计的径数。
在预设范围内,找到同一个快拍的时延功率谱数据中的功率峰值,从而可以找到该功率峰值所对应的时延点,确定每个时延点所需要估计的径数,从而可以进一步确定快拍所需要估计的径数,即快拍所需要估计的径数等于每个时延点所需要估计的径数之和。
其中,预设范围包括但不限于预设时延范围或预设功率范围。
步骤S206:根据已确定的快拍所需要估计的径数,利用信道参数估计算法对快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数。
在确定了快拍所需要估计的径数后,根据信道参数估计算法即可对该快拍下所需要估计的径数中的每个径进行信道参数估计。信道参数估计算法包括但不限于SAGE算法、初始化和搜索改进的SAGE算法(ISIS,Initialization and Searching Improved SAGE)等。采用上述信道参数估计算法进行每个径的信道参数估计,是现有技术,因而本文中不再赘述。
根据该方法直到获得信道所有快拍的每个径的信道参数。每个快拍的时延功率谱数据不一样,每个快拍找到的预设范围内的功率峰值所对应的时延点是不一样的,每个快拍所需要估计的径数也是不一样的,因此,本发明实施方式可以对每个快拍给出合适的估计径数,即可以根据场景的变化,对径数的估计做出自适应的调整。
总之,本发明根据在同一个快拍的时延功率谱数据中已找到的功率峰值所对应的时延点,确定时延点所需要估计的径数,从而确定该快拍所需要估计的径数,这种确定快拍需要估计的径数的方式,可以根据每个快拍的具体数据自适应的确定需要估计的径数;利用信道参数估计算法对该快拍下所需要估计的径数中的每个径进行信道参数估计。通过这种方式,能够对每个快拍设置合适的径数,从而提高信道参数估计的准确度和收敛速度。
参阅图4,图4是本发明信道参数估计方法又一实施方式的流程图,包括:
步骤S301:在同一个快拍的时延功率谱数据中,若在时延上区分出相差预设距离的两条多径,则根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定功率峰值所对应的时延点所需要估计的径数为预设数量。
采用不同的信道测量设备,如果在时延上可以区分出相差预设距离的两条多径,那么根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定功率峰值所对应的时延点所需要估计的径数为预设数量。
在城市宏小区和郊区宏小区的环境下,基站位置高,周围环境比较空旷,散射体较少,采用带宽比较大的信道测量设备,例如采用100M带宽的信道测量设备对信道进行测量获得的时延功率谱数据中,在时延上可以区分相差3米的两条多径,此时,在找到的预设范围内的功率峰值所对应的时延点后,每个找到的时延点只需估计一条径,这样可以防止伪径的估计,提高信道估计的准确性,减少信道参数估计的时间,可用于实时在线的信道数据分析中。
步骤S302:根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定该快拍所需要估计的径数。
在预设范围内,找到同一个快拍的时延功率谱数据中的功率峰值,从而可以找到该功率峰值所对应的时延点,由于步骤S301中确定每个时延点所需要估计的径数为预定数量,从而可以进一步确定快拍所需要估计的径数,即快拍所需要估计的径数等于每个时延点所需要估计的预定数量的径数之和。
其中,预设范围包括但不限于预设时延范围或预设功率范围。比如,在时延功率谱中给出预设的时延范围,则可以找到该预设的时延范围内功率峰值所对应的时延点;在时延功率谱中给出预设的功率范围,则可以找到该预设的功率范围内功率峰值所对应的时延点。
一般而言,在预设范围内该功率峰值所对应的时延点不止一个,且集中在最大功率峰值的附近的概率很小,这样快拍所需要估计的径不会完全集中在最大功率峰值的附近,可以大大减少伪径的出现,增加信道估计的准确性。
步骤S303:根据已确定的该快拍所需要估计的径数,利用信道参数估计算法对该快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数。
根据该方法直到获得信道所有快拍的每个径的信道参数。每个快拍的时延功率谱数据不一样,每个快拍找到的预设范围内的功率峰值所对应的时延点是不一样的,每个快拍所需要估计的径数也是不一样的,因此,本发明实施方式可以对每个快拍给出合适的估计径数,即可以根据场景的变化,对径数的估计做出自适应的调整。
本发明根据在同一个快拍的时延功率谱数据中已找到的功率峰值所对应的时延点,确定时延点所需要估计的径数,从而确定该快拍所需要估计的径数,这种确定快拍需要估计的径数的方式,可以根据每个快拍的具体数据自适应的确定需要估计的径数;利用信道参数估计算法对该快拍下所需要估计的径数中的每个径进行信道参数估计。通过这种方式,能够对每个快拍设置合适的径数,从而提高信道参数估计的准确度和收敛速度。
