WO2014098325A1 - 리소포스파티딜에탄올아민 또는 레시틴을 함유하는 식물 증수용 조성물 및 식물 증수 방법 - Google Patents

리소포스파티딜에탄올아민 또는 레시틴을 함유하는 식물 증수용 조성물 및 식물 증수 방법 Download PDF

Info

Publication number
WO2014098325A1
WO2014098325A1 PCT/KR2013/003312 KR2013003312W WO2014098325A1 WO 2014098325 A1 WO2014098325 A1 WO 2014098325A1 KR 2013003312 W KR2013003312 W KR 2013003312W WO 2014098325 A1 WO2014098325 A1 WO 2014098325A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
plant
lpe
lecithin
plants
Prior art date
Application number
PCT/KR2013/003312
Other languages
English (en)
French (fr)
Inventor
강충길
최수용
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130033776A external-priority patent/KR20140081641A/ko
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2014098325A1 publication Critical patent/WO2014098325A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/10Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
    • A01N57/12Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing acyclic or cycloaliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/10Fertilisers containing plant vitamins or hormones

Definitions

  • the present invention relates to a composition for growing plants and a method for growing plants using the same, and more particularly, to a composition for growing plants comprising at least one of lysophosphatidylethanolamine (LPE) and lecithin and a method for growing plants using the same. .
  • LPE lysophosphatidylethanolamine
  • Pesticides are largely divided into insecticides, fungicides, herbicides and plant growth regulators. Insecticides, fungicides, herbicides, etc. are used for the purpose of preventing crop loss, while plant growth regulators increase productivity and marketability by utilizing various physiological activities such as maturation, prevention of fallout, and reduction of shedding along with the increase of the plant itself. Therefore, the importance is increasing.
  • each process of nutrient growth, complexation, fruiting, evaporation, coloring, maturation, etc. in plants differs in the type and amount of nutrients required, and each process responds to or affects external substances. Is different. Therefore, even if there is an external substance that has an effect of promoting maturity, the substance may have no effect at all or may have the opposite effect at the complexing or increasing stage.
  • Plant growth regulators are a type of plant hormone that is synthesized in plants and then migrated to affect each tissue and differentiation at extremely low concentrations. Plant hormones are synthesized in many parts and their effects are relatively wide.
  • auxin auxin
  • gibberellin gibberellin
  • cytokinin cytokinin
  • ABA Abbic acid
  • ethylene and brassinolide are known.
  • Gibberellin and auxin are generally used as growth regulators for the fruit-growing effect, but they are limited to the field of promoting fruit growth and are rarely used in the cereal field.
  • Rice et al. (Science 195: 1339-1341, 1977) has identified a triacontanol (triacontanol) has a growth promoting effect, Jo et al.
  • Lysophosphatidylethanolamine is naturally present in the cells of plants and animals, especially in egg yolk and brain cells. Lysophosphatidylethanolamine is derived from phosphatidylethanolamine, a type of phospholipid found in cell membranes. Phosphatidylethanolamine, which is rich in egg yolk and soybean lecithin, is a phospholipid that contains two fatty acids in its molecule. In vivo, phosphatidylethanolamine is converted to lysophosphatidylethanolamine by removal of one fatty acid at the sn-2 position by the action of phospholipidase A2, a phospholipid hydrolase.
  • Lysophosphatidylethanolamine is known to play a very important role in ripening and senescence of fruits. It is known that lysophosphatidylethanolamine can inhibit the aging of leaves and fruits of tomatoes. Therefore, treatment of lysophosphatidyl ethanolamine after tomato harvesting can extend the shelf life of fruits. Known (US Pat. No. 5,110,341, US Pat. No. 5,126,155). In addition, it is known that the treatment of lysophosphatidylethanolamine on apples promotes anthocyanin formation on the skin and inhibits softening during storage of harvested apples.
  • lysophosphatidylethanolamine plays an important role in the ripening and aging of fruits and extends the life of cut flowers because plants have different effects on the nutrients and foreign substances required at each step. Even so, these studies alone do not reveal how lysophosphatidylethanolamine affects the water vapor.
  • Yield increase is also closely related to fruit set, pollination or fruiting.
  • the ovary grows due to moisture, and the seed makes seeds by fertilization.
  • the ovary is enlarged because the plant growth hormone Auxin is produced in the ovary by moisture.
  • Strawberry has no auxin on flower chin after a few minutes, but there are many auxin in seeds, and it grows and grows by this.
  • the seed's seed is degenerate, it becomes fruitless and falls.
  • the parthenocarpy of unit reproductive plants is closely related to the level of auxin in plants.
  • Various synthetic auxin compounds have been developed for this purpose, and their treatment on plants results in enhanced fruit sets and fruit-enhancing effects. Such materials are mainly used in harsh environments, especially under high or low temperatures, where pollen formation and pollination are difficult to form.
  • synthetic auxin compounds derivatives of naphthalenic acid or chlorophenoxy acid are mainly used.
  • the use of auxin compounds is mainly sprayed directly on the flower cluster or throughout the plant.
  • the synthetic auxins are used at higher temperatures than the standard concentration, or the cavities and the occurrence is severe when overlapping spraying, especially if the chemical liquid in the growth point area is susceptible to malformation problems in the plant and growth is poor. Therefore, there is a demand for a substance that promotes the increase of the plant effectively, but does not have adverse effects on the human body and the environment, such as malformation of the plant, poor growth, and the like.
  • the early stage of aging in plant cell structure is the degradation of chloroplasts, which are organelles that contain more than 70% of the leaf proteins.
  • the carbon assimilation in plants is due to catabolism of chlorophyll and macromolecules such as proteins, membrane lipids, and RNA. It means to be converted.
  • This increased catabolic activity leads to the conversion of cellular components accumulated in the leaves, an assimilation tissue during growth, into excretory cellular components supplied for the development of seeds or other storage organs. Aging of such plants is influenced by internal environmental factors such as plant hormones and external environmental factors such as drought, nutrient restriction, pathogen penetration, and the like.
  • cytokinin is a physiologically delayed hormonal hormone and there are many reports on the increase of the technology.
  • the Amasino group developed a method of regulating aging-specific cytokinin synthesis by recombining the IPT gene into a promoter of the aging-specific SAG12 gene, which showed a 50% increase in productivity in cigarettes that delayed aging.
  • the shelf life after harvest significantly increased (McCabe et al., 2001).
  • the level of cytokinin was increased and leaf aging was delayed in tobacco expressing corn homeobox gene (knotted1) in SAG12 promoter (Lee et al. 2012).
  • the present invention is to solve the above problems, by promoting the growth of plants effectively by promoting the growth of the plant does not cause side effects, such as malformation, poor growth of the plant, no toxicity to the human body and do not destroy the environment While providing an excellent composition for growing plants and a method for growing plants using the same, an object of the present invention is to increase the economics by allowing a large amount of food or grains to be obtained at low cost without side effects or toxicity.
  • the present invention provides a composition for plant evaporation comprising at least one of lysophosphatidylethanolamine (LPE) and lecithin.
  • LPE lysophosphatidylethanolamine
  • the composition for plant growth of the present invention is characterized in that it further comprises one or more of fatty acids having 3 to 22 carbon atoms and salts thereof, and a mixed solvent of water and alcohol.
  • At least one of the lysophosphatidylethanolamine (LPE) and lecithin of the present invention is characterized in that it comprises 1 to 50% by weight relative to the total weight of the composition.
  • At least one of the fatty acids and salts thereof of the present invention is 0.001 to 60% by weight based on the total weight of the composition, characterized in that the mixed solvent is contained in 10 to 99.9% by weight relative to the total weight of the composition.
  • the salt of the fatty acid of the invention is characterized in that at least one selected from the group consisting of sodium salts, potassium salts, ammonium salts and ethanolamine salts.
  • the alcohol of the present invention is characterized in that at least one selected from the group consisting of ethanol, isopropanol, butanol, hexanol and oleyl alcohol.
  • the mixed solvent of the present invention has a volume ratio of water: ethanol or isopropanol: butanol: hexanol: oleyl alcohol in the range of 0.4-4.0: 0.2-2.0: 0.2-2.0: 0.2-2.0: 0.1-1.0 It is characterized by that.
  • the present invention is characterized in that the above-mentioned one or more plant composition for plant evaporation to the plant to promote the evaporation.
  • the method for plant growth of the present invention is characterized by treating the composition for at least one plant selected from the group consisting of corn, rice, barley, sorghum and wheat.
  • the method for plant growth according to the present invention is characterized by treating plants with a composition for plant growth in which the content of at least one of lysophosphatidylethanolamine (LPE) and lecithin is 0.01 to 10,000 ppm.
  • LPE lysophosphatidylethanolamine
  • the method for plant growth according to the present invention is characterized in that at least one of lysophosphatidylethanolamine (LPE) and lecithin is treated with a plant composition for plant growth containing a content of 0.01 to 100 ppm.
  • LPE lysophosphatidylethanolamine
  • the method for plant growth according to the present invention is characterized in that the composition for plant growth is primarily treated before and after the earing of the plant.
  • the method for plant growth according to the present invention is characterized in that the composition for plant growth is further treated 1 to 5 times at intervals of 5 to 15 days after the first treatment.
  • the present invention it is possible to effectively promote the increase of the plant while not causing side effects such as malformation and poor growth of the plant, no toxicity to the human body, and preventing the destruction of the environment. As a result, it can increase the economical efficiency at low cost without side effects and toxicity.
  • 1 is a photograph showing a comparison of the bag of corn (white rice).
  • Figure 2 is a photograph comparing the appearance of the corn harvested corn (white rice).
  • Figure 3 is a photograph showing a comparison of the appearance of the corn harvested corn (white rice).
  • Figure 4 is a photograph showing a comparison of the appearance of the harvested corn of corn (unwhitened, untreated) and corn treated once (unwhitened, untreated) without treatment of the composition of the present invention.
  • Figure 5 is a photograph showing a comparison of the appearance of the corn harvested corn (unblackened).
  • Figure 6 is a photograph showing a comparison of the appearance of the corn harvested maize (unblackened).
  • Figure 7 is a photograph showing a comparison of the appearance of the harvested corn of the corn (unwhitened, untreated) and the untreated corn (unwhitened, single) untreated with the composition of the present invention.
  • FIG. 9 is a photograph showing a comparison of the shape of the stem of the harvested rice.
  • FIG. 10 is a photograph showing a comparison of the ear appearance of the harvested rice.
  • composition for plant evaporation is characterized in that it comprises at least one of lysophosphatidylethanolamine (LPE) and lecithin.
  • LPE lysophosphatidylethanolamine
  • promoting plant growth refers to promoting plant germination, increasing plant length, promoting volume growth, improving leaf activity, promoting plant root growth, increasing fruit number, increasing fruit volume, It is the most comprehensive concept that includes promoting fruit fruiting, promoting fruit ripening, increasing yields, and increasing productivity. In particular, it means increasing the yield of plants, improving productivity, promoting kidney growth and volume growth, increasing the number of embroidery, increasing the number of films, increasing germination, increasing fruit number, and promoting hypertrophy.
  • composition containing lysophosphatidylethanolamine (LPE) as a plant growth promoter for steaming, it can be applied to grains such as rice, barley, sorghum, wheat, etc.
  • edible crops such as rice and corn Applicable to
  • LPE is a substance naturally present in plants and animals, it can be used that has been purified from nature. In particular, it can isolate from lecithin, such as soybean, egg yolk, or rapeseed. Crude soybean lecithin (commonly referred to as crude lecithin), produced as a by-product during the manufacturing process of soybean oil, is 60-70% polar lipids (phospholipids / glycolipids), 27-39% soybean oil, 1-3% water, It is composed of 0.5 ⁇ 3% of other ingredients.
  • the polar lipid is purified by removing soybean oil, which is a neutral lipid contained in crude lecithin, and the composition of the purified state is 22-30% phosphatidylcholine (PC), 2-5% lysophosphatidylcholine (LPC). , 16-22% phosphatidylethanolamine (PE), 0.5-2% lysophosphatidylethanolamine (LPE), 0.5-8% phosphatitidic acid (PA), 0.1-3% It consists of phosphatidyl serine, 6-15% phosphatidylinositol, and the like.
  • PC phosphatidylcholine
  • LPE 2-5% lysophosphatidylcholine
  • PA phosphatitidic acid
  • Egg yolk lecithin also contains 73-83% phosphatidylcholine (PC), 2-5% lysophosphatidylcholine (LPC), 13-17% phosphatidylethanolamine (PE), 1-3% lysophosphatidylethanolamine (LPE), etc. Consists of.
