WO2014021003A1 - Laminate sheet and method for manufacturing same - Google Patents

Laminate sheet and method for manufacturing same Download PDF

Info

Publication number
WO2014021003A1
WO2014021003A1 PCT/JP2013/066551 JP2013066551W WO2014021003A1 WO 2014021003 A1 WO2014021003 A1 WO 2014021003A1 JP 2013066551 W JP2013066551 W JP 2013066551W WO 2014021003 A1 WO2014021003 A1 WO 2014021003A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminated sheet
resin
solar cell
inorganic particles
Prior art date
Application number
PCT/JP2013/066551
Other languages
French (fr)
Japanese (ja)
Inventor
堀江将人
巽規行
塩見篤史
高橋弘造
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2013528408A priority Critical patent/JPWO2014021003A1/en
Publication of WO2014021003A1 publication Critical patent/WO2014021003A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a laminated sheet capable of achieving both durability, flame retardancy, and water vapor barrier properties.
  • the present invention relates to a laminated sheet that can be suitably used as a back sheet for a solar cell, and a method for producing the laminated sheet.
  • a solar cell is composed of a power generation element sealed with a transparent sealing material such as ethylene-vinyl acetate copolymer (EVA), and a transparent substrate such as glass and a resin sheet called a back sheet bonded together.
  • EVA ethylene-vinyl acetate copolymer
  • the Sunlight is introduced into the solar cell through the transparent substrate. Sunlight introduced into the solar cell is absorbed by the power generation element, and the absorbed light energy is converted into electrical energy. The converted electric energy is taken out by a lead wire connected to the power generation element and used for various electric devices.
  • the structure which provides barrier property and an electrical property by pasting together various raw materials to the biaxially-stretched polyethylene terephthalate (PET) which is a low-cost and high-performance is studied.
  • the olefin resin is a material generally used as a back sheet because it has good adhesion to the sealing material.
  • Patent Document 1 a back sheet based on a durable polyamide-based resin has been developed.
  • polyamide-based resins generally have a drawback that the water vapor barrier property is lower than that of biaxially stretched PET. Furthermore, there is a problem in that it is easily deteriorated by heat and the color tone is easily changed to yellow. Moreover, in the sheet
  • the present invention has the following configuration. That is:
  • the thickness of the entire laminated sheet is Ta ( ⁇ m)
  • the thickness of the P1 layer is T1 ( ⁇ m)
  • the thickness of the P3 layer is T3 ( ⁇ m)
  • the content of inorganic particles in the P3 layer is M (mass%)
  • a laminated sheet having excellent durability, interlayer adhesion, water vapor barrier properties, sealant adhesion, flame retardancy, and yellowing that can be suitably used for a solar cell backsheet.
  • Such a laminated sheet can be suitably used for a solar cell backsheet, and a high-performance solar cell can be provided by using the backsheet.
  • the laminated sheet of the present invention has a layer (P1 layer) mainly composed of a polyamide-based resin and a layer (P3 layer) mainly composed of a polyolefin-based resin.
  • the polyamide resin which is the main constituent of the P1 layer in the present invention is 1) ring-opening polymerization of a compound having a lactam skeleton, and 2) polycondensation of an amino acid compound having an amino group and a carboxyl group in one molecule. And 3) those obtained by polycondensation of a diamine compound and a dicarboxylic acid compound, and those obtained by copolymerizing 1) to 3). And as for the polyamide-type resin which is a main structural component of P1 layer, these can be used individually or can be mixed and used.
  • Examples of the compound having a lactam skeleton used in 1) include ⁇ -caprolactam (nylon 6 is obtained by ring-opening polymerization), ⁇ -undecanlactam (nylon 11 is obtained by ring-opening polymerization), ⁇ -laurolactam ( And lactam compounds such as nylon 12 can be obtained by ring-opening polymerization.
  • amino acid compounds having an amino group and a carboxyl group in one molecule used in 2) include amino acid compounds such as ⁇ -aminocaproic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid.
  • Examples of the diamine compound used in 3) include tetramethylene diamine, hexamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 1,2,2,4-tetramethylhexamethylene diamine, 2,4,4-trimethyl.
  • Examples include 2,2-bis-p-aminocyclohexylpropane and isophoronediamine.
  • Examples of the dicarboxylic acid compound used in 3) include adipic acid, peric acid, azelaic acid, sepacic acid, dodecanoic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, Examples thereof include dicarboxylic acid compounds such as naphthalenedicarboxylic acid and dimer acid.
  • a compound having a lactam skeleton 2) an amino acid compound, alone or in a mixture, or 3) a mixture of diamine and dicarboxylic acid, etc.
  • Either a single polymer or a copolymer can be used in the present invention. That is, for example, if 1) a compound having a lactam skeleton is used, a compound having one or more lactam skeletons is polymerized to obtain a polyamide-based resin (note that two or more compounds are When used, the resulting polyamide resin is a copolymer). Similarly, if 2) an amino acid compound is used, one or more amino acid compounds are polymerized to obtain a polyamide resin.
  • polyamide resin When a diamine compound and a dicarboxylic acid compound are used, one or more diamine compounds and one or more dicarboxylic acid compounds are polymerized to obtain a polyamide resin.
  • polyamide-based resin polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon 612), Polyhexamethylene terephthalamide (nylon 6T), polyhexamethylene isophthalamide (nylon 6I), polyundecanamide (nylon 11), and polydodecanamide (nylon 12) are preferable.
  • the polyamide-based resin that is the main constituent of the P1 layer is nylon 6, nylon 66, nylon 610, nylon 11, and the like in terms of crystallinity, strength, heat resistance, and rigidity. More preferably, it is at least one resin selected from the group consisting of nylon 12.
  • making a polyamide-type resin a main structural component means that the polyamide-type resin is contained more than 50 mass% and 100 mass% or less in 100 mass% of all the components of this layer.
  • the P1 layer constituting the laminated sheet of the present invention preferably contains inorganic particles in the range of 0.1% by mass to 30% by mass.
  • the content of inorganic particles in the P1 layer is more preferably 2% by mass or more and 25% by mass or less, and further preferably 5% by mass or more and 20% by mass or less. These inorganic particles are used for imparting necessary functions to the sheet depending on the purpose.
  • handling properties may be lowered or durability may be lowered.
  • the content of the inorganic particles in the P1 layer is less than 0.1% by mass, the effect due to the inclusion of the inorganic particles is difficult to obtain, and yellowing may occur.
  • the inorganic particles suitably used for the P1 layer include inorganic particles having an ultraviolet absorbing ability, particles having a large refractive index difference from the polyamide resin, conductive particles, pigments, and the like.
  • optical properties such as light reflectivity and whiteness, antistatic properties and the like can be imparted.
  • the particle means a particle having a primary particle diameter of 5 nm or more based on the diameter of a projected equivalent equivalent circle. Unless otherwise specified, in the present invention, the particle size means a primary particle size, and the particle means a primary particle.
  • the inorganic particles suitably used for the P1 layer of the present invention include, for example, gold, silver, copper, platinum, palladium, rhenium, vanadium, osmium, cobalt, iron, zinc, ruthenium, praseodymium, chromium, Metals such as nickel, aluminum, tin, zinc, titanium, tantalum, zirconium, antimony, indium, yttrium, lanthanum, zinc oxide, titanium oxide, cesium oxide, antimony oxide, tin oxide, indium tin oxide, yttrium oxide, oxidation Metal oxides such as lanthanum soot, zirconium oxide, aluminum oxide, silicon oxide, lithium fluoride, magnesium fluoride soot, aluminum fluoride soot, metal fluorides such as cryolite, metal phosphates such as calcium phosphate, carbonates such as calcium carbonate Salt, barium sulfate And sulfates such as talc, talc and
  • the inorganic particles in the P1 layer in view of the fact that it is often used outdoors, metal oxides such as titanium oxide, zinc oxide, and cerium oxide, which are inorganic particles having ultraviolet absorbing ability, are used. preferable.
  • metal oxides such as titanium oxide, zinc oxide, and cerium oxide, which are inorganic particles having ultraviolet absorbing ability
  • titanium oxide it is preferable in that the effect of reducing coloring due to deterioration of the sheet over a long period of time can be exhibited by utilizing the ultraviolet resistance by the inorganic particles.
  • titanium oxide as the inorganic particles in the P1 layer in that high reflection characteristics can be imparted, and it is more preferable to use rutile type titanium oxide in terms of higher ultraviolet resistance.
  • the P1 layer particularly preferably contains titanium oxide, and particularly preferably contains rutile-type titanium oxide.
  • the method in which the polyamide-based resin and the inorganic particles are contained in the P1 layer is preferably a method in which the polyamide-based resin and the inorganic particles are previously melt-kneaded using a vent type biaxial kneading extruder or a tandem type extruder.
  • the polyamide-based resin since the thermal history is received when the inorganic particles are contained, the polyamide-based resin may be deteriorated. Therefore, a high-concentration master pellet having a large amount of inorganic particles compared to the amount of inorganic particles to be contained in the P1 layer is prepared, mixed with a polyamide-based resin and diluted to obtain a predetermined P1 layer of inorganic particles.
  • the content is preferably from the viewpoint of durability.
  • the P1 layer and the P3 layer of the laminated sheet of the present invention may have other additives (for example, a heat stabilizer, an ultraviolet absorber, a weather stabilizer, an organic lubricant, as long as the effects of the present invention are not impaired). Pigments, dyes, fillers, antistatic agents, nucleating agents, etc.
  • the inorganic particles referred to in the present invention may not be included in the additives herein.
  • an ultraviolet absorber is selected as an additive and contained in the P1 layer and / or the P3 layer
  • the ultraviolet resistance of the laminated sheet of the present invention can be further improved.
  • an antistatic agent or the like is contained in the P1 layer and / or the P3 layer, an improvement in withstand voltage can be expected.
  • the P1 layer in the present invention is located on the surface layer of the laminated sheet from the viewpoint of flame retardancy.
  • the phrase “P1 layer is located on the surface layer” means that the P1 layer is located on one outermost layer of the laminated sheet of the present invention.
  • the P2 layer is a layer mainly composed of one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer.
  • the main constituent component is one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer. It means that one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer exceeds 50% by mass and is equal to or less than 100% by mass.
  • the P2 layer is preferably between the P1 layer and the P3 layer. That the P2 layer is between the P1 layer and the P3 layer means that the P1 layer that is the surface layer of the laminated sheet of the present invention and the P3 layer that is the reverse surface layer, that is, the P2 layer is in the inner layer. . That is, as long as the P2 layer is between the P1 layer and the P3 layer, the P2 layer may be in contact with the P1 layer or the P3 layer, or may be disposed so as not to contact these.
  • the P2 layer may be in contact with the P1 layer / P2 layer / P3 layer, the P1 layer and the P3 layer, or may be in contact with other layers such as the P1 layer / P2 layer / P5 layer / P2 layer / P3 layer. It doesn't matter.
  • the P2 layer preferably has a function of adhering to both the P1 layer and the P3 layer.
  • the low crystalline soft polymer that is one of the main components of the P2 layer include acid-modified polyolefins and unsaturated polyolefins.
  • the acrylic adhesive which is one of the main constituents of the P2 layer, refers to those using acrylic ester and methacrylic ester as raw materials, and the acrylic adhesive is ethylene-acrylic ester-maleic anhydride.
  • An acid terpolymer can be used.
  • the P2 layer is preferably made of acid-modified polyolefin as a main constituent.
  • the acid-modified polyolefin include “Admer” manufactured by Mitsui Chemicals, Inc. and “Modic” manufactured by Mitsubishi Chemical Corporation as commercially available products.
  • the acid-modified polyolefin is a copolymer of an acid compound and a polyolefin (excluding those in which acrylic acid ester and methacrylic acid ester are used as raw materials).
  • the acid compound is not particularly limited as long as it does not significantly depart from the object of the present invention, but is preferably a saturated or unsaturated carboxylic acid and carboxylic anhydride having at least one carboxyl group. More preferred are carboxylic acids and carboxylic anhydrides having two or more carboxyl groups.
  • carboxylic acids such as pimelic acid, suberic acid, azelaic acid, and sebacic acid
  • carboxylic anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, and succinic anhydride.
  • Maleic acid and maleic anhydride are preferable, and maleic anhydride is particularly preferable.
  • polyolefins examples include polyethylene, polypropylene, polybutene, polymethylpentene, polycycloolefin, polyhexene, polyoctene, polydecene, and polydodecene.
  • various propylene polymers are used because they are easy to process and relatively inexpensive. Is preferred.
  • propylene homopolymer polypropylene homopolymer
  • copolymer of ethylene and propylene propylene and other comonomers
  • butene-1 pentene-1, hexene-1, heptene-1, octene-1, cyclopentene, cyclohexene
  • a copolymer with an ⁇ -olefin comonomer having 2 or more carbon atoms such as norbornene, or two or more kinds of copolymers of these comonomers
  • the ⁇ -olefin comonomer is preferably an ⁇ -olefin comonomer having 2 to 6 carbon atoms. It may be a random copolymer or a block copolymer.
  • the P2 layer preferably contains a polyolefin-based elastomer.
  • the polyolefin-based elastomer generally refers to one obtained by finely dispersing ethylene-propylene rubber in polypropylene or one obtained by copolymerizing polypropylene with another ⁇ -olefin.
  • These polyolefin-based elastomers are preferably contained in a proportion of 0.1% by mass or more and 20% by mass or less with respect to 100% by mass of all components of the P2 layer.
  • the content of the polyolefin elastomer in the P2 layer is preferably 10% by mass or more and 20% by mass or less.
  • the polyolefin-based elastomer may be a commercially available product, for example, “Thermolan”, “Zeras” manufactured by Mitsubishi Chemical Corporation, “Excellen”, “Tough Selenium”, “Esplen”, “Hibler” manufactured by Kuraray, Preferred examples include “Septon” and “Notio” manufactured by Mitsui Chemicals.
  • the P3 layer in the present invention is mainly composed of an olefin resin.
  • the polyolefin resin in the present invention include polyethylene, polypropylene, polybutene, polymethylpentene, polycycloolefin, polyhexene, polyoctene, polydecene, and polydodecene.
  • polyethylene and polypropylene are preferable as the olefin resin of the P3 layer because it is easy to process and relatively inexpensive.
  • These olefin-based resins may be mixed and copolymerized with other olefin compounds. For example, when an ethylene-propylene copolymer or an ethylene-propylene-butene copolymer is used, the melting point of the resin can be lowered.
  • making an olefin resin into a main structural component means containing 100 mass% or less of olefin resin exceeding 50 mass% in 100 mass% of all the components of this layer.
  • the melting point (hereinafter also referred to as melting endothermic peak temperature) of the olefin resin in the P3 layer in the present invention is preferably 120 ° C. or higher and 155 ° C. or lower. If the melting point of the olefin resin in the P3 layer is less than 120 ° C, the heat resistance may be inferior. On the other hand, if the melting point of the olefin resin in the P3 layer is higher than 155 ° C., the adhesiveness with the sealing material may be lowered.
  • the thickness of the entire laminated sheet is Ta ( ⁇ m)
  • the thickness of the P1 layer is T1 ( ⁇ m)
  • the thickness of the P3 layer is T3 ( ⁇ m)
  • the content of inorganic particles in the P3 layer is M (mass%). It is important to satisfy all of the expressions (1) to (3). 0.05 ⁇ M / T3 ⁇ 0.5 (1) 200 ⁇ Ta ⁇ 500 (2) 0.3 ⁇ T1 / Ta ⁇ 0.5 (3)
  • a laminated sheet having durability, interlayer adhesion, water vapor barrier properties, and electrical characteristics can be obtained.
  • T1 is obtained using the P1 layer of the surface layer
  • T3 and M are obtained using the P3 layer of the reverse surface layer, and this is expressed by the formula It is important to satisfy (1) to (3) simultaneously.
  • Formula (1) formulates the amount of inorganic particles per thickness, and shows that it is important to increase the amount of inorganic particles as the thickness increases in order to develop the effect of inorganic particles. .
  • the present inventors considered that the change in color tone due to thermal deterioration mainly depends on the concentration of inorganic particles.
  • the change in color tone due to thermal degradation does not simply depend on the concentration of inorganic particles but also on the thickness of the P1 layer. .
  • the reason for this is that the amount of change in color tone (absorption amount of visible light) caused by deterioration is obtained by integration in the thickness direction. Therefore, it is assumed that the greater the thickness, the greater the change in color tone.
  • the inventors conceived of controlling the amount of inorganic particles according to the thickness.
  • the formula (1) is expressed using the concentration and thickness of the inorganic particles, and in the present invention, it is important that the relationship of the formula (1) is satisfied.
  • the P3 layer contains inorganic particles, and these inorganic particles are used for imparting necessary functions to the sheet depending on the purpose.
  • the inorganic particles in the P3 layer the same inorganic particles as those mentioned above as the inorganic particles in the P1 layer can be used.
  • the inorganic particles in the P3 layer are preferably metal oxides such as titanium oxide, zinc oxide, and cerium oxide having ultraviolet absorbing ability.
  • inorganic particles having ultraviolet absorbing ability it is preferable in that the effect of reducing coloring due to deterioration of the sheet over a long period of time can be exhibited by utilizing the ultraviolet resistance by the inorganic particles.
  • the P3 layer particularly preferably contains titanium oxide, and particularly preferably contains rutile titanium oxide.
  • Formula (2) represents the thickness range of the entire laminated sheet.
  • Ta is smaller than 200 ⁇ m, durability, flame retardancy, and water vapor barrier are inferior. If Ta is larger than 500 ⁇ m, the processability is poor and the conveyance is difficult, so that there are problems such as poor process suitability and heavy weight.
  • the laminated sheet of this invention as a solar cell backsheet, there exists a problem that the solar cell module in which weight reduction and space saving are calculated
  • Formula (3) shows the thickness ratio of the P1 layer with respect to the total thickness, and the durability is greatly affected by the polyamide-based resin. If the value of T1 / Ta is smaller than 0.3, the durability is lowered. There is a problem to do. The greater the T1 / Ta value, the better the durability. However, the polyamide-based resin has a high hygroscopic property, which adversely affects the electrical characteristics. If the T1 / Ta value exceeds 0.5, the electrical characteristics become a problem. .
  • the thickness T2 ( ⁇ m) of the P2 layer is preferably 15 to 50 ⁇ m.
  • the thickness T2 ( ⁇ m) of each P2 layer is preferably 15 to 50 ⁇ m.
  • T2 is smaller than 15 ⁇ m, the adhesion with the P1 layer and the P3 layer is lowered, and delamination is likely to occur.
  • T2 is larger than 50 ⁇ m, the flame retardancy tends to deteriorate.
  • T2 is more preferably 20 ⁇ m or more and 40 ⁇ m or less.
  • delamination refers to what peels at the interface, such as between the P1 layer and the P2 layer and between the P2 layer and the P3 layer.
  • the laminated structure of the laminated sheet in the present invention is a structure in which at least the P1 layer is located on the surface layer and the P3 layer is located on the opposite surface layer to the P1 layer.
  • the P3 layer being located on the reverse surface layer of the P1 layer means that the P1 layer is located on one outermost layer of the laminated sheet, and therefore the P3 layer is located on the other outermost layer.
  • the layer configuration (layer order) of the laminated sheet of the present invention is preferably P1 layer / P2 layer / P3 layer.
  • the laminated sheet of the present invention has other layers between the P1 layer and the P3 layer, such as (i) P1 layer / P2 layer / P5 layer / P2 layer / P3 layer, which has a four-layer five-layer configuration. A layer having the above function may be included. Further, the laminated sheet of the present invention has (ii) a plurality of P1 layers and P3 layers through the P2 layer, such as (1) P1 layer / P2 layer / P3 layer / P2 layer / P1 layer / P2 layer / P3 layer. A multi-layered laminated structure is also a preferred embodiment.
  • the laminated sheet of the present invention can be a laminated body laminated with another film or the like. Also in such a laminated body, it is preferable that the P1 layer has a laminated structure provided on any one of the surface layers.
  • other films include polyester layers for increasing mechanical strength, antistatic layers, adhesion layers with other materials, UV resistant layers for further improving UV resistance, and flame resistance for imparting flame resistance
  • a layer, a hard coat layer for improving impact resistance and scratch resistance, and the like can be arbitrarily selected and used depending on applications.
  • the laminated sheet of the present invention is a laminated body laminated with another film or the like, when the laminated sheet of the present invention is used as a solar battery backsheet, other sheet materials or power generation elements are embedded.
  • the sealing material for example, ethylene vinyl acetate
  • the sealing material for example, ethylene vinyl acetate
  • the voltage at which partial discharge phenomenon, which is an index of insulation, is generated is improved.
  • a conductive layer to be formed may be formed.
  • Examples of the method for laminating the P1, P2, and P3 layers in the laminated sheet of the present invention include, for example, a raw material mainly comprising a polyamide-based resin for the P1 layer, a low crystalline soft polymer for the P2 layer, acrylic Extruders each comprising a raw material mainly comprising one selected from the group consisting of an adhesive based on ethylene and an ethylene vinyl acetate copolymer and a raw material mainly comprising an olefin resin for the P3 layer , P1 layer, P2 layer, P3 layer are joined together in this order after being melted, laminated, and processed into a sheet including the process of extruding into a sheet form from a T die (coextrusion method), produced as a single film
  • a method in which the raw material of the coating layer is put into an extruder and melt extruded and laminated while extruding from the die (melt la
  • thermocompression bonding thermocompression bonding
  • adhesion method a method of bonding via an adhesive
  • coating method a method of applying and drying a solution dissolved in a solvent
  • combining method a method of combining these Etc.
  • coextrusion method is preferred in that the production process is short and the adhesion between the layers is good.
  • the manufacturing method by the co-extrusion method will be described in detail (however, the manufacturing method described in detail below is an example).
  • the laminated sheet of the present invention is produced by a coextrusion method, first, a raw material mainly comprising a dried polyamide resin for the P1 layer, a low crystalline soft polymer for the P2 layer, an acrylic adhesive, and ethylene
  • the P2 layer and the P3 layer at 300 ° C. or lower are respectively supplied to three extruders heated to 180 ° C. or higher and 250 ° C. or lower and melted.
  • the P1 layer, the P2 layer and the P3 layer are joined and laminated in this order, and are coextruded from the T die into a sheet.
  • a multi-manifold die it is preferable to use a multi-manifold die from the viewpoint of suppressing lamination unevenness.
  • the laminated sheet of the present invention can be obtained by extruding the laminated sheet discharged from the T die by the above-described method onto a cooling body such as a casting drum and cooling and solidifying it.
  • the laminated sheet of the present invention obtained by the above-described method may be subjected to processing such as heat treatment or aging as necessary within the range where the effects of the present invention are not impaired.
  • processing such as heat treatment or aging as necessary within the range where the effects of the present invention are not impaired.
  • heat-treating the thermal dimensional stability of the laminated sheet of the present invention can be improved.
  • corona treatment or plasma treatment may be performed.
  • the solar cell backsheet of the present invention is composed of the laminated sheet of the present invention. That is, the laminated sheet of the present invention can be suitably used as a solar battery back sheet.
  • the solar cell of the present invention is characterized by using the solar cell backsheet of the present invention.
  • By using the laminated sheet of the present invention in a solar cell it becomes possible to increase the durability or reduce the thickness as compared with a conventional solar cell.
  • FIG. 1 A structural example of the solar cell of the present invention is shown in FIG.
  • a power generating element 3 connected with a lead wire (not shown in FIG. 1) for extracting electricity is sealed with a transparent sealing material 2 such as EVA resin, and a transparent substrate 4 such as glass.
  • the laminated sheet of this invention is bonded together as the solar cell backsheet 1, but the structural example of the solar cell of this invention is not limited to this, It can use for arbitrary structures.
  • unit of this invention was shown in FIG. 1, it is also possible to use the composite sheet of the lamination sheet of this invention and another film according to the other required required characteristic.
  • the solar cell member of the present invention is a member used for a solar cell and having the laminated sheet of the present invention.
  • the above-mentioned solar cell backsheet is also included in the solar cell member of the present invention. Since the laminated sheet of the present invention has characteristics suitable for the solar battery backsheet as described above, the solar cell member using the laminated sheet of the present invention is suitably used for solar cell applications.
  • a method of laminating with other films, etc. for example, a method of co-extrusion and processing into a sheet (co-extrusion method), a coating layer raw material is put into an extruder into a sheet made of a single film Then, melt extrusion and laminating while extruding from the die (melt laminating method), making each film separately, thermocompression bonding with heated rolls etc. (thermal laminating method), pasting through adhesive A method of bonding (adhesion method), a method of applying and drying a solution dissolved in a solvent (coating method), a method of combining these, and the like can be used.
  • the above-described solar cell backsheet 1 is installed on the back surface of the sealing material 2 in which the power generating element is sealed.
  • the solar cell backsheet of the present invention has an asymmetric configuration, and the P3 layer is disposed so as to be positioned on the sealing material 2 side, so that the adhesion with the sealing material can be further increased. This is preferable.
  • positioned so that P1 layer of the lamination sheet of this invention may be located in the opposite side to the sealing material 2 it becomes possible to improve the tolerance with respect to the ultraviolet rays etc. of the reflection from the ground, and high durability. It can be a solar cell or the thickness can be reduced.
  • the laminated sheet of the present invention can be suitably used as a member of a solar cell comprising a laminated sheet and a sealing material.
  • the solar cell member having the laminated sheet and the sealing material of the present invention is particularly suitably used for solar cell applications.
  • the sealing material is preferably located on the surface side of the P3 layer of the laminated sheet.
  • the sealing material it is preferable to previously laminate the sealing material with the laminated sheet, and in particular, a method in which the sealing material is simultaneously coextruded and processed into a sheet shape is preferable.
  • the power generating element 3 converts light energy of sunlight into electric energy, and is based on crystalline silicon, polycrystalline silicon, microcrystalline silicon, amorphous silicon, copper indium selenide, compound semiconductor, dye enhancement Arbitrary elements such as a sensitive system can be used in series or in parallel according to the desired voltage or current depending on the purpose. Since the transparent substrate 4 having translucency is located on the outermost surface layer of the solar cell, a transparent material having high weather resistance, high contamination resistance, and high mechanical strength characteristics in addition to high transmittance is used. In the solar cell of the present invention, the transparent substrate 4 having translucency can be made of any material as long as the above characteristics are satisfied. Examples thereof include glass, ethylene tetrafluoride-ethylene copolymer (ETFE), polyfluoride.
  • ETFE ethylene tetrafluoride-ethylene copolymer
  • Vinyl fluoride resin PVDF
  • PVDF polyvinylidene fluoride resin
  • TFE polytetrafluoroethylene resin
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • CFE polytrifluoroethylene chloride resin
  • Fluorinated resins such as polyvinylidene fluoride resin, olefinic resins, acrylic resins, and mixtures thereof.
  • glass it is more preferable to use a tempered glass.
  • stretched the said resin uniaxially or biaxially from a viewpoint of mechanical strength is used preferably.
  • the sealing material 2 for sealing the power generating element covers the surface of the power generating element with resin and fixes it, protects the power generating element from the external environment, and has a light-transmitting base material for the purpose of electrical insulation.
  • a material having high transparency, high weather resistance, high adhesion, and high heat resistance is used to adhere to the backsheet and the power generation element. Examples thereof include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA) resin, ethylene-methacrylic acid copolymer (EMAA), Ionomer resins, polyvinyl butyral resins, and mixtures thereof are preferably used.
  • the solar battery back sheet using the laminated sheet of the present invention into the solar battery, it becomes possible to obtain a highly durable and / or thin solar battery compared to the conventional solar battery.
  • the solar cell of the present invention can be suitably used for various applications without being limited to outdoor use and indoor use such as a solar power generation system and a power source for small electronic components.
  • the laminate sheet is cut perpendicularly to the laminate sheet surface direction without crushing the laminate sheet section in the thickness direction.
  • the measurement test piece is an example in which a 500 ⁇ m-thick EVA sheet manufactured by Sanvic Co., Ltd. on a semi-tempered glass with a thickness of 3 mm, and a corona treatment (20 W ⁇ min / m 2 ) on the surface of the P3 layer or comparison
  • the laminated sheet of the example was stacked so that the EVA sheet and the P3 layer were in contact with each other, and after being evacuated using a commercially available glass laminator, pressed at 135 ° C.
  • the width of the test piece for the peel strength test was 10 mm, two test pieces were prepared, and each test piece was measured at three locations with different locations, and the average value of the obtained measured values was taken as the peel strength value.
  • two measurement specimens having a sufficient size for example, a width of 100 mm or more and a length of 100 mm or more
  • three test pieces each having a width of 10 mm (length is 100 mm or more) were cut out from each measurement test piece.
  • the peel strength of the six cut specimens was measured, and the average value of the measured values obtained was taken as the peel strength of the sheet.
  • the adhesiveness of the sealing material was determined as follows.
  • peel strength is 50 N / 10 mm or more: S When the peel strength is 40 N / 10 mm or more and less than 50 N / 10 mm: A When peel strength is 30N / 10mm or more and less than 40N / 10mm: B When the peel strength is 20 N / 10 mm or more and less than 30 N / 10 mm: C When peel strength is less than 20 N / 10 mm: D S to C pass, and S is the best among them.
  • the adhesion was evaluated from the delamination strength of the laminated sheet.
  • the delamination strength the strength at the time of peeling in the T shape measured according to JIS K6854-3 (1999 edition) was used.
  • the interlayer was defined as an interlayer capable of interfacial separation such as between the P1 layer and the P2 layer and between the P2 layer and the P3 layer.
  • the test piece width of the delamination strength test was 15 mm, and two test pieces were prepared. The test piece was changed in place and measured at three locations, and the average value of the obtained measurement values was taken as the delamination strength.
  • the interlayer adhesion was determined as follows.
  • peel strength When peel strength is 10N / 15mm or more: S When the peel strength is 6 N / 15 mm or more and less than 10 N / 15 mm: A When peel strength is 3N / 15mm or more and less than 6N / 15mm: B When peel strength is 1N / 15mm or more and less than 3N / 15mm: C When peel strength is less than 1 N / 15 mm: D S to C pass, and S is the best among them.
  • the laminated sheet was cut into a size of 13 mm ⁇ 125 mm, the first marked line at 25.4 mm from the cut end in the longitudinal direction, and the second marked at 101.6 mm.
  • Draw a marked line, hold it horizontally, and at the burning rate from the first marked line to the second marked line, N 3 for the width direction and the longitudinal direction of the laminated sheet, and the average value It was.
  • the obtained burning rate was determined as follows.
  • Partial discharge voltage The partial discharge voltage of the laminated sheet was determined using a partial discharge tester KPD2050 (manufactured by Kikusui Electronics Co., Ltd.).
  • the test conditions are as follows.
  • the output voltage application pattern on the output sheet is a pattern in which the first stage simply increases the voltage from 0 V to a predetermined test voltage, the second stage is a pattern that maintains a predetermined test voltage, and the third stage is a predetermined test A pattern composed of three stages of patterns in which the voltage is simply dropped from 0 to 0 V is selected.
  • the frequency is 50 Hz.
  • the test voltage is 1 kV.
  • the first stage time T1 is 10 sec
  • the second stage time T2 is 2 sec
  • the third stage time T3 is 10 sec.
  • the counting method on the pulse count sheet is “+” (plus), and the detection level is 50%.
  • the charge amount in the range sheet is set to 1,000 pc.
  • the pulse count is 100,000.
  • the start voltage is 1.0 pc and the extinction voltage is 1.0 pc.
  • the measurement was carried out at 10 arbitrary positions in the laminated sheet surface, and the average value was defined as the partial discharge voltage V0. Further, the measurement was performed using a measurement sample that was left overnight (12 hours) in a room at 23 ° C. and 65% Rh.
  • partial discharge voltage is 1,050 V or more: S When the partial discharge voltage is 950 V or more and less than 1,050 V: A When partial discharge voltage is 700V or more and less than 950V: B When the partial discharge voltage is 300V or more and less than 700V: C When partial discharge voltage is less than 300V: D S to C pass, and S is the best among them.
  • ⁇ b was obtained by subtracting the b value before the processing from the b value after the processing, and the following determination was performed.
  • S When the color change ⁇ b is less than 3: S When the color change ⁇ b is 3 or more and less than 5: A When the color change ⁇ b is 5 or more and less than 8: B When color change ⁇ b is 8 or more and 10 or less: C When the color change ⁇ b exceeds 10: D S to C pass, and S is the best among them.
  • the b values before and after the irradiation were determined by measuring the b values before and after the P1 layer and calculating the average value.
  • the difference (b value after irradiation to b value before irradiation) was defined as a color tone change ⁇ b after ultraviolet irradiation.
  • the obtained color tone change ( ⁇ b) was determined as follows.
  • breaking elongation E0 is measured according to the said (8) term,
  • the obtained elongation retention was determined as follows. When the elongation retention is 50% or more: S When the elongation retention is 40% or more and less than 50%: A When the elongation retention is 30% or more and less than 40%: B When the elongation retention is 20% or more and less than 30%: C When the elongation retention is less than 20%: D S to C pass, and S is the best among them.
  • the melting point is a value obtained by differential scanning calorimetry (hereinafter referred to as DSC), which is obtained in a temperature rising process (temperature rising rate: 20 ° C./min), and the object to be measured is JIS K-7121 (1999). ) At a rate of temperature increase from 25 ° C. to 300 ° C. at a rate of 20 ° C./min, held at 300 ° C. for 5 minutes, then rapidly cooled to 25 ° C. or lower, and again 25 The temperature is the peak top temperature in the crystal melting peak in the differential scanning calorimetry chart obtained by raising the temperature from 20 ° C. to 300 ° C. at a rate of temperature rise of 20 ° C./min.
  • Nylon 6 resin “Amilan” registered trademark) CM1021T (polyamide resin (PA6) constituting the P1 layer) Toray Industries, Inc., Tm; 225 ° C.) was used.
  • the nylon 12 resin “Rilsan” AESN-TL (PA12) was used.
  • Example 18 1% ethylene copolymer polypropylene was used as “EPC1”. In Example 19, “Noblen” FLX80E4 manufactured by Sumitomo Chemical Co., Ltd., which is polypropylene, was used as “PP1”.
  • Acid-modified polyolefin “Modic” P553A (acid-modified polyolefin using polypropylene as polyolefin) as a resin constituting the P2 layer in Examples 1 to 23, 24 to 27 and Comparative Examples 3 to 8 was used as “resin 1”.
  • “Modic” M545 manufactured by Mitsubishi Chemical Corporation (acid-modified polyolefin using linear low-density polyethylene as the polyolefin) was used as “Resin 2”.
  • “Modic” F535 an acid-modified polyolefin using a copolymerized olefin as the polyolefin) manufactured by Mitsubishi Chemical Corporation was used as “Resin 3”.
  • Example 30 “Modic” A515 (an acid-modified polyolefin using an ethylene-vinyl acetate copolymer as the polyolefin) manufactured by Mitsubishi Chemical Corporation was used as “Resin 4”.
  • Example 31 “Modic” L504 (acid-modified polyolefin in which low-density polyethylene was used as the polyolefin) manufactured by Mitsubishi Chemical Corporation was used as “Resin 5”.
  • Example 32 “Modic” H503 (acid-modified polyolefin using high-density polyethylene as the polyolefin) manufactured by Mitsubishi Chemical Corporation was used as “Resin 6”.
  • Example 33 “Admer” SF731 (acid-modified polyolefin using polyethylene as the polyolefin) manufactured by Mitsui Chemicals, Inc. was used as “Resin 7”.
  • Example 34 “Admer” QB550 (acid-modified polyolefin using a copolymerized olefin as the polyolefin) manufactured by Mitsui Chemicals, Inc. was used as “Resin 8”.
  • Example 35 “Admer” QF500 (acid-modified polyolefin using polypropylene as the polyolefin) manufactured by Mitsui Chemicals, Inc. was used as “Resin 9”.
  • Polyolefin-based elastomer For Examples 20 to 23, “Notio” PN2060 manufactured by Mitsui Chemicals, Inc. was used as “Elastomer 1” as the polyolefin-based elastomer.
  • the inorganic particles used in Examples 1 to 7, 9 to 23 and 24 to 36, and P1 layers of Comparative Examples 1 and 3 to 8 and P3 layers of Examples 1 to 23 and Comparative Examples 2 to 8 are Rutile type titanium dioxide was used. Further, the titanium dioxide of the P1 layer has a desired concentration of the resin used as the main constituent component of the P1 layer for each example and comparative example and the resin obtained by mastering titanium dioxide at a ratio of 50% by mass / 50% by mass. Added. The titanium dioxide of the P3 layer was added so that the resin used as the main constituent component of the P3 layer and the titanium dioxide mastered at a ratio of 30% by mass / 70% by mass in each example and comparative example to a desired concentration. .
  • Examples 1 to 27, Comparative Examples 3 to 8 Using the extruder 1, the extruder 2 and the extruder 3, the raw materials shown in Table 1 are supplied to each extruder so as to have a desired blending ratio, and then the layer melt-extruded from the extruder 1 is the P1 layer, the extrusion The machine 2 is the P2 layer and the extruder 3 is the P3 layer. The layers are joined together in a multi-manifold so that the P1 layer / P2 layer / P3 layer are laminated in order, and the resin discharged from the die is cooled and solidified on the cast drum. Thus, a laminated sheet was obtained. The thicknesses shown in Table 2 were obtained for the P1, P2, and P3 layers. The evaluation shown in Table 2 was implemented about the obtained lamination sheet. As a result, as shown in Table 2, the examples were found to be excellent laminated sheets.
  • Examples 20 to 23 contained an elastomer in the P2 layer, the interlayer adhesion was extremely excellent.
  • Comparative Example 3 was inferior in durability and flame retardancy because T1 / Ta in formula (1) was smaller than 0.3.
  • Comparative Example 4 was inferior in electrical characteristics because T1 / Ta was larger than 0.5.
  • Comparative Example 5 since Ta in formula (2) was smaller than 200, the durability, flame retardancy, and gas barrier properties were inferior. Since the comparative example 7 had M / T3 of Formula (3) smaller than 0.05, the heat yellowing was inferior. Since the comparative example 8 had M / T3 larger than 0.5, the adhesiveness with a sealing material was inferior.
  • Example 28 to 36 A laminated sheet was obtained in the same manner as in Example 1 except that the raw materials shown in Table 1 were supplied to each extruder so as to have a desired blending ratio. The evaluation shown in Table 2 was implemented about the obtained lamination sheet. As a result, as shown in Table 2, it was found to be an excellent laminated sheet.
  • a laminated sheet that is less susceptible to yellowing than a laminated sheet using a conventional polyamide-based resin, and that can achieve both durability, flame retardancy, and water vapor barrier properties.
  • Such laminated sheets are used for solar cell backsheets, liquid crystal display reflectors, automotive materials, building materials, and other applications where yellowing, wet heat resistance, resistance to ultraviolet rays, and light reflectivity are important. Can be suitably used.
  • a laminated sheet that can be suitably used as a back sheet for a solar cell, and a method for producing the laminated sheet can be provided.

