WO2014092394A1 - 분말 플라즈마 처리 장치 - Google Patents

분말 플라즈마 처리 장치 Download PDF

Info

Publication number
WO2014092394A1
WO2014092394A1 PCT/KR2013/011272 KR2013011272W WO2014092394A1 WO 2014092394 A1 WO2014092394 A1 WO 2014092394A1 KR 2013011272 W KR2013011272 W KR 2013011272W WO 2014092394 A1 WO2014092394 A1 WO 2014092394A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
plasma
surface discharge
high voltage
electrode
Prior art date
Application number
PCT/KR2013/011272
Other languages
English (en)
French (fr)
Inventor
석동찬
정용호
정현영
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Priority to CN201380032762.3A priority Critical patent/CN104519992B/zh
Priority to JP2015520080A priority patent/JP5913745B2/ja
Priority to US14/409,357 priority patent/US20150187543A1/en
Priority to EP13862922.5A priority patent/EP2929933B1/en
Publication of WO2014092394A1 publication Critical patent/WO2014092394A1/ko
Priority to US15/827,929 priority patent/US10056234B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32348Dielectric barrier discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0835Details relating to the shape of the electrodes substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid

Definitions

  • the present invention relates to a powder plasma processing apparatus, and relates to a powder plasma processing apparatus for uniformly processing powder using a surface discharge plasma module.
  • Plasma refers to an ionized gas, and excitation using energy to a gas composed of atoms or molecules forms a plasma composed of electrons, ions, decomposed gases, photons, and the like.
  • Such plasma is widely used for the surface treatment of a to-be-processed object (for example, a board
  • Pulsed corona discharge is a technique for generating plasma using a high voltage pulse power supply, and dielectric film discharge forms a dielectric on at least one of the two electrodes and applies a power source having a frequency of several tens of Hz to several MHz to the two electrodes. It is a technique to generate.
  • DBD Dynamic Barrier Discharge
  • Such a plasma processing apparatus has no particular difficulty in treating one surface or both surfaces in the case of a plate-like member such as a substrate because the object to be disposed is disposed between the flat electrode causing the discharge, but when the object to be treated is a powder, Difficult to handle the entire area. Therefore, when the object to be processed is a powder, a plasma processing apparatus for treating the object to be processed is required.
  • the present inventors have recognized the problems of the prior arts, and after the study, by introducing the following configuration, solved the problems of the conventional plasma processing apparatus, furthermore, the contact time with the plasma to be treated is controlled, uniform
  • a powder plasma processing apparatus has been developed which can provide an efficient method for powder processing.
  • the present invention provides an apparatus for plasma treatment of powder, the apparatus comprising: a chamber for plasma treatment of powder; A powder plasma processing apparatus including a powder supply unit located above the chamber and a plurality of plate-shaped surface discharge plasma modules positioned below and in the chamber, wherein the surface discharge plasma modules are spaced apart from each other. .
  • the surface of the surface discharge plasma module is not perpendicular to the powder supply direction.
  • the surface discharge plasma module has an upper end located under the powder supply part, the lower end of the surface discharge plasma module is located in a direction inclined in one direction from the upper end, and the powder supplied through the powder supply part has one side It falls along the inclined direction of the surface discharge plasma module inclined.
  • the surface discharge plasma module includes a high voltage applying electrode to which a high voltage is applied, an insulating layer surrounding the high voltage applying electrode, and a ground electrode disposed on the insulating layer. An alternating voltage is applied to the ground electrode and the high voltage applying electrode to generate a plasma around the ground electrode, and the powder is processed through the plasma.
  • the high voltage applying electrode is in the form of a substrate, the ground electrode is in the form of a bar, and a plurality of ground electrodes are positioned in parallel with each other.
  • the ground electrode is disposed in parallel with the direction in which the powder falls along the surface discharge plasma module. Induce dropping of the powder.
  • the surface discharge plasma module includes an insulating layer, a high voltage applying electrode to which a high voltage applied to one surface of the insulating layer is applied, and a ground electrode disposed on the other surface of the insulating layer.
  • An alternating voltage is applied to the high voltage applying electrode so that a plasma is generated around the ground electrode or the high voltage applying electrode, and the powder is processed through the plasma.
  • the ground electrode and the high voltage applying electrode have a bar shape, and the cross-sectional shape of the surface discharge plasma module is disposed at a position where the ground electrode and the high voltage applying electrode are crossed with each other.
  • the ground electrode is in the form of a bar
  • the high voltage applying electrode is in the form of a substrate
  • the ground electrode is in the form of a substrate
  • the high voltage applying electrode is in the form of a bar.
  • the surface discharge plasma module is disposed to face the same electrodes in the chamber.
  • the apparatus includes an inclination control unit, configured to tilt the surface discharge plasma module at a predetermined angle in the chamber.
  • the specified manner for adjusting the inclination angle of the surface discharge plasma module is not a feature of the present invention, and it will be appreciated that various methods for adjusting the inclination angle of the surface discharge plasma module may be used in the present invention.
  • the powder can be treated uniformly, and the powder is treated in an efficient manner by controlling the time for which the powder is in contact with the plasma.
  • FIG. 1 is a cross-sectional view showing the configuration of a powder plasma processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the surface discharge plasma module shown in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line AA ′ of the surface discharge plasma module shown in FIG. 2.
  • FIG. 4 is a cross-sectional view of a surface discharge plasma module according to a further embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating an arrangement of the surface discharge plasma module illustrated in FIG. 4.
  • 6A and 6B are cross-sectional views of a surface discharge plasma module according to another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view illustrating an arrangement of the surface discharge plasma module illustrated in FIGS. 6A and 6B.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a cross-sectional view showing the configuration of a powder plasma processing apparatus according to an embodiment of the present invention.
  • a powder plasma processing apparatus may include a chamber 110, a powder supply unit 111, and a surface discharge plasma module 120.
  • the chamber 110 provides an interior space for the plasma reaction by the surface discharge plasma module 120 and the plasma reaction gas, and protects the interior space of the chamber from the outside.
  • the lower part of the chamber 110 is provided with a powder collecting unit.
  • the powder collecting unit may be installed in a form in direct communication with the outside through the lower portion of the chamber 110.
  • the form of the powder collecting unit is only an exemplary form, but is not limited thereto, and may be implemented in various forms.
  • the chamber 110 may be formed of an insulating material such as heat resistant glass or quartz.
  • the powder supply part 111 is provided at an upper portion of the chamber 110.
  • the powder supply part 111 may be, for example, an open inlet for injecting powder into the chamber 110.
  • the surface discharge plasma module 120 generates a plasma for surface treatment of the powder.
