WO2015098520A1 - Sheet for solar cell backside protection - Google Patents

Sheet for solar cell backside protection Download PDF

Info

Publication number
WO2015098520A1
WO2015098520A1 PCT/JP2014/082698 JP2014082698W WO2015098520A1 WO 2015098520 A1 WO2015098520 A1 WO 2015098520A1 JP 2014082698 W JP2014082698 W JP 2014082698W WO 2015098520 A1 WO2015098520 A1 WO 2015098520A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
back surface
resin
sheet
Prior art date
Application number
PCT/JP2014/082698
Other languages
French (fr)
Japanese (ja)
Inventor
規行 巽
堀江 将人
敏弘 千代
東大路 卓司
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014560169A priority Critical patent/JPWO2015098520A1/en
Publication of WO2015098520A1 publication Critical patent/WO2015098520A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a sheet for protecting a back surface of a solar cell, which has excellent adhesion to a sealing material for solar cells and maintains adhesion even when left outdoors for a long time (excellent retention).
  • a power generating element is sealed with a transparent sealing material such as ethylene-vinyl acetate copolymer (hereinafter sometimes referred to as EVA), a transparent substrate such as glass, and a back sheet (for back surface protection).
  • EVA ethylene-vinyl acetate copolymer
  • a resin sheet called a “sheet” is bonded together.
  • Sunlight is introduced into the solar cell through the transparent substrate. Sunlight introduced into the solar cell is absorbed by the power generation element, and the absorbed light energy is converted into electrical energy. The converted electric energy is taken out by a lead wire connected to the power generation element and used for various electric devices.
  • biaxially stretched polyethylene terephthalate (hereinafter sometimes referred to as PET) that is inexpensive and has high performance is widely used as a sheet for protecting the back surface of a solar cell, and various materials can be applied by a method such as dry lamination. Studies have been made to impart barrier properties and electrical characteristics by bonding.
  • polyester resins such as PET have poor adhesion to the sealing material. Therefore, conventionally, it is common to laminate a polyolefin resin sheet excellent in adhesion to a sealing material on a polyester resin such as PET and use the polyolefin resin sheet as a sealing material adhesion surface of a solar cell back surface protection sheet. Met.
  • polyester sheets Patent Documents 1, 2, and 3 that are provided with an easy-adhesion layer on the surface of a biaxially stretched polyester film and can be directly bonded to a sealing material have been disclosed.
  • JP 2006-152013 A Japanese Patent No. 4803317 JP 2012-69835 A
  • the conventional easy-adhesion layers listed in Patent Documents 1 to 3 have very weak adhesion to the sealing material, and are not only used during the processing of solar cells but also used outdoors as solar cells. There has been a problem that it is easy to peel off at the interface with the sealing material or at the easily adhesive layer.
  • the solar cell in view of the conventional problems, is excellent in adhesion with a sealing material and maintains adhesion even when left outdoors for a long time (excellent retention property). It aims at providing the sheet
  • the present invention has the following configuration. That is, it has a base material layer (P1 layer) made of a polyester resin and an easy adhesion layer (P2 layer) adjacent to at least one side of the P1 layer, and the P2 layer is the following (1), (2) It is a solar cell back surface protection sheet characterized by satisfying the requirements. (1) Contains three components, a urethane resin component, a melamine resin component, and an epoxy resin component. (2) The contact angle of water is 74 ° or more.
  • the present invention compared to a conventional laminated sheet in which an easy-adhesion layer is provided on the surface of a biaxially stretched polyester film, it has excellent adhesiveness with a sealing material, and even when placed outdoors for a long period of time.
  • the sheet for protecting the back surface of a solar cell of the present invention has a base material layer (P1 layer) made of a polyester resin and an easy adhesion layer (P2 layer) adjacent to at least one side of the P1 layer.
  • P1 layer base material layer
  • P2 layer easy adhesion layer
  • (1) and (2) are satisfied.
  • (1) Contains three components, a urethane resin component, a melamine resin component, and an epoxy resin component.
  • the contact angle of water is 74 ° or more.
  • the P1 layer in the present invention contains a polyester resin as a main component.
  • the main constituent component of the polyester resin means that the polyester resin is contained in an amount exceeding 50% by mass with respect to the resin constituting the P1 layer.
  • Specific examples of the polyester resin constituting the P1 layer include polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, and polylactic acid.
  • the polyester resin used in the present invention includes 1) polycondensation of dicarboxylic acid or an ester-forming derivative thereof (hereinafter collectively referred to as “dicarboxylic acid component”) and a diol component, and 2) carboxylic acid or carboxylic acid in one molecule. It can be obtained by a polycondensation of an acid derivative and a compound having a hydroxyl group, and 1) 2).
  • the polymerization of the polyester resin can be performed by a conventional method.
  • dicarboxylic acid component malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid
  • Aliphatic dicarboxylic acids such as ethylmalonic acid
  • alicyclic dicarboxylic acids such as adamantane dicarboxylic acid, norbornene dicarboxylic acid, cyclohexane dicarboxylic acid, decalin dicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4
  • dicarboxyl obtained by condensing oxyacids such as l-lactide, d-lactide, and hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of such oxyacids, at least one carboxy terminus of the dicarboxylic acid component described above.
  • oxyacids such as l-lactide, d-lactide, and hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of such oxyacids, at least one carboxy terminus of the dicarboxylic acid component described above.
  • oxyacids such as l-lactide, d-lactide, and hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of such oxyacids, at least one carboxy terminus of the dicarboxylic acid component described above.
  • Compounds can also be used.
  • the diol component includes aliphatic diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol. , Cycloaliphatic dimethanol, spiroglycol, isosorbide and other alicyclic diols, bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 9,9'-bis (4-hydroxyphenyl) fluorene, etc. Aromatic diols are typical examples. Moreover, these may be used independently or may be used in multiple types as needed. In addition, a dihydroxy compound formed by condensing a diol with at least one hydroxy terminal of the diol component described above can also be used.
  • aliphatic diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-but
  • examples of the compound having a carboxylic acid or a carboxylic acid derivative and a hydroxyl group in one molecule include oxyacids such as l-lactide, d-lactide and hydroxybenzoic acid, and derivatives thereof, oligomers of oxyacids, dicarboxylic acids Examples thereof include those obtained by condensing an oxyacid with one carboxyl group of the acid.
  • the dicarboxylic acid component and the diol component constituting the polyester resin may be copolymerized by selecting one from the above, or may be copolymerized by selecting a plurality of each.
  • the polyester resin constituting the P1 layer may be a single type or a blend of two or more types of polyester resins.
  • the resin constituting the P1 layer in the present invention is mainly a polyester resin, but the intrinsic viscosity IV is 0.65 dl / g or more and 0.80 dl / g or less, and the terminal carboxyl group amount is 25 equivalents / It is preferably less than tons.
  • the polyester resin is preferably composed mainly of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the main component means that it is contained in excess of 50% by mass with respect to the polyester resin.
  • the intrinsic viscosity IV of the PET is preferably 0.65 dl / g or more, more preferably 0.69 dl / g or more.
  • the intrinsic viscosity IV When the intrinsic viscosity IV is less than 0.65 dl / g, the moisture and heat resistance of the sheet may be deteriorated. Moreover, when intrinsic viscosity IV exceeds 0.80 dl / g, when the P1 layer is manufactured, the extrudability of the resin is poor, and sheet molding may be difficult. Furthermore, even if the intrinsic viscosity IV satisfies the above range, if the terminal carboxyl group amount exceeds 25 equivalents / ton, the adhesion with the P2 layer is improved, but the moisture and heat resistance of the sheet is deteriorated, which is not preferable. There is. Therefore, when the resin constituting the P1 layer contains PET as a main constituent, by satisfying the above range, a sheet for protecting a back surface of a solar cell that is extremely excellent in moldability and long-term durability can be obtained.
  • the number average molecular weight of the polyester resin constituting the P1 layer is preferably 8000 to 40000, more preferably 9000 to 30000, and still more preferably 10,000 to 20000.
  • the number average molecular weight of the polyester resin constituting the P1 layer refers to the gel permeation chromatography method by separating the P2 layer from the solar cell back surface protective sheet of the present invention and dissolving it in hexafluoroisopronol (HEIP).
  • HEIP hexafluoroisopronol
  • PET-5R polyethylene terephthalate
  • Mw 55800 polyethylene terephthalate
  • the number average molecular weight of the polyester resin constituting the P1 layer is less than 8000, it is not preferable because the long-term durability of the sheet such as moisture and heat resistance may be deteriorated.
  • it exceeds 40,000 even if the polymerization is difficult or the polymerization can be performed, it may be difficult to extrude the resin with an extruder and film formation may be difficult.
  • the P1 layer is preferably uniaxially or biaxially oriented.
  • the long-term durability of the sheet such as moist heat resistance and heat resistance can be improved by orientation crystallization.
  • a method of containing particles having respective functions is also preferably used.
  • titanium oxide particles in the range of 1% by mass to 30% by mass with respect to the resin constituting the P1 layer. This makes it possible to reduce the coloring due to deterioration of the sheet for protecting the back surface of the solar cell over a long period by utilizing the ultraviolet absorbing ability and the light reflectivity by the titanium oxide particles, and the sun mounted with the sheet for protecting the back surface of the solar cell of the present invention. Both of the effects of increasing the power generation efficiency of the battery can be expected.
  • a more preferable range is 1% by mass or more and 25% by mass or less, further preferably 2% by mass or more and 25% by mass or less, and particularly preferably 3% by mass or more and 20% by mass or less.
  • a rutile type titanium oxide from the viewpoint of achieving both excellent ultraviolet resistance and light reflectivity.
  • 0.1 particles made of a carbon-based material such as fullerene, carbon fiber, or carbon nanotube are used as the resin constituting the P1 layer. It is preferable to contain in the range of mass% or more and 5 mass% or less. This makes it possible to exhibit the effect of reducing coloring due to deterioration of the sheet for protecting the back surface of the solar cell over a long period of time by making use of the ultraviolet absorbing ability and light hiding property of the carbon particles. If it is less than 0.1% by mass, the UV resistance may be insufficient. If it exceeds 5% by mass, the adhesion with the P2 layer may be deteriorated. A more preferable range is 0.2% by mass or more and 4% by mass or less, and further preferably 0.5% by mass or more and 3% by mass or less.
  • a method of melt-kneading the polyester resin and the particles using a vent type twin-screw kneading extruder or a tandem type extruder is preferably used.
  • a high-concentration master pellet having a particle content larger than the amount of particles contained in the polyester resin constituting the P1 layer is prepared, mixed with the polyester resin and diluted to obtain a desired particle content P1 layer. It is preferable to produce it from the viewpoint of heat and humidity resistance.
  • the P1 layer in the solar cell back surface protection sheet of the present invention may include a heat-resistant stabilizer and an oxidation-resistant stabilizer as long as the effects of the present invention are not impaired.
  • an ultraviolet absorber is selected as an additive, the ultraviolet resistance of the solar cell back surface protective sheet of the present invention can be further enhanced.
  • anti-static agents are added to improve electrical insulation, or organic or inorganic fine particles or bubbles are included to express light reflectivity, or a color material to be colored is added to create a design. Can also be given.
  • the P1 layer in the present invention may have a laminated structure.
  • a laminated structure of a P11 layer excellent in heat and moisture resistance and a layer P12 layer containing a high concentration of an ultraviolet absorber or titanium oxide particles having an ultraviolet absorbing ability is preferably used.
  • the configuration of the solar cell back surface protection sheet of the present invention is preferably P12 layer / P11 layer // P2 layer from the viewpoint of coexistence of moisture and heat resistance.
  • the resin and particles used for the P11 layer and the P12 layer those exemplified for the P1 layer can be suitably used as appropriate.
  • the P1 layer preferably has a thickness of 30 ⁇ m or more and less than 500 ⁇ m.
  • the thickness of the P1 layer is less than 30 ⁇ m, the electrical insulation is insufficient, and when it is used under a high voltage, dielectric breakdown may occur, which may not be preferable as a solar cell back surface protection sheet.
  • the thickness is greater than 500 ⁇ m, the processability is poor, and when used as a solar battery back surface protection sheet, the overall thickness of the solar battery cell may become too thick, which may be undesirable.
  • a preferable range is 38 ⁇ m or more and 400 ⁇ m or less, and more preferably 50 ⁇ m or more and 300 ⁇ m or less.
  • the solar cell back surface protection sheet of the present invention needs to be provided with a P2 layer as an easy adhesion layer adjacent to the P1 layer. At this time, the P2 layer needs to be provided on at least one side of the P1 layer.
  • the P2 layer is characterized by containing three components of a urethane resin component, a melamine resin component, and an epoxy resin component.
  • the urethane resin component mentioned here includes not only urethane resins but also components obtained by reacting urethane resins with each other or with urethane resins and other components (melamine resin or epoxy resin).
  • the melamine resin component includes not only melamine resins but also components obtained by reacting melamine resins with each other or with melamine resins and other components (urethane resin or epoxy resin).
  • the epoxy resin component includes not only an epoxy resin but also a component obtained by reacting an epoxy resin with each other or with an epoxy resin and another component (urethane resin or melamine resin).
  • the term “the three components” as used herein means that the surface of the P2 layer has an X-ray photoelectron spectrometer (ESCA), a Fourier infrared spectrophotometer (FT-IR) ATR method, a time-of-flight secondary Ion mass spectrometer (TOF-SIMS) or P2 layer is dissolved and extracted with a solvent, proton nuclear magnetic resonance spectroscopy ( 1 H-NMR), carbon nuclear magnetic resonance spectroscopy ( 13 C-NMR), Fourier infrared It can be confirmed by analyzing the structure with a spectrophotometer (FT-IR) and performing a qualitative analysis of the P2 layer performed by pyrolysis gas chromatography mass spectrometry (GC-MS).
  • ESA X-ray photoelectron spectrometer
  • the urethane resin component contained in the P2 layer of the present invention is obtained by reacting a resin containing a urethane bond obtained by a reaction between a polyol compound and a polyisocyanate compound in the main chain, and the resin and other components. Resin.
  • the urethane resin component preferably includes a urethane resin having a polyester skeleton in which the polyol component is a polyester polyol (hereinafter sometimes referred to as a polyester urethane resin).
  • the polyester polyol preferably has a polyester structure synthesized from a dicarboxylic acid component and a diol component shown below.
  • Dicarboxylic acid components include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid, ethylmalonic acid, etc.
  • Aliphatic dicarboxylic acids such as decalin dicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5- Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, 4,4′-diphenylsulfonedicarboxylic acid, 5- Sodium sulfoisophthalate , Phenyl ene boys carboxylic acid, anthracene dicarboxylic acid, phenanthrene carboxylic acid, 9,9'-bis (4-carboxyphenyl)
  • diol component examples include aliphatic diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, Arocyclic diols such as methanol, spiroglycol and isosorbide, aromatic diols such as bisphenol A, 1,3-benzenedimethanol, 1,4-benzendimethanol and 9,9'-bis (4-hydroxyphenyl) fluorene Is mentioned.
  • aliphatic diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, Arocyclic diols such as methanol, spiroglycol and isosorbide, aromatic diols such as bisphenol A, 1,3
  • the urethane resin component contained in the P2 layer of the present invention has excellent adhesion retention with the sealing material even after the acceleration test.
  • the solar battery can be made more durable.
  • the polyisocyanate component used for the urethane resin one or a mixture of two or more known aromatic, aliphatic and alicyclic diisocyanates can be used.
  • diisocyanates include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,3-phenylene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, 1,5-naphthylene diisocyanate, isophorone diisocyanate, dimaryl diisocyanate, Examples thereof include lysine diisocyanate, hydrogenated 4,4′-diphenylmethane diisocyanate, hydrogenated tolylene diisocyanate, dimerized isocyanate obtained by converting the carboxyl group of dimer acid to an isocyanate group, and adducts, biurets, and isocyanurates. Further, as the diisocyanates,
  • the urethane resin preferably has a hydrophilic group.
  • the hydrophilic group includes a functional group that becomes an anion in an aqueous medium such as a carboxyl group, a sulfonic acid group, a sulfuric acid group, and a phosphoric acid group.
  • a polyol component having a carboxyl group, a sulfonic acid group, a sulfuric acid group, a phosphoric acid group or the like may be used.
  • the polyol compound having a carboxyl group include 3,5-dihydroxybenzoic acid, 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxyethyl) propionic acid, and 2,2-bis (hydroxypropyl).
  • Propionic acid bis (hydroxymethyl) acetic acid, bis (4-hydroxyphenyl) acetic acid, 2,2-bis (4-hydroxyphenyl) pentanoic acid, tartaric acid, N, N-dihydroxyethylglycine, N, N-bis (2 -Hydroxyethyl) -3-carboxyl-propionamide and the like.
  • the molecular weight of the urethane resin can be appropriately adjusted using a chain extender.
  • chain extender include compounds having two or more active hydrogens such as amino groups and hydroxyl groups capable of reacting with isocyanate groups.
  • diamine compounds, dihydrazide compounds, and glycols can be used.
  • urethane resins can be used by obtaining commercially available resins such as, for example, Hydran series, Bondic series manufactured by DIC Corporation, and Superflex series manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • the melamine resin component contained in the P2 layer in the present invention is a resin having a triazine ring in its molecule and three amino groups around it, and a resin obtained by reacting the resin with other components.
  • the melamine resin is preferably tri-type, and by using the tri-type melamine resin, the adhesion retention after the acceleration test can be further improved.
  • melamine resins can be obtained by using commercially available resins such as, for example, Becamine series manufactured by DIC Corporation, and Nicarak series manufactured by Sanwa Chemical Co., Ltd.
  • the epoxy resin component contained in the P2 layer in the present invention is a resin having a glycidyl group in the molecule and a resin obtained by reacting the resin with other components.
  • the number of functional groups of the epoxy resin is preferably three or more, and by using an epoxy resin having three or more functional groups, the adhesion retention after the acceleration test can be further enhanced. Further, the upper limit of the number of functional groups of the epoxy resin is not limited to this range, but those having 4 functional groups or less are common.
  • epoxy resins can be used by obtaining commercially available resins such as EPICLON series, ADDITIVE series manufactured by DIC Corporation, and Denacol series manufactured by Nagase ChemteX Corporation.
  • P2 layer in this invention is a layer formed from the coating composition containing a urethane resin, a melamine resin, and an epoxy resin, and 80 mass% by solid content weight in the coating composition in which urethane resin forms P2 layer It is preferable to contain 99% by mass or less. More preferably, it is 90 mass% or more.
  • the coating composition which forms P2 layer in P2 layer in this invention when the urethane resin contains 80 mass% or more by solid content weight, in the solar cell back surface protection sheet
  • the upper limit of the solid content weight of the urethane resin in the coating composition for forming the P2 layer is not limited to this range, but is 99% by mass or less from the viewpoint of adhesion retention after the acceleration test. It is preferable to do this.
  • the weight ratio Wm / We (weight of melamine resin / weight of epoxy resin) of the melamine resin and the epoxy resin in the coating composition forming the P2 layer in the present invention is preferably in the range of 2 to 5, More preferably, it is in the range of 2.5-4.
  • the weight ratio Wm / We of the melamine resin and the epoxy resin in the coating composition for forming the P2 layer in the present invention is in the range of 2 to 5, adhesion retention after the acceleration test can be further improved.
  • the P2 layer needs to have a water contact angle of 74 ° or more.
  • the contact angle of water is a contact angle with water obtained by a method defined in JIS K-6768 (1999), preferably 76 ° or more, more preferably 79 ° or more. If the contact angle of water in the P2 layer is less than 74 °, even if adhesion with the sealing material is obtained, adhesion retention after the acceleration test is insufficient.
  • the coating composition forming the P2 layer contains three components of urethane resin, melamine resin, and epoxy resin, and the coating composition It can be obtained by setting the solid content weight ratio of the urethane resin contained therein to 70% by mass or more.
  • the solid content weight ratio of the urethane resin contained in the coating composition that forms the P2 layer is 80% by mass or more, and the coating material that forms the P2 layer. It can be obtained by setting the weight ratio Wm / We of the melamine resin and the epoxy resin contained in the composition in the range of 2 to 5.
  • the upper limit of the contact angle with water of the P2 layer is not limited, but is preferably less than 99 °.
  • the contact angle of the P2 layer with water is 99 ° or more, the adhesion with the P1 layer may be lowered, and as a result, the adhesion between the solar cell back surface protection sheet of the present invention and the sealing material is insufficient. There is a case.
  • the P2 layer contains three components of a urethane resin component, a melamine resin component, and an epoxy resin component, and the contact angle of water is set to 74 ° or more, whereby a sealing material It is possible to achieve both the adhesion and the adhesion retention after the acceleration test.
  • the solar cell back surface protection sheet of the present invention is mounted on a solar cell, the solar cell is excellent in durability even when placed outdoors for a long period of time. It can be a battery.
  • Various additives such as a surfactant and an ultraviolet absorber can be added.
  • the solar cell back surface protection sheet of the present invention when the solar cell back surface protection sheet of the present invention is mounted on a solar cell by adding an ultraviolet absorber to the P2 layer, the solar cell back surface protection sheet and the sealing material are irradiated by ultraviolet light from the power generation cell side. It can suppress that adhesiveness falls.
  • the ultraviolet absorber inorganic particles such as titanium oxide and zinc oxide, those containing an ultraviolet absorber, and a resin component copolymerized with a molecular skeleton having ultraviolet absorbing ability are preferably used and preferably contained.
  • the amount is from 1% to 50%, more preferably from 5% to 40%, and even more preferably from 10% to 30% by weight of the solid content in the coating composition forming the P2 layer.
  • blocking at the time of winding can be prevented by adding silica particles as an anti-blocking agent to the P2 layer. Further, by adding a surfactant to the P2 layer, it is possible to increase the affinity of the coating liquid for the P1 layer and suppress coating unevenness.
  • the thickness of the P2 layer in the solar cell back surface protective sheet of the present invention is preferably 0.1 ⁇ m or more and 2.0 ⁇ m or less, more preferably 0.2 ⁇ m or more and 1.2 ⁇ m or less, and further preferably 0.5 ⁇ m or more and 1.0 ⁇ m. It is as follows. When the thickness of the P2 layer in the solar cell back surface protective sheet of the present invention is less than 0.1 ⁇ m, the adhesion to the sealing material may be insufficient. On the other hand, if the thickness of the P2 layer is more than 2.0 ⁇ m, the winding property may deteriorate due to insufficient drying, or the coating property may deteriorate.
  • the P2 layer in the present invention may have a laminated structure for the purpose of improving easy adhesion.
  • an anchor coat layer (referred to as P21 layer) having excellent adhesion with the P1 layer is provided in advance on one surface of the P1 layer, and a layer (referred to as P22 layer) that is further excellent in easy adhesion on the P21 layer.
  • the providing method is also preferably used.
  • the structure of the sheet is laminated in the order of P1 layer // P21 layer / P22 layer, and the thickness of the P2 layer is represented by P21 layer + P22 layer.
  • the P21 layer has good adhesiveness with the resin constituting the P1 layer and the P22 layer
  • the P22 layer is excellent in adhesiveness with the resin constituting the P21 layer and the sealing material.
  • the resin used for the P21 layer and the P22 layer those exemplified for the P2 layer can be suitably used as appropriate.
  • the solar cell back surface protective sheet of the present invention is provided with a layer having other functions such as gas barrier property and ultraviolet resistance on one side surface of the P1 layer (however, the surface opposite to the surface in contact with the P2 layer). be able to.
  • thermo laminating method a method of separately preparing materials to be laminated with the P1 layer and thermocompression bonding with a heated group of rolls
  • a method of bonding together with an adhesive a method of bonding together with an adhesive
  • coating method a method of dissolving the material for forming the material to be laminated in a solvent and applying the solution onto the P1 layer prepared in advance
  • electromagnetic wave irradiation after applying a curable material onto the P1 layer
  • a method of curing by heat treatment or the like a method of depositing / sputtering a material to be laminated on the P1 layer, a method combining these, and the like can be used.
  • the solar cell back surface protection sheet of the present invention is excellent in moisture and heat resistance.
  • the elongation at break after applying the wet heat treatment to the solar cell back surface protective sheet of the present invention is preferably 10% or more, more preferably 20% or more, and further preferably 40% or more. The details of the method for measuring the elongation at break after the wet heat treatment here will be described later.
  • the breaking elongation after applying wet heat treatment is less than 10%
  • the solar cell equipped with the solar cell back surface protection sheet of the present invention is placed outdoors for a long time
  • cracks and the like due to deterioration may occur and the appearance of the solar cell may deteriorate.
  • polyethylene having an intrinsic viscosity IV of 0.65 dl / g or more and a terminal carboxyl group content of 25 equivalents / ton or less is used for the polyester resin constituting the P1 layer.
  • a preferable method is to use terephthalate.
  • the solar cell back surface protective sheet of the present invention preferably has excellent ultraviolet resistance. Specifically, it is preferable that the color tone change ⁇ b when the ultraviolet ray treatment test is performed using the P1 layer of the solar cell back surface protective sheet of the present invention as an incident surface is less than 10, more preferably less than 3. Details of the method for measuring the color tone change ⁇ b when the ultraviolet treatment test is performed will be described later.
  • the solar cell back surface protection sheet of the present invention when the color change ⁇ b when the ultraviolet treatment test is performed with the P1 layer as the incident surface exceeds 10, the solar cell mounted with the solar cell back surface protection sheet of the present invention is long. When placed outdoors during the period, the appearance of the solar cell may deteriorate due to discoloration due to ultraviolet rays.
  • a solar cell back surface protection sheet excellent in moist heat resistance and ultraviolet resistance is used for a long time outdoors with the solar cell mounted with the solar cell back surface protection sheet of the present invention. Even if it is placed, it can be a solar cell having no appearance defect.
  • the manufacturing method of the raw material which comprises P1 layer can be manufactured with the following method.
  • the resin used as the raw material of the P1 layer of the present invention can be obtained by subjecting dicarboxylic acid or its ester derivative and diol to a transesterification reaction or an esterification reaction by a well-known method.
  • reaction catalysts include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and phosphorus compounds.
  • an antimony compound, a germanium compound, or a titanium compound is preferably added as a polymerization catalyst at an arbitrary stage before the PET production method is completed.
  • the polyester resin As such a method, for example, when a germanium compound is taken as an example, it is preferable to add the germanium compound powder as it is.
  • the polyester resin In order to control the number average molecular weight of the polyester resin, for example, when the number average molecular weight is 10,000 to 20,000, the polyester resin having a number average molecular weight of about 9500 is once polymerized by the above method, and then 190 ° C.
  • a so-called solid-phase polymerization method in which heating is performed at a temperature lower than the melting point of the polyester resin under reduced pressure or a flow of an inert gas such as nitrogen gas is preferable. This method is preferably performed in that the number average molecular weight can be increased without increasing the terminal carboxyl group amount of the thermoplastic resin.
  • the P1 layer manufacturing method is a method in which the P1 layer raw material is heated and melted in an extruder and extruded from a die onto a cast drum cooled (processed into a sheet). Method).
  • the raw material for the P1 layer is dissolved in a solvent, and the solution is extruded from a die onto a support such as a cast drum or an endless belt to form a film, and then the solvent is dried and removed from the film layer.
  • a method of processing into a shape (solution casting method) or the like can also be used.
  • the material of each layer to be laminated is mainly composed of a thermoplastic resin
  • the two different thermoplastic resins are put into two extruders and melted to join.
  • a method of co-extrusion onto a cast drum cooled from the die and processing it into a sheet can be preferably used.
  • a uniaxial or biaxially stretched sheet base material is selected as the laminate including the P1 layer and / or the P1 layer, as a manufacturing method thereof, first, an extruder (in the case of a laminated structure, a plurality of extruders) ), Melt and extrude from the die (coextrusion in the case of a laminated structure), and cool and solidify by static electricity on a drum cooled to a surface temperature of 10 to 60 ° C. to produce an unstretched sheet .
  • an extruder in the case of a laminated structure, a plurality of extruders
  • Melt and extrude from the die coextrusion in the case of a laminated structure
  • static electricity on a drum cooled to a surface temperature of 10 to 60 ° C.
  • the unstretched sheet is led to a group of rolls heated to a temperature of 70 to 140 ° C., stretched 3 to 4 times in the longitudinal direction (longitudinal direction, that is, the traveling direction of the sheet), and the temperature is 20 to 50 ° C. Cool with rolls.
  • both ends of the sheet are guided to a tenter while being gripped by clips, and stretched 3 to 4 times in a direction (width direction) perpendicular to the longitudinal direction in an atmosphere heated to a temperature of 80 to 150 ° C.
  • the stretching ratio is 3 to 5 times in each of the longitudinal direction and the width direction, but the area ratio (longitudinal stretching ratio ⁇ lateral stretching ratio) is preferably 9 to 15 times.
  • the area ratio is less than 9 times, the durability of the resulting biaxially stretched sheet is insufficient, and conversely when the area magnification exceeds 15 times, there is a tendency that tearing tends to occur during stretching.
  • the simultaneous biaxial stretching method in addition to the sequential biaxial stretching method in which the stretching in the longitudinal direction and the width direction is separated as described above, the simultaneous biaxial stretching method in which the stretching in the longitudinal direction and the width direction is performed simultaneously. Either one does not matter.
  • the method for forming the P2 layer on the P1 layer in the sheet of the present invention is not particularly limited, but it is preferable to use a coating technique.
  • a coating method a known method can be applied, and for example, a roll coating method, a dip coating method, a bar coating method, a die coating method, a gravure roll coating method, or a combination of these methods can be used. it can.
  • the bar coating method is preferable from the viewpoint of a wide selection range of the coating agent, while the die coating method and the gravure roll coating method can be preferably selected from the viewpoint of thick film coating property when it is desired to increase the thickness of the P2 layer.
  • the P2 layer is formed by in-line coating provided in the manufacturing process of the P1 layer from the viewpoint of simplifying the process.
  • the heat setting temperature of the P1 layer is preferably 150 ° C. or more and 250 ° C. or less, more preferably 170 ° C. from the viewpoint of the compatibility between the drying temperature of the coating composition, the thermal dimensional stability of the base material layer P1 and the heat and humidity resistance. It is more than 230 degreeC, More preferably, it is 180 degreeC or more and 220 degrees C or less.
  • a corona treatment may be applied to the surface of the base material layer P1 immediately before the coating step. Good.
  • Examples of the solvent for the coating composition for forming the P2 layer in the sheet of the present invention include toluene, xylene, ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, dimethylformamide, dimethylacetamide, Methanol, ethanol, water and the like can be exemplified, and the properties of the coating liquid may be either emulsion type or dissolution type.
  • the method of emulsifying the urethane resin, melamine resin, and epoxy resin contained in the coating composition for forming the P2 layer is not particularly limited, and is widely used as a solid / liquid stirring device or an emulsifier. It can be made by equipment known to the vendor.
  • the solar cell back surface protection sheet of the present invention can be manufactured by the above manufacturing method.
  • the obtained sheet for protecting the back surface of the solar battery has excellent adhesion to the sealing material of the solar battery cell, maintains adhesion even when left outdoors for a long time (excellent retention), and is moisture resistant. It has the performance of being excellent in heat resistance and ultraviolet resistance.
  • the solar cell of the present invention is characterized by using the solar cell back surface protective sheet.
  • the solar cell back surface protection sheet By using the solar cell back surface protection sheet, it is possible to increase the durability as compared with the conventional solar cell.
  • An example of the configuration is shown in FIG.
  • a power generating element connected with a lead wire for taking out electricity (not shown in FIG. 1) is sealed with a transparent sealing material 2 such as EVA resin, a transparent substrate 4 such as glass, and a solar cell back surface protection Although it is configured to be bonded as the sheet 1, it is not limited to this and can be used for any configuration.
  • the solar cell back surface protection sheet shows an example of a single body, the solar cell back surface protection sheet should be a composite sheet in which other films are laminated according to other required characteristics. Is also possible.
  • the solar cell back surface protection sheet 1 plays a role of protecting the power generation cell installed on the back surface of the sealing material 2 sealing the power generation element.
  • the solar cell back surface protection sheet is preferably arranged so that the P2 layer is in contact with the sealing material 2.
  • the power generating element 3 converts light energy of sunlight into electric energy, and is based on crystalline silicon, polycrystalline silicon, microcrystalline silicon, amorphous silicon, copper indium selenide, compound semiconductor, dye enhancement Arbitrary elements such as a sensitive system can be used in series or in parallel according to the desired voltage or current depending on the purpose. Since the transparent substrate 4 having translucency is located on the outermost surface layer of the solar cell, a transparent material having high weather resistance, high contamination resistance, and high mechanical strength characteristics in addition to high transmittance is used. In the solar cell of the present invention, the transparent substrate 4 having translucency can be made of any material as long as the above characteristics are satisfied. Examples thereof include glass, ethylene tetrafluoride-ethylene copolymer (ETFE), polyfluoride.
  • ETFE ethylene tetrafluoride-ethylene copolymer
  • Vinyl fluoride resin PVDF
  • PVDF polyvinylidene fluoride resin
  • TFE polytetrafluoroethylene resin
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • CFE polytrifluoroethylene chloride resin
  • Fluorinated resins such as polyvinylidene fluoride resin, olefinic resins, acrylic resins, and mixtures thereof.
  • glass it is more preferable to use a tempered glass.
  • stretched the said resin uniaxially or biaxially from a viewpoint of mechanical strength is used preferably.
  • the adhesiveness with EVA resin etc. which are the sealing materials of an electric power generation element, it is also preferably performed to give the surface a corona treatment, a plasma treatment, an ozone treatment, and an easy adhesion treatment. .
  • the sealing material 2 for sealing the power generation element covers and fixes the unevenness of the surface of the power generation element with resin, protects the power generation element from the external environment, and has a translucent base for the purpose of electrical insulation.
  • a material having high transparency, high weather resistance, high adhesion, and high heat resistance is used in order to adhere to the material or back sheet and the power generation element. Examples thereof include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA) resin, ethylene-methacrylic acid copolymer (EMAA), Ionomer resins, polyvinyl butyral resins, and mixtures thereof are preferably used.
  • the solar cell of the present invention can be suitably used for various applications without being limited to outdoor use and indoor use such as a solar power generation system and a power source for small electronic components.
  • Measurement method and evaluation method of characteristics (1) Component qualitative property of P2 layer The component qualitative property of the P2 layer in Examples and Comparative Examples was performed by separating the P2 layer of the solar cell back surface protection sheet and performing pyrolysis gas chromatography mass spectrometry (GC-MS).
  • Pyrolytic device PY-2010DD frontier lab
  • gas chromatograph GC-14AF gas chromatograph
  • FID flame ionization detector
  • column is used for the column.
  • a methylsilicone capillary column was connected for use. Further, derivatization was performed with TMAH (tetramethylammonium hydroxide) as necessary. The presence or absence of each component was determined as follows, and in the table, the P2 layer was described as Y when each component was contained, and N when not contained.
  • the terminal carboxyl group amount was measured by the following method according to the method of Malice. (Document M. J. Malice, F. Huizinga, Anal. Chim. Acta, 22 363 (1960)). 2 g of a measurement sample (polyester resin (raw material) or solar cell back surface protection sheet P1 layer only) 2 g was dissolved in 50 ml of o-cresol / chloroform (weight ratio 7/3) at a temperature of 80 ° C. The solution was titrated with a 05N KOH / methanol solution, and the terminal carboxyl group concentration was measured and indicated by the value of equivalent / polyester 1t.
  • the indicator at the time of titration used phenol red, and the place where it changed from yellowish green to light red was set as the end point of titration. If there is insoluble matter such as inorganic particles in the solution in which the measurement sample is dissolved, the solution is filtered to measure the weight of the insoluble matter, and the value obtained by subtracting the weight of the insoluble matter from the measurement sample weight The following correction was made.
  • Thickness of P2 layer Using a microtome, a small piece cut in a direction perpendicular to the surface of the solar cell back surface protection sheet was prepared, and the cross section was taken as a field emission scanning electron microscope JSM-6700F (JEOL Ltd. ))) And magnified to 10,000 times. From the cross-sectional photograph, the thickness of the P2 layer was calculated from the magnification. In addition, the thickness used the cross-sectional photograph of five places arbitrarily selected from the different measurement visual field, and used the average value.
  • Adhesion evaluation with sealing material 5-1
  • Adhesion with sealing material Based on JIS K 6854-2 (1999) an EVA sheet as a sealing material and a solar cell back surface protection sheet
  • the adhesiveness was evaluated from the peel strength with the surface on the P2 layer side.
  • the measurement test piece is a 500 ⁇ m thick EVA sheet (vinyl acetate copolymerization ratio: 28 mol%) on a semi-tempered glass having a thickness of 3 mm, and the P2 layer side of the sheet of the example and the comparative example is the EVA sheet side.
  • a layer obtained by press treatment using a commercially available vacuum laminator under conditions of a hot platen temperature of 145 ° C., a vacuum drawing of 4 minutes, a press of 1 minute, and a holding time of 10 minutes was used.
  • the peel strength test is performed at 180 ° peel, the width of the test piece is 10 mm, two test pieces are prepared, the place is changed for each test piece, the measurement is performed at three places, and the average value of the obtained measurement values is peeled off
  • the initial adhesion was determined as follows using the strength value.
  • seat of this invention fractured
  • the wet heat resistance was determined as follows.
  • breaking elongation after the wet heat test is 40% or more of the breaking elongation before the wet heat test: A When the breaking elongation after the wet heat test is 20% or more and less than 40% of the breaking elongation before the wet heat test: B When the breaking elongation after the wet heat test is 10% or more and less than 20% of the breaking elongation before the wet heat test: C When the breaking elongation after the wet heat test is less than 10% of the breaking elongation before the wet heat test: D The wet heat resistance is good in A to C, and A is the best among them.
  • the longitudinal direction of the wiring material protruding from the cell of the produced 1-cell module wiring and the longitudinal direction of the copper foil A-SPS 0.23 ⁇ 6.0 made by Hitachi Cable as the take-out electrode cut into 180 mm are perpendicular to each other. Then, the flux was applied to the portion where the wiring material and the take-out electrode overlapped, and solder welding was performed to produce a wire with the take-out electrode.
  • 190 mm ⁇ 190 mm 3.2 mm thick white plate heat-treated glass for solar cells manufactured by Asahi Glass Co., Ltd. 190 mm ⁇ 190 mm 500 ⁇ m thick EVA sheet (vinyl acetate copolymerization ratio: 28 mol%), produced wiring with takeout electrode, 190 mm ⁇ A 190 mm 500 ⁇ m thick EVA sheet and a solar cell back surface protection sheet cut out to 190 mm ⁇ 190 mm are stacked in order so that the P2 layer side surface is located on the EVA side, and the glass is brought into contact with the hot platen of the vacuum laminator And laminating under the conditions of a hot platen temperature of 145 ° C., a vacuuming of 4 minutes, a press of 1 minute, and a holding time of 10 minutes to produce a solar cell. At this time, the wiring with the extraction electrode was set so that the glass surface was on the cell surface side.
  • PET raw material A used in Examples 1 to 16, 18, 20 and Comparative Examples 1 to 6)
  • a polycondensation reaction was performed using 100 parts by mass of terephthalic acid as the dicarboxylic acid component, 100 parts by mass of ethylene glycol as the diol component, and magnesium acetate, antimony trioxide, and phosphorous acid as the catalyst.
  • the obtained polyethylene terephthalate was dried and crystallized at 160 ° C. for 6 hours, and then subjected to solid phase polymerization at 220 ° C. and a vacuum degree of 0.3 Torr for 9 hours to have a melting point of 255 ° C. and an intrinsic viscosity of 0.80 dl / g.
  • PET-A polyethylene terephthalate
  • PET raw material B (used in Example 19) A polycondensation reaction was performed using 100 parts by mass of terephthalic acid as the dicarboxylic acid component, 100 parts by mass of ethylene glycol as the diol component, and magnesium acetate, antimony trioxide, and phosphorous acid as the catalyst. Next, the obtained polyethylene terephthalate was dried and crystallized at 160 ° C. for 6 hours to obtain a polyethylene terephthalate (PET-B) raw material having a melting point of 255 ° C., an intrinsic viscosity of 0.65 dl / g, and a terminal carboxyl group content of 25 equivalents / ton. It was.
  • PET-B polyethylene terephthalate
  • reaction temperature reached 220 ° C.
  • 0.042 parts by mass of 3,5-dicarboxybenzenesulfonic acid tetrabutylphosphonium salt was added.
  • a transesterification reaction was carried out, and 0.023 parts by mass of trimethyl phosphoric acid was added.
  • the reaction product is transferred to a polymerization apparatus, heated to a temperature of 290 ° C., subjected to a polycondensation reaction under a high vacuum of 30 Pa, and the stirring torque of the polymerization apparatus is a predetermined value (specifically depending on the specifications of the polymerization apparatus).
  • polyethylene-2,6-naphthalate having an intrinsic viscosity of 0.65 in this polymerization apparatus was a predetermined value.
  • the obtained polyethylene naphthalate was dried and crystallized at 160 ° C. for 6 hours, and then subjected to solid phase polymerization at 220 ° C. and a vacuum degree of 0.3 Torr for 9 hours, melting point 255 ° C., intrinsic viscosity 0.70 dl / g, A PEN raw material having a terminal carboxyl group attachment amount of 25 equivalents / ton was obtained.
  • PET raw material A-based titanium oxide master used in Examples 1 to 15, 20 and Comparative Examples 1 to 6) Above 1. 100 parts by mass of the PET resin (PET-A) obtained according to the above and 100 parts by mass of rutile-type titanium oxide particles having an average particle diameter of 210 nm are melt-kneaded in a vented 290 ° C. extruder to obtain a titanium oxide raw material (PETa- TiO 2 ) was prepared.
  • PET raw material B base titanium oxide master (used in Example 19) 2. 100 parts by mass of the PET resin (PET-B) obtained according to the above and 100 parts by mass of rutile-type titanium oxide particles having an average particle diameter of 210 nm are melt-kneaded in a vented 290 ° C. extruder to obtain a titanium oxide raw material (PETb- TiO 2 ) was prepared.
  • PEN raw material-based titanium oxide master (used in Example 17) 4. above. 100 parts by mass of the PEN resin obtained according to the above and 100 parts by mass of rutile-type titanium oxide particles having an average particle diameter of 210 nm are melt-kneaded in a vented 300 ° C. extruder to produce a titanium oxide raw material (PEN-TiO 2 ). did.
  • PET raw material A base carbon particle master (used in Example 18) Above 1. 100 parts by mass of the PET resin (PET-A) obtained according to the above and 100 parts by mass of carbon particles having an average particle diameter of 40 nm were melt-kneaded in a vented 290 ° C. extruder to obtain a carbon particle raw material (PETa-CB). Produced.
  • Coating agents A to I (used in Examples 1 to 9 and 16 to 20) DIC Corporation polyester urethane resin coating “Hydran” (registered trademark) AP-201 as urethane resin and DIC Corporation tri-type melamine resin coating “Beckamine” (registered trademark) PM-80 as epoxy resin, as epoxy resin
  • DIC Corporation polyester urethane resin coating “Hydran” (registered trademark) AP-201 as urethane resin
  • DIC Corporation tri-type melamine resin coating “Beckamine” (registered trademark) PM-80 as epoxy resin
  • Coating agent J (used in Example 10) A coating agent J was obtained in the same manner as coating agent A, except that a polyether urethane resin coating agent “HYDRAN” (registered trademark) WLS-202 manufactured by DIC Corporation was used as the urethane resin.
  • a polyether urethane resin coating agent “HYDRAN” registered trademark
  • Coating agent K (used in Example 11) A coating K was obtained in the same manner as coating A except that the polycarbonate urethane resin coating “HYDRAN” (registered trademark) WLS-213 manufactured by DIC Corporation was used as the urethane resin.
  • Coating agent L (used in Examples 12 and 13) Coating agent L was obtained in the same manner as coating agent A, except that dilution with pure water was performed so that the solid content concentration was 6% by mass.
  • Coating agent M (used in Examples 14 and 15) Coating agent M was obtained in the same manner as coating agent A, except that the solid content concentration was 23% by mass with dilution with pure water.
  • Coating agent N (used in Example 21) A coating agent N was obtained in the same manner as coating agent A, except that a hexa-type melamine resin coating agent “Beckamine” (registered trademark) J-101 manufactured by DIC Corporation was used as the melamine resin.
  • Coating agent O used in Comparative Example 1
  • DIC Corporation Polyester Urethane Resin “Hydran” (Registered Trademark) AP-201 was used alone as the urethane resin to dilute with pure water to a solid content concentration of 17% by mass to obtain Coating O .
  • Coating agent P (used in Comparative Example 2) DIC Corporation polyester urethane resin coating “Hydran” (registered trademark) AP-201 as urethane resin and DIC Corporation tri-type melamine resin coating “Beccamin” (registered trademark) PM-80 as melamine resin in Table 3 After mixing at a solid content weight ratio, the mixture was diluted with pure water so that the solid content concentration was 17% by mass, and a coating agent P was obtained.
  • Coating agent R (used in Comparative Example 4) DIC Corporation polyester urethane resin coating “Hydran” (registered trademark) AP-201 as urethane resin and DIC Corporation tri-type melamine resin coating “Beckamine” (registered trademark) PM-80 as epoxy resin, as epoxy resin
  • DIC Corporation polyester urethane resin coating “Hydran” (registered trademark) AP-201 as urethane resin
  • DIC Corporation tri-type melamine resin coating “Beckamine” (registered trademark) PM-80 as epoxy resin
  • Coating agent S (used in Comparative Example 5) A coating S was obtained in the same manner as the coating A except that an acrylic resin-based coating “Nicazole” (registered trademark) RX7013ED manufactured by Nippon Carbide Industries Co., Ltd. was used instead of the urethane resin.
  • Coating agent T (used in Comparative Example 6) A coating agent T was obtained in the same manner as the coating agent A except that a polyester resin-based coating material Pes Resin TR620K manufactured by Takamatsu Yushi Co., Ltd. was used instead of the urethane resin.
  • PET raw material A (PET-A) vacuum-dried at 180 ° C. for 2 hours and PET raw material A-based titanium oxide master (PETa-TiO 2 ) were blended so that the amount of particles was the concentration shown in Table 1, and inside the extruder at 280 ° C. And kneaded and introduced into a T die die. Subsequently, it was melt-extruded into a sheet form from a T-die die and adhered and cooled and solidified by an electrostatic application method on a drum maintained at a surface temperature of 25 ° C. to obtain an unstretched sheet.
  • PET raw material A PET-A
  • PET raw material A-based titanium oxide master PET raw material A-based titanium oxide master
  • the tenter While holding both ends of the obtained uniaxially stretched sheet with a clip, the tenter is guided to a preheating zone at a temperature of 80 ° C. in the tenter, and then continuously heated at 90 ° C. in a direction perpendicular to the longitudinal direction (width direction).
  • the film was stretched 3.5 times.
  • heat treatment was performed at 220 ° C. for 20 seconds in a heat treatment zone in the tenter, and further relaxation treatment was performed in the 4% width direction at 220 ° C. Then, it was gradually cooled gradually to form a sheet having a total thickness of 125 ⁇ m.
  • the P2 layer contains three components of a urethane resin component, a melamine resin component, and an epoxy resin component. Except for Examples 10 and 11, the urethane resin component contains a polyester urethane resin. It was confirmed to be a urethane resin component.
  • the solar cell back surface protection sheet has good initial adhesion and adhesion retention with the sealing material, and in particular, the example in which the contact angle with water of the P2 layer is in a preferable range (76 ° or more) is sealed.
  • the contact angle with the water of the P2 layer is in a more preferable range (79 ° or more) is excellent in the close contact retention with the material. It turned out that it is a sheet for use. It was also found that all the solar cell back surface protection sheets obtained were excellent in heat and moisture resistance and UV resistance. Furthermore, the solar cell carrying the obtained solar cell back surface protection sheet was produced, and the durability of the solar cell was evaluated. As a result, as shown in Table 4, it was found that the solar cell on which the sheet for protecting the back surface of the solar cell, which was very excellent in adhesion and retention with the sealing material, had very excellent durability.
  • Example 12 to 15 The coating agent corresponding to the number of the example in the coating agent described in Table 2 in the P2 layer is the same as that in Example 1 except that the count of the metering bar is adjusted so as to be the thickness of the P2 layer shown in Table 2. Similarly, a sheet was obtained. When the characteristics of the P2 layer of the obtained sheet were evaluated, the contact angle with water and the thickness were as shown in Table 2.
  • the P2 layer contained three components, a urethane resin component, a melamine resin component, and an epoxy resin component, and the thickness of the P2 layer was thinner than that of Example 1.
  • Nos. 12 and 13 were found to be solar cell back surface protection sheets in a range that is inferior in initial adhesion to the sealing material and in close contact retention but no problem.
  • Examples 14 and 15 in which the thickness of the P2 layer was thicker than Example 1 had initial adhesion and adhesion retention with a very excellent sealing material equivalent to Example 1, As for No. 15, application stripes were confirmed visually.
  • the solar cell on which the obtained solar cell back surface protection sheets of Examples 14 and 15 are mounted has extremely excellent durability, and the solar cell back surface protection sheets of Examples 12 and 13 are mounted.
  • the solar cell was found to be in a range where there is no problem although it is inferior in durability.
  • Example 16 A sheet was obtained in the same manner as in Example 1 except that only PET raw material A (PET-A) was used for the P1 layer.
  • PET-A PET raw material A
  • the P1 layer was separated from the obtained sheet and the polymer characteristics were measured, the intrinsic viscosity IV and the amount of terminal carboxyl groups were as shown in Table 2.
  • the obtained sheet has initial adhesion and adhesion retention with a very excellent sealing material equivalent to that in Example 1, and is slightly inferior in UV resistance, but very excellent moisture and heat resistance. It turned out that it is a solar cell back surface protection sheet which has. Furthermore, it turned out that the solar cell carrying the obtained sheet
  • Example 17 A sheet was obtained in the same manner as in Example 1 except that the PEN material (PEN) and the PEN-based titanium oxide master (PEN-TiO 2 ) were used for the P1 layer.
  • the P1 layer was separated from the obtained sheet and the polymer characteristics were measured, the intrinsic viscosity IV and the amount of terminal carboxyl groups were as shown in Table 2.
  • the obtained sheet is inferior to Example 1 but has excellent initial adhesiveness and adhesiveness retention with a sealing material, and has a very excellent moisture and heat resistance sheet.
  • seat for solar cell back surface protection was inferior compared with Example 1, it turned out that it has the outstanding durability.
  • Example 18 A sheet was obtained in the same manner as in Example 1 except that PET raw material A (PET-A) and PET raw material A-based CB master (PETa-CB) were used for the P1 layer.
  • PET raw material A PET raw material A
  • PET raw material A-based CB master PET raw material A-based CB master
  • the P1 layer was separated from the obtained sheet and the polymer characteristics were measured, the intrinsic viscosity IV and the amount of terminal carboxyl groups were as shown in Table 2.
  • the obtained sheet has initial adhesion and adhesion retention with a very excellent sealing material equivalent to that of Example 1, and has a very excellent ultraviolet resistance for protecting the back surface of a solar cell. It turned out to be a sheet. Furthermore, it turned out that the solar cell carrying the obtained sheet
  • Example 19 A sheet was obtained in the same manner as in Example 1 except that PET raw material B (PET-B) and PET raw material B-based titanium oxide master (PETb-TiO 2 ) were used for the P1 layer.
  • PET raw material B PET raw material B
  • PETb-TiO 2 PET raw material B-based titanium oxide master
  • the obtained sheet has initial adhesiveness and adhesion retention with a very excellent sealing material equivalent to that of Example 1, and has no problem although moisture and heat resistance is inferior to that of Example 1. It turned out that it is a solar cell back surface protection sheet. Furthermore, although the solar cell carrying the obtained sheet
  • the PET raw material A PET-A
  • PET raw material A-based titanium oxide master PETa-TiO 2
  • the raw materials were melted and kneaded separately by two extruders, introduced into a T-die die through feed blocks from the two extruders to obtain a laminated sheet of P11 / P12. Obtained.
  • the screw rotation speeds of the two extruders were adjusted so that the stacking ratio of P11 / P12 was 7/1.
  • the intrinsic viscosity IV and the amount of terminal carboxyl groups were as shown in Table 2.
  • the obtained sheet was found to be a sheet for protecting the back surface of a solar cell having very excellent easy adhesion equivalent to that of Example 1, and having very excellent moist heat resistance and ultraviolet resistance. It was. Furthermore, it turned out that the solar cell carrying the obtained sheet
  • Example 21 As described in Table 2, a sheet was obtained in the same manner as in Example 1 except that the coating agent N was applied to the P2 layer. When the characteristics of the P2 layer of the obtained sheet were evaluated, the contact angle with water and the thickness were as shown in Table 2.
  • the obtained sheet was found to be a sheet for protecting the back surface of a solar cell, which was inferior to that of Example 1 but had excellent initial adhesion and adhesion retention with an excellent sealing material. Furthermore, although the solar cell carrying the obtained sheet
  • the solar cell back surface protection sheet of the present invention can be suitably used as a back surface protection sheet of a solar cell module.
  • it can be suitably used as an easy-adhesive sheet in applications that require adhesion with an ethylene-vinyl acetate copolymer resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The purpose of the present invention is to provide a sheet for solar cell backside protection, which exhibits excellent adhesion to a sealing material and maintains the adhesion even if placed outdoors for a long period of time (namely has excellent adhesion retention ability). A solar cell backside protection sheet (1) according to the present invention comprises: a base layer (P1 layer) that is formed of a polyester resin; and a highly adhesive layer (P2 layer) that is adjacent to at least one side of the P1 layer. The P2 layer satisfies the following conditions (A) and (B). (A) To contain three components, namely a urethane resin component, a melamine resin component and an epoxy resin component. (B) To have a contact angle with water of 74° or more.