  • lecithin contains a very small amount of lysophosphatidylethanolamine, it is more difficult to separate lysophosphatidylethanolamine directly from these lecithin and use it commercially.
  • lysophosphatidylethanolamine prepared by reacting lecithin with ethanolamine in the presence of phospholipase D and phospholipase A can also be used.
  • Hydrogenated lysophosphatidylethanolamine can also be used in the present invention.
  • lysophosphatidylethanolamine obtained by hydrolyzing phosphatidylethanolamine extracted from nature with lysophosphatidylethanolamine or by modifying phosphatidylcholine to phosphatidylethanolamine and then hydrolyzing with lysophosphatidylethanolamine may also be used.
  • Lecithin itself containing small amounts of LPE can also be used in the present invention.
  • Normal soy lecithin contains very small amounts of LPE as described above.
  • the LPE can be further concentrated by the purification process or optionally by chemical or biochemical treatment to be used in the present invention.
  • modified soybean lecithin enriched in LPE may be treated by treating soybean lecithin with snake venom phospholipase A2 or pancreatic phospholipase A2 or by neutral lipase. It can obtain and can use for this invention using this.
  • Representative examples include enzyme modified soy lecithin from Solae.
  • Hydroxylated soy lecithin is a chemical treatment of purified soybean lecithin or crude soybean lecithin prior to purification to contain hydroxyl groups in the double bonds of fatty acids in lecithin. This may be used as it is in the present invention or by treating the phospholipase enzyme to the LPE in a large amount.
  • Acetylated soy lecithin chemically treats refined soy lecithin or crude soy lecithin before purification to contain acetyl groups in the amine groups in lecithin. This may be used in the invention or by treating the phospholipase enzyme to the LPE in a large amount.
  • the lecithin of the present invention may contain 3% or more of lysophosphatidylethanolamine (LPE). More preferably lecithin containing 5% or more of LPE.
  • LPE lysophosphatidylethanolamine
  • the composition of this invention contains LPE or lecithin containing LPE more than an effective concentration.
  • the LPE and LPE-containing lecithin may be included in an amount of 0.000001 to 50% by weight of the total composition.
  • the content of LPE or LPE-containing lecithin in the composition may vary depending on when the product is produced and distributed as a product and when the product is diluted and processed on plants. For example, when producing a product can be produced in a relatively high concentration in consideration of the stability and distribution efficiency of the product.
  • the content of LPE or lecithin is preferably 1 to 25% by weight, more preferably 5 to 20% by weight, still more preferably 8 to 12% by weight of LPE or LPE-containing lecithin.
  • the most preferred content of LPE or LPE containing lecithin is about 10% by weight. When LPE and LPE-containing lecithin fall within this content range, the stability of the composition is significantly improved.
  • the content of the LPE or the lecithin containing LPE as a composition for the final treatment on the plant can be sprayed on the plant by diluting the composition produced as a product in a suitable solvent such as water.
  • a suitable solvent such as water.
  • the content of LPE or lecithin containing LPE in the solution treated to the plant may be 0.01 to 10,000 ppm.
  • the content of LPE or a lecithin containing LPE in the range of 1 to 100 ppm is more stable to plants and is preferable in view of the effect of increasing water.
  • the composition for plant growth of the present invention may further include at least one of C3-C22 fatty acids and salts thereof, and a mixed solvent of water and alcohol.
  • the fatty acid having 3 to 22 carbon atoms used in the present invention may use both saturated fatty acids having no double bonds or unsaturated fatty acids having at least one double bond in the middle of the fatty acids. That is, as saturated fatty acid, propionic acid, butanoic acid, butyric acid, pentanoic acid, valeric acid, hexanoic acid, caproic acid, heptanoic acid, and octanoic acid (octanoic acid, caprylic acid), decanoic acid (capric acid), undecanoic acid, dodecanoic acid (lauric acid), tridecanoic acid, tetradecanoic acid (tetradecanoic acid) , myristic acid), pentadecanoic acid, hexadecanoic acid, palmitic acid, heptadecanoic acid, margaric acid, octadecanoic acid, stearic acid, and nonadecanoic acid
  • unsaturated fatty acids include those in which one double bond is included in the saturated fatty acid, and representative examples thereof include hexenoic acid, octennoic acid, dedecenoic acid, and dodecenoic acid.
  • Hexadecenoic acid palmitoleic acid
  • oxadeceic acid octadecenoic acid (oleic acid, petroselinic acid)
  • erucic acid such as oleic acid, petrocenic acid (docosenoic acid (erucic acid)
  • two or more double bonds such as linoleic acid, linolenic acid, arachidonic acid, docodapentenoic acid ( docodapentaenoic acid, etc. can also be used, however, it is necessary to make the surface of the plant extremely non-polar and to allow the active ingredient to penetrate the surface of the plant well or to adhere to the surface of the plant.
  • fatty acids preferably having 8 to 14 carbon atoms, more preferably 8 to 12 carbon atoms, and most preferably 10 to 12 carbon atoms can be used.
  • the salt of the fatty acid is not particularly limited in kind, but is preferably selected from sodium salt, potassium salt, ammonium salt and ethanolamine salt.
  • the ethanolamine salt may be one of monoethanolamine salt, diethanolamine salt and triethanolamine salt.
  • Fatty acids or salts thereof may be included in amounts of 0.1 to 60% by weight of the total composition.
  • the content of fatty acids or salts thereof is 1 to 25% by weight, more preferably 5 to 20% by weight of the total composition.
  • the most preferred fatty acid or salt thereof is about 10% by weight. If it falls within the above range, LPE or LPE-containing lecithin can be dissolved in an aqueous solution to maintain a stable formulation.
  • the solvent of the composition according to the present invention is preferably a mixed solvent of water and alcohol.
  • the solvent is 10 to 99.8 weight percent of the total composition.
  • the preferred amount of solvent is 50 to 99.8% by weight of the total composition.
  • More preferred solvent content is 76 to 84% by weight.
  • Water is an essential solvent here.
  • the alcohol is preferably at least one selected from the group consisting of ethanol, isopropanol, butanol, hexanol, oleyl alcohol. Among them, ethanol or an alcohol consisting of isopropanol, butanol, hexanol and oleyl alcohol is preferable.
  • the lecithin is preferably at least one modified lecithin selected from the group consisting of hydroxylated lecithin, acetylated lecithin and enzyme-treated lecithin.
  • the LPE may be natural or synthetic, and in particular, phospholipid extracted or modified after extraction from egg yolk, soybean, rice, sunflower or various plants.
  • the enzyme is preferably a phospholipase.
  • the LPE is preferably hydrogenated LPE.
  • the fatty acid may use 3 to 22 carbon or 4 or 14 natural or synthetic fatty acids, and more preferably 6 to 14 carbon atoms.
  • the salt of the fatty acid is preferably at least one selected from the group consisting of sodium salt, potassium salt, ammonium salt and ethanolamine salt.
  • the solvent is preferably a mixed solvent of water and alcohol.
  • the alcohol is preferably at least one selected from the group consisting of ethanol, isopropanol, butanol, hexanol and oleyl alcohol.
  • the alcohol is preferably composed of ethanol or isopropanol, butanol, hexanol and oleyl alcohol.
  • the volume ratio of water: ethanol or isopropanol: butanol: hexanol: oleyl alcohol in the mixed solvent is 0.4 to 4.0: 0.2 to 2.0: 0.2 to 2.0: 0.2 It is preferable that it is -2.0: 0.1-1.0.
  • the salt of the fatty acid of the present invention may be at least one selected from the group consisting of sodium salt, potassium salt, ammonium salt and ethanolamine salt.
  • the present invention may be an aqueous solution, but is not limited thereto, and may be applied to the application of a composition consisting of granules and the like.
  • Still another aspect of the present invention is to provide a method for increasing plant yield by treating a plant with a composition for plant growth comprising at least one of lysophosphatidylethanolamine (LPE) and lecithin described above.
  • LPE lysophosphatidylethanolamine
  • the composition can be steamed by treating one or more plants selected from the group consisting of corn, rice, barley, sorghum and wheat.
  • the plant distillation method of the present invention can treat plants with compositions for plant enrichment in which the content of at least one of lysophosphatidylethanolamine (LPE) and lecithin is 0.01 to 10,000 ppm.
  • LPE lysophosphatidylethanolamine
  • lecithin may be included in an amount of 0.01 to 100 ppm.
  • the composition can be treated to plants before and after the time when the ear comes out.
  • the treatment position of the composition may be performed on a part or the whole of a flower cluster or a plant.
  • the composition may be primarily treated before or after corn sprouts or before or after rice extraction.
  • the number of times the treatment of the composition of the present invention can be treated once or more, and when provided with one or more times, after the initial treatment of the plant before and after the time when the ear composition comes out, 5 to 15 days intervals Can be further processed 1 to 5 times. Most preferably, it may be applied once more at 7 day intervals.
  • LPE was prepared according to the following method.
  • the solution is filtered to remove impurities and the filtrate is refrigerated for 3 hours at -2 ° C.
  • the crystallized solution is filtered to give 4.8 g of filtrate.
  • the filtrate was treated twice with the above mixed solution in the same manner and vacuum dried at 30 ° C., and then the dried product was examined by liquid chromatography to obtain 1.6 g of lysophosphatidylethanolamine having a phospholipid purity of 97% or more.
  • lysophosphatidylethanolamine having a phospholipid purity of 97% or more.
  • the aqueous solution of lysophosphatidylethanolamine prepared as described above was diluted with water and dispersed evenly, and then treated with plants at a concentration of 10 ppm.
  • the present inventors selected and tested unbleached corn as the plant to be tested as follows.
  • test subjects used different seeding conditions (July 1, July 24) with different growth conditions depending on the time of spraying.
  • the application was carried out at 7 days interval starting from 9 August.
  • the experimental group configuration was as shown in Table 1 below.
  • corn sown on July 1 averaged 11 crops on August 9 (the 39th day of sowing), and corn sown on July 24 (the 16th day of sowing) on July 9, the first day of treatment. The average was about 6-7.
  • the growth of the corn fruit was promoted in the LPE-treated example than the comparative example without the LPE treatment, the size and weight of the corn bag, as well as the size, number, and maturity of the corn grains were found to increase.
  • the corn yield was significantly increased, and the most excellent effect was found in the group treated with LPE once (Example A1).
  • the experiment was conducted in the same manner, except that the unbleached corn was used instead of the unbleached corn.
  • the seeding time of the test subjects was July 12, and the application was carried out every 7 days starting from August 9th.
  • the experimental group configuration was as shown in Table 3 below.
  • the average rice black soybeans sown on July 12 averaged about 10 on August 9 (the 28th day of sowing).
  • the growth of the corn fruit was promoted in the LPE-treated example than the comparative example without the LPE treatment, the size and weight of the corn bag, as well as the size, number, and maturity of the corn grains were found to increase.
  • LPE-treated group Example B1 showed the best effect.
  • the experiment was conducted in the same manner except that rice was used instead of corn, and the experiment was repeated three times in total. All of the rice used in the experiment was transferred to rice fields at 5.10 days and treated with LPE at intervals of 8.7 to 7 days.
  • the experimental group configuration was as shown in Table 5.
  • Table 6 shows the results of the three experiments of Comparative Examples and Examples C1, 2 and 3, respectively, and Table 7 shows the comparison of the average values of each of the three experiments.
  • Example C1 No treatment 148 17.9 5.3 29 71.8 1.92 2.44 Comparative Example C2 No treatment 68 18.1 5.3 28 76.4 1.98 2.32 Comparative Example C3 No treatment 63 18.5 5.2 23 72.2 1.93 2.72 Example C1-1 1 time 21 20.3 4.6 24 91.3 2.55 2.6 Example C1-2 1 time 21 18.5 6 34 79.8 2.09 2.65 Example C1-3 1 time 26 19.6 5 33 76.4 2.02 2.53 Example C2-1 Episode 2 40 18.4 6.1 32 81.5 2.16 2.34 Example C2-2 Episode 2 46 19.4 5.2 30 81.5 2.37 2.52 Example C2-3 Episode 2 66 18.5 4.8 35 69.8 1.83 2.55 Example C3-1 3rd time 32 18.9 6.3 24 77.3 1.82 2.41 Example C3-2 3rd time 41 18 5 27 65.7 1.71 2.55 Example C3-3 3
  • the growth of rice is promoted, the number of immature rice is reduced, the ear length, the number of ears, the number of films, the seasoning, the granules, the total Film weight and maturity were both increased, and among them, LPE-treated group showed the best effect.
  • Plant composition for increasing the plant according to the present invention can effectively promote the increase of plants at low cost without side effects and toxicity, can be utilized in the agricultural sector.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Botany (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 발명은 식물 증수용 조성물 및 그 조성물을 이용한 증수 방법에 관한 것으로서, 구체적으로는 리소포스파티딜에탄올아민(LPE) 및 레시틴 중 하나 이상을 포함하는 식물 증수용 조성물 및 이를 식물에 처리하여 증수를 촉진하는 식물 증수 방법을 특징으로 한다. 본 발명을 이용하면, 식물의 증수를 효과적으로 촉진하면서도 식물의 기형현상, 생육 불량 등의 부작용을 유발하지도 않고 인체에 대한 독성도 없으며 환경을 파괴하는 것을 방지할 수 있다. 이로써 독성 및 부작용 없이 적은 비용으로도 많은 곡식을 얻을 수 있으므로 경제성을 높일 수 있는 효과가 있다.

