WO2014091973A1 - Laminated sheet and method for manufacturing same, solar cell back sheet, solar cell module, and method for manufacturing solar cell back sheet - Google Patents

Laminated sheet and method for manufacturing same, solar cell back sheet, solar cell module, and method for manufacturing solar cell back sheet Download PDF

Info

Publication number
WO2014091973A1
WO2014091973A1 PCT/JP2013/082533 JP2013082533W WO2014091973A1 WO 2014091973 A1 WO2014091973 A1 WO 2014091973A1 JP 2013082533 W JP2013082533 W JP 2013082533W WO 2014091973 A1 WO2014091973 A1 WO 2014091973A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
solar cell
laminated sheet
acid
Prior art date
Application number
PCT/JP2013/082533
Other languages
French (fr)
Japanese (ja)
Inventor
堀江 将人
規行 巽
柴田 優
高橋 弘造
崇 荒井
網岡 孝夫
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020157013902A priority Critical patent/KR20150095635A/en
Priority to JP2014508619A priority patent/JP6287829B2/en
Priority to CN201380064004.XA priority patent/CN104822528B/en
Publication of WO2014091973A1 publication Critical patent/WO2014091973A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a laminated sheet capable of achieving both durability and adhesion with a sealing material.
  • the present invention relates to a laminated sheet that can be suitably used as a solar battery backsheet, and a method for producing the laminated sheet. Furthermore, it is related with the back seat
  • a solar cell is composed of a power generation element sealed with a transparent sealing material such as ethylene-vinyl acetate copolymer (EVA), and a transparent substrate such as glass and a resin sheet called a back sheet bonded together.
  • EVA ethylene-vinyl acetate copolymer
  • the Sunlight is introduced into the solar cell through the transparent substrate. Sunlight introduced into the solar cell is absorbed by the power generation element, and the absorbed light energy is converted into electrical energy. The converted electric energy is taken out by a lead wire connected to the power generation element and used for various electric devices.
  • polyethylene terephthalate PET
  • PET biaxially-stretched polyethylene terephthalate
  • polyolefin resin is a material generally used as a back sheet because of its good adhesion to the sealing material.
  • Patent Document 1 a backsheet in which a polybutylene terephthalate resin and a polycarbonate resin are laminated or a polybutylene terephthalate resin.
  • Patent Document 2 A back sheet (Patent Document 2) using a lip has been developed.
  • the solar cell module is easily deteriorated in a high-temperature and high-humidity environment, and there is an urgent need to improve the heat and humidity resistance.
  • EVA is often used from the viewpoints of weather resistance, transparency, productivity, etc., but generation of acetic acid has been a concern due to high-temperature steam. .
  • Patent Document 4 there is also an invention of a solar cell module sealing material in which output characteristics do not change for a long time by suppressing acetic acid generated from EVA.
  • JP 2009-141345 A International Publication No. 2010/018662 JP 2012-199379 A JP 2008-115344 A
  • polybutylene terephthalate resin generally has inferior moisture and heat resistance, and further has a drawback of poor adhesion to a sealing material.
  • the back sheet described in Patent Document 1 in which a polybutylene terephthalate resin and a polycarbonate resin are laminated has improved moisture and heat resistance, but does not provide adhesion to a sealing material, and has a problem of delamination.
  • the backsheet described in Patent Document 2 is also difficult to achieve both wet heat resistance and adhesion between the sealing material. Therefore, in view of the conventional problems, the present invention provides a laminated sheet that has high productivity and can be suitably used for a solar battery backsheet that has both durability and adhesion with a sealing material.
  • Patent Document 3 an inorganic vapor deposition film or the like is often used when the water vapor transmission rate is lowered, and when the inorganic vapor deposition film is used, there is a problem that the cost becomes very high as compared with the case where it is not used. there were.
  • the water vapor transmission rate is high, each metal material used in the solar battery cell is corroded by moisture, and in particular, discoloration may occur due to corrosion of the collecting electrode of the solar battery cell.
  • Patent Document 4 there is a concern about the effect of adding an additive to EVA, and the change of EVA adjacent to the solar battery cell requires a large amount of verification work for change.
  • the present invention has been conceived in view of the above problems. That is, the present invention provides a back sheet for a solar cell module that is inexpensive, can maintain the power generation characteristics of the solar cell module for a long period of time, and prevents discoloration of the current collecting electrode of the solar cell.
  • the purpose is to do.
  • the present invention has the following configuration.
  • 1st invention is a lamination sheet which has a layer (P1 layer) which uses polybutylene terephthalate resin as the main component, and a layer (P3 layer) which uses polyolefin resin as the main component.
  • the second invention has a layer (P2 layer) mainly composed of an adhesive polyolefin-based resin, and the P1 layer and the P3 layer are in contact with each other through the P2 layer.
  • P2 layer mainly composed of an adhesive polyolefin-based resin
  • the third invention is characterized in that the thickness of the P2 layer is 15 to 50 ⁇ m.
  • the fourth invention is characterized in that the crystallization parameter ⁇ Tcg of the P1 layer measured using differential scanning calorimetry (DSC) is 7 to 30 ° C.
  • the polybutylene terephthalate resin that is the main component of the P1 layer is And end-capped polybutylene terephthalate resin.
  • the sixth invention is characterized in that the P3 layer contains 0.1 to 30% by mass of inorganic particles.
  • the seventh invention is characterized in that the rigid amorphous amount of the P1 layer is 30 to 50%.
  • the eighth invention is characterized in that the P1 layer contains 0.1 to 5% by mass of a crystal nucleating agent.
  • the ninth invention is characterized in that the P3 layer contains 5 to 30% by mass of inorganic particles having a particle diameter of 3 to 20 ⁇ m and 0.5 to 5% by mass of an adhesive polyolefin resin.
  • the acetic acid permeability Pa (g / m 2 / day) at 85 ° C. and the water vapor permeability Pw (g / m 2 / day) at 40 ° C. and 90% RH are expressed by the formula (1) 200 ⁇ Pa and the expression (2) Pw ⁇ 2.5 are satisfied.
  • 11th invention is a solar cell backsheet which consists of a lamination sheet concerning one of the above-mentioned inventions.
  • the twelfth invention is a solar cell using the solar cell backsheet according to the eleventh invention.
  • a thirteenth invention is a method for manufacturing a laminated sheet according to any one of the second to tenth inventions, wherein the raw material for the P1 layer mainly comprises a polybutylene terephthalate resin, and the main structure is an adhesive polyolefin resin.
  • the raw material for the P2 layer, which is the component, and the raw material for the P3 layer, the main component of which is a polyolefin resin, are supplied to different extruders, and after melting, the P1, P2, and P3 layers are joined together in this order. It is made to laminate
  • the acetic acid permeability Pa (g / m 2 / day) at 85 ° C. and the water vapor permeability Pw (g / m 2 / day) at 40 ° C. and 90% RH are expressed by the formula (1) 200 ⁇ It is a solar cell back sheet
  • filling Pa and Formula (2) Pw ⁇ 2.5.
  • the layer which is one of the main constituents selected from the group consisting of a polyester resin, a polyamide resin, and a fluororesin, is a P4 layer, it has a P4 layer.
  • a sixteenth aspect of the present invention is the solar cell backsheet according to the fifteenth aspect of the present invention, wherein the layer mainly composed of the olefin resin is a P6 layer, and the P6 layer has a P4 layer and a P6 layer.
  • the P4 layer is located on the surface layer
  • the P6 layer is located on the surface opposite to the P4 layer
  • the thickness of the entire backsheet is Ta ( ⁇ m)
  • the thickness of the P4 layer is T4 ( ⁇ m)
  • the P6 layer When the thickness of T6 ( ⁇ m) and the content of inorganic particles in the P6 layer is M (mass%), the formula (3) 0.05 ⁇ M / T6 ⁇ 0.5 and the formula (4) 200 ⁇ Ta ⁇ 500 and all of formula (5) 0.3 ⁇ T4 / Ta ⁇ 0.5) are satisfied.
  • the seventeenth invention is characterized in that, in any one of the fifteenth and sixteenth inventions, the P4 layer is mainly composed of polyamide resin or polybutylene terephthalate (PBT).
  • the P4 layer is mainly composed of polyamide resin or polybutylene terephthalate (PBT).
  • the main constituent is one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer.
  • the layer is a P5 layer
  • the P5 layer is located between the P4 layer and the P6 layer.
  • the nineteenth invention is a solar cell module having the solar cell backsheet according to any one of the fourteenth to eighteenth inventions.
  • a twentieth aspect of the invention is a method for manufacturing a back sheet for a solar cell according to the eighteenth aspect of the present invention, which is a raw material mainly comprising a polyamide resin for P4 layer or PBT, and a low crystalline soft polymer for P5 layer.
  • a method for producing a back sheet for a solar cell comprising: a step of feeding a P4 layer, a P5 layer, and a P6 layer after being melted together, laminating them in this order, and extruding them into a sheet form from a T-die. is there.
  • a laminated sheet having excellent durability, sealing material adhesion, and interlayer adhesion that can be suitably used for a solar battery backsheet.
  • Such a laminated sheet can be suitably used for a solar battery backsheet, and a high performance solar battery can be provided by using the backsheet.
  • the acetic acid generated inside the solar cell module is released to the outside of the module by adjusting the acetic acid permeability and water vapor permeability of the backsheet.
  • FIG. 1 It is sectional drawing which shows typically an example of a structure of the solar cell (solar cell module) using the lamination sheet (solar cell backsheet) of this invention. It is a jig sectional view for acetic acid permeability measurement. It is a jig top view for acetic acid permeability measurement.
  • the first to thirteenth inventions are laminated sheets having a layer (P1 layer) containing a polybutylene terephthalate resin as a main constituent component and a layer (P3 layer) containing a polyolefin resin as a main constituent component.
  • the polybutylene terephthalate resin refers to a polyester resin mainly composed of butylene terephthalate composed of terephthalate as a dicarboxylic acid component and 1,4-butanediol as a diol component.
  • the main repeating unit here means that when all the dicarboxylic acid components in the polyester resin are 100 mol%, 80 mol% or more and 100 mol% or less are terephthalate components, and all the diol components in the polyester resin are When it is 100 mol%, it means that 80 mol% or more and 100 mol% or less is a 1,4-butanediol component.
  • the terephthalate component is preferably 90 mol% or more and 100 mol% or less, more preferably 95 mol% or more and 100 mol%.
  • the 1,4-butanediol component is preferably 90 mol% or more and 100 mol% or less, more preferably 95 mol% or more and 100 mol%. It is.
  • terephthalic acid as the dicarboxylic acid component, malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid, ethyl Aliphatic dicarboxylic acids such as malonic acid, adamantane dicarboxylic acid, norbornene dicarboxylic acid, isosorbide, cyclohexane dicarboxylic acid, decalin dicarboxylic acid, and the like, cyclophthalic dicarboxylic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarbox
  • the carboxylic acid terminal of the above-mentioned dicarboxylic acid component may be added with oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of oxyacids. It is suitably used as a polymerization component. Moreover, you may use these in multiple types as needed.
  • diol component examples include aliphatic diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol.
  • Cycloaliphatic diols such as cyclohexanedimethanol, spiroglycol, isosorbide, bisphenol A, 1,3-benzenedimethanol, 1,4-benzenecenemethanol, 9,9'-bis (4-hydroxyphenyl) fluorene Examples include, but are not limited to, diol components such as aromatic diols, components in which a plurality of the above-mentioned diols are linked, and the like. Moreover, you may use these in multiple types as needed.
  • a polybutylene terephthalate-based resin can be obtained by appropriately combining the above-mentioned dicarboxylic acid component and diol component and polycondensing them.
  • the melting point of the resulting polybutylene terephthalate resin is generally 200 ° C. or higher and 230 ° C. or lower. Furthermore, in the present invention, it is more preferable to use one having a melting point of 215 ° C. or higher and 230 ° C. or lower.
  • the crystallization parameter ⁇ Tcg of the P1 layer measured using differential scanning calorimetry (DSC) is preferably 7 to 30 ° C. If the ⁇ Tcg of the P1 layer is less than 7 ° C., crystallization is likely to cause embrittlement, and moisture and heat resistance may decrease. If ⁇ Tcg of the P1 layer is greater than 30 ° C., moisture may easily enter between layers due to crystallinity, and interlayer adhesion may be deteriorated.
  • the differential scanning calorimetry (DSC) of the polybutylene terephthalate resin which is the main component of the P1 layer is used.
  • the method of setting the crystallization parameter ⁇ Tcg by 7) to 7-30 ° C. is preferred.
  • the rigid amorphous amount of the P1 layer is preferably 30 to 50%. If it is less than 30%, curling tends to occur. If it exceeds 50%, it tends to become brittle after the wet heat treatment, and the heat and humidity resistance is lowered.
  • rigid amorphous refers to an amorphous state in which the molecular motion is frozen even at the glass transition temperature or higher in an intermediate state between the crystal and the complete amorphous.
  • the degree of crystallinity and the amount of complete amorphous are described in “Fiber and Industry” Vol. 65, no. 11 (2009) P.I. 428, and can be quantified using the temperature modulation DSC method. Specific measurement methods are described in the examples.
  • the polybutylene terephthalate resin as the main constituent component means that the polybutylene terephthalate resin is contained in an amount of more than 50% by mass and less than 100% by mass in 100% by mass of all components of the layer. means.
  • the P1 layer constituting the laminated sheet of the present invention preferably contains inorganic particles in the range of 0.1% by mass to 30% by mass.
  • the content of inorganic particles in the P1 layer is more preferably 2% by mass or more and 25% by mass or less, and further preferably 5% by mass or more and 20% by mass or less. These inorganic particles are used for imparting necessary functions to the sheet depending on the purpose.
  • handling properties may be lowered or durability may be lowered.
  • the content of the inorganic particles in the P1 layer is less than 0.1% by mass, the effect due to the inclusion of the inorganic particles is difficult to obtain, and yellowing may occur.
  • the inorganic particles suitably used for the P1 layer include inorganic particles having ultraviolet absorbing ability, particles having a large refractive index difference from the polybutylene terephthalate resin, conductive particles, and pigments. Optical properties such as ultraviolet rays, light reflectivity, and whiteness, antistatic properties, and the like can be imparted.
  • the particle means a particle having a primary particle diameter of 5 nm or more based on the diameter of a projected equivalent equivalent circle. Unless otherwise specified, in the present invention, the particle size means a primary particle size, and the particle means a primary particle.
  • the inorganic particles suitably used for the P1 layer of the present invention include, for example, gold, silver, copper, platinum, palladium, rhenium, vanadium, osmium, cobalt, iron, zinc, ruthenium, praseodymium, chromium, Metals such as nickel, aluminum, tin, zinc, titanium, tantalum, zirconium, antimony, indium, yttrium, lanthanum, zinc oxide, titanium oxide, cesium oxide, antimony oxide, tin oxide, indium tin oxide, yttrium oxide, oxidation Metal oxides such as lanthanum soot, zirconium oxide, aluminum oxide, silicon oxide, lithium fluoride, magnesium fluoride soot, aluminum fluoride soot, metal fluorides such as cryolite, metal phosphates such as calcium phosphate, carbonates such as calcium carbonate Salt, barium sulfate And sulfates such as talc, talc and
  • inorganic particles in the P1 layer metal oxides such as titanium oxide, zinc oxide, and cerium oxide, which are inorganic particles having ultraviolet absorbing ability, are used.
  • metal oxides such as titanium oxide, zinc oxide, and cerium oxide, which are inorganic particles having ultraviolet absorbing ability.
  • titanium oxide it is preferable in that it can exhibit the effect of reducing coloration due to deterioration of the sheet over a long period of time by utilizing the ultraviolet resistance by the inorganic particles.
  • titanium oxide as the inorganic particles in the P1 layer in that high reflection characteristics can be imparted, and it is more preferable to use rutile type titanium oxide in terms of higher ultraviolet resistance.
  • the method of incorporating the polybutylene terephthalate resin and inorganic particles in the P1 layer is a method in which the polybutylene terephthalate resin and inorganic particles are melt-kneaded in advance using a vent type twin-screw kneading extruder or a tandem type extruder. preferable.
  • the polybutylene terephthalate-based resin may be deteriorated.
  • a high-concentration master pellet with a large amount of inorganic particles is produced as compared with the amount of inorganic particles to be contained in the P1 layer, and it is mixed with a polybutylene terephthalate resin and diluted to obtain a predetermined P1 layer.
  • Inorganic particle content is preferred from the viewpoint of durability.
  • the P1 layer has a polybutylene terephthalate-based resin as a main constituent, and among them, the polybutylene terephthalate-based resin that is the main constituent of the P1 layer is an end-capped polybutylene terephthalate-based resin. More preferably.
  • the end-capped polybutylene terephthalate-based resin means a resin obtained by reacting the end-capping agent with the polybutylene terephthalate-based resin.
  • a terminal blocking agent is added to the polybutylene terephthalate resin, and the carboxyl group located at the end of the polybutylene terephthalate resin (hereinafter referred to as the carboxyl group located at the terminal)
  • the carboxyl group located at the terminal It is preferable to form a P1 layer after reacting a terminal blocking agent with a terminal blocking agent to eliminate the catalytic activity of the proton of the COOH group of the polybutylene terephthalate resin.
  • the end-capping agent is a compound that reacts with and binds to the carboxyl end group of the polyester to eliminate the catalytic activity of the proton of the COOH group.
  • the oxazoline group, epoxy group, carbodiimide group, etc. The compound etc. which have these substituents are mentioned.
  • Examples of the carbodiimide compound having a carbodiimide group suitable as a terminal blocking agent include a monofunctional carbodiimide and a polyfunctional carbodiimide.
  • Examples of monofunctional carbodiimides include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di- ⁇ -naphthylcarbodiimide and the like.
  • dicyclohexylcarbodiimide and diisopropylcarbodiimide are particularly preferred.
  • the polyfunctional carbodiimide carbodiimide having a polymerization degree of 3 to 15 is preferable.
  • a carbodiimide compound having high heat resistance is preferable.
  • the molecular weight (degree of polymerization) is high, and it is more preferable that the terminal of the carbodiimide compound has a structure having high heat resistance. Further, once thermal decomposition occurs, further thermal decomposition is likely to occur. Therefore, it is necessary to devise measures such as setting the extrusion temperature of polyester (polybutylene terephthalate resin) as low as possible.
  • epoxy compound suitable as the end-capping agent include glycidyl ester compounds and glycidyl ether compounds.
  • Specific examples of the glycidyl ester compound include benzoic acid glycidyl ester, t-Bu-benzoic acid glycidyl ester, P-toluic acid glycidyl ester, cyclohexanecarboxylic acid glycidyl ester, pelargonic acid glycidyl ester, stearic acid glycidyl ester, and lauric acid glycidyl ester.
  • glycidyl ether compound examples include phenyl glycidyl ether, O-phenyl glycidyl ether, 1,4-bis ( ⁇ , ⁇ -epoxypropoxy) butane, 1,6-bis ( ⁇ , ⁇ -epoxypropoxy).
  • a bisoxazoline compound is preferable, and specifically, 2,2′-bis (2-oxazoline), 2,2′-bis (4-methyl-2-oxazoline) ), 2,2′-bis (4,4-dimethyl-2-oxazoline), 2,2′-bis (4-ethyl-2-oxazoline), 2,2′-bis (4,4′-diethyl-) 2-oxazoline), 2,2'-bis (4-propyl-2-oxazoline), 2,2'-bis (4-butyl-2-oxazoline), 2,2'-bis (4-hexyl-2- Oxazoline), 2,2'-bis (4-phenyl-2-oxazoline), 2,2'-bis (4-cyclohexyl-2-oxazoline), 2,2'-bis (4-benzyl-2-oxazoline) 2,2'-p-fu Nylenebis (2-oxazoline), 2,2'-m-phenylenebis (2-oxazoline), 2,2'-m-phenylenebis (2
  • the bisoxazoline compounds listed above may be used singly or in combination of two or more as long as the object of the present invention is achieved.
  • the concentration of the end blocker added is 0.25 to 5 with respect to 100% by mass of the polybutylene terephthalate resin. % By mass is preferable, and more preferably 0.5 to 2% by mass. If it is less than 0.25% by mass, the effect of addition is small, and there is a problem that the heat and humidity resistance is lowered.
  • the concentration is higher than 5% by mass, the carboxyl end groups are considerably reduced, and there is a problem that interlayer adhesion is lowered.
  • the P1 layer and the P3 layer of the laminated sheet of the present invention may have other additives (for example, a heat stabilizer, an ultraviolet absorber, a weather stabilizer, an organic lubricant, as long as the effects of the present invention are not impaired). Pigments, dyes, fillers, antistatic agents, nucleating agents, etc.
  • the inorganic particles referred to in the present invention may not be included in the additives herein.
  • an ultraviolet absorber is selected as an additive and contained in the P1 layer and / or the P3 layer
  • the ultraviolet resistance of the laminated sheet of the present invention can be further improved.
  • an antistatic agent or the like is contained in the P1 layer and / or the P3 layer, an improvement in withstand voltage can be expected.
  • the P1 layer preferably contains 0.1 to 5% by mass of a crystal nucleating agent.
  • the crystal nucleating agent can be preferably selected from the group of talc, aliphatic carboxylic acid amide, aliphatic carboxylate, aliphatic alcohol, aliphatic carboxylic acid ester, sorbitol compound, and organic phosphoric acid compound.
  • the crystal nucleating agent is preferably one type of crystal nucleating agent comprising an aliphatic carboxylic acid amide, an aliphatic carboxylate and a sorbitol compound. If the crystal nucleating agent is less than 0.1% by mass, the crystallinity may be low and strength may not be obtained. When it is larger than 5% by mass, the crystallinity is high and brittleness tends to occur.
  • aliphatic carboxylic acid amides include aliphatic monocarboxylic acids such as lauric acid amide, palmitic acid amide, oleic acid amide, stearic acid amide, erucic acid amide, behenic acid amide, ricinoleic acid amide, and hydroxy stearic acid amide.
  • Acid amides N-oleyl palmitic acid amide, N-oleyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl oleic acid amide, N-stearyl stearic acid amide, N-stearyl erucic acid amide, methylol stearic acid amide N-substituted aliphatic monocarboxylic amides such as methylol behenic acid amide, methylene bis stearic acid amide, ethylene bis lauric acid amide, ethylene bis capric acid amide, ethylene bis oleic acid amide, ethylene bis Arynic acid amide, ethylene biserucic acid amide, ethylene bis behenic acid amide, ethylene bisisostearic acid amide, ethylene bishydroxystearic acid amide, butylene bisstearic acid amide, hexamethylene bisoleic acid amide, hexamethylene bisstearic acid Alipha
  • aliphatic monocarboxylic acid amides may be one kind or a mixture of two or more kinds.
  • aliphatic monocarboxylic acid amides, N-substituted aliphatic monocarboxylic acid amides, and aliphatic biscarboxylic acid amides are preferably used, particularly palmitic acid amide, stearic acid amide, erucic acid amide, and behenic acid.
  • Amide, ricinoleic acid amide, hydroxystearic acid amide, N-oleyl palmitic acid amide, N-stearyl erucic acid amide, ethylene biscapric acid amide, ethylene bisoleic acid amide, ethylene bislauric acid amide, ethylene biserucic acid amide, m -Xylylene bis-stearic acid amide and m-xylylene bis-12-hydroxystearic acid amide are preferably used.
  • aliphatic carboxylate examples include acetates such as sodium acetate, potassium acetate, magnesium acetate, calcium acetate, sodium laurate, potassium laurate, potassium hydrogen laurate, magnesium laurate, calcium laurate, zinc laurate , Laurates such as silver laurate, lithium myristate, sodium myristate, potassium hydrogen myristate, magnesium myristate, calcium myristate, zinc myristate, silver myristate, myristate, lithium palmitate, palmitic acid Palmitates such as potassium, magnesium palmitate, calcium palmitate, zinc palmitate, copper palmitate, lead palmitate, thallium palmitate, cobalt palmitate, etc., sodium oleate Oleates such as potassium oleate, magnesium oleate, calcium oleate, zinc oleate, lead oleate, thallium oleate, copper oleate, nickel oleate, sodium stearate, lithium stearate, magnesium steacetate,
  • stearic acid salts and montanic acid salts are preferably used, and in particular, sodium stearate, potassium stearate, zinc stearate, barium stearate, sodium montanate, and the like are suitably used.
  • aliphatic alcohols include aliphatic monoalcohols such as pentadecyl alcohol, cetyl alcohol, heptadecyl alcohol, stearyl alcohol, nonadecyl alcohol, eicosyl alcohol, seryl alcohol, and melyl alcohol, 1,6-hexane.
  • aliphatic carboxylic acid ester examples include lauric acid cetyl ester, lauric acid phenacyl ester, myristic acid cetyl ester, myristic acid phenacyl ester, palmitic acid isopropylidene ester, palmitic acid dodecyl ester, and palmitic acid tetraethyl ester.
  • Aliphatic monocarboxylic acid esters such as dodecyl ester, palmitic acid pentadecyl ester, palmitic acid octadecyl ester, palmitic acid cetyl ester, palmitic acid phenyl ester, palmitic acid phenacyl ester, stearic acid cetyl ester, behenic acid ethyl ester, monolaurin Monoesters of ethylene glycol such as acid glycol, glycol monopalmitate, glycol monostearate, glycol dilaurate, Diesters of ethylene glycol such as glycol palmitate and glycol distearate, monolaurate glycerin ester, monomyristic acid glycerin ester, monopalmitic acid glycerin ester, glycerin monoesters such as monostearic acid glycerin ester, dilauric acid glycerin ester, Glycerin diesters such as dimy
  • aliphatic / aromatic carboxylic acid hydrazides include sebacic acid dibenzoic acid hydrazide, specific examples of melamine compounds, specific examples of melamine cyanurate, polymelate melamine, and phenylphosphonic acid metal salts.
  • phenylphosphonic acid zinc salt, phenylphosphonic acid calcium salt, phenylphosphonic acid magnesium salt, and phenylphosphonic acid magnesium salt can be used.
  • sorbitol compounds include 1,3-di (P-methylbenzylidene) sorbitol, 2,4-di (P-methylbenzylidene) sorbitol, 1,3-dibenzylidenesorbitol, 2,4-dibenzylidenesorbitol, Examples include 3-di (P-ethyldibenzylidene) sorbitol and 2,4-di (P-ethyldibenzylidene) sorbitol.
  • organic phosphate compound examples include sodium bis (4-t-butylphenyl) phosphate, sodium 2,2′-methylenebis (4,6-di-t-butylphenyl) phosphate, and cyclic organic phosphate ester
  • examples thereof include a mixture selected from basic polyvalent metal salts and alkali metal carboxylates, alkali metal ⁇ -diketonates and alkali metal ⁇ -ketoacetate organic carboxylic acid metal salts.
  • sodium montanate is preferably used from the viewpoint of strength.
  • the P1 layer and the P3 layer are in contact with each other via the P2 layer means that the P1 layer, the P2 layer, and the P3 layer are directly laminated in this order.
  • the adhesive polyolefin-based resin means one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate-based copolymer.
  • the layer (P2 layer) is a layer mainly composed of one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer.
  • the main constituent component is one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer. It means that one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer exceeds 50% by mass and is equal to or less than 100% by mass.
  • Examples of the low crystalline soft polymer that is one of the main components of the P2 layer include acid-modified polyolefins and unsaturated polyolefins.
  • Examples of the acrylic adhesive that is one of the main components of the P2 layer include ethylene-acrylic acid ester-maleic anhydride terpolymer.
  • the P2 layer is preferably made of acid-modified polyolefin as a main constituent.
  • Examples of the acid-modified polyolefin include “Admer” manufactured by Mitsui Chemicals, Inc., “Modic” manufactured by Mitsubishi Chemical, and “Binnel” manufactured by DuPont.
  • the P2 layer preferably further contains a polyolefin elastomer in addition to the adhesive polyolefin resin.
  • the polyolefin-based elastomer generally refers to one obtained by finely dispersing ethylene-propylene rubber in polypropylene or one obtained by copolymerizing polypropylene with another ⁇ -olefin.
  • These polyolefin-based elastomers are preferably contained in a proportion of 0.1% by mass or more and 20% by mass or less with respect to 100% by mass of all components of the P2 layer.
  • the content of the polyolefin-based elastomer in the P2 layer is preferably 5% by mass or more and 20% by mass or less.
  • the polyolefin-based elastomer may be a commercially available product, for example, “Thermolan”, “Zeras” manufactured by Mitsubishi Chemical Corporation, “Excellen”, “Tough Selenium”, “Esplen”, “Hibler” manufactured by Kuraray, Preferred examples include “Septon” and “Notio” manufactured by Mitsui Chemicals.
  • the P3 layer in the present invention is a layer mainly composed of a polyolefin-based resin.
  • the polyolefin resin in the present invention include polyethylene, polypropylene, polybutene, polymethylpentene, polycycloolefin, polyhexene, polyoctene, polydecene, and polydodecene.
  • the adhesive polyolefin resin that is the main constituent of the P2 layer does not correspond to the polyolefin resin that is the main constituent of the P3 layer.
  • the polyolefin resin that is the main component of the P3 layer is preferably polyethylene or polypropylene.
  • polyolefin-based resins may be mixed and copolymerized with other olefin components.
  • the melting point of the resin can be lowered, and adhesion with a sealing material can be reduced. It is preferable because of improved properties.
  • the main component of polyolefin resin means that 100% by mass of the total component of the layer contains more than 50% by mass and 100% by mass or less of polyolefin resin.
  • the P3 layer constituting the laminated sheet of the present invention preferably contains inorganic particles in the range of 0.1% by mass to 30% by mass.
  • the content of inorganic particles in the P3 layer is more preferably 2% by mass or more and 25% by mass or less, and further preferably 5% by mass or more and 20% by mass or less. These inorganic particles are used for imparting necessary functions to the sheet depending on the purpose.
  • the content of the inorganic particles in the P3 layer is more than 30% by mass, the adhesion with the sealing material may be lowered.
  • the content of the inorganic particles in the P3 layer is less than 0.1% by mass, it is difficult to obtain the effect due to the inclusion of the inorganic particles, and yellowing may occur.
  • the P3 layer contains 5 to 30% by mass of inorganic particles having a particle diameter of 3 ⁇ m or more and 20 ⁇ m or less.
  • the particle size refers to an average particle size at an integrated value of 50% in a particle size distribution obtained by laser analysis / scattering method. If the inorganic particles having a size of 3 ⁇ m or more and 20 ⁇ m or less are less than 5% by mass, the mechanical strength may be reduced. If the inorganic particles having a size of 3 ⁇ m or more and 20 ⁇ m or less are larger than 30% by mass, the surface may be roughened and the adhesion with the sealant may be lowered.
  • the P3 layer preferably contains 0.5 to 5% by mass of an adhesive polyolefin resin.
  • the adhesive polyolefin-based resin may act as a dispersion aid for inorganic particles having a size of 3 ⁇ m or more and 20 ⁇ m or less. If it is less than 0.5% by mass, the mechanical strength may decrease due to poor dispersion of the inorganic particles of 3 ⁇ m or more and 20 ⁇ m or less. If it is larger than 5% by mass, the heat resistance may decrease.
  • the adhesive polyolefin resin here is the same as that defined for the P2 layer adhesive polyolefin resin.
  • the acetic acid permeability Pa (g / m 2 / day) in the laminated sheet of the present invention means the acetic acid permeability when acetic acid is in a saturated vapor pressure state (85 ° C.). And as for the lamination sheet of this invention, it is preferable that the acetic acid permeability Pa in 85 degreeC satisfy
  • the laminated sheet of the present invention has an acetic acid permeability Pa of 200 g / m 2 / day or more.
  • the acetic acid permeability Pa of the laminated sheet of the present invention is preferably 800 g / m 2 / day or more.
  • the acetic acid permeability Pa is preferably as large as possible.
  • the acetic acid permeability Pa is 1500 g / m 2 / day. The following is preferable.
  • the water vapor transmission rate Pw (g / m 2 / day) in the laminated sheet of the present invention means the water vapor transmission rate in an environment of 40 ° C. and 90% RH. And as for the laminated sheet of this invention, it is preferable that the water-vapor-permeation rate Pw (g / m ⁇ 2 > / day) in 40 degreeC90% RH satisfy
  • the water vapor permeability Pw of the laminated sheet of the present invention is 2.5 g / in, from the viewpoint of suppressing corrosion inside the solar cell module due to moisture, particularly discoloration due to corrosion of the collecting electrode portion of the solar battery cell.
  • the water vapor transmission rate Pw is preferably as small as possible.
  • the water vapor transmission rate Pw is 0.5 g / m. 2 / day or more is preferable.
  • the thickness of the P1 layer constituting the laminated sheet of the present invention is preferably 80 ⁇ m or more. If it is less than 80 ⁇ m, the heat resistance may decrease.
  • the thickness of the P2 layer constituting the laminated sheet of the present invention is preferably 15 ⁇ m or more and 50 ⁇ m or less. If it is less than 15 ⁇ m, the adhesion between the layers may be lowered. When the thickness of the P2 layer is larger than 50 ⁇ m, the heat resistance may be lowered.
  • the thickness of the P3 layer constituting the laminated sheet of the present invention is preferably 50 ⁇ m or more. If it is less than 50 micrometers, adhesiveness with a sealing material may fall.
  • the laminated sheet of the present invention has a P1 layer and a P3 layer.
  • the laminated structure of the laminated sheet in the present invention is preferably a structure in which at least the P1 layer is located on the surface layer and the P3 layer is located on the opposite surface layer to the P1 layer.
  • the P1 layer is located on the reverse surface layer of the P1 layer means that the P1 layer is located on one outermost layer of the laminated sheet and the P3 layer is located on the other outermost layer.
  • the laminated sheet of the present invention can be a laminated body laminated with another film or the like. Also in such a laminated body, it is preferable that the P1 layer has a laminated structure provided on any one of the surface layers.
  • other films include polyester layers for increasing mechanical strength, antistatic layers, adhesion layers with other materials, UV resistant layers for further improving UV resistance, and flame resistance for imparting flame resistance
  • a layer, a hard coat layer for improving impact resistance and scratch resistance, and the like can be arbitrarily selected and used depending on applications.
  • the laminated sheet of the present invention is a laminated body laminated with another film or the like, when the laminated sheet of the present invention is used as a solar battery backsheet, other sheet materials or power generation elements are embedded.
  • the sealing material for example, ethylene vinyl acetate
  • the sealing material for example, ethylene vinyl acetate
  • the voltage at which partial discharge phenomenon, which is an index of insulation, is generated is improved.
  • a conductive layer to be formed may be formed.
  • Examples of the method for laminating the P1 layer, P2 layer, and P3 layer in the laminated sheet of the present invention include, for example, a raw material for the P1 layer mainly composed of polybutylene terephthalate resin and a main component composed of an adhesive polyolefin resin.
  • the raw material for P2 layer and the raw material for P3 layer mainly composed of polyolefin resin are supplied to different extruders, and after melting, P1 layer, P2 layer and P3 layer are merged in this order and laminated.
  • a method of processing into a sheet including a step of extruding from a T die into a sheet (coextrusion method), laminating a raw material of a coating layer into a sheet produced by a single film, putting it into an extruder, melting and extruding from a die Method (melt laminating method), each film is prepared separately and thermocompression-bonded by a heated roll group (thermal laminating method), adhesive
  • the coextrusion method is preferred in that the production process is short and the adhesion between the layers is good.
  • the manufacturing method by
  • the laminated sheet of the present invention is produced by a coextrusion method, first, a raw material for the P1 layer having a dried polybutylene terephthalate resin as a main constituent, a raw material for a P2 layer having an adhesive polyolefin resin as a main constituent, And three raw materials for P3 layer, the main component of which is polyolefin resin and polyolefin resin, heated to 240 ° C to 300 ° C, P2 layer and P3 layer to 180 ° C to 250 ° C under nitrogen flow Each is fed to an extruder and melted.
  • the P1 layer, the P2 layer and the P3 layer are joined and laminated in this order, and are coextruded from the T die into a sheet.
  • a multi-manifold die it is preferable to use a multi-manifold die from the viewpoint of suppressing lamination unevenness.
  • the laminated sheet of the present invention can be obtained by extruding the laminated sheet discharged from the T die by the above-described method onto a cooling body such as a casting drum and cooling and solidifying it.
  • the laminated sheet of the present invention obtained by the above-described method may be subjected to processing such as heat treatment or aging as necessary within the range where the effects of the present invention are not impaired.
  • processing such as heat treatment or aging as necessary within the range where the effects of the present invention are not impaired.
  • heat-treating the thermal dimensional stability of the laminated sheet of the present invention can be improved.
  • corona treatment or plasma treatment may be performed.
  • the solar cell backsheet of the present invention is composed of the laminated sheet of the present invention. That is, the laminated sheet of the present invention can be suitably used as a solar battery back sheet.
  • the solar cell of the present invention is characterized by using the solar cell backsheet of the present invention.
  • By using the laminated sheet of the present invention in a solar cell it becomes possible to increase the durability or reduce the thickness as compared with a conventional solar cell.
  • FIG. 1 A structural example of the solar cell of the present invention is shown in FIG.
  • a power generating element connected with a lead wire for taking out electricity (not shown in FIG. 1) is sealed with a transparent sealing material 2 such as EVA resin, and a transparent substrate 4 such as glass and the like.
  • the laminated sheet of the present invention is configured to be bonded as the solar battery backsheet 1
  • the configuration example of the solar battery of the present invention is not limited to this, and can be used for any configuration.
  • unit of this invention was shown in FIG. 1, it is also possible to use the composite sheet of the lamination sheet of this invention and another film according to the other required required characteristic.
  • a method of laminating with other films, etc. for example, a method of co-extrusion and processing into a sheet (co-extrusion method), a coating layer raw material is put into an extruder into a sheet made of a single film Then, melt extrusion and laminating while extruding from the die (melt laminating method), making each film separately, thermocompression bonding with heated rolls etc. (thermal laminating method), pasting through adhesive A method of bonding (adhesion method), a method of applying and drying a solution dissolved in a solvent (coating method), a method of combining these, and the like can be used.
  • the above-described solar cell backsheet 1 is installed on the back surface of the sealing material 2 in which the power generating element is sealed.
  • the solar cell backsheet of the present invention has an asymmetric configuration, and the P3 layer is disposed so as to be positioned on the sealing material 2 side, so that the adhesion with the sealing material can be further increased. This is preferable.
  • positioned so that P1 layer of the lamination sheet of this invention may be located in the opposite side to the sealing material 2 it becomes possible to improve the tolerance with respect to the ultraviolet rays etc. of the reflection from the ground, and high durability. It can be a solar cell or the thickness can be reduced.
  • the power generating element 3 converts light energy of sunlight into electric energy, and is based on crystalline silicon, polycrystalline silicon, microcrystalline silicon, amorphous silicon, copper indium selenide, compound semiconductor, dye enhancement Arbitrary elements such as a sensitive system can be used in series or in parallel according to the desired voltage or current depending on the purpose. Since the transparent substrate 4 having translucency is located on the outermost surface layer of the solar cell, a transparent material having high weather resistance, high contamination resistance, and high mechanical strength characteristics in addition to high transmittance is used. In the solar cell of the present invention, the transparent substrate 4 having translucency can be made of any material as long as the above characteristics are satisfied. Examples thereof include glass, ethylene tetrafluoride-ethylene copolymer (ETFE), polyfluoride.
  • ETFE ethylene tetrafluoride-ethylene copolymer
  • Vinyl fluoride resin PVDF
  • PVDF polyvinylidene fluoride resin
  • TFE polytetrafluoroethylene resin
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • CFE polytrifluoroethylene chloride resin
  • Fluorinated resins such as polyvinylidene fluoride resins, polyolefin resins, acrylic resins, and mixtures thereof.
  • glass it is more preferable to use a tempered glass.
  • stretched the said resin uniaxially or biaxially from a viewpoint of mechanical strength is used preferably.
  • the sealing material 2 for sealing the power generating element covers the surface of the power generating element with resin and fixes it, protects the power generating element from the external environment, and has a light-transmitting base material for the purpose of electrical insulation.
  • a material having high transparency, high weather resistance, high adhesion, and high heat resistance is used to adhere to the backsheet and the power generation element. Examples thereof include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA) resin, ethylene-methacrylic acid copolymer (EMAA), Ionomer resins, polyvinyl butyral resins, and mixtures thereof are preferably used.
  • the solar battery back sheet using the laminated sheet of the present invention into the solar battery, it becomes possible to obtain a highly durable and / or thin solar battery compared to the conventional solar battery.
  • the solar cell of the present invention can be suitably used for various applications without being limited to outdoor use and indoor use such as a solar power generation system and a power source for small electronic components.