Description

太陽電池裏面保護用シートSolar cell back surface protection sheet
 本発明は、太陽電池セルの封止材との密着性に優れ、長期間屋外に置かれても密着性を維持する(密着保持性が優れた)太陽電池裏面保護用シートに関する。 The present invention relates to a sheet for protecting a back surface of a solar cell, which has excellent adhesion to a sealing material for solar cells and maintains adhesion even when left outdoors for a long time (excellent retention).
 近年、半永久的で無公害の次世代エネルギー源として太陽光発電が注目を浴びており、太陽電池は急速に普及しつつある。太陽電池は、発電素子をエチレン-酢酸ビニル共重合体(以降EVAと称することがある)などの透明な封止材により封止したものに、ガラスなどの透明基板と、バックシート(裏面保護用シート)と呼ばれる樹脂シートを貼り合わせて構成される。太陽光は透明基板を通じて太陽電池内に導入される。太陽電池内に導入された太陽光は、発電素子にて、吸収され、吸収された光エネルギーは、電気エネルギーに変換される。変換された電気エネルギーは発電素子に接続したリード線にて取り出されて、各種電気機器に使用される。 In recent years, photovoltaic power generation has attracted attention as a semi-permanent and pollution-free next-generation energy source, and solar cells are rapidly spreading. In a solar cell, a power generating element is sealed with a transparent sealing material such as ethylene-vinyl acetate copolymer (hereinafter sometimes referred to as EVA), a transparent substrate such as glass, and a back sheet (for back surface protection). A resin sheet called a “sheet” is bonded together. Sunlight is introduced into the solar cell through the transparent substrate. Sunlight introduced into the solar cell is absorbed by the power generation element, and the absorbed light energy is converted into electrical energy. The converted electric energy is taken out by a lead wire connected to the power generation element and used for various electric devices.
 ここで、太陽電池裏面保護用シートには、安価で高性能である二軸延伸ポリエチレンテレフタレート(以降PETと称することがある)が広く用いられており、種々の素材をドライラミネートなどの方法にて貼り合わせることによってバリア性や電気特性を付与する検討がされてきた。しかしながら、PETなどのポリエステル樹脂は封止材との密着性が弱い。そのため、従来では、PETなどのポリエステル樹脂に封止材との密着性に優れたポリオレフィン樹脂シートをラミネートし、ポリオレフィン樹脂シートを太陽電池裏面保護用シートの封止材接着面として用いることが一般的であった。 Here, biaxially stretched polyethylene terephthalate (hereinafter sometimes referred to as PET) that is inexpensive and has high performance is widely used as a sheet for protecting the back surface of a solar cell, and various materials can be applied by a method such as dry lamination. Studies have been made to impart barrier properties and electrical characteristics by bonding. However, polyester resins such as PET have poor adhesion to the sealing material. Therefore, conventionally, it is common to laminate a polyolefin resin sheet excellent in adhesion to a sealing material on a polyester resin such as PET and use the polyolefin resin sheet as a sealing material adhesion surface of a solar cell back surface protection sheet. Met.
 また、最近では、二軸延伸されたポリエステルフィルムの表面に易接着層を設け、封止材に直接張り合わせることが可能なポリエステルシート(特許文献1、2、3)などが開示されている。 In recent years, polyester sheets (Patent Documents 1, 2, and 3) that are provided with an easy-adhesion layer on the surface of a biaxially stretched polyester film and can be directly bonded to a sealing material have been disclosed.
特開2006-152013号公報JP 2006-152013 A 特許第4803317号公報Japanese Patent No. 4803317 特開2012-69835号公報JP 2012-69835 A
 しかしながら、特許文献1~3に挙げられた従来の易接着層では封止材との密着性が非常に弱く、太陽電池セルの加工時はもちろん、太陽電池セルとして屋外で用いられている間に封止材との界面または易接着の層間で剥離しやすいという問題があった。この問題を解決するため、本発明では従来の課題を鑑みて、封止材との密着性に優れ、長期間屋外に置かれても密着性を維持する(密着保持性が優れた)太陽電池裏面保護用シートを提供することを目的とする。 However, the conventional easy-adhesion layers listed in Patent Documents 1 to 3 have very weak adhesion to the sealing material, and are not only used during the processing of solar cells but also used outdoors as solar cells. There has been a problem that it is easy to peel off at the interface with the sealing material or at the easily adhesive layer. In order to solve this problem, in the present invention, in view of the conventional problems, the solar cell is excellent in adhesion with a sealing material and maintains adhesion even when left outdoors for a long time (excellent retention property). It aims at providing the sheet | seat for back surface protection.
 上記課題を解決するために本発明は以下の構成をとる。すなわち、ポリエステル樹脂からなる基材層(P1層)と、前記P1層の少なくとも片側に隣接する易接着層(P2層)を有し、前記のP2層が次の(1)、(2)の要件を満たすことを特徴とする太陽電池裏面保護用シートである。
(1)ウレタン樹脂成分、メラミン樹脂成分、エポキシ樹脂成分の3成分を含む。
(2)水の接触角が74°以上である。
In order to solve the above problems, the present invention has the following configuration. That is, it has a base material layer (P1 layer) made of a polyester resin and an easy adhesion layer (P2 layer) adjacent to at least one side of the P1 layer, and the P2 layer is the following (1), (2) It is a solar cell back surface protection sheet characterized by satisfying the requirements.
(1) Contains three components, a urethane resin component, a melamine resin component, and an epoxy resin component.
(2) The contact angle of water is 74 ° or more.
 本発明によれば、従来の二軸延伸されたポリエステルフィルムの表面に易接着層を設けた積層シートに比べて、封止材との密着性に優れ、長期間屋外に置かれても密着性を維持する(密着保持性が優れた)太陽電池裏面保護用シートとして好適に使用でき、さらに該シートを用いることによって高性能な太陽電池を提供することができる。 According to the present invention, compared to a conventional laminated sheet in which an easy-adhesion layer is provided on the surface of a biaxially stretched polyester film, it has excellent adhesiveness with a sealing material, and even when placed outdoors for a long period of time. Can be suitably used as a sheet for protecting the back surface of a solar cell (with excellent adhesion retention), and a high-performance solar cell can be provided by using the sheet.
本発明の太陽電池裏面保護用シートを用いた太陽電池の構成の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of a structure of the solar cell using the solar cell back surface protection sheet of this invention.
 本発明の太陽電池裏面保護用シートは、ポリエステル樹脂からなる基材層(P1層)と、前記P1層の少なくとも片側に隣接する易接着層(P2層)を有し、前記のP2層が次の(1)、(2)の要件を満たすことを特徴とする。
(1)ウレタン樹脂成分、メラミン樹脂成分、エポキシ樹脂成分の3成分を含む。
(2)水の接触角が74°以上である。
The sheet for protecting the back surface of a solar cell of the present invention has a base material layer (P1 layer) made of a polyester resin and an easy adhesion layer (P2 layer) adjacent to at least one side of the P1 layer. The requirements (1) and (2) are satisfied.
(1) Contains three components, a urethane resin component, a melamine resin component, and an epoxy resin component.
(2) The contact angle of water is 74 ° or more.
 (基材層(P1層))
 まず、本発明におけるP1層は、ポリエステル樹脂を主たる構成成分とする。ここで、ポリエステル樹脂を主たる構成成分とするとは、該P1層を構成する樹脂に対してポリエステル樹脂が50質量%を超えて含有されていることをいう。P1層を構成するポリエステル樹脂としては、具体的にはポリエチレンテレフタレート、ポリエチレン-2、6-ナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸などが挙げられる。また、本発明に用いられるポリエステル樹脂は、1)ジカルボン酸もしくはそのエステル形成性誘導体(以下、「ジカルボン酸成分」と総称する)とジオール成分の重縮合、2)一分子内にカルボン酸もしくはカルボン酸誘導体と水酸基を有する化合物の重縮合、および1)2)の組み合わせにより得ることができる。また、ポリエステル樹脂の重合は常法により行うことができる。
(Base material layer (P1 layer))
First, the P1 layer in the present invention contains a polyester resin as a main component. Here, the main constituent component of the polyester resin means that the polyester resin is contained in an amount exceeding 50% by mass with respect to the resin constituting the P1 layer. Specific examples of the polyester resin constituting the P1 layer include polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, and polylactic acid. The polyester resin used in the present invention includes 1) polycondensation of dicarboxylic acid or an ester-forming derivative thereof (hereinafter collectively referred to as “dicarboxylic acid component”) and a diol component, and 2) carboxylic acid or carboxylic acid in one molecule. It can be obtained by a polycondensation of an acid derivative and a compound having a hydroxyl group, and 1) 2). The polymerization of the polyester resin can be performed by a conventional method.
 1)において、ジカルボン酸成分としては、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸などの脂環族ジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルエンダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸などの芳香族ジカルボン酸、もしくはそのエステル誘導体などが代表例としてあげられる。また、これらは単独で用いても、複数種類用いても構わない。 In 1), as the dicarboxylic acid component, malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid, Aliphatic dicarboxylic acids such as ethylmalonic acid, alicyclic dicarboxylic acids such as adamantane dicarboxylic acid, norbornene dicarboxylic acid, cyclohexane dicarboxylic acid, decalin dicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, 4,4′-diphenylsulfonedicarboxylic acid Acid, 5-sodium Ruhoisofutaru acid, phenyl ene boys carboxylic acid, anthracene dicarboxylic acid, phenanthrene carboxylic acid, 9,9'-bis (4-carboxyphenyl) aromatic dicarboxylic acids such as fluorene acid, or the like its ester derivatives and the like as a typical example. These may be used alone or in combination.
 また、上述のジカルボン酸成分の少なくとも一方のカルボキシ末端に、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸類およびその誘導体や該オキシ酸類が複数個連なったもの等を縮合させたジカルボキシ化合物も用いることができる。 In addition, dicarboxyl obtained by condensing oxyacids such as l-lactide, d-lactide, and hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of such oxyacids, at least one carboxy terminus of the dicarboxylic acid component described above. Compounds can also be used.
 次に、ジオール成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオールなどの脂肪族ジオール、シクロヘキサンジメタノール、スピログリコール、イソソルビドなどの脂環式ジオール、ビスフェノールA、1,3-ベンゼンジメタノール,1,4-ベンセンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレンなどの芳香族ジオールが代表例としてあげられる。また、これらは単独で用いても、必要に応じて、複数種類用いても構わない。また、上述のジオール成分の少なくとも一方のヒドロキシ末端にジオール類を縮合させて形成されるジヒドロキシ化合物も用いることができる。 Next, the diol component includes aliphatic diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol. , Cycloaliphatic dimethanol, spiroglycol, isosorbide and other alicyclic diols, bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 9,9'-bis (4-hydroxyphenyl) fluorene, etc. Aromatic diols are typical examples. Moreover, these may be used independently or may be used in multiple types as needed. In addition, a dihydroxy compound formed by condensing a diol with at least one hydroxy terminal of the diol component described above can also be used.
 2)において、一分子内にカルボン酸もしくはカルボン酸誘導体と水酸基を有する化合物の例としては、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸、およびその誘導体、オキシ酸類のオリゴマー、ジカルボン酸の一方のカルボキシル基にオキシ酸が縮合したもの等があげられる。 In 2), examples of the compound having a carboxylic acid or a carboxylic acid derivative and a hydroxyl group in one molecule include oxyacids such as l-lactide, d-lactide and hydroxybenzoic acid, and derivatives thereof, oligomers of oxyacids, dicarboxylic acids Examples thereof include those obtained by condensing an oxyacid with one carboxyl group of the acid.
 ポリエステル樹脂を構成するジカルボン酸成分およびジオール成分は、上述した中から1種類ずつを選択して共重合させても良いし、それぞれ複数種を選択して共重合させても良い。 The dicarboxylic acid component and the diol component constituting the polyester resin may be copolymerized by selecting one from the above, or may be copolymerized by selecting a plurality of each.
 また、P1層を構成するポリエステル樹脂は、単一種でも良いし、2種以上のポリエステル樹脂をブレンドしたものでも良い。 The polyester resin constituting the P1 layer may be a single type or a blend of two or more types of polyester resins.
 本発明におけるP1層を構成する樹脂は、前述のとおりポリエステル樹脂を主たる構成成分とするが、固有粘度IVは0.65dl/g以上0.80dl/g以下、かつ末端カルボキシル基量が25当量/トン以下であることが好ましい。また、該ポリエステル樹脂はポリエチレンテレフタレート(PET)を主たる構成成分とすることが好ましい。ここで、主たる構成成分とは、該ポリエステル樹脂に対して50質量%を超えて含有されていることをいう。P1層を構成する樹脂が、PETを主たる構成成分とする場合、該PETの固有粘度IVは0.65dl/g以上が好ましく、より好ましくは0.69dl/g以上である。固有粘度IVが0.65dl/g未満の場合、シートの耐湿熱性が悪くなる場合がある。また、固有粘度IVが0.80dl/gを超える場合、P1層を製造する際に樹脂の押出性が悪く、シート成型が困難となる場合がある。さらに、固有粘度IVが上記範囲を満たしていても、末端カルボキシル基量が25当量/トンを超える場合、P2層との密着性は良くなるが、シートの耐湿熱性が悪くなるので、好ましくない場合がある。よって、P1層を構成する樹脂がPETを主たる構成成分とする場合、上記範囲を満たすことによって、成型性、長期耐久性に非常に優れた太陽電池裏面保護用シートとすることが出来る。 As described above, the resin constituting the P1 layer in the present invention is mainly a polyester resin, but the intrinsic viscosity IV is 0.65 dl / g or more and 0.80 dl / g or less, and the terminal carboxyl group amount is 25 equivalents / It is preferably less than tons. The polyester resin is preferably composed mainly of polyethylene terephthalate (PET). Here, the main component means that it is contained in excess of 50% by mass with respect to the polyester resin. When the resin constituting the P1 layer contains PET as the main constituent, the intrinsic viscosity IV of the PET is preferably 0.65 dl / g or more, more preferably 0.69 dl / g or more. When the intrinsic viscosity IV is less than 0.65 dl / g, the moisture and heat resistance of the sheet may be deteriorated. Moreover, when intrinsic viscosity IV exceeds 0.80 dl / g, when the P1 layer is manufactured, the extrudability of the resin is poor, and sheet molding may be difficult. Furthermore, even if the intrinsic viscosity IV satisfies the above range, if the terminal carboxyl group amount exceeds 25 equivalents / ton, the adhesion with the P2 layer is improved, but the moisture and heat resistance of the sheet is deteriorated, which is not preferable. There is. Therefore, when the resin constituting the P1 layer contains PET as a main constituent, by satisfying the above range, a sheet for protecting a back surface of a solar cell that is extremely excellent in moldability and long-term durability can be obtained.
 本発明の太陽電池裏面保護用シートにおいて、P1層を構成するポリエステル樹脂の数平均分子量は8000~40000が好ましく、より好ましくは数平均分子量が9000~30000、更に好ましくは10000~20000である。ここでいうP1層を構成するポリエステル樹脂の数平均分子量とは、本発明の太陽電池裏面保護用シートからP2層を分離し、ヘキサフルオロイソプロノール(HEIP)に溶解させ、ゲル浸透クロマトグラフ法(GPC法)で測定、示差屈折率計で検出した値から、標準試料として分子量既知のポリエチレンテレフタレート(PET-5R:Mw55800)とジメチルテレフタレートを用いて得られた値である。P1層を構成するポリエステル樹脂の数平均分子量が8000に満たない場合、耐湿熱性や耐熱性などのシートの長期耐久性が落ちる可能性があるため好ましくない。また、40000を超えると、重合が困難であるか重合できたとしても押出機による樹脂の押出が困難となり、製膜が困難となる場合がある。また、本発明の太陽電池裏面保護用シートにおいて、P1層は一軸、もしくは二軸に配向していることが好ましい。P1層が、一軸、もしくは二軸に配向していると、配向結晶化により耐湿熱性や耐熱性などのシートの長期耐久性を向上させることができる。 In the solar cell back surface protective sheet of the present invention, the number average molecular weight of the polyester resin constituting the P1 layer is preferably 8000 to 40000, more preferably 9000 to 30000, and still more preferably 10,000 to 20000. Here, the number average molecular weight of the polyester resin constituting the P1 layer refers to the gel permeation chromatography method by separating the P2 layer from the solar cell back surface protective sheet of the present invention and dissolving it in hexafluoroisopronol (HEIP). It is a value obtained by using polyethylene terephthalate (PET-5R: Mw 55800) having a known molecular weight and dimethyl terephthalate as standard samples from values measured by a GPC method and detected by a differential refractometer. When the number average molecular weight of the polyester resin constituting the P1 layer is less than 8000, it is not preferable because the long-term durability of the sheet such as moisture and heat resistance may be deteriorated. On the other hand, if it exceeds 40,000, even if the polymerization is difficult or the polymerization can be performed, it may be difficult to extrude the resin with an extruder and film formation may be difficult. In the solar cell back surface protective sheet of the present invention, the P1 layer is preferably uniaxially or biaxially oriented. When the P1 layer is uniaxially or biaxially oriented, the long-term durability of the sheet such as moist heat resistance and heat resistance can be improved by orientation crystallization.
 本発明におけるP1層に耐紫外線性、光反射性、光隠蔽性、意匠性、視認性などの特性を付与する目的で、おのおのの機能を有した粒子を含有させる方法も好ましく用いられる。例えば、耐紫外線性と光反射性の両方を向上させるためには、P1層を構成する樹脂に対して酸化チタン粒子を1質量%以上30質量%以下の範囲で含有させることが好ましい。これによって酸化チタン粒子による紫外線吸収能と光反射性を活かして、長期に亘って太陽電池裏面保護用シートの劣化による着色を低減するという効果と本発明の太陽電池裏面保護用シートを搭載した太陽電池の発電効率を高める効果の両方を期待することができる。また1質量%未満では耐紫外線性や光反射性が不足する場合があり、30質量%より多いとP2層との密着性が悪化する場合がある。より好ましい範囲としては1質量%以上25質量%以下であり、さらに好ましくは2質量%以上25質量%以下であり、特に好ましくは3質量%以上20質量%以下である。また優れた耐紫外線性と光反射性の両立という観点で、ルチル型酸化チタンを用いるのがより好ましい。 For the purpose of imparting properties such as ultraviolet resistance, light reflectivity, light hiding property, designability, and visibility to the P1 layer in the present invention, a method of containing particles having respective functions is also preferably used. For example, in order to improve both ultraviolet resistance and light reflectivity, it is preferable to contain titanium oxide particles in the range of 1% by mass to 30% by mass with respect to the resin constituting the P1 layer. This makes it possible to reduce the coloring due to deterioration of the sheet for protecting the back surface of the solar cell over a long period by utilizing the ultraviolet absorbing ability and the light reflectivity by the titanium oxide particles, and the sun mounted with the sheet for protecting the back surface of the solar cell of the present invention. Both of the effects of increasing the power generation efficiency of the battery can be expected. If it is less than 1% by mass, the UV resistance and light reflectivity may be insufficient. If it exceeds 30% by mass, the adhesion to the P2 layer may be deteriorated. A more preferable range is 1% by mass or more and 25% by mass or less, further preferably 2% by mass or more and 25% by mass or less, and particularly preferably 3% by mass or more and 20% by mass or less. Moreover, it is more preferable to use a rutile type titanium oxide from the viewpoint of achieving both excellent ultraviolet resistance and light reflectivity.
 更に耐紫外線性と光隠蔽性、意匠性を向上させるためには、P1層を構成する樹脂にフラーレン、カーボンファイバー、カーボンナノチューブなどの炭素系材料からなる粒子(以下、カーボン粒子)を0.1質量%以上5質量%以下の範囲で含有することが好ましい。これによってカーボン粒子による紫外線吸収能と光隠蔽性を活かして、長期に亘って太陽電池裏面保護用シートの劣化による着色を低減するという効果を発揮することができる。また0.1質量%未満では耐紫外線性が不足する場合があり、5質量%より多いとP2層との密着性が悪化する場合がある。より好ましい範囲としては0.2質量%以上4質量%以下であり、さらに好ましくは0.5質量%以上3質量%以下である。 Furthermore, in order to improve the ultraviolet resistance, light hiding property, and design, 0.1 particles (hereinafter referred to as carbon particles) made of a carbon-based material such as fullerene, carbon fiber, or carbon nanotube are used as the resin constituting the P1 layer. It is preferable to contain in the range of mass% or more and 5 mass% or less. This makes it possible to exhibit the effect of reducing coloring due to deterioration of the sheet for protecting the back surface of the solar cell over a long period of time by making use of the ultraviolet absorbing ability and light hiding property of the carbon particles. If it is less than 0.1% by mass, the UV resistance may be insufficient. If it exceeds 5% by mass, the adhesion with the P2 layer may be deteriorated. A more preferable range is 0.2% by mass or more and 4% by mass or less, and further preferably 0.5% by mass or more and 3% by mass or less.
 ここでP1層を構成するポリエステル樹脂に前記の粒子を含有させる方法としては、ポリエステル樹脂と粒子をベント式二軸混練押出機やタンデム型押出機を用いて、溶融混練する方法が好ましく用いられる。ここで、ポリエステル樹脂に粒子を含有させる際にポリエステル樹脂が熱負荷を受けると、ポリエステル樹脂は少なからず劣化する。そのため、P1層を構成するポリエステル樹脂に含まれる粒子量よりも粒子含有量が多い高濃度マスターペレットを作製し、それをポリエステル樹脂と混合して希釈し、所望の粒子含有量としたP1層を作製するのが、耐湿熱性の観点から好ましい。 Here, as a method of incorporating the particles into the polyester resin constituting the P1 layer, a method of melt-kneading the polyester resin and the particles using a vent type twin-screw kneading extruder or a tandem type extruder is preferably used. Here, when the polyester resin is subjected to a thermal load when the polyester resin contains particles, the polyester resin deteriorates not a little. Therefore, a high-concentration master pellet having a particle content larger than the amount of particles contained in the polyester resin constituting the P1 layer is prepared, mixed with the polyester resin and diluted to obtain a desired particle content P1 layer. It is preferable to produce it from the viewpoint of heat and humidity resistance.
 本発明の太陽電池裏面保護用シートにおけるP1層には、前記の酸化チタン粒子やカーボン粒子以外にも、本発明の効果が損なわれない範囲で必要に応じて、耐熱安定剤、耐酸化安定剤、紫外線吸収剤、紫外線安定剤、有機系/無機系の易滑剤、有機系/無機系の微粒子、充填剤、核剤、染料、分散剤、カップリング剤等の添加剤や、気泡が配合されていてもよい。例えば、添加剤として紫外線吸収剤を選択した場合には、本発明の太陽電池裏面保護用シートの耐紫外線性をより高めることが可能となる。また、帯電防止剤などを添加して電気絶縁性を向上させたり、有機系/無機系の微粒子や気泡を含有して光反射性を発現させたり、着色したい色の材料を添加して意匠性を付与することもできる。 In addition to the titanium oxide particles and carbon particles, the P1 layer in the solar cell back surface protection sheet of the present invention may include a heat-resistant stabilizer and an oxidation-resistant stabilizer as long as the effects of the present invention are not impaired. , UV absorbers, UV stabilizers, organic / inorganic lubricants, organic / inorganic fine particles, fillers, nucleating agents, dyes, dispersants, coupling agents, etc. It may be. For example, when an ultraviolet absorber is selected as an additive, the ultraviolet resistance of the solar cell back surface protective sheet of the present invention can be further enhanced. In addition, anti-static agents are added to improve electrical insulation, or organic or inorganic fine particles or bubbles are included to express light reflectivity, or a color material to be colored is added to create a design. Can also be given.
 本発明におけるP1層は、積層構造を有しても構わない。例えば、耐湿熱性に優れたP11層と、紫外線吸収剤や紫外線吸収能を持つ酸化チタン粒子を高濃度で含有する層P12層との積層構造などが好ましく用いられる。このようなP1層とする場合には、本発明の太陽電池裏面保護用シートの構成はP12層/P11層//P2層となることが、耐湿熱性と耐紫外線性との両立の観点から好ましい。この場合、P11層、P12層に用いる樹脂や粒子は、上記のP1層で例示したものを適宜、好適に用いることができる。 The P1 layer in the present invention may have a laminated structure. For example, a laminated structure of a P11 layer excellent in heat and moisture resistance and a layer P12 layer containing a high concentration of an ultraviolet absorber or titanium oxide particles having an ultraviolet absorbing ability is preferably used. In the case of such a P1 layer, the configuration of the solar cell back surface protection sheet of the present invention is preferably P12 layer / P11 layer // P2 layer from the viewpoint of coexistence of moisture and heat resistance. . In this case, as the resin and particles used for the P11 layer and the P12 layer, those exemplified for the P1 layer can be suitably used as appropriate.
 本発明の太陽電池裏面保護用シートは、P1層の厚みが30μm以上500μm未満であることが好ましい。P1層の厚みが30μm未満であると電気絶縁性が不足し、高電圧下で使用した際に絶縁破壊を起こすことがあり、太陽電池裏面保護用シートとして好ましくない場合がある。また、厚みが500μmより厚いと加工適性が悪く、また太陽電池裏面保護用シートとして用いた場合に、太陽電池セルの全体厚みが厚くなり過ぎることがあり、好ましくない場合がある。好ましい範囲は38μm以上400μm以下、さらに好ましくは50μm以上300μm以下である。 In the solar cell back surface protective sheet of the present invention, the P1 layer preferably has a thickness of 30 μm or more and less than 500 μm. When the thickness of the P1 layer is less than 30 μm, the electrical insulation is insufficient, and when it is used under a high voltage, dielectric breakdown may occur, which may not be preferable as a solar cell back surface protection sheet. On the other hand, if the thickness is greater than 500 μm, the processability is poor, and when used as a solar battery back surface protection sheet, the overall thickness of the solar battery cell may become too thick, which may be undesirable. A preferable range is 38 μm or more and 400 μm or less, and more preferably 50 μm or more and 300 μm or less.
 (P2層(以降易接着層と称する場合がある))
 本発明の太陽電池裏面保護用シートは、P1層に隣接して易接着層としてP2層を設けることが必要である。このとき、P2層はP1層の少なくとも片面に設ける必要がある。
(P2 layer (hereinafter sometimes referred to as easy-adhesion layer))
The solar cell back surface protection sheet of the present invention needs to be provided with a P2 layer as an easy adhesion layer adjacent to the P1 layer. At this time, the P2 layer needs to be provided on at least one side of the P1 layer.