Abstract

Provided is a laminate sheet having a layer (P1 layer) having a polyamide-based resin as a main component thereof, and a layer (P3 layer) having an olefin-based resin as a main component thereof, the P3 layer containing inorganic particles, the P1 layer being positioned on a surface layer, the P3 layer being positioned on a reverse layer from the P1 layer, and the expressions (1) through (3) all being satisfied, where Ta (µm) is the total thickness of the laminate sheet, T1 (µm) is the thickness of the P1 layer, T3 (µm) is the thickness of the P3 layer, and M (mass%) is the content of inorganic particles in the P3 layer. This laminate sheet is capable of superior durability, nonflammability, and water vapor barrier properties relative to a conventional laminate sheet that uses a polyamide-based resin, and is particularly suitable for use as a backing sheet for a solar cell. (1): 0.05 ≤ M/T3 ≤ 0.5; (2): 200 ≤ Ta ≤ 500; (3): 0.3 ≤ T1/Ta ≤ 0.5

Description

積層シートおよびその製造方法Laminated sheet and method for producing the same
 本発明は耐久性と難燃性と水蒸気バリア性の両立が可能な積層シートに関する。特に太陽電池用バックシートとして好適に使用できる積層シート、および該積層シートの製造方法に関する。 The present invention relates to a laminated sheet capable of achieving both durability, flame retardancy, and water vapor barrier properties. In particular, the present invention relates to a laminated sheet that can be suitably used as a back sheet for a solar cell, and a method for producing the laminated sheet.
 近年、半永久的で無公害の次世代エネルギー源として太陽光発電が注目を浴びており、太陽電池は急速に普及しつつある。太陽電池は、発電素子をエチレン-ビニルアセテート共重合体(EVA)などの透明な封止材により封止したものに、ガラスなどの透明基板と、バックシートと呼ばれる樹脂シートを貼り合わせて構成される。太陽光は透明基板を通じて太陽電池内に導入される。太陽電池内に導入された太陽光は、発電素子にて、吸収され、吸収された光エネルギーは、電気エネルギーに変換される。変換された電気エネルギーは発電素子に接続したリード線にて取り出されて、各種電気機器に使用される。ここで、従来のバックシートは安価で高性能である二軸延伸ポリエチレンテレフタレート(PET)に種々の素材をドライラミネートにて貼り合わせることによってバリア性や電気特性を付与する構成が検討されてきた。また、オレフィン系樹脂はバリア性に加えて上記封止材との密着性が良好であるため、バックシートとして一般的に用いられる素材である。 In recent years, photovoltaic power generation has attracted attention as a semi-permanent and pollution-free next-generation energy source, and solar cells are rapidly spreading. A solar cell is composed of a power generation element sealed with a transparent sealing material such as ethylene-vinyl acetate copolymer (EVA), and a transparent substrate such as glass and a resin sheet called a back sheet bonded together. The Sunlight is introduced into the solar cell through the transparent substrate. Sunlight introduced into the solar cell is absorbed by the power generation element, and the absorbed light energy is converted into electrical energy. The converted electric energy is taken out by a lead wire connected to the power generation element and used for various electric devices. Here, the structure which provides barrier property and an electrical property by pasting together various raw materials to the biaxially-stretched polyethylene terephthalate (PET) which is a low-cost and high-performance is studied. In addition to the barrier property, the olefin resin is a material generally used as a back sheet because it has good adhesion to the sealing material.
 一方、バックシートの耐久性、生産性を高めるためにPET以外の樹脂材料の適用検討が行われていて、耐久性があるポリアミド系樹脂をベースとしたバックシートが開発されている(特許文献1、2)。 On the other hand, in order to improve the durability and productivity of the back sheet, application of resin materials other than PET has been studied, and a back sheet based on a durable polyamide-based resin has been developed (Patent Document 1). 2).
特表2010-528454号公報Special table 2010-528454 gazette 特表2010-527142号公報Special table 2010-527142 gazette
 しかしながら、ポリアミド系樹脂は一般に水蒸気バリア性が二軸延伸PETに比べて低いという欠点を有していた。さらに、熱によって劣化しやすく、色調が黄色に変化しやすいという課題がある。また、特許文献2に記載のポリアミド系樹脂に二軸延伸PETを積層したシートでは、水蒸気バリア性は得られるものの、高い耐湿熱性と層間密着性を得るためには二軸延伸プロセスが必須であり、生産性に課題がある。そこで、本発明では従来の課題を鑑みて、生産性が高く、黄変しにくく、耐久性と層間密着性、水蒸気バリア性を兼ね備えた太陽電池用バックシートに好適に用いることが可能な積層シートを提供する。 However, polyamide-based resins generally have a drawback that the water vapor barrier property is lower than that of biaxially stretched PET. Furthermore, there is a problem in that it is easily deteriorated by heat and the color tone is easily changed to yellow. Moreover, in the sheet | seat which laminated | stacked biaxially stretched PET on the polyamide-type resin of patent document 2, although a water vapor | steam barrier property is obtained, in order to obtain high wet heat resistance and interlayer adhesion, a biaxial stretch process is essential. There is a problem with productivity. Therefore, in the present invention, in view of the conventional problems, a laminated sheet that is highly productive, hardly yellowed, and can be suitably used for a solar cell backsheet having durability, interlayer adhesion, and water vapor barrier properties. I will provide a.
 上記課題を解決するために本発明は以下の構成をとる。すなわち、以下である。 In order to solve the above problems, the present invention has the following configuration. That is:
 ポリアミド系樹脂を主たる構成成分とする層(P1層)と、オレフィン系樹脂を主たる構成成分とする層(P3層)とを有する積層シートであって、
 P3層が無機粒子を含有し、
 さらにP1層が表層に位置し、P1層とは逆表層にP3層が位置し、
 積層シート全体の厚みをTa(μm)、P1層の厚みをT1(μm)、P3層の厚みをT3(μm)、P3層中の無機粒子の含有量をM(質量%)とした時に、下記式(1)~(3)の全てを満たすことを特徴とする、積層シート。
0.05≦M/T3≦0.5・・・(1)
200≦Ta≦500・・・(2)
0.3≦T1/Ta≦0.5・・・(3)
A laminated sheet having a layer (P1 layer) mainly comprising a polyamide-based resin and a layer (P3 layer) mainly comprising an olefin-based resin,
P3 layer contains inorganic particles,
Furthermore, the P1 layer is located on the surface layer, and the P3 layer is located on the surface opposite to the P1 layer,
When the thickness of the entire laminated sheet is Ta (μm), the thickness of the P1 layer is T1 (μm), the thickness of the P3 layer is T3 (μm), and the content of inorganic particles in the P3 layer is M (mass%), A laminated sheet characterized by satisfying all of the following formulas (1) to (3).
0.05 ≦ M / T3 ≦ 0.5 (1)
200 ≦ Ta ≦ 500 (2)
0.3 ≦ T1 / Ta ≦ 0.5 (3)
 本発明によれば、太陽電池用バックシートに好適に使用できるレベルの耐久性、層間密着性、水蒸気バリア性、封止剤密着性、難燃性、黄変に優れた積層シートを提供することができる。かかる積層シートは太陽電池用バックシートに好適に使用でき、さらに該バックシートを用いることによって高性能な太陽電池を提供することができる。 According to the present invention, there is provided a laminated sheet having excellent durability, interlayer adhesion, water vapor barrier properties, sealant adhesion, flame retardancy, and yellowing that can be suitably used for a solar cell backsheet. Can do. Such a laminated sheet can be suitably used for a solar cell backsheet, and a high-performance solar cell can be provided by using the backsheet.
本発明の積層シートを用いた太陽電池の構成の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of a structure of the solar cell using the lamination sheet of this invention.
 本発明の積層シートは、ポリアミド系樹脂を主たる構成成分とする層(P1層)とポリオレフィン系樹脂を主たる構成成分とする層(P3層)とを有する。 The laminated sheet of the present invention has a layer (P1 layer) mainly composed of a polyamide-based resin and a layer (P3 layer) mainly composed of a polyolefin-based resin.
 本発明におけるP1層の主たる構成成分であるポリアミド系樹脂とは、1)ラクタム骨格を有する化合物を開環重合したもの、2)一分子中にアミノ基とカルボキシル基を有するアミノ酸化合物を重縮合したもの、3)ジアミン化合物とジカルボン酸化合物を重縮合したもの、および1)~3)を共重合したもの等が挙げられる。そしてP1層の主たる構成成分であるポリアミド系樹脂は、これらを単独で用いることも、混合して用いることも可能である。 The polyamide resin which is the main constituent of the P1 layer in the present invention is 1) ring-opening polymerization of a compound having a lactam skeleton, and 2) polycondensation of an amino acid compound having an amino group and a carboxyl group in one molecule. And 3) those obtained by polycondensation of a diamine compound and a dicarboxylic acid compound, and those obtained by copolymerizing 1) to 3). And as for the polyamide-type resin which is a main structural component of P1 layer, these can be used individually or can be mixed and used.
 1)に用いられるラクタム骨格を有する化合物の例としてはε-カプロラクタム(開環重合によりナイロン6が得られる)、ω-ウンデカンラクタム(開環重合によりナイロン11が得られる)、ω-ラウロラクタム(開環重合によりナイロン12が得られる)などのラクタム化合物が挙げられる。 Examples of the compound having a lactam skeleton used in 1) include ε-caprolactam (nylon 6 is obtained by ring-opening polymerization), ω-undecanlactam (nylon 11 is obtained by ring-opening polymerization), ω-laurolactam ( And lactam compounds such as nylon 12 can be obtained by ring-opening polymerization.
 また2)に用いられる一分子中にアミノ基とカルボキシル基を有するアミノ酸化合物の例としては、ε-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸などのアミノ酸化合物が挙げられる。 Examples of amino acid compounds having an amino group and a carboxyl group in one molecule used in 2) include amino acid compounds such as ε-aminocaproic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid.
 また3)に用いられるジアミン化合物としては、テトラメチレンジアミン、ヘキサメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、1,2,2,4-テトラメチルへキサメチレンジアミン、2,4,4-トリメチルへキサメチレンジアミン、5-メチルノナメチレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,3-ビスアミノメチルシクロヘキサン、1,4-ビスアミノメチルシクロヘキサン、ビス-p-アミノシクロヘキシルメタン、2,2-ビス-p-アミノシクロへキシルプロパン、イソホロンジアミンなどが挙げられる。また、3)に用いられるジカルボン酸化合物としては、アジピン酸、スペリン酸、アゼライン酸、セパシン酸、ドデカンニ酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ダイマー酸などのジカルボン酸化合物が挙げられる。 Examples of the diamine compound used in 3) include tetramethylene diamine, hexamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 1,2,2,4-tetramethylhexamethylene diamine, 2,4,4-trimethyl. Hexamethylenediamine, 5-methylnonamethylenediamine, m-xylylenediamine, p-xylylenediamine, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane, bis-p-aminocyclohexylmethane, Examples include 2,2-bis-p-aminocyclohexylpropane and isophoronediamine. Examples of the dicarboxylic acid compound used in 3) include adipic acid, peric acid, azelaic acid, sepacic acid, dodecanoic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, Examples thereof include dicarboxylic acid compounds such as naphthalenedicarboxylic acid and dimer acid.
 これらの化合物について、1)ラクタム骨格を有する化合物、2)アミノ酸化合物、について単独または混合物、あるいは3)ジアミンとジカルボン酸の混合物、等の形で重合に供され、そうして得られるポリアミド系樹脂は、単独の重合体、共重合体のいずれも本発明で用いることができる。つまり、例えば、1)ラクタム骨格を有する化合物が用いられる場合であれば、1種または2種以上のラクタム骨格を有する化合物が重合され、ポリアミド系樹脂が得られる(なお、2種以上の化合物が用いられる場合、得られるポリアミド系樹脂は共重合体となる)。同様に、2)アミノ酸化合物が用いられる場合であれば、1種または2種以上のアミノ酸化合物が重合され、ポリアミド系樹脂が得られる。また、3)ジアミン化合物とジカルボン酸化合物が用いられる場合であれば、1種または2種以上のジアミン化合物および1種または2種以上のジカルボン酸化合物が重合され、ポリアミド系樹脂が得られる。これらの中でもポリアミド系樹脂としては、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリへキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリへキサメチレンテレフタルアミド(ナイロン6T)、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、が好ましい。 About these compounds, 1) a compound having a lactam skeleton, 2) an amino acid compound, alone or in a mixture, or 3) a mixture of diamine and dicarboxylic acid, etc. Either a single polymer or a copolymer can be used in the present invention. That is, for example, if 1) a compound having a lactam skeleton is used, a compound having one or more lactam skeletons is polymerized to obtain a polyamide-based resin (note that two or more compounds are When used, the resulting polyamide resin is a copolymer). Similarly, if 2) an amino acid compound is used, one or more amino acid compounds are polymerized to obtain a polyamide resin. 3) When a diamine compound and a dicarboxylic acid compound are used, one or more diamine compounds and one or more dicarboxylic acid compounds are polymerized to obtain a polyamide resin. Among these, as the polyamide-based resin, polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon 612), Polyhexamethylene terephthalamide (nylon 6T), polyhexamethylene isophthalamide (nylon 6I), polyundecanamide (nylon 11), and polydodecanamide (nylon 12) are preferable.
 ここで、本発明の積層シートにおいて、P1層の主たる構成成分であるポリアミド系樹脂は、結晶性の高さや強度、耐熱性、剛性面で、ナイロン6、ナイロン66、ナイロン610、ナイロン11、及びナイロン12からなる群より選ばれる少なくとも1つの樹脂であることがより好ましい。 Here, in the laminated sheet of the present invention, the polyamide-based resin that is the main constituent of the P1 layer is nylon 6, nylon 66, nylon 610, nylon 11, and the like in terms of crystallinity, strength, heat resistance, and rigidity. More preferably, it is at least one resin selected from the group consisting of nylon 12.
 なおP1層について、ポリアミド系樹脂を主たる構成成分とするとは、該層の全成分100質量%において、ポリアミド系樹脂を50質量%を超えて100質量%以下含有していることを意味する。 In addition, about P1 layer, making a polyamide-type resin a main structural component means that the polyamide-type resin is contained more than 50 mass% and 100 mass% or less in 100 mass% of all the components of this layer.
 本発明の積層シートを構成するP1層は、0.1質量%以上30質量%以下の範囲で無機粒子を含有することが好ましい。P1層中の無機粒子の含有量は、より好ましくは2質量%以上25質量%以下、さらに好ましくは5質量%以上20質量%以下である。この無機粒子は、その目的に応じて必要な機能をシートに付与するために用いられる。P1層中の無機粒子の含有量が30質量%超であると、ハンドリング性が低下したり、耐久性が低下したりすることがある。P1層中の無機粒子の含有量が0.1質量%未満であると、無機粒子を含有させたことによる効果が得られにくく、黄変が起こることがある。 The P1 layer constituting the laminated sheet of the present invention preferably contains inorganic particles in the range of 0.1% by mass to 30% by mass. The content of inorganic particles in the P1 layer is more preferably 2% by mass or more and 25% by mass or less, and further preferably 5% by mass or more and 20% by mass or less. These inorganic particles are used for imparting necessary functions to the sheet depending on the purpose. When the content of the inorganic particles in the P1 layer is more than 30% by mass, handling properties may be lowered or durability may be lowered. When the content of the inorganic particles in the P1 layer is less than 0.1% by mass, the effect due to the inclusion of the inorganic particles is difficult to obtain, and yellowing may occur.
 P1層に好適に用いられる無機粒子としては、紫外線吸収能のある無機粒子、ポリアミド系樹脂との屈折率差が大きな粒子、導電性を持つ粒子、顔料といったものが例示され、これにより耐紫外線性や、光反射性、白色性といった光学特性、帯電防止性などを付与することができる。なお、粒子とは、投影した等価換算円の直径による一次粒径として5nm以上のものをいう。また、特に断らない限り、本発明において粒径は一次粒径を意味し、粒子は一次粒子を意味する。 Examples of the inorganic particles suitably used for the P1 layer include inorganic particles having an ultraviolet absorbing ability, particles having a large refractive index difference from the polyamide resin, conductive particles, pigments, and the like. In addition, optical properties such as light reflectivity and whiteness, antistatic properties and the like can be imparted. The particle means a particle having a primary particle diameter of 5 nm or more based on the diameter of a projected equivalent equivalent circle. Unless otherwise specified, in the present invention, the particle size means a primary particle size, and the particle means a primary particle.
 さらに詳細に説明すると、本発明のP1層に好適に用いられる無機粒子は、例えば、金、銀、銅、白金、パラジウム、レニウム、バナジウム、オスミウム、コバルト、鉄、亜鉛、ルテニウム、プラセオジウム、クロム、ニッケル、アルミニウム、スズ、亜鉛、チタン、タンタル、ジルコニウム、アンチモン、インジウム、イットリウム、ランタニウム等の金属、酸化亜鉛、酸化チタン、酸化セシウム、酸化アンチモン、酸化スズ 、インジウム・スズ酸化物、酸化イットリウム 、酸化ランタニウム 、酸化ジルコニウム、酸化アルミニウム、酸化ケイ素等の金属酸化物、フッ化リチウム、フッ化マグネシウム 、フッ化アルミニウム 、氷晶石等の金属フッ化物、リン酸カルシウム等の金属リン酸塩、炭酸カルシウム等の炭酸塩、硫酸バリウム等の硫酸塩、タルクおよびカオリン等が挙げられる。 More specifically, the inorganic particles suitably used for the P1 layer of the present invention include, for example, gold, silver, copper, platinum, palladium, rhenium, vanadium, osmium, cobalt, iron, zinc, ruthenium, praseodymium, chromium, Metals such as nickel, aluminum, tin, zinc, titanium, tantalum, zirconium, antimony, indium, yttrium, lanthanum, zinc oxide, titanium oxide, cesium oxide, antimony oxide, tin oxide, indium tin oxide, yttrium oxide, oxidation Metal oxides such as lanthanum soot, zirconium oxide, aluminum oxide, silicon oxide, lithium fluoride, magnesium fluoride soot, aluminum fluoride soot, metal fluorides such as cryolite, metal phosphates such as calcium phosphate, carbonates such as calcium carbonate Salt, barium sulfate And sulfates such as talc, talc and kaolin.
 本発明においては、屋外で使用されることが多いことを鑑みれば、P1層中の無機粒子として、紫外線吸収能を有する無機粒子である酸化チタン、酸化亜鉛、酸化セリウム、などの金属酸化物が好ましい。紫外線吸収能を有する無機粒子を用いた場合に、無機粒子による耐紫外線性を活かして、長期に渡ってシートの劣化による着色を低減するという効果を発揮することができる点で好ましい。さらには、高い反射特性も付与できるという点で、P1層中の無機粒子としては酸化チタンを用いるのがより好ましく、耐紫外線性がより高いという点でルチル型酸化チタンを用いるのがさらに好ましい。つまり、本発明では、P1層が酸化チタンを含有することが特に好ましく、中でもルチル型の酸化チタンを含有することが好ましい。 In the present invention, in view of the fact that it is often used outdoors, as the inorganic particles in the P1 layer, metal oxides such as titanium oxide, zinc oxide, and cerium oxide, which are inorganic particles having ultraviolet absorbing ability, are used. preferable. When inorganic particles having ultraviolet absorbing ability are used, it is preferable in that the effect of reducing coloring due to deterioration of the sheet over a long period of time can be exhibited by utilizing the ultraviolet resistance by the inorganic particles. Furthermore, it is more preferable to use titanium oxide as the inorganic particles in the P1 layer in that high reflection characteristics can be imparted, and it is more preferable to use rutile type titanium oxide in terms of higher ultraviolet resistance. That is, in the present invention, the P1 layer particularly preferably contains titanium oxide, and particularly preferably contains rutile-type titanium oxide.