参阅图5,图5是本发明评估信道传播环境的方法一实施方式的流程图,包括:
步骤S401:根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定快拍所需要估计的径数。
步骤S402:根据已确定的快拍所需要估计的径数,利用信道参数估计算法对快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数。
步骤S403:对估计获得的所有快拍的每个径的信道参数进行统计,获得信道的统计结果,以评估信道的传播环境。
本发明根据在同一个快拍的时延功率谱数据中已找到的功率峰值所对应的时延点,确定时延点所需要估计的径数,从而确定该快拍所需要估计的径数,这种确定快拍需要估计的径数的方式,可以根据每个快拍的具体数据自适应的确定需要估计的径数;利用信道参数估计算法对该快拍下所需要估计的径数中的每个径进行信道参数估计,对估计获得的所有快拍的每个径的信道参数进行统计,获得信道的统计结果,以评估信道的传播环境。通过这种方式,能够对每个快拍设置合适的径数,从而提高信道参数估计的准确度和收敛速度,且能够对信道的质量以及传播环境做出正确的评价。
参阅图6,图6是本发明信道参数估计装置一实施方式的结构示意图,该装置包括:第一确定模块101和参数估计模块102。
第一确定模块101用于根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定该快拍所需要估计的径数,并将该快拍所需要估计的径数向参数估计模块102发送。
在预设范围内,找到同一个快拍的时延功率谱数据中的功率峰值,从而可以找到该功率峰值所对应的时延点,确定每个时延点所需要估计的径数,从而可以进一步确定快拍所需要估计的径数,即快拍所需要估计的径数等于每个时延点所需要估计的径数之和。
其中,预设范围包括但不限于预设时延范围或预设功率范围。比如,在时延功率谱中给出预设的时延范围,则可以找到该预设的时延范围内功率峰值所对应的时延点;在时延功率谱中给出预设的功率范围,则可以找到该预设的功率范围内功率峰值所对应的时延点。
一般而言,在预设范围内该功率峰值所对应的时延点不止一个,且集中在最大功率峰值的附近的概率很小,这样快拍所需要估计的径不会完全集中在最大功率峰值的附近,可以大大减少伪径的出现,增加信道估计的准确性。
参数估计模块102用于接收第一确定模块101发送的该快拍所需要估计的径数,根据已确定的该快拍所需要估计的径数,利用信道参数估计算法对该快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数。
根据该方法直到获得信道所有快拍的每个径的信道参数。每个快拍的时延功率谱数据不一样,每个快拍找到的预设范围内的功率峰值所对应的时延点是不一样的,每个快拍所需要估计的径数也是不一样的,因此,本发明实施方式可以对每个快拍给出合适的估计径数,即可以根据场景的变化,对径数的估计做出自适应的调整。
本发明根据在同一个快拍的时延功率谱数据中已找到的功率峰值所对应的时延点,确定时延点所需要估计的径数,从而确定该快拍所需要估计的径数,这种确定快拍需要估计的径数的方式,可以根据每个快拍的具体数据自适应的确定需要估计的径数;利用信道参数估计算法对该快拍下所需要估计的径数中的每个径进行信道参数估计。通过这种方式,能够对每个快拍设置合适的径数,从而提高信道参数估计的准确度和收敛速度。
参阅图7,图7是本发明信道参数估计装置另一实施方式的结构示意图,该装置包括:获取模块201、获得模块202、第二确定模块203、查找模块204、第一确定模块205以及参数估计模块206。
获取模块201用于获取同一个快拍下所有子通道的平均的时延功率谱数据,并向获得模块发送时延功率谱数据。
提取出同一个快拍下所有子通道的信道冲击响应数据,对该快拍下所有子通道的时延功率谱数据进行平均,即可获得该快拍下所有子通道的平均的时延功率谱数据。
获得模块202用于接收获取模块201发送的时延功率谱数据,根据获取的时延功率谱数据,获得快拍下的最大功率或快拍下的最大功率和平均噪声水平,并向第二确定模块203发送快拍下的最大功率或快拍下的最大功率和平均噪声水平。
在获得该快拍下所有子通道的平均的时延功率谱数据后,即可找到该快拍下的最大功率;如果选取噪声区域,还可以获得该快拍下的平均噪声水平。
第二确定模块203用于接收获得模块202发送的快拍下的最大功率或快拍下的最大功率和平均噪声水平,根据快拍下的最大功率或快拍下的最大功率和平均噪声水平,确定预设功率范围,并向查找模块204发送预设功率范围。
获得该快拍下的最大功率P max ,确定预设功率范围,例如:预设功率范围在P max 减去20dB到P max 之间,或预设功率范围在P max 减去15dB到P max 之间等等。