 本発明の太陽電池裏面保護用シートにおいて、P2層はウレタン樹脂成分、メラミン樹脂成分、エポキシ樹脂成分の3成分を含まれていることを特徴とする。ここで言うウレタン樹脂成分とは、ウレタン樹脂だけでなく、ウレタン樹脂同士、または、ウレタン樹脂と他の成分(メラミン樹脂やエポキシ樹脂)と反応して得られる成分を含む。また、メラミン樹脂成分とは、メラミン樹脂だけでなく、メラミン樹脂同士、または、メラミン樹脂と他の成分(ウレタン樹脂やエポキシ樹脂)と反応して得られる成分を含む。また、エポキシ樹脂成分とは、エポキシ樹脂だけでなく、エポキシ樹脂同士、または、エポキシ樹脂と他の成分(ウレタン樹脂やメラミン樹脂)と反応して得られる成分を含む。また、ここでいう前記の3成分が含まれるとは、P2層の表面について、X線光電子分光分析装置(ESCA)、フーリエ赤外分光光度計(FT-IR)ATR法、飛行時間型二次イオン質量分析装置(TOF-SIMS)、またはP2層を溶剤にて溶解抽出し、プロトン核磁気共鳴分光法(H-NMR)、カーボン核磁気共鳴分光法(13C-NMR)、フーリエ赤外分光光度計(FT-IR)により構造を解析し、熱分解ガスクロマトグラフィー質量分析(GC-MS)によって実施したP2層の定性分析を行うことによって確認することができる。 In the solar cell back surface protective sheet of the present invention, the P2 layer is characterized by containing three components of a urethane resin component, a melamine resin component, and an epoxy resin component. The urethane resin component mentioned here includes not only urethane resins but also components obtained by reacting urethane resins with each other or with urethane resins and other components (melamine resin or epoxy resin). The melamine resin component includes not only melamine resins but also components obtained by reacting melamine resins with each other or with melamine resins and other components (urethane resin or epoxy resin). The epoxy resin component includes not only an epoxy resin but also a component obtained by reacting an epoxy resin with each other or with an epoxy resin and another component (urethane resin or melamine resin). In addition, the term “the three components” as used herein means that the surface of the P2 layer has an X-ray photoelectron spectrometer (ESCA), a Fourier infrared spectrophotometer (FT-IR) ATR method, a time-of-flight secondary Ion mass spectrometer (TOF-SIMS) or P2 layer is dissolved and extracted with a solvent, proton nuclear magnetic resonance spectroscopy ( 1 H-NMR), carbon nuclear magnetic resonance spectroscopy ( 13 C-NMR), Fourier infrared It can be confirmed by analyzing the structure with a spectrophotometer (FT-IR) and performing a qualitative analysis of the P2 layer performed by pyrolysis gas chromatography mass spectrometry (GC-MS).
 本発明のP2層に含まれるウレタン樹脂成分とは、主鎖中にポリオール化合物とポリイソシアネート化合物との反応で得られるウレタン結合を含有する樹脂、および、前記樹脂と他の成分が反応して得られる樹脂である。 The urethane resin component contained in the P2 layer of the present invention is obtained by reacting a resin containing a urethane bond obtained by a reaction between a polyol compound and a polyisocyanate compound in the main chain, and the resin and other components. Resin.
 また加速試験後の密着保持性に優れる点から、ウレタン樹脂成分は、ポリオール成分がポリエステルポリオールであるポリエステル骨格を有するウレタン樹脂(以降ポリエステルウレタン樹脂と称することがある)を含むことが好ましい。具体的にはポリエステルポリオールが以下に示されるジカルボン酸成分とジオール成分から合成されるポリエステルの構造を有することが好ましい。ジカルボン酸成分としては、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸などの脂環族ジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルエンダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸などの芳香族ジカルボン酸等が例示される。ジオール成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオールなどの脂肪族ジオール、シクロヘキサンジメタノール、スピログリコール、イソソルビドなどの脂環式ジオール、ビスフェノールA、1,3-ベンゼンジメタノール,1,4-ベンセンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレンなどの芳香族ジオールが挙げられる。 In addition, from the viewpoint of excellent adhesion retention after the acceleration test, the urethane resin component preferably includes a urethane resin having a polyester skeleton in which the polyol component is a polyester polyol (hereinafter sometimes referred to as a polyester urethane resin). Specifically, the polyester polyol preferably has a polyester structure synthesized from a dicarboxylic acid component and a diol component shown below. Dicarboxylic acid components include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid, ethylmalonic acid, etc. Aliphatic dicarboxylic acids, adamantane dicarboxylic acid, norbornene dicarboxylic acid, cyclohexane dicarboxylic acid, alicyclic dicarboxylic acid such as decalin dicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5- Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, 4,4′-diphenylsulfonedicarboxylic acid, 5- Sodium sulfoisophthalate , Phenyl ene boys carboxylic acid, anthracene dicarboxylic acid, phenanthrene carboxylic acid, 9,9'-bis (4-carboxyphenyl) and aromatic dicarboxylic acids such as fluorene acid. Examples of the diol component include aliphatic diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, Arocyclic diols such as methanol, spiroglycol and isosorbide, aromatic diols such as bisphenol A, 1,3-benzenedimethanol, 1,4-benzendimethanol and 9,9'-bis (4-hydroxyphenyl) fluorene Is mentioned.
 本発明のP2層に含まれるウレタン樹脂成分は、前記のポリエステルウレタン樹脂を含むことにより、加速試験後においても封止材との密着保持性に優れ、本発明の太陽電池裏面保護用シートを太陽電池に搭載した場合、より耐久性に優れた太陽電池とすることができる。 By including the polyester urethane resin, the urethane resin component contained in the P2 layer of the present invention has excellent adhesion retention with the sealing material even after the acceleration test. When mounted on a battery, the solar battery can be made more durable.
 一方、ウレタン樹脂に用いられるポリイソシアネート成分としては、芳香族、脂肪族および脂環族の公知のジイソシアネート類の1種または2種以上の混合物を用いることができる。ジイソシアネート類の具体例としては、トリレンジジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、1,5-ナフチレンジイソシアネート、イソホロンジイソシアネート、ジメリールジイソシアネート、リジンジイソシアネート、水添4,4′-ジフェニルメタンジイソシアネート、水添トリレンジジイソシアネート、ダイマー酸のカルボキシル基をイソシアネート基に転化したダイマージイソシアネート、およびこれらのアダクト体、ビウレット体、イソシアヌレート体等が挙げられる。また、ジイソシアネート類にはトリフェニルメタントリイソシアネート、ポリメチレンポリフェニルイソシアネート等の3官能以上のポリイソシアネート類を用いてもよい。 On the other hand, as the polyisocyanate component used for the urethane resin, one or a mixture of two or more known aromatic, aliphatic and alicyclic diisocyanates can be used. Specific examples of diisocyanates include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,3-phenylene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, 1,5-naphthylene diisocyanate, isophorone diisocyanate, dimaryl diisocyanate, Examples thereof include lysine diisocyanate, hydrogenated 4,4′-diphenylmethane diisocyanate, hydrogenated tolylene diisocyanate, dimerized isocyanate obtained by converting the carboxyl group of dimer acid to an isocyanate group, and adducts, biurets, and isocyanurates. Further, as the diisocyanates, trifunctional or higher functional polyisocyanates such as triphenylmethane triisocyanate and polymethylene polyphenyl isocyanate may be used.
 更に水性媒体への分散性の点からウレタン樹脂は、親水基を有しているものが好ましい。ここでいう親水基とは、カルボキシル基、スルホン酸基、硫酸基、リン酸基等の水性媒体中で陰イオンとなる官能基が挙げられる。前記の親水基を有するポリウレタン樹脂とすることで、塗工時のハンドリング性を高めることができる。 Further, from the viewpoint of dispersibility in an aqueous medium, the urethane resin preferably has a hydrophilic group. As used herein, the hydrophilic group includes a functional group that becomes an anion in an aqueous medium such as a carboxyl group, a sulfonic acid group, a sulfuric acid group, and a phosphoric acid group. By using the polyurethane resin having the hydrophilic group, handling properties at the time of coating can be enhanced.
 ここでウレタン樹脂に親水基を導入するには、カルボキシル基、スルホン酸基、硫酸基、リン酸基等を有するポリオール成分を用いればよい。カルボキシル基を有するポリオール化合物としては、3,5-ジヒドロキシ安息香酸、2,2-ビス(ヒドロキシメチル)プロピオン酸、2,2-ビス(ヒドロキシエチル)プロピオン酸、2,2-ビス(ヒドロキシプロピル)プロピオン酸、ビス(ヒドロキシメチル)酢酸、ビス(4-ヒドロキシフェニル)酢酸、2,2-ビス(4-ヒドロキシフェニル)ペンタン酸、酒石酸、N,N-ジヒドロキシエチルグリシン、N,N-ビス(2-ヒドロキシエチル)-3-カルボキシル-プロピオンアミド等が挙げられる。 Here, in order to introduce a hydrophilic group into the urethane resin, a polyol component having a carboxyl group, a sulfonic acid group, a sulfuric acid group, a phosphoric acid group or the like may be used. Examples of the polyol compound having a carboxyl group include 3,5-dihydroxybenzoic acid, 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxyethyl) propionic acid, and 2,2-bis (hydroxypropyl). Propionic acid, bis (hydroxymethyl) acetic acid, bis (4-hydroxyphenyl) acetic acid, 2,2-bis (4-hydroxyphenyl) pentanoic acid, tartaric acid, N, N-dihydroxyethylglycine, N, N-bis (2 -Hydroxyethyl) -3-carboxyl-propionamide and the like.
 更に鎖長延長剤を用いてウレタン樹脂の分子量を適宜調整することもできる。鎖長延長剤としては、イソシアネート基と反応することができるアミノ基や水酸基等の活性水素を2個以上有する化合物が挙げられ、例えば、ジアミン化合物、ジヒドラジド化合物、グリコール類を用いることができる。 Further, the molecular weight of the urethane resin can be appropriately adjusted using a chain extender. Examples of the chain extender include compounds having two or more active hydrogens such as amino groups and hydroxyl groups capable of reacting with isocyanate groups. For example, diamine compounds, dihydrazide compounds, and glycols can be used.
 これらのウレタン樹脂は、例えば、DIC株式会社製ハイドランシリーズ、ボンディックシリーズ、第一工業製薬株式会社製スーパーフレックスシリーズなど市販の樹脂を入手して用いることができる。 These urethane resins can be used by obtaining commercially available resins such as, for example, Hydran series, Bondic series manufactured by DIC Corporation, and Superflex series manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
 本発明におけるP2層に含まれるメラミン樹脂成分とは、分子中にトリアジン環とその周辺に三つのアミノ基を有する樹脂、および、前記樹脂と他の成分が反応して得られる樹脂である。具体的にはヘキサ型(トリアジン環に直接結合している3つのアミノ基に結合している官能基の数が6つ)のヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサキス-(メトキシメチル)メラミン、トリ型(トリアジン環に直接結合している3つのアミノ基に結合している官能基の数が3つ)のN,N’,N’’-トリメチル-N,N’,N’’-トリメチロールメラミン、N,N’,N’’-トリメチロールメラミン、N-メチロールメラミン、N,N’-(メトキシメチル)メラミン、N,N’,N’’-トリブチル-N,N’,N’’-トリメチロールメラミンなどが挙げられる。 The melamine resin component contained in the P2 layer in the present invention is a resin having a triazine ring in its molecule and three amino groups around it, and a resin obtained by reacting the resin with other components. Specifically, hexamethylol melamine, hexamethoxymethyl melamine, hexaethoxymethyl melamine, hexakis- (hexatype (the number of functional groups bonded to three amino groups directly bonded to the triazine ring is 6)) Methoxymethyl) melamine, tri-type (three functional groups bonded to three amino groups directly bonded to the triazine ring) N, N ′, N ″ -trimethyl-N, N ′, N ″ -trimethylol melamine, N, N ′, N ″ -trimethylol melamine, N-methylol melamine, N, N ′-(methoxymethyl) melamine, N, N ′, N ″ -tributyl-N, N ′, N ″ -trimethylolmelamine and the like can be mentioned.
 中でもメラミン樹脂はトリ型であることが好ましく、トリ型のメラミン樹脂を用いることで、加速試験後の密着保持性をより高めることができる。 Among them, the melamine resin is preferably tri-type, and by using the tri-type melamine resin, the adhesion retention after the acceleration test can be further improved.
 これらのメラミン樹脂は、例えば、DIC株式会社製ベッカミンシリーズ、株式会社三和ケミカル製ニカラックシリーズなど市販の樹脂を入手して用いることができる。 These melamine resins can be obtained by using commercially available resins such as, for example, Becamine series manufactured by DIC Corporation, and Nicarak series manufactured by Sanwa Chemical Co., Ltd.
 本発明におけるP2層に含まれるエポキシ樹脂成分とは、分子中にグリシジル基を有する樹脂、および、前記樹脂と他の成分が反応して得られる樹脂である。具体的にはN,N,N′,N′-テトラグリシジル-m-キシレンジアミン、ジグリシジルアニリン、1,3-ビス(N,N-グリシジルアミノメチル)シクロヘキサン、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、エテレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビタンポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、アジピン酸ジグリシジルエステル、o-フタル酸ジグリシジルエステル、トリグリシジル-トリス(2-ヒドロキシエチル)イソシアヌレート、レゾルシングリシジルエーテル、ビスフェノール-S-ジグリシジルエーテルの他、分子内にグリシジル基を2つ以上有するエポキシ樹脂などが挙げられる。 The epoxy resin component contained in the P2 layer in the present invention is a resin having a glycidyl group in the molecule and a resin obtained by reacting the resin with other components. Specifically, N, N, N ′, N′-tetraglycidyl-m-xylenediamine, diglycidylaniline, 1,3-bis (N, N-glycidylaminomethyl) cyclohexane, 1,6-hexanediol diglycidyl Ether, neopentyl glycol diglycidyl ether, etherene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, Polyglycerol polyglycidyl ether, sorbitan polyglycidyl ether, trimethylolpropane polyglycidyl ether, adipic acid dig In addition to cisidyl ester, o-phthalic acid diglycidyl ester, triglycidyl-tris (2-hydroxyethyl) isocyanurate, resorcinating glycidyl ether, bisphenol-S-diglycidyl ether, epoxy resin having two or more glycidyl groups in the molecule Etc.
 中でもエポキシ樹脂の官能基数は3官能基以上のものが好ましく、3官能基以上のエポキシ樹脂を用いることで加速試験後の密着保持性をより高めることができる。またエポキシ樹脂の官能基数の上限についてはこの範囲に限定されるものではないが、4官能基以下のものが一般的である。 Among them, the number of functional groups of the epoxy resin is preferably three or more, and by using an epoxy resin having three or more functional groups, the adhesion retention after the acceleration test can be further enhanced. Further, the upper limit of the number of functional groups of the epoxy resin is not limited to this range, but those having 4 functional groups or less are common.
 これらのエポキシ樹脂は、例えば、DIC株式会社製 EPICLONシリーズ、ADDITIVEシリーズ、ナガセケムテックス株式会社製デナコールシリーズなど市販の樹脂を入手して用いることができる。 These epoxy resins can be used by obtaining commercially available resins such as EPICLON series, ADDITIVE series manufactured by DIC Corporation, and Denacol series manufactured by Nagase ChemteX Corporation.
 本発明におけるP2層は、ウレタン樹脂、メラミン樹脂、エポキシ樹脂を含む塗剤組成物から形成される層であり、ウレタン樹脂がP2層を形成する塗剤組成物中の固形分重量で80質量%以上99%質量%以下含むことが好ましい。より好ましくは90質量%以上である。本発明におけるP2層が、P2層を形成する塗剤組成物中、ウレタン樹脂を固形分重量で80質量%以上含んでいると、本発明の太陽電池裏面保護用シートにおいて、封止材との初期密着性をより高めることができる。ここでP2層を形成する塗剤組成物中のウレタン樹脂の固形分重量の上限については、この範囲に限定されるものではないが、加速試験後の密着保持性の点から99質量%以下とするのが好ましい。 P2 layer in this invention is a layer formed from the coating composition containing a urethane resin, a melamine resin, and an epoxy resin, and 80 mass% by solid content weight in the coating composition in which urethane resin forms P2 layer It is preferable to contain 99% by mass or less. More preferably, it is 90 mass% or more. In the coating composition which forms P2 layer in P2 layer in this invention, when the urethane resin contains 80 mass% or more by solid content weight, in the solar cell back surface protection sheet | seat of this invention, it is with sealing material. Initial adhesion can be further increased. Here, the upper limit of the solid content weight of the urethane resin in the coating composition for forming the P2 layer is not limited to this range, but is 99% by mass or less from the viewpoint of adhesion retention after the acceleration test. It is preferable to do this.
 また本発明におけるP2層を形成する塗剤組成物中のメラミン樹脂とエポキシ樹脂の重量比Wm/We(メラミン樹脂の重量/エポキシ樹脂の重量)は、2~5の範囲であることが好ましく、より好ましくは2.5~4の範囲である。本発明におけるP2層を形成する塗剤組成物中のメラミン樹脂とエポキシ樹脂の重量比Wm/Weが2~5の範囲であると、加速試験後の密着保持性をより高めることができる。 The weight ratio Wm / We (weight of melamine resin / weight of epoxy resin) of the melamine resin and the epoxy resin in the coating composition forming the P2 layer in the present invention is preferably in the range of 2 to 5, More preferably, it is in the range of 2.5-4. When the weight ratio Wm / We of the melamine resin and the epoxy resin in the coating composition for forming the P2 layer in the present invention is in the range of 2 to 5, adhesion retention after the acceleration test can be further improved.
 本発明の太陽電池裏面保護用シートにおいて、P2層は水の接触角が74°以上である必要がある。ここでいう水の接触角とはJIS K 6768(1999)に定められた方法で得られた水との接触角であり、好ましくは76°以上、より好ましくは79°以上である。P2層の水の接触角が74°未満であると、封止材との密着性が得られても、加速試験後の密着保持性が不足する。 In the solar cell back surface protective sheet of the present invention, the P2 layer needs to have a water contact angle of 74 ° or more. The contact angle of water here is a contact angle with water obtained by a method defined in JIS K-6768 (1999), preferably 76 ° or more, more preferably 79 ° or more. If the contact angle of water in the P2 layer is less than 74 °, even if adhesion with the sealing material is obtained, adhesion retention after the acceleration test is insufficient.
 尚、本発明におけるP2層の水の接触角を74°以上とするには、P2層を形成する塗料組成物中にウレタン樹脂、メラミン樹脂、エポキシ樹脂の3成分を含み、かつ、塗料組成物中に含まれるウレタン樹脂の固形分重量比率を70質量%以上とすることにより得ることができる。また、P2層の水の接触角をより好ましい範囲とするには、P2層を形成する塗料組成物中に含まれるウレタン樹脂の固形分重量比率を80質量%以上とし、P2層を形成する塗料組成物中に含まれるメラミン樹脂とエポキシ樹脂の重量比Wm/Weを2~5の範囲とすることにより得ることができる。 In addition, in order to make the contact angle of water of the P2 layer in the present invention 74 ° or more, the coating composition forming the P2 layer contains three components of urethane resin, melamine resin, and epoxy resin, and the coating composition It can be obtained by setting the solid content weight ratio of the urethane resin contained therein to 70% by mass or more. In order to make the contact angle of water in the P2 layer a more preferable range, the solid content weight ratio of the urethane resin contained in the coating composition that forms the P2 layer is 80% by mass or more, and the coating material that forms the P2 layer. It can be obtained by setting the weight ratio Wm / We of the melamine resin and the epoxy resin contained in the composition in the range of 2 to 5.
 尚、P2層の水との接触角の上限は制限されるものではないが、99°未満であることが好ましい。P2層の水との接触角が99°以上の場合、P1層との密着性が低下する恐れがあり、結果的に本発明の太陽電池裏面保護用シートと封止材との密着性が不足する場合がある。 In addition, the upper limit of the contact angle with water of the P2 layer is not limited, but is preferably less than 99 °. When the contact angle of the P2 layer with water is 99 ° or more, the adhesion with the P1 layer may be lowered, and as a result, the adhesion between the solar cell back surface protection sheet of the present invention and the sealing material is insufficient. There is a case.
 本発明の太陽電池裏面保護用シートにおいて、P2層はウレタン樹脂成分、メラミン樹脂成分、エポキシ樹脂成分の3成分を含み、尚且つ、水の接触角を74°以上とすることで、封止材との密着性及び加速試験後の密着保持性の両立が可能となり、本発明の太陽電池裏面保護用シートを太陽電池に搭載した場合、長期間屋外に置かれた状況でも耐久性の優れた太陽電池とすることができる。 In the solar cell back surface protective sheet of the present invention, the P2 layer contains three components of a urethane resin component, a melamine resin component, and an epoxy resin component, and the contact angle of water is set to 74 ° or more, whereby a sealing material It is possible to achieve both the adhesion and the adhesion retention after the acceleration test. When the solar cell back surface protection sheet of the present invention is mounted on a solar cell, the solar cell is excellent in durability even when placed outdoors for a long period of time. It can be a battery.
 本発明の太陽電池裏面保護用シートにおけるP2層には、本発明の効果を損なわない範囲で、公知の熱安定剤、滑剤、帯電防止剤、耐ブロッキング剤、染料、顔料、光増感剤、界面活性剤、紫外線吸収剤などの各種添加剤を添加することができる。 In the P2 layer in the solar cell back surface protective sheet of the present invention, a known thermal stabilizer, lubricant, antistatic agent, anti-blocking agent, dye, pigment, photosensitizer, as long as the effects of the present invention are not impaired. Various additives such as a surfactant and an ultraviolet absorber can be added.
 例えば、P2層に紫外線吸収剤を添加することで、本発明の太陽電池裏面保護用シートを太陽電池に搭載した場合、発電セル側からの紫外線によって太陽電池裏面保護用シートと封止材との密着性が低下することを抑制することができる。この場合、紫外線吸収剤としては酸化チタンや酸化亜鉛などの無機粒子、紫外線吸収剤が配合されたものや紫外線吸収能を有する分子骨格を共重合したような樹脂成分が好適に用いられ、好ましい含有量としてはP2層を形成する塗料組成物中の固形分重量で1%以上50%以下、より好ましくは5%以上40%以下、更に好ましくは10%以上30%以下である。 For example, when the solar cell back surface protection sheet of the present invention is mounted on a solar cell by adding an ultraviolet absorber to the P2 layer, the solar cell back surface protection sheet and the sealing material are irradiated by ultraviolet light from the power generation cell side. It can suppress that adhesiveness falls. In this case, as the ultraviolet absorber, inorganic particles such as titanium oxide and zinc oxide, those containing an ultraviolet absorber, and a resin component copolymerized with a molecular skeleton having ultraviolet absorbing ability are preferably used and preferably contained. The amount is from 1% to 50%, more preferably from 5% to 40%, and even more preferably from 10% to 30% by weight of the solid content in the coating composition forming the P2 layer.
 更に、P2層に耐ブロッキング剤としてシリカ粒子を添加することで、巻き取り時のブロッキングを防止することができる。またP2層に界面活性剤を添加することで、P1層への塗液の親和性を高め、塗布ムラを抑えることができる。 Furthermore, blocking at the time of winding can be prevented by adding silica particles as an anti-blocking agent to the P2 layer. Further, by adding a surfactant to the P2 layer, it is possible to increase the affinity of the coating liquid for the P1 layer and suppress coating unevenness.
 本発明の太陽電池裏面保護用シートにおけるP2層の厚みは0.1μm以上2.0μm以下が好ましく、より好ましくは0.2μm以上1.2μm以下であり、さらに好ましくは0.5μm以上1.0μm以下である。本発明の太陽電池裏面保護用シートにおけるP2層の厚みが0.1μm未満の場合、封止材との密着性が不足することがある。また、P2層の厚みが2.0μmより厚いと乾燥不足による巻取り性の悪化、または塗布性が悪化することがある。 The thickness of the P2 layer in the solar cell back surface protective sheet of the present invention is preferably 0.1 μm or more and 2.0 μm or less, more preferably 0.2 μm or more and 1.2 μm or less, and further preferably 0.5 μm or more and 1.0 μm. It is as follows. When the thickness of the P2 layer in the solar cell back surface protective sheet of the present invention is less than 0.1 μm, the adhesion to the sealing material may be insufficient. On the other hand, if the thickness of the P2 layer is more than 2.0 μm, the winding property may deteriorate due to insufficient drying, or the coating property may deteriorate.
 本発明におけるP2層は、より易接着性を向上させる目的で、積層構造を有してもよい。例えば、予めP1層の片側表面にP1層と接着性に優れるアンカーコート層(P21層とする)を設けておき、P21層の上に、さらに易接着性に優れる層(P22層とする)を設ける手法も好ましく用いられる。その場合、シートの構成は、P1層//P21層/P22層の順で積層され、P2層の厚みは、P21層+P22層で表される。このとき、P21層は、P1層およびP22層を構成する樹脂と接着性が良く、また、P22層はP21層および封止材を構成する樹脂と密着性に優れ、太陽電池セル作成時の熱圧着ラミネート時の温度で封止材と相溶性を生じるものであれば、特に限定されない。この場合、P21層、P22層に用いる樹脂は、上記のP2層で例示したものを適宜好適に用いることができる。 The P2 layer in the present invention may have a laminated structure for the purpose of improving easy adhesion. For example, an anchor coat layer (referred to as P21 layer) having excellent adhesion with the P1 layer is provided in advance on one surface of the P1 layer, and a layer (referred to as P22 layer) that is further excellent in easy adhesion on the P21 layer. The providing method is also preferably used. In that case, the structure of the sheet is laminated in the order of P1 layer // P21 layer / P22 layer, and the thickness of the P2 layer is represented by P21 layer + P22 layer. At this time, the P21 layer has good adhesiveness with the resin constituting the P1 layer and the P22 layer, and the P22 layer is excellent in adhesiveness with the resin constituting the P21 layer and the sealing material. There is no particular limitation as long as it is compatible with the sealing material at the temperature during pressure laminating. In this case, as the resin used for the P21 layer and the P22 layer, those exemplified for the P2 layer can be suitably used as appropriate.
 (太陽電池裏面保護用シート)
 本発明の太陽電池裏面保護用シートは、P1層の片側表面(ただし、P2層と接する表面とは反対側の表面)に、例えばガスバリア性、耐紫外線性などの他の機能を持つ層を設けることができる。これらの層を設ける方法としては、P1層と積層する材料をそれぞれ別々に作製し、加熱されたロール群などにより熱圧着する方法(熱ラミネート法)、接着剤を介して貼り合わせる方法(接着法)、その他、積層する材料の形成用材料を溶媒に溶解させ、その溶液をあらかじめ作製していたP1層上に塗布する方法(コーティング法)、硬化性材料をP1層上に塗布した後に電磁波照射、加熱処理などで硬化させる方法、積層する材料をP1層上に蒸着/スパッタする方法、およびこれらを組み合わせた方法等を使用することができる。
(Solar cell backside protection sheet)
The solar cell back surface protective sheet of the present invention is provided with a layer having other functions such as gas barrier property and ultraviolet resistance on one side surface of the P1 layer (however, the surface opposite to the surface in contact with the P2 layer). be able to. As a method of providing these layers, a method of separately preparing materials to be laminated with the P1 layer and thermocompression bonding with a heated group of rolls (thermal laminating method), a method of bonding together with an adhesive (adhesion method) ) In addition, a method of dissolving the material for forming the material to be laminated in a solvent and applying the solution onto the P1 layer prepared in advance (coating method), electromagnetic wave irradiation after applying a curable material onto the P1 layer A method of curing by heat treatment or the like, a method of depositing / sputtering a material to be laminated on the P1 layer, a method combining these, and the like can be used.
 本発明の太陽電池裏面保護用シートは耐湿熱性に優れていることが好ましい。具体的には本発明の太陽電池裏面保護用シートに湿熱処理を加えた後の破断伸度が10%以上であることが好ましく、より好ましくは20%以上、さらに好ましくは40%以上である。ここでいう湿熱処理を加えた後の破断伸度の測定方法の詳細については後述する。本発明の太陽電池裏面保護用シートにおいて、湿熱処理を加えた後の破断伸度が10%未満の場合、本発明の太陽電池裏面保護用シートを搭載した太陽電池を長期間屋外に置いた際に、劣化による亀裂などが発生し太陽電池の外観が悪くなる可能性がある。本発明の太陽電池裏面保護用シートにおいて耐湿熱性を向上させるには、P1層を構成するポリエステル樹脂の固有粘度IVを0.65dl/g以上、かつ末端カルボキシル基量を25当量/トン以下のポリエチレンテレフタレートとすることが好ましい方法として挙げられる。P1層を構成するポリエステル樹脂の固有粘度IVや末端カルボキシル基量を上記の範囲とすることにより、湿熱処理を加えた後の破断伸度を向上させることが可能となる。 It is preferable that the solar cell back surface protection sheet of the present invention is excellent in moisture and heat resistance. Specifically, the elongation at break after applying the wet heat treatment to the solar cell back surface protective sheet of the present invention is preferably 10% or more, more preferably 20% or more, and further preferably 40% or more. The details of the method for measuring the elongation at break after the wet heat treatment here will be described later. In the solar cell back surface protection sheet of the present invention, when the breaking elongation after applying wet heat treatment is less than 10%, when the solar cell equipped with the solar cell back surface protection sheet of the present invention is placed outdoors for a long time In addition, cracks and the like due to deterioration may occur and the appearance of the solar cell may deteriorate. In order to improve the heat and moisture resistance in the solar cell back surface protection sheet of the present invention, polyethylene having an intrinsic viscosity IV of 0.65 dl / g or more and a terminal carboxyl group content of 25 equivalents / ton or less is used for the polyester resin constituting the P1 layer. A preferable method is to use terephthalate. By setting the intrinsic viscosity IV and the terminal carboxyl group amount of the polyester resin constituting the P1 layer within the above ranges, it is possible to improve the elongation at break after applying the wet heat treatment.