 P1層中にポリアミド系樹脂及び無機粒子を含有させる方法は、予めポリアミド系樹脂と無機粒子を、ベント式二軸混練押出機やタンデム型押出機を用いて、溶融混練する方法が好ましい。ここで、無機粒子を含有させる際に熱履歴を受けるため、少なからずポリアミド系樹脂が劣化することがある。そのため、P1層に含まれることとなる無機粒子量に比べて、無機粒子含有量の多い高濃度マスターペレットを作製し、それをポリアミド系樹脂と混合して希釈し、所定のP1層の無機粒子含有率とするのが、耐久性の観点から好ましい。 The method in which the polyamide-based resin and the inorganic particles are contained in the P1 layer is preferably a method in which the polyamide-based resin and the inorganic particles are previously melt-kneaded using a vent type biaxial kneading extruder or a tandem type extruder. Here, since the thermal history is received when the inorganic particles are contained, the polyamide-based resin may be deteriorated. Therefore, a high-concentration master pellet having a large amount of inorganic particles compared to the amount of inorganic particles to be contained in the P1 layer is prepared, mixed with a polyamide-based resin and diluted to obtain a predetermined P1 layer of inorganic particles. The content is preferably from the viewpoint of durability.
 また、本発明の積層シートのP1層およびP3層には、本発明の効果が損なわれない範囲内でその他の添加剤(例えば、耐熱安定剤、紫外線吸収剤、耐候安定剤、有機の易滑剤、顔料、染料、充填剤、帯電防止剤、核剤などが挙げられる。但し、本発明にいう無機粒子は、ここでいう添加剤には含まれない)を含有していてもよい。例えば、添加剤として紫外線吸収剤を選択して、P1層及び/又はP3層に含有させた場合には、本発明の積層シートの耐紫外線性をより高めることが可能となる。また、P1層及び/又はP3層に帯電防止剤などを含有させると、耐電圧向上が期待できる。 In addition, the P1 layer and the P3 layer of the laminated sheet of the present invention may have other additives (for example, a heat stabilizer, an ultraviolet absorber, a weather stabilizer, an organic lubricant, as long as the effects of the present invention are not impaired). Pigments, dyes, fillers, antistatic agents, nucleating agents, etc. However, the inorganic particles referred to in the present invention may not be included in the additives herein. For example, when an ultraviolet absorber is selected as an additive and contained in the P1 layer and / or the P3 layer, the ultraviolet resistance of the laminated sheet of the present invention can be further improved. Further, when an antistatic agent or the like is contained in the P1 layer and / or the P3 layer, an improvement in withstand voltage can be expected.
 また、本発明におけるP1層は、難燃性の観点から積層シートの表層に位置することが重要である。ここでP1層が表層に位置するとは、本発明の積層シートの一方の最表層に、P1層が位置することを意味する。 Further, it is important that the P1 layer in the present invention is located on the surface layer of the laminated sheet from the viewpoint of flame retardancy. Here, the phrase “P1 layer is located on the surface layer” means that the P1 layer is located on one outermost layer of the laminated sheet of the present invention.
 本発明では、P1層と後述するP3層との間に、P2層を設けることが好ましい。ここでP2層とは、低結晶性軟質重合体、アクリル系接着剤、及びエチレン酢酸ビニル系共重合体からなる群より選ばれる1つを主たる構成成分とする層である。なおP2層について、低結晶性軟質重合体、アクリル系接着剤、及びエチレン酢酸ビニル系共重合体からなる群より選ばれる1つを主たる構成成分とするとは、該層の全成分100質量%において、低結晶性軟質重合体、アクリル系接着剤、及びエチレン酢酸ビニル系共重合体からなる群より選ばれる1つを50質量%を超えて100質量%以下含有していることを意味する。 In the present invention, it is preferable to provide a P2 layer between the P1 layer and a P3 layer described later. Here, the P2 layer is a layer mainly composed of one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer. In addition, regarding the P2 layer, the main constituent component is one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer. It means that one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene vinyl acetate copolymer exceeds 50% by mass and is equal to or less than 100% by mass.
 P2層は、P1層とP3層の間にあることが好ましい。P2層が、P1層とP3層の間にあるとは、本発明の積層シートの表層であるP1層と、逆表層であるP3層の間、つまり、P2層が内層にあることを意味する。つまり、P2層は、P1層とP3層の間にありさえすれば、P1層やP3層と接してもいいし、これらと接しない配置であっても構わない。例えばP2層は、P1層/P2層/P3層と、P1層及びP3層と接していても構わないし、P1層/P2層/P5層/P2層/P3層など、他の層と接していても構わない。 The P2 layer is preferably between the P1 layer and the P3 layer. That the P2 layer is between the P1 layer and the P3 layer means that the P1 layer that is the surface layer of the laminated sheet of the present invention and the P3 layer that is the reverse surface layer, that is, the P2 layer is in the inner layer. . That is, as long as the P2 layer is between the P1 layer and the P3 layer, the P2 layer may be in contact with the P1 layer or the P3 layer, or may be disposed so as not to contact these. For example, the P2 layer may be in contact with the P1 layer / P2 layer / P3 layer, the P1 layer and the P3 layer, or may be in contact with other layers such as the P1 layer / P2 layer / P5 layer / P2 layer / P3 layer. It doesn't matter.
 また、P2層は、P1層とP3層の両層に接着する機能を有することが好ましい。なおP2層の主たる構成成分の一つである低結晶性軟質重合体としては、例えば、酸変性ポリオレフィン、不飽和ポリオレフィンなどを挙げることができる。またP2層の主たる構成成分の一つであるアクリル系接着剤とはアクリル酸エステルおよびメタアクリル酸エステルを原料として用いるものをさし、アクリル系接着剤としては、エチレン-アクリル酸エステル-無水マレイン酸3元共重合体などを挙げることができる。中でもP1層とP3層の両層に接着するという観点から、P2層は酸変性ポリオレフィンを主たる構成成分とすることが好ましい。ここで酸変性ポリオレフィンとしては、例えば市販品では三井化学(株)社製“アドマー”や三菱化学(株)社製の“モディック”が挙げられる。 The P2 layer preferably has a function of adhering to both the P1 layer and the P3 layer. Examples of the low crystalline soft polymer that is one of the main components of the P2 layer include acid-modified polyolefins and unsaturated polyolefins. The acrylic adhesive, which is one of the main constituents of the P2 layer, refers to those using acrylic ester and methacrylic ester as raw materials, and the acrylic adhesive is ethylene-acrylic ester-maleic anhydride. An acid terpolymer can be used. Among these, from the viewpoint of adhering to both the P1 layer and the P3 layer, the P2 layer is preferably made of acid-modified polyolefin as a main constituent. Examples of the acid-modified polyolefin include “Admer” manufactured by Mitsui Chemicals, Inc. and “Modic” manufactured by Mitsubishi Chemical Corporation as commercially available products.
 酸変性ポリオレフィンとは、酸化合物とポリオレフィンの共重合体である(ただし、原料として、アクリル酸エステルおよびメタアクリル酸エステルが用いられているものは除く)。酸化合物は、本発明の目的を著しく逸脱しない限り特に限定されないが、好ましくはカルボキシル基を少なくとも1以上有する、飽和又は不飽和のカルボン酸及び無水カルボン酸である。より好ましくはカルボキシル基を2以上有するカルボン酸及び無水カルボン酸である。具体的には、例えばマレイン酸、フマル酸、メサコン酸、シトラコン酸、イタコン酸、アコニット酸、クロトン酸、コハク酸、シュウ酸、マロン酸、リンゴ酸、チオマリン酸、酒石酸、アジピン酸、クエン酸、ピメリン酸、スベリン酸、アゼライン酸、及びセバシン酸等のカルボン酸、ならびに、無水マレイン酸、無水イタコン酸、無水シトラコン酸、及び無水コハク酸等の無水カルボン酸が挙げられる。好ましくはマレイン酸及び無水マレイン酸であり、特に好ましくは無水マレイン酸である。ポリオレフィンとしては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、ポリシクロオレフィン、ポリヘキセン、ポリオクテン、ポリデセン、ポリドデセン等が挙げられこの中でも加工が容易で比較的安価であることから各種プロピレン系重合体を用いることが好ましい。例えば、プロピレン単独重合体(ポリプロピレンホモポリマー)、エチレン及びプロピレンの共重合体、プロピレンとその他のコモノマー、例えばブテン-1、ペンテン-1、ヘキセン-1、ヘプテン-1、オクテン-1、シクロペンテン、シクロヘキセン、及びノルボルネンなどの炭素数2以上のα-オレフィンコモノマーとの共重合体、もしくはこれらコモノマーの2種類以上の共重合体を用いることができる。α-オレフィンコモノマーとして好ましくは炭素数2~6のα-オレフィンコモノマーである。ランダム共重合体であってもブロック共重合体であってもよい。 The acid-modified polyolefin is a copolymer of an acid compound and a polyolefin (excluding those in which acrylic acid ester and methacrylic acid ester are used as raw materials). The acid compound is not particularly limited as long as it does not significantly depart from the object of the present invention, but is preferably a saturated or unsaturated carboxylic acid and carboxylic anhydride having at least one carboxyl group. More preferred are carboxylic acids and carboxylic anhydrides having two or more carboxyl groups. Specifically, for example, maleic acid, fumaric acid, mesaconic acid, citraconic acid, itaconic acid, aconitic acid, crotonic acid, succinic acid, oxalic acid, malonic acid, malic acid, thiomarinic acid, tartaric acid, adipic acid, citric acid, Examples include carboxylic acids such as pimelic acid, suberic acid, azelaic acid, and sebacic acid, and carboxylic anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, and succinic anhydride. Maleic acid and maleic anhydride are preferable, and maleic anhydride is particularly preferable. Examples of polyolefins include polyethylene, polypropylene, polybutene, polymethylpentene, polycycloolefin, polyhexene, polyoctene, polydecene, and polydodecene. Among these, various propylene polymers are used because they are easy to process and relatively inexpensive. Is preferred. For example, propylene homopolymer (polypropylene homopolymer), copolymer of ethylene and propylene, propylene and other comonomers such as butene-1, pentene-1, hexene-1, heptene-1, octene-1, cyclopentene, cyclohexene , And a copolymer with an α-olefin comonomer having 2 or more carbon atoms such as norbornene, or two or more kinds of copolymers of these comonomers can be used. The α-olefin comonomer is preferably an α-olefin comonomer having 2 to 6 carbon atoms. It may be a random copolymer or a block copolymer.
 また、P2層は、ポリオレフィン系エラストマーを含有することが好ましい。ポリオレフィン系エラストマーとは、一般的にポリプロピレンにエチレン-プロピレンゴムを微分散させたもの、またはポリプロピレンに他のα-オレフィンを共重合させたものなどをいう。これらポリオレフィン系エラストマーは、P2層の全成分100質量%に対して、0.1質量%以上20質量%以下の割合で含有されることが好ましい。ポリオレフィン系エラストマーを含むことにより、P2層に粘着性を付与することができ、P1層とP2層との密着性及びP3層とP2層との密着性が向上する。P2層中のポリオレフィン系エラストマーの含有量は、好ましくは10質量%以上20質量%以下である。ポリオレフィン系エラストマーは市販品でもよく、例えば三菱化学(株)社製“サーモラン”、“ゼラス”、住友化学(株)社製“エクセレン”、“タフセレン”、“エスプレン”、クラレ製“ハイブラー”、“セプトン”、三井化学(株)社製“ノティオ”などが好ましく挙げられる。 The P2 layer preferably contains a polyolefin-based elastomer. The polyolefin-based elastomer generally refers to one obtained by finely dispersing ethylene-propylene rubber in polypropylene or one obtained by copolymerizing polypropylene with another α-olefin. These polyolefin-based elastomers are preferably contained in a proportion of 0.1% by mass or more and 20% by mass or less with respect to 100% by mass of all components of the P2 layer. By including the polyolefin-based elastomer, it is possible to impart adhesiveness to the P2 layer, and the adhesion between the P1 layer and the P2 layer and the adhesion between the P3 layer and the P2 layer are improved. The content of the polyolefin elastomer in the P2 layer is preferably 10% by mass or more and 20% by mass or less. The polyolefin-based elastomer may be a commercially available product, for example, “Thermolan”, “Zeras” manufactured by Mitsubishi Chemical Corporation, “Excellen”, “Tough Selenium”, “Esplen”, “Hibler” manufactured by Kuraray, Preferred examples include “Septon” and “Notio” manufactured by Mitsui Chemicals.
 本発明におけるP3層は、オレフィン系樹脂を主たる構成成分とする。本発明におけるポリオレフィン系樹脂とは、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、ポリシクロオレフィン、ポリヘキセン、ポリオクテン、ポリデセン、ポリドデセン等が挙げられる。この中でも加工が容易で比較的安価であることなどから、P3層のオレフィン系樹脂としては、ポリエチレン、ポリプロピレンであることが好ましい。これらオレフィン系樹脂は、混合および他のオレフィン化合物を共重合しても良く、例えばエチレン-プロピレンコポリマー、エチレン-プロピレン-ブテンコポリマーとすると樹脂の融点を低下させることができる。 The P3 layer in the present invention is mainly composed of an olefin resin. Examples of the polyolefin resin in the present invention include polyethylene, polypropylene, polybutene, polymethylpentene, polycycloolefin, polyhexene, polyoctene, polydecene, and polydodecene. Among these, polyethylene and polypropylene are preferable as the olefin resin of the P3 layer because it is easy to process and relatively inexpensive. These olefin-based resins may be mixed and copolymerized with other olefin compounds. For example, when an ethylene-propylene copolymer or an ethylene-propylene-butene copolymer is used, the melting point of the resin can be lowered.
 なおP3層について、オレフィン系樹脂を主たる構成成分とするとは、該層の全成分100質量%において、オレフィン系樹脂を50質量%を超えて100質量%以下含有していることを意味する。 In addition, about P3 layer, making an olefin resin into a main structural component means containing 100 mass% or less of olefin resin exceeding 50 mass% in 100 mass% of all the components of this layer.
 本発明におけるP3層中のオレフィン系樹脂の融点(以下、融解吸熱ピーク温度ともいう)は、120℃以上155℃以下であることが好ましい。P3層中のオレフィン系樹脂の融点が120℃未満であると、耐熱性に劣る可能性がある。一方、P3層中のオレフィン系樹脂の融点が155℃超であると、封止材との接着性が低くなることがある。 The melting point (hereinafter also referred to as melting endothermic peak temperature) of the olefin resin in the P3 layer in the present invention is preferably 120 ° C. or higher and 155 ° C. or lower. If the melting point of the olefin resin in the P3 layer is less than 120 ° C, the heat resistance may be inferior. On the other hand, if the melting point of the olefin resin in the P3 layer is higher than 155 ° C., the adhesiveness with the sealing material may be lowered.
 本発明では、積層シート全体の厚みをTa(μm)、P1層の厚みをT1(μm)、P3層の厚みをT3(μm)、P3層中の無機粒子の含有量をM(質量%)とするときに、式(1)~(3)の全てを満たすことが重要である。
0.05≦M/T3≦0.5・・・(1)
200≦Ta≦500・・・(2)
0.3≦T1/Ta≦0.5・・・(3)
 式(1)~(3)を同時に満たすことによって、耐久性と層間密着性、水蒸気バリア性、電気特性を兼ね備えた積層シートとすることができる。
In the present invention, the thickness of the entire laminated sheet is Ta (μm), the thickness of the P1 layer is T1 (μm), the thickness of the P3 layer is T3 (μm), and the content of inorganic particles in the P3 layer is M (mass%). It is important to satisfy all of the expressions (1) to (3).
0.05 ≦ M / T3 ≦ 0.5 (1)
200 ≦ Ta ≦ 500 (2)
0.3 ≦ T1 / Ta ≦ 0.5 (3)
By satisfying the expressions (1) to (3) at the same time, a laminated sheet having durability, interlayer adhesion, water vapor barrier properties, and electrical characteristics can be obtained.
 なお、本発明の積層シートが、P1層やP3層を複数層有する場合には、表層のP1層を用いてT1を求め、逆表層のP3層を用いてT3、Mを求めて、これが式(1)~(3)を同時に満たすことが重要である。 In addition, when the laminated sheet of the present invention has a plurality of P1 layers and P3 layers, T1 is obtained using the P1 layer of the surface layer, T3 and M are obtained using the P3 layer of the reverse surface layer, and this is expressed by the formula It is important to satisfy (1) to (3) simultaneously.
 式(1)は、厚みあたりの無機粒子の量を数式化したものであり、無機粒子の効果を発現させるためには、厚みが厚いほど無機粒子の量を増やすことが重要であることを示す。 Formula (1) formulates the amount of inorganic particles per thickness, and shows that it is important to increase the amount of inorganic particles as the thickness increases in order to develop the effect of inorganic particles. .
 本発明者らは、従来の知見から、熱劣化に伴う色調の変化は、主として無機粒子の濃度に依存すると考えた。 From the conventional knowledge, the present inventors considered that the change in color tone due to thermal deterioration mainly depends on the concentration of inorganic particles.
 しかし、本発明者らが検討を進めたところ、熱劣化に伴う色調の変化は、無機粒子の濃度にのみ単純に依存するものではなく、P1層の厚みにも依存することが見出された。本発明者らは、この理由として、劣化により生じる色調の変化量(可視光の吸収量)は厚み方向の積算で得られるため、厚みが大きいほど色調変化が大きくなるものと推測し、色調変化を効率的に抑制するために、厚みに応じて無機粒子の量を制御することを着想した。 However, as a result of investigations by the present inventors, it has been found that the change in color tone due to thermal degradation does not simply depend on the concentration of inorganic particles but also on the thickness of the P1 layer. . The reason for this is that the amount of change in color tone (absorption amount of visible light) caused by deterioration is obtained by integration in the thickness direction. Therefore, it is assumed that the greater the thickness, the greater the change in color tone. In order to efficiently suppress the above, the inventors conceived of controlling the amount of inorganic particles according to the thickness.
 それゆえ、式(1)は、無機粒子の濃度と厚みを用いて表現されており、本発明においては、当該式(1)の関係が満たされることが重要となる。 Therefore, the formula (1) is expressed using the concentration and thickness of the inorganic particles, and in the present invention, it is important that the relationship of the formula (1) is satisfied.
 式(1)において、M/T3が0.05より小さいと、P3層が劣化により黄変しやすく問題である。M/T3が0.5より大きいと、EVAとの密着性が低下する問題がある。 In the formula (1), if M / T3 is smaller than 0.05, the P3 layer tends to yellow due to deterioration, which is a problem. When M / T3 is larger than 0.5, there is a problem that adhesion with EVA is lowered.
 P3層は無機粒子を含有することが重要であり、この無機粒子はその目的に応じて必要な機能をシートに付与するために用いられる。P3層中の無機粒子としては、前述のP1層中の無機粒子として挙げた無機粒子と同様のものを用いることができる。そして本発明においては、屋外で使用されることが多いことを鑑みれば、P3層中の無機粒子は、紫外線吸収能を有する酸化チタン、酸化亜鉛、酸化セリウム、などの金属酸化物が好ましい。紫外線吸収能を有する無機粒子を用いた場合に、無機粒子による耐紫外線性を活かして、長期に渡ってシートの劣化による着色を低減するという効果を発揮することができる点で好ましい。さらには、高い反射特性も付与できるという点で、P3層中の無機粒子として酸化チタンを用いるのがより好ましく、耐紫外線性がより高いという点でルチル型酸化チタンを用いるのがさらに好ましい。つまり、本発明では、P3層が酸化チタンを含有することが特に好ましく、中でもルチル型の酸化チタンを含有することが好ましい。 It is important that the P3 layer contains inorganic particles, and these inorganic particles are used for imparting necessary functions to the sheet depending on the purpose. As the inorganic particles in the P3 layer, the same inorganic particles as those mentioned above as the inorganic particles in the P1 layer can be used. In the present invention, in view of the fact that they are often used outdoors, the inorganic particles in the P3 layer are preferably metal oxides such as titanium oxide, zinc oxide, and cerium oxide having ultraviolet absorbing ability. When inorganic particles having ultraviolet absorbing ability are used, it is preferable in that the effect of reducing coloring due to deterioration of the sheet over a long period of time can be exhibited by utilizing the ultraviolet resistance by the inorganic particles. Furthermore, it is more preferable to use titanium oxide as inorganic particles in the P3 layer in that high reflection characteristics can be imparted, and it is more preferable to use rutile type titanium oxide in terms of higher ultraviolet resistance. That is, in the present invention, the P3 layer particularly preferably contains titanium oxide, and particularly preferably contains rutile titanium oxide.