  • the acetic acid permeability Pa (g / m 2 / day) in the backsheet of the present invention means the acetic acid permeability when acetic acid is in a saturated vapor pressure state (85 ° C.). And it is important for the back seat
  • the acetic acid permeability Pa of the backsheet of the present invention is 200 g / m 2 / day or more. Further, from the viewpoint of further suppressing power generation performance degradation, the acetic acid permeability Pa of the backsheet of the present invention is preferably 800 g / m 2 / day or more. On the other hand, the acetic acid permeability Pa is preferably as large as possible. However, considering that not only the expression (1) but also the expression (2) regarding the water vapor permeability Pw described later is satisfied at the same time, the acetic acid permeability Pa is 1500 g / m 2 / day. The following is preferable.
  • the water vapor transmission rate Pw (g / m 2 / day) in the backsheet of the present invention means the water vapor transmission rate in an environment of 40 ° C. and 90% RH.
  • the backsheet of the present invention has a water vapor transmission rate Pw of 2.5 g / in from the viewpoint of suppressing corrosion inside the solar cell module due to moisture, particularly discoloration due to corrosion of the collector electrode portion of the solar battery cell. It is important that it is not more than m 2 / day.
  • the water vapor transmission rate Pw is preferably as small as possible.
  • the water vapor transmission rate Pw is 0.5 g / m. 2 / day or more is preferable.
  • the back sheet has a P4 layer.
  • the P4 layer means a layer in which one selected from the group consisting of a polyester resin, a polyamide resin, and a fluororesin is a main constituent component.
  • the layer which is one main component selected from the group consisting of a polyester resin, a polyamide resin, and a fluororesin is one layer selected from the group consisting of a polyester resin, a polyamide resin, and a fluororesin.
  • the polyester resin suitably used as the main component of the P4 layer in the present invention is a resin obtained by polycondensation of dicarboxylic acid and dialcohol. This polyester resin can be used alone or in combination with other resins.
  • dicarboxylic acid used for obtaining the polyester resin examples include terephthalic acid and 2,6-naphthalenedicarboxylic acid.
  • dialcohol used for obtaining a polyester resin examples include ethylene glycol, 1,3-propanediol, 1,4-butanediol, and the like.
  • polyester resin polyethylene terephthalate and / or polybutylene terephthalate are preferable from the viewpoints of price, water vapor permeability, strength, heat resistance, and the like.
  • the polyamide resin suitably used as the main component of the P4 layer in the present invention is 1) a ring-opening polymerization of a compound having a lactam skeleton, and 2) an amino acid component having an amino group and a carboxyl group in one molecule. Condensed ones, 3) polycondensed diamine components and dicarboxylic acid components, and those obtained by copolymerizing 1) to 3).
  • the polyamide resin can be used alone or in combination with other resins.
  • Examples of the compound having a lactam skeleton used in 1) include ⁇ -caprolactam (nylon 6 is obtained by ring-opening polymerization), ⁇ -undecanlactam (nylon 11 is obtained by ring-opening polymerization), and ⁇ -laurolactam. And lactam compounds such as (Nylon 12 is obtained by ring-opening polymerization).
  • amino acid component having an amino group and a carboxyl group in one molecule used in 2) examples include amino acids such as ⁇ -aminocaproic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid.
  • the diamine component used in 3) includes tetramethylene diamine, hexamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 1,2,2,4-tetramethylhexamethylene diamine, 2,4,4-trimethyl.
  • dicarboxylic acid component used in 3 examples include adipic acid, peric acid, azelaic acid, sepacic acid, dodecanoic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, Examples thereof include dicarboxylic acids such as naphthalenedicarboxylic acid and dimer acid.
  • polystyrene resin any one of a polymer of the component alone or a copolymer containing two or more components can be used in the present invention.
  • polycaproamide nylon 6
  • polyhexamethylene adipamide nylon 66
  • polyhexamethylene sebacamide nylon 610
  • polyhexa Methylene dodecanamide nylon 612
  • polyhexamethylene terephthalamide nylon 6T
  • polyhexamethylene isophthalamide nylon 6I
  • polyundecanamide nylon 11
  • polydodecanamide nylon 12
  • the polyamide resin suitably used as the main constituent component of the P4 layer is nylon 6, nylon 66, nylon 610, nylon 11, in terms of crystallinity, strength, heat resistance and rigidity. And at least one resin selected from the group consisting of nylon 12 and nylon 12.
  • the fluororesin suitably used as the main component of the P4 layer in the present invention is 1) a polymer obtained by substituting some or all of the hydrocarbon atoms with fluorine atoms, and 2) one hydrocarbon.
  • fluororesins examples include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, tetrafluoroethylene / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene copolymer, polychlorotrifluoroethylene, And ethylene / chlorotrifluoroethylene copolymer.
  • the fluororesin suitably used as the main component of the P4 layer in the backsheet of the present invention is polyvinyl fluoride, polyvinylidene fluoride, ethylene tetrafluoroethylene, four A fluorinated ethylene / hexafluoropropylene copolymer is particularly preferred.
  • the P4 layer is a layer mainly composed of one selected from the group consisting of a polyester resin, a polyamide resin, and a fluororesin, but the P4 layer is made of a polyamide resin or polybutylene terephthalate. It is particularly preferable to use the main component.
  • the P4 layer preferably contains 0.1% by mass to 30% by mass of inorganic particles in 100% by mass of all components of the P4 layer.
  • the content of the inorganic particles in the P4 layer is more preferably 2% by mass or more and 25% by mass or less, and further preferably 5% by mass or more and 20% by mass or less.
  • the inorganic particles are used for imparting necessary functions to the back sheet depending on the purpose.
  • handling properties may be lowered or durability may be lowered.
  • the content of the inorganic particles in the P4 layer is less than 0.1% by mass, the effect due to the inclusion of the inorganic particles is difficult to obtain, and yellowing may occur.
  • inorganic particles suitable for use in the P4 layer include inorganic particles having ultraviolet absorbing ability, particles having a large refractive index difference from polyester resins, polyamide resins, and fluororesins, conductive particles, and pigments. Thus, it is possible to impart ultraviolet resistance, optical properties such as light reflectivity and whiteness, antistatic properties and the like.
  • the particle means a particle having a primary particle diameter of 5 nm or more based on the diameter of a projected equivalent equivalent circle. Unless otherwise specified, in the present invention, the particle size means a primary particle size, and the particle means a primary particle.
  • the inorganic particles suitably used for the P4 layer of the present invention include, for example, gold, silver, copper, platinum, palladium, rhenium, vanadium, osmium, cobalt, iron, zinc, ruthenium, praseodymium, chromium, Metals such as nickel, aluminum, tin, zinc, titanium, tantalum, zirconium, antimony, indium, yttrium, lanthanum, zinc oxide, titanium oxide, cesium oxide, antimony oxide, tin oxide, indium tin oxide, yttrium oxide, oxidation Metal oxides such as lanthanum soot, zirconium oxide, aluminum oxide, silicon oxide, lithium fluoride, magnesium fluoride soot, aluminum fluoride soot, metal fluorides such as cryolite, metal phosphates such as calcium phosphate, carbonates such as calcium carbonate Salt, barium sulfate And sulfates such as talc, talc and
  • metal oxides such as titanium oxide, zinc oxide, and cerium oxide, which are inorganic particles having ultraviolet absorbing ability, are used as the inorganic particles in the P4 layer.
  • titanium oxide as the inorganic particles in the P4 layer in that high reflection characteristics can be imparted, and it is more preferable to use rutile type titanium oxide in terms of higher ultraviolet resistance.
  • the resin and inorganic particles are melt kneaded in advance using a vent type biaxial kneading extruder or tandem type extruder.
  • the method is preferred.
  • a high-concentration master pellet having a large amount of inorganic particles is prepared, mixed with the resin and diluted, and the predetermined P4 layer contains inorganic particles. It is preferable to set the ratio from the viewpoint of durability.
  • the P4 layer and the P6 layer of the backsheet of the present invention may have other additives (for example, a heat stabilizer, an ultraviolet absorber, Examples include weathering stabilizers, organic lubricants, pigments, dyes, fillers, antistatic agents, nucleating agents, etc.
  • a heat stabilizer for example, a heat stabilizer, an ultraviolet absorber
  • examples include weathering stabilizers, organic lubricants, pigments, dyes, fillers, antistatic agents, nucleating agents, etc.
  • the inorganic particles referred to in the present invention are not included in the additive herein. You may do it.
  • an ultraviolet absorber is selected as an additive and contained in the P4 layer and / or the P6 layer
  • the ultraviolet resistance of the backsheet of the present invention can be further improved.
  • an antistatic agent or the like is contained in the P4 layer and / or the P6 layer, an improvement in withstand voltage can be expected.
  • the P4 layer in the present invention is located on the surface layer of the back sheet from the viewpoint of flame retardancy.
  • the P4 layer being positioned on the surface means that the P4 layer is positioned on one outermost layer of the backsheet of the present invention.
  • the P5 layer is preferably located between the P4 layer and the P6 layer described later.
  • the P5 layer is a layer mainly composed of one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer.
  • the main constituent is one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer. It means that one selected from the group consisting of a crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer is contained more than 50% by mass and 100% by mass or less.
  • the P5 layer is preferably located between the P4 layer and the P6 layer.
  • the P4 layer is located on the surface layer, and when the P6 layer is located on the surface opposite to the P4 layer, It means that the P5 layer is located in the inner layer between these two layers.
  • the P5 layer preferably has a function of adhering to both the P4 layer and the P6 layer.
  • the low crystalline soft polymer that is one of the main components of the P5 layer preferably has a crystallinity of 50% or less and a melting point of 170 ° C. or less.
  • an acid-modified olefin, an unsaturated polyolefin, etc. Can be mentioned.
  • the acrylic adhesive that is one of the main components of the P5 layer include an ethylene-acrylic ester-maleic anhydride terpolymer.
  • the P5 layer is preferably composed of acid-modified polyolefin as a main constituent.
  • the acid-modified polyolefin include “Admer” (registered trademark) manufactured by Mitsui Chemicals, Inc. and “Modic” (registered trademark) manufactured by Mitsubishi Chemical Corporation.
  • the layer in which the olefin resin is the main constituent is designated as P6 layer.
  • the olefin resin used in the P6 layer include polyethylene, polypropylene, polybutene, polymethylpentene, polycycloolefin, polyhexene, polyoctene, polydecene, and polydodecene.
  • the olefin resin that is the main component of the P6 layer is preferably polyethylene or polypropylene.
  • These olefin resins may be mixed and copolymerized with other olefin components. For example, when an ethylene-propylene copolymer or an ethylene-propylene-butene copolymer is used, the melting point of the resin can be lowered.
  • an olefin resin is a main component means that 100 mass% of olefin resin is contained more than 50 mass% in 100 mass% of all the components of this layer.
  • the melting point (hereinafter also referred to as melting endothermic peak temperature) of the olefin resin that is the main component of the P6 layer in the present invention is preferably 120 ° C. or higher and 170 ° C. or lower. If the melting point of the olefin resin in the P6 layer is less than 120 ° C, the heat resistance may be inferior. On the other hand, when the melting point of the olefin resin in the P6 layer exceeds 170 ° C., the adhesiveness with the sealing material may be lowered.
  • the backsheet of the present invention preferably has a P4 layer and a P6 layer, the P6 layer contains inorganic particles, the P4 layer is located on the surface layer, and the P6 layer is located on the surface opposite to the P4 layer. Further, the back sheet of the present invention has a total thickness of Ta ( ⁇ m), a thickness of the P4 layer of T4 ( ⁇ m), a thickness of the P6 layer of T6 ( ⁇ m), and the content of inorganic particles in the P6 layer. It is more preferable that all of the formulas (3) to (5) are satisfied when M (mass%) is used.
  • T4 is obtained using only the P4 layer of the surface layer
  • T6 and M are obtained using only the P6 layer of the reverse surface layer
  • Formula (3) formulates the amount of inorganic particles per thickness, and in order to express the effect of inorganic particles, it is important to increase the concentration of inorganic particles as the thickness increases. Show. In Formula (3), when M / T6 is smaller than 0.05, the P6 layer is easily yellowed due to deterioration. If M / T6 is greater than 0.5, the adhesion to EVA may be reduced.
  • the P6 layer preferably contains inorganic particles.
  • the inorganic particles in the P6 layer are used for imparting necessary functions to the back sheet depending on the purpose.
  • the inorganic particles in the P6 layer the same inorganic particles as those mentioned as the inorganic particles used in the P4 layer can be used.
  • the inorganic particles in the P6 layer are obtained when a metal oxide such as titanium oxide, zinc oxide, cerium oxide or the like having ultraviolet absorbing ability is used. It is preferable in that it can exhibit the effect of reducing coloration due to deterioration of the back sheet over a long period of time by utilizing the ultraviolet resistance by the inorganic particles.
  • titanium oxide as inorganic particles in the P6 layer in that high reflection characteristics can be imparted, and it is more preferable to use rutile type titanium oxide in terms of higher ultraviolet resistance.
  • Formula (4) represents the range of the thickness of the entire back sheet.
  • Ta is smaller than 200 ⁇ m, heat resistance and water vapor permeability may be inferior.
  • Ta is larger than 500 ⁇ m, processability is poor and conveyance is difficult, so that process suitability may be poor, and a solar cell module that is required to be lightweight and save space may be too thick.
  • Formula (5) shows the ratio of the thickness of the P4 layer to the total thickness, and the heat resistance improves as the thickness of the P4 layer increases. Therefore, if the value of T4 / Ta is less than 0.3, the heat resistance May decrease. The durability increases as the value of T4 / Ta increases. However, since the P4 layer is often expensive in comparison with the P6 layer, it is preferably 0.5 or less from the viewpoint of reducing the product cost.
  • the thickness T5 ( ⁇ m) of the P5 layer is preferably 15 to 50 ⁇ m.
  • the thickness T5 ( ⁇ m) of each P5 layer is preferably 15 to 50 ⁇ m.
  • T5 is smaller than 15 ⁇ m, the adhesion with the P4 layer or the P6 layer is lowered, and delamination may occur.
  • T5 is larger than 50 ⁇ m, the flame retardancy is likely to deteriorate when the combustibility of the backsheet is confirmed.
  • T5 is more preferably 20 ⁇ m or more and 40 ⁇ m or less.
  • delamination refers to what peels at the interface such as between the P4 layer and the P5 layer and between the P5 layer and the P6 layer.
  • the laminated structure of the back sheet in the present invention is a structure in which at least the P4 layer is located on the surface layer, and the P6 layer is located on the surface opposite to the P4 layer.
  • the P6 layer being positioned on the reverse surface layer of the P4 layer means that the P4 layer is positioned on one outermost layer of the backsheet and therefore the P6 layer is positioned on the other outermost layer.
  • the layer configuration (layer order) of the backsheet of the present invention is preferably P4 layer / P5 layer / P6 layer.
  • Examples of the method of laminating the P4 layer, the P5 layer, and the P6 layer in the backsheet of the present invention include, for example, a polyamide resin for the P4 layer or a raw material mainly comprising polybutylene terephthalate, and a low crystalline softness for the P5 layer.
  • a raw material mainly composed of one selected from the group consisting of a polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer, and a raw material mainly composed of an olefin resin for the P6 layer are separately extruded.
  • a sheet manufactured by a manufacturing method including a step of feeding a P4 layer, a P5 layer, and a P6 layer after being melted together, laminating them in this order, and extruding them into a sheet form from a T die.
  • a method of laminating a coating layer raw material into an extruder and laminating while extruding and extruding from a die (melt laminating method), producing each sheet separately,
  • a method of thermocompression bonding with a heated group of rolls thermocompression bonding with a heated group of rolls (thermal lamination method), a method of bonding via an adhesive (adhesion method), a method of applying and drying a solution dissolved in a solvent (coating method), and A method combining these can be used.
  • the coextrusion method is preferred in that the production process is short and the adhesion between the layers is good.
  • the manufacturing method by a coextrusion method is explained in full detail.
  • the backsheet of the present invention is produced by the coextrusion method, first, a dried polyamide resin for P4 layer or a raw material mainly comprising polybutylene terephthalate, a low crystalline soft polymer for P5 layer, an acrylic adhesive And a raw material mainly composed of one selected from the group consisting of ethylene vinyl acetate copolymer and a raw material mainly composed of an olefin resin for P6 layer under a nitrogen stream, a raw material for P4 layer
  • the raw material for P5 layer and the raw material for P6 layer are fed to three extruders heated to 180 ° C or higher and 250 ° C or lower, respectively, and melted.
  • the P4 layer, the P5 layer and the P6 layer are joined and laminated in this order, and are coextruded from the T die into a sheet.
  • a multi-manifold die it is preferable to use a multi-manifold die from the viewpoint of suppressing lamination unevenness.
  • the back sheet discharged from the T die by the above method is extruded onto a cooling body such as a casting drum and solidified by cooling, whereby the back sheet of the present invention can be obtained.
  • the back sheet of the present invention obtained by the above-described method may be subjected to processing such as heat treatment or aging as necessary within the range where the effects of the present invention are not impaired.
  • processing such as heat treatment or aging as necessary within the range where the effects of the present invention are not impaired.
  • heat-treating the thermal dimensional stability of the backsheet of the present invention can be improved.
  • corona treatment or plasma treatment may be performed.
  • the solar cell module of the present invention has the back sheet for solar cell of the present invention.
  • the back sheet of the present invention By using the back sheet of the present invention in a solar cell module, it is possible to maintain power generation characteristics for a long period of time compared to a conventional solar cell module.
  • a configuration example of the solar cell module of the present invention is shown in FIG. In FIG. 1, a solar cell connected with a lead wire for taking out electricity (not shown in FIG. 1) is sealed with a transparent sealing material 2 such as EVA resin, and a transparent substrate 4 such as glass.
  • the solar cell backsheet 1 of the present invention is bonded together, and the configuration example of the solar cell module of the present invention is not limited to this and can be used for any configuration.
  • the above-described solar cell backsheet 1 is installed on the back surface of the sealing material 2 that seals the solar cells.
  • the solar cell backsheet of the present invention has an asymmetric configuration, and the P6 layer is disposed so as to be positioned on the sealing material 2 side, so that the adhesion with the sealing material can be further increased. This is preferable.
  • seat of this invention may be located in the opposite side to the sealing material 2, it becomes possible to raise the tolerance with respect to the ultraviolet-ray of reflection from the ground, etc., and highly durable. It can be a solar cell module or the thickness can be reduced.
  • the solar battery cell 3 converts light energy of sunlight into electric energy, and is made of polycrystalline silicon, polycrystalline silicon, microcrystalline silicon, amorphous silicon, copper indium selenide, compound semiconductor, Arbitrary elements, such as a dye sensitizing system, can be used in series or in parallel according to the desired voltage or current depending on the purpose. Since the transparent substrate 4 having translucency is located on the outermost layer of the solar cell module, a transparent material having high weather resistance, high contamination resistance, and high mechanical strength characteristics in addition to high transmittance is used. In the solar cell module of the present invention, the transparent substrate 4 having translucency can use any material as long as it satisfies the above characteristics.
  • Examples thereof include glass, ethylenetetrafluoroethylene (ETFE), and polyvinyl fluoride (PVF). ), Fluorinated resins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (TFE), tetrafluoroethylene-hexafluoropropylene (FEP), polytrifluoroethylene chloride (CTFE), polyvinylidene fluoride, Preferred examples include olefin resins, acrylic resins, and mixtures thereof. In the case of glass, it is more preferable to use a tempered glass. Moreover, when using the resin-made translucent base material, what extended
  • PVDF polyvinylidene fluoride
  • TFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene
  • CTFE polytrifluoroethylene chloride
  • the surface is subjected to corona treatment, plasma treatment, ozone treatment, and easy adhesion treatment. Done.
  • the sealing material 2 for sealing the solar battery cell covers and fixes the unevenness of the surface of the solar battery cell with a resin, protects the solar battery cell from the external environment, and has a light transmitting property in addition to the purpose of electrical insulation. Therefore, a material having high transparency, high weather resistance, high adhesion, and high heat resistance is used. Examples thereof include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA) resin, ethylene-methacrylic acid copolymer (EMAA), Ionomer resins, polyvinyl butyral resins, and mixtures thereof are preferably used.
  • EVA ethylene-vinyl acetate copolymer
  • EMA ethylene-methyl acrylate copolymer
  • EAA ethylene-ethyl acrylate copolymer
  • EMA ethylene-methacrylic acid copolymer
  • Ionomer resins polyvin
  • the solar cell module of the present invention is not limited to outdoor use and indoor use, such as a solar power generation system and a power source for small electronic components, and can be suitably used for various uses.
  • the P1 layer, P3 layer, P4 layer, and P6 layer are each cut or peeled off from the laminated sheet (back sheet) to separate the P1 layer, P3 layer, P4 layer, and P6 layer. The content of particles was calculated.
  • ⁇ Tcg Tc ⁇ Tg
  • ⁇ Tcg Tc ⁇ Tg
  • breaking strength When the breaking strength is 80 MPa or more: S When the breaking strength is 40 MPa or more and less than 80 MPa: A When the breaking strength is 30 MPa or more and less than 40 MPa: B When the breaking strength is 20 MPa or more and less than 30 MPa: C When the breaking strength is less than 20 MPa: D S to C pass, and S is the best among them.
  • breaking elongation E0 was measured according to the said (4) term, and elongation retention was computed by the following formula using the obtained breaking elongation E0 and E1.
  • ⁇ Elongation retention (%) (E1 / E0) ⁇ 100
  • the obtained elongation retention was determined as follows. When the elongation retention is 50% or more: S When the elongation retention is 40% or more and less than 50%: A When the elongation retention is 30% or more and less than 40%: B When the elongation retention is 20% or more and less than 30%: C When the elongation retention is less than 20%: D S to C pass, and S is the best among them.
  • breaking elongation E0 was measured according to the said (4) term, and elongation retention was computed by the following formula using the obtained breaking elongation E0 and E1.
  • ⁇ Elongation retention (%) (E1 / E0) ⁇ 100
  • the obtained elongation retention was determined as follows. When the elongation retention is 50% or more: S When the elongation retention is 40% or more and less than 50%: A When the elongation retention is 30% or more and less than 40%: B When the elongation retention is 20% or more and less than 30%: C When the elongation retention is less than 20%: D S to C pass, and S is the best among them.
  • the b values before and after the irradiation were determined by measuring the b values before and after the P1 layer and calculating the average value.
  • the difference (b value after irradiation to b value before irradiation) was defined as a color tone change ⁇ b1 after ultraviolet irradiation.
  • the obtained color tone change ( ⁇ b1) was determined as follows.
  • the b values before and after the irradiation were determined by measuring the b values before and after the P3 layer and calculating the average value.
  • the difference (b value after irradiation from b value after irradiation) was defined as a color tone change ⁇ b2 after ultraviolet irradiation.
  • the obtained color tone change ( ⁇ b2) was determined as follows.
  • the adhesion with the sealing material was determined as follows.
  • peel strength is 50 N / 10 mm or more:
  • S When the peel strength is 40 N / 10 mm or more and less than 50 N / 10 mm:
  • A When peel strength is 30N / 10mm or more and less than 40N / 10mm:
  • B When the peel strength is 20 N / 10 mm or more and less than 30 N / 10 mm:
  • C When peel strength is less than 20 N / 10 mm: D S to C pass, and S is the best among them.
  • the interlayer adhesion was evaluated from the delamination strength after treatment at 85 ° C and 85% RH for 1000 hours.
  • the delamination strength the strength at the time of peeling in the T shape measured according to JIS K6854-3 (1999) was used.
  • the interlayer was defined as an interlayer capable of interfacial separation such as between the P1 layer and the P2 layer and between the P2 layer and the P3 layer.
  • the test piece width of the delamination strength test was 15 mm, and two test pieces were prepared. The test piece was changed in place and measured at three locations, and the average value of the obtained measurement values was taken as the delamination strength.
  • the interlayer adhesion was determined as follows.
  • peel strength When peel strength is 10N / 15mm or more: S When the peel strength is 6 N / 15 mm or more and less than 10 N / 15 mm: A When peel strength is 3N / 15mm or more and less than 6N / 15mm: B When peel strength is 1N / 15mm or more and less than 3N / 15mm: C When peel strength is less than 1 N / 15 mm: D S to C pass, and S is the best among them.
  • FIG. 2 shows a cross-sectional view and FIG. 3 shows a top view of the jig 11 used for measuring acetic acid permeability.
  • the jig 11 is made of stainless steel and has a 65 cm 2 circular opening, and a jig lower part which is a container containing acetic acid having the same shape as the jig 7 on the upper surface of the container.
  • the acetic acid stock solution 9 is put into the lower part 8 of the jig.
  • the laminated sheet to be measured, the back sheet 1, has a mesh 10 made of stainless steel with a wire diameter of 0.29 mm and a mesh size of 0.98 mm between the jig lower part 8 and the jig upper part 7 on the jig upper part 7 side.
  • the jig upper part 7 and the jig lower part 8 were fixed with screws so as to prevent acetic acid vapor from escaping and sandwiched together with an O-ring set on the jig lower part 8.
  • the mass W1 at room temperature after the jig 11 prepared with the back sheet 1 and the acetic acid stock solution 9 satisfying the measurement area of 65 cm 2 was left at 85 ° C. for 1 hour in that state was measured.
  • the P6 layer yellowed backsheet was cut into the shape of a measurement piece (3 cm ⁇ 3 cm), and then subjected to treatment at 120 ° C. for 72 hours in a hot air oven PV (H) -212 manufactured by Espec Corp.
  • PV (H) -212 manufactured by Espec Corp.
  • the sample measurement diameter was set to 30 mm ⁇ , the b value on the P6 layer side was measured, and the average value was calculated to obtain the difference between the b values before and after the treatment.
  • ⁇ b was obtained by subtracting the b value before processing from the b value after processing, and the following determination was performed.
  • S When the color change ⁇ b is 3 or more and less than 5: A When the color change ⁇ b is 5 or more and less than 8: B When color change ⁇ b is 8 or more and 10 or less: C When the color change ⁇ b exceeds 10, D.
  • the partial discharge voltage of the back sheet was determined using a partial discharge tester KPD2050 (manufactured by Kikusui Electronics Co., Ltd.).
  • the test conditions are as follows.
  • the output voltage application pattern on the output sheet is a pattern in which the first stage simply increases the voltage from 0 V to a predetermined test voltage, the second stage is a pattern that maintains a predetermined test voltage, and the third stage is a predetermined test A pattern composed of three stages of patterns in which the voltage is simply dropped from 0 to 0 V is selected.
  • the frequency is 50 Hz.
  • the test voltage is 1 kV.
  • the first stage time T1 is 10 sec
  • the second stage time T2 is 2 sec
  • the third stage time T3 is 10 sec.
  • the counting method on the pulse count sheet is “+” (plus), and the detection level is 50%.
  • the charge amount in the range sheet is set to 1,000 pc.
  • the pulse count is 100,000.
  • the start voltage is 1.0 pc and the extinction voltage is 1.0 pc.
  • the measurement was carried out at 10 arbitrary positions in the film plane, and the average value was defined as the partial discharge voltage V0. Further, the measurement was performed using a measurement sample left overnight in a room at 23 ° C. and 65% RH.
  • partial discharge voltage is 1,050 V or more: S When the partial discharge voltage is 950 V or more and less than 1,050 V: A When partial discharge voltage is 700V or more and less than 950V: B When the partial discharge voltage is 300V or more and less than 700V: C When partial discharge voltage is less than 300V: D.
  • Adhesion with sealing material (135 ° C vacuum lamination) Based on JIS K6854 (1994), the adhesion between the EVA sheet (sealing material) and the P6 layer of the back sheet was evaluated from the peel strength.
  • the test specimen is a 500 ⁇ m thick EVA sheet manufactured by Sanvic Co., Ltd. and a corona-treated Example and Comparative Example back sheet on a 3 mm thick semi-tempered glass, and a commercially available glass laminator is used. Then, after evacuation, press-treated for 15 minutes with a load of 29.4 N / cm 2 under a heating condition of 135 ° C. was used.
  • the width of the test piece for the peel strength test was 10 mm, two test pieces were prepared, and each test piece was measured at three locations with different locations, and the average value of the obtained measured values was taken as the peel strength value. From the obtained peel strength, the adhesiveness of the sealing material was determined as follows. In the case of a backsheet not having the P6 layer, the evaluation is performed in the same manner.
  • peel strength When peel strength is 50 N / 10 mm or more: S When the peel strength is 40 N / 10 mm or more and less than 50 N / 10 mm: A When peel strength is 30N / 10mm or more and less than 40N / 10mm: B When the peel strength is 20 N / 10 mm or more and less than 30 N / 10 mm: C When peel strength is less than 20 N / 10 mm: D.
  • the P1 layer is scraped from the rigid amorphous amount laminated sheet, and subjected to differential scanning calorimetry (DSC) and temperature modulation DSC method with the following apparatus and conditions. 65, no. 11 (2009) P.I.
  • the amount of rigid amorphous was calculated using the method 428.
  • ⁇ DSC method> Apparatus: DSC Q1000 manufactured by TA Instruments Atmosphere: Nitrogen flow (50 mL / min) Temperature / calorie calibration: High purity indium Temperature range: 0-250 ° C Temperature increase rate: 10 ° C / min Sample weight: 10mg Sample container: Aluminum standard container ⁇ Temperature modulation DSC method> Apparatus: DSC Q1000 manufactured by TA Instruments Atmosphere: Nitrogen flow (50 mL / min) Temperature / calorie calibration: High purity indium specific heat calibration: Sapphire temperature range: 0-300 ° C Temperature increase rate: 2 ° C / min Sample weight: 5mg Sample container: Aluminum standard container Note that the rigid amorphous amount: ⁇ ra (%) was calculated by the following formula.
  • the particle size distribution is obtained by laser analysis / scattering method for the remaining components, and the average particle size is determined by 50% of the integrated value in the particle size distribution. It was.
  • the particle size distribution referred to here is “Laser diffraction / scattering particle size distribution analyzer LS series” (Beckman Coulter, Inc.), Mayumi Toyoda, “Measuring particle size distribution” (Beckman Coulter, Inc., Particle Properties Division, Academic Team) Sought in accordance with The measurement solution was prepared so that inorganic particles were added to pure water and dispersed with a homogenizer for 1 minute, so that the display of the concentration adjustment window of the apparatus was 45 to 55%.
  • Polybutylene terephthalate resin “Trecon” (registered trademark) 1200M (manufactured by Toray Industries, Inc.) as the polybutylene terephthalate resin (PBT) constituting the P1 layer in Examples 1 to 26, 57 to 72, and Comparative Example 1 Using.
  • Example 25 “Noblen” (registered trademark) FLX80E4 manufactured by Sumitomo Chemical Co., Ltd. was used as PP1. Acid Modified Polyolefin “Modic” (registered trademark) P553A manufactured by Mitsubishi Chemical Corporation was used as Resin 1 as the resin constituting the P2 layer in Examples 1 to 26 and 57 to 72. Polyolefin Elastomer For Example 24, “Notio” (registered trademark) PN2060 manufactured by Mitsui Chemicals, Inc. was used as the elastomer 1 as the polyolefin elastomer.
  • Inorganic particles Examples 1-5, 7-26, 57-72, P1 layer of Comparative Example 1 and Examples 1-9, 11-26, Inorganic particles of P3 layer of Comparative Example 2 use titanium dioxide It was.
  • the titanium dioxide of the P1 layer has a desired concentration of a masterbatch prepared in a ratio of 50% by mass / 50% by mass of the resin and titanium dioxide used as main components of the P1 layer in each example and comparative example.
  • a master batch prepared by adding 30% by mass / 70% by mass of the resin and titanium dioxide used as the main constituent components of the P3 layer for each example and comparative example was added to a desired concentration. .
  • End-capping agent used for the P1 layer of Examples 1, 3 to 25, 57 to 72 and Comparative Example 1 was P-400 manufactured by Rhein Chemie.
  • Example 26 “Carbodilite” (registered trademark) HMV-15CA manufactured by Nisshinbo Chemical Co., Ltd. was used.
  • Crystal nucleating agent Sodium montanate was used as the crystal nucleating agent for the P1 layer of Examples 61 to 63.
  • ⁇ Inorganic particles (3 ⁇ m to 20 ⁇ m) As the inorganic particles of 3 ⁇ m or more and 20 ⁇ m or less of the P3 layer of Examples 64-72, talc having an average particle diameter of 5 ⁇ m was used.
  • Examples 1 to 26, 61 to 72 Using the extruder 1, the extruder 2 and the extruder 3, the raw materials shown in Table 1 and Table 5 are supplied to each extruder so as to have a desired blending ratio, and then the layer melt-extruded from the extruder 1 is P1. Layers, Extruder 2 is P2 layer, Extruder 3 is P3 layer, P1 layer / P2 layer / P3 layer are laminated in order of multi-manifold, and the resin discharged from the die is 25 ° C. A laminated sheet was obtained by cooling and solidifying on a cast drum. The thicknesses shown in Tables 1 and 5 were obtained for the P1, P2, and P3 layers. The evaluation shown in Table 2 and Table 6 was implemented about the obtained lamination sheet. As a result, as shown in Tables 2 and 6, the examples were found to be excellent laminated sheets.
  • Example 24 contained an elastomer in the P2 layer, the interlayer adhesion was extremely excellent.
  • Example 57 A laminated sheet was prepared in the same manner as in Example 1 except that the cast drum temperature was changed to 15 ° C. (Example 57), 20 ° C. (Example 58), 40 ° C. (Example 59), and 50 ° C. (Example 60), respectively. did.
  • the evaluation shown in Table 6 was implemented about the obtained lamination sheet. As a result, as shown in Table 6, it was found that the examples were excellent laminated sheets.
  • a laminated sheet capable of achieving both heat and moisture resistance, heat resistance, and adhesion between the sealing material and the laminated sheet using a conventional polybutylene terephthalate resin.
  • Such laminated sheets are suitable for use in applications where importance is placed on wet heat resistance, resistance to ultraviolet rays, and light reflectivity, including solar cell backsheets, liquid crystal display reflectors, automotive materials, and building materials. can do.
  • a laminated sheet that can be suitably used as a solar battery backsheet, and a method for producing the laminated sheet can be provided.
  • Example 27 to 56 Comparative Example 5
  • Polyamide resin Nylon 6 resin “Amilan” registered trademark
  • CM1021T manufactured by Toray Industries, Inc.
  • PA6 polyamide resin constituting the P4 layer in Examples 27, 34 to 39, 41 to 49 and Comparative Examples 4 and 5 Tm; 225 ° C.
  • Polyethylene terephthalate As polyethylene terephthalate (PET) constituting the P4 layer in Example 28, a film of 25 ⁇ m “Lumirror” (registered trademark) S10 (manufactured by Toray Industries, Inc.) was used.
  • Polyvinyl fluoride As the polyvinyl fluoride (PVF) constituting the P4 layer in Example 30, a 38 ⁇ m “Tedra” (registered trademark) (manufactured by Dupont) film was used.
  • Ethylenetetrafluoroethylene As ethylenetetrafluoroethylene (ETFE) constituting the P4 layer in Example 31, a film of 50 ⁇ m “Toyoflon” (registered trademark) EL (manufactured by Toray Film Processing Co., Ltd.) was used.
  • -Tetrafluoroethylene-propylene hexafluoride As the tetrafluoroethylene-hexafluoropropylene (FEP) constituting the P4 layer in Example 32, 25 ⁇ m "Toyoflon” (registered trademark) FL (Toray Film Processing Co., Ltd.) Manufactured film).
  • Example 46 “Evolue” (registered trademark) SP2530 manufactured by Sumitomo Chemical Co., Ltd. was used as LLDPE1.
  • Example 47 “Evolue” (registered trademark) SP2540 manufactured by Sumitomo Chemical Co., Ltd. was used as LLDPE2.
  • Example 48 1% ethylene copolymer polypropylene was used as EPC1.
  • Example 49 “Noblen” (registered trademark) FLX80E4 manufactured by Sumitomo Chemical Co., Ltd. was used as PP1. Acid Modified Olefin “Modic” (registered trademark) P553A manufactured by Mitsubishi Chemical Corporation was used as Resin 1 as the resin constituting the P5 layer in Examples 34 to 39, 41 to 54, and Comparative Example 5. -Ethylene vinyl acetate copolymer "Modic” (registered trademark) A515 manufactured by Mitsubishi Chemical Corporation was used as the resin 2 as the resin constituting the P5 layer in Example 55. Acrylic Adhesive “Bond First” (registered trademark) 7L manufactured by Sumitomo Chemical Co., Ltd.
  • Example 27 was used as the resin 3 as the resin constituting the P5 layer in Example 56.
  • Inorganic particles Examples 27, 29, 34 to 39, 41 to 54, inorganic particles used in the P4 layer of Comparative Example 5 and the P6 layer of Examples 27 to 54 and Comparative Example 5 have an average particle size of 0.25 ⁇ m. Titanium dioxide was used.
  • the titanium dioxide of the P4 layer has a desired concentration of the resin used as the main component of the P4 layer and the resin obtained by mastering titanium dioxide at a ratio of 50% by mass / 50% by mass for each example and comparative example.
  • the titanium dioxide of P6 layer was added so that the resin used as the main component of P6 layer for each Example and Comparative Example and the resin mastered at a ratio of 30% by mass / 70% by mass of titanium dioxide to a desired concentration. .
  • Examples 27 and 29 use the extruder 4 and the extruder 6 to supply the raw materials shown in Table 3-1 to each extruder so as to have a desired blending ratio.
  • the layers melt-extruded from the extruder 4 are P4 layers
  • the extruder 6 is P6 layers
  • the layers are joined together in a multi-manifold so that they are laminated in the order of P4 layers / P6 layers, and the resin discharged from the die is cast.
  • a back sheet was obtained by cooling and solidifying on a drum.
  • Examples 28, 30 to 33, and Comparative Example 3 were used for adhesion between the respective layers by the dry laminating method so as to have the desired configurations shown in Tables 3-1 and 3-2. Lamination was performed using a polyurethane adhesive as an adhesive.
  • the EPBC 1 used in Examples 28 and 30 to 33 is a resin in which raw materials are supplied to the extruder 6 in advance so as to obtain a desired blending ratio, and then melt extruded from the extruder 6 and discharged from the die. A single layer sheet obtained by cooling and solidifying on a cast drum was used.
  • Example 39 raw materials were supplied to the extruder 6 so as to obtain a desired blending ratio, and then the resin melt-extruded from the extruder 6 and discharged from the die was cooled and solidified on a cast drum. A layer sheet was used.
  • the flux “HOZAN H722” was applied to the front and back silver electrodes of the solar cell “Qcells Q6LPT-G2” with a dispenser, and the wiring was cut to a length of 155 mm on the front and back silver electrodes.
  • the material “Hitachi Cable Co., Ltd. copper foil SSA-SPS0.2 ⁇ 1.5 (20)” 10 mm away from one end of the cell on the surface side is the end of the wiring material, and the back side is symmetrical with the surface side. Then, the soldering iron was brought into contact with the soldering iron from the back side of the cell using a soldering iron, and the front and back sides were simultaneously soldered to produce one cell string.
  • the thicknesses of the P4 layer, the P5 layer, and the P6 layer, the acetic acid permeability Pa, and the water vapor permeability Pw were as shown in Tables 3-1 and 3-2. Further, the evaluation shown in Tables 4-1 and 4-2 was performed on the obtained back sheet and the solar cell module using the back sheet. As a result, as shown in Tables 4-1 and 4-2, the examples were found to be excellent backsheets. In Comparative Example 5, since Pw was larger than 2.5, the color of the cell collector electrode was inferior.
  • a polyurethane adhesive is used as an adhesive, a 125 ⁇ m white polyethylene terephthalate film “Lumirror” E20F (manufactured by Toray Industries, Inc.), and an inorganic compound vapor deposition layer made of aluminum oxide.
  • Pa 10 g / 24 hr / m 2
  • Pw 0.2 g / 24 hr / m 2
  • a solar cell module was produced using this back sheet, and the maximum output retention rate was compared to about 85 hours at 85 ° C. and 85% RH 5000 hours. As a result, the maximum output retention rate was 10%, and Pa was smaller than 200. Was inferior.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A laminated sheet having: a layer having a polybutylene terephthalate resin as a principal component (P1 layer); and a layer having a polyolefin resin as a principal component (P3 layer). A solar cell back sheet, characterized in that the acetic acid permeability (Pa) (g/m2/day) at 85°C and water vapor permeability (Pw) (g/m2/day) at 40°C 90% RH satisfy relationships (1) 200 ≤ Pa and (2) Pw ≤ 2.5. Provided are a laminated sheet having a better moist heat resistance and an improved capacity to obtain both heat resistance and adhesion performance with respect to a sealing member compared with a conventional laminated sheet in which a polybutylene terephthalate resin is used, and a method for manufacturing the laminated sheet. Also provided are a solar cell module back sheet that is inexpensive and that is capable of preventing discoloration of the collector electrode of a solar cell while maintaining the power generation characteristics of the solar cell module over a long period, and a method for manufacturing the solar cell module back sheet.