 本発明の太陽電池裏面保護用シートは耐紫外線性に優れていることが好ましい。具体的には本発明の太陽電池裏面保護用シートのP1層を入射面として紫外線処理試験を行ったときの色調変化Δbが10未満であることが好ましく、より好ましくは3未満である。ここでいう紫外線処理試験を行ったときの色調変化Δbの測定方法の詳細については後述する。本発明の太陽電池裏面保護用シートにおいて、P1層を入射面として紫外線処理試験を行ったときの色調変化Δbが10を超える場合、本発明の太陽電池裏面保護用シートを搭載した太陽電池を長期間屋外に置いた際に、紫外線による変色によって太陽電池の外観が悪くなる可能性がある。また本発明の太陽電池裏面保護用シートにおいて耐紫外線性に優れている範囲とするには、P1層の総質量に対して酸化チタン粒子を3質量%以上添加することが好ましい方法として挙げられ、酸化チタン粒子の添加量に応じて色調変化Δbを低下させることが可能である。 The solar cell back surface protective sheet of the present invention preferably has excellent ultraviolet resistance. Specifically, it is preferable that the color tone change Δb when the ultraviolet ray treatment test is performed using the P1 layer of the solar cell back surface protective sheet of the present invention as an incident surface is less than 10, more preferably less than 3. Details of the method for measuring the color tone change Δb when the ultraviolet treatment test is performed will be described later. In the solar cell back surface protection sheet of the present invention, when the color change Δb when the ultraviolet treatment test is performed with the P1 layer as the incident surface exceeds 10, the solar cell mounted with the solar cell back surface protection sheet of the present invention is long. When placed outdoors during the period, the appearance of the solar cell may deteriorate due to discoloration due to ultraviolet rays. Moreover, in order to make it the range which is excellent in ultraviolet-ray resistance in the solar cell back surface protection sheet of this invention, it is mentioned as a preferable method to add 3 mass% or more of titanium oxide particles with respect to the total mass of P1 layer, It is possible to reduce the color tone change Δb depending on the amount of titanium oxide particles added.
 本発明の太陽電池裏面保護用シートにおいて、耐湿熱性と耐紫外線性に優れた太陽電池裏面保護用シートとすることで、本発明の太陽電池裏面保護用シートを搭載した太陽電池を長期間屋外に置いても外観不良の無い太陽電池とすることができる。 In the solar cell back surface protection sheet of the present invention, a solar cell back surface protection sheet excellent in moist heat resistance and ultraviolet resistance is used for a long time outdoors with the solar cell mounted with the solar cell back surface protection sheet of the present invention. Even if it is placed, it can be a solar cell having no appearance defect.
 (太陽電池裏面保護用シートの製造方法)
 次に、本発明の太陽電池裏面保護用シートの製造方法について例を挙げて説明する。これは一例であり、本発明は、かかる例によって得られる物のみに限定して解釈されるものではない。
(Method for producing solar cell back surface protection sheet)
Next, an example is given and demonstrated about the manufacturing method of the solar cell back surface protection sheet | seat of this invention. This is an example, and the present invention should not be construed as being limited to the product obtained by such an example.
 まず、P1層を構成する原料の製造方法は、以下の方法で製造することができる。 First, the manufacturing method of the raw material which comprises P1 layer can be manufactured with the following method.
 本発明のP1層の原料となる樹脂は、ジカルボン酸、もしくはそのエステル誘導体と、ジオールを周知の方法でエステル交換反応、もしくはエステル化反応させることによって得ることができる。従来公知の反応触媒としてはアルカリ金属化合物、アルカリ土類金属化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、リン化合物などを挙げることが出来る。好ましくは、通常PETの製造方法が完結する以前の任意の段階において、重合触媒としてアンチモン化合物またはゲルマニウム化合物、チタン化合物を添加することが好ましい。このような方法としては例えば、ゲルマニウム化合物を例に取ると、ゲルマニウム化合物粉体をそのまま添加することが好ましい。また、ポリエステル樹脂の数平均分子量をコントロールするには、例えば数平均分子量を10000~20000とする場合、上記の方法で一旦、数平均分子量が9500程度の分子量のポリエステル樹脂を重合した後、190℃~ポリエステル樹脂の融点未満の温度で、減圧または窒素ガスのような不活性気体の流通下で加熱する、いわゆる固相重合する方法が好ましい。該方法は熱可塑性樹脂の末端カルボキシル基量を増加させることなく数平均分子量を高めることができる点で好ましく行われる。 The resin used as the raw material of the P1 layer of the present invention can be obtained by subjecting dicarboxylic acid or its ester derivative and diol to a transesterification reaction or an esterification reaction by a well-known method. Examples of conventionally known reaction catalysts include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and phosphorus compounds. Preferably, an antimony compound, a germanium compound, or a titanium compound is preferably added as a polymerization catalyst at an arbitrary stage before the PET production method is completed. As such a method, for example, when a germanium compound is taken as an example, it is preferable to add the germanium compound powder as it is. In order to control the number average molecular weight of the polyester resin, for example, when the number average molecular weight is 10,000 to 20,000, the polyester resin having a number average molecular weight of about 9500 is once polymerized by the above method, and then 190 ° C. A so-called solid-phase polymerization method in which heating is performed at a temperature lower than the melting point of the polyester resin under reduced pressure or a flow of an inert gas such as nitrogen gas is preferable. This method is preferably performed in that the number average molecular weight can be increased without increasing the terminal carboxyl group amount of the thermoplastic resin.
 次に、P1層の製造方法は、P1層が単膜構成の場合、P1層用原料を押出機内で加熱溶融し、口金から冷却したキャストドラム上に押し出してシート状に加工する方法(溶融キャスト法)を使用することができる。その他の方法として、P1層用の原料を溶媒に溶解させ、その溶液を口金からキャストドラム、エンドレスベルト等の支持体上に押し出して膜状とし、次いでかかる膜層から溶媒を乾燥除去させてシート状に加工する方法(溶液キャスト法)等も使用することができる。 Next, when the P1 layer has a single film configuration, the P1 layer manufacturing method is a method in which the P1 layer raw material is heated and melted in an extruder and extruded from a die onto a cast drum cooled (processed into a sheet). Method). As another method, the raw material for the P1 layer is dissolved in a solvent, and the solution is extruded from a die onto a support such as a cast drum or an endless belt to form a film, and then the solvent is dried and removed from the film layer. A method of processing into a shape (solution casting method) or the like can also be used.
 また、P1層が積層構造の場合の製造方法は、積層する各層の材料が熱可塑性樹脂を主たる構成とする場合、二つの異なる熱可塑性樹脂を二台の押出機に投入し溶融してから合流させて、口金から冷却したキャストドラム上に共押出してシート状に加工する方法(共押出法)を好ましく用いることができる。 In addition, when the P1 layer has a laminated structure, when the material of each layer to be laminated is mainly composed of a thermoplastic resin, the two different thermoplastic resins are put into two extruders and melted to join. Thus, a method of co-extrusion onto a cast drum cooled from the die and processing it into a sheet (co-extrusion method) can be preferably used.
 また、P1層および/またはP1層を含む積層体として一軸もしくは、二軸延伸されたシート基材を選択した場合、その製造方法として、まず、押出機(積層構造の場合は複数台の押出機)に原料を投入し、溶融して口金から押出し(積層構造の場合は共押出)し、表面温度10~60℃に冷却されたドラム上で静電気により密着冷却固化し、未延伸シートを作製する。 Further, when a uniaxial or biaxially stretched sheet base material is selected as the laminate including the P1 layer and / or the P1 layer, as a manufacturing method thereof, first, an extruder (in the case of a laminated structure, a plurality of extruders) ), Melt and extrude from the die (coextrusion in the case of a laminated structure), and cool and solidify by static electricity on a drum cooled to a surface temperature of 10 to 60 ° C. to produce an unstretched sheet .
 次に、この未延伸シートを70~140℃の温度に加熱されたロール群に導き、長手方向(縦方向、すなわちシートの進行方向)に3~4倍延伸し、20~50℃の温度のロール群で冷却する。 Next, the unstretched sheet is led to a group of rolls heated to a temperature of 70 to 140 ° C., stretched 3 to 4 times in the longitudinal direction (longitudinal direction, that is, the traveling direction of the sheet), and the temperature is 20 to 50 ° C. Cool with rolls.
 続いて、シートの両端をクリップで把持しながらテンターに導き、80~150℃の温度に加熱された雰囲気中で、長手方向に直角な方向(幅方向)に3~4倍に延伸する。 Subsequently, the both ends of the sheet are guided to a tenter while being gripped by clips, and stretched 3 to 4 times in a direction (width direction) perpendicular to the longitudinal direction in an atmosphere heated to a temperature of 80 to 150 ° C.
 延伸倍率は、長手方向と幅方向それぞれ3~5倍とするが、その面積倍率(縦延伸倍率×横延伸倍率)は9~15倍であることが好ましい。面積倍率が9倍未満であると、得られる二軸延伸シートの耐久性が不十分となり、逆に面積倍率が15倍を超えると延伸時に破れを生じ易くなる傾向がある。 The stretching ratio is 3 to 5 times in each of the longitudinal direction and the width direction, but the area ratio (longitudinal stretching ratio × lateral stretching ratio) is preferably 9 to 15 times. When the area magnification is less than 9 times, the durability of the resulting biaxially stretched sheet is insufficient, and conversely when the area magnification exceeds 15 times, there is a tendency that tearing tends to occur during stretching.
 二軸延伸する方法としては、上述の様に長手方向と幅方向の延伸とを分離して行う逐次二軸延伸方法の他に、長手方向と幅方向の延伸を同時に行う同時二軸延伸方法のどちらであっても構わない。 As the biaxial stretching method, in addition to the sequential biaxial stretching method in which the stretching in the longitudinal direction and the width direction is separated as described above, the simultaneous biaxial stretching method in which the stretching in the longitudinal direction and the width direction is performed simultaneously. Either one does not matter.
 本発明のシートにおいてP2層をP1層の上に形成する方法は、特に制限されるべきものではないが、コーティング手法を用いるのが好ましい。コーティング手法としては、公知の方法を適用することができ、例えば、ロールコーティング法、ディップコーティング法、バーコーティング法、ダイコーティング法およびグラビアロールコーティング法等や、これらを組み合わせた方法を利用することができる。中でも塗剤の選択幅が広い観点からはバーコーティング法が好ましく、一方でP2層の厚みを大きくしたい場合は厚膜塗布性の観点からダイコーティング法およびグラビアロールコーティング法が好ましく選択できる。 The method for forming the P2 layer on the P1 layer in the sheet of the present invention is not particularly limited, but it is preferable to use a coating technique. As a coating method, a known method can be applied, and for example, a roll coating method, a dip coating method, a bar coating method, a die coating method, a gravure roll coating method, or a combination of these methods can be used. it can. Among them, the bar coating method is preferable from the viewpoint of a wide selection range of the coating agent, while the die coating method and the gravure roll coating method can be preferably selected from the viewpoint of thick film coating property when it is desired to increase the thickness of the P2 layer.
 更にP2層の形成はP1層の製造工程の中で設けるインラインコーティングにて行うのが工程簡略化の観点からより好ましい。具体的には、逐次二軸延伸方法の場合には、未延伸シートあるいは一軸延伸したシートを形成した後に、同時二軸延伸方法の場合には未延伸シートを形成した後に、それぞれ前記のコーティング工程を設けP2層を形成する塗剤組成物を塗布した後、塗剤組成物の乾燥工程と同時にP1層の延伸と熱固定を行う。この時、P1層の熱固定温度は塗剤組成物の乾燥温度と基材層P1層の熱寸法安定性と耐湿熱性の両立の観点から150℃以上250℃以下が好ましく、より好ましくは170℃以上230℃以下、更に好ましくは180℃以上220℃以下である。 Furthermore, it is more preferable to form the P2 layer by in-line coating provided in the manufacturing process of the P1 layer from the viewpoint of simplifying the process. Specifically, in the case of the sequential biaxial stretching method, after forming an unstretched sheet or a uniaxially stretched sheet, in the case of the simultaneous biaxial stretching method, after forming the unstretched sheet, the above coating step After applying the coating composition for forming the P2 layer, the P1 layer is stretched and heat-set simultaneously with the drying step of the coating composition. At this time, the heat setting temperature of the P1 layer is preferably 150 ° C. or more and 250 ° C. or less, more preferably 170 ° C. from the viewpoint of the compatibility between the drying temperature of the coating composition, the thermal dimensional stability of the base material layer P1 and the heat and humidity resistance. It is more than 230 degreeC, More preferably, it is 180 degreeC or more and 220 degrees C or less.
 また必要に応じてP1層への塗剤組成物の濡れ性向上、P2層形成後の層間接着力向上の観点から、コーティング工程の直前に基材層P1層の表面へコロナ処理を行ってもよい。 Further, if necessary, from the viewpoint of improving the wettability of the coating composition to the P1 layer and improving the interlayer adhesion after the formation of the P2 layer, a corona treatment may be applied to the surface of the base material layer P1 immediately before the coating step. Good.
 本発明のシートにおいてP2層を形成するための、塗剤組成物の溶剤としては、例えば、トルエン、キシレン、酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、メタノール、エタノールおよび水等を例示することができ、該コーティング液の性状としてはエマルジョン型および溶解型のいずれでも良い。近年では環境保護、省資源化、製造時における有機溶剤の排気問題などが重視され、水を溶剤の主体とした溶解型、もしくはエマルジョン型コーティング液が好ましい形態である。また、P2層を形成する塗剤組成物に含まれるウレタン樹脂、メラミン樹脂、エポキシ樹脂を水系エマルジョン化させる方法としては、特に制限されるものではなく、固/液撹拌装置や乳化機として広く当業者に知られている装置によって作製することができる。 Examples of the solvent for the coating composition for forming the P2 layer in the sheet of the present invention include toluene, xylene, ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, dimethylformamide, dimethylacetamide, Methanol, ethanol, water and the like can be exemplified, and the properties of the coating liquid may be either emulsion type or dissolution type. In recent years, emphasis has been placed on environmental protection, resource saving, exhaust problems of organic solvents during production, etc., and a dissolved or emulsion type coating liquid mainly composed of water is the preferred form. The method of emulsifying the urethane resin, melamine resin, and epoxy resin contained in the coating composition for forming the P2 layer is not particularly limited, and is widely used as a solid / liquid stirring device or an emulsifier. It can be made by equipment known to the vendor.
 本発明の太陽電池裏面保護用シートは前記の製造方法によって製造することができる。得られた太陽電池裏面保護用シートは、太陽電池セルの封止材との密着性に優れ、長期間屋外に置かれても密着性を維持し(密着保持性が優れ)、さらには、耐湿熱性、耐紫外線性にも優れるという性能を有するものである。 The solar cell back surface protection sheet of the present invention can be manufactured by the above manufacturing method. The obtained sheet for protecting the back surface of the solar battery has excellent adhesion to the sealing material of the solar battery cell, maintains adhesion even when left outdoors for a long time (excellent retention), and is moisture resistant. It has the performance of being excellent in heat resistance and ultraviolet resistance.
 (太陽電池)
 本発明の太陽電池は、前記の太陽電池裏面保護用シートを用いることを特徴とする。前記の太陽電池裏面保護用シートを用いることで、従来の太陽電池と比べて耐久性を高めることが可能となる。その構成の例を図1に示す。電気を取り出すリード線(図1には示していない)を接続した発電素子をEVA樹脂などの透明な封止材2で封止したものに、ガラスなどの透明基板4と、太陽電池裏面保護用シート1として貼り合わせて構成されるが、これに限定されず、任意の構成に用いることができる。なお、図1では太陽電池裏面保護用シートは単体での例を示したが、その他必要とされる要求特性に応じて太陽電池裏面保護用シートは他のフィルムを張り合わせた、複合シートとすることも可能である。
(Solar cell)
The solar cell of the present invention is characterized by using the solar cell back surface protective sheet. By using the solar cell back surface protection sheet, it is possible to increase the durability as compared with the conventional solar cell. An example of the configuration is shown in FIG. A power generating element connected with a lead wire for taking out electricity (not shown in FIG. 1) is sealed with a transparent sealing material 2 such as EVA resin, a transparent substrate 4 such as glass, and a solar cell back surface protection Although it is configured to be bonded as the sheet 1, it is not limited to this and can be used for any configuration. In addition, in FIG. 1, although the solar cell back surface protection sheet shows an example of a single body, the solar cell back surface protection sheet should be a composite sheet in which other films are laminated according to other required characteristics. Is also possible.
 ここで、本発明の太陽電池において、太陽電池裏面保護用シート1は発電素子を封止した封止材2の背面に設置される発電セルを保護する役目を担う。ここで太陽電池裏面保護用シートはP2層が封止材2と接するように配置することが好ましい。この構成とすることによって、本発明の優れた密着性を生かして、屋外に曝されても長期間、発電セルを保護することで太陽電池の耐久性を高めることができる。 Here, in the solar cell of the present invention, the solar cell back surface protection sheet 1 plays a role of protecting the power generation cell installed on the back surface of the sealing material 2 sealing the power generation element. Here, the solar cell back surface protection sheet is preferably arranged so that the P2 layer is in contact with the sealing material 2. By adopting this configuration, the durability of the solar cell can be enhanced by protecting the power generation cell for a long period of time even when exposed to the outdoors, taking advantage of the excellent adhesion of the present invention.
 発電素子3は、太陽光の光エネルギーを電気エネルギーに変換するものであり、結晶シリコン系、多結晶シリコン系、微結晶シリコン系、アモルファスシリコン系、銅インジウムセレナイド系、化合物半導体系、色素増感系など、目的に応じて任意の素子を、所望する電圧あるいは電流に応じて複数個を直列または並列に接続して使用することができる。透光性を有する透明基板4は太陽電池の最表層に位置するため、高透過率のほかに、高耐候性、高耐汚染性、高機械強度特性を有する透明材料が使用される。本発明の太陽電池において、透光性を有する透明基板4は上記特性と満たせばいずれの材質を用いることができ、その例としてはガラス、四フッ化エチレン-エチレン共重合体(ETFE)、ポリフッ化ビニル樹脂(PVF)、ポリフッ化ビニリデン樹脂(PVDF)、ポリ四フッ化エチレン樹脂(TFE)、四フッ化エチレン-六フッ化プロピレン共重合体(FEP)、ポリ三フッ化塩化エチレン樹脂(CTFE)、ポリフッ化ビニリデン樹脂などのフッ素系樹脂、オレフィン系樹脂、アクリル系樹脂、およびこれらの混合物などが好ましく挙げられる。ガラスの場合、強化されているものを用いるのがより好ましい。また樹脂製の透光基材を用いる場合は、機械的強度の観点から、上記樹脂を一軸または二軸に延伸したものも好ましく用いられる。また、これら基材には発電素子の封止材料であるEVA樹脂などとの接着性を付与するために、表面に、コロナ処理、プラズマ処理、オゾン処理、易接着処理を施すことも好ましく行われる。 The power generating element 3 converts light energy of sunlight into electric energy, and is based on crystalline silicon, polycrystalline silicon, microcrystalline silicon, amorphous silicon, copper indium selenide, compound semiconductor, dye enhancement Arbitrary elements such as a sensitive system can be used in series or in parallel according to the desired voltage or current depending on the purpose. Since the transparent substrate 4 having translucency is located on the outermost surface layer of the solar cell, a transparent material having high weather resistance, high contamination resistance, and high mechanical strength characteristics in addition to high transmittance is used. In the solar cell of the present invention, the transparent substrate 4 having translucency can be made of any material as long as the above characteristics are satisfied. Examples thereof include glass, ethylene tetrafluoride-ethylene copolymer (ETFE), polyfluoride. Vinyl fluoride resin (PVF), polyvinylidene fluoride resin (PVDF), polytetrafluoroethylene resin (TFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polytrifluoroethylene chloride resin (CTFE) ), Fluorinated resins such as polyvinylidene fluoride resin, olefinic resins, acrylic resins, and mixtures thereof. In the case of glass, it is more preferable to use a tempered glass. Moreover, when using the resin-made translucent base material, what extended | stretched the said resin uniaxially or biaxially from a viewpoint of mechanical strength is used preferably. Moreover, in order to give these substrates the adhesiveness with EVA resin etc. which are the sealing materials of an electric power generation element, it is also preferably performed to give the surface a corona treatment, a plasma treatment, an ozone treatment, and an easy adhesion treatment. .
 発電素子を封止するための封止材2は、発電素子の表面の凹凸を樹脂で被覆し固定し、外部環境から発電素子を保護し、電気絶縁の目的の他、透光性を有する基材やバックシートと発電素子に接着するため、高透明性、高耐候性、高接着性、高耐熱性を有する材料が使用される。その例としては、エチレン-ビニルアセテート共重合体(EVA)、エチレン-メチルアクリレート共重合体(EMA)、エチレン-エチルアクリレート共重合体(EEA)樹脂、エチレン-メタクリル酸共重合体(EMAA)、アイオノマー樹脂、ポリビニルブチラール樹脂、およびこれらの混合物などが好ましく用いられる。 The sealing material 2 for sealing the power generation element covers and fixes the unevenness of the surface of the power generation element with resin, protects the power generation element from the external environment, and has a translucent base for the purpose of electrical insulation. A material having high transparency, high weather resistance, high adhesion, and high heat resistance is used in order to adhere to the material or back sheet and the power generation element. Examples thereof include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA) resin, ethylene-methacrylic acid copolymer (EMAA), Ionomer resins, polyvinyl butyral resins, and mixtures thereof are preferably used.
 以上のように、本発明の太陽電池裏面保護用シートを太陽電池システムに組み込むことにより、従来の太陽電池と比べて、耐久性を高めることが可能となる。本発明の太陽電池は、太陽光発電システム、小型電子部品の電源など、屋外用途、屋内用途に限定されず各種用途に好適に用いることができる。
〔特性の測定方法および評価方法〕
(1)P2層の成分定性
 実施例及び比較例におけるP2層の成分定性は、太陽電池裏面保護用シートのP2層を分離して熱分解ガスクロマトグラフィー質量分析(GC-MS)によって実施した。測定装置には熱分解装置PY-2010DD型(フロンティア・ラボ社製)とガスクロマトグラフGC-14AF型((株)島津製作所製)、検出器には水素炎イオン化検出器(FID)、カラムにはメチルシリコーン系キャピラリーカラムを接続して用いた。また、必要に応じてTMAH(テトラメチルアンモニウムハイドロオキサイド)で誘導体化を行い実施した。
各成分の有無については以下の通り、判定を行い、表中において、P2層中に、各成分を含有する場合はY、含有しない場合はNと記載した。
(A)ウレタン樹脂成分
 熱分解生成物からジイソシアネート化合物とジオール化合物の2種類が検出された場合、P2層中にウレタン樹脂成分が含有されているとする。
(B)メラミン樹脂成分
 熱分解生成物からメラミン化合物が検出された場合、P2層中にメラミン樹脂成分が含有されているとする。
(C)エポキシ樹脂成分
TMAHで誘導体化を行った場合の熱分解生成物から下記化1のグリセロール化合物が検出された場合、P2層中にエポキシ樹脂成分が含有されているとする。
(D)ポリエステルウレタン樹脂を含むウレタン樹脂成分
 熱分解生成物からジイソシアネート化合物とジオール化合物、ジカルボン酸化合物の3種類が検出された場合、P2層中にポリエステルウレタン樹脂を含むウレタン樹脂成分が含有されているとする。
As described above, by incorporating the solar cell back surface protection sheet of the present invention into a solar cell system, it is possible to enhance the durability as compared with conventional solar cells. The solar cell of the present invention can be suitably used for various applications without being limited to outdoor use and indoor use such as a solar power generation system and a power source for small electronic components.
[Measurement method and evaluation method of characteristics]
(1) Component qualitative property of P2 layer The component qualitative property of the P2 layer in Examples and Comparative Examples was performed by separating the P2 layer of the solar cell back surface protection sheet and performing pyrolysis gas chromatography mass spectrometry (GC-MS). Pyrolytic device PY-2010DD (frontier lab) and gas chromatograph GC-14AF (manufactured by Shimadzu Corporation) are used for the measurement device, flame ionization detector (FID) is used for the detector, and the column is used for the column. A methylsilicone capillary column was connected for use. Further, derivatization was performed with TMAH (tetramethylammonium hydroxide) as necessary.
The presence or absence of each component was determined as follows, and in the table, the P2 layer was described as Y when each component was contained, and N when not contained.
(A) Urethane resin component When two types of diisocyanate compound and diol compound are detected from the thermal decomposition product, it is assumed that the urethane resin component is contained in the P2 layer.
(B) Melamine resin component When a melamine compound is detected from a thermal decomposition product, melamine resin component shall be contained in P2 layer.
(C) When the glycerol compound of the following chemical formula 1 is detected from the thermal decomposition product obtained by derivatization with the epoxy resin component TMAH, it is assumed that the epoxy resin component is contained in the P2 layer.
(D) Urethane resin component containing polyester urethane resin When three types of diisocyanate compound, diol compound and dicarboxylic acid compound are detected from the thermal decomposition product, the urethane resin component containing polyester urethane resin is contained in the P2 layer. Suppose that
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(2)ポリマー特性
 (2-1)固有粘度IV
 オルトクロロフェノール100mlに、測定試料(ポリエステル樹脂(原料)又は太陽電池裏面保護用シートのP1層のみを分離したもの)を溶解させ(溶液濃度C(測定試料重量/溶液体積)=1.2g/ml)、その溶液の25℃での粘度をオストワルド粘度計を用いて測定した。また、同様に溶媒の粘度を測定した。得られた溶液粘度、溶媒粘度を用いて、下記式(4)により、[η]を算出し、得られた値をもって固有粘度(IV)とした。
ηsp/C=[η]+K[η]・C ・・・(4)
(ここで、ηsp=(溶液粘度/溶媒粘度)―1、Kはハギンス定数(0.343とする)である。)
なお、測定試料を溶解させた溶液に無機粒子などの不溶物がある場合は、以下の方法を用いて測定を行った。
(i)オルトクロロフェノール100mLに測定試料を溶解させ、溶液濃度が1.2mg/mLよりも濃い溶液を作成する。ここで、オルトクロロフェノールに供した測定試料の重量を測定試料重量とする。
(ii)次に、不溶物を含む溶液を濾過し、不溶物の重量測定と、濾過後の濾液の体積測定を行う。
