WO2014096647A1 - Extension de carter intermediaire a conception amelioree - Google Patents

Extension de carter intermediaire a conception amelioree Download PDF

Info

Publication number
WO2014096647A1
WO2014096647A1 PCT/FR2013/053082 FR2013053082W WO2014096647A1 WO 2014096647 A1 WO2014096647 A1 WO 2014096647A1 FR 2013053082 W FR2013053082 W FR 2013053082W WO 2014096647 A1 WO2014096647 A1 WO 2014096647A1
Authority
WO
WIPO (PCT)
Prior art keywords
extension
nacelle
sectors
angular
annular
Prior art date
Application number
PCT/FR2013/053082
Other languages
English (en)
Inventor
Margaux Justine Emma DUBOIS
Alexandre Christophe Adrien DEMOULIN
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to GB1510330.2A priority Critical patent/GB2523507B/en
Priority to US14/652,573 priority patent/US9920654B2/en
Publication of WO2014096647A1 publication Critical patent/WO2014096647A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/243Flange connections; Bolting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D29/00Power-plant nacelles, fairings, or cowlings
    • B64D29/06Attaching of nacelles, fairings or cowlings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/20Mounting or supporting of plant; Accommodating heat expansion or creep
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/36Application in turbines specially adapted for the fan of turbofan engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a propulsion unit for an aircraft, of the type comprising a turbomachine, a nacelle enveloping the turbomachine, as well as an attachment pylon provided with a rigid structure and means for fastening the turbomachine on the rigid structure.
  • the invention relates to an intermediate casing extension of the turbomachine, intended to provide the interface between the intermediate casing and thrust reverser covers of the nacelle.
  • the invention applies more particularly to a propulsion unit comprising a turbojet engine, preferably a double-flow engine.
  • Mounting Structure "), or” pylon “or” engine pylon “ allows to suspend the turbojet engine below the wing of the aircraft, or to mount this turbojet engine over this same wing, or else to report it at the rear of the fuselage. It is in fact intended to constitute the link interface between a turbojet engine and a given structural part of the aircraft. It makes it possible to transmit to the structure of this aircraft the forces generated by its associated turbojet, and also authorizes the routing of fuel, electrical, hydraulic and air systems between the engine and the aircraft.
  • the nacelle is conventionally equipped with several hoods enclosing the turbojet and allowing access to the latter in the open position, these hoods being known under the names of fan cowls and thrust reverser cowls, the latter being articulated on the primary structure of the rigging mast.
  • the turbojet engine comprises a fan casing extended rearwardly by an intermediate casing, comprising an outer shell and a transverse front flange and a rear transverse flange parallel and disposed radially inwardly relative to said outer shell, said intermediate casing comprising in addition, structural arms angularly distributed and extending radially between the front and rear flanges to the outer shell.
  • the secondary flow passes through the annular space between the inner and outer ferrules of the intermediate casing.
  • the mere penetration of the rib into the groove ensures easy and quick opening of the inverter covers articulated on the mast, this opening being for example made for the implementation of maintenance operations of the aircraft parked at the mast. ground.
  • a disadvantage relative to conventional solutions lies in the fact that the annular groove, continuous or interrupted along the circumference of the extension, is made within one and the same annular piece, that it is necessary to change completely in case of degradation of a part of the receiving groove of the covers.
  • This disadvantage is extremely disadvantageous, especially since it has been found that the annular groove is generally solicited by the covers disproportionately along the latter, implying the appearance of very localized wear areas.
  • Such a solution is for example known from FR 2 925 120.
  • the annular groove is thus recomposed using angular sectors arranged end-to-end, and each fixedly fixed by bolts on a joining ferrule, itself mounted. on the outer shell of the intermediate casing.
  • these nacelle hood retention means may for example be formed by a retaining flange radially outwardly projecting from said joining ferrule.
  • the invention therefore aims to at least partially overcome the disadvantages mentioned above, relating to the achievements of the prior art.
  • the invention firstly relates to an intermediate casing extension for aircraft turbomachine, intended to project downstream from an outer shell of said intermediate casing, said extension comprising a downstream portion annular connecting means forming retaining means for receiving nacelle covers, said annular downstream connecting portion comprising at least a first angular sector.
  • said extension comprises a body made in one piece comprising a joining ferrule and at least a second angular sector of said annular downstream connecting portion, said first angular sector being attached to said extension body .
  • the casing extension comprises a plurality of first angular sectors as well as a plurality of second angular sectors, the set of second angular sectors extending over at least 80% of the circumference of the body.
  • the invention is mainly advantageous in that the joining ferrule is made in one piece with one or more angular sectors of the annular downstream portion of the extension defining the groove. These sectors, said second angular sectors, thus no longer need to be reported fixed by bolts on the joining ferrule, and the overall mass of the shell is advantageously reduced.
  • the tolerances obtained are better than in the solution of the document FR 2 925 120, where the parts are stacked.
  • the invention retains the advantage that when one or more first angular sectors must be replaced, it is no longer necessary to change the entire extension, but only the first angular sector or sectors concerned.
  • segmentation of the nacelle hood retention means advantageously makes it possible to reduce the duration of the maintenance operations performed on the extension, and also provides a saving in material. As the wear of these cap retention means is generally located at predetermined locations, it is sufficient to implant the first sectors, easily exchangeable.
  • the first and second angular sectors may advantageously differ from each other, in terms of design and / or material, depending on the level of stress to which they are intended to be subjected.
  • the parts of means of annular retention located opposite these control means are generally the most solicited. Adequate material and / or design can then be adopted to achieve the angular sector (s) corresponding to the highly stressed parts, so that they are more resistant to wear.
  • the highly stressed parts of the groove are preferably made with the first exchangeable angular sectors.
  • the casing extension comprises a plurality of first angular sectors as well as a plurality of second angular sectors, the set of second angular sectors extending over at least 80% of the circumference of the body, it It follows that the rest of the circumference is completed, entirely or partially, by the first angular sectors.
  • the first angular sectors are mounted by screws on the body, in recesses formed between two second directly consecutive sectors of said body.
  • said first angular sectors are made of a first material
  • the second angular sectors are made of a second material different from the first.
  • the first material is titanium or one of its alloys
  • the second material is aluminum or one of its alloys. More generally, the first material is more resistant than the second, used for the second sectors arranged at the most stressed locations of the extension of the intermediate casing.
  • each first and second angular sector comprises a portion of the retention means, this portion extending over the same angular amplitude as that of the sector concerned.
  • each sector could have a portion of the retention means on a smaller amplitude than the sector concerned, without departing from the scope of the invention.
  • said retention means are formed by a groove open radially outwardly, intended to receive the nacelle covers.
  • said retention means are formed by a radially outwardly projecting retention flange, said retention flange being preferably provided for retaining the nacelle hoods with the aid of a holding structure enclosing the retention flange and a portion of said nacelle hoods.
  • the invention also relates to a turbomachine for an aircraft, preferably a turbojet, comprising an intermediate casing equipped at the downstream end of its outer shell of an extension as described above.
  • the joining junction of the body is equipped with an annular collar for fixing the body on the downstream end of the outer shell of the intermediate casing.
  • the invention also relates to a propulsion unit for aircraft comprising such a turbomachine, and a nacelle comprising pod covers cooperating with the retention means.
  • the propulsion unit also comprises a latching mast of the turbomachine, comprising a rigid structure as well as means for fastening the turbomachine to said rigid structure, said nacelle hoods being hinged to said rigid structure.
  • a latching mast of the turbomachine comprising a rigid structure as well as means for fastening the turbomachine to said rigid structure, said nacelle hoods being hinged to said rigid structure.
  • FIG. 1 shows a schematic side view of a propulsion system for aircraft according to the present invention, the nacelle having been removed for reasons of clarity;
  • FIG. 2 represents a partial view in more detailed section of the assembly shown in FIG. 1, and taken along the line 11 of the same figure;
  • FIG. 3 shows a partial perspective view of a thrust reverser cover belonging to the nacelle shown in Figure 2;
  • FIG. 4 represents a perspective view of a thrust reverser system intended to equip the hood shown in FIG. 3;
  • FIG. 5 shows a schematic view of the thrust reverser system shown in the actuated configuration
  • FIG. 6 shows an enlarged partial view in schematic section of that shown in Figure 2, showing the cooperation between the intermediate casing extension and one of the nacelle covers;
  • Fig. 7 is a perspective view of the extension shown in Fig. 2, according to a first preferred embodiment of the present invention.
  • FIGS. 8a and 8b show enlarged perspective views of an upper portion of the extension shown in Figure 7, respectively seen from the rear and from the front of this extension;
  • Fig. 9 is an exploded perspective view of the extension portion shown in Figs. 8a and 8b;
  • FIGS. 10 and 11 respectively represent sectional views taken along lines X-X and XI-XI of FIG. 7;
  • Fig. 12 is a perspective view of the extension shown in Fig. 2, according to a second preferred embodiment of the present invention.
  • FIG. 13 represents a sectional view of the extension shown in FIG. 12, to which the nacelle covers are assembled.
  • Figs. 14 and 15 show sectional views taken along lines XIV-XIV and XV-XV of Fig. 13, respectively.
  • FIG. 1 there is shown schematically a propulsion unit 1 for an aircraft according to a preferred embodiment of the present invention. invention, this assembly 1 being intended to be fixed under an aircraft wing (not shown).
  • the propulsion unit 1 also called integrated propulsion system, is composed of a turbojet engine 2, a nacelle (not shown in this figure), and a latching mast 4 provided with attachment means 10 of the turbojet engine on this mast, these means preferably consisting of a front engine attachment 6a, a rear engine attachment 6b, as well as a device for taking up the thrust forces in the form of two connecting rods 8 (the one being masked by the other in Figure 1).
  • the assembly 1 comprises another series of fasteners (not shown) to ensure the suspension of this assembly 1 under the wing of the aircraft.
  • X is the longitudinal direction of the assembly 1 which is also comparable to the longitudinal direction of the turbojet engine 2, this direction X being parallel to a longitudinal axis 5 of the turbojet engine 2.
  • Y is the direction transversely oriented relative to the propulsion unit 1 and also comparable to the transverse direction of the turbojet engine 2
  • Z is the vertical or height direction, these three directions X, Y and Z being orthogonal. between them.
  • the terms “front” and “rear” are to be considered with respect to a direction of advancement of the aircraft encountered following the thrust exerted by the turbojet engine 2, this direction being represented schematically by the arrow 7 Similarly, the terms “upstream” and “downstream” are to be considered with respect to a main direction of flow of the flows within the turbojet, direction opposite direction 7.
  • the turbojet engine 2 has a generally conventional design, namely having at the front a fan casing 12, extended rearwardly by an intermediate casing 21.
  • the intermediate casing 21 comprises an outer shell 23 located in the rear aerodynamic extension of the fan casing, as well as transverse flanges 25, 27 disposed radially inwardly relative to this outer shell 23, the intermediate casing 21 further comprising structural arms 17. angularly distributed and extending radially between the flanges 25, 27, to the outer shell 23 they contact.
  • the turbojet also comprises a central casing 16, also called “core” casing, extending the intermediate casing 21 rearwards, from the rear transverse flange 27 to which it is connected. It is noted that the central casing extends to a rear end 19 of larger size, also called ejection housing.