Description

積層シート及びその製造方法、並びに太陽電池用バックシート、太陽電池モジュール及び太陽電池用バックシートの製造方法LAMINATED SHEET AND METHOD FOR MANUFACTURING SAME, SOLAR CELL BACK SHEET, SOLAR CELL MODULE, AND SOLAR CELL BACK SHEET
 本発明は耐久性と封止材との密着性の両立が可能な積層シートに関する。特に太陽電池バックシートとして好適に使用できる積層シート、および該積層シートの製造方法に関する。さらに、太陽電池モジュールの長期信頼性向上に寄与するバックシートに関する。 The present invention relates to a laminated sheet capable of achieving both durability and adhesion with a sealing material. In particular, the present invention relates to a laminated sheet that can be suitably used as a solar battery backsheet, and a method for producing the laminated sheet. Furthermore, it is related with the back seat | sheet which contributes to the long-term reliability improvement of a solar cell module.
 近年、半永久的で無公害の次世代エネルギー源として太陽光発電が注目を浴びており、太陽電池は急速に普及しつつある。太陽電池は、発電素子をエチレン-ビニルアセテート共重合体(EVA)などの透明な封止材により封止したものに、ガラスなどの透明基板と、バックシートと呼ばれる樹脂シートを貼り合わせて構成される。太陽光は透明基板を通じて太陽電池内に導入される。太陽電池内に導入された太陽光は、発電素子にて、吸収され、吸収された光エネルギーは、電気エネルギーに変換される。変換された電気エネルギーは発電素子に接続したリード線にて取り出されて、各種電気機器に使用される。ここで、従来のバックシートは安価で高性能である二軸延伸ポリエチレンテレフタレート(PET)に種々の素材をドライラミネートにて貼り合わせることによってバリア性や電気特性を付与する構成が検討されてきた。また、ポリオレフィン系樹脂はバリア性に加えて上記封止材との密着性が良好であるため、バックシートとして一般的に用いられる素材である。 In recent years, photovoltaic power generation has attracted attention as a semi-permanent and pollution-free next-generation energy source, and solar cells are rapidly spreading. A solar cell is composed of a power generation element sealed with a transparent sealing material such as ethylene-vinyl acetate copolymer (EVA), and a transparent substrate such as glass and a resin sheet called a back sheet bonded together. The Sunlight is introduced into the solar cell through the transparent substrate. Sunlight introduced into the solar cell is absorbed by the power generation element, and the absorbed light energy is converted into electrical energy. The converted electric energy is taken out by a lead wire connected to the power generation element and used for various electric devices. Here, the structure which provides barrier property and an electrical property by pasting together various raw materials to the biaxially-stretched polyethylene terephthalate (PET) which is a low-cost and high-performance is studied. In addition to the barrier property, polyolefin resin is a material generally used as a back sheet because of its good adhesion to the sealing material.
 一方、バックシートの耐久性、生産性を高めるためにPET以外の樹脂材料の適用検討が行われていて、ポリブチレンテレフタレート樹脂とポリカーボネート樹脂を積層したバックシート(特許文献1)やポリブチレンテレフタレート樹脂を使ったバックシート(特許文献2)が開発されている。 On the other hand, in order to increase the durability and productivity of the backsheet, application of resin materials other than PET has been studied, and a backsheet (Patent Document 1) in which a polybutylene terephthalate resin and a polycarbonate resin are laminated or a polybutylene terephthalate resin. A back sheet (Patent Document 2) using a lip has been developed.
 また、太陽電池モジュールは高温高湿環境で劣化しやすいことが知られており、耐湿熱性の向上が急務であった。特に、太陽電池モジュールに使用される封止材については、耐候性、透明性、生産性などの観点から、EVAを用いられることが多いが、高温の水蒸気により、酢酸の発生が懸念されていた。 Moreover, it is known that the solar cell module is easily deteriorated in a high-temperature and high-humidity environment, and there is an urgent need to improve the heat and humidity resistance. Especially for sealing materials used in solar cell modules, EVA is often used from the viewpoints of weather resistance, transparency, productivity, etc., but generation of acetic acid has been a concern due to high-temperature steam. .
 そのため、太陽電池モジュール作製の際は、これまでは、例えば特許文献3に記載があるように、バックシートに水蒸気透過率の低い物を選定し、水分の浸入を抑制することによって酢酸の発生を抑制し、太陽電池モジュールの出力特性が長期間変化しない発明もあった。 Therefore, at the time of manufacturing the solar cell module, until now, for example, as described in Patent Document 3, a material having a low water vapor transmission rate is selected for the back sheet, and the generation of acetic acid is suppressed by suppressing the ingress of moisture. There is also an invention that suppresses the output characteristics of the solar cell module from changing for a long time.
 また、特許文献4の様にEVAから発生する酢酸を抑制することによって長期間、出力特性が変化しない太陽電池モジュール用封止材の発明もあった。 Further, as in Patent Document 4, there is also an invention of a solar cell module sealing material in which output characteristics do not change for a long time by suppressing acetic acid generated from EVA.
特開2009-141345号公報JP 2009-141345 A 国際公開第2010/018662号International Publication No. 2010/018662 特開2012-199379号公報JP 2012-199379 A 特開2008-115344号公報JP 2008-115344 A
 しかしながら、ポリブチレンテレフタレート樹脂は一般に耐湿熱性に劣り、さらに封止材との密着性が悪いという欠点を有していた。また、特許文献1に記載のポリブチレンテレフタレート樹脂とポリカーボネート樹脂を積層したバックシートでは耐湿熱性は改善されるものの封止材との密着性は得られず、層間剥離の課題がある。また特許文献2に記載のバックシートも、耐湿熱性と封止材との密着性の両立は困難である。そこで本発明では、従来の課題を鑑みて、生産性が高く、耐久性と封止材との密着性を兼ね備えた太陽電池バックシートに好適に用いることが可能な積層シートを提供する。 However, polybutylene terephthalate resin generally has inferior moisture and heat resistance, and further has a drawback of poor adhesion to a sealing material. In addition, the back sheet described in Patent Document 1 in which a polybutylene terephthalate resin and a polycarbonate resin are laminated has improved moisture and heat resistance, but does not provide adhesion to a sealing material, and has a problem of delamination. In addition, the backsheet described in Patent Document 2 is also difficult to achieve both wet heat resistance and adhesion between the sealing material. Therefore, in view of the conventional problems, the present invention provides a laminated sheet that has high productivity and can be suitably used for a solar battery backsheet that has both durability and adhesion with a sealing material.
 さらに、特許文献3においては、水蒸気透過率を低くする際は無機蒸着膜などを使用する場合が多く、無機蒸着膜を用いた場合、用いない場合と比較すると非常に高コストとなるという問題があった。その一方で、水蒸気透過率が大きい場合は、水分により太陽電池セルに使用されている各部金属材料が腐食され、特に太陽電池セルの集電電極の腐食による変色が発生する場合があった。 Furthermore, in Patent Document 3, an inorganic vapor deposition film or the like is often used when the water vapor transmission rate is lowered, and when the inorganic vapor deposition film is used, there is a problem that the cost becomes very high as compared with the case where it is not used. there were. On the other hand, when the water vapor transmission rate is high, each metal material used in the solar battery cell is corroded by moisture, and in particular, discoloration may occur due to corrosion of the collecting electrode of the solar battery cell.
 また、特許文献4においては、EVAに添加剤をいれることによる影響が懸念される上、太陽電池セルに隣接するEVAの変更は変更のための検証作業が膨大となる。 Further, in Patent Document 4, there is a concern about the effect of adding an additive to EVA, and the change of EVA adjacent to the solar battery cell requires a large amount of verification work for change.
 本発明は上記課題を鑑みて考えられたものである。すなわち、本発明は、安価で、長期間、太陽電池モジュールの発電特性を維持させることが可能で、太陽電池セルの集電電極の変色を防ぐことを特徴とする太陽電池モジュール用バックシートを提供することを目的とする。 The present invention has been conceived in view of the above problems. That is, the present invention provides a back sheet for a solar cell module that is inexpensive, can maintain the power generation characteristics of the solar cell module for a long period of time, and prevents discoloration of the current collecting electrode of the solar cell. The purpose is to do.
 上記課題を解決するために本発明は以下の構成をとる。 In order to solve the above problems, the present invention has the following configuration.
 第1の発明は、ポリブチレンテレフタレート系樹脂を主たる構成成分とする層(P1層)と、ポリオレフィン系樹脂を主たる構成成分とする層(P3層)とを有する積層シートである。 1st invention is a lamination sheet which has a layer (P1 layer) which uses polybutylene terephthalate resin as the main component, and a layer (P3 layer) which uses polyolefin resin as the main component.
 第2の発明は、接着ポリオレフィン系樹脂を主たる構成成分とする層(P2層)を有し、P1層とP3層とが、P2層を介して接していることを特徴とする。 The second invention has a layer (P2 layer) mainly composed of an adhesive polyolefin-based resin, and the P1 layer and the P3 layer are in contact with each other through the P2 layer.
 第3の発明は、P2層の厚みが15~50μmであることを特徴とする。 The third invention is characterized in that the thickness of the P2 layer is 15 to 50 μm.
 第4の発明は、示差走査熱量分析(DSC)を用いて測定したP1層の結晶化パラメータΔTcgが、7~30℃であることを特徴とする。 The fourth invention is characterized in that the crystallization parameter ΔTcg of the P1 layer measured using differential scanning calorimetry (DSC) is 7 to 30 ° C.
 第5の発明は、末端封鎖剤とポリブチレンテレフタレート系樹脂を反応させて得られる樹脂を、末端封鎖ポリブチレンテレフタレート系樹脂とした際に、P1層の主たる構成成分であるポリブチレンテレフタレート系樹脂が、末端封鎖ポリブチレンテレフタレート系樹脂を含むことを特徴とする。 According to a fifth aspect of the present invention, when a resin obtained by reacting an end-capping agent with a polybutylene terephthalate resin is used as an end-capped polybutylene terephthalate resin, the polybutylene terephthalate resin that is the main component of the P1 layer is And end-capped polybutylene terephthalate resin.
 第6の発明は、P3層が無機粒子を0.1~30質量%含有することを特徴とする。 The sixth invention is characterized in that the P3 layer contains 0.1 to 30% by mass of inorganic particles.
 第7の発明は、P1層の剛直非晶量が30~50%であることを特徴とする。 The seventh invention is characterized in that the rigid amorphous amount of the P1 layer is 30 to 50%.
 第8の発明は、P1層が結晶核剤を0.1~5質量%含有することを特徴とする。 The eighth invention is characterized in that the P1 layer contains 0.1 to 5% by mass of a crystal nucleating agent.
 第9の発明は、P3層が粒子径3μm以上20μm以下の無機粒子を5~30質量%含有し、接着ポリオレフィン系樹脂を0.5~5質量%含有することを特徴とする。 The ninth invention is characterized in that the P3 layer contains 5 to 30% by mass of inorganic particles having a particle diameter of 3 to 20 μm and 0.5 to 5% by mass of an adhesive polyolefin resin.
 第10の発明は、85℃における酢酸透過率Pa(g/m/day)、及び、40℃90%RHにおける水蒸気透過率Pw(g/m/day)が、式(1)200≦Pa、及び式(2)Pw≦2.5、を満たすことを特徴とする。 In the tenth aspect of the invention, the acetic acid permeability Pa (g / m 2 / day) at 85 ° C. and the water vapor permeability Pw (g / m 2 / day) at 40 ° C. and 90% RH are expressed by the formula (1) 200 ≦ Pa and the expression (2) Pw ≦ 2.5 are satisfied.
 第11の発明は、前記いずれかの発明に係る積層シートからなる太陽電池バックシートである。 11th invention is a solar cell backsheet which consists of a lamination sheet concerning one of the above-mentioned inventions.
 第12の発明は、第11の発明に係る太陽電池バックシートを用いた太陽電池である。 The twelfth invention is a solar cell using the solar cell backsheet according to the eleventh invention.
 第13の発明は、第2~10のいずれかの発明に係る積層シートの製造方法であって、ポリブチレンテレフタレート系樹脂を主たる構成成分とするP1層用の原料、接着ポリオレフィン系樹脂を主たる構成成分とするP2層用の原料、及びポリオレフィン系樹脂を主たる構成成分とするP3層用の原料を、それぞれ別の押出機に供給し、各々溶融後にP1層、P2層、P3層をこの順に合流させて積層し、Tダイからシート状に押し出す工程を含むことを特徴とする、積層シートの製造方法である。 A thirteenth invention is a method for manufacturing a laminated sheet according to any one of the second to tenth inventions, wherein the raw material for the P1 layer mainly comprises a polybutylene terephthalate resin, and the main structure is an adhesive polyolefin resin. The raw material for the P2 layer, which is the component, and the raw material for the P3 layer, the main component of which is a polyolefin resin, are supplied to different extruders, and after melting, the P1, P2, and P3 layers are joined together in this order. It is made to laminate | stack, and it is the manufacturing method of a lamination sheet characterized by including the process extruded from a T die to a sheet form.
 第14の発明は、85℃における酢酸透過率Pa(g/m/day)、及び、40℃90%RHにおける水蒸気透過率Pw(g/m/day)が、式(1)200≦Pa、及び式(2)Pw≦2.5、を満たすことを特徴とする、太陽電池用バックシートである。 In the fourteenth aspect, the acetic acid permeability Pa (g / m 2 / day) at 85 ° C. and the water vapor permeability Pw (g / m 2 / day) at 40 ° C. and 90% RH are expressed by the formula (1) 200 ≦ It is a solar cell back sheet | seat characterized by satisfy | filling Pa and Formula (2) Pw <= 2.5.
 第15の発明は、ポリエステル樹脂、ポリアミド樹脂、及びフッ素樹脂からなる群より選ばれる一つが主たる構成成分である層をP4層としたときに、前記第14の発明において、P4層を有することを特徴とする。 According to a fifteenth aspect of the present invention, in the fourteenth aspect, when the layer, which is one of the main constituents selected from the group consisting of a polyester resin, a polyamide resin, and a fluororesin, is a P4 layer, it has a P4 layer. Features.
 第16の発明は、前記第15の発明において、オレフィン樹脂が主たる構成成分である層をP6層としたときに、P4層とP6層とを有する太陽電池用バックシートであって、P6層が無機粒子を含有し、P4層が表層に位置し、P4層とは逆表層にP6層が位置し、バックシート全体の厚みをTa(μm)、P4層の厚みをT4(μm)、P6層の厚みをT6(μm)、P6層中の無機粒子の含有量をM(質量%)とした時に、式(3)0.05≦M/T6≦0.5、式(4)200≦Ta≦500、式(5)0.3≦T4/Ta≦0.5)の全てを満たすことを特徴とする。 A sixteenth aspect of the present invention is the solar cell backsheet according to the fifteenth aspect of the present invention, wherein the layer mainly composed of the olefin resin is a P6 layer, and the P6 layer has a P4 layer and a P6 layer. Contains inorganic particles, the P4 layer is located on the surface layer, the P6 layer is located on the surface opposite to the P4 layer, the thickness of the entire backsheet is Ta (μm), the thickness of the P4 layer is T4 (μm), and the P6 layer When the thickness of T6 (μm) and the content of inorganic particles in the P6 layer is M (mass%), the formula (3) 0.05 ≦ M / T6 ≦ 0.5 and the formula (4) 200 ≦ Ta ≦ 500 and all of formula (5) 0.3 ≦ T4 / Ta ≦ 0.5) are satisfied.
 第17の発明は、前記第15または16のいずれかの発明において、P4層が、ポリアミド樹脂またはポリブチレンテレフタレート(PBT)を主たる構成成分とすることを特徴とする。 The seventeenth invention is characterized in that, in any one of the fifteenth and sixteenth inventions, the P4 layer is mainly composed of polyamide resin or polybutylene terephthalate (PBT).
 第18の発明は、前記第16または17のいずれかの発明において、低結晶性軟質重合体、アクリル接着剤、及びエチレン酢酸ビニル共重合体からなる群より選ばれる1つを主たる構成成分とする層をP5層とした際に、P4層とP6層の間にP5層が位置していることを特徴とする。 In an eighteenth aspect of the invention according to any one of the sixteenth and seventeenth aspects, the main constituent is one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer. When the layer is a P5 layer, the P5 layer is located between the P4 layer and the P6 layer.
 第19の発明は、前記第14から18のいずれかの発明に係る太陽電池バックシートを有する太陽電池モジュールである。 The nineteenth invention is a solar cell module having the solar cell backsheet according to any one of the fourteenth to eighteenth inventions.
 第20の発明は、前記第18の発明の太陽電池用バックシートの製造方法であって、P4層用のポリアミド樹脂またはPBTを主たる構成成分とする原料、P5層用の低結晶性軟質重合体、アクリル接着剤、及びエチレン酢酸ビニル共重合体からなる群より選ばれる1つを主たる構成成分とする原料、および、P6層用のオレフィン樹脂を主たる構成成分とする原料を、それぞれ別の押出機に供給し、各々溶融後にP4層、P5層、及びP6層をこの順に合流させて積層し、Tダイからシート状に押し出す工程を含むことを特徴とする、太陽電池用バックシートの製造方法である。 A twentieth aspect of the invention is a method for manufacturing a back sheet for a solar cell according to the eighteenth aspect of the present invention, which is a raw material mainly comprising a polyamide resin for P4 layer or PBT, and a low crystalline soft polymer for P5 layer. A raw material mainly composed of one selected from the group consisting of an acrylic adhesive and an ethylene vinyl acetate copolymer, and a raw material mainly composed of an olefin resin for the P6 layer. A method for producing a back sheet for a solar cell, comprising: a step of feeding a P4 layer, a P5 layer, and a P6 layer after being melted together, laminating them in this order, and extruding them into a sheet form from a T-die. is there.
 第1から第13までの発明によれば、太陽電池バックシートに好適に使用できるレベルの耐久性、封止材密着性、層間密着性、に優れた積層シートを提供することができる。かかる積層シートは太陽電池バックシートに好適に使用でき、さらに該バックシートを用いることによって高性能な太陽電池を提供することができる。 According to the first to thirteenth inventions, it is possible to provide a laminated sheet having excellent durability, sealing material adhesion, and interlayer adhesion that can be suitably used for a solar battery backsheet. Such a laminated sheet can be suitably used for a solar battery backsheet, and a high performance solar battery can be provided by using the backsheet.
 第14から第20までの発明に係る太陽電池用バックシートによれば、バックシートの酢酸透過率と水蒸気透過率を調整することで、太陽電池モジュール内部で発生した酢酸をモジュール外部へ放出することにより、長期間、発電特性を維持しながら、太陽電池セルの集電電極の変色を防ぐことが可能であり、また、より好ましい形態にすることで、耐熱性、P6層黄変、部分放電電圧、封止材との密着力に優れたバックシートを提供することができる。 According to the solar cell backsheets of the fourteenth to twentieth inventions, the acetic acid generated inside the solar cell module is released to the outside of the module by adjusting the acetic acid permeability and water vapor permeability of the backsheet. Thus, it is possible to prevent discoloration of the collecting electrode of the solar battery cell while maintaining the power generation characteristics for a long period of time, and by making it a more preferable form, heat resistance, P6 layer yellowing, partial discharge voltage It is possible to provide a back sheet excellent in adhesion with the sealing material.
本発明の積層シート(太陽電池用バックシート)を用いた太陽電池(太陽電池モジュール)の構成の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of a structure of the solar cell (solar cell module) using the lamination sheet (solar cell backsheet) of this invention. 酢酸透過率測定のための治具断面図である。It is a jig sectional view for acetic acid permeability measurement. 酢酸透過率測定のための治具上面図である。It is a jig top view for acetic acid permeability measurement.
 第1から第13までの発明は、ポリブチレンテレフタレート系樹脂を主たる構成成分とする層(P1層)と、ポリオレフィン系樹脂を主たる構成成分とする層(P3層)とを有する積層シートである。 The first to thirteenth inventions are laminated sheets having a layer (P1 layer) containing a polybutylene terephthalate resin as a main constituent component and a layer (P3 layer) containing a polyolefin resin as a main constituent component.
 ポリブチレンテレフタレート系樹脂とは、ジカルボン酸成分としてテレフタレート、ジオール成分として1,4-ブタンジオールからなるブチレンテレフタレートを主たる繰り返し単位とするポリエステル樹脂のことを指す。ここでいう主たる繰り返し単位とは、ポリエステル樹脂中の全てのジカルボン酸成分を100モル%とした際に、80モル%以上100モル%以下がテレフタレート成分であり、ポリエステル樹脂中の全てのジオール成分を100モル%とした際に、80モル%以上100モル%以下が1,4-ブタンジオール成分であることを意味する。ポリエステル樹脂中の全てのジカルボン酸成分を100モル%とした際に、テレフタレート成分は90モル%以上100モル%以下であることが好ましく、より好ましくは95モル%以上100モル%である。またポリエステル樹脂中の全てのジオール成分を100モル%とした際に、1,4-ブタンジオール成分は90モル%以上100モル%以下であることが好ましく、より好ましくは95モル%以上100モル%である。 The polybutylene terephthalate resin refers to a polyester resin mainly composed of butylene terephthalate composed of terephthalate as a dicarboxylic acid component and 1,4-butanediol as a diol component. The main repeating unit here means that when all the dicarboxylic acid components in the polyester resin are 100 mol%, 80 mol% or more and 100 mol% or less are terephthalate components, and all the diol components in the polyester resin are When it is 100 mol%, it means that 80 mol% or more and 100 mol% or less is a 1,4-butanediol component. When all the dicarboxylic acid components in the polyester resin are 100 mol%, the terephthalate component is preferably 90 mol% or more and 100 mol% or less, more preferably 95 mol% or more and 100 mol%. Further, when all the diol components in the polyester resin are 100 mol%, the 1,4-butanediol component is preferably 90 mol% or more and 100 mol% or less, more preferably 95 mol% or more and 100 mol%. It is.
 かかるポリブチレンテレフタレート系樹脂においては、ジカルボン酸成分としてテレフタル酸、ジオール成分として1,4-ブタンジオール以外にその他の成分が共重合されていても構わない。具体的には、ジカルボン酸成分としてマロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、イソソルビド、シクロヘキサンジカルボン酸、デカリンジカルボン酸、などの脂環族ジカルボン酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルエンダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸等芳香族ジカルボン酸などのジカルボン酸、もしくはそのエステル誘導体などの成分が共重合されていても構わない。また、上述のジカルボン酸成分のカルボキシル基末端に、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸類、およびその誘導体や、オキシ酸類が複数個連なったもの等を付加させたものも共重合成分として好適に用いられる。また、これらは必要に応じて、複数種類用いても構わない。 In such a polybutylene terephthalate resin, other components may be copolymerized in addition to terephthalic acid as the dicarboxylic acid component and 1,4-butanediol as the diol component. Specifically, as the dicarboxylic acid component, malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid, ethyl Aliphatic dicarboxylic acids such as malonic acid, adamantane dicarboxylic acid, norbornene dicarboxylic acid, isosorbide, cyclohexane dicarboxylic acid, decalin dicarboxylic acid, and the like, cyclophthalic dicarboxylic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1 , 5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, 5-sodium sulfoisophthalic acid, phenylendane Dicarboxylic acid Anthracene dicarboxylic acid, phenanthrene carboxylic acid, 9,9'-bis (4-carboxyphenyl) components such as a dicarboxylic acid or its ester derivatives, such as fluorene acids and aromatic dicarboxylic acids may be copolymerized. In addition, the carboxylic acid terminal of the above-mentioned dicarboxylic acid component may be added with oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of oxyacids. It is suitably used as a polymerization component. Moreover, you may use these in multiple types as needed.
 また、かかるジオール成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール等の脂肪族ジオール類、シクロヘキサンジメタノール、スピログリコール、イソソルビドなどの脂環式ジオール類、ビスフェノールA、1,3-ベンゼンジメタノール,1,4-ベンセンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレン、芳香族ジオール類等のジオール成分、上述のジオールが複数個連なった成分などが例としてあげられるがこれらに限定されない。また、これらは必要に応じて、複数種類用いても構わない。 Examples of the diol component include aliphatic diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol. , Cycloaliphatic diols such as cyclohexanedimethanol, spiroglycol, isosorbide, bisphenol A, 1,3-benzenedimethanol, 1,4-benzenecenemethanol, 9,9'-bis (4-hydroxyphenyl) fluorene Examples include, but are not limited to, diol components such as aromatic diols, components in which a plurality of the above-mentioned diols are linked, and the like. Moreover, you may use these in multiple types as needed.
 上述のジカルボン酸成分、ジオール成分を適宜組み合わせて、重縮合させることでポリブチレンテレフタレート系樹脂を得ることができる。得られるポリブチレンテレフタレート系樹脂の融点は一般的に200℃以上230℃以下である。さらには本発明においては融点が215℃以上230℃以下のものを使用するのがより好ましい。 A polybutylene terephthalate-based resin can be obtained by appropriately combining the above-mentioned dicarboxylic acid component and diol component and polycondensing them. The melting point of the resulting polybutylene terephthalate resin is generally 200 ° C. or higher and 230 ° C. or lower. Furthermore, in the present invention, it is more preferable to use one having a melting point of 215 ° C. or higher and 230 ° C. or lower.
 示差走査熱量分析(DSC)を用いて測定したP1層の結晶化パラメータΔTcgは、7~30℃であることが好ましい。P1層のΔTcgが7℃未満であると、結晶化しやすいため脆化しやすく耐湿熱性が低下することがある。P1層のΔTcgが30℃より大きいと、結晶性に起因して層間に水分が進入しやすく層間密着性が悪化することがある。示差走査熱量分析(DSC)を用いて測定したP1層の結晶化パラメータΔTcgを7~30℃とするためには、P1層の主たる構成成分であるポリブチレンテレフタレート系樹脂の示差走査熱量分析(DSC)による結晶化パラメータΔTcgを、7~30℃とする方法が好ましい。 The crystallization parameter ΔTcg of the P1 layer measured using differential scanning calorimetry (DSC) is preferably 7 to 30 ° C. If the ΔTcg of the P1 layer is less than 7 ° C., crystallization is likely to cause embrittlement, and moisture and heat resistance may decrease. If ΔTcg of the P1 layer is greater than 30 ° C., moisture may easily enter between layers due to crystallinity, and interlayer adhesion may be deteriorated. In order to set the crystallization parameter ΔTcg of the P1 layer measured using the differential scanning calorimetry (DSC) to 7 to 30 ° C., the differential scanning calorimetry (DSC) of the polybutylene terephthalate resin which is the main component of the P1 layer is used. The method of setting the crystallization parameter ΔTcg by 7) to 7-30 ° C. is preferred.
 P1層の剛直非晶量が30~50%であることが好ましい。30%未満であるとカールが発生しやすい。50%より大きいと湿熱処理後に脆化しやすく耐湿熱性が低下する。 The rigid amorphous amount of the P1 layer is preferably 30 to 50%. If it is less than 30%, curling tends to occur. If it exceeds 50%, it tends to become brittle after the wet heat treatment, and the heat and humidity resistance is lowered.
 ここで、剛直非晶とは、結晶と完全非晶との中間状態で、ガラス転移温度以上でも分子運動が凍結している非晶のことを表す。剛直非晶量は、式:剛直非晶量=100%-結晶化度-完全非晶量、から求められる。結晶化度と完全非晶量は、“繊維と工業”Vol.65,No.11(2009)P.428、に記載の温度変調DSC法を用いて定量できる。具体的な測定法は実施例の中に記載した。 Here, rigid amorphous refers to an amorphous state in which the molecular motion is frozen even at the glass transition temperature or higher in an intermediate state between the crystal and the complete amorphous. The rigid amorphous amount can be obtained from the formula: rigid amorphous amount = 100% −crystallinity−complete amorphous amount. The degree of crystallinity and the amount of complete amorphous are described in “Fiber and Industry” Vol. 65, no. 11 (2009) P.I. 428, and can be quantified using the temperature modulation DSC method. Specific measurement methods are described in the examples.
 なおP1層について、ポリブチレンテレフタレート系樹脂を主たる構成成分とするとは、該層の全成分100質量%において、ポリブチレンテレフタレート系樹脂を50質量%を超えて100質量%以下含有していることを意味する。 For the P1 layer, the polybutylene terephthalate resin as the main constituent component means that the polybutylene terephthalate resin is contained in an amount of more than 50% by mass and less than 100% by mass in 100% by mass of all components of the layer. means.
 本発明の積層シートを構成するP1層は、0.1質量%以上30質量%以下の範囲で無機粒子を含有することが好ましい。P1層中の無機粒子の含有量は、より好ましくは2質量%以上25質量%以下、さらに好ましくは5質量%以上20質量%以下である。この無機粒子は、その目的に応じて必要な機能をシートに付与するために用いられる。P1層中の無機粒子の含有量が30質量%超であると、ハンドリング性が低下したり、耐久性が低下したりすることがある。P1層中の無機粒子の含有量が0.1質量%未満であると、無機粒子を含有させたことによる効果が得られにくく、黄変が起こることがある。 The P1 layer constituting the laminated sheet of the present invention preferably contains inorganic particles in the range of 0.1% by mass to 30% by mass. The content of inorganic particles in the P1 layer is more preferably 2% by mass or more and 25% by mass or less, and further preferably 5% by mass or more and 20% by mass or less. These inorganic particles are used for imparting necessary functions to the sheet depending on the purpose. When the content of the inorganic particles in the P1 layer is more than 30% by mass, handling properties may be lowered or durability may be lowered. When the content of the inorganic particles in the P1 layer is less than 0.1% by mass, the effect due to the inclusion of the inorganic particles is difficult to obtain, and yellowing may occur.
 P1層に好適に用いられる無機粒子としては、紫外線吸収能のある無機粒子、ポリブチレンテレフタレート系樹脂との屈折率差が大きな粒子、導電性を持つ粒子、顔料といったものが例示され、これにより耐紫外線性や、光反射性、白色性といった光学特性、帯電防止性などを付与することができる。なお、粒子とは、投影した等価換算円の直径による一次粒径として5nm以上のものをいう。また、特に断らない限り、本発明において粒径は一次粒径を意味し、粒子は一次粒子を意味する。 Examples of the inorganic particles suitably used for the P1 layer include inorganic particles having ultraviolet absorbing ability, particles having a large refractive index difference from the polybutylene terephthalate resin, conductive particles, and pigments. Optical properties such as ultraviolet rays, light reflectivity, and whiteness, antistatic properties, and the like can be imparted. The particle means a particle having a primary particle diameter of 5 nm or more based on the diameter of a projected equivalent equivalent circle. Unless otherwise specified, in the present invention, the particle size means a primary particle size, and the particle means a primary particle.
 さらに詳細に説明すると、本発明のP1層に好適に用いられる無機粒子は、例えば、金、銀、銅、白金、パラジウム、レニウム、バナジウム、オスミウム、コバルト、鉄、亜鉛、ルテニウム、プラセオジウム、クロム、ニッケル、アルミニウム、スズ、亜鉛、チタン、タンタル、ジルコニウム、アンチモン、インジウム、イットリウム、ランタニウム等の金属、酸化亜鉛、酸化チタン、酸化セシウム、酸化アンチモン、酸化スズ 、インジウム・スズ酸化物、酸化イットリウム 、酸化ランタニウム 、酸化ジルコニウム、酸化アルミニウム、酸化ケイ素等の金属酸化物、フッ化リチウム、フッ化マグネシウム 、フッ化アルミニウム 、氷晶石等の金属フッ化物、リン酸カルシウム等の金属リン酸塩、炭酸カルシウム等の炭酸塩、硫酸バリウム等の硫酸塩、タルクおよびカオリン等が挙げられる。 More specifically, the inorganic particles suitably used for the P1 layer of the present invention include, for example, gold, silver, copper, platinum, palladium, rhenium, vanadium, osmium, cobalt, iron, zinc, ruthenium, praseodymium, chromium, Metals such as nickel, aluminum, tin, zinc, titanium, tantalum, zirconium, antimony, indium, yttrium, lanthanum, zinc oxide, titanium oxide, cesium oxide, antimony oxide, tin oxide, indium tin oxide, yttrium oxide, oxidation Metal oxides such as lanthanum soot, zirconium oxide, aluminum oxide, silicon oxide, lithium fluoride, magnesium fluoride soot, aluminum fluoride soot, metal fluorides such as cryolite, metal phosphates such as calcium phosphate, carbonates such as calcium carbonate Salt, barium sulfate And sulfates such as talc, talc and kaolin.
 本発明においては、屋外で使用されることが多いことを鑑みれば、P1層中の無機粒子として、紫外線吸収能を有する無機粒子である酸化チタン、酸化亜鉛、酸化セリウム、などの金属酸化物を用いた場合に、無機粒子による耐紫外線性を活かして、長期にわたってシートの劣化による着色を低減するという効果を発揮することができる点で好ましい。さらには、高い反射特性も付与できるという点で、P1層中の無機粒子としては酸化チタンを用いるのがより好ましく、耐紫外線性がより高いという点でルチル型酸化チタンを用いるのがさらに好ましい。 In the present invention, in view of the fact that it is often used outdoors, as inorganic particles in the P1 layer, metal oxides such as titanium oxide, zinc oxide, and cerium oxide, which are inorganic particles having ultraviolet absorbing ability, are used. When used, it is preferable in that it can exhibit the effect of reducing coloration due to deterioration of the sheet over a long period of time by utilizing the ultraviolet resistance by the inorganic particles. Furthermore, it is more preferable to use titanium oxide as the inorganic particles in the P1 layer in that high reflection characteristics can be imparted, and it is more preferable to use rutile type titanium oxide in terms of higher ultraviolet resistance.
 P1層中にポリブチレンテレフタレート系樹脂及び無機粒子を含有させる方法は、予めポリブチレンテレフタレート系樹脂と無機粒子を、ベント式二軸混練押出機やタンデム型押出機を用いて、溶融混練する方法が好ましい。ここで、無機粒子を含有させる際に熱履歴を受けるため、少なからずポリブチレンテレフタレート系樹脂が劣化することがある。そのため、P1層に含まれることとなる無機粒子量に比べて、無機粒子含有量の多い高濃度マスターペレットを作製し、それをポリブチレンテレフタレート系樹脂と混合して希釈し、所定のP1層の無機粒子含有率とするのが、耐久性の観点から好ましい。 The method of incorporating the polybutylene terephthalate resin and inorganic particles in the P1 layer is a method in which the polybutylene terephthalate resin and inorganic particles are melt-kneaded in advance using a vent type twin-screw kneading extruder or a tandem type extruder. preferable. Here, since the thermal history is received when the inorganic particles are contained, the polybutylene terephthalate-based resin may be deteriorated. Therefore, a high-concentration master pellet with a large amount of inorganic particles is produced as compared with the amount of inorganic particles to be contained in the P1 layer, and it is mixed with a polybutylene terephthalate resin and diluted to obtain a predetermined P1 layer. Inorganic particle content is preferred from the viewpoint of durability.
 前述の通りP1層は、ポリブチレンテレフタレート系樹脂を主たる構成成分とすることが重要であるが、その中でもP1層の主たる構成成分であるポリブチレンテレフタレート系樹脂は、末端封鎖ポリブチレンテレフタレート系樹脂を含むことがより好ましい。ここで末端封鎖ポリブチレンテレフタレート系樹脂とは、末端封鎖剤とポリブチレンテレフタレート系樹脂を反応させて得られる樹脂を意味する。 As described above, it is important that the P1 layer has a polybutylene terephthalate-based resin as a main constituent, and among them, the polybutylene terephthalate-based resin that is the main constituent of the P1 layer is an end-capped polybutylene terephthalate-based resin. More preferably. Here, the end-capped polybutylene terephthalate-based resin means a resin obtained by reacting the end-capping agent with the polybutylene terephthalate-based resin.
 つまり、P1層を製造する際には、ポリブチレンテレフタレート系樹脂に末端封鎖剤を添加して、ポリブチレンテレフタレート系樹脂の末端に位置するカルボキシル基(以下、末端に位置するカルボキシル基のことを、カルボキシル末端基またはCOOH基と記す)と末端封鎖剤とを反応させ、ポリブチレンテレフタレート系樹脂のCOOH基のプロトンの触媒活性を消失させてから、P1層とすることが好ましい。ここで末端封鎖剤とは、ポリエステルのカルボキシル末端基と反応して結合し、COOH基のプロトンの触媒活性を消失させる化合物のことであり、具体的には、オキサゾリン基、エポキシ基、カルボジイミド基等の置換基を有する化合物等が挙げられる。 That is, when the P1 layer is produced, a terminal blocking agent is added to the polybutylene terephthalate resin, and the carboxyl group located at the end of the polybutylene terephthalate resin (hereinafter referred to as the carboxyl group located at the terminal) It is preferable to form a P1 layer after reacting a terminal blocking agent with a terminal blocking agent to eliminate the catalytic activity of the proton of the COOH group of the polybutylene terephthalate resin. Here, the end-capping agent is a compound that reacts with and binds to the carboxyl end group of the polyester to eliminate the catalytic activity of the proton of the COOH group. Specifically, the oxazoline group, epoxy group, carbodiimide group, etc. The compound etc. which have these substituents are mentioned.
 末端封鎖剤として好適なカルボジイミド基を有するカルボジイミド化合物は、一官能性カルボジイミドと多官能性カルボジイミドがある。一官能性カルボジイミドとしては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド、ジ-β-ナフチルカルボジイミドなどが挙げられる。特に好ましくはジシクロヘキシルカルボジイミドやジイソプロピルカルボジイミドである。多官能性カルボジイミドとしては、重合度3~15のカルボジイミドが好ましい。具体的には、1,5-ナフタレンカルボジイミド、4,4’-ジフェニルメタンカルボジイミド、4,4’-ジフェニルジメチルメタンカルボジイミド、1,3-フェニレンカルボジイミド、1,4-フェニレンジイソシアネート、2,4-トリレンカルボジイミド、2,6-トリレンカルボジイミド、2,4-トリレンカルボジイミドと2,6-トリレンカルボジイミドの混合物、ヘキサメチレンカルボジイミド、シクロヘキサン-1,4-カルボジイミド、キシリレンカルボジイミド、イソホロンカルボジイミド、イソホロンカルボジイミド、ジシクロヘキシルメタン-4,4’-カルボジイミド、メチルシクロヘキサンカルボジイミド、テトラメチルキシリレンカルボジイミド、2,6-ジイソプロピルフェニルカルボジイミド、1,3,5-トリイソプロピルベンゼン-2,4-カルボジイミドなどを例示することができる。カルボジイミド化合物は熱分解によりイソシアネート系ガスが発生するため、耐熱性の高いカルボジイミド化合物が好ましい。耐熱性を高めるためには分子量(重合度)が高いほど好ましく、より好ましくはカルボジイミド化合物の末端を耐熱性の高い構造にすることが好ましい。また、一度熱分解を起こすとさらなる熱分解を起こしやすくなるため、ポリエステル(ポリブチレンテレフタレート系樹脂)の押出温度をなるべく低温下にするなどの工夫が必要である。 Examples of the carbodiimide compound having a carbodiimide group suitable as a terminal blocking agent include a monofunctional carbodiimide and a polyfunctional carbodiimide. Examples of monofunctional carbodiimides include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di-β-naphthylcarbodiimide and the like. Particularly preferred are dicyclohexylcarbodiimide and diisopropylcarbodiimide. As the polyfunctional carbodiimide, carbodiimide having a polymerization degree of 3 to 15 is preferable. Specifically, 1,5-naphthalene carbodiimide, 4,4′-diphenylmethane carbodiimide, 4,4′-diphenyldimethylmethane carbodiimide, 1,3-phenylene carbodiimide, 1,4-phenylene diisocyanate, 2,4-tolylene Carbodiimide, 2,6-tolylene carbodiimide, mixture of 2,4-tolylene carbodiimide and 2,6-tolylene carbodiimide, hexamethylene carbodiimide, cyclohexane-1,4-carbodiimide, xylylene carbodiimide, isophorone carbodiimide, isophorone carbodiimide, Dicyclohexylmethane-4,4′-carbodiimide, methylcyclohexanecarbodiimide, tetramethylxylylenecarbodiimide, 2,6-diisopropylphenylcarbodiimide, 1, , And the like can be exemplified 5- triisopropylbenzene-2,4-carbodiimide. Since a carbodiimide compound generates an isocyanate gas by thermal decomposition, a carbodiimide compound having high heat resistance is preferable. In order to improve heat resistance, it is preferable that the molecular weight (degree of polymerization) is high, and it is more preferable that the terminal of the carbodiimide compound has a structure having high heat resistance. Further, once thermal decomposition occurs, further thermal decomposition is likely to occur. Therefore, it is necessary to devise measures such as setting the extrusion temperature of polyester (polybutylene terephthalate resin) as low as possible.
 また、末端封鎖剤として好適なエポキシ化合物の好ましい例としては、グリシジルエステル化合物やグリシジルエーテル化合物などが挙げられる。グリシジルエステル化合物の具体例としては、安息香酸グリシジルエステル、t-Bu-安息香酸グリシジルエステル、P-トルイル酸グリシジルエステル、シクロヘキサンカルボン酸グリシジルエステル、ペラルゴン酸グリシジルエステル、ステアリン酸グリシジルエステル、ラウリン酸グリシジルエステル、パルミチン酸グリシジルエステル、ベヘン酸グリシジルエステル、バーサティク酸グリシジルエステル、オレイン酸グリシジルエステル、リノール酸グリシジルエステル、リノレイン酸グリシジルエステル、ベヘノール酸グリシジルエステル、ステアロール酸グリシジルエステル、テレフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、フタル酸ジグリシジルエステル、ナフタレンジカルボン酸ジグリシジルエステル、メチルテレフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、シクロヘキサンジカルボン酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、コハク酸ジグリシジルエステル、セバシン酸ジグリシジルエステル、ドデカンジオン酸ジグリシジルエステル、オクタデカンジカルボン酸ジグリシジルエステル、トリメリット酸トリグリシジルエステル、ピロメリット酸テトラグリシジルエステルなどを挙げられ、これらは1種または2種以上を用いることができる。グリシジルエーテル化合物の具体例としては、フェニルグリシジルエ-テル、O-フェニルグリシジルエ-テル、1,4-ビス(β,γ-エポキシプロポキシ)ブタン、1,6-ビス(β,γ-エポキシプロポキシ)ヘキサン、1,4-ビス(β,γ-エポキシプロポキシ)ベンゼン、1-(β,γ-エポキシプロポキシ)-2-エトキシエタン、1-(β,γ-エポキシプロポキシ)-2-ベンジルオキシエタン、2,2-ビス-[р-(β,γ-エポキシプロポキシ)フェニル]プロパンおよび2,2-ビス-(4-ヒドロキシフェニル)プロパンや2,2-ビス-(4-ヒドロキシフェニル)メタンなどのビスフェノールとエピクロルヒドリンの反応で得られるビスグリシジルポリエーテルなどが挙げられ、これらは1種または2種以上を用いることができる。 Also, preferred examples of the epoxy compound suitable as the end-capping agent include glycidyl ester compounds and glycidyl ether compounds. Specific examples of the glycidyl ester compound include benzoic acid glycidyl ester, t-Bu-benzoic acid glycidyl ester, P-toluic acid glycidyl ester, cyclohexanecarboxylic acid glycidyl ester, pelargonic acid glycidyl ester, stearic acid glycidyl ester, and lauric acid glycidyl ester. , Glycidyl palmitate, glycidyl behenate, glycidyl versatate, glycidyl oleate, glycidyl linoleate, glycidyl linolein, glycidyl behenol, glycidyl stearol, diglycidyl terephthalate, isophthalic acid Diglycidyl ester, phthalic acid diglycidyl ester, naphthalenedicarboxylic acid diglycidyl ester Ter, methylterephthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, cyclohexanedicarboxylic acid diglycidyl ester, adipic acid diglycidyl ester, succinic acid diglycidyl ester, sebacic acid diglycidyl ester, dodecane Examples include diionic diglycidyl ester, octadecanedicarboxylic acid diglycidyl ester, trimellitic acid triglycidyl ester, and pyromellitic acid tetraglycidyl ester. These may be used alone or in combination of two or more. Specific examples of the glycidyl ether compound include phenyl glycidyl ether, O-phenyl glycidyl ether, 1,4-bis (β, γ-epoxypropoxy) butane, 1,6-bis (β, γ-epoxypropoxy). ) Hexane, 1,4-bis (β, γ-epoxypropoxy) benzene, 1- (β, γ-epoxypropoxy) -2-ethoxyethane, 1- (β, γ-epoxypropoxy) -2-benzyloxyethane 2,2-bis- [р- (β, γ-epoxypropoxy) phenyl] propane, 2,2-bis- (4-hydroxyphenyl) propane, 2,2-bis- (4-hydroxyphenyl) methane, etc. Bisglycidyl polyether obtained by the reaction of bisphenol and epichlorohydrin, and the like, and these may be used alone or in combination of two or more. Kill.