Description

리소포스파티딜에탄올아민 또는 레시틴을 함유하는 식물 증수용 조성물 및 식물 증수 방법
본 발명은 식물 증수용 조성물 및 그를 이용한 식물 증수 방법에 관한 것으로서, 더욱 상세하게는, 리소포스파티딜에탄올아민(LPE) 및 레시틴 중 하나 이상을 포함하는 식물 증수용 조성물 및 그를 이용한 식물 증수 방법에 관한 것이다.
현재 세계의 인구는 매년 1억명씩 늘어나고 있으나 세계의 농지는 한정되어 있는 실정이고, 따라서 최대한의 생산을 위한 고밀도 집약 생산이 요구되고 있다. 농사를 집약적으로 하기 위해서는 단위 면적당 생산량을 높여 고품질의 상품을 생산하는 것이 중요하다. 최근에는 화학 공업의 발전에 의하여 다양한 농약, 비료가 생산되었으며, 그 결과 농업 생산성의 증대를 이룩하였다. 그러나, 이러한 화학 물질의 남용은 생태계 파괴 및 환경 오염 등과 같은 문제를 유발시켰고, 따라서 독성 및 환경 오염 문제 등에 관한 안전성 측면을 모두 만족시킬 수 있는 농약에 대한 연구 개발이 요구되고 있다.
농약은 크게 살충제, 살균제, 제초제 및 식물생장조정제로 나뉘어져 있다. 살충제, 살균제, 제초제 등은 작물의 감소를 예방할 목적으로 사용되는 반면 식물생장조정제는 식물 자체의 증수와 함께 성숙, 낙과 방지, 도복 경감 등의 다양한 생리 활성을 이용하여 생산성 및 상품성을 증대시키는 역할을 하기 때문에 그 중요성이 증대되고 있다.
식물은 각 발육단계에 따라 요구되는 영양분이 다르기 때문에 자연농업에서는 항상 작물의 생장발육을 정확히 파악해 영양생장, 착화, 증수, 착색, 성숙 등의 각 과정에 따라 올바른 발육진단을 내리고 발육을 증진시키기 위한 방안을 연구하고 있다. 농학 분야의 영양주기이론에 따르면 작물의 생장 발육은 일생동안 때로는 한 사이클 동안 동일한 것이 아니라 질적, 생리적으로 차이가 있으며 필요 영양소의 종류와 그 요구량도 다르다. 또 생육단계마다 각각의 특징이 있고 영양상태에도 변화가 일어난다. 따라서 작물이 각 단계마다 요구하는 영양과 생리조건을 바르게 결정하고 발육진단을 통해 그것을 최적의 상태로 끌어올려야 한다.
상기 영양주기이론에서 알 수 있듯이, 식물에 있어서 영양생장, 착화, 결실, 증수, 착색, 성숙 등의 각 과정은 필요로 하는 영양소의 종류와 양이 다르고 각 과정마다 외부 물질에 대한 반응이나 그 효과가 다르다. 따라서 성숙을 촉진하는 효과가 있는 외부 물질이 있다고 하여도 그 물질은 착화 또는 증수 단계에서는 전혀 효과가 없거나 전혀 반대의 효과가 있을 수 있다는 것이다. 식물 생장 조정제는 일종의 식물 호르몬으로서 식물체 내에서 합성된 후 이동하여 극히 낮은 농도에서 각 조직과 분화에 영향을 주는 물질을 말한다. 식물 호르몬은 여러 부분에서 합성되며 그의 영향도 비교적 넓다.
한편, 이러한 식물생장조정제는 다른 살충제, 제초제 및 비료와는 달리 적은 양으로도 식물의 성장과 발육을 촉진시키는 특징을 갖고 있으며, 옥신(auxin), 지베렐린(gibberellin), 사이토카이닌(cytokinin), 아브시스산(ABA), 에틸렌(ethylene) 및 브라시노라이드(brassinolide) 등이 알려져 있다. 과수 증대 효과를 위한 생장조정제로는 지베렐린과 옥신이 일반적으로 사용되고 있으나, 과채류의 생장 촉진 분야에만 국한되어 있고 곡류 분야에 사용된 경우는 거의 알려져 있지 않을 뿐만 아니라 가격 또한 매우 비싸다. 또한, 라이스 등(Rice et al., Science 195:1339-1341, 1977)은 트리아콘타놀(triacontanol)이라는 물질을 분리하여 생장 촉진 효과가 있음을 확인한 바 있고, 조 등(조 et al., 과학기술부 연구보고서 "식물생장조절제에 관한 연구" 1983)은 이를 옥수수, 보리, 쌀, 토마토 등에 적용한 바 있다. 또한, 벼의 경우 14.8%~41%, 배추의 경우 83%, 무의 경우 108.4%의 수량 증가를 보인 결과가 있으나, 역시 매우 고가여서 이러한 경제적 문제를 극복하기 위해 이를 합성하려는 시도가 있었다. 라오 등(Rao et al., Organic preparation and procedures International 24:67-70, 1992)에 의하여 트리아콘타놀의 합성 방법이 개발되었으나 아직 상업화되지는 못하였다.
한편, 최근에는 식물 생장 촉진용 미생물의 개발에 대한 연구가 진행되고 있으나 화학 물질만큼의 효과를 보이고 있지 않다. 또한, 유전공학적 기법을 이용한 형질전환 식물을 개발하여 증수 효과를 보이려는 시도가 있으나, 증수 효과가 크지 않고 안전성에 대한 문제가 입증되지 않아 실용화되지 못하고 있다.
리소포스파티딜에탄올아민(lysophosphatidylethanolamine, LPE)은 동식물의 세포에 천연적으로 존재하며 특히 난황이나 뇌세포에 많이 함유되어 있다. 리소포스파티딜에탄올아민은 세포막에서 발견되는 인지질의 일종인 포스파티딜에탄올아민으로부터 유도된다. 난황이나 대두 레시친에 풍부한 포스파티딜에탄올아민은 인지질의 일종으로서 2개의 지방산을 분자 내에 함유하고 있다. 생체 내에서는 포스파티딜에탄올아민이 인지질 가수분해 효소인 포스포리파제 A2의 작용을 받아 sn-2 위치에 있는 1개의 지방산이 제거됨에 의해 리소포스파티딜에탄올아민으로 변환된다.
리소포스파티딜에탄올아민은 과실의 숙성(ripening)과 노화(senescence)에 매우 중요한 역할을 하는 것으로 알려져 있다. 리소포스파티딜에탄올아민을 처리하면 토마토의 잎(leaves)과 과실의 노화를 억제시킬 수 있는 것으로 알려져 있으며 이로써 토마토를 수확한 후 리소포스파티딜에탄올아민을 처리하면 과실의 저장기간을 연장시켜 줄 수 있다는 것 또한 알려져 있다.(US 특허 5,110,341, US 특허 5,126,155). 또한 리소포스파티딜에탄올아민을 사과에 처리하면 껍질에 안토시아닌(anthocyanin) 형성을 촉진하며 수확된 사과의 저장 기간 중 연화(softening)를 억제하는 작용을 하는 것으로 알려져 있다. 이런 작용은 사과, 크랜베리(cranberry), 토마토(tomato) 등과 같은 과실의 호흡속도(respiration rate)를 낮추어주는 역할과 에틸렌(ethylene) 가스 형성을 촉진하거나 억제하는 기능과 연관이 있는 것으로 알려져 있다(Farag, K.M. and J.P. Palta, "Stimulation of Ethylene Production by Erea, Thidiazoron, and Lysophosphatidylethanolamine and Possible sites of this stimulation" Annual meeting of the American Society of Plant Physiologists, April 1989). 적당한 농도로 조절된 리소포스파티딜에탄올아민(Lysophosphatidylethanolamine) 용액은 절화(Cut flower)의 수명을 연장하는 수단으로 이용되기도 한다(Hort Science 32(5): 888-890, 1997). 그러나 상기 언급한 바와 같이, 식물은 각 단계마다 필요한 영양소와 외부 물질에 대한 효과가 달라지기 때문에 리소포스파티딜에탄올아민이 과실의 숙성과 노화에 중요한 역할을 하고 절화의 수명을 연장하는 수단으로 이용될 수 있다고 하여도 이러한 연구만으로는 리소포스파티딜에탄올아민이 증수에는 어떠한 영향을 미치는지 알 수가 없었다.
증수(yield increase)는 착과 (fruit set), 수분(pollination) 또는 결실(fruiting) 등과도 밀접한 연관이 되어 있다. 대부분은 수분에 의해 씨방이 커지고 밑씨는 수정에 의해 종자를 만든다. 씨방이 비대한 것은 수분에 의해 식물생장 호르몬인 옥신이 씨방 내에 생성되기 때문이다. 딸기는 수분 후에도 꽃턱에는 옥신이 없지만 종자에는 많은 옥신이 존재하여 이것에 의해 꽃턱이 커져서 결실된다. 또 수분을 하더라도 종자의 씨눈이 퇴화된 경우에는 결실하지 못하고 낙과가 된다.
단위생식 식물들의 단위 결실(parthenocarpy)은 식물내 옥신의 수준과 깊은 연관이 있다. 여러가지 합성 옥신의 화합물들이 이를 위해 개발되었으며, 이들의 식물체에 대한 처리는 결실촉진(improved fruit set)과 과일의 비대촉진 효과를 가져온다. 열악한 환경하에서, 특히 꽃가루(pollen) 형성과 수분(pollination) 형성이 어려운 고온 혹은 저온하에서, 이와 같은 물질들이 주로 사용된다. 합성 옥신 화합물로는 나프탈레닉산(naphthalenic acid)이나 클로로페녹시산(chlorophenoxy acid)의 유도체가 주로 사용되고 있다. 옥신 화합물의 사용방법은 주로 화방(flower cluster)에 직접 살포하거나 식물 전체에 살포하는데, 온도가 낮은 온실에서는 주로 화방에만 직접 살포한다.
그러나, 상기 합성 옥신들은 고온기에 기준농도 이상으로 사용하거나 중복 살포시 공동과 발생이 심해지며 특히 생장점 부위에 약액이 묻으면 식물에 기형현상의 장해를 받기 쉽고 생육이 불량해지는 부작용이 있다. 따라서 식물의 증수를 효과적으로 촉진하면서도 식물의 기형현상, 생육 불량 등의 부작용과 인체 및 환경에의 악영향이 없는 물질에 대한 요구가 있었다.
식물 세포 구조에 있어서 노화의 초기 현상은 잎 단백질의 70% 이상을 함유하고 있는 소기관인 엽록체의 분해인데, 식물체내 탄소 동화작용이 엽록소와 단백질, 막 지질, 그리고 RNA와 같은 거대분자의 이화작용으로 전환되는 것을 의미한다. 이러한 증가된 이화 작용 활성은 생장 동안 동화조직인 잎에 축적된 세포성분들이 종자 혹은 다른 저장 기관의 발달을 위해 공급되는 배출성 세포 성분으로 전환되는 것을 유도한다. 이와 같은 식물의 노화는 식물 호르몬 등과 같은 내적 환경요인 및 가뭄, 영양소 제한, 병원균 침투 등과 같은 외적 환경 요인에 의하여 영향을 받는다. 식물 호르몬 중 cytokinin은 생리학적으로 노화 지연 호르몬으로서 이를 이용한 증수조절 기술이 많이 보고되고 있다. Amasino 그룹은 노화 특이적인 SAG12 유전자의 promoter에 IPT유전자를 재조합하여 노화 단계 특이적인 cytokinin 합성 조절 방법을 개발하였으며, 상기 방법으로 노화를 지연시킨 담배에서 50%의 생산성 증대를 볼 수 있었다. 같은 방법으로 상추에 도입시켰을 때 수확 후 저장성이 크게 증가되는 것을 알 수 있었다(McCabe et al., 2001). 또한 SAG12 promoter에 옥수수의 homeobox gene(knotted1)을 발현시킨 담배에서 cytokinin의 level이 증가하였고 잎의 노화도 지연된다는 보고가 있었다(Lee 등. 2012).
[선행기술문헌]
1) 특허문헌
1. 한국등록특허 10-1028489
2. 한국등록특허 10-0651143
3. 미국등록특허 5,110,341
4. 미국등록특허 5,126,155
2) 비특허문헌