 式(2)は、積層シート全体の厚みの範囲を表し、Taが200μmよりも小さいと、耐久性や難燃性、水蒸気バリアが劣る。Taが500μmよりも大きいと、加工性が悪く搬送がしにくいため工程適性が悪いという問題や重量が重くなる問題がある。さらに、本発明の積層シートを太陽電池バックシートとして用いる場合、軽量化・省スペース化が求められる太陽電池モジュールが厚くなりすぎる問題がある。 Formula (2) represents the thickness range of the entire laminated sheet. When Ta is smaller than 200 μm, durability, flame retardancy, and water vapor barrier are inferior. If Ta is larger than 500 μm, the processability is poor and the conveyance is difficult, so that there are problems such as poor process suitability and heavy weight. Furthermore, when using the laminated sheet of this invention as a solar cell backsheet, there exists a problem that the solar cell module in which weight reduction and space saving are calculated | required becomes too thick.
 式(3)は、全体厚みに対する、P1層の厚み割合を示したものであり、耐久性はポリアミド系樹脂の影響が大きく、T1/Taの値が0.3より小さいと、耐久性が低下する問題がある。T1/Taの値が大きいほど耐久性は向上するが、ポリアミド系樹脂は吸湿性が高いため、電気特性に悪影響を与え、T1/Taの値が0.5を超えると電気特性が問題となる。 Formula (3) shows the thickness ratio of the P1 layer with respect to the total thickness, and the durability is greatly affected by the polyamide-based resin. If the value of T1 / Ta is smaller than 0.3, the durability is lowered. There is a problem to do. The greater the T1 / Ta value, the better the durability. However, the polyamide-based resin has a high hygroscopic property, which adversely affects the electrical characteristics. If the T1 / Ta value exceeds 0.5, the electrical characteristics become a problem. .
 P2層の厚みT2(μm)は、15~50μmであることが好ましい。なお、P2層が複数存在する場合には、それぞれのP2層の厚みT2(μm)が15~50μmであることが好ましい。T2が15μmより小さいと、P1層やP3層との密着性が低下し、層間剥離が起こりやすく好ましくない。T2が50μmより大きいと、難燃性の悪化が起こりやすい。T2は、より好ましくは20μm以上40μm以下である。ここで、層間剥離は、P1層とP2層の間およびP2層とP3層の間など界面剥離するものをいう。 The thickness T2 (μm) of the P2 layer is preferably 15 to 50 μm. When there are a plurality of P2 layers, the thickness T2 (μm) of each P2 layer is preferably 15 to 50 μm. When T2 is smaller than 15 μm, the adhesion with the P1 layer and the P3 layer is lowered, and delamination is likely to occur. When T2 is larger than 50 μm, the flame retardancy tends to deteriorate. T2 is more preferably 20 μm or more and 40 μm or less. Here, delamination refers to what peels at the interface, such as between the P1 layer and the P2 layer and between the P2 layer and the P3 layer.
 本発明における積層シートの積層構成は、少なくともP1層が表層に位置し、P1層とは逆表層にP3層が位置した構成である。ここで、P1層とは逆表層にP3層が位置するとは、P1層が積層シートの一方の最表層に位置するので、他方の最表層にP3層が位置することを意味する。このような観点から、本発明の積層シートの層構成(層の順序)は、P1層/P2層/P3層が好ましい。さらには、本発明の積層シートは、例えば、(i)4種五層構成である、P1層/P2層/P5層/P2層/P3層のように、P1層とP3層の間にその他の機能を有する層が含まれていても構わない。さらに本発明の積層シートは、(ii)P1層/P2層/P3層/P2層/P1層/P2層/P3層、とした層構成など、P2層を介してP1層とP3層が複数積層される多層積層構成なども好ましい態様である。 The laminated structure of the laminated sheet in the present invention is a structure in which at least the P1 layer is located on the surface layer and the P3 layer is located on the opposite surface layer to the P1 layer. Here, the P3 layer being located on the reverse surface layer of the P1 layer means that the P1 layer is located on one outermost layer of the laminated sheet, and therefore the P3 layer is located on the other outermost layer. From such a viewpoint, the layer configuration (layer order) of the laminated sheet of the present invention is preferably P1 layer / P2 layer / P3 layer. Furthermore, the laminated sheet of the present invention has other layers between the P1 layer and the P3 layer, such as (i) P1 layer / P2 layer / P5 layer / P2 layer / P3 layer, which has a four-layer five-layer configuration. A layer having the above function may be included. Further, the laminated sheet of the present invention has (ii) a plurality of P1 layers and P3 layers through the P2 layer, such as (1) P1 layer / P2 layer / P3 layer / P2 layer / P1 layer / P2 layer / P3 layer. A multi-layered laminated structure is also a preferred embodiment.
 また、本発明の積層シートは、他のフィルム等と積層した積層体することができる。このような積層体においても、P1層はいずれか一方の表層に設けられる積層構成を取ることが好ましい。他のフィルムの例として、機械的強度を高めるためのポリエステル層、帯電防止層、他素材との密着層、耐紫外線性をさらに向上させるための耐紫外線層、難燃性付与のための難燃層、耐衝撃性や耐擦過性を高めるためのハードコート層など、用途に応じて、任意に選択して用いることができる。本発明の積層シートを、他のフィルム等と積層した積層体とした場合の具体例として、本発明の積層シートを太陽電池バックシートとして用いる場合は、他のシート材料や、発電素子を埋包している封止材(例えばエチレンビニルアセテート)との密着性を更に向上させるため易接着層、耐紫外線層、難燃層の他、絶縁性の指標である部分放電現象の発生する電圧を向上させる導電層を形成させることなどが挙げられる。 Also, the laminated sheet of the present invention can be a laminated body laminated with another film or the like. Also in such a laminated body, it is preferable that the P1 layer has a laminated structure provided on any one of the surface layers. Examples of other films include polyester layers for increasing mechanical strength, antistatic layers, adhesion layers with other materials, UV resistant layers for further improving UV resistance, and flame resistance for imparting flame resistance A layer, a hard coat layer for improving impact resistance and scratch resistance, and the like can be arbitrarily selected and used depending on applications. As a specific example when the laminated sheet of the present invention is a laminated body laminated with another film or the like, when the laminated sheet of the present invention is used as a solar battery backsheet, other sheet materials or power generation elements are embedded. In order to further improve the adhesion to the sealing material (for example, ethylene vinyl acetate), in addition to the easy adhesion layer, UV-resistant layer, flame retardant layer, the voltage at which partial discharge phenomenon, which is an index of insulation, is generated is improved. For example, a conductive layer to be formed may be formed.
 次に、本発明の積層シートの製造方法について例を挙げて説明する。本発明の積層シートにおいてP1層、P2層、P3層を積層する方法としては、例えば、P1層用のポリアミド系樹脂を主たる構成成分とする原料、P2層用の低結晶性軟質重合体、アクリル系接着剤、及びエチレン酢酸ビニル系共重合体からなる群より選ばれる1つを主たる構成成分とする原料、およびP3層用のオレフィン系樹脂を主たる構成成分とする原料を、それぞれ別の押出機に供給し、各々溶融後にP1層、P2層、P3層をこの順に合流させて積層し、Tダイからシート状に押し出す工程を含んでシートに加工する方法(共押出法)、単膜で作製したシートに被覆層原料を押出機に投入して溶融押出して口金から押出しながらラミネートする方法(溶融ラミネート法)、各フィルムをそれぞれ別々に作製し、加熱されたロール群などにより熱圧着する方法(熱ラミネート法)、接着剤を介して貼り合わせる方法(接着法)、その他、溶媒に溶解させたものを塗布・乾燥する方法(コーティング法)、およびこれらを組み合わせた方法等を使用することができる。これらのうち製造工程が短く、かつ層間の接着性が良好であるという点で共押出法が好ましい。以下、共押出法での製法を詳述する(ただし、以下において詳述される製法は一例である)。 Next, an example is given and demonstrated about the manufacturing method of the lamination sheet of the present invention. Examples of the method for laminating the P1, P2, and P3 layers in the laminated sheet of the present invention include, for example, a raw material mainly comprising a polyamide-based resin for the P1 layer, a low crystalline soft polymer for the P2 layer, acrylic Extruders each comprising a raw material mainly comprising one selected from the group consisting of an adhesive based on ethylene and an ethylene vinyl acetate copolymer and a raw material mainly comprising an olefin resin for the P3 layer , P1 layer, P2 layer, P3 layer are joined together in this order after being melted, laminated, and processed into a sheet including the process of extruding into a sheet form from a T die (coextrusion method), produced as a single film A method in which the raw material of the coating layer is put into an extruder and melt extruded and laminated while extruding from the die (melt laminating method), and each film is produced separately and heated. A method of thermocompression bonding (thermal laminating method), a method of bonding via an adhesive (adhesion method), a method of applying and drying a solution dissolved in a solvent (coating method), and a method of combining these Etc. can be used. Of these, the coextrusion method is preferred in that the production process is short and the adhesion between the layers is good. Hereinafter, the manufacturing method by the co-extrusion method will be described in detail (however, the manufacturing method described in detail below is an example).
 本発明の積層シートを共押出法で作製する場合、まず乾燥したP1層用のポリアミド系樹脂を主たる構成成分とする原料、P2層用の低結晶性軟質重合体、アクリル系接着剤、及びエチレン酢酸ビニル系共重合体からなる群より選ばれる1つを主たる構成成分とする原料、およびP3層用のオレフィン系樹脂を主たる構成成分とする原料を、窒素気流下で、P1層は240℃以上300℃以下、P2層およびP3層は180℃以上250℃以下に加熱された3台の押出機にそれぞれ供給し溶融する。次いで、マルチマニホールドダイやフィードブロックやスタティックミキサー、ピノール等を用いて、P1層、P2層およびP3層をこの順に合流、積層させて、Tダイからシート状に共押出する。各層の溶融粘度差が大きい場合は、積層ムラ抑制の観点からマルチマニホールドダイを用いることが好ましい。 When the laminated sheet of the present invention is produced by a coextrusion method, first, a raw material mainly comprising a dried polyamide resin for the P1 layer, a low crystalline soft polymer for the P2 layer, an acrylic adhesive, and ethylene A raw material mainly composed of one selected from the group consisting of vinyl acetate copolymers and a raw material mainly composed of an olefin resin for the P3 layer under a nitrogen stream, the P1 layer is 240 ° C. or higher. The P2 layer and the P3 layer at 300 ° C. or lower are respectively supplied to three extruders heated to 180 ° C. or higher and 250 ° C. or lower and melted. Next, using a multi-manifold die, a feed block, a static mixer, a pinol, etc., the P1 layer, the P2 layer and the P3 layer are joined and laminated in this order, and are coextruded from the T die into a sheet. When the difference in melt viscosity of each layer is large, it is preferable to use a multi-manifold die from the viewpoint of suppressing lamination unevenness.
 前記の方法によってTダイから吐出した積層シートを、キャスティングドラム等の冷却体上に押出、冷却固化することにより、本発明の積層シートを得ることができる。 The laminated sheet of the present invention can be obtained by extruding the laminated sheet discharged from the T die by the above-described method onto a cooling body such as a casting drum and cooling and solidifying it.
 前記の方法で得られた本発明の積層シートを本発明の効果が損なわれない範囲で、必要に応じて熱処理やエージングなどの加工処理を加えてもよい。熱処理することで、本発明の積層シートの熱寸法安定性を向上することができる。また、前記の方法で得られた本発明の積層シートの密着性を向上させるために、コロナ処理、プラズマ処理を実施してもよい。 The laminated sheet of the present invention obtained by the above-described method may be subjected to processing such as heat treatment or aging as necessary within the range where the effects of the present invention are not impaired. By heat-treating, the thermal dimensional stability of the laminated sheet of the present invention can be improved. Moreover, in order to improve the adhesiveness of the laminated sheet of the present invention obtained by the above method, corona treatment or plasma treatment may be performed.
 本発明の太陽電池バックシートは、本発明の積層シートからなる。つまり本発明の積層シートは、太陽電池バックシートとして好適に用いることができる。本発明の太陽電池は、本発明の太陽電池バックシートを用いたことを特徴とする。本発明の積層シートを太陽電池中に用いることで、従来の太陽電池と比べて耐久性を高めたり、薄くすることが可能となる。本発明の太陽電池の構成例を図1に示す。図1では、電気を取り出すリード線(図1には示していない)を接続した発電素子3を、EVA系樹脂などの透明な封止材2で封止したものに、ガラスなどの透明基板4と、本発明の積層シートを太陽電池用バックシート1として貼り合わせて構成されるが、本発明の太陽電池の構成例はこれに限定されず、任意の構成に用いることができる。なお、図1では本発明の積層シート単体での例を示したが、その他必要とされる要求特性に応じて本発明の積層シートと他のフィルムとの複合シートを用いることも可能である。 The solar cell backsheet of the present invention is composed of the laminated sheet of the present invention. That is, the laminated sheet of the present invention can be suitably used as a solar battery back sheet. The solar cell of the present invention is characterized by using the solar cell backsheet of the present invention. By using the laminated sheet of the present invention in a solar cell, it becomes possible to increase the durability or reduce the thickness as compared with a conventional solar cell. A structural example of the solar cell of the present invention is shown in FIG. In FIG. 1, a power generating element 3 connected with a lead wire (not shown in FIG. 1) for extracting electricity is sealed with a transparent sealing material 2 such as EVA resin, and a transparent substrate 4 such as glass. And the laminated sheet of this invention is bonded together as the solar cell backsheet 1, but the structural example of the solar cell of this invention is not limited to this, It can use for arbitrary structures. In addition, although the example by the lamination sheet single-piece | unit of this invention was shown in FIG. 1, it is also possible to use the composite sheet of the lamination sheet of this invention and another film according to the other required required characteristic.
 また、本発明の太陽電池部材とは、太陽電池に用いられ、かつ、本発明の積層シートを有する部材である。また、上述の太陽電池バックシートも本発明の太陽電池部材に含まれる。本発明の積層シートは、上述のとおり、太陽電池バックシートに適した特性を持つので、本発明の積層シートを用いてなる太陽電池部材は、太陽電池用途に好適に供せられる。 Further, the solar cell member of the present invention is a member used for a solar cell and having the laminated sheet of the present invention. Moreover, the above-mentioned solar cell backsheet is also included in the solar cell member of the present invention. Since the laminated sheet of the present invention has characteristics suitable for the solar battery backsheet as described above, the solar cell member using the laminated sheet of the present invention is suitably used for solar cell applications.
 本発明の積層シートにおいて、他のフィルム等と積層する方法としては、例えば、共押出してシート状に加工する方法(共押出法)、単膜で作製したシートに被覆層原料を押出機に投入して溶融押出して口金から押出しながらラミネートする方法(溶融ラミネート法)、各フィルムをそれぞれ別々に作製し、加熱されたロール群などにより熱圧着する方法(熱ラミネート法)、接着剤を介して貼り合わせる方法(接着法)、その他、溶媒に溶解させたものを塗布・乾燥する方法(コーティング法)、およびこれらを組み合わせた方法等を使用することができる。 In the laminated sheet of the present invention, as a method of laminating with other films, etc., for example, a method of co-extrusion and processing into a sheet (co-extrusion method), a coating layer raw material is put into an extruder into a sheet made of a single film Then, melt extrusion and laminating while extruding from the die (melt laminating method), making each film separately, thermocompression bonding with heated rolls etc. (thermal laminating method), pasting through adhesive A method of bonding (adhesion method), a method of applying and drying a solution dissolved in a solvent (coating method), a method of combining these, and the like can be used.
 本発明の太陽電池において、上述の太陽電池バックシート1は、発電素子を封止した封止材2の背面に設置される。ここで、本発明の太陽電池バックシートが非対称の構成であり、P3層が封止材2側に位置するように配置されるのが、封止材との密着性をより高くすることができるという点で好ましい。また、封止材2と反対側に本発明の積層シートのP1層が位置するように配置される構成となるため、地面からの照り返しの紫外線などに対する耐性を高めることが可能となり、高耐久の太陽電池としたり、厚さを薄くすることができる。 In the solar cell of the present invention, the above-described solar cell backsheet 1 is installed on the back surface of the sealing material 2 in which the power generating element is sealed. Here, the solar cell backsheet of the present invention has an asymmetric configuration, and the P3 layer is disposed so as to be positioned on the sealing material 2 side, so that the adhesion with the sealing material can be further increased. This is preferable. Moreover, since it becomes the structure arrange | positioned so that P1 layer of the lamination sheet of this invention may be located in the opposite side to the sealing material 2, it becomes possible to improve the tolerance with respect to the ultraviolet rays etc. of the reflection from the ground, and high durability. It can be a solar cell or the thickness can be reduced.
 また、本発明の積層シートは、積層シートと封止材を有してなる太陽電池の部材として好適に用いることができる。 Moreover, the laminated sheet of the present invention can be suitably used as a member of a solar cell comprising a laminated sheet and a sealing material.
 したがって、本発明の積層シートと封止材を有してなる太陽電池部材は、太陽電池用途に特に好適に供せられる。特に、上述のとおり、該封止材が該積層シートのP3層の表面側に位置することが好ましい。 Therefore, the solar cell member having the laminated sheet and the sealing material of the present invention is particularly suitably used for solar cell applications. In particular, as described above, the sealing material is preferably located on the surface side of the P3 layer of the laminated sheet.
 さらに、本発明では、封止材を積層シートとあらかじめ積層しておくことが好ましく、特に封止材も同時に共押出してシート状に加工する方法が好ましい。 Furthermore, in the present invention, it is preferable to previously laminate the sealing material with the laminated sheet, and in particular, a method in which the sealing material is simultaneously coextruded and processed into a sheet shape is preferable.
 発電素子3は、太陽光の光エネルギーを電気エネルギーに変換するものであり、結晶シリコン系、多結晶シリコン系、微結晶シリコン系、アモルファスシリコン系、銅インジウムセレナイド系、化合物半導体系、色素増感系など、目的に応じて任意の素子を、所望する電圧あるいは電流に応じて複数個を直列または並列に接続して使用することができる。透光性を有する透明基板4は太陽電池の最表層に位置するため、高透過率のほかに、高耐候性、高耐汚染性、高機械強度特性を有する透明材料が使用される。本発明の太陽電池において、透光性を有する透明基板4は上記特性と満たせばいずれの材質を用いることができ、その例としてはガラス、四フッ化エチレン-エチレン共重合体(ETFE)、ポリフッ化ビニル樹脂(PVF)、ポリフッ化ビニリデン樹脂(PVDF)、ポリ四フッ化エチレン樹脂(TFE)、四フッ化エチレン-六フッ化プロピレン共重合体(FEP)、ポリ三フッ化塩化エチレン樹脂(CTFE)、ポリフッ化ビニリデン樹脂などのフッ素系樹脂、オレフィン系樹脂、アクリル系樹脂、およびこれらの混合物などが好ましく挙げられる。ガラスの場合、強化されているものを用いるのがより好ましい。また樹脂製の透光基材を用いる場合は、機械的強度の観点から、上記樹脂を一軸または二軸に延伸したものも好ましく用いられる。 The power generating element 3 converts light energy of sunlight into electric energy, and is based on crystalline silicon, polycrystalline silicon, microcrystalline silicon, amorphous silicon, copper indium selenide, compound semiconductor, dye enhancement Arbitrary elements such as a sensitive system can be used in series or in parallel according to the desired voltage or current depending on the purpose. Since the transparent substrate 4 having translucency is located on the outermost surface layer of the solar cell, a transparent material having high weather resistance, high contamination resistance, and high mechanical strength characteristics in addition to high transmittance is used. In the solar cell of the present invention, the transparent substrate 4 having translucency can be made of any material as long as the above characteristics are satisfied. Examples thereof include glass, ethylene tetrafluoride-ethylene copolymer (ETFE), polyfluoride. Vinyl fluoride resin (PVF), polyvinylidene fluoride resin (PVDF), polytetrafluoroethylene resin (TFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polytrifluoroethylene chloride resin (CTFE) ), Fluorinated resins such as polyvinylidene fluoride resin, olefinic resins, acrylic resins, and mixtures thereof. In the case of glass, it is more preferable to use a tempered glass. Moreover, when using the resin-made translucent base material, what extended | stretched the said resin uniaxially or biaxially from a viewpoint of mechanical strength is used preferably.