 また、末端封鎖剤として好適なオキサゾリン化合物としては、ビスオキサゾリン化合物が好ましく、具体的には、2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)、2,2’-ビス(4,4-ジメチル-2-オキサゾリン)、2,2’-ビス(4-エチル-2-オキサゾリン)、2,2’-ビス(4,4’-ジエチル-2-オキサゾリン)、2,2’-ビス(4-プロピル-2-オキサゾリン)、2,2’-ビス(4-ブチル-2-オキサゾリン)、2,2’-ビス(4-ヘキシル-2-オキサゾリン)、2,2’-ビス(4-フェニル-2-オキサゾリン)、2,2’-ビス(4-シクロヘキシル-2-オキサゾリン)、2,2’-ビス(4-ベンジル-2-オキサゾリン)、2,2’-p-フェニレンビス(2-オキサゾリン)、2,2’-m-フェニレンビス(2-オキサゾリン)、2,2’-o-フェニレンビス(2-オキサゾリン)、2,2’-p-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-p-フェニレンビス(4,4-ジメチル-2-オキサゾリン)、2,2’-m-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-m-フェニレンビス(4,4-ジメチル-2-オキサゾリン)、2,2’-エチレンビス(2-オキサゾリン)、2,2’-テトラメチレンビス(2-オキサゾリン)、2,2’-ヘキサメチレンビス(2-オキサゾリン)、2,2’-オクタメチレンビス(2-オキサゾリン)、2,2’-デカメチレンビス(2-オキサゾリン)、2,2’-エチレンビス(4-メチル-2-オキサゾリン)、2,2’-テトラメチレンビス(4,4-ジメチル-2-オキサゾリン)、2,2’-9,9’-ジフェノキシエタンビス(2-オキサゾリン)、2,2’-シクロヘキシレンビス(2-オキサゾリン)、2,2’-ジフェニレンビス(2-オキサゾリン)等を例示することができ、これらの中では、2,2’-ビス(2-オキサゾリン)が、ポリエステル(ポリブチレンテレフタレート系樹脂)との反応性の観点から最も好ましい。さらに、上記で挙げたビスオキサゾリン化合物は本発明の目的を奏する限り、一種を単独で用いても、二種以上を併用してもどちらでも良い。末端封鎖剤とポリブチレンテレフタレート系樹脂を反応させて末端封鎖ポリブチレンテレフタレート系樹脂を得る際には、ポリブチレンテレフタレート系樹脂100質量%に対して、末端封鎖剤の添加濃度は0.25~5質量%が好ましく、より好ましくは0.5~2質量%である。0.25質量%未満であると添加効果が小さく耐湿熱性が低下する問題がある。5質量%より高濃度化するとカルボキシル末端基がかなり少なくなり、層間密着性が低下する問題がある。 Further, as an oxazoline compound suitable as a terminal blocking agent, a bisoxazoline compound is preferable, and specifically, 2,2′-bis (2-oxazoline), 2,2′-bis (4-methyl-2-oxazoline) ), 2,2′-bis (4,4-dimethyl-2-oxazoline), 2,2′-bis (4-ethyl-2-oxazoline), 2,2′-bis (4,4′-diethyl-) 2-oxazoline), 2,2'-bis (4-propyl-2-oxazoline), 2,2'-bis (4-butyl-2-oxazoline), 2,2'-bis (4-hexyl-2- Oxazoline), 2,2'-bis (4-phenyl-2-oxazoline), 2,2'-bis (4-cyclohexyl-2-oxazoline), 2,2'-bis (4-benzyl-2-oxazoline) 2,2'-p-fu Nylenebis (2-oxazoline), 2,2'-m-phenylenebis (2-oxazoline), 2,2'-o-phenylenebis (2-oxazoline), 2,2'-p-phenylenebis (4-methyl) -2-oxazoline), 2,2'-p-phenylenebis (4,4-dimethyl-2-oxazoline), 2,2'-m-phenylenebis (4-methyl-2-oxazoline), 2,2 ' -M-phenylenebis (4,4-dimethyl-2-oxazoline), 2,2'-ethylenebis (2-oxazoline), 2,2'-tetramethylenebis (2-oxazoline), 2,2'-hexa Methylene bis (2-oxazoline), 2,2′-octamethylene bis (2-oxazoline), 2,2′-decamethylene bis (2-oxazoline), 2,2′-ethylene bis (4-methyl) 2-oxazoline), 2,2′-tetramethylenebis (4,4-dimethyl-2-oxazoline), 2,2′-9,9′-diphenoxyethanebis (2-oxazoline), 2,2 '-Cyclohexylenebis (2-oxazoline), 2,2'-diphenylenebis (2-oxazoline) and the like can be exemplified, and among these, 2,2'-bis (2-oxazoline) is Most preferred from the viewpoint of reactivity with polyester (polybutylene terephthalate resin). Furthermore, the bisoxazoline compounds listed above may be used singly or in combination of two or more as long as the object of the present invention is achieved. When a terminal blocker and a polybutylene terephthalate resin are reacted to obtain a terminal block polybutylene terephthalate resin, the concentration of the end blocker added is 0.25 to 5 with respect to 100% by mass of the polybutylene terephthalate resin. % By mass is preferable, and more preferably 0.5 to 2% by mass. If it is less than 0.25% by mass, the effect of addition is small, and there is a problem that the heat and humidity resistance is lowered. When the concentration is higher than 5% by mass, the carboxyl end groups are considerably reduced, and there is a problem that interlayer adhesion is lowered.
 また、本発明の積層シートのP1層およびP3層には、本発明の効果が損なわれない範囲内でその他の添加剤(例えば、耐熱安定剤、紫外線吸収剤、耐候安定剤、有機の易滑剤、顔料、染料、充填剤、帯電防止剤、核剤などが挙げられる。但し、本発明にいう無機粒子は、ここでいう添加剤には含まれない)を含有していてもよい。例えば、添加剤として紫外線吸収剤を選択して、P1層及び/又はP3層に含有させた場合には、本発明の積層シートの耐紫外線性をより高めることが可能となる。また、P1層及び/又はP3層に帯電防止剤などを含有させると、耐電圧向上が期待できる。 In addition, the P1 layer and the P3 layer of the laminated sheet of the present invention may have other additives (for example, a heat stabilizer, an ultraviolet absorber, a weather stabilizer, an organic lubricant, as long as the effects of the present invention are not impaired). Pigments, dyes, fillers, antistatic agents, nucleating agents, etc. However, the inorganic particles referred to in the present invention may not be included in the additives herein. For example, when an ultraviolet absorber is selected as an additive and contained in the P1 layer and / or the P3 layer, the ultraviolet resistance of the laminated sheet of the present invention can be further improved. Further, when an antistatic agent or the like is contained in the P1 layer and / or the P3 layer, an improvement in withstand voltage can be expected.
 また、P1層が結晶核剤を0.1~5質量%含有することが好ましい。結晶核剤とは、タルク、脂肪族カルボン酸アミド、脂肪族カルボン酸塩、脂肪族アルコール、脂肪族カルボン酸エステル、ソルビトール系化合物、有機リン酸化合物といった群から好ましく選ぶことができる。中でも本発明では、結晶核剤が、脂肪族カルボン酸アミド、脂肪族カルボン酸塩およびソルビトール系化合物からなる1種の結晶核剤であることが好ましい。結晶核剤が0.1質量%未満であると結晶性が低く強度が得られない場合がある。5質量%より大きいと結晶性が高く脆化しやすくなる。 Further, the P1 layer preferably contains 0.1 to 5% by mass of a crystal nucleating agent. The crystal nucleating agent can be preferably selected from the group of talc, aliphatic carboxylic acid amide, aliphatic carboxylate, aliphatic alcohol, aliphatic carboxylic acid ester, sorbitol compound, and organic phosphoric acid compound. In particular, in the present invention, the crystal nucleating agent is preferably one type of crystal nucleating agent comprising an aliphatic carboxylic acid amide, an aliphatic carboxylate and a sorbitol compound. If the crystal nucleating agent is less than 0.1% by mass, the crystallinity may be low and strength may not be obtained. When it is larger than 5% by mass, the crystallinity is high and brittleness tends to occur.
 ここで、脂肪族カルボン酸アミドとしては、ラウリン酸アミド、パルミチン酸アミド、オレイン酸アミド、ステアリン酸アミド、エルカ酸アミド、ベヘニン酸アミド、リシノール酸アミド、ヒドロキシステアリン酸アミドのような脂肪族モノカルボン酸アミド類、N-オレイルパルミチン酸アミド、N-オレイルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルエルカ酸アミド、メチロールステアリン酸アミド、メチロールベヘニン酸アミドのようなN-置換脂肪族モノカルボン酸アミド類、メチレンビスステアリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスステアリン酸アミド、エチレンビスエルカ酸アミド、エチレンビスベヘニン酸アミド、エチレンビスイソステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、ブチレンビスステアリン酸アミド、ヘキサメチレンビスオレイン酸アミド、へキサメチレンビスステアリン酸アミド、へキサメチレンビスベヘニン酸アミド、へキサメチレンビスヒドロキシステアリン酸アミド、m-キシリレンビスステアリン酸アミド、m-キシリレンビス-12-ヒドロキシステアリン酸アミドのような脂肪族ビスカルボン酸アミド類、N,N´-ジオレイルセバシン酸アミド、N,N´-ジオレイルアジピン酸アミド、N,N´-ジステアリルアジピン酸アミド、N,N´-ジステアリルセバシン酸アミド、N,N´-ジステアリルイソフタル酸アミド、N,N´-ジステアリルテレフタル酸アミドのようなN-置換脂肪族カルボン酸ビスアミド類、N-ブチル-N´-ステアリル尿素、N-プロピル-N´-ステアリル尿素、N-ステアリル-N´-ステアリル尿素、N-フェニル-N´-ステアリル尿素、キシリレンビスステアリル尿素、トルイレンビスステアリル尿素、ヘキサメチレンビスステアリル尿素、ジフェニルメタンビスステアリル尿素、ジフェニルメタンビスラウリル尿素のようなN-置換尿素類を使用することができる。これらは一種類又は二種類以上の混合物であってもよい。この中でも、脂肪族モノカルボン酸アミド類、N-置換脂肪族モノカルボン酸アミド類、脂肪族ビスカルボン酸アミド類が好適に用いられ、特に、パルミチン酸アミド、ステアリン酸アミド、エルカ酸アミド、ベヘニン酸アミド、リシノール酸アミド、ヒドロキシステアリン酸アミド、N-オレイルパルミチン酸アミド、N-ステアリルエルカ酸アミド、エチレンビスカプリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスラウリン酸アミド、エチレンビスエルカ酸アミド、m-キシリレンビスステアリン酸アミド、m-キシリレンビス-12-ヒドロキシステアリン酸アミドが好適に用いられる。 Here, aliphatic carboxylic acid amides include aliphatic monocarboxylic acids such as lauric acid amide, palmitic acid amide, oleic acid amide, stearic acid amide, erucic acid amide, behenic acid amide, ricinoleic acid amide, and hydroxy stearic acid amide. Acid amides, N-oleyl palmitic acid amide, N-oleyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl oleic acid amide, N-stearyl stearic acid amide, N-stearyl erucic acid amide, methylol stearic acid amide N-substituted aliphatic monocarboxylic amides such as methylol behenic acid amide, methylene bis stearic acid amide, ethylene bis lauric acid amide, ethylene bis capric acid amide, ethylene bis oleic acid amide, ethylene bis Arynic acid amide, ethylene biserucic acid amide, ethylene bis behenic acid amide, ethylene bisisostearic acid amide, ethylene bishydroxystearic acid amide, butylene bisstearic acid amide, hexamethylene bisoleic acid amide, hexamethylene bisstearic acid Aliphatic biscarboxylic amides such as amide, hexamethylene bisbehenic acid amide, hexamethylene bishydroxystearic acid amide, m-xylylene bis-stearic acid amide, m-xylylene bis-12-hydroxystearic acid amide, N, N′-dioleyl sebacic acid amide, N, N′-dioleyl adipic acid amide, N, N′-distearyl adipic acid amide, N, N′-distearyl sebacic acid amide, N, N′-di Stearyl isophthalic acid amide N-substituted aliphatic carboxylic acid bisamides such as N, N'-distearyl terephthalic acid amide, N-butyl-N'-stearyl urea, N-propyl-N'-stearyl urea, N-stearyl-N'- Use N-substituted ureas such as stearyl urea, N-phenyl-N'-stearyl urea, xylylene bisstearyl urea, toluylene bisstearyl urea, hexamethylene bisstearyl urea, diphenylmethane bisstearyl urea, diphenylmethane bislauryl urea can do. These may be one kind or a mixture of two or more kinds. Of these, aliphatic monocarboxylic acid amides, N-substituted aliphatic monocarboxylic acid amides, and aliphatic biscarboxylic acid amides are preferably used, particularly palmitic acid amide, stearic acid amide, erucic acid amide, and behenic acid. Amide, ricinoleic acid amide, hydroxystearic acid amide, N-oleyl palmitic acid amide, N-stearyl erucic acid amide, ethylene biscapric acid amide, ethylene bisoleic acid amide, ethylene bislauric acid amide, ethylene biserucic acid amide, m -Xylylene bis-stearic acid amide and m-xylylene bis-12-hydroxystearic acid amide are preferably used.
 脂肪族カルボン酸塩の具体例としては、酢酸ナトリウム、酢酸カリウム、酢酸マグネシウム、酢酸カルシウム等の酢酸塩、ラウリン酸ナトリウム、ラウリン酸カリウム、ラウリン酸水素カリウム、ラウリン酸マグネシウム、ラウリン酸カルシウム、ラウリン酸亜鉛、ラウリン酸銀等のラウリン酸塩、ミリスチン酸リチウム、ミリスチン酸ナトリウム、ミリスチン酸水素カリウム、ミリスチン酸マグネシウム、ミリスチン酸カルシム、ミリスチン酸亜鉛、ミリスチン酸銀等のミリスチン酸塩、パルミチン酸リチウム、パルミチン酸カリウム、パルミチン酸マグネシウム、パルミチン酸カルシウム、パルミチン酸亜鉛、パルミチン酸銅、パルミチン酸鉛、パルミチン酸タリウム、パルミチン酸コバルト等のパルミチン酸塩、オレイン酸ナトリウム、オレイン酸カリウム、オレイン酸マグネシウム、オレイン酸カルシウム、オレイン酸亜鉛、オレイン酸鉛、オレイン酸タリウム、オレイン酸銅、オレイン酸ニッケル等のオレイン酸塩、ステアリン酸ナトリウム、ステアリン酸リチウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸アルミニウム、ステアリン酸タリウム、ステアリン酸鉛、ステアリン酸ニッケル、ステアリン酸ベリリウム等のステアリン酸塩、イソステアリン酸ナトリウム、イソステアリン酸カリウム、イソステアリン酸マグネシウム、イソステアリン酸カルシウム、イソステアリン酸バリウム、イソステアリン酸アルミニウム、イソステアリン酸亜鉛、イソステアリン酸ニッケル等のイソステアリン酸塩、ベヘニン酸ナトリウム、ベヘニン酸カリウム、ベヘニン酸マグネシウム、ベヘニン酸カルシウム、ベヘニン酸バリウム、ベヘニン酸アルミニウム、ベヘニン酸亜鉛、ベヘニン酸ニッケル等のベヘニン酸塩、モンタン酸ナトリウム、モンタン酸カリウム、モンタン酸マグネシウム、モンタン酸カルシウム、モンタン酸バリウム、モンタン酸アルミニウム、モンタン酸亜鉛、モンタン酸ニッケル等のモンタン酸塩等を使用することができる。これらは一種類又は二種類以上の混合物であってもよい。特に、ステアリン酸の塩類やモンタン酸の塩類が好適に用いられ、特に、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸亜鉛、ステアリン酸バリウム、モンタン酸ナトリウムなどが好適に用いられる。 Specific examples of the aliphatic carboxylate include acetates such as sodium acetate, potassium acetate, magnesium acetate, calcium acetate, sodium laurate, potassium laurate, potassium hydrogen laurate, magnesium laurate, calcium laurate, zinc laurate , Laurates such as silver laurate, lithium myristate, sodium myristate, potassium hydrogen myristate, magnesium myristate, calcium myristate, zinc myristate, silver myristate, myristate, lithium palmitate, palmitic acid Palmitates such as potassium, magnesium palmitate, calcium palmitate, zinc palmitate, copper palmitate, lead palmitate, thallium palmitate, cobalt palmitate, etc., sodium oleate Oleates such as potassium oleate, magnesium oleate, calcium oleate, zinc oleate, lead oleate, thallium oleate, copper oleate, nickel oleate, sodium stearate, lithium stearate, magnesium stearate, Stearates such as calcium stearate, barium stearate, aluminum stearate, thallium stearate, lead stearate, nickel stearate, beryllium stearate, sodium isostearate, potassium isostearate, magnesium isostearate, calcium isostearate, isostearic acid Isostearates such as barium, aluminum isostearate, zinc isostearate, nickel isostearate, sodium behenate Behenates such as lithium, potassium behenate, magnesium behenate, calcium behenate, barium behenate, aluminum behenate, zinc behenate, nickel behenate, sodium montanate, potassium montanate, magnesium montanate, calcium montanate Further, montanates such as barium montanate, aluminum montanate, zinc montanate and nickel montanate can be used. These may be one kind or a mixture of two or more kinds. In particular, stearic acid salts and montanic acid salts are preferably used, and in particular, sodium stearate, potassium stearate, zinc stearate, barium stearate, sodium montanate, and the like are suitably used.
 脂肪族アルコールの具体例としては、ペンタデシルアルコール、セチルアルコール、ヘプタデシルアルコール、ステアリルアルコール、ノナデシルアルコール、エイコシルアルコール、セリルアルコール、メリシルアルコール等の脂肪族モノアルコール類、1,6-ヘキサンジオール、1,7-へプタンジール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール等の脂肪族多価アルコール類、シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,4-ジオール等の環状アルコール類等を使用することができる。これらは一種類又は二種類以上の混合物であってもよい。特に脂肪族モノアルコール類が好適に用いられ、特にステアリルアルコールが好適に用いられる。 Specific examples of aliphatic alcohols include aliphatic monoalcohols such as pentadecyl alcohol, cetyl alcohol, heptadecyl alcohol, stearyl alcohol, nonadecyl alcohol, eicosyl alcohol, seryl alcohol, and melyl alcohol, 1,6-hexane. Diols, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, aliphatic polyhydric alcohols such as 1,10-decanediol, cyclopentane-1,2-diol, cyclohexane-1 , 2-diols, cyclic alcohols such as cyclohexane-1,4-diol, and the like can be used. These may be one kind or a mixture of two or more kinds. In particular, aliphatic monoalcohols are preferably used, and stearyl alcohol is particularly preferably used.
 また、かかる脂肪族カルボン酸エステルの具体例としては、ラウリン酸セチルエステル、ラウリン酸フェナシルエステル、ミリスチン酸セチルエステル、ミリスチン酸フェナシルエステル、パルミチン酸イソプロピリデンエステル、パルミチン酸ドデシルエステル、パルミチン酸テトラドデシルエステル、パルミチン酸ペンタデシルエステル、パルミチン酸オクタデシルエステル、パルミチン酸セチルエステル、パルミチン酸フェニルエステル、パルミチン酸フェナシルエステル、ステアリン酸セチルエステル、ベヘニン酸エチルエステル等の脂肪族モノカルボン酸エステル類、モノラウリン酸グリコール、モノパルミチン酸グリコール、モノステアリン酸グリコール等のエチレングリコールのモノエステル類、ジラウリン酸グリコール、ジパルミチン酸グリコール、ジステアリン酸グリコール等のエチレングリコールのジエステル類、モノラウリン酸グリセリンエステル、モノミリスチン酸グリセリンエステル、モノパルミチン酸グリセリンエステル、モノステアリン酸グリセリンエステル等のグリセリンのモノエステル類、ジラウリン酸グリセリンエステル、ジミリスチン酸グリセリンエステル、ジパルミチン酸グリセリンエステル、ジステアリン酸グリセリンエステル等のグリセリンのジエステル類、トリラウリン酸グリセリンエステル、トリミリスチン酸グリセリンエステル、トリパルミチン酸グリセリンエステル、トリステアリン酸グリセリンエステル、パルミトジオレイン、パルミトジステアリン、オレオジステアリン等のグリセリンのトリエステル類等を使用することができる。これらは一種類又は二種類以上の混合物であってもよい。 Specific examples of the aliphatic carboxylic acid ester include lauric acid cetyl ester, lauric acid phenacyl ester, myristic acid cetyl ester, myristic acid phenacyl ester, palmitic acid isopropylidene ester, palmitic acid dodecyl ester, and palmitic acid tetraethyl ester. Aliphatic monocarboxylic acid esters such as dodecyl ester, palmitic acid pentadecyl ester, palmitic acid octadecyl ester, palmitic acid cetyl ester, palmitic acid phenyl ester, palmitic acid phenacyl ester, stearic acid cetyl ester, behenic acid ethyl ester, monolaurin Monoesters of ethylene glycol such as acid glycol, glycol monopalmitate, glycol monostearate, glycol dilaurate, Diesters of ethylene glycol such as glycol palmitate and glycol distearate, monolaurate glycerin ester, monomyristic acid glycerin ester, monopalmitic acid glycerin ester, glycerin monoesters such as monostearic acid glycerin ester, dilauric acid glycerin ester, Glycerin diesters such as dimyristic acid glycerin ester, dipalmitic acid glycerin ester, distearic acid glycerin ester, trilauric acid glycerin ester, trimyristic acid glycerin ester, tripalmic acid glycerin ester, tristearic acid glycerin ester, palmitodiolein, Use glycerin triesters such as palmitodistearin and oleodistearin. Door can be. These may be one kind or a mixture of two or more kinds.
 また、かかる脂肪族/芳香族カルボン酸ヒドラジドの具体例としては、セバシン酸ジ安息香酸ヒドラジド、メラミン系化合物の具体例としては、メラミンシアヌレート、ポリビン酸メラミン、フェニルホスホン酸金属塩の具体例としては、フェニルホスホン酸亜鉛塩、フェニルホスホン酸カルシウム塩、フェニルホスホン酸マグネシウム塩、フェニルホスホン酸マグネシウム塩等を使用することができる。 Specific examples of such aliphatic / aromatic carboxylic acid hydrazides include sebacic acid dibenzoic acid hydrazide, specific examples of melamine compounds, specific examples of melamine cyanurate, polymelate melamine, and phenylphosphonic acid metal salts. For example, phenylphosphonic acid zinc salt, phenylphosphonic acid calcium salt, phenylphosphonic acid magnesium salt, and phenylphosphonic acid magnesium salt can be used.
 ソルビトール系化合物としては、1,3-ジ(P-メチルベンジリデン)ソルビトール、2,4-ジ(P-メチルベンジリデン)ソルビトール、1,3-ジベンジリデンソルビトール、2,4-ジベンジリデンソルビトール、1,3-ジ(P-エチルジベンジリデン)ソルビトール、2,4-ジ(P-エチルジベンジリデン)ソルビトールなどが挙げられる。 Examples of sorbitol compounds include 1,3-di (P-methylbenzylidene) sorbitol, 2,4-di (P-methylbenzylidene) sorbitol, 1,3-dibenzylidenesorbitol, 2,4-dibenzylidenesorbitol, Examples include 3-di (P-ethyldibenzylidene) sorbitol and 2,4-di (P-ethyldibenzylidene) sorbitol.
 また、有機リン酸化合物としては、リン酸ビス(4-t-ブチルフェニル)ナトリウム、リン酸-2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)ナトリウム、環状有機リン酸エステル塩基性多価金属塩とアルカリ金属カルボン酸塩、アルカリ金属β-ジケトナート及びアルカリ金属β-ケト酢酸エステル塩有機カルボン酸金属塩の1種とから選ばれる混合物などが挙げられる。 Examples of the organic phosphate compound include sodium bis (4-t-butylphenyl) phosphate, sodium 2,2′-methylenebis (4,6-di-t-butylphenyl) phosphate, and cyclic organic phosphate ester Examples thereof include a mixture selected from basic polyvalent metal salts and alkali metal carboxylates, alkali metal β-diketonates and alkali metal β-ketoacetate organic carboxylic acid metal salts.
 上記した中でも、強度の点からモンタン酸ナトリウムが好ましく用いられる。 Among the above, sodium montanate is preferably used from the viewpoint of strength.
 本発明では、接着ポリオレフィン系樹脂を主たる構成成分とする層(P2層)を有し、さらにP1層と後述するP3層とが、P2層を介して接していることが好ましい。ここでP1層とP3層とがP2層を介して接しているとは、P1層、P2層、及びP3層が、この順に直接積層されていることを意味する。 In the present invention, it is preferable to have a layer (P2 layer) mainly composed of an adhesive polyolefin-based resin, and further, the P1 layer and a P3 layer described later are in contact with each other via the P2 layer. Here, the P1 layer and the P3 layer are in contact with each other via the P2 layer means that the P1 layer, the P2 layer, and the P3 layer are directly laminated in this order.
 また接着ポリオレフィン系樹脂とは、低結晶性軟質重合体、アクリル系接着剤、及びエチレン酢酸ビニル系共重合体からなる群より選ばれる1つを意味するため、接着ポリオレフィン系樹脂を主たる構成成分とする層(P2層)とは、低結晶性軟質重合体、アクリル系接着剤、及びエチレン酢酸ビニル系共重合体からなる群より選ばれる1つを主たる構成成分とする層である。なおP2層について、低結晶性軟質重合体、アクリル系接着剤、及びエチレン酢酸ビニル系共重合体からなる群より選ばれる1つを主たる構成成分とするとは、該層の全成分100質量%において、低結晶性軟質重合体、アクリル系接着剤、及びエチレン酢酸ビニル系共重合体からなる群より選ばれる1つを50質量%を超えて100質量%以下含有していることを意味する。 The adhesive polyolefin-based resin means one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate-based copolymer. The layer (P2 layer) is a layer mainly composed of one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer. In addition, regarding the P2 layer, the main constituent component is one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer. It means that one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer exceeds 50% by mass and is equal to or less than 100% by mass.
 P2層の主たる構成成分の一つである低結晶性軟質重合体としては、例えば、酸変性ポリオレフィン、不飽和ポリオレフィンなどを挙げることができる。またP2層の主たる構成成分の一つであるアクリル系接着剤としては、エチレン-アクリル酸エステル-無水マレイン酸3元共重合体などを挙げることができる。中でもP1層とP3層の両層に接着するという観点から、P2層は酸変性ポリオレフィンを主たる構成成分とすることが好ましい。ここで酸変性ポリオレフィンとしては、例えば市販品では三井化学(株)社製“アドマー”や三菱化学(株)社製の“モディック”、デュポン(株)社製”バイネル”が挙げられる。 Examples of the low crystalline soft polymer that is one of the main components of the P2 layer include acid-modified polyolefins and unsaturated polyolefins. Examples of the acrylic adhesive that is one of the main components of the P2 layer include ethylene-acrylic acid ester-maleic anhydride terpolymer. Among these, from the viewpoint of adhering to both the P1 layer and the P3 layer, the P2 layer is preferably made of acid-modified polyolefin as a main constituent. Examples of the acid-modified polyolefin include “Admer” manufactured by Mitsui Chemicals, Inc., “Modic” manufactured by Mitsubishi Chemical, and “Binnel” manufactured by DuPont.
 また、P2層は、接着ポリオレフィン系樹脂以外に、さらにポリオレフィン系エラストマーを含有することが好ましい。ポリオレフィン系エラストマーとは、一般的にポリプロピレンにエチレン-プロピレンゴムを微分散させたもの、またはポリプロピレンに他のα-オレフィンを共重合させたものなどをいう。これらポリオレフィン系エラストマーは、P2層の全成分100質量%に対して、0.1質量%以上20質量%以下の割合で含有されることが好ましい。ポリオレフィン系エラストマーを含むことにより、P2層に粘着性を付与することができ、P1層とP2層との密着性及びP1層とP2層との密着性が向上する。P2層中のポリオレフィン系エラストマーの含有量は、好ましくは5質量%以上20質量%以下である。ポリオレフィン系エラストマーは市販品でもよく、例えば三菱化学(株)社製“サーモラン”、“ゼラス”、住友化学(株)社製“エクセレン”、“タフセレン”、“エスプレン”、クラレ製“ハイブラー”、“セプトン”、三井化学(株)社製“ノティオ”などが好ましく挙げられる。 The P2 layer preferably further contains a polyolefin elastomer in addition to the adhesive polyolefin resin. The polyolefin-based elastomer generally refers to one obtained by finely dispersing ethylene-propylene rubber in polypropylene or one obtained by copolymerizing polypropylene with another α-olefin. These polyolefin-based elastomers are preferably contained in a proportion of 0.1% by mass or more and 20% by mass or less with respect to 100% by mass of all components of the P2 layer. By including the polyolefin-based elastomer, it is possible to impart adhesiveness to the P2 layer, and the adhesion between the P1 layer and the P2 layer and the adhesion between the P1 layer and the P2 layer are improved. The content of the polyolefin-based elastomer in the P2 layer is preferably 5% by mass or more and 20% by mass or less. The polyolefin-based elastomer may be a commercially available product, for example, “Thermolan”, “Zeras” manufactured by Mitsubishi Chemical Corporation, “Excellen”, “Tough Selenium”, “Esplen”, “Hibler” manufactured by Kuraray, Preferred examples include “Septon” and “Notio” manufactured by Mitsui Chemicals.
 本発明におけるP3層は、ポリオレフィン系樹脂を主たる構成成分とする層である。本発明におけるポリオレフィン系樹脂とは、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、ポリシクロオレフィン、ポリヘキセン、ポリオクテン、ポリデセン、ポリドデセン等が挙げられる。ここで、P2層の主たる構成成分である接着ポリオレフィン系樹脂は、P3層の主たる構成成分であるポリオレフィン系樹脂には該当しないものとする。この中でも加工が容易で比較的安価であることなどから、P3層の主たる構成成分であるポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレンであることが好ましい。これらポリオレフィン系樹脂は、混合および他のオレフィン成分を共重合しても良く、例えばエチレン-プロピレンコポリマー、エチレン-プロピレン-ブテンコポリマーとすると樹脂の融点を低下させることができ、封止材との密着性が向上し好ましい。 The P3 layer in the present invention is a layer mainly composed of a polyolefin-based resin. Examples of the polyolefin resin in the present invention include polyethylene, polypropylene, polybutene, polymethylpentene, polycycloolefin, polyhexene, polyoctene, polydecene, and polydodecene. Here, the adhesive polyolefin resin that is the main constituent of the P2 layer does not correspond to the polyolefin resin that is the main constituent of the P3 layer. Among these, since the processing is easy and relatively inexpensive, the polyolefin resin that is the main component of the P3 layer is preferably polyethylene or polypropylene. These polyolefin-based resins may be mixed and copolymerized with other olefin components. For example, when an ethylene-propylene copolymer or ethylene-propylene-butene copolymer is used, the melting point of the resin can be lowered, and adhesion with a sealing material can be reduced. It is preferable because of improved properties.
 なおP3層について、ポリオレフィン系樹脂を主たる構成成分とするとは、該層の全成分100質量%において、ポリオレフィン系樹脂を50質量%を超えて100質量%以下含有していることを意味する。 For the P3 layer, the main component of polyolefin resin means that 100% by mass of the total component of the layer contains more than 50% by mass and 100% by mass or less of polyolefin resin.
 本発明の積層シートを構成するP3層は、0.1質量%以上30質量%以下の範囲で無機粒子を含有することが好ましい。P3層中の無機粒子の含有量は、より好ましくは2質量%以上25質量%以下、さらに好ましくは5質量%以上20質量%以下である。この無機粒子は、その目的に応じて必要な機能をシートに付与するために用いられる。P3層中の無機粒子の含有量が30質量%超であると、封止材との密着性が低下したりすることがある。P3層中の無機粒子の含有量が0.1質量%未満であると、無機粒子を含有させたことによる効果が得られにくく、黄変が起こることがある。 The P3 layer constituting the laminated sheet of the present invention preferably contains inorganic particles in the range of 0.1% by mass to 30% by mass. The content of inorganic particles in the P3 layer is more preferably 2% by mass or more and 25% by mass or less, and further preferably 5% by mass or more and 20% by mass or less. These inorganic particles are used for imparting necessary functions to the sheet depending on the purpose. When the content of the inorganic particles in the P3 layer is more than 30% by mass, the adhesion with the sealing material may be lowered. When the content of the inorganic particles in the P3 layer is less than 0.1% by mass, it is difficult to obtain the effect due to the inclusion of the inorganic particles, and yellowing may occur.
 さらにP3層が粒子径3μm以上20μm以下の無機粒子を5~30質量%含有することが好ましい。ここで、粒子径とは、レーザー解析・散乱法によって粒度分布を求め、粒度分布における積算値50%での平均粒径をいう。3μm以上20μm以下の無機粒子が5質量%未満では機械強度が小さくなることがある。3μm以上20μm以下の無機粒子が30質量%より大きいと表面が荒れて封止剤との密着性が低下することがある。また、P3層に接着ポリオレフィン系樹脂を0.5~5質量%含有することが好ましい。接着ポリオレフィン系樹脂は3μm以上20μm以下の無機粒子の分散助剤として作用する場合が有り0.5質量%未満では3μm以上20μm以下の無機粒子の分散不良により機械強度が低下することがある。5質量%より大きいと耐熱性の低下することがある。ここでいう接着ポリオレフィン系樹脂はP2層の接着ポリオレフィン系樹脂で定義したものと同様のものである。 Further, it is preferable that the P3 layer contains 5 to 30% by mass of inorganic particles having a particle diameter of 3 μm or more and 20 μm or less. Here, the particle size refers to an average particle size at an integrated value of 50% in a particle size distribution obtained by laser analysis / scattering method. If the inorganic particles having a size of 3 μm or more and 20 μm or less are less than 5% by mass, the mechanical strength may be reduced. If the inorganic particles having a size of 3 μm or more and 20 μm or less are larger than 30% by mass, the surface may be roughened and the adhesion with the sealant may be lowered. The P3 layer preferably contains 0.5 to 5% by mass of an adhesive polyolefin resin. The adhesive polyolefin-based resin may act as a dispersion aid for inorganic particles having a size of 3 μm or more and 20 μm or less. If it is less than 0.5% by mass, the mechanical strength may decrease due to poor dispersion of the inorganic particles of 3 μm or more and 20 μm or less. If it is larger than 5% by mass, the heat resistance may decrease. The adhesive polyolefin resin here is the same as that defined for the P2 layer adhesive polyolefin resin.
 本発明の積層シートにおける酢酸透過率Pa(g/m/day)とは、酢酸を飽和蒸気圧状態(85℃)とした際の、酢酸の透過率を意味する。そして本発明の積層シートは、85℃における酢酸透過率Paが以下の式(1)を満たすことが好ましい。
(1)200≦Pa
 本発明の積層シートはバックシートとして使用した際に、封止材から発生した酢酸が太陽電池セルに影響を与える前に積極的にバックシートから抜けることが重要であり、恒温恒湿試験中の発電性能低下抑制の観点から、本発明の積層シートの酢酸透過率Paは200g/m/day以上であることが重要である。また、更なる発電性能低下抑制の観点から、本発明の積層シートの酢酸透過率Paは800g/m/day以上であることが好ましい。一方で、酢酸透過率Paは大きいほど好ましいが、式(1)だけでなく後述する水蒸気透過率Pwに関する式(2)も同時に満たすことを考慮すると、酢酸透過率Paは1500g/m/day以下であることが好ましい。
The acetic acid permeability Pa (g / m 2 / day) in the laminated sheet of the present invention means the acetic acid permeability when acetic acid is in a saturated vapor pressure state (85 ° C.). And as for the lamination sheet of this invention, it is preferable that the acetic acid permeability Pa in 85 degreeC satisfy | fills the following formula | equation (1).
(1) 200 ≦ Pa
When the laminated sheet of the present invention is used as a back sheet, it is important that the acetic acid generated from the encapsulant positively escapes from the back sheet before it affects the solar cells. From the viewpoint of suppressing the decrease in power generation performance, it is important that the laminated sheet of the present invention has an acetic acid permeability Pa of 200 g / m 2 / day or more. Moreover, from the viewpoint of further suppressing power generation performance degradation, the acetic acid permeability Pa of the laminated sheet of the present invention is preferably 800 g / m 2 / day or more. On the other hand, the acetic acid permeability Pa is preferably as large as possible. However, considering that not only the expression (1) but also the expression (2) regarding the water vapor permeability Pw described later is satisfied at the same time, the acetic acid permeability Pa is 1500 g / m 2 / day. The following is preferable.
 本発明の積層シートにおける水蒸気透過率Pw(g/m/day)とは、40℃90%RHの環境下における水蒸気の透過率を意味する。そして本発明の積層シートは、40℃90%RHにおける水蒸気透過率Pw(g/m/day)が、以下の式(2)を満たすことが好ましい。
(2)Pw≦2.5
 本発明の積層シートは、水分による太陽電池モジュール内部の腐食、特に太陽電池セルの集電電極部の腐食による変色を抑制する観点から、本発明の積層シートの水蒸気透過率Pwは2.5g/m/day以下であることが好ましい。また、更なるセルの集電電極の変色抑制の観点から、2.0g/m/day以下であることが好ましい。一方で、水蒸気透過率Pwは小さいほど好ましいが、式(2)だけでなく、前述の酢酸透過率Paに関する式(1)も同時に満たすことを考慮すると、水蒸気透過率Pwは0.5g/m/day以上であることが好ましい。
The water vapor transmission rate Pw (g / m 2 / day) in the laminated sheet of the present invention means the water vapor transmission rate in an environment of 40 ° C. and 90% RH. And as for the laminated sheet of this invention, it is preferable that the water-vapor-permeation rate Pw (g / m < 2 > / day) in 40 degreeC90% RH satisfy | fills the following formula | equation (2).
(2) Pw ≦ 2.5
In the laminated sheet of the present invention, the water vapor permeability Pw of the laminated sheet of the present invention is 2.5 g / in, from the viewpoint of suppressing corrosion inside the solar cell module due to moisture, particularly discoloration due to corrosion of the collecting electrode portion of the solar battery cell. It is preferably m 2 / day or less. Moreover, it is preferable that it is 2.0 g / m < 2 > / day or less from a viewpoint of discoloration suppression of the current collection electrode of the further cell. On the other hand, the water vapor transmission rate Pw is preferably as small as possible. However, considering not only the equation (2) but also the equation (1) relating to the acetic acid transmission rate Pa described above, the water vapor transmission rate Pw is 0.5 g / m. 2 / day or more is preferable.
 本発明の積層シートを構成するP1層の厚みは80μm以上であることが好ましい。80μm未満では耐熱性が低下することがある。本発明の積層シートを構成するP2層の厚みは15μm以上50μm以下であることが好ましい。15μm未満では層間の密着性が低下することがある。P2層の厚みが50μmより大きいと耐熱性が低下することがある。本発明の積層シートを構成するP3層の厚みは50μm以上であることが好ましい。50μm未満では封止材との密着性が低下することがある。 The thickness of the P1 layer constituting the laminated sheet of the present invention is preferably 80 μm or more. If it is less than 80 μm, the heat resistance may decrease. The thickness of the P2 layer constituting the laminated sheet of the present invention is preferably 15 μm or more and 50 μm or less. If it is less than 15 μm, the adhesion between the layers may be lowered. When the thickness of the P2 layer is larger than 50 μm, the heat resistance may be lowered. The thickness of the P3 layer constituting the laminated sheet of the present invention is preferably 50 μm or more. If it is less than 50 micrometers, adhesiveness with a sealing material may fall.
 本発明の積層シートは、P1層とP3層とを有することが重要である。そして本発明における積層シートの積層構成は、少なくともP1層が表層に位置し、P1層とは逆表層にP3層が位置した構成であることが好ましい。ここで、P1層とは逆表層にP3層が位置するとは、P1層が積層シートの一方の最表層に位置し、他方の最表層にP3層が位置することを意味する。 It is important that the laminated sheet of the present invention has a P1 layer and a P3 layer. And the laminated structure of the laminated sheet in the present invention is preferably a structure in which at least the P1 layer is located on the surface layer and the P3 layer is located on the opposite surface layer to the P1 layer. Here, the P1 layer is located on the reverse surface layer of the P1 layer means that the P1 layer is located on one outermost layer of the laminated sheet and the P3 layer is located on the other outermost layer.
 また、本発明の積層シートは、他のフィルム等と積層した積層体することができる。このような積層体においても、P1層はいずれか一方の表層に設けられる積層構成を取ることが好ましい。他のフィルムの例として、機械的強度を高めるためのポリエステル層、帯電防止層、他素材との密着層、耐紫外線性をさらに向上させるための耐紫外線層、難燃性付与のための難燃層、耐衝撃性や耐擦過性を高めるためのハードコート層など、用途に応じて、任意に選択して用いることができる。本発明の積層シートを、他のフィルム等と積層した積層体とした場合の具体例として、本発明の積層シートを太陽電池バックシートとして用いる場合は、他のシート材料や、発電素子を埋包している封止材(例えばエチレンビニルアセテート)との密着性を更に向上させるため易接着層、耐紫外線層、難燃層の他、絶縁性の指標である部分放電現象の発生する電圧を向上させる導電層を形成させることなどが挙げられる。 Also, the laminated sheet of the present invention can be a laminated body laminated with another film or the like. Also in such a laminated body, it is preferable that the P1 layer has a laminated structure provided on any one of the surface layers. Examples of other films include polyester layers for increasing mechanical strength, antistatic layers, adhesion layers with other materials, UV resistant layers for further improving UV resistance, and flame resistance for imparting flame resistance A layer, a hard coat layer for improving impact resistance and scratch resistance, and the like can be arbitrarily selected and used depending on applications. As a specific example when the laminated sheet of the present invention is a laminated body laminated with another film or the like, when the laminated sheet of the present invention is used as a solar battery backsheet, other sheet materials or power generation elements are embedded. In order to further improve the adhesion to the sealing material (for example, ethylene vinyl acetate), in addition to the easy adhesion layer, UV-resistant layer, flame retardant layer, the voltage at which partial discharge phenomenon, which is an index of insulation, is generated is improved. For example, a conductive layer to be formed may be formed.
 次に、本発明の積層シートの製造方法について例を挙げて説明する。本発明の積層シートにおいてP1層、P2層、P3層を積層する方法としては、例えば、ポリブチレンテレフタレート系樹脂を主たる構成成分とするP1層用の原料、接着ポリオレフィン系樹脂を主たる構成成分とするP2層用の原料、およびポリオレフィン系樹脂を主たる構成成分とするP3層用の原料を、それぞれ別の押出機に供給し、各々溶融後にP1層、P2層、P3層をこの順に合流させて積層し、Tダイからシート状に押し出す工程を含んでシートに加工する方法(共押出法)、単膜で作製したシートに被覆層原料を押出機に投入して溶融押出して口金から押出しながらラミネートする方法(溶融ラミネート法)、各フィルムをそれぞれ別々に作製し、加熱されたロール群などにより熱圧着する方法(熱ラミネート法)、接着剤を介して貼り合わせる方法(接着法)、その他、溶媒に溶解させたものを塗布・乾燥する方法(コーティング法)、およびこれらを組み合わせた方法等を使用することができる。これらのうち製造工程が短く、かつ層間の接着性が良好であるという点で共押出法が好ましい。以下、共押出法での製法を詳述する。 Next, an example is given and demonstrated about the manufacturing method of the lamination sheet of the present invention. Examples of the method for laminating the P1 layer, P2 layer, and P3 layer in the laminated sheet of the present invention include, for example, a raw material for the P1 layer mainly composed of polybutylene terephthalate resin and a main component composed of an adhesive polyolefin resin. The raw material for P2 layer and the raw material for P3 layer mainly composed of polyolefin resin are supplied to different extruders, and after melting, P1 layer, P2 layer and P3 layer are merged in this order and laminated Then, a method of processing into a sheet including a step of extruding from a T die into a sheet (coextrusion method), laminating a raw material of a coating layer into a sheet produced by a single film, putting it into an extruder, melting and extruding from a die Method (melt laminating method), each film is prepared separately and thermocompression-bonded by a heated roll group (thermal laminating method), adhesive The method of bonding through (adhesion method), other methods of applying and drying the one dissolved in a solvent (coating method), and can be used a method in which a combination of these. Of these, the coextrusion method is preferred in that the production process is short and the adhesion between the layers is good. Hereafter, the manufacturing method by a coextrusion method is explained in full detail.