1. Farag, K.M. and J.P. Palta. 'Stimulation of Ethylene Production by Erea, Thidiazoron, and Lysophosphatidylethanolamine and Possible sites of this stimulation'. Annual meeting of the American Society of Plant Physiologists. April 1989.
2. HortScience 32(5): 888-890. 1997.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 식물 생장을 촉진함에 의해 식물의 증수를 효과적으로 촉진하면서도 식물의 기형현상, 생육 불량 등의 부작용을 유발하지도 않고 인체에 대한 독성도 없으며 환경을 파괴하지도 않는 우수한 식물 증수용 조성물 및 그를 이용한 식물 증수 방법을 제공하면서, 부작용이나 독성 없이 적은 비용으로도 많은 양질의 식량 혹은 곡물을 얻을 수 있도록 하여 경제성을 높이는 것을 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명은 리소포스파티딜에탄올아민(LPE) 및 레시틴 중 하나 이상을 포함하는 식물 증수용 조성물을 제공한다.
본 발명의 일 태양에 따르면, 본 발명의 식물 증수용 조성물은 탄소수 3 내지 22개의 지방산 및 그의 염 중 하나 이상, 및 물과 알코올의 혼합용매를 더 포함하는 것을 특징으로 한다.
본 발명의 일 태양에 따르면, 본 발명의 리소포스파티딜에탄올아민(LPE) 및 레시틴 중 하나 이상은 조성물 총중량대비 1 내지 50중량%로 포함되는 것을 특징으로 한다.
본 발명의 일 태양에 따르면, 본 발명의 지방산 및 그 염 중 하나 이상은 조성물 총중량대비 0.001 내지 60중량%, 상기 혼합용매는 조성물 총중량대비 10 내지 99.9중량%로 포함되는 것을 특징으로 한다.
본 발명의 일 태양에 따르면, 본 발명의 지방산의 염은 나트륨염, 칼륨염, 암모늄염 및 에탄올아민염으로 구성된 군으로부터 선택된 하나 이상인 것을 특징으로 한다.
본 발명의 일 태양에 따르면, 본 발명의 알코올은 에탄올, 이소프로판올, 부탄올, 헥산올 및 올레일 알코올로 구성된 군으로부터 선택된 하나 이상인 것을 특징으로 한다.
본 발명의 일 태양에 따르면, 본 발명의 혼합용매는 물 : 에탄올 또는 이소프로판올 : 부탄올 : 헥산올 : 올레일 알코올의 부피비가 0.4~4.0 : 0.2~2.0 : 0.2~2.0 : 0.2~2.0 : 0.1~1.0인 것을 특징으로 한다.
본 발명에 따르면, 상기 상술한 하나 이상의 식물 증수용 조성물을 식물에 처리하여 증수를 촉진하는 것을 특징으로 한다.
본 발명의 일 태양에 따르면, 본 발명의 식물 증수 방법은 상기 증수용 조성물을 옥수수, 벼, 보리, 수수 및 밀로 이루어진 군에서 선택된 하나 이상의 식물에 처리하는 것을 특징으로 한다.
본 발명의 일 태양에 따르면, 본 발명의 식물 증수 방법은 리소포스파티딜에탄올아민(LPE) 및 레시틴 중 하나 이상의 함량이 0.01 내지 10,000ppm인 식물 증수용 조성물을 식물에 처리하는 것을 특징으로 한다.
본 발명의 일 태양에 따르면, 본 발명의 식물 증수 방법은 리소포스파티딜에탄올아민(LPE) 및 레시틴 중 하나 이상이 함량이 0.01 내지 100ppm 포함된 상기 식물 증수용 조성물을 식물에 처리하는 것을 특징으로 한다.
본 발명의 일 태양에 따르면, 본 발명의 식물 증수 방법은 식물의 이삭이 나오기 전후에 상기 식물 증수용 조성물을 1차 처리하는 것을 특징으로 한다.
본 발명의 일 태양에 따르면, 본 발명의 식물 증수 방법은 상기 식물 증수용 조성물을 상기 1차 처리 후 5일 내지 15일 간격으로 1 내지 5회 추가로 처리하는 것을 특징으로 한다.
본 발명을 이용하면, 식물의 증수를 효과적으로 촉진하면서도 식물의 기형현상, 생육 불량 등의 부작용을 유발하지도 않고 인체에 대한 독성도 없으며 환경을 파괴하는 것을 방지할 수도 있다. 이로써 부작용과 독성 없이 적은 비용으로도 증수를 할 수 있으므로 경제성을 높일 수 있는 효과가 있다.
도 1은 옥수수(미백찰)의 자루를 비교하여 나타낸 사진이다.
도 2는 옥수수(미백찰)의 수확된 옥수수의 모습을 비교하여 나타낸 사진이다.
도 3은 옥수수(미백찰)의 수확된 옥수수의 모습을 비교하여 나타낸 사진이다.
도 4는 본 발명의 조성물을 처리하지 않은 옥수수(미백찰, 무처리)와 1회 처리한 옥수수(미백찰, 1회처리)의 수확된 옥수수의 모습을 비교하여 나타낸 사진이다.
도 5는 옥수수(미흑찰)의 수확된 옥수수의 모습을 비교하여 나타낸 사진이다.
도 6은 옥수수(미흑찰)의 수확된 옥수수의 모습을 비교하여 나타낸 사진이다.
도 7은 본 발명의 조성물을 처리하지 않은 옥수수(미백찰, 무처리)와 1회 처리한 옥수수(미백찰, 1회처리)의 수확된 옥수수의 모습을 비교하여 나타낸 사진이다.
도 8은 옥수수에 대한 실험결과를 정리하여 도시한 그래프이다.
도 9는 수확된 벼의 줄기채 모습을 비교하여 나타낸 사진이다.
도 10은 수확된 벼의 이삭 모습을 비교하여 나타낸 사진이다.
도 11은 벼에 대한 비교예 C(무처리군)과 실시예 C1(1회 처리)의 중량을 측정한 사진이다.
도 12는 벼에 대한 실험결과를 정리하여 도시한 그래프이다.
상기와 같은 문제점을 해결하기 위하여, 본 발명에 의한 식물 증수용 조성물은 리소포스파티딜에탄올아민(LPE) 및 레시틴 중 하나 이상을 포함하는 것을 특징으로 한다. 이하 도면을 통하여 본 발명을 구체적으로 설명한다.
본 명세서에서 언급된 "식물 생장 촉진"이라 함은, 식물 종자의 발아 촉진, 식물체의 길이생장, 부피생장의 촉진, 잎 활성의 향상, 식물 뿌리의 생장 촉진, 과실 수 증가, 과실의 부피 증가, 과실의 착과의 촉진, 과실의 숙성의 촉진, 수량 증대, 생산성 향상 등을 모두 포함하는 가장 포괄적인 개념이다. 그 중에서도 특히 식물의 수량 증대, 생산성 향상, 신장 생장 및 부피 생장의 촉진, 자수수 증가, 영화수 증가, 발아 증가, 과실수 증가 및 비대 촉진 등을 의미한다.
상기 라이소포스파티딜에탄올아민(LPE)을 함유하는 조성물을 증수용 식물 생장 촉진제로 사용함에 있어서, 벼, 보리, 수수, 밀 등과 같은 곡류에 적용될 수 있으며, 구체적으로 본 발명에서는 벼, 옥수수 등 식용작물에 적용할 수 있다.
LPE는 식물 및 동물에 천연적으로 존재하는 물질이므로 천연으로부터 분리 정제된 것을 사용할 수 있다. 특히, 대두, 난황 또는 채종 등의 레시틴에서 분리할 수 있다. 대두유의 제조 공정 중에 부산물로 생산되는 조 대두 레시틴(crude soybean lecithin, 흔히 조 레시틴이라 함)은 60~70% 극성지질(인지질 / 당지질), 27~39%의 대두유, 1~3%의 물, 0.5~3%의 기타성분들로 구성되어 있다.
그 중 극성지질은 조 레시틴에 포함된 중성지질인 대두유를 제거함에 의해 정제되며 정제된 상태의 조성은 22~30% 포스파티딜콜린(phosphatidylcholine, 이하 PC), 2~5% 리소포스파티딜콜린(lysophosphatidylcholine, 이하 LPC), 16~22% 포스파티딜에탄올아민(phosphatidylethanolamine, 이하 PE), 0.5~2% 리소포스파티딜에탄올아민(lysophosphatidylethanolamine, 이하 LPE), 0.5~8% 포스파티딘 산 (Phosphatidic acid, 이하 PA), 0.1~3% 포스파티딜세린(phosphatidyl serine), 6~15% 포스파티딜이노시톨(phosphatidylinositol), 기타 등으로 구성되어 있다. 난황 레시틴의 경우에도 73~83% 포스파티딜콜린(PC), 2~5% 리소포스파티딜콜린(LPC), 13~17% 포스파티딜에탄올아민(PE), 1~3% 리소포스파티딜에탄올아민(LPE), 기타 등으로 구성되어 있다.
이와 같이 레시틴에는 매우 소량의 리소포스파티딜에탄올아민이 함유되어 있기 때문에 이들 레시틴으로부터 직접 리소포스파티딜에탄올아민을 분리하여 상업적으로 사용하기가 좀 어렵다. 따라서 포스포리파제 D 및 포스포리파제 A의 존재하에 레시틴을 에탄올아민과 반응시킴으로써 제조된 리소포스파티딜에탄올아민을 사용할 수도 있다. 또한, 수소 첨가된 리소포스파티딜에탄올아민을 본 발명에 사용할 수도 있다. 또한, 천연으로부터 추출된 포스파티딜에탄올아민을 리소포스파티딜에탄올아민으로 가수분해하거나 포스파티딜콜린을 포스파티딜에탄올아민으로 변형한 후 다시 리소포스파티딜에탄올아민으로 가수분해하여 얻어진 리소포스파티딜에탄올아민을 사용할 수도 있다.
소량의 LPE가 함유된 레시틴 자체를 본 발명에 사용할 수도 있다. 그러나 보통의 대두 레시틴은 상기된 바대로 LPE가 매우 소량 함유되어 있다. 따라서 정제 공정 과정에 의해 혹은 임의로 화학적 또는 생화학적 처리에 의해 LPE가 더 농축되도록 하여 본 발명에 사용할 수 있다. 예를 들면, 대두 레시틴을 뱀독 포스포리파제(phospholipase) A2나 췌장 유래의(pancreatic) 포스포리파제( phospholipase) A2를 처리함에 의해, 혹은 중성의 리파제로 처리함에 의해 LPE가 농축된 변형 대두 레시틴을 얻을 수 있으며, 이것을 이용하여 본 발명에 이용할 수 있다. 대표적인 예로서는 Solae 사의 효소 반응 대두 레시틴(enzyme modified soy lecithin)을 들 수 있다. 본 발명에 사용이 가능한 또 다른 레시틴으로서는 히드록실화된 대두 레시틴(hydroxylated soy lecithin) 이나 아세틸화된 대두 레시틴(acetylated soy lecithin)을 들 수 있다. 히드록실화된 대두 레시틴(hydroxylated soy lecithin)은 정제된 상태의 대두 레시틴 혹은 정제 전의 조 대두 레시틴을 화학적으로 처리하여 레시틴에 함유된 지방산의 이중결합에 수산기(hydroxyl group)를 함유하도록 한 것이다. 이것을 그대로 본 발명에 사용하던지 혹은 여기에 다시 포스포리파제(phospholipase) 효소를 처리함에 의해 LPE가 다량 농축되도록 하여 사용할 수 있다. 아세틸화된 대두 레시틴(acetylated soy lecithin)은 정제된 상태의 대두 레시틴 혹은 정제 전의 조 대두 레시틴을 화학적으로 처리하여 레시틴에 함유된 아민기에 초산기(acetyl group)를 함유하도록 한 것이다. 이것을 발명에 사용하던지 혹은 여기에 다시 포스포리파제(phospholipase) 효소를 처리함에 의해 LPE가 다량 농축되도록 하여 사용할 수 있다.
본 발명의 레시틴은 리소포스파티딜에탄올아민(LPE)을 3% 이상 함유한 것일 수 있다. 더 바람직하게는 LPE를 5% 이상 함유한 레시틴이다.