  • the surface discharge plasma module 120 has a plate shape and is located inside the chamber 110. In this case, the surface discharge plasma module 120 is located below the powder supply part 111. Therefore, the powder introduced into the chamber 110 through the powder supply unit 111 falls toward the surface discharge plasma module 120.
  • a plurality of surface discharge plasma modules 120 located in the interior space of the chamber 110 are arranged.
  • the surface discharge plasma modules 120 arranged in plural are face to face with each other, and the faces facing each other of the surface discharge plasma modules 120 are spaced apart from each other.
  • the arrangement of the surface discharge plasma module 120 disposed as described above causes the powder introduced into the chamber 110 through the powder supply unit 111 to fall between the surface discharge plasma modules 120, wherein the powder supply unit ( A plurality of powders injected through the 111 is dispersed between each surface discharge plasma module 120. Thus, the dispersed powders come into contact with the plasma to allow uniform surface treatment.
  • the plurality of surface discharge plasma modules 120 are arranged so as not to be perpendicular to the powder supply direction in the chamber 110.
  • each of the surface discharge plasma modules 120 may be located at an upper end thereof under the powder supply part 111, and a lower end thereof in a direction inclined in one direction from the upper end. That is, the plurality of surface discharge plasma modules 120 are disposed in a shape inclined toward one side from the lower portion of the powder supply part 111.
  • Multiple surface discharge plasma modules 120 should be arranged so as not to be perpendicular to the powder feed direction as discussed above.
  • the powder supplied into the chamber 110 through the powder supply unit 111 does not contact each of the surface discharge plasma modules 120.
  • the time for which the powder contacts the plasma is very short, so that the surface treatment is not easy.
  • the powder supplied into the chamber 110 through the powder supply unit 111 falls to the upper ends of the respective surface discharge plasma modules 120. After the powder can be moved toward the lower portion of the chamber 110 while sliding along the surface of each surface discharge plasma module 120, the time that the powder is in contact with the plasma can be long, thereby making it easy to surface treatment of the powder have.
  • FIG. 2 is a perspective view of the surface discharge plasma module illustrated in FIG. 1
  • FIG. 3 is a cross-sectional view taken along line AA ′ of the surface discharge plasma module illustrated in FIG. 2.
  • the plurality of surface discharge plasma modules 120 includes a high voltage applying electrode 121 to which a high voltage is applied, an insulating layer 122 surrounding the substrate, and a plurality of grounds placed on the insulating layer 122.
  • An electrode 123 An electrode 123.
  • the high voltage applying electrode 121 is electrically insulated in the chamber 110 through the insulating layer 122.
  • the high voltage applying electrode 121 may be, for example, in the form of a substrate.
  • the plurality of ground electrodes 123 may be, for example, bar-shaped, and may be disposed in parallel with each other on the insulating layer 122, and may be disposed in parallel with the direction in which the powder falls along the surface discharge plasma module 120. have. That is, the longitudinal direction of the plurality of ground electrodes 123 induces the powder to fall in parallel with the drop direction of the powder, and the plurality of ground electrodes 123 are arranged at a predetermined interval on the insulating layer 122 and neighbor each other. .
  • an alternating voltage is applied to the plurality of ground electrodes 123 and the high voltage applying electrode 121 from the plasma power supply 130 provided outside the chamber 110, and thus, the plurality of ground electrodes 123. Plasma is generated around.
  • the plasma reaction gas is injected into the chamber 110 toward the plurality of ground electrodes 123.
  • the plasma reaction gas injected into the chamber 110 is introduced between the plurality of surface discharge plasma modules 120.
  • the plasma reaction gas is a gas containing an oxygen component such as O 2 , N 2 O, a gas containing a fluorine component such as CF 4 , SF 6 , a gas containing a chlorine component such as Cl 2 , BCl 3 , Ar And inert gases such as N 2 may be used alone or in combination.
  • the chamber 110 In order to inject the plasma reaction gas, the chamber 110 includes a gas inlet 112 and a gas outlet 113.
  • the apparatus of the present invention includes a plasma module tilt control unit (not shown).
  • the plasma module tilt control unit is configured to adjust the tilt angle of the surface discharge plasma module in the chamber.
  • the rate at which the powder passing through the surface discharge plasma modules falls is controlled, and when the rate at which the powder falls is controlled, the time for which the powder contacts the plasma is controlled.
  • a plurality of powders injected into the chamber 110 are dispersed and dropped between the plurality of surface discharge plasma modules 120 spaced apart from each other, and the surface discharge plasma module ( 120 is disposed to form a predetermined angle below the powder supply unit 111, and the inclination angle of the surface discharge plasma module 120 is adjusted.
  • the surface discharge plasma module 120 is disposed to form a predetermined angle below the powder supply unit 111, and the inclination angle of the surface discharge plasma module 120 is adjusted.
  • FIG. 4 is a cross-sectional view of the surface discharge plasma module according to a further embodiment of the present invention
  • Figure 5 is a cross-sectional view showing the arrangement of the surface discharge plasma module shown in FIG.
  • an insulating layer 222 is positioned in the center of the surface discharge plasma module 220, and one surface of the insulating layer 222 has a high voltage.
  • the high voltage applying electrode 221 to be applied is placed, and the ground electrode 223 is disposed on the other surface of the insulating layer 222.
  • the high voltage applying electrode 221 and the ground electrode 223 have the shape of both electrodes.
  • the high voltage applying electrode 221 and the ground electrode 223 are disposed at staggered positions when viewed in the cross section of the surface discharge plasma module 220.
  • the same electrodes are disposed to face each other.
  • the present invention is not limited thereto, and may be arranged to face different electrodes, or two modules facing the same electrode and two modules arranged to face each other may be repeatedly arranged.
  • plasma is generated around the high voltage applying electrode 221 or the ground electrode 223.
  • FIGS. 6A and 6B are cross-sectional views of a surface discharge plasma module according to still another embodiment of the present invention
  • FIG. 7 is a cross-sectional view showing an arrangement of the surface discharge plasma module shown in FIGS. 6A and 6B.
  • FIG. 4 An arrangement of the insulating layer 322, the high voltage applying electrode 321, and the ground electrode 323 of the surface discharge plasma module 320 according to another embodiment of the present invention is illustrated in FIG. 4. It is similar to the arrangement of the arrangement 220, and there is a difference in the shape of the high voltage applying electrode 321 and the ground electrode 323.
  • each of the high voltage applying electrode 321 and the ground electrode 323 is, for example, as shown in FIG. 6A, and the high voltage applying electrode 321. ) May be in the form of a substrate, and the ground electrode 323 may be in the form of a bar. As another example, as shown in FIG. 6B, the high voltage applying electrode 321 may have a bar shape, and the ground electrode 323 may have a substrate shape.
  • the same electrodes are disposed to face each other.
  • the present invention is not limited thereto, and may be arranged to face different electrodes, or two modules facing the same electrode and two modules arranged to face each other may be repeatedly arranged.
  • plasma is generated around the high voltage applying electrode 321 or the ground electrode 323.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