 本発明の積層シートを共押出法で作製する場合、まず乾燥したポリブチレンテレフタレート系樹脂を主たる構成成分とするP1層用の原料、接着ポリオレフィン系樹脂を主たる構成成分とするP2層用の原料、およびポリオレフィン系樹脂を主たる構成成分とするP3層用の原料を、窒素気流下で、P1層は240℃以上300℃以下、P2層およびP3層は180℃以上250℃以下に加熱された3台の押出機にそれぞれ供給し溶融する。次いで、マルチマニホールドダイやフィードブロックやスタティックミキサー、ピノール等を用いて、P1層、P2層およびP3層をこの順に合流、積層させて、Tダイからシート状に共押出する。各層の溶融粘度差が大きい場合は、積層ムラ抑制の観点からマルチマニホールドダイを用いることが好ましい。 When the laminated sheet of the present invention is produced by a coextrusion method, first, a raw material for the P1 layer having a dried polybutylene terephthalate resin as a main constituent, a raw material for a P2 layer having an adhesive polyolefin resin as a main constituent, And three raw materials for P3 layer, the main component of which is polyolefin resin and polyolefin resin, heated to 240 ° C to 300 ° C, P2 layer and P3 layer to 180 ° C to 250 ° C under nitrogen flow Each is fed to an extruder and melted. Next, using a multi-manifold die, a feed block, a static mixer, a pinol, etc., the P1 layer, the P2 layer and the P3 layer are joined and laminated in this order, and are coextruded from the T die into a sheet. When the difference in melt viscosity of each layer is large, it is preferable to use a multi-manifold die from the viewpoint of suppressing lamination unevenness.
 前記の方法によってTダイから吐出した積層シートを、キャスティングドラム等の冷却体上に押出、冷却固化することにより、本発明の積層シートを得ることができる。 The laminated sheet of the present invention can be obtained by extruding the laminated sheet discharged from the T die by the above-described method onto a cooling body such as a casting drum and cooling and solidifying it.
 前記の方法で得られた本発明の積層シートを本発明の効果が損なわれない範囲で、必要に応じて熱処理やエージングなどの加工処理を加えてもよい。熱処理することで、本発明の積層シートの熱寸法安定性を向上することができる。また、前記の方法で得られた本発明の積層シートの密着性を向上させるために、コロナ処理、プラズマ処理を実施してもよい。 The laminated sheet of the present invention obtained by the above-described method may be subjected to processing such as heat treatment or aging as necessary within the range where the effects of the present invention are not impaired. By heat-treating, the thermal dimensional stability of the laminated sheet of the present invention can be improved. Moreover, in order to improve the adhesiveness of the laminated sheet of the present invention obtained by the above method, corona treatment or plasma treatment may be performed.
 本発明の太陽電池バックシートは、本発明の積層シートからなる。つまり本発明の積層シートは、太陽電池バックシートとして好適に用いることができる。本発明の太陽電池は、本発明の太陽電池バックシートを用いたことを特徴とする。本発明の積層シートを太陽電池中に用いることで、従来の太陽電池と比べて耐久性を高めたり、薄くすることが可能となる。本発明の太陽電池の構成例を図1に示す。図1では、電気を取り出すリード線(図1には示していない)を接続した発電素子を、EVA系樹脂などの透明な封止材2で封止したものに、ガラスなどの透明基板4と、本発明の積層シートを太陽電池バックシート1として貼り合わせて構成されるが、本発明の太陽電池の構成例はこれに限定されず、任意の構成に用いることができる。なお、図1では本発明の積層シート単体での例を示したが、その他必要とされる要求特性に応じて本発明の積層シートと他のフィルムとの複合シートを用いることも可能である。 The solar cell backsheet of the present invention is composed of the laminated sheet of the present invention. That is, the laminated sheet of the present invention can be suitably used as a solar battery back sheet. The solar cell of the present invention is characterized by using the solar cell backsheet of the present invention. By using the laminated sheet of the present invention in a solar cell, it becomes possible to increase the durability or reduce the thickness as compared with a conventional solar cell. A structural example of the solar cell of the present invention is shown in FIG. In FIG. 1, a power generating element connected with a lead wire for taking out electricity (not shown in FIG. 1) is sealed with a transparent sealing material 2 such as EVA resin, and a transparent substrate 4 such as glass and the like. Although the laminated sheet of the present invention is configured to be bonded as the solar battery backsheet 1, the configuration example of the solar battery of the present invention is not limited to this, and can be used for any configuration. In addition, although the example by the lamination sheet single-piece | unit of this invention was shown in FIG. 1, it is also possible to use the composite sheet of the lamination sheet of this invention and another film according to the other required required characteristic.
 本発明の積層シートにおいて、他のフィルム等と積層する方法としては、例えば、共押出してシート状に加工する方法(共押出法)、単膜で作製したシートに被覆層原料を押出機に投入して溶融押出して口金から押出しながらラミネートする方法(溶融ラミネート法)、各フィルムをそれぞれ別々に作製し、加熱されたロール群などにより熱圧着する方法(熱ラミネート法)、接着剤を介して貼り合わせる方法(接着法)、その他、溶媒に溶解させたものを塗布・乾燥する方法(コーティング法)、およびこれらを組み合わせた方法等を使用することができる。 In the laminated sheet of the present invention, as a method of laminating with other films, etc., for example, a method of co-extrusion and processing into a sheet (co-extrusion method), a coating layer raw material is put into an extruder into a sheet made of a single film Then, melt extrusion and laminating while extruding from the die (melt laminating method), making each film separately, thermocompression bonding with heated rolls etc. (thermal laminating method), pasting through adhesive A method of bonding (adhesion method), a method of applying and drying a solution dissolved in a solvent (coating method), a method of combining these, and the like can be used.
 本発明の太陽電池において、上述の太陽電池バックシート1は、発電素子を封止した封止材2の背面に設置される。ここで、本発明の太陽電池バックシートが非対称の構成であり、P3層が封止材2側に位置するように配置されるのが、封止材との密着性をより高くすることができるという点で好ましい。また、封止材2と反対側に本発明の積層シートのP1層が位置するように配置される構成となるため、地面からの照り返しの紫外線などに対する耐性を高めることが可能となり、高耐久の太陽電池としたり、厚さを薄くすることができる。 In the solar cell of the present invention, the above-described solar cell backsheet 1 is installed on the back surface of the sealing material 2 in which the power generating element is sealed. Here, the solar cell backsheet of the present invention has an asymmetric configuration, and the P3 layer is disposed so as to be positioned on the sealing material 2 side, so that the adhesion with the sealing material can be further increased. This is preferable. Moreover, since it becomes the structure arrange | positioned so that P1 layer of the lamination sheet of this invention may be located in the opposite side to the sealing material 2, it becomes possible to improve the tolerance with respect to the ultraviolet rays etc. of the reflection from the ground, and high durability. It can be a solar cell or the thickness can be reduced.
 発電素子3は、太陽光の光エネルギーを電気エネルギーに変換するものであり、結晶シリコン系、多結晶シリコン系、微結晶シリコン系、アモルファスシリコン系、銅インジウムセレナイド系、化合物半導体系、色素増感系など、目的に応じて任意の素子を、所望する電圧あるいは電流に応じて複数個を直列または並列に接続して使用することができる。透光性を有する透明基板4は太陽電池の最表層に位置するため、高透過率のほかに、高耐候性、高耐汚染性、高機械強度特性を有する透明材料が使用される。本発明の太陽電池において、透光性を有する透明基板4は上記特性と満たせばいずれの材質を用いることができ、その例としてはガラス、四フッ化エチレン-エチレン共重合体(ETFE)、ポリフッ化ビニル樹脂(PVF)、ポリフッ化ビニリデン樹脂(PVDF)、ポリ四フッ化エチレン樹脂(TFE)、四フッ化エチレン-六フッ化プロピレン共重合体(FEP)、ポリ三フッ化塩化エチレン樹脂(CTFE)、ポリフッ化ビニリデン樹脂などのフッ素系樹脂、ポリオレフィン系樹脂、アクリル系樹脂、およびこれらの混合物などが好ましく挙げられる。ガラスの場合、強化されているものを用いるのがより好ましい。また樹脂製の透光基材を用いる場合は、機械的強度の観点から、上記樹脂を一軸または二軸に延伸したものも好ましく用いられる。 The power generating element 3 converts light energy of sunlight into electric energy, and is based on crystalline silicon, polycrystalline silicon, microcrystalline silicon, amorphous silicon, copper indium selenide, compound semiconductor, dye enhancement Arbitrary elements such as a sensitive system can be used in series or in parallel according to the desired voltage or current depending on the purpose. Since the transparent substrate 4 having translucency is located on the outermost surface layer of the solar cell, a transparent material having high weather resistance, high contamination resistance, and high mechanical strength characteristics in addition to high transmittance is used. In the solar cell of the present invention, the transparent substrate 4 having translucency can be made of any material as long as the above characteristics are satisfied. Examples thereof include glass, ethylene tetrafluoride-ethylene copolymer (ETFE), polyfluoride. Vinyl fluoride resin (PVF), polyvinylidene fluoride resin (PVDF), polytetrafluoroethylene resin (TFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polytrifluoroethylene chloride resin (CTFE) ), Fluorinated resins such as polyvinylidene fluoride resins, polyolefin resins, acrylic resins, and mixtures thereof. In the case of glass, it is more preferable to use a tempered glass. Moreover, when using the resin-made translucent base material, what extended | stretched the said resin uniaxially or biaxially from a viewpoint of mechanical strength is used preferably.
 また、これら基材には発電素子の封止材であるEVA系樹脂などとの接着性を付与するために、表面に、コロナ処理、プラズマ処理、オゾン処理、易接着処理を施すことも好ましく行われる。 In addition, in order to provide these substrates with adhesion to an EVA resin or the like that is a sealing material for power generation elements, it is preferable to subject the surface to corona treatment, plasma treatment, ozone treatment, and easy adhesion treatment. Is called.
 発電素子を封止するための封止材2は、発電素子の表面の凹凸を樹脂で被覆し固定し、外部環境から発電素子保護し、電気絶縁の目的の他、透光性を有する基材やバックシートと発電素子に接着するため、高透明性、高耐候性、高接着性、高耐熱性を有する材料が使用される。その例としては、エチレン-ビニルアセテート共重合体(EVA)、エチレン-メチルアクリレート共重合体(EMA)、エチレン-エチルアクリレート共重合体(EEA)樹脂、エチレン-メタクリル酸共重合体(EMAA)、アイオノマー樹脂、ポリビニルブチラール樹脂、およびこれらの混合物などが好ましく用いられる。 The sealing material 2 for sealing the power generating element covers the surface of the power generating element with resin and fixes it, protects the power generating element from the external environment, and has a light-transmitting base material for the purpose of electrical insulation. In addition, a material having high transparency, high weather resistance, high adhesion, and high heat resistance is used to adhere to the backsheet and the power generation element. Examples thereof include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA) resin, ethylene-methacrylic acid copolymer (EMAA), Ionomer resins, polyvinyl butyral resins, and mixtures thereof are preferably used.
 以上のように、本発明の積層シートを用いた太陽電池バックシートを太陽電池中に組み込むことにより、従来の太陽電池と比べて、高耐久および/または薄型の太陽電池とすることが可能となる。本発明の太陽電池は、太陽光発電システム、小型電子部品の電源など、屋外用途、屋内用途に限定されず各種用途に好適に用いることができる。 As described above, by incorporating the solar battery back sheet using the laminated sheet of the present invention into the solar battery, it becomes possible to obtain a highly durable and / or thin solar battery compared to the conventional solar battery. . The solar cell of the present invention can be suitably used for various applications without being limited to outdoor use and indoor use such as a solar power generation system and a power source for small electronic components.
 次に、第14から第20までの発明に係る発明の太陽電池用バックシート、その製造方法、太陽電池モジュールの実施の形態について説明する。なお、この形態は発明の趣旨をよりよく理解させるために具体的に説明しているに過ぎず、本発明はこの形態に限定されるものではない。 Next, embodiments of the solar cell backsheet, the manufacturing method thereof, and the solar cell module according to the fourteenth to twentieth inventions will be described. In addition, this form is only concretely described in order to make the gist of the invention better understood, and the present invention is not limited to this form.
 本発明のバックシートにおける酢酸透過率Pa(g/m/day)とは、酢酸を飽和蒸気圧状態(85℃)とした際の、酢酸の透過率を意味する。そして本発明のバックシートは、85℃における酢酸透過率Paが以下の式(1)を満たすことが重要である。
(1)200≦Pa
 本発明のバックシートは、封止材から発生した酢酸が太陽電池セルに影響を与える前に積極的にバックシートから抜けることが重要であり、恒温恒湿試験中の発電性能低下抑制の観点から、本発明のバックシートの酢酸透過率Paは200g/m/day以上であることが重要である。また、更なる発電性能低下抑制の観点から、本発明のバックシートの酢酸透過率Paは800g/m/day以上であることが好ましい。一方で、酢酸透過率Paは大きいほど好ましいが、式(1)だけでなく後述する水蒸気透過率Pwに関する式(2)も同時に満たすことを考慮すると、酢酸透過率Paは1500g/m/day以下であることが好ましい。
The acetic acid permeability Pa (g / m 2 / day) in the backsheet of the present invention means the acetic acid permeability when acetic acid is in a saturated vapor pressure state (85 ° C.). And it is important for the back seat | sheet of this invention that the acetic acid permeability Pa in 85 degreeC satisfy | fills the following formula | equation (1).
(1) 200 ≦ Pa
In the backsheet of the present invention, it is important that the acetic acid generated from the encapsulant is positively removed from the backsheet before it affects the solar battery cells, from the viewpoint of suppressing power generation performance degradation during the constant temperature and humidity test. It is important that the acetic acid permeability Pa of the backsheet of the present invention is 200 g / m 2 / day or more. Further, from the viewpoint of further suppressing power generation performance degradation, the acetic acid permeability Pa of the backsheet of the present invention is preferably 800 g / m 2 / day or more. On the other hand, the acetic acid permeability Pa is preferably as large as possible. However, considering that not only the expression (1) but also the expression (2) regarding the water vapor permeability Pw described later is satisfied at the same time, the acetic acid permeability Pa is 1500 g / m 2 / day. The following is preferable.
 本発明のバックシートにおける水蒸気透過率Pw(g/m/day)とは、40℃90%RHの環境下における水蒸気の透過率を意味する。そして本発明のバックシートは、40℃90%RHにおける水蒸気透過率Pw(g/m/day)が、以下の式(2)を満たすことが重要である。
(2)Pw≦2.5
 本発明のバックシートは、水分による太陽電池モジュール内部の腐食、特に太陽電池セルの集電電極部の腐食による変色を抑制する観点から、本発明のバックシートの水蒸気透過率Pwは2.5g/m/day以下であることが重要である。また、更なるセルの集電電極の変色抑制の観点から、2.0g/m/day以下であることが好ましい。一方で、水蒸気透過率Pwは小さいほど好ましいが、式(2)だけでなく、前述の酢酸透過率Paに関する式(1)も同時に満たすことを考慮すると、水蒸気透過率Pwは0.5g/m/day以上であることが好ましい。
The water vapor transmission rate Pw (g / m 2 / day) in the backsheet of the present invention means the water vapor transmission rate in an environment of 40 ° C. and 90% RH. In the back sheet of the present invention, it is important that the water vapor transmission rate Pw (g / m 2 / day) at 40 ° C. and 90% RH satisfies the following formula (2).
(2) Pw ≦ 2.5
The backsheet of the present invention has a water vapor transmission rate Pw of 2.5 g / in from the viewpoint of suppressing corrosion inside the solar cell module due to moisture, particularly discoloration due to corrosion of the collector electrode portion of the solar battery cell. It is important that it is not more than m 2 / day. Moreover, it is preferable that it is 2.0 g / m < 2 > / day or less from a viewpoint of discoloration suppression of the current collection electrode of the further cell. On the other hand, the water vapor transmission rate Pw is preferably as small as possible. However, considering not only the equation (2) but also the equation (1) relating to the acetic acid transmission rate Pa described above, the water vapor transmission rate Pw is 0.5 g / m. 2 / day or more is preferable.
 バックシートの酢酸透過率Paが式(1)を満たし、同時に水蒸気透過率Pwが式(2)を満たすためには、バックシートがP4層を有する態様とすることが好ましい。ここでP4層とは、ポリエステル樹脂、ポリアミド樹脂、及びフッ素樹脂からなる群より選ばれる一つが主たる構成成分である層を意味する。なお、ポリエステル樹脂、ポリアミド樹脂、及びフッ素樹脂からなる群より選ばれる一つが主たる構成成分である層とは、ポリエステル樹脂、ポリアミド樹脂、及びフッ素樹脂からなる群より選ばれる一つの樹脂を、該層の全成分100質量%中に50質量%を超えて100質量%以下含む層を意味する。 In order that the acetic acid permeability Pa of the back sheet satisfies the formula (1) and the water vapor permeability Pw satisfies the formula (2) at the same time, it is preferable that the back sheet has a P4 layer. Here, the P4 layer means a layer in which one selected from the group consisting of a polyester resin, a polyamide resin, and a fluororesin is a main constituent component. In addition, the layer which is one main component selected from the group consisting of a polyester resin, a polyamide resin, and a fluororesin is one layer selected from the group consisting of a polyester resin, a polyamide resin, and a fluororesin. Means a layer containing more than 50% by mass and 100% by mass or less in 100% by mass of all components.
 本発明におけるP4層の主たる構成成分として好適に用いられるポリエステル樹脂とは、ジカルボン酸とジアルコールを重縮合して得られる樹脂である。そしてこのポリエステル樹脂は、単独で用いることも、他の樹脂と混合して用いることも可能である。 The polyester resin suitably used as the main component of the P4 layer in the present invention is a resin obtained by polycondensation of dicarboxylic acid and dialcohol. This polyester resin can be used alone or in combination with other resins.
 ポリエステル樹脂を得るために用いるジカルボン酸の具体例としては、テレフタル酸や2,6-ナフタレンジカルボン酸などが挙げられる。 Specific examples of the dicarboxylic acid used for obtaining the polyester resin include terephthalic acid and 2,6-naphthalenedicarboxylic acid.
 また、ポリエステル樹脂を得るために用いるジアルコールの具体例としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオールなどが挙げられる。 Further, specific examples of dialcohol used for obtaining a polyester resin include ethylene glycol, 1,3-propanediol, 1,4-butanediol, and the like.
 これらの中でも、ポリエステル樹脂としては、ポリエチレンテレフタレート、及び/又はポリブチレンテレフタレートが、価格、水蒸気透過性、強度、耐熱性などの観点から好ましい。 Among these, as the polyester resin, polyethylene terephthalate and / or polybutylene terephthalate are preferable from the viewpoints of price, water vapor permeability, strength, heat resistance, and the like.
 本発明におけるP4層の主たる構成成分として好適に用いられるポリアミド樹脂とは、1)ラクタム骨格を有する化合物を開環重合したもの、2)一分子中にアミノ基とカルボキシル基を有するアミノ酸成分を重縮合したもの、3)ジアミン成分とジカルボン酸成分を重縮合したもの、および1)~3)を共重合したもの等が挙げられる。そしてこのポリアミド樹脂は、単独で用いることも、他の樹脂と混合して用いることも可能である。 The polyamide resin suitably used as the main component of the P4 layer in the present invention is 1) a ring-opening polymerization of a compound having a lactam skeleton, and 2) an amino acid component having an amino group and a carboxyl group in one molecule. Condensed ones, 3) polycondensed diamine components and dicarboxylic acid components, and those obtained by copolymerizing 1) to 3). The polyamide resin can be used alone or in combination with other resins.
 1)に用いられるラクタム骨格を有する化合物の例としては、ε-カプロラクタム(開環重合によりナイロン6が得られる)、ω-ウンデカンラクタム(開環重合によりナイロン11が得られる)、ω-ラウロラクタム(開環重合によりナイロン12が得られる)などのラクタム化合物が挙げられる。 Examples of the compound having a lactam skeleton used in 1) include ε-caprolactam (nylon 6 is obtained by ring-opening polymerization), ω-undecanlactam (nylon 11 is obtained by ring-opening polymerization), and ω-laurolactam. And lactam compounds such as (Nylon 12 is obtained by ring-opening polymerization).
 また2)に用いられる一分子中にアミノ基とカルボキシル基を有するアミノ酸成分の例としては、ε-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸などのアミノ酸が挙げられる。 Examples of the amino acid component having an amino group and a carboxyl group in one molecule used in 2) include amino acids such as ε-aminocaproic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid.
 また3)に用いられるジアミン成分としては、テトラメチレンジアミン、ヘキサメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、1,2,2,4-テトラメチルへキサメチレンジアミン、2,4,4-トリメチルへキサメチレンジアミン、5-メチルノナメチレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,3-ビスアミノメチルシクロヘキサン、1,4-ビスアミノメチルシクロヘキサン、ビス-p-アミノシクロヘキシルメタン、2,2-ビス-p-アミノシクロへキシルプロパン、イソホロンジアミンなどが挙げられる。また、3)に用いられるジカルボン酸成分としては、アジピン酸、スペリン酸、アゼライン酸、セパシン酸、ドデカンニ酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ダイマー酸などのジカルボン酸が挙げられる。 The diamine component used in 3) includes tetramethylene diamine, hexamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 1,2,2,4-tetramethylhexamethylene diamine, 2,4,4-trimethyl. Hexamethylenediamine, 5-methylnonamethylenediamine, m-xylylenediamine, p-xylylenediamine, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane, bis-p-aminocyclohexylmethane, Examples include 2,2-bis-p-aminocyclohexylpropane and isophoronediamine. Examples of the dicarboxylic acid component used in 3) include adipic acid, peric acid, azelaic acid, sepacic acid, dodecanoic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, Examples thereof include dicarboxylic acids such as naphthalenedicarboxylic acid and dimer acid.
 これらの構成成分について、1)ラクタム骨格を有する化合物、2)アミノ酸成分単独、またはアミノ酸成分の混合物、あるいは3)ジアミンとジカルボン酸の混合物、等の形で重合に供され、そうして得られるポリアミド樹脂は、当該成分単独の重合体、当該成分を二成分以上含む共重合体のいずれの重合体も、本発明では用いることができる。これらの中でもP4層の主たる構成成分として用いられるポリアミド樹脂としては、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリへキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリへキサメチレンテレフタルアミド(ナイロン6T)、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、が好ましい。 These components are subjected to polymerization in the form of 1) a compound having a lactam skeleton, 2) an amino acid component alone, or a mixture of amino acid components, or 3) a mixture of diamine and dicarboxylic acid, and thus obtained. As the polyamide resin, any one of a polymer of the component alone or a copolymer containing two or more components can be used in the present invention. Among these, as the polyamide resin used as the main component of the P4 layer, polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebacamide (nylon 610), polyhexa Methylene dodecanamide (nylon 612), polyhexamethylene terephthalamide (nylon 6T), polyhexamethylene isophthalamide (nylon 6I), polyundecanamide (nylon 11), and polydodecanamide (nylon 12) are preferred.
 さらに、本発明のバックシートにおいて、P4層の主たる構成成分として好適に用いられるポリアミド樹脂は、結晶性の高さや強度、耐熱性、剛性面で、ナイロン6、ナイロン66、ナイロン610、ナイロン11、及びナイロン12からなる群より選ばれる少なくとも1つの樹脂であることがより好ましい。 Further, in the backsheet of the present invention, the polyamide resin suitably used as the main constituent component of the P4 layer is nylon 6, nylon 66, nylon 610, nylon 11, in terms of crystallinity, strength, heat resistance and rigidity. And at least one resin selected from the group consisting of nylon 12 and nylon 12.
 また、本発明におけるP4層の主たる構成成分として好適に用いられるフッ素樹脂とは、1)炭化水素の一部または全部の水素原子を、フッ素原子で置換したものの重合体、2)炭化水素の一部または全部の水素原子を、フッ素原子で置換したものと、炭化水素との共重合体、3)炭化水素の一部または全部の水素原子を、フッ素原子で置換したものと、炭化水素の一部または全部の水素原子を、フッ素原子で置換したものとの共重合体、4)1)~3)の重合体、あるいは共重合体のうち、水素原子またはフッ素原子の一部を、塩素原子で置換した重合体あるいは共重合体であり、塩素原子で置換後も少なくとも一つはフッ素原子が存在する重合体あるいは共重合体などが挙げられる。 The fluororesin suitably used as the main component of the P4 layer in the present invention is 1) a polymer obtained by substituting some or all of the hydrocarbon atoms with fluorine atoms, and 2) one hydrocarbon. A copolymer of a part or all of the hydrogen atoms substituted with fluorine atoms and a copolymer with a hydrocarbon; 3) a part or all of the hydrogen atoms of a hydrocarbon substituted with fluorine atoms; Copolymers in which part or all of the hydrogen atoms are substituted with fluorine atoms, 4) Polymers of 1) to 3), or copolymers, wherein some of the hydrogen atoms or fluorine atoms are chlorine atoms And a polymer or copolymer in which at least one fluorine atom is present after substitution with a chlorine atom.
 このようなフッ素樹脂としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、四フッ化エチレン・六フッ化プロピレン共重合体、エチレン・四フッ化エチレン共重合体、ポリクロロトリフルオロエチレン、エチレン・クロロトリフルオロエチレン共重合体などが挙げられる。価格、水蒸気透過率性、酢酸透過性の観点から、本発明のバックシートにおいて、P4層の主たる構成成分として好適に用いられるフッ素樹脂は、ポリフッ化ビニル、ポリフッ化ビニリデン、エチレンテトラフルオロエチレン、四フッ化エチレン・六フッ化プロピレン共重合体が特に好ましい。 Examples of such fluororesins include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, tetrafluoroethylene / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene copolymer, polychlorotrifluoroethylene, And ethylene / chlorotrifluoroethylene copolymer. From the viewpoints of price, water vapor permeability, and acetic acid permeability, the fluororesin suitably used as the main component of the P4 layer in the backsheet of the present invention is polyvinyl fluoride, polyvinylidene fluoride, ethylene tetrafluoroethylene, four A fluorinated ethylene / hexafluoropropylene copolymer is particularly preferred.
 ここまでの説明した通り、P4層は、ポリエステル樹脂、ポリアミド樹脂、及びフッ素樹脂からなる群より選ばれる一つを主たる構成成分とする層であるが、P4層は、ポリアミド樹脂またはポリブチレンテレフタレートを主たる構成成分とすることが、特に好ましい。 As described so far, the P4 layer is a layer mainly composed of one selected from the group consisting of a polyester resin, a polyamide resin, and a fluororesin, but the P4 layer is made of a polyamide resin or polybutylene terephthalate. It is particularly preferable to use the main component.
 本発明のバックシートがP4層を有する場合には、P4層の全成分100質量%において、P4層が無機粒子を0.1質量%以上30質量%以下含有することが好ましい。P4層中の無機粒子の含有量は、より好ましくは2質量%以上25質量%以下、さらに好ましくは5質量%以上20質量%以下である。この無機粒子は、その目的に応じて必要な機能をバックシートに付与するために用いられる。P4層中の無機粒子の含有量が30質量%を超えると、ハンドリング性が低下したり、耐久性が低下したりすることがある。P4層中の無機粒子の含有量が0.1質量%未満であると、無機粒子を含有させたことによる効果が得られにくく、黄変が起こることがある。 When the back sheet of the present invention has a P4 layer, the P4 layer preferably contains 0.1% by mass to 30% by mass of inorganic particles in 100% by mass of all components of the P4 layer. The content of the inorganic particles in the P4 layer is more preferably 2% by mass or more and 25% by mass or less, and further preferably 5% by mass or more and 20% by mass or less. The inorganic particles are used for imparting necessary functions to the back sheet depending on the purpose. When the content of the inorganic particles in the P4 layer exceeds 30% by mass, handling properties may be lowered or durability may be lowered. When the content of the inorganic particles in the P4 layer is less than 0.1% by mass, the effect due to the inclusion of the inorganic particles is difficult to obtain, and yellowing may occur.
 P4層に好適に用いられる無機粒子としては、紫外線吸収能のある無機粒子や、ポリエステル樹脂、ポリアミド樹脂、およびフッ素樹脂との屈折率差が大きな粒子、導電性を持つ粒子、顔料といったものが例示され、これにより耐紫外線性や、光反射性、白色性といった光学特性、帯電防止性などを付与することができる。なお、本発明において粒子とは、投影した等価換算円の直径による一次粒径として5nm以上のものをいう。また、特に断らない限り、本発明において粒径は一次粒径を意味し、粒子は一次粒子を意味する。 Examples of inorganic particles suitable for use in the P4 layer include inorganic particles having ultraviolet absorbing ability, particles having a large refractive index difference from polyester resins, polyamide resins, and fluororesins, conductive particles, and pigments. Thus, it is possible to impart ultraviolet resistance, optical properties such as light reflectivity and whiteness, antistatic properties and the like. In the present invention, the particle means a particle having a primary particle diameter of 5 nm or more based on the diameter of a projected equivalent equivalent circle. Unless otherwise specified, in the present invention, the particle size means a primary particle size, and the particle means a primary particle.
 さらに詳細に説明すると、本発明のP4層に好適に用いられる無機粒子は、例えば、金、銀、銅、白金、パラジウム、レニウム、バナジウム、オスミウム、コバルト、鉄、亜鉛、ルテニウム、プラセオジウム、クロム、ニッケル、アルミニウム、スズ、亜鉛、チタン、タンタル、ジルコニウム、アンチモン、インジウム、イットリウム、ランタニウム等の金属、酸化亜鉛、酸化チタン、酸化セシウム、酸化アンチモン、酸化スズ 、インジウム・スズ酸化物、酸化イットリウム 、酸化ランタニウム 、酸化ジルコニウム、酸化アルミニウム、酸化ケイ素等の金属酸化物、フッ化リチウム、フッ化マグネシウム 、フッ化アルミニウム 、氷晶石等の金属フッ化物、リン酸カルシウム等の金属リン酸塩、炭酸カルシウム等の炭酸塩、硫酸バリウム等の硫酸塩、タルクおよびカオリン等が挙げられる。 More specifically, the inorganic particles suitably used for the P4 layer of the present invention include, for example, gold, silver, copper, platinum, palladium, rhenium, vanadium, osmium, cobalt, iron, zinc, ruthenium, praseodymium, chromium, Metals such as nickel, aluminum, tin, zinc, titanium, tantalum, zirconium, antimony, indium, yttrium, lanthanum, zinc oxide, titanium oxide, cesium oxide, antimony oxide, tin oxide, indium tin oxide, yttrium oxide, oxidation Metal oxides such as lanthanum soot, zirconium oxide, aluminum oxide, silicon oxide, lithium fluoride, magnesium fluoride soot, aluminum fluoride soot, metal fluorides such as cryolite, metal phosphates such as calcium phosphate, carbonates such as calcium carbonate Salt, barium sulfate And sulfates such as talc, talc and kaolin.
 本発明においては、屋外で使用されることが多いことを鑑みれば、P4層中の無機粒子として、紫外線吸収能を有する無機粒子である酸化チタン、酸化亜鉛、酸化セリウムなどの金属酸化物を用いた場合に、無機粒子による耐紫外線性を活かして、長期に亘ってバックシートの劣化による着色を低減するという効果を発揮することができる点で好ましい。さらには、高い反射特性も付与できるという点で、P4層中の無機粒子としては酸化チタンを用いるのがより好ましく、耐紫外線性がより高いという点でルチル型酸化チタンを用いるのがさらに好ましい。 In the present invention, in view of the fact that it is often used outdoors, metal oxides such as titanium oxide, zinc oxide, and cerium oxide, which are inorganic particles having ultraviolet absorbing ability, are used as the inorganic particles in the P4 layer. In this case, it is preferable in that the effect of reducing coloring due to deterioration of the back sheet can be exhibited over a long period by utilizing the ultraviolet resistance by the inorganic particles. Furthermore, it is more preferable to use titanium oxide as the inorganic particles in the P4 layer in that high reflection characteristics can be imparted, and it is more preferable to use rutile type titanium oxide in terms of higher ultraviolet resistance.
 P4層中にポリエステル樹脂、ポリアミド樹脂、フッ素樹脂、あるいは、無機粒子を含有させる方法は、予め当該樹脂と無機粒子を、ベント式二軸混練押出機やタンデム型押出機を用いて、溶融混練する方法が好ましい。ここで、無機粒子を含有させる際に熱履歴を受けるため、少なからず当該樹脂が劣化することがある。そのため、P4層に含まれることとなる無機粒子量に比べて、無機粒子含有量の多い高濃度マスターペレットを作製し、それを当該樹脂と混合して希釈し、所定のP4層の無機粒子含有率とするのが、耐久性の観点から好ましい。 In the method of including polyester resin, polyamide resin, fluororesin or inorganic particles in the P4 layer, the resin and inorganic particles are melt kneaded in advance using a vent type biaxial kneading extruder or tandem type extruder. The method is preferred. Here, since the thermal history is received when the inorganic particles are contained, the resin may be deteriorated. Therefore, compared to the amount of inorganic particles to be included in the P4 layer, a high-concentration master pellet having a large amount of inorganic particles is prepared, mixed with the resin and diluted, and the predetermined P4 layer contains inorganic particles. It is preferable to set the ratio from the viewpoint of durability.
 また、本発明のバックシートのP4層およびP6層(P6層については後述する)には、本発明の効果が損なわれない範囲内でその他の添加剤(例えば、耐熱安定剤、紫外線吸収剤、耐候安定剤、有機の易滑剤、顔料、染料、充填剤、帯電防止剤、核剤などが挙げられる。但し、本発明にいう無機粒子は、ここでいう添加剤には含まれない)を含有していてもよい。例えば、添加剤として紫外線吸収剤を選択して、P4層及び/又はP6層に含有させた場合には、本発明のバックシートの耐紫外線性をより高めることが可能となる。また、P4層及び/又はP6層に帯電防止剤などを含有させると、耐電圧向上が期待できる。 The P4 layer and the P6 layer of the backsheet of the present invention (P6 layer will be described later) may have other additives (for example, a heat stabilizer, an ultraviolet absorber, Examples include weathering stabilizers, organic lubricants, pigments, dyes, fillers, antistatic agents, nucleating agents, etc. However, the inorganic particles referred to in the present invention are not included in the additive herein. You may do it. For example, when an ultraviolet absorber is selected as an additive and contained in the P4 layer and / or the P6 layer, the ultraviolet resistance of the backsheet of the present invention can be further improved. Further, when an antistatic agent or the like is contained in the P4 layer and / or the P6 layer, an improvement in withstand voltage can be expected.
 また、本発明におけるP4層は、難燃性の観点からバックシートの表層に位置することが重要である。ここでP4層が表層に位置するとは、本発明のバックシートの一方の最表層に、P4層が位置することを意味する。 Further, it is important that the P4 layer in the present invention is located on the surface layer of the back sheet from the viewpoint of flame retardancy. Here, the P4 layer being positioned on the surface means that the P4 layer is positioned on one outermost layer of the backsheet of the present invention.
 本発明では、P4層と後述するP6層との間に、P5層が位置していることが好ましい。ここでP5層とは、低結晶性軟質重合体、アクリル接着剤、及びエチレン酢酸ビニル共重合体からなる群より選ばれる1つを主たる構成成分とする層である。なおP5層について、低結晶性軟質重合体、アクリル接着剤、及びエチレン酢酸ビニル共重合体からなる群より選ばれる1つを主たる構成成分とするとは、該層の全成分100質量%において、低結晶性軟質重合体、アクリル接着剤、及びエチレン酢酸ビニル共重合体からなる群より選ばれる1つを、50質量%を超えて100質量%以下含有していることを意味する。 In the present invention, the P5 layer is preferably located between the P4 layer and the P6 layer described later. Here, the P5 layer is a layer mainly composed of one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer. In addition, regarding the P5 layer, the main constituent is one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer. It means that one selected from the group consisting of a crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer is contained more than 50% by mass and 100% by mass or less.
 P5層は、P4層とP6層の間に位置していることが好ましい。P5層が、P4層とP6層の間に位置しているとは、例えば本発明のバックシートにおいてP4層が表層に位置し、P4層とは逆表層にP6層が位置する場合においては、この2つの層の間、つまり、P5層が内層に位置していることを意味する。 The P5 layer is preferably located between the P4 layer and the P6 layer. When the P5 layer is located between the P4 layer and the P6 layer, for example, in the backsheet of the present invention, the P4 layer is located on the surface layer, and when the P6 layer is located on the surface opposite to the P4 layer, It means that the P5 layer is located in the inner layer between these two layers.
 また、P5層は、P4層とP6層の両層に接着する機能を有することが好ましい。なおP5層の主たる構成成分の一つである低結晶性軟質重合体としては、結晶化度が50%以下、融点が170℃以下のものが好ましく、例えば、酸変性オレフィン、不飽和ポリオレフィンなどを挙げることができる。またP5層の主たる構成成分の一つであるアクリル接着剤としては、エチレン-アクリル酸エステル-無水マレイン酸3元共重合体などを挙げることができる。中でもP4層とP6層の両層に接着するという観点から、P5層は酸変性ポリオレフィンを主たる構成成分とすることが好ましい。ここで酸変性ポリオレフィンとしては、例えば市販品では三井化学(株)社製“アドマー”(登録商標)や三菱化学(株)社製の“モディック”(登録商標)が挙げられる。 The P5 layer preferably has a function of adhering to both the P4 layer and the P6 layer. The low crystalline soft polymer that is one of the main components of the P5 layer preferably has a crystallinity of 50% or less and a melting point of 170 ° C. or less. For example, an acid-modified olefin, an unsaturated polyolefin, etc. Can be mentioned. Examples of the acrylic adhesive that is one of the main components of the P5 layer include an ethylene-acrylic ester-maleic anhydride terpolymer. In particular, from the viewpoint of adhering to both the P4 layer and the P6 layer, the P5 layer is preferably composed of acid-modified polyolefin as a main constituent. Examples of the acid-modified polyolefin include “Admer” (registered trademark) manufactured by Mitsui Chemicals, Inc. and “Modic” (registered trademark) manufactured by Mitsubishi Chemical Corporation.
 オレフィン樹脂が主たる構成成分である層をP6層とする。該P6層に使用されるオレフィン樹脂とは、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、ポリシクロオレフィン、ポリヘキセン、ポリオクテン、ポリデセン、ポリドデセン等が挙げられる。この中でも加工が容易で比較的安価であることなどから、P6層の主たる構成成分であるオレフィン樹脂としては、ポリエチレン、ポリプロピレンであることが好ましい。これらオレフィン樹脂は、混合および他のオレフィン成分を共重合しても良く、例えばエチレン-プロピレンコポリマー、エチレン-プロピレン-ブテンコポリマーとすると樹脂の融点を低下させることができる。 The layer in which the olefin resin is the main constituent is designated as P6 layer. Examples of the olefin resin used in the P6 layer include polyethylene, polypropylene, polybutene, polymethylpentene, polycycloolefin, polyhexene, polyoctene, polydecene, and polydodecene. Among these, since it is easy to process and is relatively inexpensive, the olefin resin that is the main component of the P6 layer is preferably polyethylene or polypropylene. These olefin resins may be mixed and copolymerized with other olefin components. For example, when an ethylene-propylene copolymer or an ethylene-propylene-butene copolymer is used, the melting point of the resin can be lowered.
 なおP6層について、オレフィン樹脂が主たる構成成分であるとは、該層の全成分100質量%において、オレフィン樹脂を50質量%を超えて100質量%以下含有していることを意味する。 In addition, about P6 layer, that an olefin resin is a main component means that 100 mass% of olefin resin is contained more than 50 mass% in 100 mass% of all the components of this layer.
 本発明におけるP6層の主たる構成成分であるオレフィン樹脂の融点(以下、融解吸熱ピーク温度ともいう)は、120℃以上170℃以下であることが好ましい。P6層中のオレフィン樹脂の融点が120℃未満であると、耐熱性に劣る可能性がある。一方、P6層中のオレフィン樹脂の融点が170℃を超えると、封止材との接着性が低くなることがある。 The melting point (hereinafter also referred to as melting endothermic peak temperature) of the olefin resin that is the main component of the P6 layer in the present invention is preferably 120 ° C. or higher and 170 ° C. or lower. If the melting point of the olefin resin in the P6 layer is less than 120 ° C, the heat resistance may be inferior. On the other hand, when the melting point of the olefin resin in the P6 layer exceeds 170 ° C., the adhesiveness with the sealing material may be lowered.
 本発明のバックシートは、P4層とP6層とを有し、P6層が無機粒子を含有し、P4層が表層に位置し、P4層とは逆表層にP6層が位置することが好ましいが、さらに本発明のバックシートは、バックシート全体の厚みをTa(μm)、P4層の厚みをT4(μm)、P6層の厚みをT6(μm)、P6層中の無機粒子の含有量をM(質量%)とした時に、式(3)~(5)の全てを満たすことがより好ましい。
(3) 0.05≦M/T6≦0.5
(4) 200≦Ta≦500
(5) 0.3≦T4/Ta≦0.5
 式(3)~(5)を同時に満たすことによって、耐熱性と封止材密着性、水蒸気透過性、電気特性を兼ね備えたバックシートとすることができる。
The backsheet of the present invention preferably has a P4 layer and a P6 layer, the P6 layer contains inorganic particles, the P4 layer is located on the surface layer, and the P6 layer is located on the surface opposite to the P4 layer. Further, the back sheet of the present invention has a total thickness of Ta (μm), a thickness of the P4 layer of T4 (μm), a thickness of the P6 layer of T6 (μm), and the content of inorganic particles in the P6 layer. It is more preferable that all of the formulas (3) to (5) are satisfied when M (mass%) is used.
(3) 0.05 ≦ M / T6 ≦ 0.5
(4) 200 ≦ Ta ≦ 500
(5) 0.3 ≦ T4 / Ta ≦ 0.5
By simultaneously satisfying the formulas (3) to (5), a back sheet having both heat resistance, sealing material adhesion, water vapor permeability, and electrical characteristics can be obtained.
 なお、本発明のバックシートが、P4層やP6層を複数層有する場合には、表層のP4層のみを用いてT4を求め、逆表層のP6層のみを用いてT6、Mを求めて、これが式(3)~(5)を同時に満たすことが重要である。 In addition, when the back sheet of the present invention has a plurality of P4 layers and P6 layers, T4 is obtained using only the P4 layer of the surface layer, T6 and M are obtained using only the P6 layer of the reverse surface layer, It is important that this satisfies the equations (3) to (5) at the same time.