본 발명의 조성물은 LPE 또는 LPE를 포함하는 레시틴을 유효농도 이상 함유하는 것이 바람직하다. 일례로, 상기 LPE와 LPE 함유 레시틴은 전체 조성물 중 0.000001 내지 50중량%의 양으로 포함될 수 있다. 조성물 내 LPE 또는 LPE 함유 레시틴의 함량은 제품으로 생산 및 유통되는 경우와 제품을 희석하여 식물에 처리하는 경우에 따라 달라질 수 있다. 예를 들어, 제품으로 생산하는 경우는 제품의 안정성 및 유통 효율을 고려하여 비교적 고농도로 제조할 수 있다. 따라서, LPE 또는 레시틴의 함량은 바람직하게는 LPE 혹은 LPE 함유 레시틴의 함량은 1 내지 25중량%이며, 더 바람직하게는 5 내지 20중량%이며, 더욱 더 바람직하게는 8 내지 12중량%이다. 가장 바람직한 LPE 혹은 LPE 함유 레시틴의 함량은 약 10중량%이다. LPE 및 LPE 함유 레시틴이 상기 함량 범위에 속하는 경우, 조성물의 안정도가 현저하게 향상된다.
한편, 식물에 최종 처리하는 조성물로서의 LPE 또는 LPE를 함유하는 레시틴의 함량은 제품으로 생산된 조성물을 물 등의 적당한 용매에 희석하여 식물에 살포할 수 있다. 예를 들어, 식물에 처리되는 용액에서의 LPE 또는 LPE를 함유하는 레시틴의 함량은 0.01 내지 10,000ppm일 수 있다. 그 중에서 LPE 또는 LPE를 함유하는 레시틴의 함량이 1 내지 100ppm 인 것이 식물에 더욱 안정하고 증수 효과 면에서 바람직하다.
본 발명에 따르면, 본 발명의 식물 증수용 조성물은 탄소수 3 내지 22개의 지방산 및 그의 염 중 하나 이상, 및 물과 알코올의 혼합용매를 더 포함할 수 있다.
본 발명에 사용되는 탄소수 3 내지 22개인 지방산은 이중결합이 없는 포화지방산이나 지방산의 중간에 1개 이상의 이중결합을 가지는 불포화지방산을 모두 사용할 수 있다. 즉 포화지방산으로서, 프로피온산(propionic acid),부탄산(butanoic acid, butyric acid), 펜탄산(pentanoic acid, valeric acid), 헥산산(hexanoic acid, caproic acid), 헵탄산(heptanoic acid), 옥탄산(octanoic acid, caprylic acid), 데카논산(decanoic acid, capric acid), 운데칸산(undecanoic acid), 도데카논산(dodecanoic acid, lauric acid), 트리데카논산(tridecanoic acid), 테트라데카논산(tetradecanoic acid, myristic acid), 펜타데칸산(pentadecanoic acid), 헥사데칸산(hexadecanoic acid, palmitic acid), 헵타데칸산(heptadecanoic acid, margaric acid), 옥타데칸산(octadecanoic acid, stearic acid), 노나데칸산(nonadecanoic acid), 아이코산(icosanoic acid, arachidic acid), 헨아이코산(henicosanoic acid), 도코사노익산(docosanoic acid, behenic acid), 트리코사논산(tricosanoic acid), 테트라코사노익산(tetracosanoic acid, lignoceric acid)을 들 수 있다. 불포화지방산의 예로서는 상기 포화지방산에 이중결합이 1개 포함되어 있는 것들로서, 대표적인 것을 예로 들면 헥센산(hexenoic acid), 옥텐산(octenoic acid), 데센산(decenoic acid), 도데센산(dodecenoic acid), 테트라데센산(tetradecenoic acid), 팔미톨산과 같은 헥사데센산(hexadecenoic acid(palmitoleic acid)), 올레산, 페트로센린산과 같은 옥사데센산(octadecenoic acid(oleic acid, petroselinic acid), 에룩산과 같은 도코센산(docosenoic acid(erucic acid))등을 들 수 있다. 이외에도 이중결합이 2개 이상인 것들, 예를들면 리놀산(linoleic acid), 리놀렌산(linolenic acid), 아라키돈산(arachidonic acid), 도코다펜테논산(docodapentaenoic acid)등도 사용될 수 있다. 하지만, 식물체의 표면이 매우 비극성인 점과, 유효성분이 식물 표면을 잘 투과하도록 하거나 아니면 유효성분이 식물표면에 잘 부착되도록 하기 위한 관점에서, 바람직하게는 탄소수 8 내지 14개, 더 바람직하게는 탄소수 8 내지 12개, 가장 바람직하게는 탄소수 10 내지 12개의 지방산을 사용할 수 있다.
지방산의 염은 그 종류에 특별히 제한이 없으나, 나트륨염, 칼륨염, 암모늄염 및 에탄올아민염 중에서 선택된 것이 바람직하다. 에탄올아민염은 모노에탄올아민염, 다이에탄올아민염 및 트리에탄올아민염 중 하나일 수 있다.
지방산 또는 그 염들의 경우 전체 조성물 중 0.1 내지 60중량%의 양으로 포 함될 수 있다. 바람직하게는 지방산 또는 그 염들의 함량은 전체 조성물 중 1 내지 25중량%, 더욱 바람직하게는 5 내지 20중량%이다. 가장 바람직한 지방산 또는 그 염들의 함량은 약 10중량%이다. 상기 범위 내에 속하는 경우, LPE 혹은 LPE 함유 레시틴이 수용액 중에 잘 용해되도록 하여 안정된 제형을 유지할 수 있도록 할 수 있다.
본 발명에 의한 조성물의 용매는 물과 알코올의 혼합용매인 것이 바람직하다. 용매는 전체 조성물 중 10 내지 99.8중량%이다. 바람직한 용매의 함량은 전체 조성물 중 50 내지 99.8중량%이다. 더 바람직한 용매의 함량은 76 내지 84중량%이다. 용매의 함량이 상기 범위 내에 속하는 경우, LPE 혹은 LPE 함유 레시틴의 용해도가 높아진다.
여기서 물은 필수적인 용매이다. 상기 알코올은 에탄올, 이소프로판올, 부탄올, 헥산올, 올레일 알코올로 구성된 군으로부터 선택된 하나 이상인 것이 바람직하다. 그 중 특히, 에탄올 또는 이소프로판올, 부탄올, 헥산올 및 올레일 알코올로 구성된 알코올인 것이 바람직하다.
상기한 본 발명에 의한 LPE 또는 레시틴 함유 증수용 조성물에 있어서, 상기 레시틴은 히드록실화 레시틴, 아세틸화 레시틴 및 효소 처리된 레시틴으로 구성된 군으로부터 선택된 하나 이상의 변형된 레시틴인 것이 바람직하다.
상기 LPE는 천연 혹은 합성된 것 일 수 있으며, 특히, 난황, 대두, 쌀, 해바라기 또는 여러 가지 식물로부터 추출되거나 추출 후 변형된 인지질인 것을 특징으로 한다.
상기한 본 발명에 의한 LPE 또는 레시틴 함유 수용액 조성물에 있어서, 상기 효소는 포스포리파제인 것이 바람직하다.
상기한 본 발명에 의한 LPE 또는 레시틴 함유 수용액 조성물에 있어서, 상기 LPE는 수소첨가된 LPE인 것이 바람직하다.
상기한 본 발명에 의한 LPE 또는 레시틴 함유 수용성 조성물에 있어서, 상기 지방산은 탄 소수 3개 내지 22개의 천연 혹은 합성 지방산을 사용할 수 있고 더 좋게는 탄소수 6 내지 14개인 것이 바람직하다.
상기한 본 발명에 의한 LPE 또는 레시틴 함유 수용성 조성물에 있어서, 상기 지방산의 염은, 나트륨염, 칼륨염, 암모늄염 및 에탄올아민염으로 구성된 군으로부터 선택된 하나 이상인 것이 바람직하다.
상기한 본 발명에 의한 LPE 또는 레시틴 함유 수용성 조성물에 있어서, 상기 용매는 물과 알코올의 혼합용매인 것이 바람직하다.
상기한 본 발명에 의한 LPE 또는 레시틴 함유 수용성 조성물에 있어서, 상기 알코올은 에탄올, 이소프로판올, 부탄올, 헥산올 및 올레일 알코올로 구성된 군으로부터 선택된 하나 이상인 것이 바람직하다.
상기한 본 발명에 의한 LPE 또는 레시틴 함유 수용성 조성물에 있어서, 상기 알코올은 에탄올 또는 이소프로판올, 부탄올, 헥산올 및 올레일 알코올로 구성된 것이 바람직하다.
상기한 본 발명에 의한 LPE 또는 레시틴 함유 수용성 조성물에 있어서, 상기 혼합용매의 물 : 에탄올 또는 이소프로판올 : 부탄올 : 헥산올 : 올레일 알코올의 부피비는, 0.4~4.0 : 0.2~2.0 : 0.2~2.0 : 0.2~2.0 : 0.1~1.0인 것이 바람직하다.
본 발명의 상기 지방산의 염은, 나트륨염, 칼륨염, 암모늄염 및 에탄올아민염으로 구성된 군으로부터 선택된 하나 이상일 수 있다.
본 발명은 수용액일 수 있으며, 다만 이에 국한하는 것은 아니며 입제 등의 형태로 구성 되어진 조성물의 적용으로도 적용이 가능하다.
본 발명의 또 다른 일 태양은 상기 상술한 리소포스파티딜에탄올아민(LPE) 및 레시틴 중 하나 이상을 포함하는 식물 증수용 조성물을 식물에 처리하여 식물 증수를 촉진하는 식물 증수 방법을 제공하는 것이다.
본 발명의 증수 방법에 따르면, 상기 조성물을 옥수수, 벼, 보리, 수수 및 밀로 이루어진 군에서 선택된 하나 이상의 식물에 처리하여 증수할 수 있다.
본 발명의 증수 방법에 따르면, 본 발명의 식물 증수 방법은 리소포스파티딜에탄올아민(LPE) 및 레시틴 중 하나 이상의 함량이 0.01 내지 10,000ppm인 식물 증수용 조성물을 식물에 처리할 수 있다. 그 중에서도 리소포스파티딜에탄올아민(LPE) 및 레시틴 중 하나 이상이 함량이 0.01 내지 100ppm 포함될 수 있다.
본 발명의 증수 방법에 따르면, 상기 조성물을 이삭이 나오는 시기를 전후하여 식물에 처리할 수 있다. 상기 조성물을 처리하는 위치는 화방(flower cluster) 또는 식물의 일부분이나 전체에 행할 수 있다.예를 들어, 상기 조성물을 옥수수 이삭이 나오기 전후 또는 벼 출수 전후에 1차 처리할 수 있다.
본 발명의 조성물을 처리하는 횟수는 1회 또는 그 이상 처리할 수 있으며, 1회 이상을 제공하는 경우 증수용 조성물을 이삭이 나오는 시기를 전후하여 식물에 최초 처리한 후, 5일 내지 15일 간격으로 1 내지 5회 추가로 처리할 수 있다. 가장 바람직하게는 7일 간격으로 1회 추가 도포할 수 있다.
이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 다만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다.
<실시예>
1. LPE의 제조
먼저, 다음과 같은 방법에 따라 LPE를 제조하였다.
정제 난황 인지질 DS-PL95E(㈜ 두산.제, 포스파티틸콜린 75%, 포스파티딜에탄올아민 14%, 기타 11%) 30g을 에틸아세테이트(ethyl acetate) 60mL에 용해시켰다. 스트렙토마이세스속 유래의 포스포리파제 D 800 unit (Sigma 제)를 80mM의 CaCl2 과 에탄올아민 8g 이 함유된 100ml의 sodium acetate(100mM, pH 5.6) 완충용액과 혼합한 다음 앞에서 용해한 인지질 용액과 혼합하여 35℃에서 300rpm에서 교반하면서 13시간동안 반응시켰다. 반응액을 HPLC로 분석해 본 결과 반응액 내 인지질중의 포스파티딜에탄올아민 함량은 79%였으며 포스파티딜콜린 함량은 16% 였다.