或者,获得该快拍下的最大功率P max 和平均噪声水平P noise ,确定预设功率范围,例如:预设功率范围在P noise 加上3dB到P max 之间,或预设功率范围在P noise 加上5dB到P max 之间等等。
查找模块204用于接收第二确定模块203发送的预设功率范围,在时延功率谱数据中查找预设功率范围内的功率峰值所对应的时延点。
上述模块是查找预设功率范围内的时延点,也可以根据预设的时延范围查找该快拍下有子通道的平均的时延功率谱数据中功率峰值所对应的时延点。或者也可以根据其它的条件查找预设范围内的时延点,在此不再赘叙。
第一确定模块205用于根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定该快拍所需要估计的径数,并将该快拍所需要估计的径数向参数估计模块206发送。
在预设范围内,找到同一个快拍的时延功率谱数据中的功率峰值,从而可以找到该功率峰值所对应的时延点,确定每个时延点所需要估计的径数,从而可以进一步确定快拍所需要估计的径数,即快拍所需要估计的径数等于每个时延点所需要估计的径数之和。
其中,预设范围包括但不限于预设时延范围或预设功率范围。
参数估计模块206用于接收第一确定模块205发送的该快拍所需要估计的径数,根据已确定的该快拍所需要估计的径数,利用信道参数估计算法对该快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数。
在确定了快拍所需要估计的径数后,根据信道参数估计算法即可对该快拍下所需要估计的径数中的每个径进行信道参数估计。信道参数估计算法包括但不限于SAGE算法、初始化和搜索改进的SAGE算法(ISIS,Initialization and Searching Improved SAGE)等。采用上述信道参数估计算法进行每个径的信道参数估计,是现有技术,因而本文中不再赘述。
本发明根据在同一个快拍的时延功率谱数据中已找到的功率峰值所对应的时延点,确定时延点所需要估计的径数,从而确定该快拍所需要估计的径数,这种确定快拍需要估计的径数的方式,可以根据每个快拍的具体数据自适应的确定需要估计的径数;利用信道参数估计算法对该快拍下所需要估计的径数中的每个径进行信道参数估计。通过这种方式,能够对每个快拍设置合适的径数,从而提高信道参数估计的准确度和收敛速度。
参阅图8,图8是本发明信道参数估计装置又一实施方式的结构示意图,该装置包括:第三确定模块301、第一确定模块302以及参数估计模块303。
第三确定模块301用于在同一个快拍的时延功率谱数据中,在时延上区分出相差预设距离的两条多径时,根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定功率峰值所对应的时延点所需要估计的径数为预设数量。
采用不同的信道测量设备,如果在时延上可以区分出相差预设距离的两条多径,那么根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定功率峰值所对应的时延点所需要估计的径数为预设数量。
在城市宏小区和郊区宏小区的环境下,基站位置高,周围环境比较空旷,散射体较少,采用带宽比较大的信道测量设备,例如采用100M带宽的信道测量设备对信道进行测量获得的时延功率谱数据中,在时延上可以区分相差3米的两条多径,此时,在找到的预设范围内的功率峰值所对应的时延点后,每个找到的时延点只需估计一条径,这样可以防止伪径的估计,提高信道估计的准确性,减少信道参数估计的时间,可用于实时在线的信道数据分析中。
第一确定模块302用于根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定该快拍所需要估计的径数,并将该快拍所需要估计的径数向参数估计模块303发送。
参数估计模块303用于接收第一确定模块302发送的该快拍所需要估计的径数,根据已确定的该快拍所需要估计的径数,利用信道参数估计算法对该快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数。
本发明根据在同一个快拍的时延功率谱数据中已找到的功率峰值所对应的时延点,确定时延点所需要估计的径数,从而确定该快拍所需要估计的径数,这种确定快拍需要估计的径数的方式,可以根据每个快拍的具体数据自适应的确定需要估计的径数;利用信道参数估计算法对该快拍下所需要估计的径数中的每个径进行信道参数估计。通过这种方式,能够对每个快拍设置合适的径数,从而提高信道参数估计的准确度和收敛速度。
参阅图9,图9是本发明评估信道传播环境的装置一实施方式的结构示意图,该装置包括:第一确定模块401、参数估计模块402以及统计结果获得模块403。
第一确定模块401用于根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定快拍所需要估计的径数,并将快拍所需要估计的径数向参数估计模块402发送。