분말 플라즈마 처리 장치가 개시된다. 분말 플라즈마 처리 장치는 분말의 플라즈마 처리를 위한 챔버; 상기 챔버 상부에 위치한 분말 공급부 및 상기 분말 공급부 아래, 그리고 상기 챔버 내에 위치하는 다수의 판형 면방전 플라즈마 모듈을 포함하며, 상기 면방전 플라즈마 모듈은 서로 면끼리 이격되어 있다. 이러한 분말 플라즈마 처리 장치는 분말이 균일하게 처리될 수 있고, 분말이 플라즈마에 접촉되는 시간을 제어하여, 효율적인 분말 처리가 가능하다.

Description

분말 플라즈마 처리 장치
본 발명은 분말 플라즈마 처리 장치에 관한 것으로, 면방전 플라즈마 모듈을이용하여 분말을 균일하게 처리하는 분말 플라즈마 처리 장치에 관한 것이다.
플라즈마(plasma)란 이온화된 가스를 의미하고, 원자 또는 분자로 이루어진 가스에 에너지를 이용하여 여기시키면, 전자, 이온, 분해된 가스, 및 광자(photon) 등으로 이루어진 플라즈마가 형성된다. 이러한 플라즈마는 피처리물(예를 들면, 기판 등)의 표면 처리에 널리 이용되고 있다.
플라즈마를 생성시키는 기술로는 펄스 코로나 방전(pulsed corona discharge)과 유전막 방전이 공지되어 있다. 펄스 코로나 방전은 고전압의 펄스 전원을 이용하여 플라즈마를 생성하는 기술이며, 유전막 방전은 두개의 전극 중 적어도 하나에 유전체를 형성하고 두 전극에 수십 Hz 내지 수 MHz의 주파수를 가진 전원을 인가하여 플라즈마를 생성하는 기술이다.
유전막 방전 기술로는 대표적으로 DBD(Dielectric Barrier Discharge) 방전기술이 이용되고 있다. DBD 방전기술을 이용한 플라즈마 처리장치는 평판 전극 사이에 피처리대상물을 놓고, 불활성 기체를 이용하여 유전막 방전을 일으키면, 플라즈마가 발생되고, 플라즈마를 피처리대상물의 표면에 접촉시켜 피처리대상물의 표면을 처리하게 된다.
그러나 이러한 플라즈마 처리장치는, 방전을 일으키는 평판 전극 사이에 처리대상물이 배치되므로 기판과 같은 판형 부재일 경우에는 일면 또는 양면을 처리하는데 특별한 어려움이 없지만, 피처리대상물이 분말일 경우, 피처리대상물의 전체 면적을 처리하는데 어려움이 있다. 따라서 피처리대상물이 분말일 경우에 그 피처리대상물을 처리하기 위한 플라즈마 처리장치가 요구되었다.
피처리대상물이 분말일 경우에 그 피처리대상물을 처리하기 위한 플라즈마 처리장치에 대한 종래 기술로서, 본 발명자에 의한 대한민국 특허출원번호 10-2012-0078234에 출원된 관형 플라즈마 표면 처리 장치가 있다. 이 특허는 플라즈마를 이용하여 분말의 표면 처리가 가능하지만 분말의 균일한 처리가 어려웠다.
이에, 본 발명자는 종래 기술들의 문제점을 인식하고, 연구 끝에, 아래와 같은 구성을 도입함으로서, 종래의 플라즈마 처리장치의 문제점을 해결하였고, 나아가 피처리대상물이 플라즈마와의 접촉 시간이 제어되고, 균일한 분말 처리에 효율적인 방법을 제공할 수 있는, 분말 플라즈마 처리 장치를 개발하기에 이르렀다.
본 발명은 분말의 플라즈마 처리를 위한 장치로서, 상기 장치는 분말의 플라즈마 처리를 위한 챔버; 상기 챔버 상부에 위치한 분말 공급부 및 상기 분말 공급부 아래, 그리고 상기 챔버 내에 위치하는 다수의 판형 면방전 플라즈마 모듈을 포함하며, 상기 면방전 플라즈마 모듈은 서로 면끼리 이격되어 있는, 분말 플라즈마 처리 장치가 제공된다.
이때, 상기 면방전 플라즈마 모듈의 면은 상기 분말 공급 방향과 수직하지 않는다. 예를 들면, 상기 면방전 플라즈마 모듈은 상단부가 상기 분말 공급부의 아래에 위치하고, 상기 면방전 플라즈마 모듈의 하단부는 상기 상단부로부터 일측 방향으로 경사지는 방향에 위치하고, 상기 분말 공급부를 통해 공급되는 분말은 일측으로 경사진 면방전 플라즈마 모듈의 경사 방향을 따라 낙하된다.
본 발명의 일 실시예에 따라, 면방전 플라즈마 모듈은 고전압이 인가되는 고전압 인가 전극, 상기 고전압 인가 전극을 에워싸는 절연층, 상기 절연층 위에 놓인 접지 전극을 포함한다. 상기 접지 전극과 상기 고전압 인가 전극에 교류 전압이 인가되어, 상기 접지 전극 주위에 플라즈마가 발생되고, 상기 분말은 상기 플라즈마를 통과하여 처리된다.