이 용액에 3ml의 Lecitase (10,000 IU/ml, Novo Nordisk사)를 첨가하고 35℃에서 6시간동안 격렬히 저어주면서 반응시킨다. 얻어진 반응용액을 중 50mL을 뽑아내어 250mL의 둥근플라스크에 넣고 회전식 감압농축기(rotary vacuum evaporator)로 40℃에서 감압 농축하여 용매인 에틸아세테이트를 제거한 다음 100mL의 무수 에탄올을 처리하고 -2℃에서 1시간 30분간 방치한 다음 여과한다. 얻어진 8.7g의 여과물에 100mL의 에탄올: 에틸아세테이트: 물 혼합용액 (= 1: 0.5: 0.5, v/v/v)을 처리하여 60℃에서 서서히 교반하면서 30분간 가열한다. 이 액을 여과하여 불순물을 제거하고 여액을 -2℃에서 3시간동안 냉장 보관한다. 결정화된 용액을 여과하여 4.8g의 여과물을 얻는다. 얻어진 여과물에 80mL의 에탄올: 에틸아세테이트: 물 혼합용액 (= 1: 0.5: 0.5, v/v/v)을 처리하여 60℃에서 서서히 교반 하면서 30분간 가열한 다음 -2℃까지 천천히 냉각한 후 여과한다. 여과물을 위 혼합 용액으로 동일하게 2번에 걸쳐 처리한 후 30℃에서 진공 건조한 다음, 제조된 건조물을 액체크로마토그래피에 의해 조사해 본 결과 인지질 순도 97% 이상의 리소포스파티딜에탄올아민이 1.6g 얻어졌음을 알 수 있었다.
2. LPE 수용액의 제조
물 30중량%, 이소프로판올 14중량%, 부탄올 14중량%, 헥산올 14중량%, 올레일 알코올 8중량%로 구성된 혼합용매에 상기 제조방법에 따라 제조된 LPE 10중량% 및 탄소수 18개, 이중결합이 1개 포함된 올레익산(oleic acid)의 에탄올아민염 10중량%을 넣고 1,000rpm에서 교반하여 LPE 10% 수용액을 제조하였다.
3. 옥수수(품종 : 미백찰)에 대한 효과
상기와 같이 하여 제조된 리소포스파티딜에탄올아민 수용액을 가지고 물에 희석하여 고르게 분산시킨 후 10ppm의 농도로 식물에 처리하였다. 본 발명의 식물 성장 촉진 효과를 입증하기 위하여 본 발명자들은 다음과 같이 실험 대상인 식물로서는 미백찰 옥수수를 선정하여 실험하였다.
한편 실험 대상은 파종시기를 달리(7월1일, 7월24일)하여 살포시점에 따라 상이한 성장상태를 보유한 것을 사용하였다. 도포는 8월9일부터 시작하여 7일 간격으로 진행하였다. 실험군 구성은 하기 표 1과 같이 하였다.
또한, 7월1일 파종된 옥수수는 최초 처리일인 8월9일 당시 (파종 39일째) 평균 11장 정도였으며, 7월24일 파종된 옥수수는 최초 처리일인 8월 9일 당시 (파종 16일째) 평균 6-7장 정도였다.
표 1
파종시기(월,일) 처리1(월,일) 처리2(월,일) 처리3(월,일) 파종 후 1차 처리까지의 기간 총 처리횟수
비교예 A1 7.1 - - - - 0
실시예 A11 7.1 8.9 - - 39 1
실시예 A12 7.1 8.9 8.16 - 39 2
실시예 A13 7.1 8.9 8.16 8.23 39 3
비교예 A2 7.24 - - - - 0
실시예 A21 7.24 8.9 - - 16 1
실시예 A22 7.24 8.9 8.16 - 16 2
실시예 A23 7.24 8.9 8.16 8.23 16 3
상기 실험 결과를 표 2 및 도 1 내지 도 4에 도시하였다.
표 2
처리 비교예A 실시예A1 실시예A2 실시예A3
처리 무처리 1회 2회 3회
입색 미백 미백 미백 미백
자수장(cm) 19.3 19.8 18.9 19.1
종실장(cm) 16.3 18.8 16.9 17.9
미결실장(cm) 3 1 2 1.2
종실결실률(%) 84.5 94.9 89.4 93.7
결실증가율(%)   10.4 4.9 9.2
자수경(mm) 42.8 44.5 44.0 43.8
자수열수 12.2 12.4 12.7 12.5
개체중 자수수 436.9 467.1 446.3 445.7
개체중량(g) 179.6 199.4 188.3 186.6
백립중량(g) 31.3 32.4 31.9 33.9
개체중량 증가율(%) 100 111 104.8 103.9
보다 구체적으로, LPE를 처리하지 않은 비교예보다 LPE를 처리한 실시예에서 옥수수 과실의 생육이 촉진되어, 옥수수 자루의 크기 및 중량은 물론 옥수수 낟알의 크기, 수, 성숙도도 모두 증가한 것으로 나타났고, 결과적으로 옥수수 수량이 현저히 증가하였으며, 그 중에서도 LPE를 1회 처리한 군(실시예 A1)에서 가장 우수한 효과가 나타났다.
4. 옥수수(품종 : 미흑찰)에 대한 효과
상기 실험에서 미백찰 옥수수 대신 미흑찰 옥수수를 사용한 것을 제외하고는 동일한 방식으로 실험하였다. 실험 대상의 파종 시기는 7월12일이었으며, 도포는 8월9일부터 시작하여 7일 간격으로 진행하였다. 실험군 구성은 하기 표 3과 같이 하였다. 또한, 7월12일 파종된 미흑찰옥수수는 최초 처리일인 8월9일 당시 (파종 28일째) 평균 10장 정도였다.
표 3
파종시기(월,일) 처리1(월,일) 처리2(월,일) 처리3(월,일) 파종 후 1차 처리까지의 기간 총 처리횟수
비교예 B 7.12 - - - - 0
실시예 B1 7.12 8.9 - - 28 1
실시예 B2 7.12 8.9 8.16 - 28 2
실시예 B3 7.12 8.9 8.16 8.23 28 3
실험 결과를 표 4 및 도 5 내지 도 7에 도시하였다.
표 4
처리 비교예B 실시예B1 실시예B2 실시예B3
처리 무처리 1회 2회 3회
입색 미흑 미흑 미흑 미흑
자수장(cm) 18 19.65 18.8 19.1
종실장(cm) 14.1 16.85 15.5 16.2
미결실장(cm) 3.9 2.8 3.3 2.9
종실결실률(%) 78.3 85.7 82.4 84.8
결실증가율(%)   7.4 4.1 6.5
자수경(mm) 43.2 45.7 44.9 45
자수열수 14.1 14.1 13.9 13.8
개체중자수수 428.3 489.1 406 435
개체중(g) 143.36 182.83 159.69 163.57
백립중(g) 21.86 24.44 22.25 20.61
개체중증가율(%) 100 127.5 111.4 114.1
보다 구체적으로, LPE를 처리하지 않은 비교예보다 LPE를 처리한 실시예에서 옥수수 과실의 생육이 촉진되어, 옥수수 자루의 크기 및 중량은 물론 옥수수 낟알의 크기, 수, 성숙도도 모두 증가한 것으로 나타났고, 결과적으로 옥수수의 수량이 현저히 증가하였으며, 그 중에서도 LPE를 1회 처리한 군(실시예 B1)에서 가장 우수한 효과가 나타났다.
옥수수(미백찰, 미흑찰)에 대한 LPE 처리 효과를 비교예에 대한 증가율로 정리하여 도 8에 종합적으로 도시하였다. 전체적으로 LPE를 1회 처리하였을 때 가장 효과가 우수한 것을 알 수 있다.
5. 벼에 대한 효과
상기 실험에서 옥수수 대신 벼를 사용한 것을 제외하고는 동일한 방식으로 실험하였으며, 실험을 총 3회 반복하였다. 실험에 사용된 모든 벼는 5.10일 논에 이앙되었으며, 8.7일 부터 7일 간격으로 LPE를 처리하였다.
실험군 구성은 하기 표 5와 같이 하였다.
표 5
이앙시기(월,일) 처리1(월,일) 처리2(월,일) 처리3(월,일) 이양후 1차 처리까지의 기간 총 처리횟수
비교예 C 5.10 - - - - 0
실시예 C1 5.10 8.7 - - 28 1
실시예 C2 5.10 8.7 8.14 - 28 2
실시예 C3 5.10 8.7 8.14 8.21 28 3
실험결과를 표 6 및 표 7에 도시하였다. 표 6은 비교예 및 실시예 C1,2,3 들의 3회 실험의 결과값을 각각 나타냈으며, 표 7은 각 3회 실험의 평균값을 대비하여 나타내었다.
표 6
반복 처리 미숙립수(청색미) 이삭길이(수장,cm) 추출도(cm) 이삭수(수수,개) 영화수 정조중 백립중
비교예C1 무처리 148 17.9 5.3 29 71.8 1.92 2.44
비교예C2 무처리 68 18.1 5.3 28 76.4 1.98 2.32
비교예C3 무처리 63 18.5 5.2 23 72.2 1.93 2.72
실시예C1-1 1회 21 20.3 4.6 24 91.3 2.55 2.6
실시예C1-2 1회 21 18.5 6 34 79.8 2.09 2.65
실시예C1-3 1회 26 19.6 5 33 76.4 2.02 2.53
실시예C2-1 2회 40 18.4 6.1 32 81.5 2.16 2.34
실시예C2-2 2회 46 19.4 5.2 30 81.5 2.37 2.52
실시예C2-3 2회 66 18.5 4.8 35 69.8 1.83 2.55
실시예C3-1 3회 32 18.9 6.3 24 77.3 1.82 2.41
실시예C3-2 3회 41 18 5 27 65.7 1.71 2.55
실시예C3-3 3회 32 17.6 4.6 28 62.5 1.57 2.38
표 7
반복 미숙립수(청색미) 이삭길이(수장,cm) 추출도(cm) 이삭수(수수,개) 영화수 정조중 백립중 총영화중량(10주)
비교예 C 평균 93 18.2 5.3 26.7 73.5 1.94 2.49 417.65
실시예 C1평균(비교예 대비%) 22.7(24.4) 19.5(107.1) 5.2(98.1) 30.3(113.5) 82.5 (112.2) 2.22 (114.4) 2.59(104.0) 537.14(128.6)
실시예 C2평균(비교예 대비 %) 50.7(54.5) 18.8(103.3) 5.4(101.9) 32.3(121.0) 77.6(105.6) 2.12(109.3) 2.47(99.2) 543.33(130.1)
실시예 C3평균(비교예 대비 %) 35(37.6) 18.2(100.0) 5.3(100.0) 26.3(98.5) 68.5(93.2) 1.7(87.6) 2.45(98.4) 395.33(94.7)
보다 구체적으로, LPE를 처리하지 않은 비교예보다 LPE를 처리한 실시 예에서 벼의 생육이 촉진되어, 미성숙 벼의 수는 감소하고, 이삭 길이, 이삭수, 영화수, 정조중, 백립중, 총영화중량 및 성숙도도 모두 증가한 것으로 나타났고, 그 중에서도 LPE를 1회 처리한 군에서 가장 우수한 효과가 나타났다.
한편, 비교예 및 각 실시예의 실물 사진을 다양하게 대비하여 도 9 내지 도 11에 나타냈다. 그림의 육안으로도 확연히 알 수 있듯이 LPE를 처리한 군의 이삭수 및 개체의 성장 정도가 증가하다. 도 11에는 비교예 C(무처리)와 실시예 C1(1회 처리)의 중량 측정 사진을 나타내었다. 사진(도 11)에서 알수 있듯이, 비교예 C의 중량은 1.73g인 반면, 실시예 C1의 중량은 2.82g이고, 실시예C1의 개체수가 훨씬 많은 것을 육안으로 확인할 수 있다. 벼에 대한 LPE 처리 효과를 비교예에 대한 증가율로 정리하여 도 12에 도시하였다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항 들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 따른 식물 증수용 조성물을 통해 부작용과 독성 없이 적은 비용으로도 식물의 증수를 효과적으로 촉진할 수 있어, 식략농업 분야에 활용할 수 있다.