参数估计模块402用于接收第一确定模块401发送的快拍所需要估计的径数,根据已确定的快拍所需要估计的径数,利用信道参数估计算法对快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数,并向统计结果获得模块403发送估计获得的信道所有快拍的每个径的信道参数。
统计结果获得模块403用于接收参数估计模块402发送的估计获得的信道所有快拍的每个径的信道参数,对获得的所有快拍的每个径的信道参数进行统计,获得信道的统计结果,以评估信道的传播环境。
本发明根据在同一个快拍的时延功率谱数据中已找到的功率峰值所对应的时延点,确定时延点所需要估计的径数,从而确定该快拍所需要估计的径数,这种确定快拍需要估计的径数的方式,可以根据每个快拍的具体数据自适应的确定需要估计的径数;利用信道参数估计算法对该快拍下所需要估计的径数中的每个径进行信道参数估计,对估计获得的所有快拍的每个径的信道参数进行统计,获得信道的统计结果,以评估信道的传播环境。通过这种方式,能够对每个快拍设置合适的径数,从而提高信道参数估计的准确度和收敛速度,且能够对信道的质量以及传播环境做出正确的评价。
参阅图10,图10是本发明信道参数估计装置又一实施方式的结构示意图,该装置包括处理器601和与该处理器601耦合的存储器602。
存储器602存储有信道中所有快拍的时延功率谱数据、同一个快拍下时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点信息以及信道参数估计算法程序。
处理器601用于根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定快拍所需要估计的径数,并将该径数存入存储器602。
处理器601进一步用于根据已确定的快拍所需要估计的径数,利用信道参数估计算法对快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数,并将该信道参数存入存储器602。
本发明根据在同一个快拍的时延功率谱数据中已找到的功率峰值所对应的时延点,确定时延点所需要估计的径数,从而确定该快拍所需要估计的径数,这种确定快拍需要估计的径数的方式,可以根据每个快拍的具体数据自适应的确定需要估计的径数;利用信道参数估计算法对该快拍下所需要估计的径数中的每个径进行信道参数估计。通过这种方式,能够对每个快拍设置合适的径数,从而提高信道参数估计的准确度和收敛速度。
在本发明所提供的几个实施方式中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本发明各个实施方式中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施方式所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种信道参数估计方法,其特征在于,包括:
    根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述快拍所需要估计的径数;
    根据所述已确定的所述快拍所需要估计的径数,利用信道参数估计算法对所述快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数。
  2. 根据权利要求1所述的方法,其特征在于,所述预设范围是预设时延范围或预设功率范围。
  3. 根据权利要求2所述的方法,其特征在于,所述根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述快拍所需要估计的径数的步骤之前,包括:
    获取所述同一个快拍下所有子通道的平均的时延功率谱数据;
    根据获取的所述时延功率谱数据,获得所述快拍下的最大功率或所述快拍下的最大功率和平均噪声水平;
    根据所述快拍下的最大功率或所述快拍下的最大功率和平均噪声水平,确定所述预设功率范围;
    在所述时延功率谱数据中查找所述预设功率范围内的功率峰值所对应的时延点。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述快拍所需要估计的径数的步骤之前,包括:
    在所述同一个快拍的时延功率谱数据中,若在时延上区分出相差预设距离的两条多径,则根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述功率峰值所对应的时延点所需要估计的径数为预设数量。
  5. 一种评估信道传播环境的方法,其特征在于,包括:
    根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述快拍所需要估计的径数;