 また、これら基材には発電素子の封止材であるEVA系樹脂などとの接着性を付与するために、表面に、コロナ処理、プラズマ処理、オゾン処理、易接着処理を施すことも好ましく行われる。 In addition, in order to provide these substrates with adhesion to an EVA resin or the like that is a sealing material for power generation elements, it is preferable to subject the surface to corona treatment, plasma treatment, ozone treatment, and easy adhesion treatment. Is called.
 発電素子を封止するための封止材2は、発電素子の表面の凹凸を樹脂で被覆し固定し、外部環境から発電素子保護し、電気絶縁の目的の他、透光性を有する基材やバックシートと発電素子に接着するため、高透明性、高耐候性、高接着性、高耐熱性を有する材料が使用される。その例としては、エチレン-ビニルアセテート共重合体(EVA)、エチレン-メチルアクリレート共重合体(EMA)、エチレン-エチルアクリレート共重合体(EEA)樹脂、エチレン-メタクリル酸共重合体(EMAA)、アイオノマー樹脂、ポリビニルブチラール樹脂、およびこれらの混合物などが好ましく用いられる。 The sealing material 2 for sealing the power generating element covers the surface of the power generating element with resin and fixes it, protects the power generating element from the external environment, and has a light-transmitting base material for the purpose of electrical insulation. In addition, a material having high transparency, high weather resistance, high adhesion, and high heat resistance is used to adhere to the backsheet and the power generation element. Examples thereof include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA) resin, ethylene-methacrylic acid copolymer (EMAA), Ionomer resins, polyvinyl butyral resins, and mixtures thereof are preferably used.
 以上のように、本発明の積層シートを用いた太陽電池バックシートを太陽電池中に組み込むことにより、従来の太陽電池と比べて、高耐久および/または薄型の太陽電池とすることが可能となる。本発明の太陽電池は、太陽光発電システム、小型電子部品の電源など、屋外用途、屋内用途に限定されず各種用途に好適に用いることができる。 As described above, by incorporating the solar battery back sheet using the laminated sheet of the present invention into the solar battery, it becomes possible to obtain a highly durable and / or thin solar battery compared to the conventional solar battery. . The solar cell of the present invention can be suitably used for various applications without being limited to outdoor use and indoor use such as a solar power generation system and a power source for small electronic components.
 [特性の評価方法]
 (1)層厚みT1、T2、T3、Ta、積層比T1/Ta
 積層シートの層厚みT1、T2、T3、Taおよび積層比T1/Taを、下記(A1)~(A4)の手順にて求めた。なお、測定は10ヶ所場所を変えて測定し、その平均値をP1層の厚みT1(μm)、P2層の厚みT2(μm)、P3層の厚みT3(μm)、シート全体の厚みTa(μm)として、さらにここで得られたT1及びT3を用いて積層比T1/T3を求めた。
[Characteristic evaluation method]
(1) Layer thickness T1, T2, T3, Ta, lamination ratio T1 / Ta
The layer thicknesses T1, T2, T3, Ta and the lamination ratio T1 / Ta of the laminated sheet were determined by the following procedures (A1) to (A4). The measurement was performed at 10 different locations, and the average values were P1 layer thickness T1 (μm), P2 layer thickness T2 (μm), P3 layer thickness T3 (μm), and overall sheet thickness Ta ( μm), the stacking ratio T1 / T3 was further determined using T1 and T3 obtained here.
 (A1)ミクロトームを用いて、積層シート断面を厚み方向に潰すことなく、積層シート面方向に対して垂直に切断する。 (A1) Using a microtome, the laminate sheet is cut perpendicularly to the laminate sheet surface direction without crushing the laminate sheet section in the thickness direction.
 (A2)次いで切断した断面を、電子顕微鏡を用いて観察し、500倍に拡大観察した画像を得る。なお、観察場所は無作為に定めるものとするが、画像の上下方向が積層シートの厚み方向と、画像の左右方向が積層シートの面方向とそれぞれ平行になるようにする。なお、厚み方向全体が1枚の画像中に入りきらない場合は、厚み方向に観察位置をずらして観察し、複数の画像をあわせることによって厚み全体が確認できる画像を準備する。 (A2) Next, the cut section is observed using an electron microscope, and an image magnified 500 times is obtained. Although the observation location is determined at random, the vertical direction of the image is parallel to the thickness direction of the laminated sheet, and the horizontal direction of the image is parallel to the surface direction of the laminated sheet. When the entire thickness direction does not fit in one image, observation is performed by shifting the observation position in the thickness direction, and an image that can confirm the entire thickness is prepared by combining a plurality of images.
 (A3)前記(A2)で得られる画像中におけるP1層の厚みT1、P2層の厚みT2、P3層の厚みT3、シート全体の厚みTaを求めた。 (A3) The thickness T1 of the P1 layer, the thickness T2 of the P2 layer, the thickness T3 of the P3 layer, and the thickness Ta of the entire sheet were determined in the image obtained in (A2).
 (A4)T1をTaで除し、積層比T1/Taを算出した。 (A4) T1 was divided by Ta to obtain a stacking ratio T1 / Ta.
 (2)無機粒子の含有量(質量%)
 積層シートからP1層、P3層のそれぞれを削る、または剥がして、P1層およびP3層を分離し、それらについて、以下の方法で無機粒子の含有量を算出した。
(2) Content of inorganic particles (% by mass)
Each of the P1 layer and the P3 layer was scraped or peeled off from the laminated sheet to separate the P1 layer and the P3 layer, and the content of inorganic particles was calculated by the following method.
 削りだしたものの質量wa(g)を測定し、次いで、P1層はギ酸、P3層はオルト-ジクロロベンゼン(100℃)に溶解させ、遠心分離により不溶物のうち、無機粒子を分取した。得られた無機粒子をギ酸、オルト-ジクロロベンゼンにて洗浄、遠心分離した。なお、洗浄作業は、遠心分離後の洗浄液にエタノールを添加しても白濁しなくなるまで繰り返した。得られた無機粒子の質量wa’(g)を求め、下記式(4)から無機粒子の含有量を算出した。
無機粒子の含有量(質量%)Wa1=(wa’/wa)×100・・・(4)。
The mass wa (g) of the shaved material was measured, and then the P1 layer was dissolved in formic acid and the P3 layer was dissolved in ortho-dichlorobenzene (100 ° C.), and inorganic particles were separated from the insoluble materials by centrifugation. The obtained inorganic particles were washed with formic acid and ortho-dichlorobenzene and centrifuged. The washing operation was repeated until no white turbidity occurred even when ethanol was added to the washing solution after centrifugation. Mass wa ′ (g) of the obtained inorganic particles was obtained, and the content of the inorganic particles was calculated from the following formula (4).
Content (mass%) of inorganic particles Wa1 = (wa ′ / wa) × 100 (4).
 (3)封止材との密着性
 JIS K 6854(1994年版)に基づいて、EVAシート(封止材)とP3層の剥離強度から封止材の密着性を評価した。測定試験片は、厚さ3mmの半強化ガラス上に、サンビック(株)製の500μm厚のEVAシート、およびP3層の表面にコロナ処理(20W・分/m)を施した実施例または比較例の積層シートを、EVAシートとP3層が接触するように重ね、市販のガラスラミネーターを用いて真空引き後に135℃加熱条件下、29.4N/cm荷重で15分プレス処理をしたものを用いた。剥離強度試験の試験片の幅は10mmとし、2つの試験片を準備し、それぞれの試験片について場所を変えて3カ所測定し、得られた測定値の平均値を剥離強度の値とした。
(3) Adhesiveness with sealing material Based on JIS K 6854 (1994 edition), the adhesiveness of the sealing material was evaluated from the peel strength between the EVA sheet (sealing material) and the P3 layer. The measurement test piece is an example in which a 500 μm-thick EVA sheet manufactured by Sanvic Co., Ltd. on a semi-tempered glass with a thickness of 3 mm, and a corona treatment (20 W · min / m 2 ) on the surface of the P3 layer or comparison The laminated sheet of the example was stacked so that the EVA sheet and the P3 layer were in contact with each other, and after being evacuated using a commercially available glass laminator, pressed at 135 ° C. under a heating condition of 29.4 N / cm 2 for 15 minutes. Using. The width of the test piece for the peel strength test was 10 mm, two test pieces were prepared, and each test piece was measured at three locations with different locations, and the average value of the obtained measured values was taken as the peel strength value.
 つまり、十分な大きさ(例えば、幅が100mm以上、長さが100mm以上)を持つ測定試験片を2つ準備した。そして、各々の測定試験片から、幅が10mm(長さは100mm以上)の大きさの試験片を3つずつ切り出した。切り出された6つの試験片の剥離強度を測定し、得られた測定値の平均値を、当該シートの剥離強度とした。 That is, two measurement specimens having a sufficient size (for example, a width of 100 mm or more and a length of 100 mm or more) were prepared. Then, three test pieces each having a width of 10 mm (length is 100 mm or more) were cut out from each measurement test piece. The peel strength of the six cut specimens was measured, and the average value of the measured values obtained was taken as the peel strength of the sheet.
 得られた剥離強度から封止材の密着性を以下のように判定した。
剥離強度が50N/10mm以上の場合:S
剥離強度が40N/10mm以上50N/10mm未満の場合:A
剥離強度が30N/10mm以上40N/10mm未満の場合:B
剥離強度が20N/10mm以上30N/10mm未満の場合:C
剥離強度が20N/10mm未満の場合:D
S~Cが合格であり、その中でもSが最も優れている。
From the obtained peel strength, the adhesiveness of the sealing material was determined as follows.
When peel strength is 50 N / 10 mm or more: S
When the peel strength is 40 N / 10 mm or more and less than 50 N / 10 mm: A
When peel strength is 30N / 10mm or more and less than 40N / 10mm: B
When the peel strength is 20 N / 10 mm or more and less than 30 N / 10 mm: C
When peel strength is less than 20 N / 10 mm: D
S to C pass, and S is the best among them.
 (4)層間密着性
 積層シートの層間剥離強度から密着性を評価した。ここで、層間剥離強度はJIS K6854-3(1999年版)に則って測定されたT形で剥離した際の強度を用いた。ここで、層間とはP1層とP2層の間およびP2層とP3層の間など界面剥離できる層間とした。層間剥離強度試験の試験片の幅は15mmとし、2つの試験片を準備し、それぞれの試験片について場所を変えて3カ所測定し、得られた測定値の平均値を層間剥離強度として、以下のように層間密着性の判定を行った。
剥離強度が10N/15mm以上の場合:S
剥離強度が6N/15mm以上10N/15mm未満の場合:A
剥離強度が3N/15mm以上6N/15mm未満の場合:B
剥離強度が1N/15mm以上3N/15mm未満の場合:C
剥離強度が1N/15mm未満の場合:D
S~Cが合格であり、その中でもSが最も優れている。
(4) Interlayer adhesion The adhesion was evaluated from the delamination strength of the laminated sheet. Here, as the delamination strength, the strength at the time of peeling in the T shape measured according to JIS K6854-3 (1999 edition) was used. Here, the interlayer was defined as an interlayer capable of interfacial separation such as between the P1 layer and the P2 layer and between the P2 layer and the P3 layer. The test piece width of the delamination strength test was 15 mm, and two test pieces were prepared. The test piece was changed in place and measured at three locations, and the average value of the obtained measurement values was taken as the delamination strength. The interlayer adhesion was determined as follows.
When peel strength is 10N / 15mm or more: S
When the peel strength is 6 N / 15 mm or more and less than 10 N / 15 mm: A
When peel strength is 3N / 15mm or more and less than 6N / 15mm: B
When peel strength is 1N / 15mm or more and less than 3N / 15mm: C
When peel strength is less than 1 N / 15 mm: D
S to C pass, and S is the best among them.
 (5)難燃性
 UL94HB試験に基づいて、積層シートを13mm×125mmの大きさに切り出し、切り出した長手方向の端から25.4mmのところに第一標線、101.6mmのところに第二標線を引き、水平に保持して燃焼試験を行った時の第一標線から第二標線までの燃焼速度で、積層シートの幅方向及び長手方向についてそれぞれN=3で行いその平均値とした。得られた燃焼速度について以下のように判定を行った。
燃焼速度が100mm/分未満の場合:S
燃焼速度が100mm/分以上110mm/分未満の場合:A
燃焼速度が110mm/分以上130mm/分未満の場合:B
燃焼速度が130mm/分以上150mm/分未満の場合:C
燃焼速度が150mm/分以上の場合:D
難燃性はS~Cが合格であり、その中でSが最も優れている。
(5) Flame retardance Based on the UL94HB test, the laminated sheet was cut into a size of 13 mm × 125 mm, the first marked line at 25.4 mm from the cut end in the longitudinal direction, and the second marked at 101.6 mm. Draw a marked line, hold it horizontally, and at the burning rate from the first marked line to the second marked line, N = 3 for the width direction and the longitudinal direction of the laminated sheet, and the average value It was. The obtained burning rate was determined as follows.
When the burning rate is less than 100 mm / min: S
When the burning rate is 100 mm / min or more and less than 110 mm / min: A
When the burning rate is 110 mm / min or more and less than 130 mm / min: B
When the burning rate is 130 mm / min or more and less than 150 mm / min: C
When the burning rate is 150 mm / min or more: D
As for flame retardancy, S to C pass, and S is the best among them.
 (6)ガスバリア性
 MOCON社製PERMATRAN W-TWINを用いて、1992年8月1日制定の「プラスチックフィルムおよびシートの水蒸気透過度試験方法(機器測定法)JIS-K7129B法(1992年版)」に従い、40℃、90%RH条件下で測定を行った。得られた水蒸気透過率より積層シートのガスバリア性について以下のように判定を行った。
水蒸気透過率が2g/m・day未満の場合:S
水蒸気透過率が2g/m・day以上、3g/m・day未満の場合:A
水蒸気透過率が3g/m・day以上、5g/m・day未満の場合:B
水蒸気透過率が5g/m・day以上、10g/m・day未満の場合:C
水蒸気透過率が10g/m・day以上の場合:D
S~Cが合格であり、その中でもSが最も優れている。
(6) Gas barrier property Using PERMATRAN W-TWIN manufactured by MOCON, according to “Test method for water vapor permeability of plastic films and sheets (instrument measurement method) JIS-K7129B method (1992 version)” established on August 1, 1992 The measurement was performed at 40 ° C. and 90% RH. From the obtained water vapor transmission rate, the gas barrier properties of the laminated sheet were determined as follows.
When the water vapor transmission rate is less than 2 g / m 2 · day: S
When the water vapor transmission rate is 2 g / m 2 · day or more and less than 3 g / m 2 · day: A
When the water vapor transmission rate is 3 g / m 2 · day or more and less than 5 g / m 2 · day: B
When the water vapor transmission rate is 5 g / m 2 · day or more and less than 10 g / m 2 · day: C
When the water vapor transmission rate is 10 g / m 2 · day or more: D
S to C pass, and S is the best among them.
 (7)部分放電電圧
部分放電試験器KPD2050(菊水電子工業(株)製)を用いて、積層シートの部分放電電圧を求めた。なお試験条件は下記のとおりとする。
・出力シートにおける出力電圧印加パターンは、1段階目が0Vから所定の試験電圧までの単純に電圧を上昇させるパターン、2段階目が所定の試験電圧を維持するパターン、3段階目が所定の試験電圧から0Vまでの単純に電圧を降下させるパターンの3段階からなるパターンのものを選択する。
・周波数は50Hzとする。試験電圧は1kVとする。
・1段階目の時間T1は10sec、2段階目の時間T2は2sec、3段階目の時間T3は10secとする。
・パルスカウントシートにおけるカウント方法は「+」(プラス)、検出レベルは50%とする。
・レンジシートにおける電荷量はレンジ1,000pcとする。
・プロテクションシートでは、電圧のチェックボックスにチェックを入れた上で2kVを入力する。また、パルスカウントは100,000とする。
・計測モードにおける開始電圧は1.0pc、消滅電圧は1.0pcとする。
(7) Partial discharge voltage The partial discharge voltage of the laminated sheet was determined using a partial discharge tester KPD2050 (manufactured by Kikusui Electronics Co., Ltd.). The test conditions are as follows.
The output voltage application pattern on the output sheet is a pattern in which the first stage simply increases the voltage from 0 V to a predetermined test voltage, the second stage is a pattern that maintains a predetermined test voltage, and the third stage is a predetermined test A pattern composed of three stages of patterns in which the voltage is simply dropped from 0 to 0 V is selected.
・ The frequency is 50 Hz. The test voltage is 1 kV.
The first stage time T1 is 10 sec, the second stage time T2 is 2 sec, and the third stage time T3 is 10 sec.
• The counting method on the pulse count sheet is “+” (plus), and the detection level is 50%.
-The charge amount in the range sheet is set to 1,000 pc.
・ In the protection sheet, enter 2 kV after checking the voltage check box. The pulse count is 100,000.
In the measurement mode, the start voltage is 1.0 pc and the extinction voltage is 1.0 pc.
 なお、測定は積層シート面内において任意の10カ所で測定を実施し、その平均値を、部分放電電圧V0とした。また、測定試料は、23℃、65%Rhの室内で一晩(12時間)放置したものを用いて測定を実施した。
部分放電電圧が1,050V以上の場合:S
部分放電電圧が950V以上1,050V未満の場合:A
部分放電電圧が700V以上950V未満の場合:B
部分放電電圧が300V以上700V未満の場合:C
部分放電電圧が300V未満の場合:D
S~Cが合格であり、その中でもSが最も優れている。
In addition, the measurement was carried out at 10 arbitrary positions in the laminated sheet surface, and the average value was defined as the partial discharge voltage V0. Further, the measurement was performed using a measurement sample that was left overnight (12 hours) in a room at 23 ° C. and 65% Rh.
When partial discharge voltage is 1,050 V or more: S
When the partial discharge voltage is 950 V or more and less than 1,050 V: A
When partial discharge voltage is 700V or more and less than 950V: B
When the partial discharge voltage is 300V or more and less than 700V: C
When partial discharge voltage is less than 300V: D
S to C pass, and S is the best among them.
 (8)破断伸度測定
 ASTM-D882(1997)に基づいて、サンプルを1cm×20cmの大きさに切り出し、チャック間5cm、引っ張り速度300mm/minにて引っ張ったときの破断伸度を測定した。なお、積層シートの長手方向、幅方向のそれぞれについて、サンプル数はn=5で測定した後、それらの平均値を破断伸度とした。
(8) Measurement of elongation at break Based on ASTM-D882 (1997), a sample was cut into a size of 1 cm × 20 cm, and the elongation at break was measured when the sample was pulled at 5 cm between chucks and at a pulling speed of 300 mm / min. In addition, about each of the longitudinal direction and the width direction of a lamination sheet, after measuring the number of samples by n = 5, those average values were made into elongation at break.
 (9)耐熱黄変性
 積層シートを測定片(サンプル)の形状(3cm×3cm)に切り出した後、エスペック(株)製熱風オーブンPV(H)-212で120℃にて72時間処理を行った。該処理の前後のサンプルについて、サンプル数n=5として、分光式色差計SE-2000型(日本電色工業(株)製)を用い、JIS Z-8722(2000)に準じて反射モードにて、試料測定径を30mmφとして、b値を測定して、平均値を算出することで、該処理の前後のb値を求めた。処理後のb値から処理前のb値を引くことでΔbを求め、以下のように判定を行った。
色調変化Δbが3未満の場合:S
色調変化Δbが3以上5未満の場合:A
色調変化Δbが5以上8未満の場合:B
色調変化Δbが8以上10以下の場合:C
色調変化Δbが10を超える場合:D
S~Cが合格であり、その中でもSが最も優れている。