  • the outer shell 23 of the intermediate casing is extended downstream by an annular extension 30, also object of the present invention, the main purpose of which is to establish a connection between the outer shell 23 and the directly adjacent nacelle hoods downstream.
  • the extension 30 will be presented in detail below.
  • the front engine attachment 6a is interposed between the front end of the rigid structure 11, also called the primary structure, and the fan casing 12 or the outer shell 23 of the intermediate casing 21.
  • the rear attachment 6b is interposed between the rigid structure 11 and the rear end 19 of the central casing 16.
  • the two front engine attachments 6a, 6b are traversed by a median plane P oriented vertically and longitudinally, and passing through the The same plane P constitutes a plane of symmetry for the two connecting rods 8 of the thrust forces, on both sides of which they are, respectively.
  • Each connecting rod 8 has a rear end articulated on a body of the rear engine attachment 6b and a front end connected to the transverse flange 27.
  • nacelle 32 of the propulsion unit 1 forms a continuous aerodynamic outer surface, constituted by an air inlet 34, fan cowlings 36 , thrust reverser hoods 38, and a fixed rear hood 40, these elements being arranged adjacent from front to rear.
  • the thrust reverser cowlings 38 delimit in known manner an annular channel of secondary flow 42, by means of external annular skins 44 and internal skins 46.
  • each thrust reverser cowl 38 also referred to as the "rear” or “core” cowl, has the general shape of a half-cylinder, the upper end 48 being intended to be hinged to the structure rigid of the mast, and the lower end 50 being adapted to be locked at the lower end of the other cover 38, by conventional means.
  • a housing 52 for the implementation of a thrust reverser system here taking the form of a pivot door system 54 shown in Figure 4.
  • this system 54 form therefore a door capable of pivoting about the axis defined by the two facing pins 56 formed in the opening 52, respectively intended to be housed in the receiving orifices 58 of the door 54.
  • control means such as a jack or the like is capable of ensuring the rotation of the gate 54, as shown in FIG. 5, in which the deployed jack 60 makes it possible to maintain the door 54 in a thrust reversal configuration.
  • the air passing through the secondary channel 42 is forced out of the hood 38 because of the closure of this channel downstream by the inclined door 54, this extraction of air outside the nacelle substantially counter-current due to the inclination of the door 54, as shown by the arrow 62.
  • the cylinder 60 has a front end connected to the frame of the housing 52 and a rear end connected to the door herself.
  • the cover 38 cooperates with the extension 30.
  • the extension 30 has an annular downstream connecting portion 64 forming an annular groove 66 radially outwardly, and receiving a ridge 68 of complementary shape carried by the cover 38, at the upstream end of its outer annular skin 44.
  • the annular groove 66 is here a first way to perform a function of retention of hoods 38.
  • the annular groove 66 preferably has a V-shaped cross-section, in which the rib 68 protruding radially inwards and also having a V-shaped section is housed.
  • the cooperation between the rib 68 and the complementary groove 66 allows the transmission of the aerodynamic forces of the inverter cover 38 to the turbojet, in particular the axial forces, and even more particularly the axial thrust forces passing through the cylinders 60 when the doors 54 are deployed, as this is the case in Figure 5.
  • FIG 7 there is shown an arrangement also referred to as "thrust reverser kit", integrating the extension 30 as radially outer end.
  • This arrangement comprises, radially inwardly, a ring 70 intended to be centered on the axis 5 of the turbojet, and the purpose of which is to establish the mechanical connection with the inner annular skin 46 of the thrust reverser cowlings 38
  • the ring 70 and the concentric annular extension 30 are rigidly connected to each other by means of radially arranged structural arms 72, for example four in number and spaced approximately 90 ° apart from one another. .
  • the extension 30 intended to establish the mechanical connection with the outer annular skin 44
  • the latter has an integral joining ferrule 74, whose front end in the form of an annular flange 75 allows the fixing by screw of the arrangement on the downstream end of the outer shell 23 of the intermediate casing.
  • the joining ferrule 74 extending over 360 °, is part of an extension body 77 made in one piece, and incorporating angular sectors 76a. forming part of the annular downstream end of connection 64.
  • the other part of the annular downstream end of connection 64 is formed by other angular sectors 76b preferably mounted by bolts on the body 77.
  • the sectors 76b are called first angular sectors, while sectors 76a are referred to as second angular sectors.
  • first and second angular sectors 76b, 76a together forming the annular downstream connecting portion 64, this downstream end portion of the extension 30.
  • they together form a structure extending substantially substantially continuous 360 ° about the axis 5, defining the annular groove 66 which can itself be continuous along the circumference of the extension.
  • the annular downstream end of connection 64 can be interrupted in certain places over limited angular amplitudes.
  • the annular connecting downstream end 64 when the groove 66 that it defines is intended to cooperate with two thrust reverser covers, is interrupted only at the passage of the rigid structure of the suspension pylon on which are hinged these hoods, and at the lower ends of the same hoods. Therefore, the groove 66 and the downstream connecting end 64 usually have two diametrically opposed interruptions, preferably at 6 o'clock and at 12 o'clock.
  • This arrangement therefore comprises the two kinds of angular sectors, arranged alternately in the circumferential direction.
  • the second angular sectors 76a are made of a light material such as an aluminum alloy, and are made in one piece with the joining ferrule 74 being arranged in positions where the level of forces transmitted by the covers of thrust reverser is relatively weak.
  • these second angular sectors 76a preferably extend over at least 80% of the circumference of the body.
  • first angled sectors reported 76b are fixed on the one-piece body 77 at positions where the level of forces transmitted by the thrust reverser covers is greater.
  • such sectors 76b are situated at the right, in the longitudinal / axial direction, of the control cylinders 60 of the thrust reversal systems, whether these systems are of the "door" type as described above, or that they are of another design known to those skilled in the art, such as that known as "grids".
  • first sectors 76b are provided near the 12 o'clock position, on either side thereof, and two other first sectors 76b close to the 6-position. hours, also on both sides of it.
  • Each of the four sectors 76b extends over an angular amplitude, for example between 5 and 20 °. In total, these first angular sectors 76b preferably extend over less than 20% of the circumference of the body.
  • a second sector 76a fills the space between the two sectors 76b of each pair at 12 o'clock and at 6 o'clock.
  • the two spaces respectively centered on these two diametrically opposite positions can remain free, interrupting the junction end 64 and its groove 66, without departing from the scope of the invention.
  • FIGS. 8a and 8b it is shown the body of a single piece 77 including junction ferrule 74 and two second sectors 76a directly consecutive, spaced apart from each other by a recess of material 79 practiced in the body .
  • this recess it is placed, respectively at the two ends of this recess 79, two first angular sectors 76b each located in the continuity of one of the two sectors 76a defining the recess.
  • the portion of the annular groove 66 defined by each second sector 76a is thus extended by a groove portion defined by the first adjacent sector 76b.
  • a space 81 is kept between the first two sectors 76b, for the passage of the rigid structure of the mast and for the attachment of the covers on one another.
  • the joining ferrule 74 forming an integral part of the one-piece body 77, extends forwardly to the outer shell 23 of the intermediate casing, or is connected to another ferrule which is fixed at its front end to this same outer shell 23.
  • the latter case is the one shown in Figure 8b and Figure 9, on which the joining ferrule 74 is assembled at its periphery on a front ferrule 74 ', which incorporates an annular flange 75 for fixing on the outside. the downstream end of the outer shell 23, also carrying an annular fixing flange 83.
  • the joining ferrule 74 extends forward to the intermediate casing, and itself bears the flange 75, also called clamp.
  • FIGS. 9 and 11 show that each first angular sector 76b is mounted by means of screws 78 on the body 77, in the recess 79.
  • suitable screw-passing orifices 87 are provided on a radial blank 85 which remains on the periphery of the body 77, blank on which the sector 76b bears axially.
  • the latter is also in radial support on a strip of material 89 also participating in the delimitation of the recess 79, and forms a seat for this second angular sector 76b.
  • the seat 89 and the blank 85 thus delimit a space filled by the added angular sector 76b, which contrasts with the corresponding solid and monoblock portion 91 of the second sector 76a, shown in FIG.
  • first sectors 76b therefore comes from their assembly screwed on the extension body 77, with the screws 78 oriented substantially axially.
  • a radial screw solution could also be envisaged, without departing from the scope of the invention.
  • the segmentation of the downstream end of connection 64 and its groove 66 has been represented as an indicative example. It is noted that the number of these angular sectors 76a, 76b, easily replaceable with respect to the first sectors 76b more mechanically stressed, can be adapted according to the needs encountered. In addition, the second angular sectors 76a can be further lightened by a different design than the first sectors 76b. In this regard, it is noted that the sectors 76a, 76b could alternatively be made of the same material and only differ in their design, or even be of substantially identical design.
  • the body 77 is preferably made by machining, even if a solution by molding is also possible.
  • FIG. 12 to 15 there is shown an extension 30 according to a second preferred embodiment of the invention.
  • the peculiarity lies in the design of the retention means of the nacelle hoods, which, instead of a groove, take the form of a retaining flange 66 projecting radially outwards from the Junction ferrule 74.
  • the other elements are identical or similar to those described in the context of the first preferred embodiment. Also, it is noted that in the figures, the elements bearing the same reference numerals correspond to identical or similar elements.
  • the annular flange 66 has the same segmented design as that of the groove described above. It thus has first angular sectors 76b reported on the body 77, made in one piece and integrating both the joining ferrule 74 and the second angular sectors 76a. All the features described in connection with the groove of the first preferred embodiment are therefore applicable to this annular flange 66 of the second embodiment.
  • the flange 66 has a generally T-shaped section, the T bar being oriented radially outwardly. It cooperates with a holding structure 93 shown in FIGS. 13 and 14, the function of which is to grip the flange 66 and a portion 68 of the nacelle cowlings 38, this portion also being comparable to a flange extending radially towards the yoke. 'outside.
  • the holding structure 93 extends continuously around the flange 66 and the nacelle portion 68 in support, or is circumferentially segmented. In section, it takes the general shape of a C-shaped clip oriented radially inwards, the two elements 66, 68 being retained within the hollow defined by C. To do this, the holding structure 93 has a first branch slid under the bar T of the flange 66, and a second opposite branch covering the portion 68, the latter also being pressed under the bar T of the flange.
  • this holding structure 93 For the assembly of this holding structure 93, there is for example provided a connection to interconnection between the downstream branch of the C and the nacelle hood portion 68, as can be seen in FIG. 14. Consequently, these two elements each have a succession of teeth and recesses, the teeth being confronted two by two to obtain the attachment as shown in Figure 14.
  • the holding structure 93 in the form of a ring is pivoted along the axis 5 so as to bring the teeth facing the recesses, and allow the withdrawal of the holding ring by simple translation upstream.
  • conventional means may be used to block the rotation of the ring gear 93, for example bolts screwed into the flange 66.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Extension (30) de carter intermédiaire pour turbomachine d'aéronef, destinée à faire saillie vers l'aval à partir d'une virole extérieure du carter intermédiaire, cette extension comprenant une extrémité aval annulaire de liaison (64) formant de préférence une rainure annulaire (66) ouverte radialement vers l'extérieur, destinée à recevoir des capots de nacelle (38), l'extrémité (64) comprenant une pluralité de premiers secteurs angulaires (76b). L'extension comprend un corps (77) réalisé d'une seule pièce comportant une virole de jonction (74) ainsi qu'une pluralité de seconds secteurs angulaires (76a) de ladite extrémité aval annulaire de liaison (64), les premiers secteurs angulaires (76b) étant rapportés sur le corps d'extension (77). L'ensemble des seconds secteurs angulaires (76a) s'étend sur au moins 80% de la circonférence du corps.