(iii)濾過後の濾液にオルトクロロフェノールを追加して、(測定試料重量(g)-不溶物の重量(g))/(濾過後の濾液の体積(mL)+追加したオルトクロロフェノールの体積(mL))が、1.2g/100mLとなるように調整する。
(例えば、測定試料重量2.0g/溶液体積100mLの濃厚溶液を作成したときに、該溶液を濾過したときの不溶物の重量が0.2g、濾過後の濾液の体積が99mLであった場合は、オルトクロロフェノールを51mL追加する調整を実施する。((2.0g-0.2g)/(99mL+51mL)=1.2g/100mL))
iv)iii)で得られた溶液を用いて、25℃での粘度をオストワルド粘度計を用いて測定し、得られた溶液粘度、溶媒粘度を用いて、上記式(4)により、[η]を算出し、得られた値をもって固有粘度(IV)とする。
(2) Polymer properties (2-1) Intrinsic viscosity IV
In 100 ml of orthochlorophenol, a measurement sample (polyester resin (raw material) or only the P1 layer of the solar cell back surface protection sheet separated) is dissolved (solution concentration C (measurement sample weight / solution volume) = 1.2 g / ml), and the viscosity of the solution at 25 ° C. was measured using an Ostwald viscometer. Similarly, the viscosity of the solvent was measured. [Η] was calculated by the following formula (4) using the obtained solution viscosity and solvent viscosity, and the obtained value was defined as the intrinsic viscosity (IV).
ηsp / C = [η] + K [η] 2 · C (4)
(Where ηsp = (solution viscosity / solvent viscosity) −1, K is the Huggins constant (assuming 0.343))
In addition, when there existed insoluble matters, such as inorganic particles, in the solution in which the measurement sample was dissolved, the measurement was performed using the following method.
(I) A measurement sample is dissolved in 100 mL of orthochlorophenol to prepare a solution having a solution concentration higher than 1.2 mg / mL. Here, let the weight of the measurement sample used for orthochlorophenol be a measurement sample weight.
(Ii) Next, the solution containing insoluble matter is filtered, and the weight of the insoluble matter is measured and the volume of the filtrate after filtration is measured.
(Iii) Orthochlorophenol was added to the filtrate after filtration, and (measured sample weight (g) −insoluble matter weight (g)) / (volume of filtrate after filtration (mL) + added orthochlorophenol) The volume (mL) is adjusted to 1.2 g / 100 mL.
(For example, when a concentrated solution having a measurement sample weight of 2.0 g / solution volume of 100 mL was prepared, the weight of insoluble matter when the solution was filtered was 0.2 g, and the filtrate volume after filtration was 99 mL Adjusts by adding 51 mL of orthochlorophenol ((2.0 g-0.2 g) / (99 mL + 51 mL) = 1.2 g / 100 mL))
iv) Using the solution obtained in iii), the viscosity at 25 ° C. was measured using an Ostwald viscometer, and the obtained solution viscosity and solvent viscosity were used to calculate [η] according to the above equation (4). And the obtained value is taken as the intrinsic viscosity (IV).
 (2-2)末端カルボキシル基量(表中ではCOOH量と記載する。)
 末端カルボキシル基量については、Mauliceの方法に準じて、以下の方法にて測定した。(文献M.J. Maulice, F. Huizinga,  Anal.Chim.Acta,22  363(1960))
測定試料(ポリエステル樹脂(原料)または太陽電池裏面保護用シートのP1層のみを分離したもの)2gをo-クレゾール/クロロホルム(重量比7/3)50mLに温度80℃にて溶解し、0.05NのKOH/メタノール溶液によって滴定し、末端カルボキシル基濃度を測定し、当量/ポリエステル1tの値で示した。なお、滴定時の指示薬はフェノールレッドを用いて、黄緑色から淡紅色に変化したところを滴定の終点とした。なお、測定試料を溶解させた溶液に無機粒子などの不溶物がある場合は、溶液を濾過して不溶物の重量測定を行い、不溶物の重量を測定試料重量から差し引いた値を測定試料重量とする補正を実施した。 
(2-2) Amount of terminal carboxyl groups (indicated as COOH amount in the table)
The terminal carboxyl group amount was measured by the following method according to the method of Malice. (Document M. J. Malice, F. Huizinga, Anal. Chim. Acta, 22 363 (1960)).
2 g of a measurement sample (polyester resin (raw material) or solar cell back surface protection sheet P1 layer only) 2 g was dissolved in 50 ml of o-cresol / chloroform (weight ratio 7/3) at a temperature of 80 ° C. The solution was titrated with a 05N KOH / methanol solution, and the terminal carboxyl group concentration was measured and indicated by the value of equivalent / polyester 1t. In addition, the indicator at the time of titration used phenol red, and the place where it changed from yellowish green to light red was set as the end point of titration. If there is insoluble matter such as inorganic particles in the solution in which the measurement sample is dissolved, the solution is filtered to measure the weight of the insoluble matter, and the value obtained by subtracting the weight of the insoluble matter from the measurement sample weight The following correction was made.
 (3)水との接触角
 JIS K 6768(1999)に基づいて、接触角計CA-D型(協和界面科学(株)製)を用い、以下の手順を5回行って得られた平均値を水との接触角とした。
(i)太陽電池裏面保護用シートのP2層側の表面に2μlの蒸留水を滴下する。
(ii)1分間放置する。
(iii)液面の角度を測定した。
(3) Contact angle with water Based on JIS K 6768 (1999), an average value obtained by performing the following procedure 5 times using a contact angle meter CA-D type (manufactured by Kyowa Interface Science Co., Ltd.) Was the contact angle with water.
(I) 2 μl of distilled water is dropped onto the surface on the P2 layer side of the solar cell back surface protection sheet.
(Ii) Leave for 1 minute.
(Iii) The liquid surface angle was measured.
 (4)P2層の厚み
 ミクロトームを用いて、太陽電池裏面保護用シートの表面に対して垂直方向に切削した小片を作成し、その断面を電界放射走査型電子顕微鏡JSM-6700F(日本電子(株)製)を用いて10000倍に拡大観察して撮影した。その断面写真よりP2層の厚みを拡大倍率から逆算して求めた。なお、厚みは異なる測定視野から任意に選んだ計5箇所の断面写真を使用し、その平均値を用いた。
(4) Thickness of P2 layer Using a microtome, a small piece cut in a direction perpendicular to the surface of the solar cell back surface protection sheet was prepared, and the cross section was taken as a field emission scanning electron microscope JSM-6700F (JEOL Ltd. ))) And magnified to 10,000 times. From the cross-sectional photograph, the thickness of the P2 layer was calculated from the magnification. In addition, the thickness used the cross-sectional photograph of five places arbitrarily selected from the different measurement visual field, and used the average value.
 (5)封止材との密着性評価
 (5-1)封止材との密着性
 JIS K 6854-2(1999)に基づいて、封止材であるEVAシートと太陽電池裏面保護用シートのP2層側の面との剥離強度から接着性を評価した。測定試験片は、厚さ3mmの半強化ガラス上に、500μm厚のEVAシート(酢酸ビニル共重合比率:28mol%)、および実施例、比較例のシートをP2層側がEVAシート側になるように重ね、市販の真空ラミネーターを用いて熱盤温度145℃、真空引き4分、プレス1分、保持時間10分の条件でプレス処理をしたものを用いた。剥離強度試験は180°剥離で行い、試験片の幅は10mmとし、2つの試験片を準備し、それぞれの試験片について場所を変えて3カ所測定し、得られた測定値の平均値を剥離強度の値とし、初期密着性を以下のように判定した。尚、本測定において界面での剥離が生じる前に、本発明のシートが破断した場合は、破断が生じた時点の測定値を剥離強度の値とした。
剥離強度が30N/10mm以上の場合:A
剥離強度が25N/10mm以上30N/10mm未満の場合:B
剥離強度が20N/10mm以上25N/10mm未満の場合:C
剥離強度が20N/10mm未満の場合:D
初期密着性はA~Cが良好であり、その中でもAが最も優れている。
(5) Adhesion evaluation with sealing material (5-1) Adhesion with sealing material Based on JIS K 6854-2 (1999), an EVA sheet as a sealing material and a solar cell back surface protection sheet The adhesiveness was evaluated from the peel strength with the surface on the P2 layer side. The measurement test piece is a 500 μm thick EVA sheet (vinyl acetate copolymerization ratio: 28 mol%) on a semi-tempered glass having a thickness of 3 mm, and the P2 layer side of the sheet of the example and the comparative example is the EVA sheet side. A layer obtained by press treatment using a commercially available vacuum laminator under conditions of a hot platen temperature of 145 ° C., a vacuum drawing of 4 minutes, a press of 1 minute, and a holding time of 10 minutes was used. The peel strength test is performed at 180 ° peel, the width of the test piece is 10 mm, two test pieces are prepared, the place is changed for each test piece, the measurement is performed at three places, and the average value of the obtained measurement values is peeled off The initial adhesion was determined as follows using the strength value. In addition, when the sheet | seat of this invention fractured | ruptured before peeling at an interface in this measurement, the measured value at the time of the fracture | rupture was made into the value of peeling strength.
When the peel strength is 30 N / 10 mm or more: A
When the peel strength is 25 N / 10 mm or more and less than 30 N / 10 mm: B
When the peel strength is 20 N / 10 mm or more and less than 25 N / 10 mm: C
When peel strength is less than 20 N / 10 mm: D
The initial adhesion is good in A to C, and A is the best among them.
 (5-2)密着保持性
 上記(5-1)項と同様にして、測定試験片を作製し、高度加速寿命試験装置プレッシャークッカー(エスペック(株)製)にて、温度120℃、相対湿度100%RHの条件下にて48時間処理を行った。その後、(5-1)項と同様にEVAシートとの加速試験後の剥離強度を測定し、密着保持性を以下のように判定した。
加速試験後の剥離強度が、16N/10mm以上の場合:A
加速試験後の剥離強度が、13N/10mm以上16N/10mm未満の場合:B
加速試験後の剥離強度が、10N/10mm以上13N/10mm未満の場合:C
加速試験後の剥離強度が、10N/10mm未満の場合:D
 密着保持性はA~Cが良好であり、その中でもAが最も優れている。
(5-2) Adhesion retention In the same manner as in (5-1) above, a measurement test piece was prepared, and the temperature was 120 ° C. and the relative humidity was measured with a pressure cooker (manufactured by Espec Corp.). The treatment was performed for 48 hours under the condition of 100% RH. Thereafter, the peel strength after the acceleration test with the EVA sheet was measured in the same manner as in the section (5-1), and the adhesion retention was determined as follows.
When the peel strength after the acceleration test is 16 N / 10 mm or more: A
When the peel strength after the acceleration test is 13 N / 10 mm or more and less than 16 N / 10 mm: B
When the peel strength after the acceleration test is 10 N / 10 mm or more and less than 13 N / 10 mm: C
When peel strength after accelerated test is less than 10 N / 10 mm: D
The adhesion retention is good from A to C, and among them, A is the best.
 (6)耐湿熱性(湿熱試験後の破断伸度測定)
 太陽電池裏面保護用シートを測定片の形状10mm×200mmに切り出した後、高度加速寿命試験装置プレッシャークッカー(エスペック(株)製)にて、温度125℃、相対湿度100%RHの条件下にて48時間処理を行い、その後、ASTM-D882(1997)に基づいて破断伸度を測定した。なお、測定はチャック間50mm、引っ張り速度300mm/min、測定回数n=5とし、また、シートの長手方向、幅方向のそれぞれについて測定した後、その平均値を湿熱試験後の破断伸度とした。得られた湿熱試験後の破断伸度から、耐湿熱性を以下のように判定した。
湿熱試験後の破断伸度が湿熱試験前の破断伸度の40%以上の場合:A
湿熱試験後の破断伸度が湿熱試験前の破断伸度の20%以上40%未満の場合:B
湿熱試験後の破断伸度が湿熱試験前の破断伸度の10%以上20%未満の場合:C
湿熱試験後の破断伸度が湿熱試験前の破断伸度の10%未満の場合:D
 耐湿熱性はA~Cが良好であり、その中でもAが最も優れている。
(6) Moist heat resistance (measurement of elongation at break after wet heat test)
After the solar cell back surface protection sheet was cut into a measurement piece shape of 10 mm × 200 mm, it was subjected to a highly accelerated life test apparatus pressure cooker (manufactured by Espec Corp.) under the conditions of a temperature of 125 ° C. and a relative humidity of 100% RH. After 48 hours of treatment, the elongation at break was measured according to ASTM-D882 (1997). Note that the measurement was performed between the chuck 50 mm, the pulling speed 300 mm / min, the number of measurements n = 5, and after measuring for each of the longitudinal direction and the width direction of the sheet, the average value was defined as the breaking elongation after the wet heat test. . From the elongation at break after the obtained wet heat test, the wet heat resistance was determined as follows.
When the breaking elongation after the wet heat test is 40% or more of the breaking elongation before the wet heat test: A
When the breaking elongation after the wet heat test is 20% or more and less than 40% of the breaking elongation before the wet heat test: B
When the breaking elongation after the wet heat test is 10% or more and less than 20% of the breaking elongation before the wet heat test: C
When the breaking elongation after the wet heat test is less than 10% of the breaking elongation before the wet heat test: D
The wet heat resistance is good in A to C, and A is the best among them.
 (7)耐紫外線性(紫外線処理試験時の色調変化)
 (7-1)色調(b値)測定
 JIS-Z-8722(2000)に基づき、分光式色差計SE-2000(日本電色工業(株)製、光源 ハロゲンランプ 12V4A、0°~-45°後分光方式)を用いて反射法により太陽電池裏面保護用シートのP1層側の面の色調(b値)をn=3で測定した。
(7) UV resistance (color change during UV treatment test)
(7-1) Color tone (b value) measurement Based on JIS-Z-8722 (2000), a spectroscopic color difference meter SE-2000 (manufactured by Nippon Denshoku Industries Co., Ltd., light source halogen lamp 12V4A, 0 ° to −45 °) The color tone (b value) of the surface on the P1 layer side of the solar cell back surface protection sheet was measured by n = 3 by a reflection method using a post-spectral method.
 (7-2)色調変化Δb
 太陽電池裏面保護用シートのP1層側の面に試験光が当たるようにアイスーパー紫外線テスターS-W131(岩崎電気(株)製)にて、温度60℃、相対湿度60%、照度100mW/cm(光源:メタルハライドランプ、波長範囲:295~450nm、ピーク波長:365nm)の条件下で48時間照射した前後の色調(b値)を前記(7-1)項に従い測定し、次の(α)式より紫外線照射後の色調変化(Δb)を算出した。
紫外線照射後の色調変化(Δb)=b1―b0  (α)
b0:紫外線照射前の色調(b値)
b1:紫外線照射後の色調(b値)
 得られた紫外線処理試験前後の色調変化(Δb)から、耐紫外線性を以下のように判定した。
紫外線照射処理試験前後の色調変化(Δb)が3未満の場合:A
紫外線照射処理試験前後の色調変化(Δb)が3以上10未満の場合:B
紫外線照射処理試験前後の色調変化(Δb)が10以上20未満の場合:C
紫外線照射処理試験前後の色調変化(Δb)が20以上の場合:D
 耐紫外線性はA~Cが良好であり、その中で最もAが優れている。
(7-2) Color tone change Δb
With an i-super ultraviolet tester S-W131 (manufactured by Iwasaki Electric Co., Ltd.) so that the test light hits the surface on the P1 layer side of the solar cell back surface protection sheet, the temperature is 60 ° C., the relative humidity is 60%, and the illuminance is 100 mW / cm. 2 The color tone (b value) before and after irradiation for 48 hours under the conditions of (light source: metal halide lamp, wavelength range: 295 to 450 nm, peak wavelength: 365 nm) was measured according to the above (7-1), and the following (α ) To calculate the color tone change (Δb) after UV irradiation.
Color tone change after UV irradiation (Δb) = b1−b0 (α)
b0: Color tone before UV irradiation (b value)
b1: Color tone after UV irradiation (b value)
From the color tone change (Δb) before and after the obtained ultraviolet treatment test, ultraviolet resistance was determined as follows.
When the color change (Δb) before and after the ultraviolet irradiation treatment test is less than 3: A
When the color tone change (Δb) before and after the ultraviolet irradiation treatment test is 3 or more and less than 10: B
When the color change (Δb) before and after the ultraviolet irradiation treatment test is 10 or more and less than 20: C
When the color change (Δb) before and after the ultraviolet irradiation treatment test is 20 or more: D
The UV resistance is good in A to C, and A is the best among them.
 (8)太陽電池特性
 (8-1)太陽電池の作製
 Qcells社製の太陽電池セルQ6LPT-G2の表面、裏面の銀電極部分にHOZAN社製フラックスH722をディスペンサーで塗布し、表面、裏面の銀電極の上に155mmの長さに切断した配線材として日立電線社製銅箔SSA―SPS0.2×1.5(20)を表面側のセルの片端から10mm離れたところが配線材の端に裏面側は表面側と対称になるように乗せ、半田ごてを用いてセル裏面側から半田ごてを接触させて表面、裏面を同時に半田溶着し1セルモジュール用配線を作製した。
(8) Solar cell characteristics (8-1) Production of solar cell Flux H722 from HOZAN was applied to the front and back silver electrode portions of solar cell Q6LPT-G2 from Qcells with a dispenser, and silver on the front and back surfaces. As a wiring material cut to a length of 155 mm on the electrode, a copper foil SSA-SPS0.2 × 1.5 (20) manufactured by Hitachi Cable Co., Ltd. 10 mm away from one end of the cell on the front side is the back surface at the end of the wiring material. The side was placed symmetrically with the front side, and the soldering iron was contacted from the back side of the cell using a soldering iron, and the front and back sides were simultaneously soldered to produce a 1-cell module wiring.
 作製した1セルモジュール用配線のセルから飛び出している該配線材の長手方向と180mmに切断した取り出し電極として日立電線社製銅箔A―SPS0.23×6.0の長手方向が垂直になるよう置き、該配線材と取り出し電極が重なる部分に該フラックスを塗布して半田溶着を行い、取り出し電極付き配線を作製した。 The longitudinal direction of the wiring material protruding from the cell of the produced 1-cell module wiring and the longitudinal direction of the copper foil A-SPS 0.23 × 6.0 made by Hitachi Cable as the take-out electrode cut into 180 mm are perpendicular to each other. Then, the flux was applied to the portion where the wiring material and the take-out electrode overlapped, and solder welding was performed to produce a wire with the take-out electrode.
 次に、190mm×190mmの旭硝子社製太陽電池用3.2mm厚白板熱処理ガラス、190mm×190mmの500μm厚のEVAシート(酢酸ビニル共重合比率:28mol%)、作製した取り出し電極付き配線、190mm×190mmの500μm厚のEVAシート、190mm×190mmに切り出した太陽電池裏面保護用シートをP2層側の面がEVA側に位置するように順に重ねて、該ガラスを真空ラミネーターの熱盤と接触するようにセットし、熱盤温度145℃、真空引き4分、プレス1分、保持時間10分の条件で真空ラミネートを行って太陽電池を作製した。このとき、取り出し電極付き配線はガラス面がセル表面側になるようにセットした。 Next, 190 mm × 190 mm 3.2 mm thick white plate heat-treated glass for solar cells manufactured by Asahi Glass Co., Ltd., 190 mm × 190 mm 500 μm thick EVA sheet (vinyl acetate copolymerization ratio: 28 mol%), produced wiring with takeout electrode, 190 mm × A 190 mm 500 μm thick EVA sheet and a solar cell back surface protection sheet cut out to 190 mm × 190 mm are stacked in order so that the P2 layer side surface is located on the EVA side, and the glass is brought into contact with the hot platen of the vacuum laminator And laminating under the conditions of a hot platen temperature of 145 ° C., a vacuuming of 4 minutes, a press of 1 minute, and a holding time of 10 minutes to produce a solar cell. At this time, the wiring with the extraction electrode was set so that the glass surface was on the cell surface side.
 (8-2)太陽電池の耐久性
 前記(8-1)項で作製した太陽電池を10個準備し、85℃85%RHに調整した恒温恒湿槽(エスペック(株)製)で4000hr処理した後、ラミネートした太陽電池裏面保護用シートに剥離が発生していないかを目視で確認を行った。太陽電池の耐久性は、10個の太陽電池のうち、目視で太陽電池裏面保護用シートが剥離しているものが何個あるかについて確認し、以下のように判定を行った。
全ての太陽電池で剥離が発生していない場合:A
作製した太陽電池のうち1個以上4個未満の太陽電池から太陽電池裏面保護用シートが剥離していた場合:B
作製した太陽電池のうち4個以上8個未満の太陽電池から太陽電池裏面保護用シートが剥離していた場合:C
作製した太陽電池のうち8個以上太陽電池裏面保護用シートが太陽電池から剥離していた場合:D
 太陽電池の耐久性はA~Cが良好であり、その中でもAが最も優れている。
(8-2) Durability of Solar Cell Ten solar cells prepared in the above section (8-1) were prepared and treated for 4000 hr in a constant temperature and humidity chamber (manufactured by ESPEC Corporation) adjusted to 85 ° C. and 85% RH. Then, it was visually confirmed whether or not peeling occurred on the laminated solar cell back surface protection sheet. The durability of the solar cell was determined by visually checking how many of the 10 solar cells had the solar cell back surface protection sheet peeled off, and determined as follows.
When peeling does not occur in all solar cells: A
When the solar cell back surface protection sheet is peeled from one or more of the produced solar cells and less than four solar cells: B
When the solar cell back surface protective sheet is peeled from 4 or more and less than 8 solar cells among the produced solar cells: C
When 8 or more of the produced solar cells are separated from the solar cell: D
The durability of the solar cell is good from A to C, and among them, A is the best.
 以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not necessarily limited thereto.
 (ポリエステル系樹脂原料)
 1.PET原料A(実施例1~16、18、20、比較例1~6に用いた)
 ジカルボン酸成分としてテレフタル酸100質量部、ジオール成分としてエチレングリコール100質量部を用い、触媒として酢酸マグネシウム、三酸化アンチモン、亜リン酸を用いて重縮合反応を行った。次いで、得られたポリエチレンテレフタレートを160℃で6時間乾燥、結晶化させたのち、220℃、真空度0.3Torr、9時間の固相重合を行い、融点255℃、固有粘度0.80dl/g、末端カルボキシル基量10当量/トンのポリエチレンテレフタレート(PET-A)原料を得た。
(Polyester resin raw material)
1. PET raw material A (used in Examples 1 to 16, 18, 20 and Comparative Examples 1 to 6)
A polycondensation reaction was performed using 100 parts by mass of terephthalic acid as the dicarboxylic acid component, 100 parts by mass of ethylene glycol as the diol component, and magnesium acetate, antimony trioxide, and phosphorous acid as the catalyst. Next, the obtained polyethylene terephthalate was dried and crystallized at 160 ° C. for 6 hours, and then subjected to solid phase polymerization at 220 ° C. and a vacuum degree of 0.3 Torr for 9 hours to have a melting point of 255 ° C. and an intrinsic viscosity of 0.80 dl / g. A polyethylene terephthalate (PET-A) raw material having a terminal carboxyl group amount of 10 equivalents / ton was obtained.
 2.PET原料B(実施例19に用いた)
 ジカルボン酸成分としてテレフタル酸100質量部、ジオール成分としてエチレングリコール100質量部を用い、触媒として酢酸マグネシウム、三酸化アンチモン、亜リン酸を用いて重縮合反応を行った。次いで、得られたポリエチレンテレフタレートを160℃で6時間乾燥、結晶化させ、融点255℃、固有粘度0.65dl/g、末端カルボキシル基量25当量/トンのポリエチレンテレフタレート(PET-B)原料を得た。
2. PET raw material B (used in Example 19)
A polycondensation reaction was performed using 100 parts by mass of terephthalic acid as the dicarboxylic acid component, 100 parts by mass of ethylene glycol as the diol component, and magnesium acetate, antimony trioxide, and phosphorous acid as the catalyst. Next, the obtained polyethylene terephthalate was dried and crystallized at 160 ° C. for 6 hours to obtain a polyethylene terephthalate (PET-B) raw material having a melting point of 255 ° C., an intrinsic viscosity of 0.65 dl / g, and a terminal carboxyl group content of 25 equivalents / ton. It was.
 3.ポリエチレンナフタレート(以降PENと称することがある)原料(実施例17に用いた)
 2,6-ナフタレンジカルボン酸ジメチル100質量部とエチレングリコール60質量部の混合物に、酢酸マンガン・4水和物塩0.03質量部を添加し、150℃の温度から240℃の温度に徐々に昇温しながらエステル交換反応を行った。途中、反応温度が170℃に達した時点で三酸化アンチモン0.024質量部を添加した。また、反応温度が220℃に達した時点で3,5-ジカルボキシベンゼンスルホン酸テトラブチルホスホニウム塩0.042質量部を添加した。その後、引き続いてエステル交換反応を行い、トリメチルリン酸0.023質量部を添加した。次いで、反応生成物を重合装置に移し、290℃の温度まで昇温し、30Paの高減圧下にて重縮合反応を行い、重合装置の撹拌トルクが所定の値(重合装置の仕様によって具体的な値は異なるが、本重合装置にて固有粘度0.65のポリエチレン-2,6-ナフタレートが示す値を所定の値とした)を示した。次いで、得られたポリエチレンナフタレートを160℃で6時間乾燥、結晶化させたのち、220℃、真空度0.3Torr、9時間の固相重合を行い、融点255℃、固有粘度0.70dl/g、末端カルボキシル着基量25当量/トンのPEN原料を得た。
3. Polyethylene naphthalate (hereinafter sometimes referred to as PEN) raw material (used in Example 17)
To a mixture of 100 parts by mass of dimethyl 2,6-naphthalenedicarboxylate and 60 parts by mass of ethylene glycol, 0.03 part by mass of manganese acetate tetrahydrate salt is added, and the temperature is gradually increased from 150 ° C. to 240 ° C. The transesterification was carried out while raising the temperature. In the middle, when the reaction temperature reached 170 ° C., 0.024 parts by mass of antimony trioxide was added. When the reaction temperature reached 220 ° C., 0.042 parts by mass of 3,5-dicarboxybenzenesulfonic acid tetrabutylphosphonium salt was added. Thereafter, a transesterification reaction was carried out, and 0.023 parts by mass of trimethyl phosphoric acid was added. Next, the reaction product is transferred to a polymerization apparatus, heated to a temperature of 290 ° C., subjected to a polycondensation reaction under a high vacuum of 30 Pa, and the stirring torque of the polymerization apparatus is a predetermined value (specifically depending on the specifications of the polymerization apparatus). The value indicated by polyethylene-2,6-naphthalate having an intrinsic viscosity of 0.65 in this polymerization apparatus was a predetermined value). Next, the obtained polyethylene naphthalate was dried and crystallized at 160 ° C. for 6 hours, and then subjected to solid phase polymerization at 220 ° C. and a vacuum degree of 0.3 Torr for 9 hours, melting point 255 ° C., intrinsic viscosity 0.70 dl / g, A PEN raw material having a terminal carboxyl group attachment amount of 25 equivalents / ton was obtained.
 4.PET原料Aベース酸化チタンマスター(実施例1~15、20、比較例1~6に用いた)
 上記1.項によって得られたPET樹脂(PET-A)100質量部と、平均粒子径210nmのルチル型酸化チタン粒子100質量部を、ベントした290℃の押出機内で溶融混練し、酸化チタン原料(PETa-TiO)を作製した。
4). PET raw material A-based titanium oxide master (used in Examples 1 to 15, 20 and Comparative Examples 1 to 6)
Above 1. 100 parts by mass of the PET resin (PET-A) obtained according to the above and 100 parts by mass of rutile-type titanium oxide particles having an average particle diameter of 210 nm are melt-kneaded in a vented 290 ° C. extruder to obtain a titanium oxide raw material (PETa- TiO 2 ) was prepared.
 5.PET原料Bベース酸化チタンマスター(実施例19に用いた)
 上記2.項によって得られたPET樹脂(PET-B)100質量部と、平均粒子径210nmのルチル型酸化チタン粒子100質量部を、ベントした290℃の押出機内で溶融混練し、酸化チタン原料(PETb-TiO)を作製した。
5. PET raw material B base titanium oxide master (used in Example 19)
2. 100 parts by mass of the PET resin (PET-B) obtained according to the above and 100 parts by mass of rutile-type titanium oxide particles having an average particle diameter of 210 nm are melt-kneaded in a vented 290 ° C. extruder to obtain a titanium oxide raw material (PETb- TiO 2 ) was prepared.
 6.PEN原料ベース酸化チタンマスター(実施例17に用いた)
 上記4.項によって得られたPEN樹脂100質量部と、平均粒子径210nmのルチル型酸化チタン粒子100質量部を、ベントした300℃の押出機内で溶融混練し、酸化チタン原料(PEN-TiO)を作製した。
6). PEN raw material-based titanium oxide master (used in Example 17)