상기 고전압 인가 전극은 기판 형태이며, 상기 접지 전극은 바 형태이고, 다수의 접지 전극들이 서로 병렬로 위치한다. 상기 접지 전극은 상기 분말이 상기 면방전 플라즈마 모듈을 따라 낙하되는 방향과 평행하게 배치된다. 분말의 낙하를 유도한다.
본 발명의 추가적인 실시예에 따라, 상기 면방전 플라즈마 모듈은 절연층, 상기 절연층의 일면에 놓인 고전압이 인가되는 고전압 인가 전극, 상기 절연층의 타면에 놓인 접지 전극을 포함하고, 상기 접지 전극과 상기 고전압 인가 전극에 교류 전압이 인가되어, 상기 접지 전극 또는 상기 고전압 인가 전극 주위에 플라즈마가 발생되고, 상기 분말은 상기 플라즈마를 통과하여 처리된다.
상기 접지 전극 및 상기 고전압 인가 전극은 바 형태이고, 상기 면방전 플라즈마 모듈의 단면 형상은 상기 접지 전극 및 상기 고전압 인가 전극이 서로 엇갈리는 위치에 배치되어 있다.
본 발명의 또 다른 실시예에 따라, 상기 접지 전극은 바 형태이고, 상기 고전압 인가 전극은 기판 형태이거나, 상기 접지 전극은 기판 형태이고, 상기 고전압 인가 전극은 바 형태이다.
상기 추가적인 실시예들에서 상기 면방전 플라즈마 모듈은 상기 챔버 내에서 동일 전극끼리 마주하도록 배치된다.
상기 장치는, 상기 챔버 내에서 상기 면방전 플라즈마 모듈이 소정의 각도로 경사조절 되도록 구성되는, 경사조절부를 포함한다. 면방전 플라즈마 모듈의 경사각을 조절을 위한 특정된 방식은 본 발명의 특징이 아니며, 면방전 플라즈마 모듈의 경사각을 조절할 수 있는 다양한 방식이 본 발명에 이용될 수 있음은 인식될 것이다.
본 발명에 따른 분말 플라즈마 처리 장치는, 분말이 균일하게 처리될 수 있고, 분말이 플라즈마에 접촉되는 시간을 제어하여, 효율적인 분말 처리가 가능하다.
도 1은 본 발명의 실시예에 따른 분말 플라즈마 처리 장치의 구성을 나타낸 단면도이다.
도 2는 도 1에 도시된 면방전 플라즈마 모듈의 사시도이다.
도 3은 도 2에 도시된 면방전 플라즈마 모듈의 A-A'선 단면도이다.
도 4는 본 발명의 추가적인 실시예에 따른 면방전 플라즈마 모듈의 단면도이다.
도 5는 도 4에 도시된 면방전 플라즈마 모듈의 배치 형태를 나타낸 단면도이다.
도 6a 및 도 6b는 본 발명의 또 다른 실시예에 따른 면방전 플라즈마 모듈의 단면도들이다.
도 7은 도 6a 및 도 6b에 도시된 면방전 플라즈마 모듈의 배치 형태를 나타낸 단면도이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 분말 플라즈마 처리장치에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 발명의 실시예에 따른 분말 플라즈마 처리 장치의 구성을 나타낸 단면도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 분말 플라즈마 처리장치는 챔버(110), 분말 공급부(111), 면방전 플라즈마 모듈(120)을 포함할 수 있다.
챔버(110)는 면방전 플라즈마 모듈(120) 및 플라즈마 반응 가스에 의한 플라즈마 반응을 위한 내부 공간을 제공하며, 외부로부터 챔버 내부 공간을 보호한다. 챔버(110)의 하부에는 분말수거부가 마련된다. 일 예로, 분말수거부는 챔버(110)의 하부를 관통하여 외부와 직접 소통되는 형태로 설치될 수 있다. 이러한 분말수거부의 형태는 예시적인 형태일 뿐, 이에 한정되는 것은 아니며, 다양한 형태로 실시될 수 있다. 일 예로, 챔버(110)는 내열유리 또는 석영 등의 절연재료로 형성될 수 있다.
분말 공급부(111)는 챔버(110)의 상부에 마련된다. 분말 공급부(111)는 예를 들면, 챔버(110) 내부로 분말을 투입할 수 있는 개구된 투입구일 수 있다.
면방전 플라즈마 모듈(120)은 분말의 표면 처리를 위하여 플라즈마를 발생시킨다. 면방전 플라즈마 모듈(120)은 판형이고, 챔버(110)의 내부에 위치한다. 이때, 면방전 플라즈마 모듈(120)은 분말 공급부(111)의 아래에 위치한다. 따라서, 분말 공급부(111)를 통해 챔버(110) 내부로 투입되는 분말이 면방전 플라즈마 모듈(120)을 향해 낙하된다.