 式(3)は、厚みあたりの無機粒子の量を数式化したものであり、無機粒子の効果を発現させるためには、厚みが厚いほど無機粒子の濃度を濃くすることが重要であることを示す。式(3)において、M/T6が0.05より小さいと、P6層が劣化により黄変しやすくなる。M/T6が0.5より大きいと、EVAとの密着性が低下することがある。 Formula (3) formulates the amount of inorganic particles per thickness, and in order to express the effect of inorganic particles, it is important to increase the concentration of inorganic particles as the thickness increases. Show. In Formula (3), when M / T6 is smaller than 0.05, the P6 layer is easily yellowed due to deterioration. If M / T6 is greater than 0.5, the adhesion to EVA may be reduced.
 また、P6層は無機粒子を含有することが好ましい。P6層中の無機粒子は、その目的に応じて必要な機能をバックシートに付与するために用いられる。P6層中の無機粒子としては、前述のP4層に用いられる無機粒子として挙げた無機粒子と同様のものを用いることができる。そして本発明においては、屋外で使用されることが多いことを鑑みれば、P6層中の無機粒子は、紫外線吸収能を有する酸化チタン、酸化亜鉛、酸化セリウムなどの金属酸化物を用いた場合に、無機粒子による耐紫外線性を活かして、長期に亘ってバックシートの劣化による着色を低減するという効果を発揮することができる点で好ましい。さらには、高い反射特性も付与できるという点で、P6層中の無機粒子として酸化チタンを用いるのがより好ましく、耐紫外線性がより高いという点でルチル型酸化チタンを用いるのがさらに好ましい。 The P6 layer preferably contains inorganic particles. The inorganic particles in the P6 layer are used for imparting necessary functions to the back sheet depending on the purpose. As the inorganic particles in the P6 layer, the same inorganic particles as those mentioned as the inorganic particles used in the P4 layer can be used. In the present invention, in view of the fact that it is often used outdoors, the inorganic particles in the P6 layer are obtained when a metal oxide such as titanium oxide, zinc oxide, cerium oxide or the like having ultraviolet absorbing ability is used. It is preferable in that it can exhibit the effect of reducing coloration due to deterioration of the back sheet over a long period of time by utilizing the ultraviolet resistance by the inorganic particles. Furthermore, it is more preferable to use titanium oxide as inorganic particles in the P6 layer in that high reflection characteristics can be imparted, and it is more preferable to use rutile type titanium oxide in terms of higher ultraviolet resistance.
 式(4)は、バックシート全体の厚みの範囲を表し、Taが200μmよりも小さいと、耐熱性、水蒸気透過性が劣ることがある。Taが500μmよりも大きいと、加工性が悪く搬送がしにくいため工程適性が悪いことがあり、また軽量化・省スペース化が求められる太陽電池モジュールが厚くなりすぎることがある。 Formula (4) represents the range of the thickness of the entire back sheet. When Ta is smaller than 200 μm, heat resistance and water vapor permeability may be inferior. When Ta is larger than 500 μm, processability is poor and conveyance is difficult, so that process suitability may be poor, and a solar cell module that is required to be lightweight and save space may be too thick.
 式(5)は、全体厚みに対する、P4層の厚み割合を示したものであり、P4層の厚みが厚いほど耐熱性が向上するため、T4/Taの値が0.3より小さいと、耐熱性が低下することがある。T4/Taの値が大きいほど耐久性は向上するが、P6層対比でP4層は高価な場合が多いため、製品コスト低減の観点から0.5以下であることが好ましい。 Formula (5) shows the ratio of the thickness of the P4 layer to the total thickness, and the heat resistance improves as the thickness of the P4 layer increases. Therefore, if the value of T4 / Ta is less than 0.3, the heat resistance May decrease. The durability increases as the value of T4 / Ta increases. However, since the P4 layer is often expensive in comparison with the P6 layer, it is preferably 0.5 or less from the viewpoint of reducing the product cost.
 P5層の厚みT5(μm)は、15~50μmであることが好ましい。なお、P5層が複数存在する場合には、それぞれのP5層の厚みT5(μm)が15~50μmであることが好ましい。T5が15μmより小さいと、P4層やP6層との密着性が低下し、層間剥離が起こる場合がある。T5が50μmより大きいと、バックシートの燃焼性を確認した際に、難燃性の悪化が起こりやすい。T5は、より好ましくは20μm以上40μm以下である。ここで、層間剥離は、P4層とP5層の間およびP5層とP6層の間など界面剥離するものをいう。 The thickness T5 (μm) of the P5 layer is preferably 15 to 50 μm. When there are a plurality of P5 layers, the thickness T5 (μm) of each P5 layer is preferably 15 to 50 μm. When T5 is smaller than 15 μm, the adhesion with the P4 layer or the P6 layer is lowered, and delamination may occur. When T5 is larger than 50 μm, the flame retardancy is likely to deteriorate when the combustibility of the backsheet is confirmed. T5 is more preferably 20 μm or more and 40 μm or less. Here, delamination refers to what peels at the interface such as between the P4 layer and the P5 layer and between the P5 layer and the P6 layer.
 本発明におけるバックシートの積層構成は、少なくともP4層が表層に位置し、P4層とは逆表層にP6層が位置した構成である。ここで、P4層とは逆表層にP6層が位置するとは、P4層がバックシートの一方の最表層に位置するので、他方の最表層にP6層が位置することを意味する。このような観点から、本発明のバックシートの層構成(層の順序)は、P4層/P5層/P6層が好ましい。 The laminated structure of the back sheet in the present invention is a structure in which at least the P4 layer is located on the surface layer, and the P6 layer is located on the surface opposite to the P4 layer. Here, the P6 layer being positioned on the reverse surface layer of the P4 layer means that the P4 layer is positioned on one outermost layer of the backsheet and therefore the P6 layer is positioned on the other outermost layer. From such a viewpoint, the layer configuration (layer order) of the backsheet of the present invention is preferably P4 layer / P5 layer / P6 layer.
 次に、本発明のバックシートの製造方法について、P4層、P5層、及びP6層を有する態様について具体的に説明する。本発明のバックシートにおいてP4層、P5層、P6層を積層する方法としては、例えば、P4層用のポリアミド樹脂、またはポリブチレンテレフタレートを主たる構成成分とする原料、P5層用の低結晶性軟質重合体、アクリル接着剤、及びエチレン酢酸ビニル共重合体からなる群より選ばれる1つを主たる構成成分とする原料、およびP6層用のオレフィン樹脂を主たる構成成分とする原料を、それぞれ別の押出機に供給し、各々溶融後にP4層、P5層、及びP6層をこの順に合流させて積層し、Tダイからシート状に押し出す工程を含む製造方法(共押出法)、単膜で作製したシートに被覆層原料を押出機に投入して溶融押出して口金から押出しながらラミネートする方法(溶融ラミネート法)、各シートをそれぞれ別々に作製し、加熱されたロール群などにより熱圧着する方法(熱ラミネート法)、接着剤を介して貼り合わせる方法(接着法)、その他、溶媒に溶解させたものを塗布・乾燥する方法(コーティング法)、およびこれらを組み合わせた方法等を使用することができる。これらのうち製造工程が短く、かつ層間の接着性が良好であるという点で共押出法が好ましい。以下、共押出法での製法を詳述する。 Next, the backsheet manufacturing method of the present invention will be described in detail with respect to an embodiment having a P4 layer, a P5 layer, and a P6 layer. Examples of the method of laminating the P4 layer, the P5 layer, and the P6 layer in the backsheet of the present invention include, for example, a polyamide resin for the P4 layer or a raw material mainly comprising polybutylene terephthalate, and a low crystalline softness for the P5 layer. A raw material mainly composed of one selected from the group consisting of a polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer, and a raw material mainly composed of an olefin resin for the P6 layer are separately extruded. A sheet manufactured by a manufacturing method (co-extrusion method) including a step of feeding a P4 layer, a P5 layer, and a P6 layer after being melted together, laminating them in this order, and extruding them into a sheet form from a T die. A method of laminating a coating layer raw material into an extruder and laminating while extruding and extruding from a die (melt laminating method), producing each sheet separately, A method of thermocompression bonding with a heated group of rolls (thermal lamination method), a method of bonding via an adhesive (adhesion method), a method of applying and drying a solution dissolved in a solvent (coating method), and A method combining these can be used. Of these, the coextrusion method is preferred in that the production process is short and the adhesion between the layers is good. Hereafter, the manufacturing method by a coextrusion method is explained in full detail.
 本発明のバックシートを共押出法で作製する場合、まず乾燥したP4層用のポリアミド樹脂、またはポリブチレンテレフタレートを主たる構成成分とする原料、P5層用の低結晶性軟質重合体、アクリル接着剤、及びエチレン酢酸ビニル共重合体からなる群より選ばれる1つを主たる構成成分とする原料、およびP6層用のオレフィン樹脂を主たる構成成分とする原料を、窒素気流下で、P4層用の原料は240℃以上300℃以下、P5層用の原料およびP6層用の原料は180℃以上250℃以下に加熱された3台の押出機にそれぞれ供給し溶融する。次いで、マルチマニホールドダイやフィードブロックやスタティックミキサー、ピノール等を用いて、P4層、P5層およびP6層をこの順に合流、積層させて、Tダイからシート状に共押出する。各層の溶融粘度差が大きい場合は、積層ムラ抑制の観点からマルチマニホールドダイを用いることが好ましい。 When the backsheet of the present invention is produced by the coextrusion method, first, a dried polyamide resin for P4 layer or a raw material mainly comprising polybutylene terephthalate, a low crystalline soft polymer for P5 layer, an acrylic adhesive And a raw material mainly composed of one selected from the group consisting of ethylene vinyl acetate copolymer and a raw material mainly composed of an olefin resin for P6 layer under a nitrogen stream, a raw material for P4 layer The raw material for P5 layer and the raw material for P6 layer are fed to three extruders heated to 180 ° C or higher and 250 ° C or lower, respectively, and melted. Next, using a multi-manifold die, a feed block, a static mixer, pinol, etc., the P4 layer, the P5 layer and the P6 layer are joined and laminated in this order, and are coextruded from the T die into a sheet. When the difference in melt viscosity of each layer is large, it is preferable to use a multi-manifold die from the viewpoint of suppressing lamination unevenness.
 前記の方法によってTダイから吐出したバックシートを、キャスティングドラム等の冷却体上に押出、冷却固化することにより、本発明のバックシートを得ることができる。 The back sheet discharged from the T die by the above method is extruded onto a cooling body such as a casting drum and solidified by cooling, whereby the back sheet of the present invention can be obtained.
 前記の方法で得られた本発明のバックシートを本発明の効果が損なわれない範囲で、必要に応じて熱処理やエージングなどの加工処理を加えてもよい。熱処理することで、本発明のバックシートの熱寸法安定性を向上することができる。また、前記の方法で得られた本発明のバックシートの密着性を向上させるために、コロナ処理、プラズマ処理を実施してもよい。 The back sheet of the present invention obtained by the above-described method may be subjected to processing such as heat treatment or aging as necessary within the range where the effects of the present invention are not impaired. By heat-treating, the thermal dimensional stability of the backsheet of the present invention can be improved. Moreover, in order to improve the adhesiveness of the backsheet of the present invention obtained by the above method, corona treatment or plasma treatment may be performed.
 本発明の太陽電池モジュールは、本発明の太陽電池用バックシートを有することを特徴とする。本発明のバックシートを太陽電池モジュール中に用いることで、従来の太陽電池モジュールと比べて長期間、発電特性を維持することが可能となる。本発明の太陽電池モジュールの構成例を図1に示す。図1では、電気を取り出すリード線(図1には示していない)を接続した太陽電池セルを、EVA系樹脂などの透明な封止材2で封止したものに、ガラスなどの透明基板4と、本発明の太陽電池用バックシート1とを貼り合わせて構成されるが、本発明の太陽電池モジュールの構成例はこれに限定されず、任意の構成に用いることができる。 The solar cell module of the present invention has the back sheet for solar cell of the present invention. By using the back sheet of the present invention in a solar cell module, it is possible to maintain power generation characteristics for a long period of time compared to a conventional solar cell module. A configuration example of the solar cell module of the present invention is shown in FIG. In FIG. 1, a solar cell connected with a lead wire for taking out electricity (not shown in FIG. 1) is sealed with a transparent sealing material 2 such as EVA resin, and a transparent substrate 4 such as glass. The solar cell backsheet 1 of the present invention is bonded together, and the configuration example of the solar cell module of the present invention is not limited to this and can be used for any configuration.
 本発明の太陽電池モジュールにおいて、上述の太陽電池バックシート1は、太陽電池セルを封止した封止材2の背面に設置される。ここで、本発明の太陽電池バックシートが非対称の構成であり、P6層が封止材2側に位置するように配置されるのが、封止材との密着性をより高くすることができるという点で好ましい。また、封止材2と反対側に本発明のバックシートのP4層が位置するように配置される構成となるため、地面からの照り返しの紫外線などに対する耐性を高めることが可能となり、高耐久の太陽電池モジュールとしたり、厚さを薄くすることができる。 In the solar cell module of the present invention, the above-described solar cell backsheet 1 is installed on the back surface of the sealing material 2 that seals the solar cells. Here, the solar cell backsheet of the present invention has an asymmetric configuration, and the P6 layer is disposed so as to be positioned on the sealing material 2 side, so that the adhesion with the sealing material can be further increased. This is preferable. Moreover, since it becomes the structure arrange | positioned so that P4 layer of the back sheet | seat of this invention may be located in the opposite side to the sealing material 2, it becomes possible to raise the tolerance with respect to the ultraviolet-ray of reflection from the ground, etc., and highly durable. It can be a solar cell module or the thickness can be reduced.
 太陽電池セル3は、太陽光の光エネルギーを電気エネルギーに変換するものであり、多結晶シリコン系、多結晶シリコン系、微結晶シリコン系、アモルファスシリコン系、銅インジウムセレナイド系、化合物半導体系、色素増感系など、目的に応じて任意の素子を、所望する電圧あるいは電流に応じて複数個を直列または並列に接続して使用することができる。透光性を有する透明基板4は太陽電池モジュールの最表層に位置するため、高透過率のほかに、高耐候性、高耐汚染性、高機械強度特性を有する透明材料が使用される。本発明の太陽電池モジュールにおいて、透光性を有する透明基板4は上記特性を満たせばいずれの材質も用いることができ、その例としてはガラス、エチレンテトラフルオロエチレン(ETFE)、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)、ポリ四フッ化エチレン(TFE)、四フッ化エチレン-六フッ化プロピレン(FEP)、ポリ三フッ化塩化エチレン(CTFE)、ポリフッ化ビニリデンなどのフッ素系樹脂、オレフィン樹脂、アクリル系樹脂、およびこれらの混合物などが好ましく挙げられる。ガラスの場合、強化されているものを用いるのがより好ましい。また樹脂製の透光基材を用いる場合は、機械的強度の観点から、上記樹脂を一軸または二軸に延伸したものも好ましく用いられる。 The solar battery cell 3 converts light energy of sunlight into electric energy, and is made of polycrystalline silicon, polycrystalline silicon, microcrystalline silicon, amorphous silicon, copper indium selenide, compound semiconductor, Arbitrary elements, such as a dye sensitizing system, can be used in series or in parallel according to the desired voltage or current depending on the purpose. Since the transparent substrate 4 having translucency is located on the outermost layer of the solar cell module, a transparent material having high weather resistance, high contamination resistance, and high mechanical strength characteristics in addition to high transmittance is used. In the solar cell module of the present invention, the transparent substrate 4 having translucency can use any material as long as it satisfies the above characteristics. Examples thereof include glass, ethylenetetrafluoroethylene (ETFE), and polyvinyl fluoride (PVF). ), Fluorinated resins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (TFE), tetrafluoroethylene-hexafluoropropylene (FEP), polytrifluoroethylene chloride (CTFE), polyvinylidene fluoride, Preferred examples include olefin resins, acrylic resins, and mixtures thereof. In the case of glass, it is more preferable to use a tempered glass. Moreover, when using the resin-made translucent base material, what extended | stretched the said resin uniaxially or biaxially from a viewpoint of mechanical strength is used preferably.
 また、これら基材には太陽電池セルの封止材であるEVA系樹脂などとの接着性を付与するために、表面に、コロナ処理、プラズマ処理、オゾン処理、易接着処理を施すことも好ましく行われる。 In addition, in order to impart adhesion to the EVA resin or the like, which is a sealing material for solar cells, it is preferable that the surface is subjected to corona treatment, plasma treatment, ozone treatment, and easy adhesion treatment. Done.
 太陽電池セルを封止するための封止材2は、太陽電池セルの表面の凹凸を樹脂で被覆し固定し、外部環境から太陽電池セルを保護し、電気絶縁の目的の他、透光性を有する基材やバックシートと太陽電池セルに接着するため、高透明性、高耐候性、高接着性、高耐熱性を有する材料が使用される。その例としては、エチレン-ビニルアセテート共重合体(EVA)、エチレン-メチルアクリレート共重合体(EMA)、エチレン-エチルアクリレート共重合体(EEA)樹脂、エチレン-メタクリル酸共重合体(EMAA)、アイオノマー樹脂、ポリビニルブチラール樹脂、およびこれらの混合物などが好ましく用いられる。 The sealing material 2 for sealing the solar battery cell covers and fixes the unevenness of the surface of the solar battery cell with a resin, protects the solar battery cell from the external environment, and has a light transmitting property in addition to the purpose of electrical insulation. Therefore, a material having high transparency, high weather resistance, high adhesion, and high heat resistance is used. Examples thereof include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA) resin, ethylene-methacrylic acid copolymer (EMAA), Ionomer resins, polyvinyl butyral resins, and mixtures thereof are preferably used.
 以上のように、本発明の太陽電池用バックシートを太陽電池モジュール中に組み込むことにより、従来の太陽電池と比べて、高耐久および/または薄型の太陽電池とすることが可能となる。本発明の太陽電池モジュールは、太陽光発電システム、小型電子部品の電源など、屋外用途、屋内用途に限定されず各種用途に好適に用いることができる。 As described above, by incorporating the solar cell backsheet of the present invention into a solar cell module, it becomes possible to obtain a highly durable and / or thin solar cell as compared with a conventional solar cell. The solar cell module of the present invention is not limited to outdoor use and indoor use, such as a solar power generation system and a power source for small electronic components, and can be suitably used for various uses.
 以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。なお、本明細書中に記載の各種特性評価は次の様に行った。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not necessarily limited thereto. In addition, the various characteristic evaluation described in this specification was performed as follows.
 [特性の評価方法]
 (1)層厚みT1、T2、T3、T4、T5、T6、Ta、積層比T4/Ta
 下記(A1)~(A4)の手順にて求めた。なお、測定は10ヶ所場所を変えて測定し、その平均値をP1層の厚みT1(μm)、P2層の厚みT2(μm)、P3層の厚みT3(μm)、P4層の厚みT4(μm)、P5層の厚みT5(μm)、P6層の厚みT6(μm)、シート全体の厚みTa(μm)とする。さらにここで得られたT4及びT6を用いて積層比T4/T6を求めた。
[Characteristic evaluation method]
(1) Layer thickness T1, T2, T3, T4, T5, T6, Ta, lamination ratio T4 / Ta
It was determined by the following procedures (A1) to (A4). The measurement was carried out at 10 different locations, and the average values were P1 layer thickness T1 (μm), P2 layer thickness T2 (μm), P3 layer thickness T3 (μm), P4 layer thickness T4 ( μm), the thickness T5 (μm) of the P5 layer, the thickness T6 (μm) of the P6 layer, and the thickness Ta (μm) of the entire sheet. Furthermore, the stacking ratio T4 / T6 was determined using T4 and T6 obtained here.
 (A1)ミクロトームを用いて、積層シート(バックシート)断面を厚み方向に潰すことなく、積層シート(バックシート)面方向に対して垂直に切断する。 (A1) Using a microtome, cut the cross section of the laminated sheet (back sheet) perpendicular to the plane direction of the laminated sheet (back sheet) without crushing the cross section in the thickness direction.
 (A2)次いで切断した断面を、電子顕微鏡を用いて観察し、500倍に拡大観察した画像を得る。なお、観察場所は無作為に定めるものとするが、画像の上下方向が積層シート(バックシート)の厚み方向と、画像の左右方向が積層シート(バックシート)の面方向とそれぞれ平行になるようにする。なお、厚み方向全体が1枚の画像中に入りきらない場合は、厚み方向に観察位置をずらして観察し、複数の画像をあわせることによって厚み全体が確認できる画像を準備する。 (A2) Next, the cut section is observed using an electron microscope, and an image magnified 500 times is obtained. Although the observation location is determined at random, the vertical direction of the image is parallel to the thickness direction of the laminated sheet (back sheet) and the horizontal direction of the image is parallel to the surface direction of the laminated sheet (back sheet). To. When the entire thickness direction does not fit in one image, observation is performed by shifting the observation position in the thickness direction, and an image that can confirm the entire thickness is prepared by combining a plurality of images.
 (A3)前記(A2)で得られる画像中におけるP1層の厚みT1、P2層の厚みT2、P3層の厚みT3、P4層の厚みT4、P5層の厚みT5、P6層の厚みT6、シート全体の厚みTaを求めた。 (A3) P1 layer thickness T1, P2 layer thickness T2, P3 layer thickness T3, P4 layer thickness T4, P5 layer thickness T5, P6 layer thickness T6, sheet in the image obtained in (A2) The total thickness Ta was determined.
 (A4)T4をTaで除し、積層比T4/Taを算出した。 (A4) T4 was divided by Ta to calculate a stacking ratio T4 / Ta.
 (2)無機粒子の含有量(質量%)
 積層シート(バックシート)からP1層、P3層、P4層、P6層のそれぞれを削る、または剥がして、P1層およびP3層、P4層、P6層を分離し、それらについて、以下の方法で無機粒子の含有量を算出した。
(2) Content of inorganic particles (% by mass)
The P1 layer, P3 layer, P4 layer, and P6 layer are each cut or peeled off from the laminated sheet (back sheet) to separate the P1 layer, P3 layer, P4 layer, and P6 layer. The content of particles was calculated.
 削りだしたものの質量wa(g)を測定し、次いで、P1層はオルト-クレゾール、P3層、P6層はオルト-ジクロロベンゼン(100℃)、P4層はギ酸に溶解させ、遠心分離により不溶成分のうち、無機粒子を分取した。得られた無機粒子をオルト-クレゾール、オルト-ジクロロベンゼン、ギ酸にて洗浄、遠心分離した。なお、洗浄作業は、遠心分離後の洗浄液にエタノールを添加しても白濁しなくなるまで繰り返した。得られた無機粒子の質量wa’(g)を求め、下記式から無機粒子の含有量を算出した。
・無機粒子の含有量(質量%)Wa1=(wa’/wa)×100。
The mass wa (g) of the shaved material was measured, and then the P1 layer was dissolved in ortho-cresol, the P3 layer and the P6 layer in ortho-dichlorobenzene (100 ° C.), the P4 layer was dissolved in formic acid, and the insoluble component was dissolved by centrifugation. Of these, inorganic particles were collected. The obtained inorganic particles were washed with ortho-cresol, ortho-dichlorobenzene, formic acid and centrifuged. The washing operation was repeated until no white turbidity occurred even when ethanol was added to the washing solution after centrifugation. Mass wa ′ (g) of the obtained inorganic particles was obtained, and the content of inorganic particles was calculated from the following formula.
Inorganic particle content (% by mass) Wa1 = (wa ′ / wa) × 100.
 (3)結晶化パラメータ
{ガラス転移温度Tg、結晶化温度Tc、結晶化パラメータΔTcg}
Seiko Instrument(株)製示差走査熱量分析装置DSCII型を用い、JIS-K7121(1987)に準拠し、ガラス転移温度(Tg)、昇温時の結晶化温度(Tc)を測定した。はじめに試料を5mg採取し、25℃から300℃まで昇温速度20℃/分で昇温し、Tg、Tcを求め、結晶化パラメータΔTcgは、下式により求めた。
・ΔTcg=Tc-Tg
 なお、複数のTg、Tcが観測される場合、Tc>Tgの関係となる全てのTc及びTgを用いて、ΔTcgを算出し、その中で最も小さい値を本願のΔTcgとする。
(3) Crystallization parameters {Glass transition temperature Tg, crystallization temperature Tc, crystallization parameter ΔTcg}
Using a differential scanning calorimeter DSCII type manufactured by Seiko Instrument Co., Ltd., the glass transition temperature (Tg) and the crystallization temperature (Tc) at the time of temperature increase were measured according to JIS-K7121 (1987). First, 5 mg of a sample was collected and heated from 25 ° C. to 300 ° C. at a rate of temperature increase of 20 ° C./min to obtain Tg and Tc, and the crystallization parameter ΔTcg was obtained from the following equation.
ΔTcg = Tc−Tg
When a plurality of Tg and Tc are observed, ΔTcg is calculated using all Tc and Tg satisfying the relationship of Tc> Tg, and the smallest value among them is defined as ΔTcg of the present application.
 (4)破断伸度測定、破断強度測定
 ASTM-D882(1997)に基づいて、サンプルを1cm×20cmの大きさに切り出し、チャック間5cm、引っ張り速度300mm/minにて引っ張ったときの破断伸度、破断強度を測定した。なお、フィルムの長手方向、幅方向のそれぞれについて、サンプル数はn=5で測定した後、それらの平均値を破断伸度、破断強度とした。
破断強度が80MPa以上の場合:S
破断強度が40MPa以上80MPa未満の場合:A
破断強度が30MPa以上40MPa未満の場合:B
破断強度が20MPa以上30MPa未満の場合:C
破断強度が20MPa未満の場合:D
S~Cが合格であり、その中でもSが最も優れている。
(4) Measurement of elongation at break and measurement of strength at break Based on ASTM-D882 (1997), a sample was cut into a size of 1 cm × 20 cm, and the elongation at break when pulled between chucks at 5 cm and at a pulling speed of 300 mm / min. The breaking strength was measured. In addition, about each of the longitudinal direction of a film, and the width direction, after measuring the number of samples by n = 5, those average values were made into breaking elongation and breaking strength.
When the breaking strength is 80 MPa or more: S
When the breaking strength is 40 MPa or more and less than 80 MPa: A
When the breaking strength is 30 MPa or more and less than 40 MPa: B
When the breaking strength is 20 MPa or more and less than 30 MPa: C
When the breaking strength is less than 20 MPa: D
S to C pass, and S is the best among them.
 (5)耐湿熱性(耐湿熱試験後の伸度保持率)
試料を測定片の形状(1cm×20cm)に切り出した後、エスペック(株)製恒温恒湿器PR-1KPHにて、温度85℃、相対湿度85%RHの条件下にて1000時間処理を行い、その後上記(4)項に従って破断伸度を測定した。なお、測定はn=5とし、積層シートの縦方向、横方向のそれぞれ5サンプルについて測定した後、その平均値を破断伸度E1とした。また、処理を行う前の積層シートについても上記(4)項に従って破断伸度E0を測定し、得られた破断伸度E0,E1を用いて、次の式により伸度保持率を算出した。
・伸度保持率(%)=(E1/E0)×100
得られた伸度保持率について、以下のように判定した。
伸度保持率が50%以上の場合:S
伸度保持率が40%以上50%未満の場合:A
伸度保持率が30%以上40%未満の場合:B
伸度保持率が20%以上30%未満の場合:C
伸度保持率が20%未満の場合:D
S~Cが合格であり、その中でもSが最も優れている。
(5) Moist heat resistance (Elongation retention after moist heat test)
After the sample was cut into the shape of the measurement piece (1 cm x 20 cm), it was treated for 1000 hours under the conditions of a constant temperature and humidity chamber PR-1KPH manufactured by ESPEC CORP. At a temperature of 85 ° C and a relative humidity of 85% RH. Then, the elongation at break was measured according to the above item (4). In addition, the measurement was made into n = 5, and after measuring about 5 samples of the vertical direction and the horizontal direction of a lamination sheet, the average value was made into elongation at break E1. Moreover, also about the lamination sheet before performing a process, breaking elongation E0 was measured according to the said (4) term, and elongation retention was computed by the following formula using the obtained breaking elongation E0 and E1.
・ Elongation retention (%) = (E1 / E0) × 100
The obtained elongation retention was determined as follows.
When the elongation retention is 50% or more: S
When the elongation retention is 40% or more and less than 50%: A
When the elongation retention is 30% or more and less than 40%: B
When the elongation retention is 20% or more and less than 30%: C
When the elongation retention is less than 20%: D
S to C pass, and S is the best among them.
 (6)耐熱性(耐熱試験後の伸度保持率)
試料を測定片の形状(1cm×20cm)に切り出した後、エスペック(株)製熱処理器GPHH-102にて、温度140℃の条件下にて2000時間処理を行い、その後上記(4)項に従って破断伸度を測定した。なお、測定はn=5とし、積層シートの縦方向、横方向のそれぞれ5サンプルについて測定した後、その平均値を破断伸度E1とした。また、処理を行う前の積層シートについても上記(4)項に従って破断伸度E0を測定し、得られた破断伸度E0,E1を用いて、次の式により伸度保持率を算出した。
・伸度保持率(%)=(E1/E0)×100
得られた伸度保持率について、以下のように判定した。
伸度保持率が50%以上の場合:S
伸度保持率が40%以上50%未満の場合:A
伸度保持率が30%以上40%未満の場合:B
伸度保持率が20%以上30%未満の場合:C
伸度保持率が20%未満の場合:D
S~Cが合格であり、その中でもSが最も優れている。
(6) Heat resistance (elongation retention after heat test)
After the sample was cut into the shape of the measurement piece (1 cm × 20 cm), it was treated for 2000 hours under the condition of a temperature of 140 ° C. in the heat treatment device GPHH-102 manufactured by Espec Co., Ltd., and then according to the above item (4) The elongation at break was measured. In addition, the measurement was made into n = 5, and after measuring about 5 samples of the vertical direction and the horizontal direction of a lamination sheet, the average value was made into elongation at break E1. Moreover, also about the lamination sheet before performing a process, breaking elongation E0 was measured according to the said (4) term, and elongation retention was computed by the following formula using the obtained breaking elongation E0 and E1.
・ Elongation retention (%) = (E1 / E0) × 100
The obtained elongation retention was determined as follows.
When the elongation retention is 50% or more: S
When the elongation retention is 40% or more and less than 50%: A
When the elongation retention is 30% or more and less than 40%: B
When the elongation retention is 20% or more and less than 30%: C
When the elongation retention is less than 20%: D
S to C pass, and S is the best among them.
 (7)P1層面の耐候性(紫外線照射後の色調変化Δb)
シートを岩崎電気(株)製アイスーパー紫外線テスターS-W131にて、温度60℃、相対湿度50%、強度100mW/cm(光源:メタルハライドランプ、波長範囲:295~450nm、ピーク波長:365nm)の条件下でP1側から48時間照射した。照射前後のサンプルについて、サンプル数n=5として、分光式色差計SE-2000型(日本電色工業(株)製)を用い、JIS Z-8722(2000)に準じて反射モードにて、照射前後のP1層側のb値を測定し、平均値を算出することで、該照射前後のb値を求めた。その差(照射後のb値から照射前のb値)を紫外線照射後の色調変化Δb1とした。
得られた色調変化(Δb1)について以下のように判定を行った。
色調変化Δb1が1以下の場合:S
色調変化Δb1が1より大きく3以下の場合:A
色調変化Δb1が3より大きく6以下の場合:B
色調変化Δb1が6より大きく9以下の場合:C
色調変化Δb1が9より大きい場合:D
S~Cが合格であり、その中でもSが最も優れている。
(7) Weather resistance of P1 layer surface (color change Δb after ultraviolet irradiation)
The sheet was heated at 60 ° C., relative humidity 50%, intensity 100 mW / cm 2 (light source: metal halide lamp, wavelength range: 295 to 450 nm, peak wavelength: 365 nm) using I-super ultraviolet tester S-W131 manufactured by Iwasaki Electric Co., Ltd. Irradiation was performed for 48 hours from the P1 side under these conditions. For samples before and after irradiation, the number of samples is n = 5 and a spectroscopic color difference meter SE-2000 type (manufactured by Nippon Denshoku Industries Co., Ltd.) is used, and irradiation is performed in a reflection mode according to JIS Z-8722 (2000). The b values before and after the irradiation were determined by measuring the b values before and after the P1 layer and calculating the average value. The difference (b value after irradiation to b value before irradiation) was defined as a color tone change Δb1 after ultraviolet irradiation.
The obtained color tone change (Δb1) was determined as follows.
When the color change Δb1 is 1 or less: S
When the color tone change Δb1 is greater than 1 and 3 or less: A
When the color change Δb1 is greater than 3 and less than or equal to 6: B
When the color tone change Δb1 is greater than 6 and less than or equal to 9: C
When the color change Δb1 is greater than 9: D
S to C pass, and S is the best among them.
 (8)P3層面の耐候性(紫外線照射後の色調変化Δb)
シートを岩崎電気(株)製アイスーパー紫外線テスターS-W131にて、温度60℃、相対湿度50%、強度100mW/cm(光源:メタルハライドランプ、波長範囲:295~450nm、ピーク波長:365nm)の条件下でP3側から48時間照射した。照射前後のサンプルについて、サンプル数n=5として、分光式色差計SE-2000型(日本電色工業(株)製)を用い、JIS Z-8722(2000)に準じて反射モードにて、照射前後のP3層側のb値を測定し、平均値を算出することで、該照射前後のb値を求めた。その差(照射後のb値から照射前のb値)を紫外線照射後の色調変化Δb2とした。
得られた色調変化(Δb2)について以下のように判定を行った。
色調変化Δb2が1以下の場合:S
色調変化Δb2が1より大きく3以下の場合:A
色調変化Δb2が3より大きく6以下の場合:B
色調変化Δb2が6より大きく9以下の場合:C
色調変化Δb2が9より大きい場合:D
S~Cが合格であり、その中でもSが最も優れている。
(8) Weather resistance of P3 layer surface (color tone change Δb after UV irradiation)
The sheet was heated at 60 ° C., relative humidity 50%, intensity 100 mW / cm 2 (light source: metal halide lamp, wavelength range: 295 to 450 nm, peak wavelength: 365 nm) using I-super ultraviolet tester S-W131 manufactured by Iwasaki Electric Co., Ltd. Irradiation was performed for 48 hours from the P3 side under the above conditions. For samples before and after irradiation, the number of samples is n = 5 and a spectroscopic color difference meter SE-2000 type (manufactured by Nippon Denshoku Industries Co., Ltd.) is used, and irradiation is performed in a reflection mode according to JIS Z-8722 (2000). The b values before and after the irradiation were determined by measuring the b values before and after the P3 layer and calculating the average value. The difference (b value after irradiation from b value after irradiation) was defined as a color tone change Δb2 after ultraviolet irradiation.
The obtained color tone change (Δb2) was determined as follows.
When the color change Δb2 is 1 or less: S
When the color tone change Δb2 is greater than 1 and 3 or less: A
When the color change Δb2 is greater than 3 and less than or equal to 6: B
When the color change Δb2 is greater than 6 and less than or equal to 9: C
When the color change Δb2 is greater than 9: D
S to C pass, and S is the best among them.
 (9)封止材との密着性
 JIS K6854(1994)に基づいて、EVAシート(封止材)とP3層の剥離強度から封止材の密着性を評価した。測定試験片は、厚さ3mmの半強化ガラス上に、サンビック(株)製の500μm厚のEVAシート、およびコロナ処理を行った実施例、比較例の積層シートを重ね、市販のガラスラミネーターを用いて真空引き後に140℃加熱条件下、29.4N/cm荷重で15分プレス処理をしたものを用いた。剥離強度試験の試験片の幅は10mmとし、2つの試験片を準備し、それぞれの試験片について場所を変えて3カ所測定し、得られた測定値の平均値を剥離強度の値とした。
(9) Adhesiveness with sealing material Based on JIS K6854 (1994), the adhesiveness of the sealing material was evaluated from the peel strength between the EVA sheet (sealing material) and the P3 layer. The test specimen was a 500 μm thick EVA sheet manufactured by Sanvic Co., Ltd., and a laminated sheet of Examples and Comparative Examples subjected to corona treatment on a 3 mm thick semi-tempered glass, and a commercially available glass laminator was used. Then, after evacuation, a press treatment was performed for 15 minutes with a load of 29.4 N / cm 2 under a heating condition of 140 ° C. The width of the test piece for the peel strength test was 10 mm, two test pieces were prepared, and each test piece was measured at three locations with different locations, and the average value of the obtained measured values was taken as the peel strength value.
 得られた剥離強度から封止材との密着性を以下のように判定した。
剥離強度が50N/10mm以上の場合:S
剥離強度が40N/10mm以上50N/10mm未満の場合:A
剥離強度が30N/10mm以上40N/10mm未満の場合:B
剥離強度が20N/10mm以上30N/10mm未満の場合:C
剥離強度が20N/10mm未満の場合:D
S~Cが合格であり、その中でもSが最も優れている。
From the obtained peel strength, the adhesion with the sealing material was determined as follows.
When peel strength is 50 N / 10 mm or more: S
When the peel strength is 40 N / 10 mm or more and less than 50 N / 10 mm: A
When peel strength is 30N / 10mm or more and less than 40N / 10mm: B
When the peel strength is 20 N / 10 mm or more and less than 30 N / 10 mm: C
When peel strength is less than 20 N / 10 mm: D
S to C pass, and S is the best among them.
 (10)層間密着性
 85℃85%RH1000時間処理後の層間剥離強度から層間密着性を評価した。ここで、層間剥離強度はJIS K6854-3(1999)に則って測定されたT形で剥離した際の強度を用いた。ここで、層間とはP1層とP2層の間およびP2層とP3層の間など界面剥離できる層間とした。層間剥離強度試験の試験片の幅は15mmとし、2つの試験片を準備し、それぞれの試験片について場所を変えて3カ所測定し、得られた測定値の平均値を層間剥離強度として、以下のように層間密着性の判定を行った。
剥離強度が10N/15mm以上の場合:S
剥離強度が6N/15mm以上10N/15mm未満の場合:A
剥離強度が3N/15mm以上6N/15mm未満の場合:B
剥離強度が1N/15mm以上3N/15mm未満の場合:C
剥離強度が1N/15mm未満の場合:D
S~Cが合格であり、その中でもSが最も優れている。
(10) Interlayer adhesion The interlayer adhesion was evaluated from the delamination strength after treatment at 85 ° C and 85% RH for 1000 hours. Here, as the delamination strength, the strength at the time of peeling in the T shape measured according to JIS K6854-3 (1999) was used. Here, the interlayer was defined as an interlayer capable of interfacial separation such as between the P1 layer and the P2 layer and between the P2 layer and the P3 layer. The test piece width of the delamination strength test was 15 mm, and two test pieces were prepared. The test piece was changed in place and measured at three locations, and the average value of the obtained measurement values was taken as the delamination strength. The interlayer adhesion was determined as follows.
When peel strength is 10N / 15mm or more: S
When the peel strength is 6 N / 15 mm or more and less than 10 N / 15 mm: A
When peel strength is 3N / 15mm or more and less than 6N / 15mm: B
When peel strength is 1N / 15mm or more and less than 3N / 15mm: C
When peel strength is less than 1 N / 15 mm: D
S to C pass, and S is the best among them.
 (11)40℃90%RHにおける水蒸気透過率Pw(g/m/day)
JIS K7129(2008)の赤外線センサ法に準じて、測定面積50cm、40℃90%RH環境下における水蒸気透過率を測定した。
(11) Water vapor transmission rate Pw (g / m 2 / day) at 40 ° C. and 90% RH
According to the infrared sensor method of JIS K7129 (2008), the water vapor transmission rate in a measurement area of 50 cm 2 and a 40 ° C. and 90% RH environment was measured.
 (12)85℃における酢酸透過率Pa(g/m/day)
 酢酸透過率を測定するために使用する治具11について、断面図を図2に、上面図を図3に示す。治具11は、ステンレス鋼から作られた65cmの円形状の開口部を有する治具上部7と容器上面に治具7と同一の形状を有している酢酸を含む容器である治具下部8からなり、治具下部8の中に酢酸原液9を入れる。
(12) Acetic acid permeability at 85 ° C. Pa (g / m 2 / day)
FIG. 2 shows a cross-sectional view and FIG. 3 shows a top view of the jig 11 used for measuring acetic acid permeability. The jig 11 is made of stainless steel and has a 65 cm 2 circular opening, and a jig lower part which is a container containing acetic acid having the same shape as the jig 7 on the upper surface of the container. The acetic acid stock solution 9 is put into the lower part 8 of the jig.
 測定される積層シート、バックシート1は治具下部8と治具上部7の間にステンレス鋼製の線径0.29mm、目合い0.98mmのメッシュ10が治具上部7側になるように重ねられて、酢酸蒸気が抜けないよう、治具下部8の上にセットされたOリングと一緒に挟み、治具上部7と治具下部8をビスによって固定した。測定面積が65cmを満たすバックシート1と酢酸原液9を準備された治具11を、その状態で85℃に1時間放置した後の室温における質量W1を測定した。W1測定後、再度85℃1時間放置後の室温における質量W2を測定した。同様にして、W2測定後1時間放置後の室温における質量W3、W3測定後1時間後の室温における質量W4を測定した。得られたW1~W4について、以下の式に従い計算しPaを算出した。
・Pa(g/m/day)=
{(W1-W2)+(W2-W3)+(W3-W4)}/3×24/0.0065   。
The laminated sheet to be measured, the back sheet 1, has a mesh 10 made of stainless steel with a wire diameter of 0.29 mm and a mesh size of 0.98 mm between the jig lower part 8 and the jig upper part 7 on the jig upper part 7 side. The jig upper part 7 and the jig lower part 8 were fixed with screws so as to prevent acetic acid vapor from escaping and sandwiched together with an O-ring set on the jig lower part 8. The mass W1 at room temperature after the jig 11 prepared with the back sheet 1 and the acetic acid stock solution 9 satisfying the measurement area of 65 cm 2 was left at 85 ° C. for 1 hour in that state was measured. After the W1 measurement, the mass W2 at room temperature after standing again at 85 ° C. for 1 hour was measured. Similarly, mass W3 at room temperature after standing for 1 hour after W2 measurement and mass W4 at room temperature after 1 hour after W3 measurement were measured. The obtained W1 to W4 were calculated according to the following formula to calculate Pa.
Pa (g / m 2 / day) =
{(W1-W2) + (W2-W3) + (W3-W4)} / 3 × 24 / 0.0065.
 (13)太陽電池モジュールの発電特性評価
JIS C8914(2005)の基準状態に準じて測定された、初期の最大出力と、恒温恒湿試験槽「エスペック社製恒温恒湿試験槽PL-4KT」を用いて85℃85%RH5000時間の劣化促進試験を行った後の最大出力を比較し、該試験後の、最大出力保持率を算出した。得られた最大出力保持率から発電特性を以下の様に判定した。
最大出力保持率が75%以上の場合:S
最大出力保持率が50%以上、75%未満の場合:A
最大出力保持率が25%以上、50%未満の場合:B
最大出力保持率が25%未満の場合:C