(9) Heat-resistant yellowing After the laminated sheet was cut into a measurement piece (sample) shape (3 cm × 3 cm), it was treated at 120 ° C. for 72 hours in a hot air oven PV (H) -212 manufactured by ESPEC CORP. . With respect to the samples before and after the treatment, the spectroscopic color difference meter SE-2000 type (manufactured by Nippon Denshoku Industries Co., Ltd.) was used with the number of samples n = 5, and in the reflection mode according to JIS Z-8722 (2000). The b value before and after the treatment was determined by measuring the b value with a sample measurement diameter of 30 mmφ and calculating the average value. Δb was obtained by subtracting the b value before the processing from the b value after the processing, and the following determination was performed.
When the color change Δb is less than 3: S
When the color change Δb is 3 or more and less than 5: A
When the color change Δb is 5 or more and less than 8: B
When color change Δb is 8 or more and 10 or less: C
When the color change Δb exceeds 10: D
S to C pass, and S is the best among them.
 (10)耐候性(紫外線照射後の色調変化Δb)
積層シートを岩崎電気(株)製アイスーパー紫外線テスターS-W131にて、温度60℃、相対湿度50%、強度100mW/cm(光源:メタルハライドランプ、波長範囲:295~450nm、ピーク波長:365nm)の条件下でP1側から48時間照射した。照射前後のサンプルについて、サンプル数n=5として、分光式色差計SE-2000型(日本電色工業(株)製)を用い、JIS Z-8722(2000)に準じて反射モードにて、照射前後のP1層側のb値を測定し、平均値を算出することで、該照射前後のb値を求めた。その差(照射後のb値から照射前のb値)を紫外線照射後の色調変化Δbとした。
得られた色調変化(Δb)について以下のように判定を行った。
色調変化Δbが1以下の場合:S
色調変化Δbが1より大きく3以下の場合:A
色調変化Δbが3より大きく6以下の場合:B
色調変化Δbが6より大きく9以下の場合:C
色調変化Δbが9より大きい場合:D
S~Cが合格であり、その中でもSが最も優れている。
(10) Weather resistance (color tone change Δb after UV irradiation)
The laminated sheet was measured with an I-super ultraviolet tester S-W131 manufactured by Iwasaki Electric Co., Ltd. at a temperature of 60 ° C., a relative humidity of 50%, an intensity of 100 mW / cm 2 (light source: metal halide lamp, wavelength range: 295 to 450 nm, peak wavelength: 365 nm). ) For 48 hours from the P1 side. For samples before and after irradiation, the number of samples is n = 5 and a spectroscopic color difference meter SE-2000 type (manufactured by Nippon Denshoku Industries Co., Ltd.) is used, and irradiation is performed in a reflection mode according to JIS Z-8722 (2000). The b values before and after the irradiation were determined by measuring the b values before and after the P1 layer and calculating the average value. The difference (b value after irradiation to b value before irradiation) was defined as a color tone change Δb after ultraviolet irradiation.
The obtained color tone change (Δb) was determined as follows.
When the color change Δb is 1 or less: S
When the color tone change Δb is greater than 1 and 3 or less: A
When the color change Δb is greater than 3 and less than or equal to 6: B
When the color change Δb is greater than 6 and 9 or less: C
When the color change Δb is greater than 9: D
S to C pass, and S is the best among them.
 (11)耐久性(耐湿熱試験後の伸度保持率)
積層シートを測定片(サンプル)の形状(1cm×20cm)に切り出した後、平山製作所(株)製プレッシャークッカーにて、温度125℃、相対湿度100%RHの条件下にて48時間処理を行い、その後上記(8)項に従って破断伸度を測定した。なお、測定はn=5とし、積層シートの長手方向(縦方向)および幅方向(横方向)のそれぞれ5サンプルについて測定した後、その平均値を破断伸度E1とした。また、処理を行う前の積層シートについても上記(8)項に従って破断伸度E0を測定し、得られた破断伸度E0,E1を用いて、次の式(5)により伸度保持率を算出した。
伸度保持率(%)=(E1/E0)×100 ・・・(5)
得られた伸度保持率について、以下のように判定した。
伸度保持率が50%以上の場合:S
伸度保持率が40%以上50%未満の場合:A
伸度保持率が30%以上40%未満の場合:B
伸度保持率が20%以上30%未満の場合:C
伸度保持率が20%未満の場合:D
S~Cが合格であり、その中でもSが最も優れている。
(11) Durability (Elongation retention after wet heat resistance test)
After cutting the laminated sheet into the shape of the measurement piece (sample) (1 cm × 20 cm), it is processed for 48 hours under the conditions of a temperature cooker manufactured by Hirayama Seisakusho Co., Ltd. at a temperature of 125 ° C. and a relative humidity of 100% RH. Thereafter, the elongation at break was measured according to the above item (8). In addition, after measuring about 5 samples of the longitudinal direction (longitudinal direction) and the width direction (lateral direction) of a lamination sheet, the measurement was made into n = 5, and the average value was made into elongation at break E1. Moreover, also about the lamination sheet before performing a process, breaking elongation E0 is measured according to the said (8) term, The elongation retention is calculated by following Formula (5) using the obtained breaking elongation E0 and E1. Calculated.
Elongation retention (%) = (E1 / E0) × 100 (5)
The obtained elongation retention was determined as follows.
When the elongation retention is 50% or more: S
When the elongation retention is 40% or more and less than 50%: A
When the elongation retention is 30% or more and less than 40%: B
When the elongation retention is 20% or more and less than 30%: C
When the elongation retention is less than 20%: D
S to C pass, and S is the best among them.
 (12)融点(Tm)
本発明において、融点とは、示差走査熱量測定(以下、DSC)により得られる、昇温過程(昇温速度:20℃/min)で求まる値であり、測定対象物をJIS K-7121(1999)に基づいた方法により、25℃から300℃まで20℃/分の昇温速度で昇温して、さらに300℃の状態で5分間保持し、次いで25℃以下となるよう急冷し、再度25℃から300℃まで20℃/分の昇温速度で昇温して得られた示差走査熱量測定チャートにおける結晶融解ピークにおけるピークトップの温度とする。
(12) Melting point (Tm)
In the present invention, the melting point is a value obtained by differential scanning calorimetry (hereinafter referred to as DSC), which is obtained in a temperature rising process (temperature rising rate: 20 ° C./min), and the object to be measured is JIS K-7121 (1999). ) At a rate of temperature increase from 25 ° C. to 300 ° C. at a rate of 20 ° C./min, held at 300 ° C. for 5 minutes, then rapidly cooled to 25 ° C. or lower, and again 25 The temperature is the peak top temperature in the crystal melting peak in the differential scanning calorimetry chart obtained by raising the temperature from 20 ° C. to 300 ° C. at a rate of temperature rise of 20 ° C./min.
 以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not necessarily limited thereto.
 (原料)
 ・ポリアミド系樹脂
実施例1~23、実施例28~36、比較例1、比較例3~8におけるP1層を構成するポリアミド系樹脂(PA6)としてナイロン6樹脂“アミラン”(登録商標)CM1021T(東レ(株)製、Tm;225℃)を用いた。
実施例24につきナイロン66樹脂”アミラン”CM3001(PA66)、実施例25につきナイロン610樹脂”アミラン”CM2001(PA610)、実施例26につきナイロン11樹脂”リルサン”BESN-O-TL(PA11)、実施例27につきナイロン12樹脂”リルサン”AESN-TL(PA12)を用いた。
(material)
Polyamide resin Examples 1 to 23, Examples 28 to 36, Comparative Example 1 and Comparative Examples 3 to 8 Nylon 6 resin “Amilan” (registered trademark) CM1021T (polyamide resin (PA6) constituting the P1 layer) Toray Industries, Inc., Tm; 225 ° C.) was used.
Nylon 66 resin “Amilan” CM3001 (PA66) per Example 24, Nylon 610 resin “Amilan” CM2001 (PA610) per Example 25, Nylon 11 resin “Rilsan” BESN-O-TL (PA11) per Example 26 For example 27, the nylon 12 resin “Rilsan” AESN-TL (PA12) was used.
 ・オレフィン系樹脂
実施例1~15、20~23、24~36、および、比較例2~8につき、共重合ポリプロピレンである住友化学(株)製”ノーブレン”WF345S(エチレン3.5質量%およびブテン4.0質量%が共重合された共重合ポリプロピレン)を「EPBC1」として用いた。
実施例16につき、リニア低密度ポリエチレンである住友化学(株)社製“エボリュー”SP2530を「LLDPE1」として用いた。
実施例17につき、リニア低密度ポリエチレンである住友化学(株)社製“エボリュー”SP2540を「LLDPE2」として用いた。
実施例18につき、エチレン質量1%共重合ポリプロピレンを「EPC1」として用いた。
実施例19につき、ポリプロピレンである住友化学(株)製”ノーブレン”FLX80E4を「PP1」として用いた。
-Olefin resin Examples 1 to 15, 20 to 23, 24 to 36, and Comparative Examples 2 to 8, "Noblen" WF345S (3.5% by mass of ethylene) manufactured by Sumitomo Chemical Co., Ltd., which is a copolymerized polypropylene Copolymerized polypropylene in which 4.0% by mass of butene was copolymerized was used as “EPBC1”.
For Example 16, “Evolue” SP2530 manufactured by Sumitomo Chemical Co., Ltd., which is a linear low density polyethylene, was used as “LLDPE1”.
For Example 17, “Evolue” SP2540 manufactured by Sumitomo Chemical Co., Ltd., which is a linear low density polyethylene, was used as “LLDPE2”.
For Example 18, 1% ethylene copolymer polypropylene was used as “EPC1”.
In Example 19, “Noblen” FLX80E4 manufactured by Sumitomo Chemical Co., Ltd., which is polypropylene, was used as “PP1”.
 ・酸変性ポリオレフィン
実施例1~23、24~27および比較例3~8におけるP2層を構成する樹脂として三菱化学(株)社製“モディック”P553A(ポリオレフィンとしてポリプロピレンが用いられた酸変性ポリオレフィン)を「樹脂1」として用いた。
実施例28につき、三菱化学(株)社製“モディック”M545(ポリオレフィンとしてリニア低密度ポリエチレンが用いられた酸変性ポリオレフィン)を「樹脂2」として用いた。
実施例29につき、三菱化学(株)社製“モディック”F535(ポリオレフィンとして共重合オレフィンが用いられた酸変性ポリオレフィン)を「樹脂3」として用いた。
実施例30につき、三菱化学(株)社製“モディック”A515(ポリオレフィンとしてエチレン-ビニルアセテート共重合体が用いられた酸変性ポリオレフィン)を「樹脂4」として用いた。
実施例31につき、三菱化学(株)社製“モディック”L504(ポリオレフィンとして低密度ポリエチレンが用いられた酸変性ポリオレフィン)を「樹脂5」として用いた。
実施例32につき、三菱化学(株)社製“モディック”H503(ポリオレフィンとして高密度ポリエチレンが用いられた酸変性ポリオレフィン)を「樹脂6」として用いた。
実施例33につき、三井化学(株)社製“アドマー”SF731(ポリオレフィンとしてポリエチレンが用いられた酸変性ポリオレフィン)を「樹脂7」として用いた。
実施例34につき、三井化学(株)社製“アドマー”QB550(ポリオレフィンとして共重合オレフィンが用いられた酸変性ポリオレフィン)を「樹脂8」として用いた。
実施例35につき、三井化学(株)社製“アドマー”QF500(ポリオレフィンとしてポリプロピレンが用いられた酸変性ポリオレフィン)を「樹脂9」として用いた。
Acid-modified polyolefin “Modic” P553A (acid-modified polyolefin using polypropylene as polyolefin) as a resin constituting the P2 layer in Examples 1 to 23, 24 to 27 and Comparative Examples 3 to 8 Was used as “resin 1”.
For Example 28, “Modic” M545 manufactured by Mitsubishi Chemical Corporation (acid-modified polyolefin using linear low-density polyethylene as the polyolefin) was used as “Resin 2”.
In Example 29, “Modic” F535 (an acid-modified polyolefin using a copolymerized olefin as the polyolefin) manufactured by Mitsubishi Chemical Corporation was used as “Resin 3”.
In Example 30, “Modic” A515 (an acid-modified polyolefin using an ethylene-vinyl acetate copolymer as the polyolefin) manufactured by Mitsubishi Chemical Corporation was used as “Resin 4”.
In Example 31, “Modic” L504 (acid-modified polyolefin in which low-density polyethylene was used as the polyolefin) manufactured by Mitsubishi Chemical Corporation was used as “Resin 5”.
For Example 32, “Modic” H503 (acid-modified polyolefin using high-density polyethylene as the polyolefin) manufactured by Mitsubishi Chemical Corporation was used as “Resin 6”.
In Example 33, “Admer” SF731 (acid-modified polyolefin using polyethylene as the polyolefin) manufactured by Mitsui Chemicals, Inc. was used as “Resin 7”.
For Example 34, “Admer” QB550 (acid-modified polyolefin using a copolymerized olefin as the polyolefin) manufactured by Mitsui Chemicals, Inc. was used as “Resin 8”.
For Example 35, “Admer” QF500 (acid-modified polyolefin using polypropylene as the polyolefin) manufactured by Mitsui Chemicals, Inc. was used as “Resin 9”.
 ・アクリル系接着剤
実施例36につき、アルケマ(株)社製“ボンダイン”TX8030(エチレン-エチルアクリレート-無水マレイン酸3元共重合体タイプ)を「樹脂10」として用いた。
For the acrylic adhesive Example 36, “Bondaine” TX8030 (ethylene-ethyl acrylate-maleic anhydride terpolymer type) manufactured by Arkema Co., Ltd. was used as “Resin 10”.
 ・ポリオレフィン系エラストマー
実施例20~23につき、ポリオレフィン系エラストマーとして三井化学(株)社製“ノティオ”PN2060を「エラストマー1」として用いた。
Polyolefin-based elastomer For Examples 20 to 23, “Notio” PN2060 manufactured by Mitsui Chemicals, Inc. was used as “Elastomer 1” as the polyolefin-based elastomer.
 ・無機粒子
 実施例1~7,9~23および24~36、ならびに比較例1および3~8のP1層および、実施例1~23、比較例2~8のP3層に用いた無機粒子はルチル型二酸化チタンを用いた。また、P1層の二酸化チタンは各実施例、比較例につきP1層の主たる構成成分として用いた樹脂と二酸化チタンが50質量%/50質量%の割合でマスター化した樹脂を希望濃度になるように添加した。P3層の二酸化チタンは各実施例、比較例につきP3層の主たる構成成分として用いた樹脂と二酸化チタンが30質量%/70質量%の割合でマスター化した樹脂を希望濃度になるように添加した。
Inorganic particles The inorganic particles used in Examples 1 to 7, 9 to 23 and 24 to 36, and P1 layers of Comparative Examples 1 and 3 to 8 and P3 layers of Examples 1 to 23 and Comparative Examples 2 to 8 are Rutile type titanium dioxide was used. Further, the titanium dioxide of the P1 layer has a desired concentration of the resin used as the main constituent component of the P1 layer for each example and comparative example and the resin obtained by mastering titanium dioxide at a ratio of 50% by mass / 50% by mass. Added. The titanium dioxide of the P3 layer was added so that the resin used as the main constituent component of the P3 layer and the titanium dioxide mastered at a ratio of 30% by mass / 70% by mass in each example and comparative example to a desired concentration. .
 (実施例1~27、比較例3~8)
 押出機1、押出機2および押出機3を用い、表1に示す原料を所望の配合比になるように各押出機に供給し、次いで押出機1から溶融押出された層がP1層、押出機2がP2層、押出機3がP3層として、P1層/P2層/P3層の順に積層されるようマルチマニホールドにて各層を合流させ、口金から吐出された樹脂をキャストドラム上に冷却固化して積層シートを得た。P1層、P2層、P3層は表2に示す厚みとなった。得られた積層シートについて表2に示す評価を実施した。その結果、表2に示す通り、実施例については優れた積層シートであることがわかった。
(Examples 1 to 27, Comparative Examples 3 to 8)
Using the extruder 1, the extruder 2 and the extruder 3, the raw materials shown in Table 1 are supplied to each extruder so as to have a desired blending ratio, and then the layer melt-extruded from the extruder 1 is the P1 layer, the extrusion The machine 2 is the P2 layer and the extruder 3 is the P3 layer. The layers are joined together in a multi-manifold so that the P1 layer / P2 layer / P3 layer are laminated in order, and the resin discharged from the die is cooled and solidified on the cast drum. Thus, a laminated sheet was obtained. The thicknesses shown in Table 2 were obtained for the P1, P2, and P3 layers. The evaluation shown in Table 2 was implemented about the obtained lamination sheet. As a result, as shown in Table 2, the examples were found to be excellent laminated sheets.
 さらに、実施例20~23はP2層にエラストマーを含有しているため、層間密着性がきわめて優れていた。 Furthermore, since Examples 20 to 23 contained an elastomer in the P2 layer, the interlayer adhesion was extremely excellent.
 一方、比較例3は式(1)のT1/Taが0.3よりも小さいため耐久性、難燃性に劣るものであった。比較例4はT1/Taが0.5よりも大きいため電気特性が劣るものであった。比較例5は式(2)のTaが200よりも小さかったため耐久性、難燃性、ガスバリア性に劣るものであった。比較例7は式(3)のM/T3が0.05よりも小さいため耐熱黄変が劣るものであった。比較例8はM/T3が0.5よりも大きいため封止材との密着性が劣るものであった。 On the other hand, Comparative Example 3 was inferior in durability and flame retardancy because T1 / Ta in formula (1) was smaller than 0.3. Comparative Example 4 was inferior in electrical characteristics because T1 / Ta was larger than 0.5. In Comparative Example 5, since Ta in formula (2) was smaller than 200, the durability, flame retardancy, and gas barrier properties were inferior. Since the comparative example 7 had M / T3 of Formula (3) smaller than 0.05, the heat yellowing was inferior. Since the comparative example 8 had M / T3 larger than 0.5, the adhesiveness with a sealing material was inferior.
 (比較例1)
 押出機1を用い表1に示す原料を所望の配合比になるように押出機に供給し、次いで押出機1から溶融押出され口金から吐出された樹脂をキャストドラム上に冷却固化して単層シートを得た。オレフィン樹脂層がないため電気特性、バリア性、封止材との密着性が劣るものであった。
(Comparative Example 1)
Using the extruder 1, the raw materials shown in Table 1 are supplied to the extruder so as to have a desired mixing ratio, and then the resin melt-extruded from the extruder 1 and discharged from the die is cooled and solidified on a cast drum to form a single layer A sheet was obtained. Since there was no olefin resin layer, the electrical properties, barrier properties, and adhesion to the sealing material were poor.
 (比較例2)
 押出機3を用い表1に示す原料を所望の配合比になるように押出機に供給し、次いで押出機3から溶融押出され口金から吐出された樹脂をキャストドラム上に冷却固化して単層シートを得た。ポリアミド系樹脂層がないため耐久性、難燃性が劣るものであった。
(Comparative Example 2)
Using the extruder 3, the raw materials shown in Table 1 are supplied to the extruder so as to have a desired blending ratio, and then the resin melt-extruded from the extruder 3 and discharged from the die is cooled and solidified on a cast drum to form a single layer A sheet was obtained. Since there was no polyamide resin layer, the durability and flame retardancy were poor.
 (実施例28~36)
表1に示す原料を所望の配合比になるように各押出機に供給したこと以外は実施例1と同様に積層シートを得た。得られた積層シートについて表2に示す評価を実施した。その結果、表2に示す通り、優れた積層シートであることがわかった。
(Examples 28 to 36)
A laminated sheet was obtained in the same manner as in Example 1 except that the raw materials shown in Table 1 were supplied to each extruder so as to have a desired blending ratio. The evaluation shown in Table 2 was implemented about the obtained lamination sheet. As a result, as shown in Table 2, it was found to be an excellent laminated sheet.
 従来のポリアミド系樹脂を用いた積層シートと比べて黄変しにくく、耐久性と難燃性と水蒸気バリア性の両立が可能な積層シートを提供することができる。かかる積層シートは、太陽電池用バックシートの他、液晶ディスプレイ用反射板、自動車用材料、建築材料をはじめとした、黄変、耐湿熱性、紫外線に対する耐性、光反射性が重視されるような用途に好適に使用することができる。特に太陽電池用バックシートとして好適に使用できる積層シート、および該積層シートの製造方法を提供することができる。 It is possible to provide a laminated sheet that is less susceptible to yellowing than a laminated sheet using a conventional polyamide-based resin, and that can achieve both durability, flame retardancy, and water vapor barrier properties. Such laminated sheets are used for solar cell backsheets, liquid crystal display reflectors, automotive materials, building materials, and other applications where yellowing, wet heat resistance, resistance to ultraviolet rays, and light reflectivity are important. Can be suitably used. In particular, a laminated sheet that can be suitably used as a back sheet for a solar cell, and a method for producing the laminated sheet can be provided.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
1:太陽電池バックシート(積層シート)
2:封止材
3:発電素子
4:透明基板
5:太陽電池バックシートの封止材2側の面
6:太陽電池バックシートの封止材2と反対側の面
1: Solar cell back sheet (laminated sheet)
2: Sealing material 3: Power generation element 4: Transparent substrate 5: Surface on the sealing material 2 side of the solar cell backsheet 6: Surface on the opposite side of the sealing material 2 of the solar cell backsheet