Description

EXTENSION DE CARTER INTERMEDIAIRE A CONCEPTION AMELIOREE
DESCRIPTION
DOMAINE TECHNIQUE La présente invention se rapporte à un ensemble propulsif pour aéronef, du type comprenant une turbomachine, une nacelle enveloppant la turbomachine, ainsi qu'un mât d'accrochage pourvu d'une structure rigide et de moyens d'accrochage de la turbomachine sur la structure rigide.
Plus précisément, l'invention se rapporte à une extension de carter intermédiaire de la turbomachine, destinée à réaliser l'interface entre le carter intermédiaire et des capots d'inverseur de poussée de la nacelle.
L'invention s'applique plus particulièrement à un ensemble propulsif comprenant un turboréacteur, de préférence à double flux.
ETAT DE LA TECHNIQUE ANTERIEURE Le mât d'accrochage, également appelé « EMS » (de l'anglais « Engine
Mounting Structure »), ou encore « pylon » ou « engine pylon », permet de suspendre le turboréacteur au-dessous de la voilure de l'aéronef, ou bien de monter ce turboréacteur au-dessus de cette même voilure, ou bien encore de le rapporter en partie arrière du fuselage. Il est en effet prévu pour constituer l'interface de liaison entre un turboréacteur et une partie structurale donnée de l'aéronef. Il permet de transmettre à la structure de cet aéronef les efforts générés par son turboréacteur associé, et autorise également le cheminement du carburant, des systèmes électriques, hydrauliques, et air entre le moteur et l'aéronef.
La nacelle est quant à elle classiquement équipée de plusieurs capots enveloppant le turboréacteur et permettant un accès à ce dernier en position ouverte, ces capots étant connus sous les dénominations de capots de soufflante et de capots d'inverseur de poussée, ces derniers étant articulés sur la structure primaire du mât d'accrochage. Le turboréacteur comporte un carter de soufflante prolongé vers l'arrière par un carter dit intermédiaire, comprenant une virole extérieure ainsi qu'un flasque transversal avant et un flasque transversal arrière parallèles et disposés radialement intérieurement par rapport à cette virole extérieure, ce carter intermédiaire comprenant en outre des bras structuraux répartis angulairement et s'étendant radialement entre les flasques avant et arrière, jusqu'à la virole extérieure. Dans le cas d'un turboréacteur à double flux, le flux secondaire traverse l'espace annulaire entre les viroles intérieure et extérieure du carter intermédiaire.
C'est cette même virole extérieure de carter intermédiaire qui est prolongée vers l'aval par une extension comprenant une partie aval annulaire de liaison formant par exemple une rainure annulaire ouverte radialement vers l'extérieur, destinée à recevoir les capots de nacelle, et plus précisément une nervure de forme complémentaire portée par ces mêmes capots, généralement les capots d'inverseur de poussée. Ainsi, la coopération entre la nervure et la rainure complémentaire permet la transmission des efforts aérodynamiques de la nacelle vers le turboréacteur, en phases de décollage, de vol, et d'atterrissage, en particulier les efforts axiaux, et encore plus particulièrement les efforts axiaux de contre-poussée lorsque les systèmes d'inverseur de poussée équipant les capots de nacelle sont actionnés.
De plus, la simple pénétration de la nervure dans la rainure assure une ouverture aisée et rapide des capots d'inverseur articulés sur le mât, cette ouverture étant par exemple réalisée pour la mise en œuvre d'opérations de maintenance de l'aéronef stationné au sol.
Un inconvénient relatif aux solutions conventionnelles réside dans le fait que la rainure annulaire, continue ou interrompue le long de la circonférence de l'extension, se trouve réalisée au sein d'une même et unique pièce annulaire, qu'il est nécessaire de changer entièrement en cas de dégradation d'une partie de la rainure de réception des capots. Cet inconvénient est extrêmement pénalisant, surtout qu'il a été constaté que la rainure annulaire est généralement sollicitée par les capots de manière disproportionnée le long de celle-ci, impliquant l'apparition de zones d'usures très localisées. Pour résoudre ce problème, il a été proposé une solution dans laquelle la partie aval annulaire de l'extension, définissant la rainure de réception des capots, est sectorisée. Une telle solution est par exemple connue du document FR 2 925 120. La rainure annulaire est ainsi recomposée à l'aide de secteurs angulaires agencés bout-à- bout, et chacun rapporté fixement par boulons sur une virole de jonction, elle-même montée sur la virole extérieure du carter intermédiaire.
Il existe néanmoins un besoin d'optimiser encore davantage la conception de cette extension de carter intermédiaire, en termes de coût, de masse, et de qualité.
Des problèmes analogues existent également dans le cas où la partie aval annulaire de liaison intègre des moyens de rétention de capots sous une autre forme que celle d'une rainure ouverte radialement vers l'extérieur. A cet égard, ces moyens de rétention de capots de nacelle peuvent par exemple être formés par une bride de rétention en saillie radialement vers l'extérieur, à partir de ladite virole de jonction.
EXPOSÉ DE L'INVENTION
L'invention a donc pour but de remédier au moins partiellement aux inconvénients mentionnés ci-dessus, relatifs aux réalisations de l'art antérieur.
Pour ce faire, l'invention a tout d'abord pour objet un extension de carter intermédiaire pour turbomachine d'aéronef, destinée à faire saillie vers l'aval à partir d'une virole extérieure dudit carter intermédiaire, ladite extension comprenant une partie aval annulaire de liaison formant moyens de rétention destinés à recevoir des capots de nacelle, ladite partie aval annulaire de liaison comprenant au moins un premier secteur angulaire. Selon l'invention, ladite extension comprend un corps réalisé d'une seule pièce comportant une virole de jonction ainsi qu'au moins un second secteur angulaire de ladite partie aval annulaire de liaison, ledit premier secteur angulaire étant rapporté sur ledit corps d'extension. De plus, l'extension de carter comprend une pluralité de premiers secteurs angulaires ainsi qu'une pluralité de seconds secteurs angulaires, l'ensemble des seconds secteurs angulaires s'étendant sur au moins 80% de la circonférence du corps. L'invention est principalement avantageuse en ce que la virole de jonction est réalisée d'un seul tenant avec un ou plusieurs secteurs angulaires de la partie aval annulaire de l'extension définissant la rainure. Ces secteurs, dits seconds secteurs angulaires, n'ont ainsi plus besoin d'être rapportés fixement par boulons sur la virole de jonction, et la masse globale de la virole s'en trouve avantageusement réduite.
En outre, les coûts de fabrication d'une telle extension sont réduits par rapport à ceux observés antérieurement, puisque l'obtention du corps d'extension monobloc est plus aisée et plus rapide que la solution décrite dans le document FR 2 925 120, dans laquelle il est procédé à l'obtention séparée de la virole de jonction et des secteurs angulaires de la rainure, suivie d'un assemblage de ces secteurs sur la virole de jonction. Par ailleurs, toujours vis-à-vis de la solution décrite dans le document FR 2 925 120, le nombre de pièces référencées à gérer pour la fabrication de l'extension est réduit, ce qui conduit également à une réduction des coûts.
Aussi, pour les seconds secteurs angulaires réalisés d'une seule pièce avec la virole de jonction, les tolérances obtenues sont meilleures que dans la solution du document FR 2 925 120, où les pièces sont empilées.
De plus, l'invention conserve l'avantage que lorsqu'un ou plusieurs premiers secteurs angulaires doivent être remplacés, il n'est plus nécessaire de changer l'intégralité de l'extension, mais seulement le ou les premiers secteurs angulaires concernés. Ainsi, la segmentation des moyens de rétention des capots de nacelle permet avantageusement de diminuer la durée des opérations de maintenance réalisées sur l'extension, et procure par ailleurs une économie de matière. L'usure de ces moyens de rétention de capots étant généralement localisée à des endroits prédéterminés, il suffit d'y implanter les premiers secteurs, facilement échangeables.