챔버(110) 내부 공간에 위치하는 면방전 플라즈마 모듈(120)은 다수가 배열된다. 다수 배열된 면방전 플라즈마 모듈(120)은 서로 면끼리 마주하고, 각 면방전 플라즈마 모듈(120)의 서로 마주하는 면은 서로 이격되어 있다.
이와 같이 배치된 면방전 플라즈마 모듈(120)의 배치 형태는 분말 공급부(111)를 통해 챔버(110) 내부로 투입되는 분말이 각 면방전 플라즈마 모듈(120)들 사이로 낙하되도록 하며, 이때 분말 공급부(111)를 통해 투입된 다수의 분말은 각 면방전 플라즈마 모듈(120)들 사이로 분산된다. 따라서 분산된 분말들은 플라즈마와 접촉하여 균일한 표면 처리가 가능해진다.
*다수의 면방전 플라즈마 모듈(120)은 챔버(110) 내에서 분말 공급 방향에 수직하지 않도록 배치된다. 예를 들면, 각 면방전 플라즈마 모듈(120)은 상단부가 분말 공급부(111)의 아래에 위치하고, 하단부는 상기 상단부로부터 일측 방향으로 경사지는 방향에 위치될 수 있다. 즉, 다수의 면방전 플라즈마 모듈(120)은 분말 공급부(111)의 하부에서 일측으로 경사진 형태로 배치된다.
다수의 면방전 플라즈마 모듈(120)은 위에서 논의된 바와 같이 분말 공급 방향에 수직하지 않도록 배치되어야 한다. 왜냐하면, 다수의 면방전 플라즈마 모듈(120)이 분말 공급 방향에 수직한 경우, 분말 공급부(111)를 통해 챔버(110) 내부로 공급되는 분말이 각 면방전 플라즈마 모듈(120)들에 접촉되지 않고, 챔버(110) 내부로 투입되는 동시에 수직으로 빠르게 낙하되므로 분말이 플라즈마에 접촉되는 시간이 매우 짧아서 표면 처리가 용이하지 않기 때문이다.
그러나, 다수의 면방전 플라즈마 모듈(120)이 분말 공급 방향에 수직하지 않은 경우, 분말 공급부(111)를 통해 챔버(110) 내부로 공급되는 분말은 각 면방전 플라즈마 모듈(120)들의 상단부로 낙하된 후 각 면방전 플라즈마 모듈(120)들의 면을 따라 슬라이딩되면서 챔버(110)의 하부를 향해 이동될 수 있으므로 분말이 플라즈마에 접촉되는 시간이 길어질 수 있고, 이에 의해 분말의 표면 처리가 용이해질 수 있다.
도 2는 도 1에 도시된 면방전 플라즈마 모듈의 사시도이고, 도 3은 도 2에 도시된 면방전 플라즈마 모듈의 A-A'선 단면도이다.
도 2 및 도 3을 참조하면, 다수의 면방전 플라즈마 모듈(120)은 고전압이 인가되는 고전압 인가 전극(121), 상기 기판을 에워싸는 절연층(122), 절연층(122) 위에 놓이는 다수의 접지 전극(123)을 포함한다.
고전압 인가 전극(121)은 절연층(122)을 통해 챔버(110) 내에서 전기적으로 절연된다. 고전압 인가 전극(121)은 예를 들면, 기판 형태일 수 있다.
다수의 접지 전극(123)은 예를 들면, 바 형태일 수 있고, 절연층(122) 위에서 서로 병렬로 위치하며, 분말이 면방전 플라즈마 모듈(120)을 따라 낙하되는 방향과 평행하게 배치될 수 있다. 즉, 다수의 접지 전극(123)의 종방향은 분말의 낙하 방향과 평행하여 분말의 낙하를 유도하고, 다수의 접지 전극(123)은 절연층(122) 위에서 일정간격으로 배열되어, 서로 이웃한다.
이러한 면방전 플라즈마 모듈(120)은 챔버(110) 외부에 마련된 플라즈마 전원장치(130)로부터 다수의 접지 전극(123) 및 고전압 인가 전극(121)에 교류 전압이 인가되어, 다수의 접지 전극(123) 주위에 플라즈마가 발생된다.
다수의 접지 전극(123) 주위에 플라즈마 발생을 위하여, 다수의 접지 전극(123)을 향해 플라즈마 반응가스가 챔버(110) 내부로 주입된다. 챔버(110) 내부로 주입된 플라즈마 반응가스는 다수의 면방전 플라즈마 모듈(120)의 사이로 유입된다. 일 예로, 플라즈마 반응가스는 가스는 O2, N2O 등 산소 성분을 포함하는 가스, CF4, SF6 등 불소 성분을 포함하는 가스, Cl2, BCl3 등 염소 성분을 포함하는 가스, Ar, N2 등의 불활성 가스를 단독으로 또는 혼합하여 사용할 수 있다.
플라즈마 반응가스의 주입을 위하여, 챔버(110)는 가스주입구(112) 및 가스배출구(113)를 포함한다.