Claims (13)

  1. 리소포스파티딜에탄올아민(LPE) 및 레시틴 중 하나 이상을 포함하는 식물 증수용 조성물.
  2. 제1항에 있어서,
    탄소수 3 내지 22개의 지방산 및 그의 염 중 하나 이상, 및 물과 알코올의 혼합용매를 더 포함하는 것을 특징으로 하는 식물 증수용 조성물.
  3. 제1항에 있어서,
    상기 리소포스파티딜에탄올아민(LPE) 및 레시틴 중 하나 이상은 조성물 총중량대비 1 내지 50중량%로 포함되는 것을 특징으로 하는 식물 증수용 조성물.
  4. 제2항에 있어서,
    상기 지방산 및 그 염 중 하나 이상은 조성물 총중량대비 0.001 내지 60중량%, 상기 혼합용매는 조성물 총중량대비 10 내지 99.9중량%로 포함되는 것을 특징으로 하는 식물 증수용 조성물.
  5. 제2항에 있어서,
    상기 지방산의 염은, 나트륨염, 칼륨염, 암모늄염 및 에탄올아민염으로 구성된 군으로부터 선택된 하나 이상인 것을 특징으로 하는 식물 증수용 조성물.
  6. 제2항에 있어서,
    상기 알코올은 에탄올, 이소프로판올, 부탄올, 헥산올 및 올레일 알코올로 구성된 군으로부터 선택된 하나 이상인 것을 특징으로 하는 식물 증수용 조성물.
  7. 제2항에 있어서,
    상기 혼합용매는 물 : 에탄올 또는 이소프로판올 : 부탄올 : 헥산올 : 올레일 알코올의 부피비가 0.4~4.0 : 0.2~2.0 : 0.2~2.0 : 0.2~2.0 : 0.1~1.0인 것을 특징으로 증수용 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 증수용 조성물을 식물에 처리하여 증수를 촉진하는 것을 특징으로 하는 식물 증수 방법.
  9. 제8항에 있어서,
    상기 식물은 옥수수, 벼, 보리, 수수 및 밀로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 식물 증수 방법.
  10. 제8항에 있어서,
    상기 증수용 조성물은 리소포스파티딜에탄올아민(LPE) 및 레시틴 중 하나 이상의 함량이 0.01 내지 10,000ppm인 것을 식물에 처리하는 것을 특징으로 하는 식물 증수 방법.
  11. 제8항에 있어서,
    상기 증수용 조성물은 리소포스파티딜에탄올아민(LPE) 및 레시틴 중 하나 이상이 함량이 0.01 내지 100ppm 포함된 것을 식물에 처리하는 것을 특징으로 하는 식물 증수 방법.
  12. 제8항에 있어서,
    상기 증수용 조성물을 식물의 이삭이 나오기 전후에 1차 처리하는 것을 특징으로 하는 식물 증수 방법.
  13. 제8항에 있어서,
    상기 증수용 조성물을 상기 1차 처리 후 5일 내지 15일 간격으로 1 내지 5회 추가로 처리하는 것을 특징으로 하는 식물 증수 방법.
PCT/KR2013/003312 2012-12-21 2013-04-18 리소포스파티딜에탄올아민 또는 레시틴을 함유하는 식물 증수용 조성물 및 식물 증수 방법 WO2014098325A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0151033 2012-12-21
KR20120151033 2012-12-21
KR1020130033776A KR20140081641A (ko) 2012-12-21 2013-03-28 리소포스파티딜에탄올아민 또는 레시틴을 함유하는 식물 증수용 조성물 및 식물 증수 방법
KR10-2013-0033776 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014098325A1 true WO2014098325A1 (ko) 2014-06-26