    根据所述已确定的所述快拍所需要估计的径数,利用信道参数估计算法对所述快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数;
    对所述估计获得的所有快拍的每个径的信道参数进行统计,获得所述信道的统计结果,以评估所述信道的传播环境。
  6. 一种信道参数估计装置,其特征在于,所述装置包括:第一确定模块和参数估计模块;
    所述第一确定模块用于根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述快拍所需要估计的径数,并将所述快拍所需要估计的径数向所述参数估计模块发送;
    所述参数估计模块用于接收所述第一确定模块发送的所述快拍所需要估计的径数,根据所述已确定的所述快拍所需要估计的径数,利用信道参数估计算法对所述快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数。
  7. 根据权利要求6所述的装置,其特征在于,所述预设范围是预设时延范围或预设功率范围。
  8. 根据权利要求7所述的装置,其特征在于,所述装置还包括:获取模块、获得模块、第二确定模块以及查找模块;
    所述获取模块用于获取所述同一个快拍下所有子通道的平均的时延功率谱数据,并向所述获得模块发送所述时延功率谱数据;
    所述获得模块用于接收所述获取模块发送的时延功率谱数据,根据获取的所述时延功率谱数据,获得所述快拍下的最大功率或所述快拍下的最大功率和平均噪声水平,并向所述第二确定模块发送所述快拍下的最大功率或所述快拍下的最大功率和平均噪声水平;
    所述第二确定模块用于接收所述获得模块发送的所述快拍下的最大功率或所述快拍下的最大功率和平均噪声水平,根据所述快拍下的最大功率或所述快拍下的最大功率和平均噪声水平,确定所述预设功率范围,并向所述查找模块发送所述预设功率范围;
    所述查找模块用于接收所述第二确定模块发送的预设功率范围,在所述时延功率谱数据中查找所述预设功率范围内的功率峰值所对应的时延点。
  9. 根据权利要求6至8任一项所述的装置,其特征在于,所述装置还包括第三确定模块,所述第三确定模块用于在所述同一个快拍的时延功率谱数据中,在时延上区分出相差预设距离的两条多径时,根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述功率峰值所对应的时延点所需要估计的径数为预设数量。
  10. 一种评估信道传播环境的装置,其特征在于,所述装置包括:第一确定模块、参数估计模块以及统计结果获得模块;
    所述第一确定模块用于根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述快拍所需要估计的径数,并将所述快拍所需要估计的径数向所述参数估计模块发送;
    参数估计模块用于接收所述第一确定模块发送的所述快拍所需要估计的径数,根据所述已确定的所述快拍所需要估计的径数,利用信道参数估计算法对所述快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数,并向所述统计结果获得模块发送所述估计获得的信道所有快拍的每个径的信道参数;
    统计结果获得模块用于接收所述参数估计模块发送的所述估计获得的信道所有快拍的每个径的信道参数,对所述获得的所有快拍的每个径的信道参数进行统计,获得所述信道的统计结果,以评估所述信道的传播环境。
  11. 一种信道参数估计装置,其特征在于,所述装置包括处理器和与所述处理器耦合的存储器;
    所述存储器存储有信道中所有快拍的时延功率谱数据、同一个快拍下时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点信息以及信道参数估计算法程序;
    所述处理器用于根据在同一个快拍的时延功率谱数据中已找到的预设范围内的功率峰值所对应的时延点,确定所述快拍所需要估计的径数,并将所述径数存入存储器;
    所述处理器进一步用于根据所述已确定的所述快拍所需要估计的径数,利用信道参数估计算法对所述快拍下所需要估计的径数中的每个径进行信道参数估计,直到估计获得信道所有快拍的每个径的信道参数,并将所述信道参数存入存储器。
PCT/CN2012/087556 2012-12-26 2012-12-26 信道参数估计方法及装置、评估信道传播环境的方法及装置 WO2014101009A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/087556 WO2014101009A1 (zh) 2012-12-26 2012-12-26 信道参数估计方法及装置、评估信道传播环境的方法及装置