Egalement, les premiers et seconds secteurs angulaires peuvent avantageusement différer les uns des autres, en termes de conception et/ou de matériau, suivant le niveau de sollicitation auquel ils sont destinés à être soumis. A titre d'exemple indicatif, dans le cas où les capots de nacelle concernés, à savoir préférentiellement les capots d'inverseur de poussée, sont équipés de systèmes d'inverseur de poussées actionnés par des moyens de commande du type vérins, les parties des moyens de rétention annulaires situées en regard de ces moyens de commande sont généralement les plus sollicitées. Un matériau et/ou une conception adéquates peuvent alors être adoptés pour réaliser le/les secteurs angulaires correspondant aux parties fortement sollicitées, afin qu'elles résistent mieux à l'usure. Comme évoqué ci-dessus, les parties fortement sollicitées de la rainure sont préférentiellement réalisées avec les premiers secteurs angulaires échangeables.
Enfin, en prévoyant que l'extension de carter comprend une pluralité de premiers secteurs angulaires ainsi qu'une pluralité de seconds secteurs angulaires, l'ensemble des seconds secteurs angulaires s'étendant sur au moins 80% de la circonférence du corps, il en découle que le reste de la circonférence est complété, entièrement ou partiellement, par les premiers secteurs angulaires.
De préférence, les premiers secteurs angulaires sont montés par vis sur le corps, dans des évidements pratiqués entre deux seconds secteurs directement consécutifs dudit corps.
De préférence, lesdits premiers secteurs angulaires sont réalisés dans un premier matériau, et les seconds secteurs angulaires sont réalisés dans un second matériau différent du premier. Par exemple, le premier matériau est du titane ou l'un de ses alliages, et le second matériau est en aluminium ou dans l'un de ses alliages. De manière plus générale, le premier matériau est plus résistant que le second, utilisé pour les seconds secteurs agencés aux endroits les plus sollicités de l'extension du carter intermédiaire.
Néanmoins, outre la différence de matériau, il est également possible de prévoir une différence de conception entre les premiers et seconds secteurs, toujours de façon à s'adapter localement aux contraintes rencontrées.
De préférence, chaque premier et second secteur angulaire comporte une portion des moyens de rétention, cette portion s'étendant sur une même amplitude angulaire que celle du secteur concerné. Alternativement, chaque secteur pourrait présenter une portion des moyens de rétention sur une amplitude inférieure à celle du secteur concerné, sans sortir du cadre de l'invention. Selon un premier mode de réalisation préféré de l'invention, lesdits moyens de rétention sont formés par une rainure ouverte radialement vers l'extérieur, destinée à recevoir les capots de nacelle.
Selon un second mode de réalisation préféré de l'invention, lesdits moyens de rétention sont formés par une bride de rétention en saillie radialement vers l'extérieur, ladite bride de rétention étant de préférence prévue pour retenir les capots de nacelle à l'aide d'une structure de maintien enserrant la bride de rétention et une portion desdits capots de nacelle.
L'invention a également pour objet une turbomachine pour aéronef, de préférence un turboréacteur, comprenant un carter intermédiaire équipé à l'extrémité aval de sa virole extérieure d'une extension telle que décrite ci-dessus.
De préférence, la virole de jonction du corps est équipée d'une collerette annulaire de fixation du corps sur l'extrémité aval de la virole extérieure du carter intermédiaire.
Enfin, l'invention a aussi pour objet un ensemble propulsif pour aéronef comprenant une telle turbomachine, ainsi qu'une nacelle comprenant des capots de nacelle coopérant avec les moyens de rétention.
De préférence, l'ensemble propulsif comporte également un mât d'accrochage de la turbomachine, comprenant une structure rigide ainsi que des moyens d'accrochage de la turbomachine sur ladite structure rigide, lesdits capots de nacelle étant articulés sur ladite structure rigide.
D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous.
BRÈVE DESCRIPTION DES DESSINS Cette description sera faite au regard des dessins annexés parmi lesquels ;
- la figure 1 représente un vue schématique de côté d'un ensemble propulsif pour aéronef conforme à la présente invention, la nacelle ayant été retirée pour des raisons de clarté ; - la figure 2 représente une vue partielle en coupe plus détaillée de l'ensemble montré sur la figure 1, et prise le long de la ligne l l-l l de cette même figure ;
- la figure 3 représente une vue partielle en perspective d'un capot inverseur de poussée appartenant à la nacelle montrée sur la figure 2 ;
- la figure 4 représente une vue en perspective d'un système d'inverseur de poussée destiné à équiper le capot montré sur la figure 3 ;
- la figure 5 représente une vue schématique du système d'inverseur de poussée montrée en configuration actionnée ;
- la figure 6 représente une vue partielle agrandie en coupe schématique de celle montrée sur la figure 2, représentant la coopération entre l'extension de carter intermédiaire et l'un des capots de nacelle ;
- la figure 7 représente une vue en perspective de l'extension montrée sur la figure 2, selon un premier mode de réalisation préféré de la présente invention ;
- les figures 8a et 8b représentent des vues agrandies en perspective d'une partie supérieure de l'extension montrée sur la figure 7, respectivement vues depuis l'arrière et depuis l'avant de cette extension ;
- la figure 9 est une vue en perspective éclatée de la partie d'extension montrée sur les figures 8a et 8b ;
- les figures 10 et 11 représentent respectivement des vues en coupe prises selon les lignes X-X et XI-XI de la figure 7 ;
- la figure 12 représente une vue en perspective de l'extension montrée sur la figure 2, selon un second mode de réalisation préféré de la présente invention ;
- la figure 13 représente une vue en coupe de l'extension montré sur la figure 12, à laquelle sont assemblés les capots de nacelle ; et
- les figues 14 et 15 représentent des vues en coupe prises le long des lignes XIV-XIV et XV-XV de la figure 13, respectivement.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PRÉFÉRÉS
En référence à la figure 1, il est représenté schématiquement un ensemble propulsif 1 pour aéronef selon un mode de réalisation préféré de la présente invention, cet ensemble 1 étant destiné à être fixé sous une aile d'aéronef (non représentée).
Globalement, l'ensemble propulsif 1, également appelé système propulsif intégré, est composé d'un turboréacteur 2, d'une nacelle (non représentée sur cette figure), et d'un mât d'accrochage 4 pourvu de moyens d'accrochage 10 du turboréacteur sur ce mât, ces moyens étant de préférence constitués d'une attache moteur avant 6a, d'une attache moteur arrière 6b, ainsi que d'un dispositif de reprise des efforts de poussée prenant la forme de deux bielles 8 (l'une étant masquée par l'autre sur la figure 1). A titre indicatif, il est noté que l'ensemble 1 comporte une autre série d'attaches (non représentées) permettant d'assurer la suspension de cet ensemble 1 sous la voilure de l'aéronef.
Dans toute la description qui va suivre, par convention, on appelle X la direction longitudinale de l'ensemble 1 qui est également assimilable à la direction longitudinale du turboréacteur 2, cette direction X étant parallèle à un axe longitudinal 5 de ce turboréacteur 2. D'autre part, on appelle Y la direction orientée transversalement par rapport à l'ensemble propulsif 1 et également assimilable à la direction transversale du turboréacteur 2, et Z la direction verticale ou de la hauteur, ces trois directions X, Y et Z étant orthogonales entre-elles.
D'autre part, les termes « avant », et « arrière » sont à considérer par rapport à une direction d'avancement de l'aéronef rencontrée suite à la poussée exercée par le turboréacteur 2, cette direction étant représentée schématiquement par la flèche 7. De manière analogue, les termes « amont » et « aval » sont à considérer par rapport à une direction principale d'écoulement des flux au sein du turboréacteur, direction opposée à la direction 7.
Sur la figure 1, on peut voir que seules les attaches moteur 6a, 6b, les bielles de reprise de poussée 8 ainsi que la structure rigide 11 du mât d'accrochage 4 ont été représentées. Les autres éléments constitutifs non représentés de ce mât 4, tels que les moyens d'accrochage de la structure rigide 11 sous la voilure de l'aéronef, ou encore la structure secondaire assurant la ségrégation et le maintien des systèmes tout en supportant des carénages aérodynamiques, sont des éléments classiques identiques ou similaires à ceux rencontrés dans l'art antérieur, et connus de l'homme du métier. Par conséquent, il n'en sera fait aucune description détaillée.
D'autre part, le turboréacteur 2 dispose d'une conception globalement classique, à savoir comportant à l'avant un carter de soufflante 12, prolongé vers l'arrière par un carter intermédiaire 21.