Family

ID=50978612

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2013/003312 WO2014098325A1 (ko) 2012-12-21 2013-04-18 리소포스파티딜에탄올아민 또는 레시틴을 함유하는 식물 증수용 조성물 및 식물 증수 방법
PCT/KR2013/011810 WO2014098471A1 (ko) 2012-12-21 2013-12-18 식물 증수용 조성물 및 식물 증수 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011810 WO2014098471A1 (ko) 2012-12-21 2013-12-18 식물 증수용 조성물 및 식물 증수 방법

Country Status (1)

Country Link
WO (2) WO2014098325A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983214A (en) * 1972-12-08 1976-09-28 Ajinomoto Co., Inc. Fungicidal compositions and method for protecting plants by the use thereof
US20040259732A1 (en) * 2003-04-28 2004-12-23 Monsanto Technology, L.L.C. Treatment of plants and plant propagation materials with an antioxidant to improve plant health and/or yield
US6984609B2 (en) * 2001-04-11 2006-01-10 Valent Biosciences Corporation Concentrated, water-soluble, granular plant growth regulator formulation and methods for use of same
KR100651143B1 (ko) * 2005-04-01 2006-12-01 주식회사 두산 식물의 생장 촉진 및 저장성 개선을 위한 조성물, 방법 및키트
US20070287631A1 (en) * 2004-11-16 2007-12-13 Amaranathan Balasingham Agricultural or Horticultural Additive

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110341A (en) * 1990-04-18 1992-05-05 Wisconsin Alumni Research Foundation Plant and fruit treatment with lysophosphatidylethanolamine
KR20050084521A (ko) * 2003-01-03 2005-08-26 뉴트라-박, 인코포레이티드. 식물 및 식물의 일부를 처리하는 방법
US20050256001A1 (en) * 2003-10-14 2005-11-17 Global Protein Products, Inc. Method for treating crops to enhance plant performance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983214A (en) * 1972-12-08 1976-09-28 Ajinomoto Co., Inc. Fungicidal compositions and method for protecting plants by the use thereof
US6984609B2 (en) * 2001-04-11 2006-01-10 Valent Biosciences Corporation Concentrated, water-soluble, granular plant growth regulator formulation and methods for use of same
US20040259732A1 (en) * 2003-04-28 2004-12-23 Monsanto Technology, L.L.C. Treatment of plants and plant propagation materials with an antioxidant to improve plant health and/or yield
US20070287631A1 (en) * 2004-11-16 2007-12-13 Amaranathan Balasingham Agricultural or Horticultural Additive
KR100651143B1 (ko) * 2005-04-01 2006-12-01 주식회사 두산 식물의 생장 촉진 및 저장성 개선을 위한 조성물, 방법 및키트

Also Published As

Publication number Publication date
WO2014098471A1 (ko) 2014-06-26

Similar Documents

Publication Publication Date Title
KR101368546B1 (ko) 식물 보호에서의 그리고 식물 보호와 관련된 개선
DE2927994C2 (ko)
SU1346043A3 (ru) Способ получени производных 2-цианобензимидазола
DE2463046C2 (de) Fungizide Mittel auf Ammoniumphosphonatbasis
WO2021080326A1 (ko) 식물바이러스병 증상을 완화시키는 리소-포스파티딜에탄올아민 18:2를 포함하는 조성물 및 이의 용도
KR20020086604A (ko) 식물의 건강을 증진시키고, 생물적 및 비생물적 스트레스관련 손상으로부터 식물을 보호하고, 그러한 스트레스의결과로서 손상된 식물의 회복을 높이는 방법
KR20140081641A (ko) 리소포스파티딜에탄올아민 또는 레시틴을 함유하는 식물 증수용 조성물 및 식물 증수 방법
KR101028489B1 (ko) 리소포스파티딜에탄올아민 또는 레시틴을 함유한 안정한수용성 조성물
WO2014098325A1 (ko) 리소포스파티딜에탄올아민 또는 레시틴을 함유하는 식물 증수용 조성물 및 식물 증수 방법
FR2498420A1 (fr) Compositions pour augmenter la resistance au froid de plantes cultivees et methode pour utiliser de telles compositions
KR20030084200A (ko) 비 유기용매시스템에서의 포스파티딜에탄올아민 및리소포스파티딜에탄올아민의 제조방법 및 그 방법으로제조된 리소포스파티딜에탄올아민을 포함하는 수용성 조성물
US20140309182A1 (en) Insecticidal compounds from nothapodites foetida and process for the extraction thereof
DE69937771T2 (de) 1-Aryl-4-cycloalk(en)ylpyrazole als antiparasitäre Mittel
US4870065A (en) N-alkyl or N-alkylene substituted glycin amides as insecticides or fungicides
EP3684195B1 (en) Method for obtaining betalain pigment composition from red beet plants
JPH0748218A (ja) 植物の病害を防除する方法
JP2003104818A (ja) フラボノイド配糖体を含有する害虫防除剤
WO2019177222A1 (ko) 적화용 조성물 및 이를 이용한 적화 방법
EP1128728B1 (fr) Compositions destinees a la protection des vegetaux contre le stress oxydatif
AU2007263018B2 (en) Alkylphospholipids as active agents for prevention of plant pathogens
US20070244009A1 (en) Agent for Inhibiting Bolting Induction and/or Floral-Bud Differentiation in Plants
US3855289A (en) 1-naphthoic acid, 2,2-dimethylhydrazide
KR102457123B1 (ko) 설포라판 함량이 증대된 케일의 재배방법 및 그로부터 제조된 케일의 이용
WO2023182731A1 (ko) 유기태화 요오드 또는 유기태화 요오드 및 황을 유효성분으로 포함하는 식물병원성 곰팡이 방제용 조성물
US20050221987A1 (en) Use of certain phospholipids to deliver hormonal effects to plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC EPO FORM 1205A DATED 27-10-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13865559

Country of ref document: EP

Kind code of ref document: A1