CN201280027882.XA CN103703730B (zh) 2012-12-26 2012-12-26 信道参数估计方法及装置、评估信道传播环境的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/087556 WO2014101009A1 (zh) 2012-12-26 2012-12-26 信道参数估计方法及装置、评估信道传播环境的方法及装置

Publications (1)

Publication Number Publication Date
WO2014101009A1 true WO2014101009A1 (zh) 2014-07-03

Family

ID=50363931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087556 WO2014101009A1 (zh) 2012-12-26 2012-12-26 信道参数估计方法及装置、评估信道传播环境的方法及装置

Country Status (2)

Country Link
CN (1) CN103703730B (zh)
WO (1) WO2014101009A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110782475A (zh) * 2018-07-30 2020-02-11 中兴通讯股份有限公司 一种多径分量的处理方法、终端和计算机存储介质
CN113534113A (zh) * 2021-05-31 2021-10-22 中国船舶重工集团公司第七一五研究所 一种基于运动补偿的声纳目标线谱增强方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978833A (zh) * 2016-06-29 2016-09-28 西安电子科技大学 一种改进的sage信道参数估计方法
CN106980879A (zh) * 2017-04-28 2017-07-25 厦门大学 基于改进支持向量机与灰建模的海面信道参数估计方法
CN112054972B (zh) 2020-07-24 2022-10-28 东南大学 利用多极化宽带扩展阵列响应的密集多径参数估计方法
CN113438682B (zh) * 2021-08-03 2022-11-18 华北电力大学 一种基于波束成形的sage-bem 5g无线信道参数提取方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100726342B1 (ko) * 2006-05-11 2007-06-11 인하대학교 산학협력단 Ds-uwb 시스템의 훈련 시퀀스를 이용한 연속적인소거 채널 추정 장치 및 방법
CN102035770A (zh) * 2010-12-01 2011-04-27 南京航空航天大学 一种利用相关进行的信道估计方法
CN102307165A (zh) * 2011-08-29 2012-01-04 北京邮电大学 一种信道参数估计方法和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603832B (zh) * 2009-07-13 2010-11-10 中国船舶重工集团公司第七一五研究所 一种广播式多用户自主水声导航方法
CN102098705B (zh) * 2011-03-15 2013-05-29 北京邮电大学 多维信道参数提取方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100726342B1 (ko) * 2006-05-11 2007-06-11 인하대학교 산학협력단 Ds-uwb 시스템의 훈련 시퀀스를 이용한 연속적인소거 채널 추정 장치 및 방법
CN102035770A (zh) * 2010-12-01 2011-04-27 南京航空航天大学 一种利用相关进行的信道估计方法
CN102307165A (zh) * 2011-08-29 2012-01-04 北京邮电大学 一种信道参数估计方法和系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110782475A (zh) * 2018-07-30 2020-02-11 中兴通讯股份有限公司 一种多径分量的处理方法、终端和计算机存储介质
CN113534113A (zh) * 2021-05-31 2021-10-22 中国船舶重工集团公司第七一五研究所 一种基于运动补偿的声纳目标线谱增强方法
CN113534113B (zh) * 2021-05-31 2023-08-15 中国船舶重工集团公司第七一五研究所 一种基于运动补偿的声纳目标线谱增强方法

Also Published As