Claims (10)

  1.  ポリアミド系樹脂を主たる構成成分とする層(P1層)と、オレフィン系樹脂を主たる構成成分とする層(P3層)とを有する積層シートであって、
     P3層が無機粒子を含有し、
     さらにP1層が表層に位置し、P1層とは逆表層にP3層が位置し、
     積層シート全体の厚みをTa(μm)、P1層の厚みをT1(μm)、P3層の厚みをT3(μm)、P3層中の無機粒子の含有量をM(質量%)とした時に、下記式(1)~(3)の全てを満たすことを特徴とする、積層シート。
    0.05≦M/T3≦0.5・・・(1)
    200≦Ta≦500・・・(2)
    0.3≦T1/Ta≦0.5・・・(3)
    A laminated sheet having a layer (P1 layer) mainly comprising a polyamide-based resin and a layer (P3 layer) mainly comprising an olefin-based resin,
    P3 layer contains inorganic particles,
    Furthermore, the P1 layer is located on the surface layer, and the P3 layer is located on the surface opposite to the P1 layer,
    When the thickness of the entire laminated sheet is Ta (μm), the thickness of the P1 layer is T1 (μm), the thickness of the P3 layer is T3 (μm), and the content of inorganic particles in the P3 layer is M (mass%), A laminated sheet characterized by satisfying all of the following formulas (1) to (3).
    0.05 ≦ M / T3 ≦ 0.5 (1)
    200 ≦ Ta ≦ 500 (2)
    0.3 ≦ T1 / Ta ≦ 0.5 (3)
  2.  P1層が無機粒子を0.1~30質量%含有することを特徴とする、請求項1に記載の積層シート。 The laminated sheet according to claim 1, wherein the P1 layer contains 0.1 to 30% by mass of inorganic particles.
  3.  低結晶性軟質重合体、アクリル系接着剤、及びエチレン酢酸ビニル系共重合体からなる群より選ばれる1つを主たる構成成分とする層をP2層とした際に、P1層とP3層の間にP2層があり、そのP2層の厚みが15~50μmである、請求項1または2に記載の積層シート。 When a layer mainly composed of one selected from the group consisting of a low crystalline soft polymer, an acrylic adhesive, and an ethylene-vinyl acetate copolymer is a P2 layer, it is between the P1 layer and the P3 layer. The laminated sheet according to claim 1 or 2, wherein the P2 layer has a P2 layer thickness of 15 to 50 µm.
  4.  P3層のオレフィン系樹脂の融点が120~155℃である、請求項1~3のいずれかに記載の積層シート。 The laminated sheet according to any one of claims 1 to 3, wherein the P3 layer olefin resin has a melting point of 120 to 155 ° C.
  5.  P2層がポリオレフィン系エラストマーを0.1~20質量%含有する、請求項3に記載の積層シート。 The laminated sheet according to claim 3, wherein the P2 layer contains 0.1 to 20% by mass of a polyolefin-based elastomer.
  6.  請求項1~5のいずれかに記載の積層シートからなる太陽電池バックシート。 A solar battery back sheet comprising the laminated sheet according to any one of claims 1 to 5.
  7.  請求項1~5のいずれかに記載の積層シートを有してなる太陽電池部材。 A solar cell member comprising the laminated sheet according to any one of claims 1 to 5.
  8.  請求項1~5のいずれかに記載の積層シートと封止材を有してなる太陽電池部材であって、該封止材が該積層シートのP3層の表面側に位置する、太陽電池部材。 A solar cell member comprising the laminated sheet according to any one of claims 1 to 5 and a sealing material, wherein the sealing material is located on the surface side of the P3 layer of the laminated sheet .
  9.  請求項3または5に記載の積層シートの製造方法であって、
     P1層用のポリアミド系樹脂を主たる構成成分とする原料、P2層用の低結晶性軟質重合体、アクリル系接着剤、及びエチレン酢酸ビニル系共重合体からなる群より選ばれる1つを主たる構成成分とする原料、および、P3層用のオレフィン系樹脂を主たる構成成分とする原料を、それぞれ別の押出機に供給し、各々溶融後にP1層、P2層、P3層をこの順に合流させて積層し、Tダイからシート状に押し出す工程を含むことを特徴とする、積層シートの製造方法。
    It is a manufacturing method of the lamination sheet according to claim 3 or 5,
    Main composition comprising one selected from the group consisting of a raw material mainly comprising a polyamide resin for P1 layer, a low crystalline soft polymer for P2 layer, an acrylic adhesive, and an ethylene vinyl acetate copolymer The raw material used as the component and the raw material mainly comprising the olefin resin for the P3 layer are supplied to different extruders, and after melting, the P1 layer, the P2 layer, and the P3 layer are merged in this order and laminated. And the manufacturing method of a lamination sheet characterized by including the process extruded to a sheet form from T-die.
  10.  請求項1~5のいずれかに記載の積層シート、請求項6に記載の太陽電池バックシート、または請求項7もしくは8に記載の太陽電池部材を用いた太陽電池。 A solar cell using the laminated sheet according to any one of claims 1 to 5, the solar cell backsheet according to claim 6, or the solar cell member according to claim 7 or 8.
PCT/JP2013/066551 2012-07-30 2013-06-17 Laminate sheet and method for manufacturing same WO2014021003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013528408A JPWO2014021003A1 (en) 2012-07-30 2013-06-17 Laminated sheet and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012168127 2012-07-30
JP2012-168127 2012-07-30