Le carter intermédiaire 21 comprend une virole extérieure 23 située dans le prolongement aérodynamique arrière du carter de soufflante, ainsi que des flasques transversaux 25, 27 disposés radialement intérieurement par rapport à cette virole extérieure 23, le carter intermédiaire 21 comprenant en outre des bras structuraux 17 répartis angulairement et s'étendant radialement entre les flasques 25, 27, jusqu'à la virole extérieure 23 qu'ils contactent.
Le turboréacteur comprend également un carter central 16, également dit carter « core », prolongeant le carter intermédiaire 21 vers l'arrière, à partir du flasque transversal arrière 27 sur lequel il est raccordé. Il est noté que le carter central s'étend jusqu'à une extrémité arrière 19 de plus grande dimension, également dénommée carter d'éjection. Enfin, la virole extérieure 23 du carter intermédiaire est prolongée vers l'aval par une extension annulaire 30, également objet de la présente invention, dont le but principal est d'établir une liaison entre la virole extérieure 23 et les capots de nacelle directement adjacents vers l'aval. L'extension 30 sera présentée de façon détaillée ci- dessous.
L'attache moteur avant 6a est interposée entre l'extrémité avant de la structure rigide 11, également dite structure primaire, et le carter de soufflante 12 ou la virole extérieure 23 du carter intermédiaire 21.
L'attache arrière 6b est quant à elle interposée entre la structure rigide 11 et l'extrémité arrière 19 du carter central 16. Les deux attaches moteur avant 6a, 6b sont traversées par un plan médian P orienté verticalement et longitudinalement, et passant par l'axe 5. Ce même plan P constitue un plan de symétrie pour les deux bielles 8 de reprise des efforts de poussée, de part et d'autre duquel elles se situent, respectivement. Chaque bielle 8 présente une extrémité arrière articulée sur un corps de l'attache moteur arrière 6b, ainsi qu'une extrémité avant raccordée sur le flasque transversal 27.
En référence à présent à la figure 2 plus détaillée et montrant la nacelle 32 de l'ensemble propulsif 1, il est noté que celle-ci forme une surface extérieure aérodynamique continue, constituée par une entrée d'air 34, des capots de soufflante 36, des capots d'inverseur de poussée 38, et un capotage arrière fixe 40, ces éléments étant agencés adjacents de l'avant vers l'arrière.
Les capots d'inverseur de poussée 38, généralement au nombre de deux et articulés sur la structure rigide du mât, délimitent de façon connue un canal annulaire de flux secondaire 42, grâce à des peaux annulaires externe 44 et interne 46.
Comme montré sur les figures 3 et 4, chaque capot d'inverseur de poussée 38, également dénommé capot arrière ou capot « core », présente une forme générale de demi-cylindre, l'extrémité supérieure 48 étant destinée à être articulée sur la structure rigide du mât, et l'extrémité inférieure 50 étant destinée à être verrouillée à l'extrémité inférieure de l'autre capot 38, par des moyens conventionnels. De plus, il présente en son centre un logement 52 pour la mise en place d'un système d'inverseur de poussée, prenant ici la forme d'un système à porte pivotante 54 montré sur la figure 4. Globalement, ce système 54 forme donc un porte susceptible de pivoter autour de l'axe défini par les deux pions en regard 56 pratiqués dans l'ouverture 52, respectivement destinés à se loger dans des orifices de réception 58 de la porte 54. De plus, des moyens de commande comme un vérin ou similaire sont capables d'assurer la mise en rotation de la porte 54, comme montré sur la figure 5 sur laquelle le vérin déployé 60 permet de maintenir la porte 54 en configuration d'inversion de poussée. Dans cette configuration, l'air empruntant le canal secondaire 42 est forcé de s'extraire du capot 38 du fait de l'obturation du ce canal vers l'aval par la porte inclinée 54, cette extraction d'air en dehors de la nacelle s'effectuant sensiblement à contre courant en raison de l'inclinaison de cette porte 54, comme en témoigne la flèche 62. Par exemple, le vérin 60 présente une extrémité avant raccordée sur le cadre du logement 52 et une extrémité arrière raccordée sur la porte elle-même. Sur la figure schématique 6, on peut apercevoir que le capot 38 coopère avec l'extension 30. Dans ce premier mode de réalisation préféré de l'invention, l'extension 30 dispose d'une partie aval annulaire de liaison 64 formant une rainure annulaire 66 ouverte radialement vers l'extérieur, et recevant une nervure 68 de forme complémentaire portée par le capot 38, à l'extrémité amont de sa peau annulaire externe 44. La rainure annulaire 66 est ici une première manière de remplir une fonction de rétention des capots 38.
La rainure annulaire 66 présente de préférence une section en forme de V, dans laquelle se loge donc la nervure 68 faisant saillie radialement vers l'intérieur, et disposant également d'une section en forme de V. La coopération entre la nervure 68 et la rainure complémentaire 66 permet la transmission des efforts aérodynamiques du capot d'inverseur 38 vers le turboréacteur, en particulier les efforts axiaux, et encore plus particulièrement les efforts axiaux de contre-poussée transitant par les vérins 60 lorsque les portes 54 sont déployées, comme cela est le cas sur la figure 5.
Sur la figure 7, il est montré un arrangement également dénommé « kit inverseur de poussée », intégrant l'extension 30 comme extrémité radialement externe. Cet arrangement comprend, radialement vers l'intérieur, un anneau 70 destiné à être centré sur l'axe 5 du turboréacteur, et dont le but est d'établir la jonction mécanique avec la peau annulaire interne 46 des capots d'inverseur de poussée 38. L'anneau 70 et l'extension annulaire 30 concentriques sont reliés rigidement entre eux par l'intermédiaire de bras structuraux 72 agencés radialement, et par exemple prévus au nombre de quatre en étant espacés d'environ 90° les uns par rapport aux autres.
Pour ce qui concerne l'extension 30 destinée à établir la jonction mécanique avec la peau annulaire externe 44, celle-ci présente une virole de jonction d'un seul tenant 74, dont l'extrémité avant en forme de collerette annulaire 75 permet la fixation par vis de l'arrangement sur l'extrémité aval de la virole extérieure 23 du carter intermédiaire. L'une des particularités de la présente invention réside dans le fait que la virole de jonction 74, s'étendant sur 360°, fait partie d'un corps d'extension 77 réalisé d'une seule pièce, et intégrant des secteurs angulaires 76a formant partie de l'extrémité aval annulaire de liaison 64. L'autre partie de l'extrémité aval annulaire de liaison 64 est formée par d'autres secteurs angulaires 76b montés de préférence par boulons sur le corps 77. Dans la suite de la description, les secteurs 76b sont dénommés premiers secteurs angulaires, tandis que les secteurs 76a sont dénommés seconds secteurs angulaires.
Ainsi, il est prévu une pluralité de premiers et seconds secteurs angulaires 76b, 76a formant conjointement la partie aval annulaire de liaison 64, cette partie formant extrémité aval de l'extension 30. Par exemple, ils forment ensemble une structure s'étendant de façon sensiblement continue sur 360° autour de l'axe 5, définissant la rainure annulaire 66 qui peut quant à elle également être continue le long de la circonférence de l'extension. Alternativement, l'extrémité aval annulaire de liaison 64 peut être interrompue à certains endroits, sur des amplitudes angulaires limitées.
Par exemple, l'extrémité aval annulaire de liaison 64, lorsque la rainure 66 qu'elle définit est destinée à coopérer avec deux capots d'inverseur de poussée, est interrompue seulement au niveau du passage de la structure rigide du mât d'accrochage sur laquelle sont articulés ces capots, et au niveau des extrémités inférieures de ces mêmes capots. Par conséquent, la rainure 66 et l'extrémité aval de liaison 64 présentent habituellement deux interruptions diamétralement opposées, de préférence à 6 heures et à 12 heures.
L'arrangement de la figure 7, qui n'intègre pas ces interruptions, peut être rapporté en l'état sur le carter intermédiaire 21 avec les bras structuraux 72 prolongeant vers l'arrière certains des bras structuraux 17 de ce carter.