4. above. 100 parts by mass of the PEN resin obtained according to the above and 100 parts by mass of rutile-type titanium oxide particles having an average particle diameter of 210 nm are melt-kneaded in a vented 300 ° C. extruder to produce a titanium oxide raw material (PEN-TiO 2 ). did.
 7.PET原料Aベースカーボン粒子マスター(実施例18に用いた)
 上記1.項によって得られたPET樹脂(PET-A)100質量部と、平均粒子径40nmのカーボン粒子100質量部を、ベントした290℃の押出機内で溶融混練し、カーボン粒子原料(PETa-CB)を作製した。
7). PET raw material A base carbon particle master (used in Example 18)
Above 1. 100 parts by mass of the PET resin (PET-A) obtained according to the above and 100 parts by mass of carbon particles having an average particle diameter of 40 nm were melt-kneaded in a vented 290 ° C. extruder to obtain a carbon particle raw material (PETa-CB). Produced.
 (易接着層用塗剤の調製)
 純水を希釈溶媒として、下記項に記載された塗剤を用いて塗剤A~Sを作製した後、日信化学株式会社製アセチレンジオール系界面活性剤オルフィンEXP4051Fを、個々の塗剤の総質量に対して0.25質量%の割合となるように配合した。下記項に記載された塗剤の配合量は、全て固形分比である。
(Preparation of easy adhesive layer coating)
After preparing coating agents A to S using the coating agents described in the following section using pure water as a diluent solvent, acetylene diol surfactant Orphine EXP4051F manufactured by Nissin Chemical Co., Ltd. It mix | blended so that it might become a ratio of 0.25 mass% with respect to mass. The blending amounts of the coating agents described in the following items are all solid content ratios.
 1.塗剤A~I(実施例1~9、16~20で用いた)
 ウレタン樹脂としてDIC株式会社製ポリエステルウレタン樹脂塗剤“ハイドラン”(登録商標) AP-201とメラミン樹脂としてDIC株式会社製トリ型メラミン樹脂塗剤“ベッカミン”(登録商標) PM-80、エポキシ樹脂としてDIC株式会社製エポキシ樹脂塗剤ADDITIVE EP-10を表1~2の固形分重量比となるように混合した後、固形分濃度が17質量%となるように純水で希釈し、塗剤A~Iを得た。
1. Coating agents A to I (used in Examples 1 to 9 and 16 to 20)
DIC Corporation polyester urethane resin coating “Hydran” (registered trademark) AP-201 as urethane resin and DIC Corporation tri-type melamine resin coating “Beckamine” (registered trademark) PM-80 as epoxy resin, as epoxy resin After mixing the epoxy resin coating ADDITIVE EP-10 manufactured by DIC Corporation so as to have the solid content weight ratio shown in Tables 1 and 2, it is diluted with pure water so that the solid content concentration becomes 17% by mass. ~ I was obtained.
 2.塗剤J(実施例10で用いた)
 ウレタン樹脂としてDIC株式会社製ポリエーテルウレタン樹脂塗剤“ハイドラン”(登録商標) WLS-202を用いた以外は塗剤Aと同様に塗剤Jを得た。
2. Coating agent J (used in Example 10)
A coating agent J was obtained in the same manner as coating agent A, except that a polyether urethane resin coating agent “HYDRAN” (registered trademark) WLS-202 manufactured by DIC Corporation was used as the urethane resin.
 3.塗剤K(実施例11で用いた)
 ウレタン樹脂としてDIC株式会社製ポリカーボネートウレタン樹脂塗剤“ハイドラン”(登録商標) WLS-213を用いた以外は塗剤Aと同様に塗剤Kを得た。
3. Coating agent K (used in Example 11)
A coating K was obtained in the same manner as coating A except that the polycarbonate urethane resin coating “HYDRAN” (registered trademark) WLS-213 manufactured by DIC Corporation was used as the urethane resin.
 4.塗剤L(実施例12、13で用いた)
 固形分濃度を6質量%になるように純水で希釈を行った以外は塗剤Aと同様に塗剤Lを得た。
4). Coating agent L (used in Examples 12 and 13)
Coating agent L was obtained in the same manner as coating agent A, except that dilution with pure water was performed so that the solid content concentration was 6% by mass.
 5.塗剤M(実施例14、15で用いた)
 固形分濃度を23質量%になるように純水で希釈を行った以外は塗剤Aと同様に塗剤Mを得た。
5. Coating agent M (used in Examples 14 and 15)
Coating agent M was obtained in the same manner as coating agent A, except that the solid content concentration was 23% by mass with dilution with pure water.
 6.塗剤N(実施例21で用いた)
 メラミン樹脂としてDIC株式会社製ヘキサ型メラミン樹脂塗剤“ベッカミン”(登録商標) J-101を用いた以外は塗剤Aと同様に塗剤Nを得た。
6). Coating agent N (used in Example 21)
A coating agent N was obtained in the same manner as coating agent A, except that a hexa-type melamine resin coating agent “Beckamine” (registered trademark) J-101 manufactured by DIC Corporation was used as the melamine resin.
 7.塗剤O(比較例1で用いた)
ウレタン樹脂としてDIC株式会社製ポリエステルウレタン樹脂塗剤“ハイドラン”(登録商標) AP-201のみを用いて、固形分濃度が17質量%となるように純水で希釈し、塗剤Oを得た。
7). Coating agent O (used in Comparative Example 1)
DIC Corporation Polyester Urethane Resin “Hydran” (Registered Trademark) AP-201 was used alone as the urethane resin to dilute with pure water to a solid content concentration of 17% by mass to obtain Coating O .
 8.塗剤P(比較例2で用いた)
 ウレタン樹脂としてDIC株式会社製ポリエステルウレタン樹脂塗剤“ハイドラン”(登録商標) AP-201とメラミン樹脂としてDIC株式会社製トリ型メラミン樹脂塗剤“ベッカミン”(登録商標) PM-80を表3の固形分重量比となるように混合した後、固形分濃度が17質量%となるように純水で希釈し、塗剤Pを得た。
8). Coating agent P (used in Comparative Example 2)
DIC Corporation polyester urethane resin coating “Hydran” (registered trademark) AP-201 as urethane resin and DIC Corporation tri-type melamine resin coating “Beccamin” (registered trademark) PM-80 as melamine resin in Table 3 After mixing at a solid content weight ratio, the mixture was diluted with pure water so that the solid content concentration was 17% by mass, and a coating agent P was obtained.
 9.塗剤Q(比較例3で用いた)
 ウレタン樹脂としてDIC株式会社製ポリエステルウレタン樹脂塗剤“ハイドラン”(登録商標) AP-201とエポキシ樹脂としてDIC株式会社製エポキシ樹脂塗剤ADDITIVE EP-10を表3の固形分重量比となるように混合した後、固形分濃度が17質量%となるように純水で希釈し、塗剤Qを得た。
9. Coating Q (used in Comparative Example 3)
DIC Corporation polyester urethane resin coating “Hydran” (registered trademark) AP-201 as urethane resin and DIC Corporation epoxy resin coating ADDITIVE EP-10 as epoxy resin so that the solid content weight ratio of Table 3 becomes After mixing, the coating material Q was obtained by diluting with pure water so that the solid content concentration was 17% by mass.
 10.塗剤R(比較例4で用いた)
 ウレタン樹脂としてDIC株式会社製ポリエステルウレタン樹脂塗剤“ハイドラン”(登録商標) AP-201とメラミン樹脂としてDIC株式会社製トリ型メラミン樹脂塗剤“ベッカミン”(登録商標) PM-80、エポキシ樹脂としてDIC株式会社製エポキシ樹脂塗剤ADDITIVE EP-10を表3の固形分重量比となるように混合した後、固形分濃度が17質量%となるように純水で希釈し、塗剤Rを得た。
10. Coating agent R (used in Comparative Example 4)
DIC Corporation polyester urethane resin coating “Hydran” (registered trademark) AP-201 as urethane resin and DIC Corporation tri-type melamine resin coating “Beckamine” (registered trademark) PM-80 as epoxy resin, as epoxy resin After mixing the epoxy resin coating ADDITIVE EP-10 manufactured by DIC Corporation so as to have the solid content weight ratio shown in Table 3, it is diluted with pure water so that the solid content concentration is 17% by mass to obtain the coating material R. It was.
 11.塗剤S(比較例5で用いた)
 ウレタン樹脂の代わりに日本カーバイド工業株式会社製のアクリル樹脂系塗剤“ニカゾール”(登録商標) RX7013EDを用いた以外は塗剤Aと同様に塗剤Sを得た。
11. Coating agent S (used in Comparative Example 5)
A coating S was obtained in the same manner as the coating A except that an acrylic resin-based coating “Nicazole” (registered trademark) RX7013ED manufactured by Nippon Carbide Industries Co., Ltd. was used instead of the urethane resin.
 12.塗剤T(比較例6で用いた)
 ウレタン樹脂の代わりに高松油脂株式会社製のポリエステル樹脂系塗剤ペスレジン TR620Kを用いた以外は塗剤Aと同様に塗剤Tを得た。
12 Coating agent T (used in Comparative Example 6)
A coating agent T was obtained in the same manner as the coating agent A except that a polyester resin-based coating material Pes Resin TR620K manufactured by Takamatsu Yushi Co., Ltd. was used instead of the urethane resin.
 (実施例1~11)
 180℃で2時間真空乾燥したPET原料A(PET-A)とPET原料Aベース酸化チタンマスター(PETa-TiO)を、粒子量が表1の濃度となるように調合し280℃の押出機内で溶融混練し、Tダイ口金に導入した。次いで、Tダイ口金よりシート状に溶融押出して表面温度25℃に保たれたドラム上に静電印加法で密着冷却固化させて、未延伸シートを得た。続いて、該未延伸シートを80℃の温度に加熱したロール群で予熱した後、88℃の温度に加熱したロールと25℃の温度に調整したロール間で3倍の速度差をつけることで長手方向(縦方向)に3倍に延伸した後、25℃の温度のロール群で冷却して一軸延伸シートを得た。一軸延伸したシートにコロナ処理を施した後、表1に記載の実施例の番号に対応した塗剤を#8のメタリングバーにて塗布した。
(Examples 1 to 11)
PET raw material A (PET-A) vacuum-dried at 180 ° C. for 2 hours and PET raw material A-based titanium oxide master (PETa-TiO 2 ) were blended so that the amount of particles was the concentration shown in Table 1, and inside the extruder at 280 ° C. And kneaded and introduced into a T die die. Subsequently, it was melt-extruded into a sheet form from a T-die die and adhered and cooled and solidified by an electrostatic application method on a drum maintained at a surface temperature of 25 ° C. to obtain an unstretched sheet. Subsequently, after preheating the unstretched sheet with a roll group heated to a temperature of 80 ° C., a three-fold speed difference is created between the roll heated to a temperature of 88 ° C. and the roll adjusted to a temperature of 25 ° C. After stretching 3 times in the longitudinal direction (longitudinal direction), it was cooled with a roll group at a temperature of 25 ° C. to obtain a uniaxially stretched sheet. After the uniaxially stretched sheet was subjected to corona treatment, a coating agent corresponding to the example numbers shown in Table 1 was applied with a # 8 metering bar.
 得られた一軸延伸シートの両端をクリップで把持しながらテンター内の80℃の温度の予熱ゾーンに導き、引き続き連続的に90℃に保たれた加熱ゾーンで長手方向に直角な方向(幅方向)に3.5倍に延伸した。さらに引き続いて、テンター内の熱処理ゾーンで220℃で20秒間の熱処理を施し、さらに220℃で4%幅方向に弛緩処理を行った。次いで均一に徐冷を行い、全体厚みが125μmのシートを製膜した。得られたシートからP1層を分離してポリマー特性を測定したところ固有粘度IV、末端カルボキシル基量は表1に示す通りであった。またP2層の特性評価を行ったところ、水との接触角、及び厚みは表1に示す通りであった。 While holding both ends of the obtained uniaxially stretched sheet with a clip, the tenter is guided to a preheating zone at a temperature of 80 ° C. in the tenter, and then continuously heated at 90 ° C. in a direction perpendicular to the longitudinal direction (width direction). The film was stretched 3.5 times. Subsequently, heat treatment was performed at 220 ° C. for 20 seconds in a heat treatment zone in the tenter, and further relaxation treatment was performed in the 4% width direction at 220 ° C. Then, it was gradually cooled gradually to form a sheet having a total thickness of 125 μm. When the P1 layer was separated from the obtained sheet and the polymer characteristics were measured, the intrinsic viscosity IV and the amount of terminal carboxyl groups were as shown in Table 1. Further, when the characteristics of the P2 layer were evaluated, the contact angle with water and the thickness were as shown in Table 1.
 得られたシートについて、P2層の定性分析、及び太陽電池裏面保護用シートの評価を行った。その結果、表4に示す通り、P2層中にはウレタン樹脂成分、メラミン樹脂成分、エポキシ樹脂成分の3成分が含まれており、実施例10、11以外はウレタン樹脂成分がポリエステルウレタン樹脂を含むウレタン樹脂成分であることを確認した。また太陽電池裏面保護用シートとしては封止材との初期密着性、密着保持性ともに良好であり、中でもP2層の水との接触角が好ましい範囲(76°以上)である実施例は封止材との密着保持性に優れ、更に、P2層の水との接触角がより好ましい範囲(79°以上)である実施例は封止材との密着保持性に非常に優れた太陽電池裏面保護用シートであることがわかった。また得られた太陽電池裏面保護用シートはすべて耐湿熱性、耐紫外線性に優れることがわかった。
更に、得られた太陽電池裏面保護用シートを搭載した太陽電池を作製し、太陽電池の耐久性の評価を行った。その結果、表4に示す通り、封止材との密着保持性に非常に優れた太陽電池裏面保護用シートを搭載する太陽電池は非常に優れた耐久性を有することがわかった。
About the obtained sheet | seat, the qualitative analysis of P2 layer and the evaluation of the solar cell back surface protection sheet were performed. As a result, as shown in Table 4, the P2 layer contains three components of a urethane resin component, a melamine resin component, and an epoxy resin component. Except for Examples 10 and 11, the urethane resin component contains a polyester urethane resin. It was confirmed to be a urethane resin component. In addition, the solar cell back surface protection sheet has good initial adhesion and adhesion retention with the sealing material, and in particular, the example in which the contact angle with water of the P2 layer is in a preferable range (76 ° or more) is sealed. An example in which the contact angle with the water of the P2 layer is in a more preferable range (79 ° or more) is excellent in the close contact retention with the material. It turned out that it is a sheet for use. It was also found that all the solar cell back surface protection sheets obtained were excellent in heat and moisture resistance and UV resistance.
Furthermore, the solar cell carrying the obtained solar cell back surface protection sheet was produced, and the durability of the solar cell was evaluated. As a result, as shown in Table 4, it was found that the solar cell on which the sheet for protecting the back surface of the solar cell, which was very excellent in adhesion and retention with the sealing material, had very excellent durability.
 (実施例12~15)
 P2層に表2に記載の塗剤のうち実施例の番号に対応した塗剤を、表2に示すP2層の厚みとなるように、メタリングバーの番手を調整した以外は実施例1と同様にシートを得た。得られたシートのP2層の特性評価を行ったところ、水との接触角、及び厚みは表2に示す通りであった。
(Examples 12 to 15)
The coating agent corresponding to the number of the example in the coating agent described in Table 2 in the P2 layer is the same as that in Example 1 except that the count of the metering bar is adjusted so as to be the thickness of the P2 layer shown in Table 2. Similarly, a sheet was obtained. When the characteristics of the P2 layer of the obtained sheet were evaluated, the contact angle with water and the thickness were as shown in Table 2.
 得られたシートについて、P2層の定性分析、及び太陽電池裏面保護用シートの評価を行った。その結果、表4に示す通り、P2層中にはウレタン樹脂成分、メラミン樹脂成分、エポキシ樹脂成分の3成分が含まれており、P2層の厚みが実施例1に比べて薄くなった実施例12、13は封止材との初期密着性、密着保持性ともに劣るが問題ない範囲の太陽電池裏面保護用シートであることが分かった。一方でP2層の厚みが実施例1に比べて厚くなった実施例14、15は実施例1と同等の非常に優れた封止材との初期密着性と密着保持性を有するものの、実施例15については目視で塗布スジが確認された。 About the obtained sheet | seat, the qualitative analysis of P2 layer and the evaluation of the solar cell back surface protection sheet were performed. As a result, as shown in Table 4, the P2 layer contained three components, a urethane resin component, a melamine resin component, and an epoxy resin component, and the thickness of the P2 layer was thinner than that of Example 1. Nos. 12 and 13 were found to be solar cell back surface protection sheets in a range that is inferior in initial adhesion to the sealing material and in close contact retention but no problem. On the other hand, although Examples 14 and 15 in which the thickness of the P2 layer was thicker than Example 1 had initial adhesion and adhesion retention with a very excellent sealing material equivalent to Example 1, As for No. 15, application stripes were confirmed visually.
 更に、得られた実施例14、15の太陽電池裏面保護用シートを搭載した太陽電池は非常に優れた耐久性を有していること、実施例12、13の太陽電池裏面保護用シートを搭載した太陽電池は耐久性に劣るが問題ない範囲であることがわかった。 Furthermore, the solar cell on which the obtained solar cell back surface protection sheets of Examples 14 and 15 are mounted has extremely excellent durability, and the solar cell back surface protection sheets of Examples 12 and 13 are mounted. The solar cell was found to be in a range where there is no problem although it is inferior in durability.
 (実施例16)
 P1層にPET原料A(PET-A)のみを用いた以外は実施例1と同様にシートを得た。得られたシートからP1層を分離してポリマー特性を測定したところ固有粘度IV、末端カルボキシル基量は表2に示す通りであった。
(Example 16)
A sheet was obtained in the same manner as in Example 1 except that only PET raw material A (PET-A) was used for the P1 layer. When the P1 layer was separated from the obtained sheet and the polymer characteristics were measured, the intrinsic viscosity IV and the amount of terminal carboxyl groups were as shown in Table 2.
 得られたシートは表4の通り、実施例1と同等の非常に優れた封止材との初期密着性と密着保持性を有し、やや耐紫外線性に劣るものの、非常に優れた耐湿熱性を有する太陽電池裏面保護用シートであることがわかった。更に、得られた太陽電池裏面保護用シートを搭載した太陽電池は非常に優れた耐久性を有することがわかった。 As shown in Table 4, the obtained sheet has initial adhesion and adhesion retention with a very excellent sealing material equivalent to that in Example 1, and is slightly inferior in UV resistance, but very excellent moisture and heat resistance. It turned out that it is a solar cell back surface protection sheet which has. Furthermore, it turned out that the solar cell carrying the obtained sheet | seat for solar cell back surface protection has very outstanding durability.
 (実施例17)
 P1層にPEN原料(PEN)とPENベース酸化チタンマスター(PEN-TiO)を用いた以外は実施例1と同様にシートを得た。得られたシートからP1層を分離してポリマー特性を測定したところ固有粘度IV、末端カルボキシル基量は表2に示す通りであった。
(Example 17)
A sheet was obtained in the same manner as in Example 1 except that the PEN material (PEN) and the PEN-based titanium oxide master (PEN-TiO 2 ) were used for the P1 layer. When the P1 layer was separated from the obtained sheet and the polymer characteristics were measured, the intrinsic viscosity IV and the amount of terminal carboxyl groups were as shown in Table 2.
 得られたシートは表4の通り、実施例1に比べて劣るものの優れた封止材との初期密着性と密着保持性を有し、非常に優れた耐湿熱性を有する太陽電池裏面保護用シートであることがわかった。更に、得られた太陽電池裏面保護用シートを搭載した太陽電池は実施例1に比べて劣るものの優れた耐久性を有することがわかった。 As shown in Table 4, the obtained sheet is inferior to Example 1 but has excellent initial adhesiveness and adhesiveness retention with a sealing material, and has a very excellent moisture and heat resistance sheet. I found out that Furthermore, although the solar cell carrying the obtained sheet | seat for solar cell back surface protection was inferior compared with Example 1, it turned out that it has the outstanding durability.
 (実施例18)
 P1層にPET原料A(PET-A)とPET原料AベースCBマスター(PETa-CB)を用いた以外は実施例1と同様にシートを得た。得られたシートからP1層を分離してポリマー特性を測定したところ固有粘度IV、末端カルボキシル基量は表2に示す通りであった。
(Example 18)
A sheet was obtained in the same manner as in Example 1 except that PET raw material A (PET-A) and PET raw material A-based CB master (PETa-CB) were used for the P1 layer. When the P1 layer was separated from the obtained sheet and the polymer characteristics were measured, the intrinsic viscosity IV and the amount of terminal carboxyl groups were as shown in Table 2.
 得られたシートは表4の通り、実施例1と同等の非常に優れた封止材との初期密着性と密着保持性を有し、非常に優れた耐紫外線性を有する太陽電池裏面保護用シートであることがわかった。更に、得られた太陽電池裏面保護用シートを搭載した太陽電池は非常に優れた耐久性を有することがわかった。 As shown in Table 4, the obtained sheet has initial adhesion and adhesion retention with a very excellent sealing material equivalent to that of Example 1, and has a very excellent ultraviolet resistance for protecting the back surface of a solar cell. It turned out to be a sheet. Furthermore, it turned out that the solar cell carrying the obtained sheet | seat for solar cell back surface protection has very outstanding durability.
 (実施例19)
 P1層にPET原料B(PET-B)とPET原料Bベース酸化チタンマスター(PETb-TiO)を用いた以外は実施例1と同様にシートを得た。得られたシートからP1層を分離してポリマー特性を測定したところ固有粘度IV、末端カルボキシル基量は表2に示す通りであった。
(Example 19)
A sheet was obtained in the same manner as in Example 1 except that PET raw material B (PET-B) and PET raw material B-based titanium oxide master (PETb-TiO 2 ) were used for the P1 layer. When the P1 layer was separated from the obtained sheet and the polymer characteristics were measured, the intrinsic viscosity IV and the amount of terminal carboxyl groups were as shown in Table 2.
 得られたシートは表4の通り、実施例1と同等の非常に優れた封止材との初期密着性、密着保持性を有し、耐湿熱性が実施例1に比べて劣るものの問題ない範囲である太陽電池裏面保護用シートであることがわかった。更に、得られた太陽電池裏面保護用シートを搭載した太陽電池は実施例1に比べて劣るものの優れた耐久性を有することがわかった。 As shown in Table 4, the obtained sheet has initial adhesiveness and adhesion retention with a very excellent sealing material equivalent to that of Example 1, and has no problem although moisture and heat resistance is inferior to that of Example 1. It turned out that it is a solar cell back surface protection sheet. Furthermore, although the solar cell carrying the obtained sheet | seat for solar cell back surface protection was inferior compared with Example 1, it turned out that it has the outstanding durability.
 (実施例20)
 P1層にPET原料A(PET-A)とPET原料Aベース酸化チタンマスター(PETa-TiO)をP11層及びP12層を別々に表2に記載の粒子量となるように混合しておいた原料を2台の押出機でそれぞれ別に溶融混練し、2台の押出機からフィードブロックを介してTダイ口金に導入してP11/P12の積層シートを得て、実施例1と同様にシートを得た。またこの際、P11/P12の積層比が7/1となるように2台の押出機のスクリュー回転数を調整した。得られたシートからP1層を分離してポリマー特性を測定したところ固有粘度IV、末端カルボキシル基量は表2に示す通りであった。
(Example 20)
In the P1 layer, the PET raw material A (PET-A) and the PET raw material A-based titanium oxide master (PETa-TiO 2 ) were mixed separately so that the P11 layer and the P12 layer had the particle amounts shown in Table 2. The raw materials were melted and kneaded separately by two extruders, introduced into a T-die die through feed blocks from the two extruders to obtain a laminated sheet of P11 / P12. Obtained. At this time, the screw rotation speeds of the two extruders were adjusted so that the stacking ratio of P11 / P12 was 7/1. When the P1 layer was separated from the obtained sheet and the polymer characteristics were measured, the intrinsic viscosity IV and the amount of terminal carboxyl groups were as shown in Table 2.
 得られたシートは表4の通り、実施例1と同等の非常に優れた易接着性を有し、非常に優れた耐湿熱性と耐紫外線性を有する太陽電池裏面保護用シートであることがわかった。更に、得られた太陽電池裏面保護用シートを搭載した太陽電池は非常に優れた耐久性を有することがわかった。 As shown in Table 4, the obtained sheet was found to be a sheet for protecting the back surface of a solar cell having very excellent easy adhesion equivalent to that of Example 1, and having very excellent moist heat resistance and ultraviolet resistance. It was. Furthermore, it turned out that the solar cell carrying the obtained sheet | seat for solar cell back surface protection has very outstanding durability.
 (実施例21)
 P2層に表2に記載の通り、塗剤Nを塗布した以外は実施例1と同様にシートを得た。得られたシートのP2層の特性評価を行ったところ、水との接触角、及び厚みは表2に示す通りであった。
(Example 21)
As described in Table 2, a sheet was obtained in the same manner as in Example 1 except that the coating agent N was applied to the P2 layer. When the characteristics of the P2 layer of the obtained sheet were evaluated, the contact angle with water and the thickness were as shown in Table 2.
 得られたシートは表4の通り、実施例1に比べて劣るものの優れた封止材との初期密着性と密着保持性を有する太陽電池裏面保護用シートであることがわかった。更に、得られた太陽電池裏面保護用シートを搭載した太陽電池は実施例1に比べて劣るものの優れた耐久性を有することがわかった。 As shown in Table 4, the obtained sheet was found to be a sheet for protecting the back surface of a solar cell, which was inferior to that of Example 1 but had excellent initial adhesion and adhesion retention with an excellent sealing material. Furthermore, although the solar cell carrying the obtained sheet | seat for solar cell back surface protection was inferior compared with Example 1, it turned out that it has the outstanding durability.
 (比較例1~6)
 表3の通り、ウレタン樹脂のみ含む塗剤O、メラミン樹脂またはエポキシ樹脂のいずれかを含まない塗剤P、Q、ウレタン樹脂とメラミン樹脂、エポキシ樹脂を含む塗剤組成物より得られた塗剤R、ウレタン樹脂の代わりにアクリル樹脂またはポリエステル樹脂を用いた塗剤S、Tを塗布した以外は実施例1と同様にシートを得た。得られたシートのP2層の特性評価を行ったところ、水との接触角、及び厚みは表2に示す通りであった。
(Comparative Examples 1 to 6)
As shown in Table 3, coating material O obtained only from urethane resin, coating material P or Q not containing any of melamine resin or epoxy resin, coating material obtained from coating composition containing urethane resin and melamine resin, epoxy resin A sheet was obtained in the same manner as in Example 1 except that coating agents S and T using acrylic resin or polyester resin instead of R and urethane resin were applied. When the characteristics of the P2 layer of the obtained sheet were evaluated, the contact angle with water and the thickness were as shown in Table 2.
 得られたシートについて、P2層の定性分析、及び太陽電池裏面保護用シートの評価を行った。その結果、表4に示す通り、P2層中にはウレタン樹脂成分、メラミン樹脂成分、エポキシ樹脂成分の3成分が含まれているのは比較例4のみであった。また太陽電池裏面保護用シートとしては、比較例1~3については封止材との初期密着性には優れるものの、いずれの比較例も封止材との密着保持性が劣ることがわかった。更に、得られた太陽電池裏面保護用シートを搭載した太陽電池についても耐久性が劣ることがわかった。 About the obtained sheet | seat, the qualitative analysis of P2 layer and the evaluation of the solar cell back surface protection sheet were performed. As a result, as shown in Table 4, only the comparative example 4 contained the three components of the urethane resin component, the melamine resin component, and the epoxy resin component in the P2 layer. As for the solar cell back surface protection sheet, Comparative Examples 1 to 3 were excellent in initial adhesion to the encapsulant, but all Comparative Examples were found to have poor adhesion retention with the encapsulant. Furthermore, it turned out that durability is inferior also about the solar cell carrying the obtained solar cell back surface protection sheet.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
本発明の太陽電池裏面保護用シートは、太陽電池モジュールの裏面保護用シートとして好適に使用することができる。またその他にも、エチレン-酢酸ビニル共重合体樹脂との接着性が要求される用途で易接着性シートとしても好適に用いることができる。 The solar cell back surface protection sheet of the present invention can be suitably used as a back surface protection sheet of a solar cell module. In addition, it can be suitably used as an easy-adhesive sheet in applications that require adhesion with an ethylene-vinyl acetate copolymer resin.
1:太陽電池裏面保護用シート
2:封止材
3:発電素子
4:透明基板
5:太陽電池裏面保護用シートの封止材2側の面
6:太陽電池裏面保護用シートの封止材2と反対側の面
1: Solar cell back surface protection sheet 2: Sealing material 3: Power generation element 4: Transparent substrate 5: Surface of solar cell back surface protection sheet on sealing material 2 side 6: Solar cell back surface protection sheet sealing material 2 Opposite side