Publications (1)

Publication Number Publication Date
WO2014021003A1 true WO2014021003A1 (en) 2014-02-06

Family

ID=50027693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066551 WO2014021003A1 (en) 2012-07-30 2013-06-17 Laminate sheet and method for manufacturing same

Country Status (3)

Country Link
JP (1) JPWO2014021003A1 (en)
TW (1) TW201404591A (en)
WO (1) WO2014021003A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10665742B2 (en) 2014-07-04 2020-05-26 Dsm Ip Assets B.V. Co-extruded backsheet for solar cell modules

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471318A (en) * 2021-07-01 2021-10-01 浙江中聚材料有限公司 Solar backboard with high barrier property

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111077A (en) * 1999-10-12 2001-04-20 Dainippon Printing Co Ltd Backside protecting sheet for solar cell module and solar cell module using the same
WO2011066595A1 (en) * 2009-12-01 2011-06-09 Isovoltaic Gmbh Solar module and coextrudate element
JP2012039086A (en) * 2010-07-30 2012-02-23 Ems-Patent Ag Multi-layer back sheet for photovoltaic module, manufacturing method of the same, and use for photovoltaic module manufacturing
WO2012043248A1 (en) * 2010-09-29 2012-04-05 東レフィルム加工株式会社 Multilayered polyolefin resin film for back protection sheet for solar cell
JP2012148557A (en) * 2010-12-27 2012-08-09 Mitsubishi Plastics Inc Laminate for protecting solar cell and solar cell module manufactured using the same
WO2013015259A1 (en) * 2011-07-26 2013-01-31 東レ株式会社 Laminated sheet and method for producing same
WO2013021860A1 (en) * 2011-08-11 2013-02-14 東レ株式会社 Laminated sheet and method for producing same
JP2013089966A (en) * 2011-10-14 2013-05-13 Evonik Industries Ag Use of multilayer sheet having polyamide layer and polypropylene layer for manufacturing of photovoltaic module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111077A (en) * 1999-10-12 2001-04-20 Dainippon Printing Co Ltd Backside protecting sheet for solar cell module and solar cell module using the same
WO2011066595A1 (en) * 2009-12-01 2011-06-09 Isovoltaic Gmbh Solar module and coextrudate element
JP2012039086A (en) * 2010-07-30 2012-02-23 Ems-Patent Ag Multi-layer back sheet for photovoltaic module, manufacturing method of the same, and use for photovoltaic module manufacturing
WO2012043248A1 (en) * 2010-09-29 2012-04-05 東レフィルム加工株式会社 Multilayered polyolefin resin film for back protection sheet for solar cell
JP2012148557A (en) * 2010-12-27 2012-08-09 Mitsubishi Plastics Inc Laminate for protecting solar cell and solar cell module manufactured using the same
WO2013015259A1 (en) * 2011-07-26 2013-01-31 東レ株式会社 Laminated sheet and method for producing same
WO2013021860A1 (en) * 2011-08-11 2013-02-14 東レ株式会社 Laminated sheet and method for producing same
JP2013089966A (en) * 2011-10-14 2013-05-13 Evonik Industries Ag Use of multilayer sheet having polyamide layer and polypropylene layer for manufacturing of photovoltaic module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10665742B2 (en) 2014-07-04 2020-05-26 Dsm Ip Assets B.V. Co-extruded backsheet for solar cell modules

Also Published As

Publication number Publication date
TW201404591A (en) 2014-02-01
JPWO2014021003A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP5304789B2 (en) Polyester film, laminated film, solar cell backsheet using the same, and solar cell
JP4849189B2 (en) POLYESTER FILM, SOLAR CELL BACK SHEET USING SAME, SOLAR CELL, AND METHOD FOR PRODUCING THEM
JP5632397B2 (en) Laminated polymer film and solar cell module made therefrom
JP5301107B2 (en) Back sheet for solar cell module and solar cell module using the same
WO2012051930A1 (en) Polymer backsheet of solar cell assembly and manufacturing process thereof
TW201321187A (en) Back protective sheet for solar cell module and solar cell module using it
JP6743698B2 (en) Film for solar cell back sheet, solar cell back sheet using the same, and solar cell
JP6287829B2 (en) LAMINATED SHEET AND METHOD FOR MANUFACTURING SAME, SOLAR CELL BACK SHEET, SOLAR CELL MODULE, AND SOLAR CELL BACK SHEET
JP5156172B2 (en) Back sheet for solar cell module and solar cell module using the same
JP5505018B2 (en) Polyester film, solar cell backsheet using the same, and reflector for LED light source.
WO2014021003A1 (en) Laminate sheet and method for manufacturing same
WO2016052133A1 (en) Layered product
WO2013015259A1 (en) Laminated sheet and method for producing same
JP2014233951A (en) Laminated sheet, solar cell back sheet, and solar cell
TW201817600A (en) Laminate, solar cell rear surface protection sheet using same, and solar cell module
JP2014043065A (en) Laminate sheet and production method of the same
JP2014004778A (en) Laminate sheet and method for manufacturing the same
JP2014162080A (en) Laminated sheet and method for producing the same
JP6547463B2 (en) Sealing material sheet for solar cell module and sealing material integrated back surface protection sheet using the same
JP2013055270A (en) Laminate sheet and solar cell using the same
ES2369521T3 (en) USE OF A REAR SHEET FOR PHOTOVOLTAIC MODULES AND RESULTING PHOTOVOLTAIC MODULE.
JP5920338B2 (en) Laminated sheet and solar cell using the same
WO2015098520A1 (en) Sheet for solar cell backside protection
JP2013052635A (en) Laminate sheet and solar cell obtained by using the same
JP2018083873A (en) Polyester film, and solar cell back sheet and solar cell comprising the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013528408

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13824759

Country of ref document: EP

Kind code of ref document: A1