Cet arrangement comporte donc les deux sortes de secteurs angulaires, arrangés en alternance dans la direction circonférentielle. Les seconds secteurs angulaires 76a sont réalisés dans un matériau léger tel qu'un alliage d'aluminium, et sont réalisées de façon monobloc avec la virole de jonction 74 en étant agencés dans des positions où le niveau d'efforts transmis par les capots d'inverseur de poussée est relativement faible. Par exemple, il est notamment prévu deux seconds secteurs 76a respectivement centrés à 3 heures et à 9 heures, s'étendant chacun sur une amplitude angulaire par exemple supérieure à 140°. Au total, ces seconds secteurs angulaires 76a s'étendent de préférence sur au moins 80% de la circonférence du corps. Ils alternent avec les premiers secteurs angulaires rapportés 76b, réalisés dans un matériau plus résistant à l'usure, tels que les aciers ou le titane ou ses alliages. Ces premiers secteurs 76b sont fixés sur le corps monobloc 77 en des positions où le niveau d'efforts transmis par les capots d'inverseur de poussée est plus important. En particulier, de tels secteurs 76b sont situés au droit, dans la direction longitudinale/axiale, des vérins de commande 60 des systèmes d'inversion de poussée, que ces systèmes soient du type « à portes » comme décrit ci-dessus, ou qu'ils soient d'une autre conception connue de l'homme du métier, comme celle dite « à grilles ».
Dans l'exemple représenté sur la figure 7, il est prévu deux premiers secteurs 76b à proximité de la position à 12 heures, de part et d'autre de celle-ci, et deux autres premiers secteurs 76b à proximité de la position à 6 heures, également de part et d'autre de celle-ci. Chacun des quatre secteurs 76b s'étend sur une amplitude angulaire par exemple comprise entre à 5 et 20°. Au total, ces premiers secteurs angulaires 76b s'étendent de préférence sur moins de 20% de la circonférence du corps.
Dans l'exemple représenté sur la figure 7, un second secteur 76a comble l'espace entre les deux secteurs 76b de chaque couple, à 12 heures et à 6 heures. Néanmoins, comme évoqué précédemment, les deux espaces respectivement centrés sur ces deux positions diamétralement opposées peuvent rester libres, interrompant l'extrémité de jonction 64 et sa rainure 66, sans sortir du cadre de l'invention.
C'est d'ailleurs cette solution à espaces laissés libres à 12 heures et 6 heures qui est partiellement représentée sur les figures 8a et 8b. En effet, sur ces figures, il est montré le corps d'une seule pièce 77 incluant la virole de jonction 74 et deux seconds secteurs 76a directement consécutifs, espacés l'un de l'autre par un évidement de matière 79 pratiqué dans le corps. Dans cet évidement, il est placé, respectivement aux deux extrémités de cet évidement 79, deux premiers secteurs angulaires 76b se trouvant chacun dans la continuité de l'un des deux secteurs 76a définissant l'évidement. La partie de la rainure annulaire 66 définie par chaque second secteur 76a se trouve ainsi prolongée par une partie de rainure définie par le premier secteur 76b adjacent. Dans l'exemple représenté, comme mentionné précédemment, un espace 81 est conservé entre les deux premiers secteurs 76b, pour le passage de la structure rigide du mât et pour l'accrochage des capots l'un sur l'autre.
La virole de jonction 74, faisant partie intégrante du corps monobloc 77, s'étend vers l'avant jusqu'à la virole extérieure 23 du carter intermédiaire, ou bien est raccordée à une autre virole qui elle est fixée à son extrémité avant à cette même virole extérieure 23. Ce dernier cas est celui représenté sur la figure 8b et sur la figure 9, sur lesquelles la virole de jonction 74 est assemblée à sa périphérie sur une virole avant 74', qui intègre une collerette annulaire 75 de fixation sur l'extrémité aval de la virole extérieure 23, portant elle aussi une collerette annulaire de fixation 83. Alternativement, la virole de jonction 74 s'étend vers l'avant jusqu'au carter intermédiaire, et porte elle- même la collerette 75, également dénommée bride de fixation.
Les figures 9 et 11 montrent que chaque premier secteur angulaire 76b est monté à l'aide de vis 78 sur le corps 77, dans l'évidement 79. Pour ce faire, des orifices 87 de passage de vis appropriés sont prévus sur un flan radial 85 qui subsiste à la périphérie du corps 77, flan sur lequel le secteur 76b est en appui axial. Ce dernier est également en appui radial sur une bande de matière 89 participant aussi à la délimitation de l'évidement 79, et forme un siège pour ce second secteur angulaire 76b. Le siège 89 et le flan 85 délimitent ainsi un espace comblé par le secteur angulaire 76b rapporté, ce qui contraste avec la partie pleine et monobloc 91 correspondante du second secteur 76a, montré sur la figure 10.
Le caractère facilement remplaçable des premiers secteurs 76b provient donc de leur assemblage de façon vissée sur le corps d'extension 77, à l'aide des vis 78 orientées sensiblement axialement. Une solution à vis radiales aurait également pu être envisagée, sans sortir du cadre de l'invention.
Sur les figures précédentes, la segmentation de l'extrémité aval de liaison 64 et de sa rainure 66 a été représentée à titre d'exemple indicatif. Il est noté que le nombre de ces secteurs angulaires 76a, 76b, facilement remplaçables pour ce qui concerne les premiers secteurs 76b plus sollicités mécaniquement, peut être adapté en fonction des besoins rencontrés. En outre, les seconds secteurs angulaires 76a peuvent être davantage allégés par une conception différente de celle des premiers secteurs 76b. A cet égard, il est noté que les secteurs 76a, 76b pourraient alternativement être réalisés dans un même matériau et uniquement différer par leur conception, ou même encore être de conception sensiblement identique.
Enfin, le corps 77 est préférentiellement réalisé par usinage, même si une solution par moulage est également envisageable.
Sur les figures 12 à 15, il est montré une extension 30 selon un second mode de réalisation préféré de l'invention. Dans ce second mode, la particularité réside dans la conception des moyens de rétention des capots de nacelle, qui, au lieu d'une rainure, prennent la forme d'une bride de rétention 66 en saillie radialement vers l'extérieur à partir de la virole de jonction 74. Les autres éléments sont identiques ou semblables à ceux décrits dans le cadre du premier mode de réalisation préféré. Aussi, il est noté que sur les figures, les éléments portant les mêmes références numériques correspondent à des éléments identiques ou similaires.
La bride annulaire 66 présente une même conception segmentée que celle de la rainure décrite ci-dessus. Elle présente donc des premiers secteurs angulaires 76b rapportés sur le corps 77, réalisé d'une seule pièce et intégrant à la fois la virole de jonction 74 et les second secteurs angulaires 76a. Toutes les caractéristiques décrites en relation avec la rainure du premier mode de réalisation préféré sont donc applicables à cette bride annulaire 66 du second mode de réalisation.
La bride 66 présente une section en forme générale de T, la barre du T étant orientée radialement vers l'extérieur. Elle coopère avec une structure de maintien 93 montrée sur les figures 13 et 14, dont la fonction est d'enserrer la bride 66 et une portion 68 des capots de nacelle 38, cette portion étant également assimilable à une bride s' étendant radialement vers l'extérieur. La structure de maintien 93 s'étend de manière continue tout autour de la bride 66 et de la portion de nacelle 68 en appui, ou bien est segmentée circonférentiellement. En section, elle prend une forme générale de clip en C orienté radialement vers l'intérieur, les deux éléments 66, 68 étant retenus au sein du creux défini par le C. Pour ce faire, la structure de maintien 93 présente une première branche glissée sous la barre du T de la bride 66, et une seconde branche opposée recouvrant la portion 68, cette dernière étant également plaquée sous la barre du T de la bride.
Pour l'assemblage de cette structure de maintien 93, il est par exemple prévu une liaison à crabotage entre la branche aval du C et la portion de capot de nacelle 68, comme cela est visible sur la figure 14. Par conséquent, ces deux éléments présentent chacun une succession de dents et de creux, les dents étant mises en regard deux à deux pour obtenir la fixation comme cela est montré sur la figure 14. A l'inverse, pour assurer le désassemblage des capots de nacelle, la structure de maintien 93 en forme de couronne est pivotée selon l'axe 5 de manière à amener les dents en regard des creux, et autoriser le retrait de cette couronne de maintien par simple translation vers l'amont. En fonctionnement, des moyens conventionnels peuvent être utilisés pour bloquer la rotation de la couronne 93, par exemple des boulons vissés dans la bride 66. Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à l'invention qui vient d'être décrite, uniquement à titre d'exemples non limitatifs.