한편, 본 발명의 장치는 플라즈마 모듈 경사조절부(도시되지 않음)를 포함한다. 상기 플라즈마 모듈 경사조절부는 상기 챔버 내에서 상기 면방전 플라즈마 모듈의 경사각이 조절되도록 구성된다. 다수의 면방전 플라즈마 모듈의 경사각이 조절되면, 면방전 플라즈마 모듈들 사이를 통과하는 분말이 낙하되는 속도가 조절되고, 분말이 낙하되는 속도가 조절되면 분말이 플라즈마에 접촉되는 시간이 제어된다.
본 발명의 일 실시예에 따른 분말 플라즈마 처리 장치는, 챔버(110)로 투입된 다수의 분말이 서로 면끼리 이격된 다수의 면방전 플라즈마 모듈(120)들 사이로 분산되어 낙하되고, 면방전 플라즈마 모듈(120)이 분말 공급부(111) 아래에서 소정의 각도를 이루어 배치되고, 면방전 플라즈마 모듈(120)들의 경사각이 조절되도록 하였다. 이에 의해, 다수의 분말이 균일하게 처리되도록 하였으며, 분말이 플라즈마에 접촉되는 시간을 제어하여, 분말의 플라즈마와의 접촉 시간이 증가될 수 있으므로 분말의 표면 처리 과정이 용이해질 수 있다.
도 4는 본 발명의 추가적인 실시예에 따른 면방전 플라즈마 모듈의 단면도이고, 도 5는 도 4에 도시된 면방전 플라즈마 모듈의 배치 형태를 나타낸 단면도이다.
도 4를 참조하면, 본 발명의 추가적인 실시예에 따라, 면방전 플라즈마 모듈(220)은 절연층(222)이 면방전 플라즈마 모듈(220)의 가운데에 위치하고, 절연층(222)의 일면에는 고전압이 인가되는 고전압 인가 전극(221)이 놓이며, 절연층(222)의 타면에는 접지 전극(223)이 놓이도록 구성되어 있다. 고전압 인가 전극(221) 및 접지 전극(223)의 형상은 두 전극 모두 바 형태이다. 고전압 인가 전극(221) 및 접지 전극(223)의 배열 형태는 면방전 플라즈마 모듈(220)의 단면으로 볼 때, 고전압 인가 전극(221) 및 접지 전극(223)은 서로 엇갈리는 위치에 배치되어 있다.
본 발명의 추가적인 실시예에 따른 면방전 플라즈마 모듈(220)은 챔버 내에 배치될 때, 도 5에서 보여지는 바와 같이 동일 전극끼리 마주하도록 배치된다. 그러나 이에 제한되는 것은 아니며, 서로 다른 전극끼리 마주하도록 배치될 수도 있고, 동일 전극끼리 마주하는 두 모듈 및 서로 다른 전극끼리 마주하도록 배치되는 두 모듈이 반복적으로 나열되는 형태로 배치될 수도 있다.
이러한 배치 형태를 갖는 면방전 플라즈마 모듈(220)에서 플라즈마는 고전압 인가 전극(221) 또는 접지 전극(223) 주위에 발생된다.
도 6a 및 도 6b는 본 발명의 또 다른 실시예에 따른 면방전 플라즈마 모듈의 단면도들이고, 도 7은 도 6a 및 도 6b에 도시된 면방전 플라즈마 모듈의 배치 형태를 나타낸 단면도이다.
본 발명의 또 다른 실시예에 따른 면방전 플라즈마 모듈(320)의 절연층(322), 고전압 인가 전극(321), 접지 전극(323) 각각의 배치 형태는 도 4에 도시된 면방전 플라즈마 모듈(220)의 배치 형태와 동일 유사하며, 고전압 인가 전극(321) 및 접지 전극(323)의 형상에 차이점이 있다.
본 발명의 또 다른 실시예에 다른 면방전 플라즈마 모듈(320)에서 고전압 인가 전극(321) 및 접지 전극(323) 각각의 형상은, 일 예로, 도 6a에서 보여지는 바와 같이, 고전압 인가 전극(321)은 기판 형태이고, 접지 전극(323)은 바 형태일 수 있다. 다른 예로, 도 6b에서 보여지는 바와 같이 고전압 인가 전극(321)이 바 형태이고, 접지 전극(323)이 기판 형태일 수 있다.
본 발명의 또 다른 실시예에 따른 면방전 플라즈마 모듈(320)은 챔버 내에 배치될 때, 도 7에서 보여지는 바와 같이 동일 전극끼리 마주하도록 배치된다. 그러나 이에 제한되는 것은 아니며, 서로 다른 전극끼리 마주하도록 배치될 수도 있고, 동일 전극끼리 마주하는 두 모듈 및 서로 다른 전극끼리 마주하도록 배치되는 두 모듈이 반복적으로 나열되는 형태로 배치될 수도 있다.
이러한 배치 형태를 갖는 면방전 플라즈마 모듈(320)에서 플라즈마는 고전압 인가 전극(321) 또는 접지 전극(323) 주위에 발생된다.
[부호의 설명]
110 : 챔버 111 : 분말 공급부
112 : 가스주입구 113 : 가스배출구
120 : 면방전 플라즈마 모듈 121 : 고전압 인가 전극
122 : 절연층 123 : 접지전극
130 : 플라즈마 전원장치