SとAが合格であり、その中でもSが最も優れている。
(13) Evaluation of power generation characteristics of solar cell module The initial maximum output measured according to the standard condition of JIS C8914 (2005) and the constant temperature and humidity test tank “Esspec Corp. constant temperature and humidity test tank PL-4KT” The maximum output after performing the deterioration acceleration test at 85 ° C. and 85% RH for 5000 hours was compared, and the maximum output retention rate after the test was calculated. The power generation characteristics were determined as follows from the obtained maximum output retention rate.
When the maximum output retention rate is 75% or more: S
When the maximum output retention rate is 50% or more and less than 75%: A
When the maximum output retention rate is 25% or more and less than 50%: B
When the maximum output retention rate is less than 25%: C
S and A are acceptable, and S is the best among them.
 (14)セル集電電極部の変色確認(セル集電電極変色)
太陽電池モジュールの太陽電池セルに含まれる表面側集電電極について、恒温恒湿試験槽「エスペック社製恒温恒湿試験槽PL-4KT」を用いて85℃85%RH5000時間の劣化促進試験を行った後の変色をサンプル数n=5に対し、目視で確認した。得られた変色しているサンプル数から、以下の様にセル集電電極部の変色を判定した。
変色しているサンプル数がn=0の場合:S
変色しているサンプル数がn=1または2の場合:A
変色しているサンプル数がn=3または4の場合:B
変色しているサンプル数がn=5の場合:C
S~Aが合格であり、その中でもSが最も優れている。
(14) Discoloration confirmation of cell current collecting electrode (cell current collecting electrode discoloration)
The surface-side collector electrode included in the solar cells of the solar cell module is subjected to a deterioration acceleration test at 85 ° C. and 85% RH for 5000 hours using a constant temperature and humidity test tank “constant temperature and humidity test tank PL-4KT manufactured by ESPEC Corporation”. Thereafter, the color change was visually confirmed with respect to the number of samples n = 5. From the obtained number of samples having discoloration, the discoloration of the cell collector electrode portion was determined as follows.
When the number of discolored samples is n = 0: S
When the number of discolored samples is n = 1 or 2: A
When the number of discolored samples is n = 3 or 4: B
When the number of discolored samples is n = 5: C
S to A are acceptable, and S is the best among them.
 (15)P6層黄変性
バックシートを測定片の形状(3cm×3cm)に切り出した後、エスペック(株)製熱風オーブンPV(H)-212で120℃にて72時間処理を行った。該処理の前後のサンプルについて、サンプル数n=5として、分光式色差計SE-2000型(日本電色工業(株)製)を用い、JIS Z-8722(2000)に準じて反射モードにて、試料測定径を30mmφとして、P6層側のb値を測定して、平均値を算出することで、該処理の前後のb値の差を求めた。つまり、処理後のb値から処理前のb値を引くことでΔbを求め、以下のように判定を行った。
色調変化Δbが3未満の場合:S
色調変化Δbが3以上5未満の場合:A
色調変化Δbが5以上8未満の場合:B
色調変化Δbが8以上10以下の場合:C
色調変化Δbが10を超える場合:D     。
(15) The P6 layer yellowed backsheet was cut into the shape of a measurement piece (3 cm × 3 cm), and then subjected to treatment at 120 ° C. for 72 hours in a hot air oven PV (H) -212 manufactured by Espec Corp. With respect to the samples before and after the treatment, the spectroscopic color difference meter SE-2000 type (manufactured by Nippon Denshoku Industries Co., Ltd.) was used with the number of samples n = 5, and in the reflection mode according to JIS Z-8722 (2000). The sample measurement diameter was set to 30 mmφ, the b value on the P6 layer side was measured, and the average value was calculated to obtain the difference between the b values before and after the treatment. That is, Δb was obtained by subtracting the b value before processing from the b value after processing, and the following determination was performed.
When the color change Δb is less than 3: S
When the color change Δb is 3 or more and less than 5: A
When the color change Δb is 5 or more and less than 8: B
When color change Δb is 8 or more and 10 or less: C
When the color change Δb exceeds 10, D.
 (16)耐熱性(130℃)
 ASTM-D882(1997)に基づいて、バックシートを1cm×20cmの大きさに切り出し、エスペック(株)製熱風オーブンPV(H)-212で130℃環境下で1000時間放置した前後における、チャック間5cm、引っ張り速度300mm/minにて引っ張ったときの破断伸度低下率を測定した。なお、破断伸度低下率は、フィルムの長手方向、幅方向のそれぞれについて、サンプル数はn=5で測定した後の、平均値とした。得られた破断伸度低下率から以下の様に判定した。
破断伸度保持率が70%以上の場合:S
破断伸度保持率が50%以上、70%未満の場合:A
破断伸度保持率が30%以上、50%未満の場合:B
破断伸度保持率が30%未満の場合:C       。
(16) Heat resistance (130 ° C)
Based on ASTM-D882 (1997), the back sheet was cut into a size of 1 cm × 20 cm, and between chucks before and after being left in a hot air oven PV (H) -212 manufactured by ESPEC Corporation for 1000 hours in an environment of 130 ° C. The breaking elongation reduction rate was measured when pulled at 5 cm and a pulling speed of 300 mm / min. The rate of decrease in elongation at break was the average value after measuring the number of samples at n = 5 in each of the longitudinal direction and the width direction of the film. Judgment was made from the obtained rate of decrease in elongation at break as follows.
When the elongation at break is 70% or more: S
When the elongation at break is 50% or more and less than 70%: A
When the elongation at break is 30% or more and less than 50%: B
When the elongation at break is less than 30%: C.
 (17)部分放電電圧
部分放電試験器KPD2050(菊水電子工業(株)製)を用いて、バックシートの部分放電電圧を求めた。なお試験条件は下記のとおりとする。
・出力シートにおける出力電圧印加パターンは、1段階目が0Vから所定の試験電圧までの単純に電圧を上昇させるパターン、2段階目が所定の試験電圧を維持するパターン、3段階目が所定の試験電圧から0Vまでの単純に電圧を降下させるパターンの3段階からなるパターンのものを選択する。
・周波数は50Hzとする。試験電圧は1kVとする。
・1段階目の時間T1は10sec、2段階目の時間T2は2sec、3段階目の時間T3は10secとする。
・パルスカウントシートにおけるカウント方法は「+」(プラス)、検出レベルは50%とする。
・レンジシートにおける電荷量はレンジ1,000pcとする。
・プロテクションシートでは、電圧のチェックボックスにチェックを入れた上で2kVを入力する。また、パルスカウントは100,000とする。
・計測モードにおける開始電圧は1.0pc、消滅電圧は1.0pcとする。
(17) Partial discharge voltage The partial discharge voltage of the back sheet was determined using a partial discharge tester KPD2050 (manufactured by Kikusui Electronics Co., Ltd.). The test conditions are as follows.
The output voltage application pattern on the output sheet is a pattern in which the first stage simply increases the voltage from 0 V to a predetermined test voltage, the second stage is a pattern that maintains a predetermined test voltage, and the third stage is a predetermined test A pattern composed of three stages of patterns in which the voltage is simply dropped from 0 to 0 V is selected.
・ The frequency is 50 Hz. The test voltage is 1 kV.
The first stage time T1 is 10 sec, the second stage time T2 is 2 sec, and the third stage time T3 is 10 sec.
• The counting method on the pulse count sheet is “+” (plus), and the detection level is 50%.
-The charge amount in the range sheet is set to 1,000 pc.
・ In the protection sheet, enter 2 kV after checking the voltage check box. The pulse count is 100,000.
In the measurement mode, the start voltage is 1.0 pc and the extinction voltage is 1.0 pc.
 なお、測定はフィルム面内において任意の10カ所で測定を実施し、その平均値を、部分放電電圧V0とした。また、測定試料は、23℃、65%RHの室内で一晩放置したものを用いて測定を実施した。
部分放電電圧が1,050V以上の場合:S
部分放電電圧が950V以上1,050V未満の場合:A
部分放電電圧が700V以上950V未満の場合:B
部分放電電圧が300V以上700V未満の場合:C
部分放電電圧が300V未満の場合:D         。
In addition, the measurement was carried out at 10 arbitrary positions in the film plane, and the average value was defined as the partial discharge voltage V0. Further, the measurement was performed using a measurement sample left overnight in a room at 23 ° C. and 65% RH.
When partial discharge voltage is 1,050 V or more: S
When the partial discharge voltage is 950 V or more and less than 1,050 V: A
When partial discharge voltage is 700V or more and less than 950V: B
When the partial discharge voltage is 300V or more and less than 700V: C
When partial discharge voltage is less than 300V: D.
 (18)封止材との密着性(135℃真空ラミネート)
 JIS K6854(1994)に基づいて、EVAシート(封止材)とバックシートのP6層の剥離強度から封止材との密着性を評価した。測定試験片は、厚さ3mmの半強化ガラス上に、サンビック(株)製の500μm厚のEVAシート、およびコロナ処理を行った実施例、比較例のバックシートを重ね、市販のガラスラミネーターを用いて真空引き後に135℃加熱条件下、29.4N/cm荷重で15分プレス処理をしたものを用いた。剥離強度試験の試験片の幅は10mmとし、2つの試験片を準備し、それぞれの試験片について場所を変えて3カ所測定し、得られた測定値の平均値を剥離強度の値とした。得られた剥離強度から封止材の密着性を以下のように判定した。なお、P6層を有さないバックシートの場合も、同様にして評価を行う。
剥離強度が50N/10mm以上の場合:S
剥離強度が40N/10mm以上50N/10mm未満の場合:A
剥離強度が30N/10mm以上40N/10mm未満の場合:B
剥離強度が20N/10mm以上30N/10mm未満の場合:C
剥離強度が20N/10mm未満の場合:D            。
(18) Adhesion with sealing material (135 ° C vacuum lamination)
Based on JIS K6854 (1994), the adhesion between the EVA sheet (sealing material) and the P6 layer of the back sheet was evaluated from the peel strength. The test specimen is a 500 μm thick EVA sheet manufactured by Sanvic Co., Ltd. and a corona-treated Example and Comparative Example back sheet on a 3 mm thick semi-tempered glass, and a commercially available glass laminator is used. Then, after evacuation, press-treated for 15 minutes with a load of 29.4 N / cm 2 under a heating condition of 135 ° C. was used. The width of the test piece for the peel strength test was 10 mm, two test pieces were prepared, and each test piece was measured at three locations with different locations, and the average value of the obtained measured values was taken as the peel strength value. From the obtained peel strength, the adhesiveness of the sealing material was determined as follows. In the case of a backsheet not having the P6 layer, the evaluation is performed in the same manner.
When peel strength is 50 N / 10 mm or more: S
When the peel strength is 40 N / 10 mm or more and less than 50 N / 10 mm: A
When peel strength is 30N / 10mm or more and less than 40N / 10mm: B
When the peel strength is 20 N / 10 mm or more and less than 30 N / 10 mm: C
When peel strength is less than 20 N / 10 mm: D.
 (19)平面性(カール性)
 積層シートを100mm×幅100mmに切り出して、平面に無荷重の状態で横から見て凹となるように置き、シートの四隅浮き上がり高さを測長した。そのときの合計値をカール高さとして、次のように判定した。
カールの4隅高さ合計値が20mm未満の場合:S
カールの4隅高さ合計値が20mm以上50mm未満の場合:A
カールの4隅高さ合計値が50mm以上80mm未満の場合:B
カールの4隅高さ合計値が80mm以上100mm未満の場合:C
カールの4隅高さ合計値が100mm以上の場合:D
S~Cが良好であり、その中でもSが最も優れている。
(19) Flatness (curling)
The laminated sheet was cut into a size of 100 mm × width 100 mm, placed on a flat surface so as to be concave when viewed from the side, and the height of the four corners raised was measured. The total value at that time was determined as the curl height as follows.
When the total height of the four corners of the curl is less than 20 mm: S
When the total height of the four corners of the curl is 20 mm or more and less than 50 mm: A
When the total height of the four corners of the curl is 50 mm or more and less than 80 mm: B
When the total height of the four corners of the curl is 80 mm or more and less than 100 mm: C
When the total height of the four corners of the curl is 100 mm or more: D
S to C are good, and S is the best among them.
 (20)剛直非晶量
積層シートからP1層を削りとり、下記装置および条件で示差走査型熱量測定法(DSC)と温度変調DSC法を行い、 “繊維と工業”Vol.65,No.11(2009)P.428の方法を用いて剛直非晶量を算出した。
<DSC法>
装置:TA Instruments社製DSC Q1000
雰囲気:窒素流(50mL/min)
温度・熱量校正:高純度インジウム
温度範囲:0~250℃
昇温速度:10℃/min
試料重量:10mg
試料容器:アルミニウム製標準容器
<温度変調DSC法>
装置:TA Instruments社製DSC Q1000
雰囲気:窒素流(50mL/min)
温度・熱量校正:高純度インジウム
比熱校正:サファイア
温度範囲:0~300℃
昇温速度:2℃/min
試料重量:5mg
試料容器:アルミニウム製標準容器
なお、剛直非晶量:χra(%)は下記式により算出した。
χc(%)=(ΔHm-ΔHc)/ΔHm×100
χma(%)=ΔCp/ΔCp×100
χra(%)=100-(χc+χma)
 χra:剛直非晶量
χc:結晶化度
χma:可動非晶量
 ΔHm:融解熱量
 ΔHc:冷結晶化熱量
 ΔHm:完全結晶融解熱量(145.3J/g)
 ΔCp:比熱差
 ΔCp:完全非晶比熱差(0.3497J/(g・℃))    。
(20) The P1 layer is scraped from the rigid amorphous amount laminated sheet, and subjected to differential scanning calorimetry (DSC) and temperature modulation DSC method with the following apparatus and conditions. 65, no. 11 (2009) P.I. The amount of rigid amorphous was calculated using the method 428.
<DSC method>
Apparatus: DSC Q1000 manufactured by TA Instruments
Atmosphere: Nitrogen flow (50 mL / min)
Temperature / calorie calibration: High purity indium Temperature range: 0-250 ° C
Temperature increase rate: 10 ° C / min
Sample weight: 10mg
Sample container: Aluminum standard container <Temperature modulation DSC method>
Apparatus: DSC Q1000 manufactured by TA Instruments
Atmosphere: Nitrogen flow (50 mL / min)
Temperature / calorie calibration: High purity indium specific heat calibration: Sapphire temperature range: 0-300 ° C
Temperature increase rate: 2 ° C / min
Sample weight: 5mg
Sample container: Aluminum standard container Note that the rigid amorphous amount: χra (%) was calculated by the following formula.
χc (%) = (ΔHm−ΔHc) / ΔHm 0 × 100
χma (%) = ΔCp / ΔCp 0 × 100
χra (%) = 100− (χc + χma)
χra: rigid amorphous amount χc: crystallinity χma: movable amorphous amount ΔHm: heat of fusion ΔHc: heat of cold crystallization ΔHm 0 : heat of complete crystal melting (145.3 J / g)
ΔCp: specific heat difference ΔCp 0 : complete amorphous specific heat difference (0.3497 J / (g · ° C.)).
 (21)無機粒子の粒子径(平均粒径)
積層シートからP3層を削る、または剥がして分離し、質量W(g)を測定する。オルト-ジクロロベンゼン(100℃)に溶解させ、遠心分離により、不溶成分のうちから無機粒子を分取した。得られた無機粒子を溶媒で更に洗浄、遠心分離した後、得られた無機粒子の質量Wtを測定する。尚、洗浄作業は遠心分離後の洗浄液にエタノールを添加しても白濁しなくなるまで繰り返した。
得られた無機粒子をWhatman製の定量濾紙グレード44でろ過後、残渣として残った成分について、レーザー解析・散乱法によって粒度分布を求め、粒度分布における積算値50%での粒径を平均粒径とした。ここでいう粒度分布とは「レーザー回折・散乱法粒度分布測定装置 LSシリーズ」( ベックマンコールター(株))、 豊田 真弓著「粒度分布を測定する」(ベックマンコールター(株)粒子物性本部 学術チーム)、に従い求めた。尚、測定溶液は、純水に無機粒子を加えホモジナイザーで1分間分散処理を行い、装置の濃度調整ウインドウの表示が45~55%になるように調製した。
(21) Particle size (average particle size) of inorganic particles
The P3 layer is shaved or peeled off from the laminated sheet and separated, and the mass W (g) is measured. Inorganic particles were separated from insoluble components by dissolution in ortho-dichlorobenzene (100 ° C.) and centrifugation. The obtained inorganic particles are further washed with a solvent and centrifuged, and then the mass Wt of the obtained inorganic particles is measured. The washing operation was repeated until no white turbidity occurred even when ethanol was added to the washing solution after centrifugation.
After filtering the obtained inorganic particles with Whatman quantitative filter paper grade 44, the particle size distribution is obtained by laser analysis / scattering method for the remaining components, and the average particle size is determined by 50% of the integrated value in the particle size distribution. It was. The particle size distribution referred to here is “Laser diffraction / scattering particle size distribution analyzer LS series” (Beckman Coulter, Inc.), Mayumi Toyoda, “Measuring particle size distribution” (Beckman Coulter, Inc., Particle Properties Division, Academic Team) Sought in accordance with The measurement solution was prepared so that inorganic particles were added to pure water and dispersed with a homogenizer for 1 minute, so that the display of the concentration adjustment window of the apparatus was 45 to 55%.
 まず、第1から第13までの発明について、実施例1~26、57~72、比較例1,2により説明する。 First, the first to thirteenth inventions will be described with reference to Examples 1 to 26, 57 to 72, and Comparative Examples 1 and 2.
 (原料)
・ポリブチレンテレフタレート系樹脂
 実施例1~26、57~72、比較例1におけるP1層を構成するポリブチレンテレフタレート系樹脂(PBT)として“トレコン”(登録商標)1200M(東レ(株)製)を用いた。
(material)
Polybutylene terephthalate resin “Trecon” (registered trademark) 1200M (manufactured by Toray Industries, Inc.) as the polybutylene terephthalate resin (PBT) constituting the P1 layer in Examples 1 to 26, 57 to 72, and Comparative Example 1 Using.
 ・ポリオレフィン系樹脂
 実施例1~26、57~72、比較例2におけるP3層を構成するポリオレフィン系樹脂として住友化学(株)製”ノーブレン”(登録商標)WF345S(エチレン3.5質量%、ブテン4.0質量%)をEPBC1として用いた。
・ Polyolefin resin Examples 1 to 26, 57 to 72, “NOBREN” (registered trademark) WF345S manufactured by Sumitomo Chemical Co., Ltd. (3.5% by mass of ethylene, butene) as the polyolefin resin constituting the P3 layer in Comparative Example 2 4.0% by mass) was used as EPBC1.
 実施例25につき住友化学(株)製”ノーブレン”(登録商標)FLX80E4をPP1として用いた。
・酸変性ポリオレフィン
 実施例1~26、57~72、におけるP2層を構成する樹脂として三菱化学(株)社製“モディック”(登録商標)P553Aを樹脂1として用いた。
・ポリオレフィン系エラストマー
 実施例24につきポリオレフィン系エラストマーとして三井化学(株)社製“ノティオ”(登録商標)PN2060をエラストマー1として用いた。
・無機粒子
 実施例1~5、7~26、57~72、比較例1のP1層および、実施例1~9、11~26、比較例2のP3層の無機粒子として、二酸化チタンを用いた。また、P1層の二酸化チタンは各実施例、比較例につきP1層の主たる構成成分として用いた樹脂と二酸化チタンが50質量%/50質量%の割合で作製したマスターバッチを希望濃度になるように添加した。P3層の二酸化チタンは各実施例、比較例につきP3層の主たる構成成分として用いた樹脂と二酸化チタンが30質量%/70質量%の割合で作製したマスターバッチを希望濃度になるように添加した。
・末端封鎖剤
 実施例1、3~25、57~72、比較例1のP1層に用いた末端封鎖剤はラインケミー社製P-400を用いた。実施例26につき日清紡ケミカル社製“カルボジライト”(登録商標)HMV-15CAを用いた。
・結晶核剤
 実施例61~63のP1層の結晶核剤として、モンタン酸ナトリウムを用いた。
・無機粒子(3μm以上20μm以下)
 実施例64~72のP3層の3μm以上20μm以下の無機粒子として、平均粒径5μmのタルクを用いた。
For Example 25, “Noblen” (registered trademark) FLX80E4 manufactured by Sumitomo Chemical Co., Ltd. was used as PP1.
Acid Modified Polyolefin “Modic” (registered trademark) P553A manufactured by Mitsubishi Chemical Corporation was used as Resin 1 as the resin constituting the P2 layer in Examples 1 to 26 and 57 to 72.
Polyolefin Elastomer For Example 24, “Notio” (registered trademark) PN2060 manufactured by Mitsui Chemicals, Inc. was used as the elastomer 1 as the polyolefin elastomer.
Inorganic particles Examples 1-5, 7-26, 57-72, P1 layer of Comparative Example 1 and Examples 1-9, 11-26, Inorganic particles of P3 layer of Comparative Example 2 use titanium dioxide It was. In addition, the titanium dioxide of the P1 layer has a desired concentration of a masterbatch prepared in a ratio of 50% by mass / 50% by mass of the resin and titanium dioxide used as main components of the P1 layer in each example and comparative example. Added. For the P3 layer titanium dioxide, a master batch prepared by adding 30% by mass / 70% by mass of the resin and titanium dioxide used as the main constituent components of the P3 layer for each example and comparative example was added to a desired concentration. .
End-capping agent The end-capping agent used for the P1 layer of Examples 1, 3 to 25, 57 to 72 and Comparative Example 1 was P-400 manufactured by Rhein Chemie. For Example 26, “Carbodilite” (registered trademark) HMV-15CA manufactured by Nisshinbo Chemical Co., Ltd. was used.
Crystal nucleating agent Sodium montanate was used as the crystal nucleating agent for the P1 layer of Examples 61 to 63.
・ Inorganic particles (3μm to 20μm)
As the inorganic particles of 3 μm or more and 20 μm or less of the P3 layer of Examples 64-72, talc having an average particle diameter of 5 μm was used.
 (実施例1~26、61~72)
 押出機1、押出機2および押出機3を用い、表1、表5に示す原料を所望の配合比になるように各押出機に供給し、次いで押出機1から溶融押出された層がP1層、押出機2がP2層、押出機3がP3層として、P1層/P2層/P3層の順に積層されるようマルチマニホールドにて各層を合流させ、口金から吐出された樹脂を25℃のキャストドラム上に冷却固化して積層シートを得た。P1層、P2層、P3層は表1、表5に示す厚みとなった。得られた積層シートについて表2、表6に示す評価を実施した。その結果、表2、表6に示す通り、実施例については優れた積層シートであることがわかった。
(Examples 1 to 26, 61 to 72)
Using the extruder 1, the extruder 2 and the extruder 3, the raw materials shown in Table 1 and Table 5 are supplied to each extruder so as to have a desired blending ratio, and then the layer melt-extruded from the extruder 1 is P1. Layers, Extruder 2 is P2 layer, Extruder 3 is P3 layer, P1 layer / P2 layer / P3 layer are laminated in order of multi-manifold, and the resin discharged from the die is 25 ° C. A laminated sheet was obtained by cooling and solidifying on a cast drum. The thicknesses shown in Tables 1 and 5 were obtained for the P1, P2, and P3 layers. The evaluation shown in Table 2 and Table 6 was implemented about the obtained lamination sheet. As a result, as shown in Tables 2 and 6, the examples were found to be excellent laminated sheets.
 さらに、実施例24はP2層にエラストマーを含有しているため、層間密着性がきわめて優れていた。 Furthermore, since Example 24 contained an elastomer in the P2 layer, the interlayer adhesion was extremely excellent.
 (実施例57~60)
 キャストドラム温度をそれぞれ15℃(実施例57)、20℃(実施例58)、40℃(実施例59)、50℃(実施例60)に変更する以外実施例1と同様に積層シートを作製した。得られた積層シートについて表6に示す評価を実施した。その結果、表6に示す通り、実施例については優れた積層シートであることがわかった。
(比較例1)
 押出機1を用い表1に示す原料を所望の配合比になるように押出機に供給し、次いで押出機1から溶融押出され口金から吐出された樹脂をキャストドラム上に冷却固化して単層シートを得た。ポリオレフィン系樹脂層がないため封止材との密着性が劣るものであった。
(Examples 57 to 60)
A laminated sheet was prepared in the same manner as in Example 1 except that the cast drum temperature was changed to 15 ° C. (Example 57), 20 ° C. (Example 58), 40 ° C. (Example 59), and 50 ° C. (Example 60), respectively. did. The evaluation shown in Table 6 was implemented about the obtained lamination sheet. As a result, as shown in Table 6, it was found that the examples were excellent laminated sheets.
(Comparative Example 1)
Using the extruder 1, the raw materials shown in Table 1 are supplied to the extruder so as to have a desired mixing ratio, and then the resin melt-extruded from the extruder 1 and discharged from the die is cooled and solidified on a cast drum to form a single layer A sheet was obtained. Since there was no polyolefin resin layer, the adhesion with the sealing material was poor.
 (比較例2)
 押出機3を用い表1に示す原料を所望の配合比になるように押出機に供給し、次いで押出機3から溶融押出され口金から吐出された樹脂をキャストドラム上に冷却固化して単層シートを得た。ポリブチレンテレフタレート系樹脂層がないため耐湿熱性、耐熱性が劣るものであった。
(Comparative Example 2)
Using the extruder 3, the raw materials shown in Table 1 are supplied to the extruder so as to have a desired blending ratio, and then the resin melt-extruded from the extruder 3 and discharged from the die is cooled and solidified on a cast drum to form a single layer A sheet was obtained. Since there was no polybutylene terephthalate resin layer, the heat and moisture resistance and heat resistance were poor.
 従来のポリブチレンテレフタレート系樹脂を用いた積層シートと比べて耐湿熱性、耐熱性と封止材との密着性の両立が可能な積層シートを提供することができる。かかる積層シートは、太陽電池バックシートの他、液晶ディスプレイ用反射板、自動車用材料、建築材料をはじめとした、耐湿熱性、紫外線に対する耐性、光反射性が重視されるような用途に好適に使用することができる。特に太陽電池バックシートとして好適に使用できる積層シート、および該積層シートの製造方法を提供することができる。 It is possible to provide a laminated sheet capable of achieving both heat and moisture resistance, heat resistance, and adhesion between the sealing material and the laminated sheet using a conventional polybutylene terephthalate resin. Such laminated sheets are suitable for use in applications where importance is placed on wet heat resistance, resistance to ultraviolet rays, and light reflectivity, including solar cell backsheets, liquid crystal display reflectors, automotive materials, and building materials. can do. In particular, a laminated sheet that can be suitably used as a solar battery backsheet, and a method for producing the laminated sheet can be provided.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 次に、第14から第20までの発明について、実施例27~56、比較例3~5により説明する。 Next, the fourteenth to twentieth inventions will be described with reference to Examples 27 to 56 and Comparative Examples 3 to 5.
 (実施例27~56、比較例5)
 (原料)
・ポリアミド樹脂
 実施例27、34~39、41~49、比較例4、5におけるP4層を構成するポリアミド樹脂(PA6)としてナイロン6樹脂“アミラン”(登録商標)CM1021T(東レ(株)製、Tm;225℃)を用いた。
(Examples 27 to 56, Comparative Example 5)
(material)
Polyamide resin Nylon 6 resin “Amilan” (registered trademark) CM1021T (manufactured by Toray Industries, Inc.) as the polyamide resin (PA6) constituting the P4 layer in Examples 27, 34 to 39, 41 to 49 and Comparative Examples 4 and 5 Tm; 225 ° C.).
 実施例50につきナイロン66樹脂”アミラン”(登録商標)CM3001(PA66)、実施例51につきナイロン610樹脂”アミラン”(登録商標)CM2001(PA610)、実施例52につきナイロン11樹脂”リルサン”BESN-O-TL(PA11)、実施例53につきナイロン12樹脂”リルサン”AESN-TL(PA12)を用いた。
・ポリブチレンテレフタレート
 実施例29、54におけるP4層を構成するポリブチレンテレフタレート(PBT)として“トレコン”(登録商標)1200M(東レ(株)製、Tm;224℃)を用いた。
・ポリエチレンテレフタレート
 実施例28におけるP4層を構成するポリエチレンテレフタレート(PET)として、25μmの“ルミラー”(登録商標)S10(東レ(株)製)のフィルムを用いた。
・ポリフッ化ビニル
 実施例30におけるP4層を構成するポリフッ化ビニル(PVF)として、38μmの“テドラ-”(登録商標)(Dupont(株)製)フィルムを用いた。
・エチレンテトラフルオロエチレン
 実施例31におけるP4層を構成するエチレンテトラフルオロエチレン(ETFE)として、50μmの“トヨフロン”(登録商標)EL(東レフィルム加工(株)製)のフィルムを用いた。
・四フッ化エチレン・六フッ化プロピレン
 実施例32におけるP4層を構成する四フッ化エチレン・六フッ化プロピレン(FEP)として、25μmの“トヨフロン”(登録商標)FL(東レフィルム加工(株)製)のフィルムを用いた。
・ポリフッ化ビニリデン
 実施例33におけるP4層を構成するポリフッ化ビニリデン(PVDF)として、30μmのKynar Film 302 PGM TR(ARKEMA(株)製)のフィルムを用いた。
・オレフィン樹脂
 実施例27~45、50~54、比較例5につき住友化学(株)製”ノーブレン”(登録商標)WF345S(エチレン3.5質量%、ブテン4.0質量%)をEPBC1として用いた。
Nylon 66 resin “Amilan” (registered trademark) CM3001 (PA66) per Example 50, Nylon 610 resin “Amilan” (registered trademark) CM2001 (PA610) per Example 51, Nylon 11 resin “Rilsan” BESN- per Example 52 O-TL (PA11), nylon 53 resin “Rilsan” AESN-TL (PA12) was used for Example 53.
Polybutylene terephthalate “Trecon” (registered trademark) 1200M (manufactured by Toray Industries, Inc., Tm; 224 ° C.) was used as the polybutylene terephthalate (PBT) constituting the P4 layer in Examples 29 and 54.
Polyethylene terephthalate As polyethylene terephthalate (PET) constituting the P4 layer in Example 28, a film of 25 μm “Lumirror” (registered trademark) S10 (manufactured by Toray Industries, Inc.) was used.
Polyvinyl fluoride As the polyvinyl fluoride (PVF) constituting the P4 layer in Example 30, a 38 μm “Tedra” (registered trademark) (manufactured by Dupont) film was used.
Ethylenetetrafluoroethylene As ethylenetetrafluoroethylene (ETFE) constituting the P4 layer in Example 31, a film of 50 μm “Toyoflon” (registered trademark) EL (manufactured by Toray Film Processing Co., Ltd.) was used.
-Tetrafluoroethylene-propylene hexafluoride As the tetrafluoroethylene-hexafluoropropylene (FEP) constituting the P4 layer in Example 32, 25 μm "Toyoflon" (registered trademark) FL (Toray Film Processing Co., Ltd.) Manufactured film).
Polyvinylidene fluoride A 30 μm film of Kynar Film 302 PGM TR (manufactured by ARKEMA Corp.) was used as the polyvinylidene fluoride (PVDF) constituting the P4 layer in Example 33.
Olefin resin For Examples 27 to 45, 50 to 54, and Comparative Example 5, "Nobrene" (registered trademark) WF345S (3.5 mass% ethylene, 4.0 mass% butene) manufactured by Sumitomo Chemical Co., Ltd. was used as EPBC1 It was.
 実施例46につき住友化学(株)社製“エボリュー”(登録商標)SP2530をLLDPE1として用いた。 For Example 46, “Evolue” (registered trademark) SP2530 manufactured by Sumitomo Chemical Co., Ltd. was used as LLDPE1.
 実施例47につき住友化学(株)社製“エボリュー”(登録商標)SP2540をLLDPE2として用いた。 For Example 47, “Evolue” (registered trademark) SP2540 manufactured by Sumitomo Chemical Co., Ltd. was used as LLDPE2.
 実施例48につきエチレン質量1%共重合ポリプロピレンをEPC1として用いた。 For Example 48, 1% ethylene copolymer polypropylene was used as EPC1.
 実施例49につき住友化学(株)製”ノーブレン”(登録商標)FLX80E4をPP1として用いた。
・酸変性オレフィン
 実施例34~39、41~54、および比較例5におけるP5層を構成する樹脂として三菱化学(株)社製“モディック”(登録商標)P553Aを樹脂1として用いた。
・エチレン酢酸ビニル共重合体
 実施例55におけるP5層を構成する樹脂として三菱化学(株)社製“モディック”(登録商標)A515を樹脂2として用いた。
・アクリル接着剤
 実施例56におけるP5層を構成する樹脂として住友化学(株)社製“ボンドファースト”(登録商標)7Lを樹脂3として用いた。
・無機粒子
 実施例27、29、34~39、41~54、比較例5のP4層および、実施例27~54、比較例5のP6層に用いた無機粒子は平均粒径が0.25μmの二酸化チタンを用いた。
In Example 49, “Noblen” (registered trademark) FLX80E4 manufactured by Sumitomo Chemical Co., Ltd. was used as PP1.
Acid Modified Olefin “Modic” (registered trademark) P553A manufactured by Mitsubishi Chemical Corporation was used as Resin 1 as the resin constituting the P5 layer in Examples 34 to 39, 41 to 54, and Comparative Example 5.
-Ethylene vinyl acetate copolymer "Modic" (registered trademark) A515 manufactured by Mitsubishi Chemical Corporation was used as the resin 2 as the resin constituting the P5 layer in Example 55.
Acrylic Adhesive “Bond First” (registered trademark) 7L manufactured by Sumitomo Chemical Co., Ltd. was used as the resin 3 as the resin constituting the P5 layer in Example 56.
Inorganic particles Examples 27, 29, 34 to 39, 41 to 54, inorganic particles used in the P4 layer of Comparative Example 5 and the P6 layer of Examples 27 to 54 and Comparative Example 5 have an average particle size of 0.25 μm. Titanium dioxide was used.
 また、P4層の二酸化チタンは、各実施例、比較例につき、P4層の主たる構成成分として用いた樹脂と二酸化チタンが50質量%/50質量%の割合でマスター化した樹脂を希望濃度になるように添加した。P6層の二酸化チタンは各実施例、比較例につきP6層の主たる構成成分として用いた樹脂と二酸化チタンが30質量%/70質量%の割合でマスター化した樹脂を希望濃度になるように添加した。 Further, the titanium dioxide of the P4 layer has a desired concentration of the resin used as the main component of the P4 layer and the resin obtained by mastering titanium dioxide at a ratio of 50% by mass / 50% by mass for each example and comparative example. Was added as follows. The titanium dioxide of P6 layer was added so that the resin used as the main component of P6 layer for each Example and Comparative Example and the resin mastered at a ratio of 30% by mass / 70% by mass of titanium dioxide to a desired concentration. .
 (積層化)
 押出機4、押出機5および押出機6を用い、表3-1、3-2に示す原料を所望の配合比になるように各押出機に供給し、次いで押出機4から溶融押出された層がP4層、押出機5がP5層、押出機6がP6層として、P4層/P5層/P6層の順に積層されるようマルチマニホールドにて各層を合流させ、口金から吐出された樹脂をキャストドラム上に冷却固化してバックシートを得た。
(Laminated)
Using the extruder 4, the extruder 5 and the extruder 6, the raw materials shown in Tables 3-1 and 3-2 were supplied to each extruder so as to have a desired blending ratio, and then melt-extruded from the extruder 4 The layers are P4 layer, the extruder 5 is P5 layer, the extruder 6 is P6 layer, and the layers are joined together in order of P4 layer / P5 layer / P6 layer, and the resin discharged from the die is discharged. A back sheet was obtained by cooling and solidifying on a cast drum.
 P5層がないバックシートのうち、実施例27、29は、押出機4、および押出機6を用い、表3-1に示す原料を所望の配合比になるように各押出機に供給し、次いで押出機4から溶融押出された層がP4層、押出機6がP6層として、P4層/P6層の順に積層されるようマルチマニホールドにて各層を合流させ、口金から吐出された樹脂をキャストドラム上に冷却固化してバックシートを得た。 Of the backsheets without the P5 layer, Examples 27 and 29 use the extruder 4 and the extruder 6 to supply the raw materials shown in Table 3-1 to each extruder so as to have a desired blending ratio. Next, the layers melt-extruded from the extruder 4 are P4 layers, the extruder 6 is P6 layers, and the layers are joined together in a multi-manifold so that they are laminated in the order of P4 layers / P6 layers, and the resin discharged from the die is cast. A back sheet was obtained by cooling and solidifying on a drum.
 P5層がないバックシートのうち、実施例28、30~33、比較例3は、表3-1、3-2の所望の構成になるように、ドライラミネート法によって、各層間の接着用として、ポリウレタン接着剤を接着剤とし、ラミネートを行った。この際、実施例28、30~33に使用したEPBC1は、事前に押出機6に、所望の配合比になるように原料を供給し、次いで押出機6から溶融押出され口金から吐出された樹脂をキャストドラム上に冷却固化して得られた単層シートを用いた。 Of the backsheets without the P5 layer, Examples 28, 30 to 33, and Comparative Example 3 were used for adhesion between the respective layers by the dry laminating method so as to have the desired configurations shown in Tables 3-1 and 3-2. Lamination was performed using a polyurethane adhesive as an adhesive. At this time, the EPBC 1 used in Examples 28 and 30 to 33 is a resin in which raw materials are supplied to the extruder 6 in advance so as to obtain a desired blending ratio, and then melt extruded from the extruder 6 and discharged from the die. A single layer sheet obtained by cooling and solidifying on a cast drum was used.
 実施例39は、押出機6に、所望の配合比になるように原料を供給し、次いで押出機6から溶融押出され口金から吐出された樹脂をキャストドラム上に冷却固化して得られた単層シートを用いた。 In Example 39, raw materials were supplied to the extruder 6 so as to obtain a desired blending ratio, and then the resin melt-extruded from the extruder 6 and discharged from the die was cooled and solidified on a cast drum. A layer sheet was used.
 (太陽電池モジュール化)
 太陽電池セル「Qcells社製Q6LPT-G2」の表面、裏面の銀電極部分にフラックス「HOZAN社製H722」をディスペンサーで塗布し、表面、裏面の銀電極の上に155mmの長さに切断した配線材「日立電線社製銅箔SSA-SPS0.2×1.5(20)」を表面側のセルの片端から10mm離れたところが配線材の端に、裏面側は表面側と対称になるように乗せ、半田ごてを用いてセル裏面側から半田ごてを接触させて表面、裏面を同時に半田溶着し1セルストリングスを作製した。
(Solar cell module)
The flux “HOZAN H722” was applied to the front and back silver electrodes of the solar cell “Qcells Q6LPT-G2” with a dispenser, and the wiring was cut to a length of 155 mm on the front and back silver electrodes. The material “Hitachi Cable Co., Ltd. copper foil SSA-SPS0.2 × 1.5 (20)” 10 mm away from one end of the cell on the surface side is the end of the wiring material, and the back side is symmetrical with the surface side. Then, the soldering iron was brought into contact with the soldering iron from the back side of the cell using a soldering iron, and the front and back sides were simultaneously soldered to produce one cell string.
 作製した1セルストリングスのセルから飛び出している該配線材の長手方向と180mmに切断した取り出し電極「日立電線社製銅箔A-SPS0.23×6.0」の長手方向が垂直になるよう置き、該配線材と取り出し電極が重なる部分に該フラックスを塗布して半田溶着を行い、取り出し電極付きストリングスを作製した。 Place the wiring material protruding from the cell of the produced 1-cell string so that the longitudinal direction of the wiring member is perpendicular to the longitudinal direction of the extraction electrode “Cu foil A-SPS 0.23 × 6.0” manufactured by Hitachi Cable, Ltd. Then, the flux was applied to the portion where the wiring material and the take-out electrode overlapped, and solder welding was performed, thereby producing a string with the take-out electrode.
 次に、190mm×190mmのガラス「旭硝子社製太陽電池用3.2mm厚白板熱処理ガラス」、190mm×190mmのエチレンビニルアセテート「サンビック社製封止材0.5mm厚」、作製した取り出し電極付きストリングス、190mm×190mmのエチレンビニルアセテート「サンビック社製封止材0.5mm厚」、190mm×190mmの表3-1、3-2の各バックシートを順に積層し、該ガラスを真空ラミネータの熱盤と接触するようにセットし、熱盤温度145℃、真空引き4分、プレス1分、保持時間10分の条件で真空ラミネートを行った。このとき、取り出し電極付きストリングスはガラス面がセル表面側になるようにセットした。 Next, 190 mm × 190 mm glass “3.2 mm thick white plate heat-treated glass for solar cells manufactured by Asahi Glass Co., Ltd.”, 190 mm × 190 mm ethylene vinyl acetate “Sanvik Inc. sealing material 0.5 mm thick”, produced strings with extraction electrodes 190 mm × 190 mm ethylene vinyl acetate “Sealvik 0.5 mm thick sealing material”, 190 mm × 190 mm of each of the back sheets of Tables 3-1 and 3-2 are laminated in order, and the glass is a heating plate of a vacuum laminator And then laminating under the conditions of a hot platen temperature of 145 ° C., a vacuum drawing of 4 minutes, a press of 1 minute, and a holding time of 10 minutes. At this time, the strings with extraction electrodes were set so that the glass surface was on the cell surface side.
 P4層、P5層、P6層の厚みと、酢酸透過率Pa、水蒸気透過率Pwは表3-1、3-2に示す結果となった。また、得られたバックシートと該バックシートを使用した太陽電池モジュールについて表4-1、4-2に示す評価を実施した。その結果、表4-1、4-2に示す通り、実施例については優れたバックシートであることがわかった。
比較例5はPwが2.5より大きかったため、セル集電電極の変色に劣るものであった。
The thicknesses of the P4 layer, the P5 layer, and the P6 layer, the acetic acid permeability Pa, and the water vapor permeability Pw were as shown in Tables 3-1 and 3-2. Further, the evaluation shown in Tables 4-1 and 4-2 was performed on the obtained back sheet and the solar cell module using the back sheet. As a result, as shown in Tables 4-1 and 4-2, the examples were found to be excellent backsheets.
In Comparative Example 5, since Pw was larger than 2.5, the color of the cell collector electrode was inferior.
 (比較例3)
ドライラミネート法により、各層間の接着用として、ポリウレタン系接着剤を接着剤とし、125μmの白色ポリエチレンテレフタレートフィルム“ルミラー”E20F(東レ(株)製)と、酸化アルミからなる無機化合物蒸着層を有する12μmのポリエチレンテレフタレートフィルム“バリアロックス”(登録商標)EG-C2(東レフィルム加工(株)製)とを順に積層したバックシートを得て、酢酸透過率と、水蒸気透過率を測定すると、酢酸透過率について、Paが10g/24hr/m、水蒸気透過率について、Pwが0.2g/24hr/mであった。また、このバックシートを用いて太陽電池モジュールを作製し、85℃85%RH5000時間前後の最大出力保持率の比較をしたところ最大出力保持率は10%となり、Paが200より小さかったため、発電特性が劣るものであった。
(Comparative Example 3)
For adhesion between each layer by a dry laminating method, a polyurethane adhesive is used as an adhesive, a 125 μm white polyethylene terephthalate film “Lumirror” E20F (manufactured by Toray Industries, Inc.), and an inorganic compound vapor deposition layer made of aluminum oxide. A back sheet in which 12 μm polyethylene terephthalate film “Barrier Rocks” (registered trademark) EG-C2 (manufactured by Toray Film Processing Co., Ltd.) was sequentially laminated was obtained, and acetic acid permeation rate and water vapor transmission rate were measured. For the rate, Pa was 10 g / 24 hr / m 2 , and for the water vapor transmission rate, Pw was 0.2 g / 24 hr / m 2 . Moreover, a solar cell module was produced using this back sheet, and the maximum output retention rate was compared to about 85 hours at 85 ° C. and 85% RH 5000 hours. As a result, the maximum output retention rate was 10%, and Pa was smaller than 200. Was inferior.
 (比較例4)
 押出機4を用い表3-2に示す原料を所望の配合比になるように押出機に供給し、次いで押出機4から溶融押出され口金から吐出された樹脂をキャストドラム上に冷却固化して単層シートを得た。Pwが2.5より大きかったため、セル集電電極の変色が劣るものであった。
(Comparative Example 4)
Using the extruder 4, the raw materials shown in Table 3-2 are supplied to the extruder so as to have a desired mixing ratio, and then the resin melt-extruded from the extruder 4 and discharged from the die is cooled and solidified on a cast drum. A single layer sheet was obtained. Since Pw was larger than 2.5, discoloration of the cell current collecting electrode was inferior.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
1:バックシート
2:封止材
3:発電素子(太陽電池セル)
4:透明基板
5:太陽電池バックシートの封止材2側の面
6:太陽電池バックシートの封止材2と反対側の面
7:治具上部
8:治具下部
9:酢酸
10:メッシュ
11:治具
 