Claims

REVENDICATIONS
1. Extension (30) de carter intermédiaire (21) pour turbomachine d'aéronef, destinée à faire saillie vers l'aval à partir d'une virole extérieure (23) dudit carter intermédiaire, ladite extension comprenant une partie aval annulaire de liaison (64) formant des moyens de rétention (66) destinés à la rétention de capots de nacelle (38), ladite partie aval annulaire de liaison (64) comprenant au moins un premier secteur angulaire (76b),
caractérisée en ce que ladite extension comprend un corps (77) réalisé d'une seule pièce comportant une virole de jonction (74) ainsi qu'au moins un second secteur angulaire (76a) de ladite partie aval annulaire de liaison (64), ledit premier secteur angulaire (76b) étant rapporté sur ledit corps d'extension (77), et en ce que l'extension de carter comprend une pluralité de premiers secteurs angulaires (76b) ainsi qu'une pluralité de seconds secteurs angulaires (76a), l'ensemble des seconds secteurs angulaires (76a) s'étendant sur au moins 80% de la circonférence du corps.
2. Extension selon la revendication 1, caractérisée en ce que les premiers secteurs angulaires (76b) sont montés par vis sur le corps (77), dans des évidements (79) pratiqués entre deux seconds secteurs (76a) directement consécutifs dudit corps.
3. Extension selon l'une quelconque des revendications précédentes, caractérisée en ce que lesdits premiers secteurs angulaires (76b) sont réalisés dans un premier matériau de préférence en titane ou dans l'un de ses alliages, et en ce que les seconds secteurs angulaires (76a) sont réalisés dans un second matériau différent du premier de préférence en aluminium ou dans l'un de ses alliages.
4. Extension selon l'une quelconque des revendications précédentes, caractérisée en ce que lesdits moyens de rétention sont formés par une rainure (66) ouverte radialement vers l'extérieur, destinée à recevoir les capots de nacelle (38).
5. Extension selon l'une quelconque des revendications 1 à 3, caractérisée en ce que lesdits moyens de rétention sont formés par une bride de rétention (66) en saillie radialement vers l'extérieur, ladite bride de rétention étant de préférence prévue pour retenir les capots de nacelle (38) à l'aide d'une structure de maintien (93) enserrant la bride de rétention (66) et une portion (68) desdits capots de nacelle.
6. Turbomachine (2) pour aéronef, comprenant un carter intermédiaire (21) équipé à l'extrémité aval de sa virole extérieure (23) d'une extension (30) selon l'une quelconque des revendications précédentes.
7. Turbomachine selon la revendication 6, caractérisée en ce que la virole de jonction (74) du corps (77) est équipée d'une collerette annulaire (75) de fixation du corps sur l'extrémité aval de la virole extérieure (23) du carter intermédiaire (21).
8. Ensemble propulsif (1) pour aéronef comprenant une turbomachine (2) selon la revendication 6 ou la revendication 7, ainsi qu'une nacelle (32) comprenant des capots de nacelle (38) coopérant avec lesdits moyens de rétention (66).
9. Ensemble propulsif (1) selon la revendication 8, caractérisé en ce qu'il comporte également un mât d'accrochage (4) de la turbomachine comprenant une structure rigide (11) ainsi que des moyens d'accrochage de la turbomachine sur ladite structure rigide, lesdits capots de nacelle (38) étant articulés sur ladite structure rigide (11).
PCT/FR2013/053082 2012-12-18 2013-12-16 Extension de carter intermediaire a conception amelioree WO2014096647A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1510330.2A GB2523507B (en) 2012-12-18 2013-12-16 Intermediate casing extension of improved design
US14/652,573 US9920654B2 (en) 2012-12-18 2013-12-16 Intermediate casing extension of improved design

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1262269A FR2999651B1 (fr) 2012-12-18 2012-12-18 Extension de carter intermediaire a conception amelioree
FR1262269 2012-12-18

Publications (1)

Publication Number Publication Date
WO2014096647A1 true WO2014096647A1 (fr) 2014-06-26

Family

ID=47882271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/053082 WO2014096647A1 (fr) 2012-12-18 2013-12-16 Extension de carter intermediaire a conception amelioree

Country Status (4)

Country Link
US (1) US9920654B2 (fr)
FR (1) FR2999651B1 (fr)
GB (1) GB2523507B (fr)
WO (1) WO2014096647A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3144499A4 (fr) * 2014-08-22 2018-01-24 IHI Corporation Boîtier cylindrique
FR3117173A1 (fr) * 2020-12-09 2022-06-10 Safran Aircraft Engines Ensemble propulsif d’aéronef et procédé d’adaptation d’un ensemble propulsif

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10060292B2 (en) * 2013-03-14 2018-08-28 United Technologies Corporation Castellated latch mechanism for a gas turbine engine
GB201306674D0 (en) * 2013-04-12 2013-05-29 Rolls Royce Plc Rigid Raft for a Gas Turbine Engine
JP6118721B2 (ja) * 2013-12-20 2017-04-19 株式会社Ihi ファンケース及びファンケースの製造方法
FR3032180B1 (fr) * 2015-01-30 2018-05-18 Airbus Operations Ensemble propulsif comportant un turboreacteur et un mat d'accrochage permettant une nouvelle distribution des efforts entre le turboreacteur et la voilure
FR3055655B1 (fr) * 2016-09-06 2019-04-05 Safran Aircraft Engines Carter intermediaire de turbine de turbomachine
FR3098547B1 (fr) * 2019-07-08 2022-04-29 Safran Aircraft Engines Assemblage de maintien d’un train d’engrenages dans une turbomachine
CN117972943B (zh) * 2024-03-29 2024-06-07 南京航空航天大学 一种基于空地状态等效模拟的航空发动机主轴承载荷预计方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865002A1 (fr) * 2004-01-12 2005-07-15 Snecma Moteurs Turboreacteur a double flux comprenant un support de distribution de servitudes et le support de distribution de servitudes.
FR2925120A1 (fr) 2007-12-18 2009-06-19 Snecma Sa Extension de carter intermediaire pour turboreacteur d'aeronef, comprenant une rainure annulaire sectorisee de reception des capots de nacelle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534167A (en) * 1982-12-27 1985-08-13 The Boeing Company Inlet cowl attachment for jet engine
FR2933130B1 (fr) * 2008-06-25 2012-02-24 Snecma Carter structural pour turbomachine
FR2936223B1 (fr) * 2008-09-23 2010-09-17 Airbus France Dispositif de liaison entre une entree d'air et une motorisation d'une nacelle d'aeronef
US9114882B2 (en) * 2010-10-26 2015-08-25 United Technologies Corporation Fan case and mount ring snap fit assembly
US8511973B2 (en) * 2010-06-23 2013-08-20 Rohr, Inc. Guide system for nacelle assembly
US8727269B2 (en) * 2011-06-06 2014-05-20 General Electric Company System and method for mounting an aircraft engine
FR2994712B1 (fr) * 2012-08-27 2018-04-13 Safran Aircraft Engines Procede d'assemblage d'une tuyere et d'un carter d'echappement d'une turbomachine
US8985509B2 (en) * 2012-08-31 2015-03-24 United Technologies Corporation Assembly for mounting a turbine engine to a pylon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865002A1 (fr) * 2004-01-12 2005-07-15 Snecma Moteurs Turboreacteur a double flux comprenant un support de distribution de servitudes et le support de distribution de servitudes.
FR2925120A1 (fr) 2007-12-18 2009-06-19 Snecma Sa Extension de carter intermediaire pour turboreacteur d'aeronef, comprenant une rainure annulaire sectorisee de reception des capots de nacelle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3144499A4 (fr) * 2014-08-22 2018-01-24 IHI Corporation Boîtier cylindrique
FR3117173A1 (fr) * 2020-12-09 2022-06-10 Safran Aircraft Engines Ensemble propulsif d’aéronef et procédé d’adaptation d’un ensemble propulsif

Also Published As

Publication number Publication date
FR2999651A1 (fr) 2014-06-20
GB201510330D0 (en) 2015-07-29
GB2523507A (en) 2015-08-26
US20150345333A1 (en) 2015-12-03
GB2523507B (en) 2016-05-04
FR2999651B1 (fr) 2015-01-16
US9920654B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
EP2072397B1 (fr) Extension de carter intermédiaire pour turboréacteur d'aéronef, comprenant une rainure annulaire sectorisée de réception des capots de nacelle
WO2014096647A1 (fr) Extension de carter intermediaire a conception amelioree
EP2426051B1 (fr) Mât d'accrochage de turboréacteur pour aéronef comprenant des attaches voilure avant alignees
EP2244943B1 (fr) Ensemble moteur pour aeronef comprenant une structure annulaire de transfert d'efforts entourant le carter central d'un turboreacteur
CA2715738C (fr) Ensemble moteur pour aeronef comprenant des attaches moteur deportees vers le bas sur le carter de soufflante
CA2281619C (fr) Ensemble propulseur a capots de soufflante munis de securites de maintien et de positionnement, pour aeronefs
EP2038176B1 (fr) Ensemble moteur pour aeronef comprenant un capotage aerodynamique de jonction monte sur deux elements distincts
EP1357279B1 (fr) Ensemble réducteur de bruit pour turboréacteur d'aéronef
EP1976758B1 (fr) Systeme de fixation pour element constitutif d'une nacelle de turboreacteur
EP2244942B1 (fr) Ensemble moteur pour aeronef comprenant un turboreacteur avec des structures de renfort reliant le carter de soufflante au carter central
CA2752214A1 (fr) Systeme d'helices contrarotatives a encombrement reduit
WO1998029306A1 (fr) Nacelle de turboreacteur a ecoulement laminaire
EP2583900A2 (fr) Carénage aérodynamique arrière pour dispositif d'accrochage d'un moteur d'aéronef, comprenant un bouclier thermique capable de se dilater librement
FR2787509A1 (fr) Structure d'entree d'air pour moteur d'aeronef
FR3020347A1 (fr) Procede d'assemblage d'une partie arriere d'aeronef
FR3050719A1 (fr) Helice pour turbomachine d'aeronef comprenant des moyens de secours de calage en incidence de pale
FR2953490A1 (fr) Ensemble arriere de nacelle pour turboreacteur
FR2993535A1 (fr) Ensemble propulsif comprenant un turboreacteur a double flux de tres grand diametre et son dispositif d'accrochage sous la voilure d'un aeronef
FR3045570A1 (fr) Ensemble moteur pour aeronef, comprenant un dispositif d'accrochage du moteur equipe d'une enveloppe structurale fixee sur un caisson central
FR3033545A1 (fr) Nacelle pour ensemble moteur d'aeronef comprenant au moins un capot de nacelle articule a son extremite avant
EP3778381B1 (fr) Partie antérieure de nacelle d'un ensemble propulsif d'aéronef dont la lèvre d'entrée d'air est liée au panneau extérieur par emboitement
FR3011584A1 (fr) Extension de carter intermediaire
FR3024753A1 (fr) Ensemble de liaison pour parties de carter d'une turbomachine
FR3050718A1 (fr) Helice pour turbomachine d'aeronef comprenant des moyens simplifies de retention radiale de pale d'helice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1510330

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20131216

WWE Wipo information: entry into national phase

Ref document number: 1510330.2

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 14652573

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13824607

Country of ref document: EP

Kind code of ref document: A1