Claims (9)

  1.  ポリエステル樹脂からなる基材層(P1層)と、前記P1層の少なくとも片側に隣接する易接着層(P2層)を有し、前記のP2層が次の(1)、(2)の要件を満たすことを特徴とする太陽電池裏面保護用シート。
    (1)ウレタン樹脂成分、メラミン樹脂成分、エポキシ樹脂成分の3成分を含む。
    (2)水の接触角が74°以上である。
    It has a base material layer (P1 layer) made of polyester resin and an easy adhesion layer (P2 layer) adjacent to at least one side of the P1 layer, and the P2 layer satisfies the following requirements (1) and (2) A sheet for protecting the back surface of a solar cell, characterized by satisfying.
    (1) Contains three components, a urethane resin component, a melamine resin component, and an epoxy resin component.
    (2) The contact angle of water is 74 ° or more.
  2.  前記P2層が、ウレタン樹脂、メラミン樹脂、エポキシ樹脂を含む塗剤組成物から形成される層であり、ウレタン樹脂がP2層を形成する塗剤組成物中の固形分重量で80質量%以上99%質量%以下含むことを特徴とする請求項1に記載の太陽電池裏面保護用シート。 The P2 layer is a layer formed from a coating composition containing a urethane resin, a melamine resin, and an epoxy resin, and the urethane resin forms 80% by mass or more by solid content in the coating composition forming the P2 layer. The solar cell back surface protection sheet according to claim 1, further comprising:% by mass or less.
  3.  前記P2層を形成する塗剤組成物中のメラミン樹脂とエポキシ樹脂の重量比Wm/We(メラミン樹脂の重量/エポキシ樹脂の重量)が2~5の範囲であることを特徴とする請求項2に記載の太陽電池裏面保護用シート。 3. The weight ratio Wm / We (weight of melamine resin / weight of epoxy resin) of the melamine resin and the epoxy resin in the coating composition forming the P2 layer is in the range of 2 to 5. The solar cell back surface protection sheet according to 1.
  4.  P2層に含まれるウレタン樹脂成分がポリエステル骨格を有することを特徴とする請求項1~3のいずれかに記載の太陽電池裏面保護用シート。 The solar cell back surface protective sheet according to any one of claims 1 to 3, wherein the urethane resin component contained in the P2 layer has a polyester skeleton.
  5.  P1層を構成するポリエステル樹脂が、酸化チタン粒子を1質量%以上25質量%以下含むことを特徴とする請求項1~4のいずれかに記載の太陽電池裏面保護用シート。 The solar cell back surface protection sheet according to any one of claims 1 to 4, wherein the polyester resin constituting the P1 layer contains 1% by mass or more and 25% by mass or less of titanium oxide particles.
  6.  P1層を構成するポリエステル樹脂の固有粘度IVが0.65dl/g以上0.80dl/g以下、かつ末端カルボキシル基量が25当量/トン以下のポリエチレンテレフタレートであることを特徴とする請求項1~5のいずれかに記載の太陽電池裏面保護用シート。 The polyester resin constituting the P1 layer is polyethylene terephthalate having an intrinsic viscosity IV of 0.65 dl / g or more and 0.80 dl / g or less and a terminal carboxyl group amount of 25 equivalents / ton or less. The solar cell back surface protection sheet according to any one of 5.
  7.  請求項1~6のいずれかに記載の太陽電池裏面保護用シートを用いた太陽電池。 A solar cell using the solar cell back surface protective sheet according to any one of claims 1 to 6.
  8. ポリエステル樹脂からなる基材層(P1層)の少なくとも片側に隣接する易接着層(P2層)を設け、前記P2層が(3)、(4)を満たすことを特徴とする太陽電池裏面保護用シートの製造方法。
    (3)ウレタン樹脂、メラミン樹脂、エポキシ樹脂の3成分を含む塗剤組成物から形成される層であること。
    (4)水の接触角が74°以上であること。
    An easy-adhesion layer (P2 layer) adjacent to at least one side of a base material layer (P1 layer) made of a polyester resin is provided, and the P2 layer satisfies (3) and (4). Sheet manufacturing method.
    (3) It is a layer formed from the coating composition containing 3 components of a urethane resin, a melamine resin, and an epoxy resin.
    (4) The contact angle of water is 74 ° or more.
  9. 前記塗剤組成物中に含むウレタン樹脂が、トリ型メラミン樹脂であることを特徴とする請求項8に記載の太陽電池裏面保護用シートの製造方法。
     