1: Back sheet 2: Sealing material 3: Power generation element (solar cell)
4: Transparent substrate 5: Surface of the solar cell back sheet on the side of the sealing material 2 6: Surface of the solar cell back sheet on the side opposite to the sealing material 2 7: Upper part of the jig 8: Lower part of the jig 9: Acetic acid 10: Mesh 11: Jig

Claims (15)

  1.  ポリブチレンテレフタレート系樹脂を主たる構成成分とする層(P1層)と、ポリオレフィン系樹脂を主たる構成成分とする層(P3層)とを有する積層シート。 A laminated sheet having a layer (P1 layer) mainly comprising a polybutylene terephthalate resin and a layer (P3 layer) mainly comprising a polyolefin resin.
  2.  接着ポリオレフィン系樹脂を主たる構成成分とする層(P2層)を有し、
     P1層とP3層とが、P2層を介して接していることを特徴とする、請求項1に記載の積層シート。
    It has a layer (P2 layer) whose main component is an adhesive polyolefin resin,
    The laminated sheet according to claim 1, wherein the P1 layer and the P3 layer are in contact with each other via the P2 layer.
  3.  P2層の厚みが15~50μmである請求項2に記載の積層シート。 The laminated sheet according to claim 2, wherein the P2 layer has a thickness of 15 to 50 µm.
  4.  示差走査熱量分析(DSC)を用いて測定したP1層の結晶化パラメータΔTcgが、7~30℃であることを特徴とする、請求項1~3のいずれかに記載の積層シート。 The laminated sheet according to any one of claims 1 to 3, wherein the crystallization parameter ΔTcg of the P1 layer measured using differential scanning calorimetry (DSC) is 7 to 30 ° C.
  5.  末端封鎖剤とポリブチレンテレフタレート系樹脂を反応させて得られる樹脂を、末端封鎖ポリブチレンテレフタレート系樹脂とした際に、
     P1層の主たる構成成分であるポリブチレンテレフタレート系樹脂が、末端封鎖ポリブチレンテレフタレート系樹脂を含むことを特徴とする請求項1~4のいずれかに記載の積層シート。
    When a resin obtained by reacting an end-capping agent with a polybutylene terephthalate resin is used as an end-capped polybutylene terephthalate resin,
    The laminated sheet according to any one of claims 1 to 4, wherein the polybutylene terephthalate-based resin, which is a main component of the P1 layer, contains an end-capped polybutylene terephthalate-based resin.
  6.  P3層が無機粒子を0.1~30質量%含有することを特徴とする、請求項1~5のいずれかに記載の積層シート。 The laminated sheet according to any one of claims 1 to 5, wherein the P3 layer contains 0.1 to 30% by mass of inorganic particles.
  7. P1層の剛直非晶量が30~50%であることを特徴とする請求項1~6のいずれかに記載の積層シート。 The laminated sheet according to any one of claims 1 to 6, wherein the P1 layer has a rigid amorphous amount of 30 to 50%.
  8. P1層が結晶核剤を0.1~5質量%含有することを特徴とする請求項1~7のいずれかに記載の積層シート。 The laminated sheet according to any one of claims 1 to 7, wherein the P1 layer contains 0.1 to 5% by mass of a crystal nucleating agent.
  9. P3層が粒子径3μm以上20μm以下の無機粒子を5~30質量%含有し、接着ポリオレフィン系樹脂を0.5~5質量%含有する請求項1~8のいずれかに記載の積層シート。 The laminated sheet according to any one of claims 1 to 8, wherein the P3 layer contains 5 to 30% by mass of inorganic particles having a particle diameter of 3 to 20 µm and 0.5 to 5% by mass of an adhesive polyolefin resin.
  10.  85℃における酢酸透過率Pa(g/m/day)、及び、40℃90%RHにおける水蒸気透過率Pw(g/m/day)が、式(1)及び(2)を満たすことを特徴とする、請求項1~9のいずれかに記載の積層シート。
    (1)200≦Pa
    (2)Pw≦2.5
    The acetic acid permeability Pa (g / m 2 / day) at 85 ° C. and the water vapor permeability Pw (g / m 2 / day) at 40 ° C. and 90% RH satisfy the formulas (1) and (2). The laminated sheet according to any one of claims 1 to 9, wherein the laminate sheet is characterized.
    (1) 200 ≦ Pa
    (2) Pw ≦ 2.5
  11.  請求項1~10のいずれかに記載の積層シートからなる太陽電池バックシート。 A solar battery back sheet comprising the laminated sheet according to any one of claims 1 to 10.
  12.  請求項11に記載の太陽電池バックシートを用いた太陽電池。 A solar cell using the solar cell back sheet according to claim 11.
  13.  請求項2~10のいずれかに記載の積層シートの製造方法であって、
     ポリブチレンテレフタレート系樹脂を主たる構成成分とするP1層用の原料、接着ポリオレフィン系樹脂を主たる構成成分とするP2層用の原料、および、ポリオレフィン系樹脂を主たる構成成分とするP3層用の原料を、それぞれ別の押出機に供給し、各々溶融後にP1層、P2層、P3層をこの順に合流させて積層し、Tダイからシート状に押し出す工程を含むことを特徴とする、積層シートの製造方法。
    A method for producing a laminated sheet according to any one of claims 2 to 10,
    A raw material for the P1 layer containing polybutylene terephthalate resin as the main constituent, a raw material for the P2 layer containing the adhesive polyolefin resin as a main constituent, and a raw material for the P3 layer containing the polyolefin resin as the main constituent , Each of which is supplied to a different extruder, and after melting, each of the P1, P2, and P3 layers is joined and laminated in this order, and is extruded into a sheet form from a T-die, thereby producing a laminated sheet Method.
  14.  85℃における酢酸透過率Pa(g/m/day)、及び、40℃90%RHにおける水蒸気透過率Pw(g/m/day)が、式(1)及び(2)を満たすことを特徴とする、太陽電池用バックシート。
    (1)200≦Pa
    (2)Pw≦2.5
    The acetic acid permeability Pa (g / m 2 / day) at 85 ° C. and the water vapor permeability Pw (g / m 2 / day) at 40 ° C. and 90% RH satisfy the formulas (1) and (2). A back sheet for solar cells, which is characterized.
    (1) 200 ≦ Pa
    (2) Pw ≦ 2.5
  15.  ポリエステル樹脂、ポリアミド樹脂、及びフッ素樹脂からなる群より選ばれる一つが主たる構成成分である層をP4層としたときに、P4層を有することを特徴とする請求項14に記載の太陽電池用バックシート。
     
    15. The solar cell back according to claim 14, comprising a P4 layer when a layer, one of which is a main constituent selected from the group consisting of a polyester resin, a polyamide resin, and a fluororesin, is a P4 layer. Sheet.
PCT/JP2013/082533 2012-12-10 2013-12-04 Laminated sheet and method for manufacturing same, solar cell back sheet, solar cell module, and method for manufacturing solar cell back sheet WO2014091973A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157013902A KR20150095635A (en) 2012-12-10 2013-12-04 Laminated sheet and method for manufacturing same, solar cell back sheet, solar cell module, and method for manufacturing solar cell back sheet
JP2014508619A JP6287829B2 (en) 2012-12-10 2013-12-04 LAMINATED SHEET AND METHOD FOR MANUFACTURING SAME, SOLAR CELL BACK SHEET, SOLAR CELL MODULE, AND SOLAR CELL BACK SHEET
CN201380064004.XA CN104822528B (en) 2012-12-10 2013-12-04 The manufacture method of laminated sheet and its manufacture method and backboard used for solar batteries, solar cell module and backboard used for solar batteries

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-269009 2012-12-10
JP2012269009 2012-12-10
JP2012-272025 2012-12-13
JP2012272025 2012-12-13

Publications (1)

Publication Number Publication Date
WO2014091973A1 true WO2014091973A1 (en) 2014-06-19

Family

ID=50934265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082533 WO2014091973A1 (en) 2012-12-10 2013-12-04 Laminated sheet and method for manufacturing same, solar cell back sheet, solar cell module, and method for manufacturing solar cell back sheet

Country Status (5)

Country Link
JP (1) JP6287829B2 (en)
KR (1) KR20150095635A (en)
CN (1) CN104822528B (en)
TW (1) TWI604951B (en)
WO (1) WO2014091973A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213864A1 (en) * 2016-06-10 2017-12-14 Soliculture, Inc. Amorphous copolyester-based material in a photovoltaic module
WO2019185842A1 (en) * 2018-03-28 2019-10-03 Dsm Ip Assets B.V. Back-sheet comprising polybutylene terephtalate
JP2020072159A (en) * 2018-10-30 2020-05-07 大日本印刷株式会社 Transparent protective sheet for solar battery module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742295B (en) * 2018-12-28 2022-09-09 界首市天鸿新材料股份有限公司 Dry lithium battery diaphragm and preparation method thereof
TWI707773B (en) * 2019-10-15 2020-10-21 南亞塑膠工業股份有限公司 Back panel of solar cell and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129204A (en) * 2005-10-07 2007-05-24 Toray Ind Inc Film for sealing rear surface of solar cell, and solar cell using the same
JP2007210175A (en) * 2006-02-08 2007-08-23 Toray Ind Inc Laminated film
JP2008227203A (en) * 2007-03-14 2008-09-25 Toppan Printing Co Ltd Rear face protection sheet for solar cell module and solar cell module using the same
WO2010018662A1 (en) * 2008-08-12 2010-02-18 ウィンテックポリマー株式会社 Polybutylene terephthalate resin mixture and film
WO2011030745A1 (en) * 2009-09-11 2011-03-17 東レ株式会社 Polyester film, and solar-cell back sheet and solar cell each including same
JP2011077250A (en) * 2009-09-30 2011-04-14 Nippon Zeon Co Ltd Rear surface protective sheet for solar cell modules

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319587B1 (en) * 1998-09-24 2001-11-20 Toray Industries, Inc. Biaxially-oriented polyester film
CN102738275B (en) * 2011-04-12 2014-12-10 苏州尚善新材料科技有限公司 Solar cell assembly backplane and preparation method thereof
JP2012238768A (en) * 2011-05-12 2012-12-06 Okura Ind Co Ltd Solar cell element sealing sheet and solar cell module
CN102354713A (en) * 2011-11-09 2012-02-15 李民 Six-layer solar cell back plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129204A (en) * 2005-10-07 2007-05-24 Toray Ind Inc Film for sealing rear surface of solar cell, and solar cell using the same
JP2007210175A (en) * 2006-02-08 2007-08-23 Toray Ind Inc Laminated film
JP2008227203A (en) * 2007-03-14 2008-09-25 Toppan Printing Co Ltd Rear face protection sheet for solar cell module and solar cell module using the same
WO2010018662A1 (en) * 2008-08-12 2010-02-18 ウィンテックポリマー株式会社 Polybutylene terephthalate resin mixture and film
WO2011030745A1 (en) * 2009-09-11 2011-03-17 東レ株式会社 Polyester film, and solar-cell back sheet and solar cell each including same
JP2011077250A (en) * 2009-09-30 2011-04-14 Nippon Zeon Co Ltd Rear surface protective sheet for solar cell modules

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213864A1 (en) * 2016-06-10 2017-12-14 Soliculture, Inc. Amorphous copolyester-based material in a photovoltaic module
WO2019185842A1 (en) * 2018-03-28 2019-10-03 Dsm Ip Assets B.V. Back-sheet comprising polybutylene terephtalate
JP2021520625A (en) * 2018-03-28 2021-08-19 ディーエスエム アドバンスド ソーラー ビー.ブイ. Backseat containing polybutylene terephlate
US11721775B2 (en) 2018-03-28 2023-08-08 Endurance Solar Solutions B.V. Back-sheet comprising polybutylene terephtalate
JP2020072159A (en) * 2018-10-30 2020-05-07 大日本印刷株式会社 Transparent protective sheet for solar battery module
JP7206809B2 (en) 2018-10-30 2023-01-18 大日本印刷株式会社 Transparent protective sheet for solar cell modules
JP2023029451A (en) * 2018-10-30 2023-03-03 大日本印刷株式会社 Method for producing transparent protective sheet for solar cell module

Also Published As

Publication number Publication date
KR20150095635A (en) 2015-08-21
CN104822528B (en) 2017-09-26
JPWO2014091973A1 (en) 2017-01-12
TWI604951B (en) 2017-11-11
TW201429717A (en) 2014-08-01
CN104822528A (en) 2015-08-05
JP6287829B2 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
JP4849189B2 (en) POLYESTER FILM, SOLAR CELL BACK SHEET USING SAME, SOLAR CELL, AND METHOD FOR PRODUCING THEM
JP5304789B2 (en) Polyester film, laminated film, solar cell backsheet using the same, and solar cell
JP5614287B2 (en) Biaxially oriented polyester film
JP6287829B2 (en) LAMINATED SHEET AND METHOD FOR MANUFACTURING SAME, SOLAR CELL BACK SHEET, SOLAR CELL MODULE, AND SOLAR CELL BACK SHEET
JP6743698B2 (en) Film for solar cell back sheet, solar cell back sheet using the same, and solar cell
JP5617668B2 (en) Polyester film, solar cell backsheet using the same, and solar cell
JP5505018B2 (en) Polyester film, solar cell backsheet using the same, and reflector for LED light source.
JP5504957B2 (en) Multilayer polyester film, solar cell backsheet using the same, and solar cell
WO2018034117A1 (en) Laminate, solar cell rear surface protection sheet using same, and solar cell module
WO2014021003A1 (en) Laminate sheet and method for manufacturing same
JP2018086750A (en) Solar cell back sheet laminate and solar cell module
JP2014233951A (en) Laminated sheet, solar cell back sheet, and solar cell
JP2013055270A (en) Laminate sheet and solar cell using the same
JP2014162080A (en) Laminated sheet and method for producing the same
JP2017157831A (en) Solar battery backside protection sheet
WO2015098520A1 (en) Sheet for solar cell backside protection
JP2017157730A (en) Polyester film for solar battery back sheet
JP2018083873A (en) Polyester film, and solar cell back sheet and solar cell comprising the same
JP2019137842A (en) Polyester film, solar cell back sheet using the same and solar cell
JP2013052635A (en) Laminate sheet and solar cell obtained by using the same
JP2015044333A (en) Readily adhesive sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014508619

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157013902

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861641

Country of ref document: EP

Kind code of ref document: A1