Claims (12)

  1. 분말의 플라즈마 처리를 위한 장치로서,
    상기 장치는 분말의 플라즈마 처리를 위한 챔버;
    상기 챔버 상부에 위치한 분말 공급부 및
    상기 분말 공급부 아래, 그리고 상기 챔버 내에 위치하는 다수의 판형 면방전 플라즈마 모듈을 포함하며,
    상기 면방전 플라즈마 모듈은 서로 면끼리 이격되어 있는,
    분말 플라즈마 처리 장치.
  2. 제1항에 있어서,
    상기 면방전 플라즈마 모듈의 면은 상기 분말 공급 방향과 수직하지 아니한,
    분말 플라즈마 처리 장치.
  3. 제2항에 있어서,
    상기 챔버 내에서 상기 면방전 플라즈마 모듈이 소정의 각도로 경사조절 되도록 구성되는, 경사조절부를 포함하는,
    분말 플라즈마 처리 장치.
  4. 제1항에 있어서,
    상기 면방전 플라즈마 모듈은 상단부가 상기 분말 공급부의 아래에 위치하고, 상기 면방전 플라즈마 모듈의 하단부는 상기 상단부로부터 일측 방향으로 경사지는 방향에 위치하고,
    상기 분말 공급부를 통해 공급되는 분말은 일측으로 경사진 면방전 플라즈마 모듈의 경사 방향을 따라 낙하되는,
    분말 플라즈마 처리 장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 면방전 플라즈마 모듈은 고전압이 인가되는 고전압 인가 전극, 상기 고전압 인가 전극을 에워싸는 절연층, 상기 절연층 위에 놓인 접지 전극을 포함하고,
    상기 접지 전극과 상기 고전압 인가 전극에 교류 전압이 인가되어, 상기 접지 전극 주위에 플라즈마가 발생되고, 상기 분말은 상기 플라즈마를 통과하여 처리되는,
    분말 플라즈마 처리 장치.
  6. 제5항에 있어서,
    상기 고전압 인가 전극은 기판 형태이며,
    상기 접지 전극은 바 형태이고, 다수의 접지 전극들이 서로 병렬로 위치하는,
    분말 플라즈마 처리 장치.
  7. 제5항에 있어서,
    상기 접지 전극은 상기 분말이 상기 면방전 플라즈마 모듈을 따라 낙하되는 방향과 평행하게 배치되어, 분말의 낙하를 유도하는,
    분말 플라즈마 처리 장치.
  8. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 면방전 플라즈마 모듈은 절연층, 상기 절연층의 일면에 놓인 고전압이 인가되는 고전압 인가 전극, 상기 절연층의 타면에 놓인 접지 전극을 포함하고,
    상기 접지 전극과 상기 고전압 인가 전극에 교류 전압이 인가되어, 상기 접지 전극 또는 상기 고전압 인가 전극 주위에 플라즈마가 발생되고, 상기 분말은 상기 플라즈마를 통과하여 처리되는,
    분말 플라즈마 처리 장치.
  9. 제8항에 있어서,
    상기 접지 전극 및 상기 고전압 인가 전극은 바 형태이고,
    상기 면방전 플라즈마 모듈의 단면 형상은 상기 접지 전극 및 상기 고전압 인가 전극이 서로 엇갈리는 위치에 배치되어 있는,
    분말 플라즈마 처리 장치.
  10. 제8항에 있어서,
    상기 접지 전극은 바 형태이고, 상기 고전압 인가 전극은 기판 형태인,
    분말 플라즈마 처리 장치.
  11. 제8항에 있어서,
    상기 접지 전극은 기판 형태이고, 상기 고전압 인가 전극은 바 형태인,
    분말 플라즈마 처리 장치.
  12. 제8항에 있어서,
    상기 면방전 플라즈마 모듈은 상기 챔버 내에서 동일 전극끼리 마주하도록 배치되는,
    분말 플라즈마 처리 장치
PCT/KR2013/011272 2012-12-10 2013-12-06 분말 플라즈마 처리 장치 WO2014092394A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380032762.3A CN104519992B (zh) 2012-12-10 2013-12-06 粉末等离子处理装置
JP2015520080A JP5913745B2 (ja) 2012-12-10 2013-12-06 粉末プラズマ処理装置
US14/409,357 US20150187543A1 (en) 2012-12-10 2013-12-06 Plasma equipment for treating powder
EP13862922.5A EP2929933B1 (en) 2012-12-10 2013-12-06 Powder plasma treatment apparatus
US15/827,929 US10056234B2 (en) 2012-12-10 2017-11-30 Plasma equipment for treating powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120142763A KR101428524B1 (ko) 2012-12-10 2012-12-10 분말 플라즈마 처리 장치
KR10-2012-0142763 2012-12-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/409,357 A-371-Of-International US20150187543A1 (en) 2012-12-10 2013-12-06 Plasma equipment for treating powder
US15/827,929 Division US10056234B2 (en) 2012-12-10 2017-11-30 Plasma equipment for treating powder

Publications (1)

Publication Number Publication Date
WO2014092394A1 true WO2014092394A1 (ko) 2014-06-19

Family

ID=50934620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011272 WO2014092394A1 (ko) 2012-12-10 2013-12-06 분말 플라즈마 처리 장치

Country Status (6)

Country Link
US (2) US20150187543A1 (ko)
EP (1) EP2929933B1 (ko)
JP (1) JP5913745B2 (ko)
KR (1) KR101428524B1 (ko)
CN (1) CN104519992B (ko)
WO (1) WO2014092394A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299882A (zh) * 2014-10-24 2015-01-21 苏州奥斯特新材料科技有限公司 一种粉体材料表面等离子体处理装置
KR101942139B1 (ko) * 2015-02-06 2019-01-24 한국기초과학지원연구원 분말 플라즈마 처리 장치
CN106888544A (zh) * 2017-04-20 2017-06-23 大连海事大学 一种混合介质阻挡放电装置
JP7076186B2 (ja) * 2017-09-25 2022-05-27 株式会社Screenホールディングス プラズマ発生装置およびプラズマ発生用電極体
CN107896414A (zh) * 2017-11-07 2018-04-10 成都真火科技有限公司 一种层流等离子球化方法
US20210291138A1 (en) * 2018-07-11 2021-09-23 Board Of Trustees Of Michigan State University Vertically oriented plasma reactor
JP6928270B2 (ja) * 2018-09-26 2021-09-01 日亜化学工業株式会社 磁性粉末およびその製造方法
KR102196481B1 (ko) * 2019-02-22 2020-12-29 울산과학기술원 수평이동식 파우더 플라즈마 처리장치
US11545343B2 (en) 2019-04-22 2023-01-03 Board Of Trustees Of Michigan State University Rotary plasma reactor
KR102405333B1 (ko) * 2020-11-25 2022-06-07 (주)이노플라즈텍 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835070A (ja) * 1994-07-22 1996-02-06 Agency Of Ind Science & Technol 放電反応利用化学蒸着法による粉末表面改質装置
KR20010068436A (ko) * 2000-01-05 2001-07-23 황해웅 코로나 플라즈마를 이용한 휘발성 유기화합물 제거 및탈취장치
JP2009233482A (ja) * 2008-03-25 2009-10-15 Institute Of National Colleges Of Technology Japan 大気圧プラズマによる粒子清浄方法
KR101068551B1 (ko) * 2008-12-05 2011-09-30 한국수자원공사 고도 수처리가 가능한 나선흐름의 저에너지형 슬러지 블랭킷 형태 고속침전조
KR20120078234A (ko) 2010-12-31 2012-07-10 엘지디스플레이 주식회사 도광판 및 이를 구비한 액정표시소자