    The method for producing a solar cell back surface protection sheet according to claim 8, wherein the urethane resin contained in the coating composition is a tri-type melamine resin.
PCT/JP2014/082698 2013-12-27 2014-12-10 Sheet for solar cell backside protection WO2015098520A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014560169A JPWO2015098520A1 (en) 2013-12-27 2014-12-10 Solar cell back surface protection sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-271324 2013-12-27
JP2013271324 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098520A1 true WO2015098520A1 (en) 2015-07-02

Family

ID=53478384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082698 WO2015098520A1 (en) 2013-12-27 2014-12-10 Sheet for solar cell backside protection

Country Status (3)

Country Link
JP (1) JPWO2015098520A1 (en)
TW (1) TW201535764A (en)
WO (1) WO2015098520A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017182040A (en) * 2016-03-29 2017-10-05 三菱ケミカル株式会社 Laminated polyester film and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002301787A (en) * 1997-09-25 2002-10-15 Mitsubishi Chemicals Corp Method for manufacturing vapor-deposited plastic film
JP2010016286A (en) * 2008-07-07 2010-01-21 Toppan Printing Co Ltd Sheet for sealing backside of solar battery
WO2013136861A1 (en) * 2012-03-15 2013-09-19 Dic株式会社 Heat sealing agent, laminate body using same, and solar cell module
JP2013253189A (en) * 2012-06-08 2013-12-19 Toyobo Co Ltd Easily adhesive film and method for producing the same
WO2015001951A1 (en) * 2013-07-05 2015-01-08 東レ株式会社 Reverse-side protective substrate, solar cell module, and method for producing solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002301787A (en) * 1997-09-25 2002-10-15 Mitsubishi Chemicals Corp Method for manufacturing vapor-deposited plastic film
JP2010016286A (en) * 2008-07-07 2010-01-21 Toppan Printing Co Ltd Sheet for sealing backside of solar battery
WO2013136861A1 (en) * 2012-03-15 2013-09-19 Dic株式会社 Heat sealing agent, laminate body using same, and solar cell module
JP2013253189A (en) * 2012-06-08 2013-12-19 Toyobo Co Ltd Easily adhesive film and method for producing the same
WO2015001951A1 (en) * 2013-07-05 2015-01-08 東レ株式会社 Reverse-side protective substrate, solar cell module, and method for producing solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017182040A (en) * 2016-03-29 2017-10-05 三菱ケミカル株式会社 Laminated polyester film and method for producing the same

Also Published As

Publication number Publication date
TW201535764A (en) 2015-09-16
JPWO2015098520A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP4849189B2 (en) POLYESTER FILM, SOLAR CELL BACK SHEET USING SAME, SOLAR CELL, AND METHOD FOR PRODUCING THEM
CN102597104B (en) Biaxially oriented polyester film
JP6051868B2 (en) Laminated sheet and method for producing the same
JP2014075508A (en) Sheet for solar cell back protection
JP6743698B2 (en) Film for solar cell back sheet, solar cell back sheet using the same, and solar cell
TW201712088A (en) Rear surface protective sheet for solar cell and solar cell module
WO2016052133A1 (en) Layered product
WO2018034117A1 (en) Laminate, solar cell rear surface protection sheet using same, and solar cell module
JP5504957B2 (en) Multilayer polyester film, solar cell backsheet using the same, and solar cell
WO2015098520A1 (en) Sheet for solar cell backside protection
WO2015182282A1 (en) Polyester film for solar cell back sheets
JP2016076537A (en) Sheet for solar battery backside protection and method for manufacturing the same
JP2018086750A (en) Solar cell back sheet laminate and solar cell module
JP5614298B2 (en) Laminated polyester film for solar battery backsheet
JP2017212438A (en) Back sheet for solar battery module and solar battery module
JP2015188015A (en) Laminate polyester film for solar battery backside protection, solar battery backside protective sheet, and solar battery module
JP2017157831A (en) Solar battery backside protection sheet
JP2018083873A (en) Polyester film, and solar cell back sheet and solar cell comprising the same
JP2016111037A (en) Solar battery back protection sheet, and solar cell using the same
JP2017157730A (en) Polyester film for solar battery back sheet
JP2014231147A (en) Solar cell rear surface protective sheet
JP2013028058A (en) Laminated polyester film for solar battery back sheet
JP2019137842A (en) Polyester film, solar cell back sheet using the same and solar cell
JP2014162080A (en) Laminated sheet and method for producing the same
JP2018088508A (en) Solar cell back sheet, solar cell module, and manufacturing method for solar cell module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014560169

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875424

Country of ref document: EP

Kind code of ref document: A1