Publication number Publication date
CN103703730B (zh) 2016-08-31
CN103703730A (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
WO2014101009A1 (zh) 信道参数估计方法及装置、评估信道传播环境的方法及装置
WO2020246842A1 (ko) Nr v2x에서 단일 단말의 prs 전송에 기반한 사이드링크 포지셔닝
WO2020251318A1 (ko) Nr v2x에서 서버 단말의 prs 전송에 기반한 사이드링크 포지셔닝
WO2021075851A1 (ko) 사이드링크를 지원하는 무선통신시스템에서 단말이 측위를 수행하는 방법 및 이를 위한 장치
WO2020116969A1 (en) Optimized transmission for single/double-sided two-way ranging among many devices
WO2021010659A1 (en) Electronic device for performing ranging by using ultra-wideband in wireless communication system, and method of operating the electronic device
WO2018097637A1 (en) Device including antenna and control method thereof
WO2021155793A1 (zh) 定位方法、终端及网络设备
WO2011102634A2 (ko) 릴레이를 송수신에 이용하는 광대역 근거리 무선 통신 방법 및 장치
WO2020141868A1 (en) Framework of secure ranging without phy payload
WO2018147659A1 (en) Apparatus and method for providing service in wireless communication system
WO2016122225A1 (ko) 통신 시스템에서 혼잡 제어 방법 및 장치
WO2021141404A1 (ko) 사이드링크 기반의 측위를 수행하는 방법 및 장치
WO2016129957A1 (en) Methods and apparatuses for processing ue context of ue
WO2016036055A1 (ko) 무선 통신 시스템에서 전송 제어를 위한 방법 및 장치
WO2011049398A2 (en) Communication system of detecting victim terminal and performing interference coordination in multi-cell environments
WO2021221352A1 (ko) 무선 통신 시스템에서 빔포밍된 신호를 이용하여 측위를 수행하기 위한 방법 및 장치
WO2019078625A1 (en) ELECTRONIC DEVICE SUPPORTING MULTIBAND WIRELESS COMMUNICATIONS AND ITS CONTROL METHOD
US20030171139A1 (en) Diversity branch delay alignment in radio base station
WO2022268197A1 (zh) 定位处理方法、定位参考信号发送方法、装置及设备
WO2019203611A1 (ko) 이동 단말기의 위치측정시스템
WO2022005052A1 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
ES2734502T3 (es) Análisis temporal para la estimación de la velocidad de usuario en redes inalámbricas
EP3959834A1 (en) Method for adjusting length of golay sequence for object recognition and electronic device therefor
WO2016186396A1 (ko) 무선 통신 시스템에서 초기 윈도우 값을 설정하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890953

Country of ref document: EP

Kind code of ref document: A1