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3283889B2 (ja) * 1991-07-24 2002-05-20 株式会社きもと 防錆処理方法
US5316739A (en) * 1991-08-20 1994-05-31 Bridgestone Corporation Method and apparatus for surface treatment
DE4416676C2 (de) * 1994-05-11 2002-11-07 Siemens Ag Vorrichtung zur Entgiftung von Abgasen aus mobilen Anlagen
KR19990082348A (ko) * 1996-02-06 1999-11-25 이.아이,듀우판드네모아앤드캄파니 플라즈마 활성화 종을 갖는 탈집괴 입자의 처리
US5746984A (en) * 1996-06-28 1998-05-05 Low Emissions Technologies Research And Development Partnership Exhaust system with emissions storage device and plasma reactor
DE19635231A1 (de) * 1996-08-30 1998-03-05 Siemens Ag Vorrichtung zur plasmachemischen Zersetzung und/oder Vernichtung von Schadstoffen
FR2836397B1 (fr) * 2002-02-27 2004-04-23 Renault Reacteur pour le traitement par plasma d'un flux gazeux, notamment des gaz d'echappement produit par le moteur a combustion interne d'un vehicule automobile
CN1220409C (zh) * 2003-02-08 2005-09-21 中国科学院物理研究所 一种活性气体发生方法及其装置
WO2005000371A1 (ja) * 2003-06-27 2005-01-06 Midori Anzen Co., Ltd. 有害ガス除去装置
US7727488B2 (en) * 2003-07-10 2010-06-01 Ngk Insulators, Ltd. Plasma generating electrode and plasma reactor
JP4164502B2 (ja) * 2005-04-12 2008-10-15 株式会社日本製鋼所 発射薬用点火装置
CA2659298C (en) * 2006-07-31 2012-03-06 Tekna Plasma Systems Inc. Plasma surface treatment using dielectric barrier discharges
JP5470733B2 (ja) * 2008-04-04 2014-04-16 パナソニック株式会社 気流発生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835070A (ja) * 1994-07-22 1996-02-06 Agency Of Ind Science & Technol 放電反応利用化学蒸着法による粉末表面改質装置
KR20010068436A (ko) * 2000-01-05 2001-07-23 황해웅 코로나 플라즈마를 이용한 휘발성 유기화합물 제거 및탈취장치
JP2009233482A (ja) * 2008-03-25 2009-10-15 Institute Of National Colleges Of Technology Japan 大気圧プラズマによる粒子清浄方法
KR101068551B1 (ko) * 2008-12-05 2011-09-30 한국수자원공사 고도 수처리가 가능한 나선흐름의 저에너지형 슬러지 블랭킷 형태 고속침전조
KR20120078234A (ko) 2010-12-31 2012-07-10 엘지디스플레이 주식회사 도광판 및 이를 구비한 액정표시소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2929933A4

Also Published As

Publication number Publication date
JP2015528182A (ja) 2015-09-24
JP5913745B2 (ja) 2016-04-27
US20180090302A1 (en) 2018-03-29
EP2929933B1 (en) 2019-11-06
US20150187543A1 (en) 2015-07-02
EP2929933A1 (en) 2015-10-14
CN104519992A (zh) 2015-04-15
CN104519992B (zh) 2016-08-24
US10056234B2 (en) 2018-08-21
KR101428524B1 (ko) 2014-08-11
KR20140074611A (ko) 2014-06-18
EP2929933A4 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
WO2014092394A1 (ko) 분말 플라즈마 처리 장치
KR101942139B1 (ko) 분말 플라즈마 처리 장치
US5996528A (en) Method and apparatus for flowing gases into a manifold at high potential
CA2502445A1 (en) Faims apparatus and method for separating ions
CN101534869A (zh) 扩散式等离子体处理和材料加工
WO2018124681A1 (ko) 적층형 면방전 플라즈마 발생 소스
WO2014092395A1 (ko) 분말 플라즈마 처리 장치
US9868655B1 (en) Water treatment apparatus and water treatment method
KR100787880B1 (ko) 분사 조절판 및 대기압 플라즈마를 이용한 플라즈마 발생장치
US20220217833A1 (en) Plasma surface sanitizer and associated method
EP3474635B1 (en) Modular plasma jet treatment system
KR101085181B1 (ko) 플라즈마 표면 처리장치 및 그 처리방법
EP4214352A1 (de) Werkstückträger, system und betriebsverfahren für pecvd
WO2012036491A2 (ko) 누설 전류형 변압기를 이용한 플라즈마 처리장치
KR101273233B1 (ko) 플라즈마 처리장치
JPH01148329A (ja) 排ガスの放電処理装置
KR20050024172A (ko) 대기압 플라즈마 표면처리장치 및 표면처리방법
WO2017111534A1 (ko) 수표면에서 플라즈마를 생성하는 액체 처리장치
KR101707441B1 (ko) 플라즈마를 이용한 수처리 장치
KR100535656B1 (ko) 전극 겸용 안테나를 구비한 대기압 플라즈마 발생장치
KR101958557B1 (ko) 다중평행 모세관을 이용한 유전장벽방전 플라즈마 발생 장치
WO2014010979A1 (ko) 전계 압축형 면방전 전극을 포함하는 플라즈마 처리 장치
CN104576443B (zh) 用于从衬底去除静电的设备和方法
IT1245974B (it) Metodo di trattamento di un substrato mobile con plasma a scarica elettrica, e dispositivo che realizza tale metodo
KR20090052144A (ko) 상압 플라즈마 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015520080

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14409357

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013862922

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE