WO2016052133A1 - Layered product - Google Patents

Layered product Download PDF

Info

Publication number
WO2016052133A1
WO2016052133A1 PCT/JP2015/075776 JP2015075776W WO2016052133A1 WO 2016052133 A1 WO2016052133 A1 WO 2016052133A1 JP 2015075776 W JP2015075776 W JP 2015075776W WO 2016052133 A1 WO2016052133 A1 WO 2016052133A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mass
adhesion
solar cell
resin component
Prior art date
Application number
PCT/JP2015/075776
Other languages
French (fr)
Japanese (ja)
Inventor
巽規行
堀江将人
千代敏弘
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2015545567A priority Critical patent/JPWO2016052133A1/en
Publication of WO2016052133A1 publication Critical patent/WO2016052133A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention has excellent adhesion to EVA, which is a sealing material for solar cells, and is suitable as a sheet for protecting the back surface of a solar cell, which maintains adhesion even when placed outdoors for a long period of time (excellent adhesion retention).
  • EVA is a sealing material for solar cells
  • the present invention has excellent adhesion retention to a laminate.
  • a power generating element is sealed with a transparent sealing material such as ethylene-vinyl acetate copolymer (hereinafter sometimes referred to as EVA), a transparent substrate such as glass, and a back sheet (for back surface protection).
  • EVA ethylene-vinyl acetate copolymer
  • a resin sheet called a “sheet” is bonded together.
  • Sunlight is introduced into the solar cell through the transparent substrate. Sunlight introduced into the solar cell is absorbed by the power generation element, and the absorbed light energy is converted into electrical energy. The converted electric energy is taken out by a lead wire connected to the power generation element and used for various electric devices.
  • PET biaxially stretched polyethylene terephthalate
  • various materials are bonded together by a method such as dry lamination.
  • studies have been made to impart barrier properties and electrical characteristics.
  • polyester resins such as PET have poor adhesion to the sealing material. Therefore, conventionally, it is common to laminate a polyolefin resin sheet excellent in adhesion to a sealing material on a polyester resin such as PET and use the polyolefin resin sheet as a sealing material adhesion surface of a solar cell back surface protection sheet. Met.
  • Patent Documents 1, 2, and 3 a laminated polyester sheet that can provide an easy-adhesion layer on the surface of a biaxially stretched polyester film and can be directly bonded to a sealing material has been disclosed. .
  • JP 2006-152013 A Japanese Patent No. 4803317 JP 2012-69835 A
  • the laminated polyester sheet is used as a sheet for protecting the back surface of a solar battery, not only during processing of the solar battery cell, but also while being used outdoors as a solar battery cell, the base film and the easy adhesion layer, easy adhesion There was a problem that peeling occurred between the layer and the adherend.
  • the conventional film has a problem that when it is placed outdoors for a long period of time, the adhesion is deteriorated (adhesion retention is poor).
  • the substrate film and the easy adhesion layer, and the adhesion balance between the easy adhesion layer and the adherend are excellent, and the adhesion is good even when left outdoors for a long time. It aims at providing the laminated body suitable as a sheet
  • the present invention has the following configuration. That is, it has a base material layer (P1 layer) and an easy adhesion layer (P2 layer) made of a polyester resin having a terminal carboxyl group amount of 25 equivalents / ton or less, and the P2 layer has the following requirements (1) and ( It is a laminate characterized by satisfying 2).
  • Polar force ⁇ p is 4.8 mN / m or more and 21.0 mN / m or less
  • Difference ⁇ p ⁇ h between polar force ⁇ p and hydrogen bonding force ⁇ h is 1.0 mN / m or more and 20.0 mN / m or less
  • the present invention compared to a conventional laminate in which an easy-adhesion layer is provided on a polyester film, it has excellent adhesion with EVA, which is a sealing material for solar cells, and has excellent adhesion even when placed outdoors for a long period of time.
  • EVA which is a sealing material for solar cells
  • adherence retainability) can be provided.
  • a highly durable solar cell can be provided by mounting the laminate.
  • the laminate of the present invention has a base material layer (P1 layer) and an easy-adhesion layer (P2 layer) made of a polyester resin having a terminal carboxyl group amount of 25 equivalents / ton or less, and the P2 layer has the following requirements: It is characterized by satisfying (1) and (2).
  • Polar force ⁇ p is 4.8 mN / m or more and 21.0 mN / m or less
  • Difference ⁇ p ⁇ h between polar force ⁇ p and hydrogen bonding force ⁇ h is 1.0 mN / m or more and 20.0 mN / m or less
  • the P1 layer of the present invention contains a polyester resin as a main component.
  • the polyester resin as a main constituent means that the polyester resin is contained in an amount exceeding 50% by mass with respect to the resin constituting the P1 layer.
  • Specific examples of the polyester resin constituting the P1 layer include polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, and polylactic acid.
  • the polyester resin used in the present invention includes 1) polycondensation of dicarboxylic acid or an ester-forming derivative thereof (hereinafter collectively referred to as “dicarboxylic acid component”) and a diol component, and 2) carboxylic acid or carboxylic acid in one molecule. It can be obtained by a polycondensation of an acid derivative and a compound having a hydroxyl group, and 1) 2).
  • the polymerization of the polyester resin can be performed by a conventional method.
  • dicarboxylic acid component malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid
  • Aliphatic dicarboxylic acids such as ethylmalonic acid
  • alicyclic dicarboxylic acids such as adamantane dicarboxylic acid, norbornene dicarboxylic acid, cyclohexane dicarboxylic acid, decalin dicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4
  • dicarboxyl obtained by condensing oxyacids such as l-lactide, d-lactide, and hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of such oxyacids, at least one carboxy terminus of the dicarboxylic acid component described above.
  • oxyacids such as l-lactide, d-lactide, and hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of such oxyacids, at least one carboxy terminus of the dicarboxylic acid component described above.
  • oxyacids such as l-lactide, d-lactide, and hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of such oxyacids, at least one carboxy terminus of the dicarboxylic acid component described above.
  • Compounds can also be used.
  • aliphatic diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, Aromatic diols such as cyclohexanedimethanol, spiroglycol, isosorbide, bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 9,9'-bis (4-hydroxyphenyl) fluorene Group diols are typical examples. Moreover, these may be used independently or may be used in multiple types as needed. In addition, a dihydroxy compound formed by condensing a diol with at least one hydroxy terminal of the diol component described above can also be used.
  • examples of the compound having a carboxylic acid or a carboxylic acid derivative and a hydroxyl group in one molecule include oxyacids such as l-lactide, d-lactide and hydroxybenzoic acid, and derivatives thereof, oligomers of oxyacids, dicarboxylic acids Examples thereof include those obtained by condensing an oxyacid with one carboxyl group of the acid.
  • the dicarboxylic acid component and the diol component constituting the polyester resin may be copolymerized by selecting one from the above, or may be copolymerized by selecting a plurality of each. Further, the polyester resin constituting the P1 layer may be a single type or a blend of two or more types of polyester resins.
  • terminal carboxyl group amount refers to a value obtained according to the method of Malice and will be described in detail later.
  • the amount of terminal carboxyl groups of the polyester resin constituting the P1 layer is preferably 19 equivalents / ton or less, and more preferably 16 equivalents / ton or less.
  • the amount of terminal carboxyl groups of the polyester resin constituting the P1 layer exceeds 25 equivalents / ton, the moisture and heat resistance of the P1 layer is lowered, and when it is placed outdoors for a long period of time, before the adherend and the easy adhesion layer peel off. The laminated body is destroyed due to the deterioration inside the P1 layer, and as a result, the problem that the adhesiveness is lowered occurs.
  • the lower limit of the amount of terminal carboxyl groups of the polyester resin constituting the P1 layer is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 1 equivalent / ton or more, and 13 amounts / ton. The above is more preferable.
  • the amount of terminal carboxyl groups in the polyester resin constituting the P1 layer is less than 1 equivalent / ton, the laminate may be excellent in moisture and heat resistance but may be insufficient in adhesion to the easy adhesion layer.
  • the intrinsic viscosity IV of the polyester resin constituting the P1 layer of the present invention is preferably 0.65 dl / g or more and 0.80 dl / g or less, and the polyester resin preferably contains polyethylene terephthalate (PET) as a main constituent.
  • PET polyethylene terephthalate
  • the main component here means that it is contained in excess of 50% by mass with respect to the polyester resin.
  • the intrinsic viscosity IV of the PET is preferably 0.65 dl / g or more, more preferably 0.69 dl / g or more, and the intrinsic viscosity IV is 0.00.
  • the heat and humidity resistance of the laminate may be deteriorated.
  • intrinsic viscosity IV exceeds 0.80 dl / g, when the P1 layer is manufactured, the extrudability of the resin may be poor and sheet molding may be difficult. Therefore, when the resin constituting the P1 layer contains PET as the main constituent component, a laminate having both excellent moldability and wet heat resistance can be obtained by satisfying the above-described range of the intrinsic viscosity IV.
  • the number average molecular weight Mn of the polyester resin constituting the P1 layer is preferably 8000 to 40000, more preferably 9000 to 30000, and still more preferably 10,000 to 20000.
  • the number average molecular weight Mn of the polyester resin constituting the P1 layer means that the P1 layer is separated from the laminate of the present invention, dissolved in hexafluoroisopronol (HEIP), and gel permeation chromatography (GPC method). This is a value obtained by using polyethylene terephthalate and dimethyl terephthalate having a known molecular weight as standard samples from the values measured by and detected with a differential refractometer.
  • the number average molecular weight Mn of the polyester resin constituting the P1 layer is less than 8000, durability such as heat and moisture resistance and heat resistance may be lowered.
  • the number average molecular weight Mn exceeds 40000, even if the polymerization is difficult or the polymerization can be performed, it is difficult to extrude the resin with an extruder and the molding process may be difficult.
  • the polyester resin constituting the P1 layer preferably contains at least one metal element selected from Mn, Ca, and Mg as a metal element.
  • Mn element it is preferable to contain Mn element, and it is more preferable that Mn element and Na element are contained, and it is more preferable that Mn element is contained in the range of 50 to 200 ppm and Na element is contained in the range of 10 to 80 ppm.
  • Mn element is contained in the range of 50 to 200 ppm
  • Na element is contained in the range of 10 to 80 ppm.
  • the P1 layer of the laminate of the present invention contains Mn element and Na element in the above ranges, hydrolysis of the polyester resin constituting the P1 layer is suppressed, and the moisture resistance and adhesion retention of the laminate are further improved. Can be increased.
  • the P1 layer is preferably uniaxially or biaxially oriented.
  • the durability of the sheet such as moisture and heat resistance, can be improved by orientation crystallization.
  • a method of incorporating particles having respective functions is also preferably used.
  • titanium oxide particles in the range of 1% by mass to 30% by mass with respect to the resin constituting the P1 layer. This makes it possible to take advantage of the ultraviolet absorption ability and light reflectivity of the titanium oxide particles to reduce the coloration due to light deterioration over a long period of time and the effect of increasing the power generation efficiency of the solar cell equipped with the laminate of the present invention. You can expect.
  • titanium oxide particles are contained in the P1 layer of the present invention, if less than 1% by mass, UV resistance and light reflectivity may be insufficient, and if more than 30% by mass, adhesion to the P2 layer may deteriorate. is there.
  • a more preferable range is 1% by mass or more and 25% by mass or less, further preferably 2% by mass or more and 25% by mass or less, and particularly preferably 3% by mass or more and 20% by mass or less. From the viewpoint of achieving both excellent ultraviolet resistance and light reflectivity, it is more preferable to use rutile titanium oxide as the titanium oxide particles.
  • particles made of carbon-based materials such as fullerene, carbon black, carbon fiber, and carbon nanotube (hereinafter referred to as carbon particles) with respect to the resin constituting the P1 layer. ) Is preferably contained in the range of 0.1% by mass to 5% by mass. This makes it possible to exhibit the effect of reducing coloration due to light degradation of the laminate over a long period of time by utilizing the ultraviolet absorbing ability and light hiding property of the carbon particles. When the content is less than 0.1% by mass, the UV resistance may be insufficient. When the content is more than 5% by mass, the adhesion with the P2 layer may be deteriorated. A more preferable range is 0.2% by mass or more and 4% by mass or less, and further preferably 0.5% by mass or more and 3% by mass or less.
  • a method of melt-kneading the polyester resin and particles using a vent type twin-screw kneading extruder or a tandem type extruder is preferably used.
  • the polyester resin when the polyester resin is subjected to a heat load when the polyester resin contains particles, the polyester resin deteriorates not a little, and the amount of terminal carboxyl groups may increase, and the intrinsic viscosity IV and number average molecular weight may decrease. Therefore, a high-concentration master pellet having a content higher than that of the polyester resin finally constituting the P1 layer is prepared in advance, and mixed with the polyester resin to dilute the desired particles.
  • the P1 layer in the laminate of the present invention may include a heat-resistant stabilizer, an oxidation-resistant stabilizer, and an ultraviolet absorber as long as the effects of the present invention are not impaired.
  • UV stabilizers, organic / inorganic lubricants, organic / inorganic fine particles, fillers, nucleating agents, dyes, dispersants, coupling agents, etc., and bubbles may be blended.
  • an ultraviolet absorber is selected as an additive, the ultraviolet resistance of the laminate of the present invention can be further improved.
  • the P1 layer of the present invention may have a laminated structure.
  • a laminated structure of a P11 layer excellent in heat and moisture resistance and a layer P12 layer containing a high concentration of an ultraviolet absorber or titanium oxide particles having an ultraviolet absorbing ability is preferably used.
  • a P1 layer configuration is P12 layer / P11 layer // P2 layer. Is preferable from the viewpoint of achieving both UV resistance and UV resistance.
  • the resin and particles used for the P11 layer and the P12 layer those exemplified for the P1 layer can be preferably used.
  • the thickness of the P1 layer is preferably 30 ⁇ m or more and less than 500 ⁇ m.
  • the laminate of the present invention is used as a solar cell back surface protection sheet when the thickness of the P1 layer is less than 30 ⁇ m, for example, when the laminate of the present invention is mounted on a solar cell, the When used under voltage, dielectric breakdown may occur, which may be undesirable.
  • the thickness is greater than 500 ⁇ m, the processability of the laminate may deteriorate, and the overall thickness of the mounted solar battery cell may become too thick, which may be undesirable. Therefore, the preferable range of the thickness of the P1 layer is 38 ⁇ m or more and 400 ⁇ m or less, and more preferably 50 ⁇ m or more and 300 ⁇ m or less.
  • the laminate of the present invention has a P2 layer as an easy-adhesion layer, and the surface energy of the P2 layer needs to satisfy the following ranges (1) and (2).
  • the surface energy here is a value obtained by measurement by a method according to JIS K 6768 (1999), and will be described in detail later.
  • Polar force ⁇ p is 4.8 mN / m or more and 21.0 mN / m or less
  • Difference ⁇ p ⁇ h between polar force ⁇ p and hydrogen bonding force ⁇ h is 1.0 mN / m or more and 20.0 mN / m or less
  • the polyester resin and other components constituting the P1 layer and P2 layer of the laminate of the present invention are characterized in that the surface energy changes depending on the properties and the deterioration state of the polymer.
  • EVA which is generally used as an adherend, for example, as a sealing material for solar cells, has a feature that the surface energy changes depending on the crosslinking state (crosslinking degree). That is, in the present invention, when the P2 layer and the adherend are left outdoors for a long time, the surface energy changes with time. Therefore, even if the surface energy of the P2 layer is brought close to the surface energy of the adherend as described above, the adhesion is deteriorated after being left for a long period of time under wet heat conditions.
  • the laminate of the present invention achieves both initial adhesion and long-term adhesion retention by setting the surface energy of the P2 layer to a range that satisfies the ranges of (1) and (2). It has such an effect.
  • (1) and (2) will be described in detail.
  • the polar force ⁇ p of the P2 layer in the present invention is one of the forces constituting the surface energy of the easy adhesion layer (P2 layer) and is an index representing the degree of intermolecular attractive force generated by the polarity in the molecule. . Since the difference in surface energy from the adherend or the P1 layer increases when the polar force ⁇ p of the easy-adhesion layer is less than 4.8 mN / m or more than 21.0 mN / m, initial adhesion and adhesion retention Sex is reduced.
  • the polar force ⁇ p of the P2 layer is less than 4.8 mN / m
  • the amount of terminal carboxyl groups of the polyester resin constituting the P1 layer is small, or when the deterioration of the polyester resin proceeds
  • the easy adhesion layer And the difference in surface energy increases, and peeling at the interface of the base film (P1 layer) / easy-adhesive layer (P2 layer) is likely to occur, and the adhesion and adhesion retention deteriorate.
  • peeling at the interface between the easy-adhesion layer (P2 layer) and the adherend tends to occur, resulting in poor adhesion.
  • the range of the polar force ⁇ p of the P2 layer described in (1) is preferably 5.4 mN / m or more and 12.0 mN / m or less, more preferably 6.0 mN / m or more and 8.4 mN / m or less.
  • the hydrogen bonding force ⁇ h of the P2 layer in the present invention is an index representing the degree of interaction force between molecules due to the electronegativity of the easy-adhesion layer (P2 layer). Furthermore, in the present invention, it represents the degree of the component that affects the hydrolysis resistance of the easily adhesive layer (P2 layer). That is, in the present invention, the difference between the polar force ⁇ p and the hydrogen bonding force ⁇ h of the P2 layer represents a balance between the affinity of the adherend and the easy adhesion layer (P2 layer) with the P1 layer and the hydrolysis resistance. Is.
  • the difference ⁇ p ⁇ h between the polar force ⁇ p and the hydrogen bond force ⁇ h described in (2) is preferably 2.5 mN / m or more and 9.0 mN / m or less, preferably 3.7 mN / m or more and 4.9 mN / m. m or less is more preferable.
  • the difference ⁇ p- ⁇ h between the polar force ⁇ p and the hydrogen bonding force ⁇ h of the P2 layer is less than 1.0 mN / m, hydrolysis of the easy-adhesion layer can be suppressed, but at the same time, the component contributing to adhesion is insufficient. The adhesion strength itself decreases.
  • the cohesive force decreases due to hydrolysis of the easy-adhesion layer. That is, in the present invention, by setting the difference ⁇ p ⁇ h between the polar force ⁇ p and the hydrogen bonding force ⁇ h of the P2 layer in the above range, for example, when EVA which is a sealing material for solar cells is used as an adherend Even when placed outdoors for a long period of time, the difference in surface energy between the P2 layer and EVA can be reduced, and the adhesion retention can be improved.
  • the hydrogen bonding force ⁇ h of the P2 layer is preferably 1.0 mN / m or more and 4.5 mN / m or less, and the hydrogen bonding force ⁇ h of the P2 layer is within the above preferable range, The effect which suppresses the improvement of the adhesiveness of P2 layer and the hydrolysis of P2 layer can be expected more.
  • the surface energy mentioned above can be appropriately adjusted depending on the resin component and content contained in the P2 layer. Specifically, for example, in order to increase the polar force ⁇ p of the P2 layer, it is effective to use a urethane resin component, a melamine resin component, and a polyester resin component together as the resin component contained in the P2 layer. On the other hand, in order to reduce the polar force ⁇ p, it is effective to use a urethane resin component and an oxazoline resin component in combination as the resin component contained in the P2 layer. In particular, when the P2 layer contains only the urethane resin component, the polar force ⁇ p may be significantly increased.
  • the polyester resin component used in combination is an acrylic-modified polyester resin component
  • the polar force ⁇ p is increased.
  • the structure of the acrylic modified portion is an acrylic polymer obtained by polymerizing a hydrophilic radical polymerizable vinyl monomer
  • the polar force is increased. The increase width of ⁇ p can be reduced.
  • the amount of the oxazoline resin component contained in the P2 layer is effective to increase the amount of the oxazoline resin component contained in the P2 layer.
  • the amount of the oxazoline resin component is suppressed. Just do it.
  • the amount of the melamine resin component and the urethane resin component is somewhat affected, and in order to increase the hydrogen bond strength ⁇ h, the amount of the melamine resin component is increased and the amount of the urethane resin component is decreased.
  • the amount of the melamine resin component should be small and the amount of the urethane resin component should be large.
  • the hydrogen bonding force ⁇ h may be significantly increased.
  • the quantity of each resin component contained in P2 layer can be adjusted with the addition amount of each resin component contained in the coating composition which comprises P2 layer.
  • the polar force ⁇ p and the hydrogen bonding force ⁇ h may vary depending on the thickness of the P2 layer even when the P2 layer is the same component.
  • the thickness of the P2 layer is preferably 0.1 ⁇ m or more and 3.0 ⁇ m or less.
  • the resin component contained in the P2 layer referred to here is an X-ray photoelectron spectrometer (ESCA), Fourier infrared spectrophotometer (FT-IR) ATR method, time-of-flight secondary ion mass spectrometer on the surface of the P2 layer. (TOF-SIMS) or P2 layer is dissolved and extracted with a solvent, and proton nuclear magnetic resonance spectroscopy (1H-NMR), carbon nuclear magnetic resonance spectroscopy ( 13 C-NMR), Fourier infrared spectrophotometer (FT -IR), or by separating the P2 layer and performing a qualitative analysis of the P2 layer, such as by chromatography mass spectrometry (GC-MS).
  • ESA X-ray photoelectron spectrometer
  • FT-IR Fourier infrared spectrophotometer
  • FT-IR time-of-flight secondary ion mass spectrometer
  • the P2 layer of the present invention preferably contains three components, a urethane resin component, a melamine resin component, and an oxazoline resin component.
  • the urethane resin component here means a component comprising a resin having a urethane bond obtained by reaction of a polyol compound and a polyisocyanate compound in the main chain, and a resin obtained by reacting the resin with other components. Show.
  • the aliphatic polyisocyanate compound has a plurality of isocyanate groups in the molecule.
  • aliphatic polyisocyanate compounds having an alicyclic structure from the viewpoint of enhancing the durability of inter alia P2 layer is more preferred.
  • polyol compound examples include aromatic polyether polyol, aliphatic polyether polyol, polyester polyol, polycarbonate polyol, and polycaprolactone polyol.
  • aromatic polyether polyol examples include bisphenol A ethylene oxide addition diol, bisphenol A propylene oxide addition diol, bisphenol A butylene oxide addition diol, bisphenol F ethylene oxide addition diol, and bisphenol F propylene oxide.
  • aliphatic polyether polyol examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, 1,2-polybutylene glycol, polyisobutylene glycol, a copolymer polyol of propylene oxide and tetrahydrofuran, and a copolymer of ethylene oxide and tetrahydrofuran.
  • Copolymer polyol Copolymer polyol, copolymer polyol of ethylene oxide and propylene oxide, copolymer polyol of tetrahydrofuran and 3-methyltetrahydrofuran, copolymer polyol of ethylene oxide and 1,2-butylene oxide, and aliphatic polyether polyol
  • the cyclic polyether polyol include hydrogenated bisphenol A ethylene oxide addition diol and hydrogenated bisphenol A Rene oxide addition diol, hydrogenated bisphenol A butylene oxide addition diol, hydrogenated bisphenol F ethylene oxide addition diol, hydrogenated bisphenol F propylene oxide addition diol, hydrogenated bisphenol F butylene oxide addition diol, dicyclopentadiene dimethylol
  • examples thereof include compounds and tricyclodecane dimethanol.
  • polyester polyol examples include ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, tetramethylene glycol, polytetramethylene glycol, 1,6-hexanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, and 3-methyl.
  • Polyhydric alcohols such as 1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8-octanediol, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, fumaric acid, adipic acid, Mention may be made of polyester polyols obtained by reacting with polybasic acids such as sebacic acid.
  • polycarbonate polyol examples include 1,6-hexane polycarbonate.
  • polycaprolactone polyol examples include ⁇ -caprolactone and ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, tetramethylene glycol, polytetramethylene glycol, 1,2-polybutylene glycol, 1,6-hexanediol, neo
  • polycaprolactone diols obtained by reacting divalent diols such as pentyl glycol, 1,4-cyclohexanedimethanol and 1,4-butanediol.
  • polyether polyol is preferable from the viewpoint of improving the adhesiveness with the adherend by softening the P2 layer, and aromatic polyols and the like from the viewpoint of improving the adhesiveness with the P1 layer.
  • Polyester polyol is preferred. Moreover, you may use combining these.
  • the urethane resin component contained in the P2 layer is an isocyanate compound that can increase the affinity and durability with the adherend, a polyol compound that can soften P2, and a urethane resin obtained by polymerizing a polyol compound that is excellent in adhesion to the P1 layer. By doing so, it is possible to improve the adhesion retention after the acceleration test.
  • urethane resins are obtained by using commercially available resins such as DIC's Hydran series, Bondic series, Daiichi Kogyo Seiyaku Co., Ltd. Superflex series, Toa Gosei Co., Ltd. Aron Neotan series, etc. You can also.
  • a preferable melamine resin component contained in the P2 layer is a component comprising a resin having a triazine ring in the molecule and three amino groups in the periphery thereof, and a resin obtained by reacting the resin with other components. Indicates.
  • hexamethylol melamine, hexamethoxymethyl melamine, hexaethoxymethyl melamine, hexakis- (hexatype (the number of functional groups bonded to three amino groups directly bonded to the triazine ring is 6)) Methoxymethyl) melamine, tri-type (three functional groups bonded to three amino groups directly bonded to the triazine ring) N, N ′, N ′′ -trimethyl-N, N ′, N ′′ -trimethylol melamine, N, N ′, N ′′ -trimethylol melamine, N-methylol melamine, N, N ′-(methoxymethyl) melamine, N, N ′, N ′′ -tributyl-N, N ′, N ′′ -trimethylolmelamine and the like can be mentioned.
  • these melamine resins can also be obtained by using commercially available resins such as, for example, Becamine series manufactured by DIC Corporation, and Nicarak series manufactured by Sanwa Chemical Co., Ltd.
  • a preferable oxazoline resin component contained in the P2 layer indicates a component comprising a resin having an oxazoline group structure in the molecule and a resin obtained by reacting the resin with other components.
  • the terminal group present in the P2 layer or the terminal carboxyl group derived from the polyester resin of the P1 layer reacts with the oxazoline group, and the hydrolysis of the P2 layer is suppressed. It is possible to improve the adhesion.
  • these oxazoline resins can also be obtained and used, for example, commercially available resins such as Nippon Shokubai Epocross series.
  • the P2 layer of the present invention preferably contains a polyester resin component.
  • the polyester resin component preferably contained in the P2 layer is to introduce a hydrophilic group such as a sulfonate group or a carboxylate group in order to make the polyester resin exemplified in the P1 layer water-soluble or facilitate water dispersion.
  • a resin comprising a copolymer obtained by copolymerizing a compound containing these hydrophilic groups and a resin obtained by reacting the resin with other components.
  • the compound containing a sulfonate group includes sulfoterephthalic acid, 5-sulfoisophthalic acid, 5-sodium sulfoisophthalic acid, 4-sulfoisophthalic acid, and the like.
  • polyester resin component When the polyester resin component is contained in the P2 layer, it is possible to increase the affinity with the P1 layer, and as a result, it is possible to increase the adhesion.
  • the polyester resin component contained in the P2 layer is preferably an acrylic-modified polyester resin component.
  • the polyester resin component contained in the P2 layer an acrylic-modified polyester resin component, it becomes possible to increase the affinity with other components such as the urethane resin component contained in the P2 layer, and by separating the resin component Cohesive failure can be suppressed.
  • the acrylic-modified polyester resin component here is a component composed of a resin in which an acrylic resin and a polyester resin are mixed and / or bonded to each other, and includes, for example, a graft type and a block copolymer type. Further, either the mixing ratio or copolymerization ratio of the acrylic resin and the polyester resin may be high, and it is preferable to appropriately adjust depending on the relationship with other resin components.
  • the acrylic resin preferably has a radical polymerizable vinyl monomer polymerized on the main chain of the acrylic resin composed of alkyl methacrylate and / or alkyl acrylate, and the difference in energy from the adherend. It is more preferable that a hydrophilic radically polymerizable vinyl monomer is polymerized from the viewpoint of reducing the size.
  • alkyl methacrylate and / or alkyl acrylate include methacrylic acid, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, lauryl methacrylate, methacrylic acid.
  • 2-hydroxyethyl acid hydroxypropyl methacrylate, acrylic acid, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-hexyl acrylate, lauryl acrylate, 2-acrylic acid 2- Examples thereof include ethylhexyl, and these may be used alone or in combination of two or more.
  • hydrophilic radically polymerizable vinyl monomers include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, and other hydroxyacrylic esters, ethylene glycol acrylate, and ethylene.
  • Glycol esters such as glycol methacrylate, polyethylene glycol acrylate, polyethylene glycol methacrylate, acrylamide compounds such as acrylamide, methacrylamide, N-methylol acrylamide, methoxymethylol acrylamide, aminoalkyl acrylate, aminoalkyl methacrylate, and quaternary ammonium thereof
  • Cationic monomers such as salts, glycidyl acrylate, glycidyl methacrylate, etc. Examples include diacrylate compounds, unsaturated acids such as acrylic acid, methacrylic acid, maleic anhydride, itaconic acid, and crotonic acid, and salts thereof. These may be used alone or in combination. May be. Furthermore, these hydrophilic monomers can be used in combination with other copolymerizable vinyl monomers.
  • vinyl esters such as vinyl acetate and vinyl propionate
  • vinyl halides such as vinyl chloride and vinyl bromide
  • methyl acrylate ethyl acrylate
  • butyl acrylate ethyl acrylate
  • Unsaturated carboxylic esters such as methyl methacrylate, ethyl methacrylate and butyl methacrylate
  • vinyl silanes such as dimethylvinylmethoxysilane and ⁇ -methacryloxypropyltrimethoxysilane
  • olefins and diolefins such as ethylene, propylene, styrene and butadiene Compound etc.
  • P2 is obtained by making the acrylic resin an acrylic resin in which a hydrophilic radically polymerizable vinyl monomer is polymerized with an acrylic-modified polyester resin. It can be set as the laminated body which made compatible adhesiveness, after suppressing the separation in a layer.
  • acrylic-modified polyester resins can be obtained by using commercially available resins such as the Pes Resin series manufactured by Takamatsu Yushi Co., Ltd.
  • the P2 layer of the laminate of the present invention is a layer formed from a coating composition containing the above resin component.
  • the content in the P2 layer or the solid content in the coating composition forming the P2 layer is preferably 40% by mass or less, preferably 10% by mass or more. 30 mass% or less is more preferable.
  • the content in the P2 layer is preferably contained in the range of 1% by mass to 20% by mass, and more preferably 7% by mass to 16% by mass.
  • the P2 layer is formed from a coating composition containing the melamine resin component by 1% by mass to 20% by mass in terms of solid content. It is preferable to make it. More preferably, it is 7 mass% or more and 16 mass% or less.
  • the content in the P2 layer is preferably contained in the range of 1% by mass to 20% by mass, and more preferably in the range of 10% by mass to 18% by mass.
  • the P2 layer is formed from a coating composition containing 1% by mass to 25% by mass of the oxazoline resin component in terms of solid weight. It is preferable to make it. More preferably, it is 10 mass% or more and 18 mass% or less.
  • the content in the P2 layer is preferably 30% by mass or more and 75% by mass or less, and preferably 40% by mass or more and 50% by mass. The following is more preferable.
  • a coating containing 30% by mass or more and 75% by mass or less of an acrylic-modified polyester resin component by solid content weight is more preferable.
  • the P2 layer is preferably formed from the agent composition. More preferably, it is 40 mass% or more and 50 mass% or less.
  • the P2 layer of the laminate of the present invention contains the urethane resin component, melamine resin component, oxazoline resin component, polyester resin component or acrylic-modified polyester resin component
  • the content in the P2 layer, or the P2 layer is
  • the solid content weight in the coating composition to be formed is smaller than the above preferred range, the effect expected of each resin component may be insufficient.
  • larger than a preferable range there exists a possibility of inhibiting the effect of another component.
  • the thickness of the P2 layer in the laminate of the present invention is preferably 0.1 ⁇ m or more and 3.0 ⁇ m or less, more preferably 0.2 ⁇ m or more and 2.0 ⁇ m or less, and further preferably 0.4 ⁇ m or more and 1.0 ⁇ m or less. is there.
  • the thickness of the P2 layer in the laminate of the present invention is less than 0.1 ⁇ m, the thickness unevenness of the P2 layer becomes large, and the surface energy value may change due to the influence, or the function of the P2 layer may be insufficient.
  • the thickness of the P2 layer is thicker than 3.0 ⁇ m, the winding property and the coating property may be deteriorated due to insufficient drying.
  • the surface energy in the laminate of the present invention is the above (1) and ( A P2 layer satisfying the range of 2) can be obtained.
  • excellent adhesion to an adherend such as EVA which is a sealing material for solar cells, and a polyester having a terminal carboxyl group amount of 25 equivalents / ton or less as in the P1 layer in the laminate of the present invention.
  • EVA which is a sealing material for solar cells
  • polyester having a terminal carboxyl group amount of 25 equivalents / ton or less as in the P1 layer in the laminate of the present invention.
  • Even if it is a base material it is possible to achieve both good adhesion and maintain the adhesion even when placed outdoors for a long time (excellent adhesion retention). It can be set as a suitable laminated body.
  • the P2 layer of the laminate of the present invention has a known heat stabilizer, lubricant, antistatic agent, anti-blocking agent, dye, pigment, photosensitizer, and surface activity, as long as the effects of the present invention are not impaired.
  • Various additives such as an agent and an ultraviolet absorber can be added.
  • the laminate of the present invention when the laminate of the present invention is mounted on a solar cell as a solar cell back surface protection sheet by adding an ultraviolet absorber to the P2 layer, the laminate and the sealing material are adhered to each other by ultraviolet rays from the power generation cell side. It can suppress that property falls.
  • the ultraviolet absorber inorganic particles such as titanium oxide and zinc oxide, those containing an ultraviolet absorber, and a resin component copolymerized with a molecular skeleton having ultraviolet absorbing ability are preferably used and preferably contained.
  • the amount of the solid content in the coating composition forming the P2 layer is 1% by weight to 50% by weight, more preferably 5% by weight to 40% by weight, and still more preferably 10% by weight to 30% by weight. It is.
  • the P2 layer of the laminate of the present invention may have a laminate structure for the purpose of further improving the adhesion with the adherend.
  • an anchor coat layer (referred to as P21 layer) having excellent adhesion with the P1 layer is provided in advance on one surface of the P1 layer, and a layer (referred to as P22 layer) that is further excellent in easy adhesion on the P21 layer.
  • the providing method is also preferably used.
  • the structure of the sheet is laminated in the order of P1 layer // P21 layer / P22 layer, and the thickness of the P2 layer is represented by P21 layer + P22 layer.
  • the P21 layer has good adhesiveness with the resin constituting the P1 layer and the P22 layer
  • the P22 layer has excellent adhesiveness with the resin constituting the P21 layer and the adherend.
  • it is not particularly limited as long as it is compatible with the sealing material at the temperature at the time of thermocompression laminating at the time of solar battery cell creation.
  • said P2 layer can be suitably used suitably for resin used for P21 layer and P22 layer.
  • blocking at the time of winding can be prevented by adding silica particles as an anti-blocking agent to the P2 layer. Further, by adding a surfactant to the P2 layer, it is possible to increase the affinity of the coating liquid for the P1 layer and suppress coating unevenness.
  • the polyester resin used as a raw material for the P1 layer of the present invention can be obtained by subjecting a dicarboxylic acid or its ester derivative and a diol to a transesterification reaction or an esterification reaction by a known method.
  • reaction catalysts include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and phosphorus compounds.
  • an alkali metal compound, a manganese compound, an antimony compound, a germanium compound, or a titanium compound is preferably added as a polymerization catalyst at any stage before the normal production method is completed, and the viewpoint of improving the heat and moisture resistance of the laminate It is more preferable to add a sodium compound or a manganese compound.
  • a manganese compound is taken as an example, it is preferable to add the manganese compound powder as it is.
  • the amount of terminal carboxyl groups of the polyester resin is the temperature at the time of polymerization, or after polymerization of the polyester resin, at a temperature of 190 ° C. to less than the melting point of the polyester resin, and heated under reduced pressure or an inert gas such as nitrogen gas.
  • the so-called solid-state polymerization time can be controlled. Specifically, the amount of terminal carboxyl groups increases as the polymerization temperature increases, and the amount of terminal carboxyl groups decreases as the time of solid phase polymerization increases.
  • the P1 layer manufacturing method is a method in which the P1 layer raw material is heated and melted in an extruder and extruded from a die onto a cooled cast drum (a melt casting method). ) Can be used.
  • the raw material for the P1 layer is dissolved in a solvent, and the solution is extruded from a die onto a support such as a cast drum or an endless belt to form a film, and then the solvent is dried and removed from the film layer.
  • a method of processing into a shape (solution casting method) or the like can also be used.
  • the material of each layer to be laminated is mainly composed of a thermoplastic resin
  • two different thermoplastic resins are put into two extruders and melted to join.
  • a method of coextrusion onto a cast drum cooled from the die and processing it into a sheet can be preferably used.
  • a uniaxial or biaxially stretched sheet base material is selected as a laminate including the P1 layer and / or the P1 layer, as a manufacturing method thereof, first, an extruder (a plurality of extruders in the case of a laminated structure) is used.
  • the raw materials are charged, melted and extruded from the die (in the case of a laminated structure, co-extruded), and cooled and solidified by static electricity on a cooled drum cooled to a surface temperature of 10 to 60 ° C. to produce an unstretched sheet .
  • the unstretched sheet is led to a group of rolls heated to a temperature of 70 to 140 ° C., stretched 3 to 4 times in the longitudinal direction (longitudinal direction, that is, the traveling direction of the sheet), and the temperature is 20 to 50 ° C. Cool with rolls. Subsequently, the both ends of the sheet are guided to a tenter while being gripped by clips, and are stretched 3 to 4 times in a direction (width direction) perpendicular to the longitudinal direction in an atmosphere heated to a temperature of 80 to 150 ° C.
  • the stretching ratio is 3 to 5 times in each of the longitudinal direction and the width direction, but the area ratio (longitudinal stretching ratio ⁇ lateral stretching ratio) is preferably 9 to 15 times.
  • the area ratio is less than 9 times, the durability of the resulting biaxially stretched sheet is insufficient, and conversely when the area magnification exceeds 15 times, there is a tendency that tearing tends to occur during stretching.
  • the biaxial stretching method in addition to the sequential biaxial stretching method in which the stretching in the longitudinal direction and the width direction is separated as described above, simultaneous biaxial stretching in which stretching in the longitudinal direction and the width direction is simultaneously performed. Either method can be used.
  • a dispersion solvent for resin components for example, toluene, xylene, ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone , Tetrahydrofuran, dimethylformamide, dimethylacetamide, methanol, ethanol, water and the like, and any of emulsion type and dissolution type may be used.
  • the method for emulsifying the resin component contained in the P2 layer in water for preparing the coating composition is not particularly limited, and is widely known to those skilled in the art as a solid / liquid stirring device or an emulsifier. It can be produced by a device.
  • the environment for storage is preferably stored in a room temperature environment of 5 ° C. or more and 35 ° C. or less.
  • the storage period from adjustment to application is preferably within one week.
  • the method for forming the P2 layer on the P1 layer is not particularly limited, but it is preferable to use a coating technique.
  • a known method can be applied as a coating technique. Specifically, a roll coating method, a dip coating method, a bar coating method, a die coating method, a gravure roll coating method, or a combination of these methods can be used.
  • the bar coating method is preferable from the viewpoint of a wide selection range of the coating agent, while the die coating method and the gravure roll coating method can be preferably selected from the viewpoint of thick film coating property when it is desired to increase the thickness of the P2 layer.
  • the P2 layer is formed by in-line coating provided in the manufacturing process of the P1 layer from the viewpoint of process simplification.
  • the drying temperature of the coating composition is preferably 150 ° C. or higher and 250 ° C. or lower, more preferably 170 ° C. or higher and 230 ° C. or lower, and still more preferably, from the viewpoint of the compatibility between the thermal dimensional stability and the wet heat resistance of the base layer P1. Is 180 ° C. or higher and 220 ° C. or lower.
  • a corona treatment is performed on the surface of the base material layer P1 immediately before the coating step. Also good.
  • the laminate of the present invention can be manufactured by the above manufacturing method.
  • the obtained laminate is excellent in adhesiveness with EVA which is a sealing material for solar cells, maintains adhesiveness even when placed outdoors for a long time (excellent retention property), and further has heat and moisture resistance. It also has the performance of being excellent.
  • the solar cell back surface protective sheet of the present invention has other functions such as gas barrier property and ultraviolet resistance on one surface of the P1 layer of the laminate (however, the surface opposite to the surface in contact with the P2 layer).
  • a layer can be provided.
  • thermo laminating method a method of separately preparing materials to be laminated with the P1 layer and thermocompression bonding with a heated group of rolls
  • a method of bonding together with an adhesive a method of bonding together with an adhesive
  • coating method a method of dissolving the material for forming the material to be laminated in a solvent and applying the solution onto the P1 layer prepared in advance
  • electromagnetic wave irradiation after applying a curable material onto the P1 layer
  • a method of curing by heat treatment or the like a method of depositing / sputtering a material to be laminated on the P1 layer, a method combining these, and the like can be used.
  • the solar cell back surface protection sheet of this invention is excellent in heat-and-moisture resistance.
  • the elongation at break after applying the wet heat treatment to the solar cell back surface protective sheet of the present invention is preferably 10% or more, more preferably 20% or more, and further preferably 40% or more. The details of the method for measuring the elongation at break after the wet heat treatment here will be described later.
  • the breaking elongation after applying wet heat treatment is less than 10%
  • the solar cell equipped with the solar cell back surface protection sheet of the present invention is placed outdoors for a long time
  • cracks and the like due to deterioration may occur and the appearance of the solar cell may deteriorate.
  • polyethylene having an intrinsic viscosity IV of 0.65 dl / g or more and a terminal carboxyl group content of 25 equivalents / ton or less is used for the polyester resin constituting the P1 layer.
  • a preferable method is to use terephthalate.
  • the solar cell back surface protective sheet of the present invention is preferably excellent in ultraviolet resistance. Specifically, it is preferable that the color tone change ⁇ b when the ultraviolet ray treatment test is performed using the P1 layer of the solar cell back surface protective sheet of the present invention as an incident surface is less than 10, more preferably less than 3. Details of the method for measuring the color tone change ⁇ b when the ultraviolet treatment test is performed will be described later.
  • the solar cell back surface protection sheet of the present invention when the color change ⁇ b when the ultraviolet treatment test is performed with the P1 layer as the incident surface exceeds 10, the solar cell mounted with the solar cell back surface protection sheet of the present invention is long. When placed outdoors during the period, the appearance of the solar cell may deteriorate due to discoloration due to ultraviolet rays.
  • titanium oxide particles are added in an amount of 3% by mass or more with respect to the P1 layer. It is possible to reduce the color tone change ⁇ b depending on the amount added.
  • a solar cell back surface protection sheet excellent in moist heat resistance and ultraviolet resistance is used for a long time outdoors with the solar cell mounted with the solar cell back surface protection sheet of the present invention. Even if it is placed, it can be a solar cell having no appearance defect.
  • the solar cell of the present invention is characterized in that the laminate of the present invention is mounted as a back surface protection sheet.
  • the solar cell of the present invention can increase the durability as compared with a conventional solar cell by using the above laminate.
  • An example of the configuration is shown in FIG.
  • a power generating element connected with a lead wire for taking out electricity (not shown in FIG. 1) is sealed with a transparent sealing material 2 such as EVA resin, a transparent substrate 4 such as glass, and a solar cell back surface protection
  • a transparent sealing material 2 such as EVA resin
  • a transparent substrate 4 such as glass
  • a solar cell back surface protection Although it is configured to be bonded as the sheet 1, it is not limited to this and can be used for any configuration.
  • the solar cell back surface protection sheet shows an example of a single body, the solar cell back surface protection sheet should be a composite sheet in which other films are laminated according to other required characteristics. Is also possible.
  • the solar cell back surface protection sheet 1 plays a role of protecting the power generation cell installed on the back surface of the sealing material 2 sealing the power generation element.
  • the solar cell back surface protection sheet is preferably arranged so that the P2 layer is in contact with the sealing material 2.
  • the power generating element 3 converts light energy of sunlight into electric energy, and is based on crystalline silicon, polycrystalline silicon, microcrystalline silicon, amorphous silicon, copper indium selenide, compound semiconductor, dye enhancement Arbitrary elements such as a sensitive system can be used in series or in parallel according to the desired voltage or current depending on the purpose. Since the transparent substrate 4 having translucency is located on the outermost surface layer of the solar cell, a transparent material having high weather resistance, high contamination resistance, and high mechanical strength characteristics in addition to high transmittance is used. In the solar cell of the present invention, the transparent substrate 4 having translucency can be made of any material as long as the above characteristics are satisfied. Examples thereof include glass, ethylene tetrafluoride-ethylene copolymer (ETFE), polyfluoride.
  • ETFE ethylene tetrafluoride-ethylene copolymer
  • Vinyl fluoride resin PVDF
  • PVDF polyvinylidene fluoride resin
  • TFE polytetrafluoroethylene resin
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • CFE polytrifluoroethylene chloride resin
  • Fluorinated resins such as polyvinylidene fluoride resin, olefinic resins, acrylic resins, and mixtures thereof.
  • glass it is more preferable to use a tempered glass.
  • stretched the said resin uniaxially or biaxially from a viewpoint of mechanical strength is used preferably.
  • the adhesiveness with EVA resin etc. which are the sealing materials of an electric power generation element, it is also preferably performed to give the surface a corona treatment, a plasma treatment, an ozone treatment, and an easy adhesion treatment. .
  • the sealing material 2 for sealing the power generating element covers the surface of the power generating element with resin and fixes it, protects the power generating element from the external environment, and has a light-transmitting base material for the purpose of electrical insulation.
  • a material having high transparency, high weather resistance, high adhesion, and high heat resistance is used to adhere to the backsheet and the power generation element. Examples thereof include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA) resin, ethylene-methacrylic acid copolymer (EMAA), Ionomer resins, polyvinyl butyral resins, and mixtures thereof are preferably used.
  • the laminate of the present invention into a solar cell as a solar cell back surface protection sheet, it becomes possible to enhance the durability as compared with a conventional solar cell.
  • the solar cell of the present invention can be suitably used for various applications without being limited to outdoor use and indoor use such as a solar power generation system and a power source for small electronic components.
  • the solution is filtered to measure the weight of the insoluble matter, and the value obtained by subtracting the weight of the insoluble matter from the measurement sample weight The following correction was made.
  • the Mg, Mn, and Sb metal element amounts are determined by the fluorescent X-ray analysis method (fluorescence X-ray analyzer manufactured by Rigaku Corporation (model number: 3270)).
  • the Na metal element was quantified by atomic absorption spectrometry (manufactured by Tadate Corporation: polarization Zeeman atomic absorption photometer 180-80, frame: acetylene-air).
  • the surface energy was measured by the following method according to the method of JIS K 6768 (1999). First, the laminate was allowed to stand for 48 hours in an atmosphere having a room temperature of 23 ° C. and a relative humidity of 65%. Thereafter, the contact angle of each of the four solutions of pure water, ethylene glycol, formamide, and diiodomethane was contact angle meter CA-D type (Kyowa Interface Science Co., Ltd.) under the same atmosphere. ) To measure 5 points each. The average value of the three measured values excluding the maximum value and the minimum value of the five measured values is defined as the contact angle of each solution.
  • ⁇ S L surface free energy of the known solution described in Table 1 and ⁇ S : surface free energy of the P2 layer ⁇ L : surface free energy of known solution described in Table 1
  • ⁇ S d of the P2 layer Dispersive force component of surface free energy
  • ⁇ S p Polar force component of surface free energy of P2 layer
  • ⁇ S h Hydrogen bond force component of surface free energy of P2 layer ⁇ L d : Surface of known solution described in Table 1 Dispersion force component of free energy ⁇ L p : Polar force component of surface free energy of known solutions listed in Table 1 ⁇ L h : Hydrogen bond strength component of surface free energy of known solutions listed in Table 1
  • ⁇ S L ⁇ S + ⁇ L -2 ( ⁇ S d ⁇ ⁇ L d ) 1/2 -2 ( ⁇ S p ⁇ ⁇ L p) 1/2 -2 ( ⁇ S h ⁇ ⁇ L h ) 1/2 ... Formula (1).
  • Equation (3) the components of the surface tension of known solutions listed in Table 1 ( ⁇ L d , ⁇ L p , ⁇ L h ) is substituted into Equation (3) to solve the four simultaneous equations.
  • the surface free energy
  • ⁇ S d the dispersion force component
  • ⁇ S p the polar force component
  • ⁇ S h the hydrogen bonding force component
  • the dispersion force ⁇ d described in the present invention corresponds to the dispersion force component ( ⁇ S d ), the polar force ⁇ p corresponds to the polar force component ( ⁇ S p ), and the hydrogen bond force ⁇ h corresponds to the hydrogen bond force component ( ⁇ S h ). To do.
  • the component qualification of the P2 layer is the X2 photoelectron spectrometer (ESCA), Fourier infrared spectrophotometer (FT-IR) ATR method, time-of-flight secondary ion on the surface of the P2 layer.
  • MS spectrometer (TOF-SIMS) or P2 layer is dissolved and extracted with solvent, proton nuclear magnetic resonance spectroscopy (1H-NMR), carbon nuclear magnetic resonance spectroscopy ( 13 C-NMR), Fourier infrared spectrophotometry This is done by separating the total (FT-IR) or P2 layer and analyzing the structure by pyrolysis gas chromatography mass spectrometry (GC-MS).
  • GC-MS pyrolysis gas chromatography mass spectrometry
  • Thickness of P2 layer Using a microtome, a small piece cut in a direction perpendicular to the surface of the laminate was prepared, and the cross section was measured with a field emission scanning electron microscope JSM-6700F (manufactured by JEOL Ltd.). The image was taken with a magnification of 10,000 times. From the cross-sectional photograph, the thickness of the P2 layer was calculated from the magnification. In addition, the thickness used the cross-sectional photograph of five places arbitrarily selected from the different measurement visual field, and used the average value.
  • Adhesive evaluation with solar cell encapsulant (5-1) Initial adhesion with encapsulant Based on JIS K 6854-2 (1999), an EVA sheet which is an encapsulant for solar cell Adhesiveness was evaluated from the peel strength from the P2 layer side surface of the laminate.
  • the measurement test piece is a 500 ⁇ m thick EVA sheet (vinyl acetate copolymerization ratio: 28 mol%) on a semi-tempered glass having a thickness of 3 mm, and the P2 layer side of the sheet of the example and the comparative example is the EVA sheet side.
  • a layer obtained by press treatment using a commercially available vacuum laminator under conditions of a hot platen temperature of 145 ° C., a vacuum drawing of 4 minutes, a press of 1 minute, and a holding time of 10 minutes was used.
  • the peel strength test is performed at 180 ° peel, the width of the test piece is 15 mm, two test pieces are prepared, the place is changed for each test piece, and three places are measured, and the average value of the obtained measurement values is peeled off
  • the initial adhesion was determined as follows using the strength value.
  • seat of this invention fractured
  • peel strength When peel strength is 60.0N / 15mm or more: S When the peel strength is 50.0 N / 15 mm or more and less than 60.0 N / 15 mm: A When peel strength is 45.0 N / 15 mm or more and less than 50.0 N / 15 mm: B When peel strength is 40.0 N / 15 mm or more and less than 45.0 N / 15 mm: C When the peel strength is 30.0 N / 15 mm or more and less than 40.0 N / 15 mm: D When peel strength is less than 30.0 N / 15 mm: E S to D are good initial adhesion, and S is the best among them.
  • the wet heat resistance was determined as follows.
  • S When the breaking elongation after the wet heat test is 40% or more and less than 60% of the breaking elongation before the wet heat test: A When the breaking elongation after the wet heat test is 20% or more and less than 40% of the breaking elongation before the wet heat test: B When the breaking elongation after the wet heat test is 10% or more and less than 20% of the breaking elongation before the wet heat test: C When the breaking elongation after the wet heat test is less than 10% of the breaking elongation before the wet heat test: D The wet heat resistance is good in A to C, and A is the best among them.
  • 190 mm ⁇ 190 mm 3.2 mm thick white plate heat-treated glass for solar cells manufactured by Asahi Glass Co., Ltd. 190 mm ⁇ 190 mm 500 ⁇ m thick EVA sheet (vinyl acetate copolymerization ratio: 28 mol%), prepared strings with extraction electrodes, 190 mm ⁇ A 190 mm 500 ⁇ m thick EVA sheet, a laminate cut into 190 mm ⁇ 190 mm, stacked in order so that the P2 layer side surface is located on the EVA side, and set the glass in contact with the hot platen of the vacuum laminator, Vacuum laminating was carried out under the conditions of a hot platen temperature of 145 ° C., vacuuming for 4 minutes, pressing for 1 minute, and holding time of 10 minutes. At this time, the strings with extraction electrodes were set so that the glass surface was on the cell surface side.
  • PET raw material A 100 parts by mass of dimethyl terephthalate, 57.5 parts by mass of ethylene glycol, 0.03 parts by mass of magnesium acetate dihydrate, 0. 03 parts by mass were melted at 150 ° C. in a nitrogen atmosphere. While stirring this melt, the temperature was raised to 230 ° C. over 3 hours to distill methanol, and the transesterification reaction was completed. After completion of the transesterification reaction, an ethylene glycol solution (pH 5.0) in which 0.005 parts by mass of phosphoric acid was dissolved in 0.5 parts by mass of ethylene glycol was added. The intrinsic viscosity of the polyester composition at this time was less than 0.2.
  • polymerization reaction was performed at a final temperature of 285 ° C. and a degree of vacuum of 0.1 Torr to obtain polyethylene terephthalate having an intrinsic viscosity of 0.52 and a terminal carboxyl group amount of 15 equivalents / ton.
  • the obtained polyethylene terephthalate was dried and crystallized at 160 ° C. for 6 hours.
  • solid phase polymerization was performed at 220 ° C. and a vacuum degree of 0.3 Torr for 8 hours to obtain polyethylene terephthalate (PET-A) having an intrinsic viscosity of 0.80 and a terminal carboxyl group amount of 10 equivalents / ton.
  • PET-A polyethylene terephthalate
  • the obtained polyethylene terephthalate composition had a glass transition temperature of 82 ° C. and a melting point of 255 ° C.
  • PET raw material B A polyethylene terephthalate (PET-B) having an intrinsic viscosity of 0.79 and a terminal carboxyl group content of 15 equivalents / ton was obtained except that the final temperature of the polymerization reaction was 290 ° C.
  • PET raw material C A polyethylene terephthalate (PET-C) having an intrinsic viscosity of 0.85 and a terminal carboxyl group amount of 13 equivalents / ton was obtained except that the solid phase polymerization time was 10 hours.
  • PET raw material D (PET-D) Except that the final temperature of the polymerization reaction was 295 ° C., the same procedure as for PET raw material A was carried out to obtain polyethylene terephthalate (PET-D) having an intrinsic viscosity of 0.77 and a terminal carboxyl group amount of 20 equivalents / ton.
  • PET raw material E As a reaction catalyst, 0.03 parts by mass of manganese acetate tetrahydrate instead of magnesium acetate, and after completion of the transesterification, 0.005 parts by mass of phosphoric acid and 0.021 parts by mass of sodium dihydrogen phosphate dihydrate were added. Except that, polyethylene terephthalate (PET-E) having an intrinsic viscosity of 0.80 and a terminal carboxyl group amount of 10 equivalents / ton was obtained.
  • PET-E polyethylene terephthalate
  • PET raw material F A polyethylene terephthalate (PET-F) having an intrinsic viscosity of 0.75 and a terminal carboxyl group content of 28 equivalents / ton was obtained except that the final temperature of the polymerization reaction was 300 ° C.
  • PET raw material A base titanium oxide master 100 parts by mass of PET resin A (PET-A) obtained according to the above and 100 parts by mass of rutile-type titanium oxide particles having an average particle diameter of 210 nm were melt-kneaded in a vented 290 ° C. extruder, and a titanium oxide raw material (PETa -TiO 2) was prepared.
  • PET raw material B-based titanium oxide master 2 100 parts by mass of PET resin B (PET-B) obtained according to the above and 100 parts by mass of rutile titanium oxide particles having an average particle diameter of 210 nm were melt-kneaded in a vented 290 ° C. extruder, and a titanium oxide raw material (PETb -TiO 2) was prepared.
  • PET raw material C-based titanium oxide master 2 100 parts by mass of PET resin C (PET-C) obtained according to the above and 100 parts by mass of rutile-type titanium oxide particles having an average particle diameter of 210 nm were melt-kneaded in a vented 290 ° C. extruder to obtain a titanium oxide raw material (PETc -TiO 2) was prepared.
  • PET raw material C base terminal sealant master 100 parts by mass of PET resin C (PET-C) obtained according to the above and 10 parts by mass of Rhein Chemie's end-capping agent Stavacuxol P-400 were melt-kneaded in a vented 290 ° C. extruder and end-capped.
  • a stopper material (PETc-CDI) was prepared.
  • PET-A PET resin A
  • PETa-CB carbon particle raw material
  • PET raw material D-based titanium oxide master 4 100 parts by mass of PET resin D (PET-D) obtained according to the above and 100 parts by mass of rutile-type titanium oxide particles having an average particle diameter of 210 nm are melt-kneaded in a vented 290 ° C. extruder to obtain a titanium oxide raw material (PETd -TiO 2) was prepared.
  • PET raw material E-based titanium oxide master 4 100 parts by mass of PET resin E (PET-E) obtained according to the above and 100 parts by mass of rutile titanium oxide particles having an average particle diameter of 210 nm were melt-kneaded in a vented 290 ° C. extruder to obtain a titanium oxide raw material (PETe). -TiO 2) was prepared. (Resin component used for P2 layer) 1.
  • a polyester glycol was obtained by charging into a vessel and carrying out a polymerization reaction at 190 to 220 ° C. for 12 hours under normal pressure while removing water.
  • the temperature of the reaction solution was adjusted to 75 to 80 ° C., and 0.06 parts by mass of stannous octylate as a reaction catalyst was added and reacted for 7 hours. Subsequently, this was cooled to 30 degreeC and the isocyanate group terminal polyether urethane resin was obtained.
  • a reaction vessel equipped with a homodisper capable of high-speed stirring water was added and adjusted to 25 ° C., and an isocyanate group-terminated polyether urethane resin was added and dispersed in water while stirring and mixing at 2000 rpm. Then, the coating liquid containing the urethane resin (A) which consists of polyether urethane resin was prepared by removing a part of acetonitrile and water under reduced pressure.
  • a urethane comprising a polyester urethane resin obtained by reacting 28 parts by mass of a polyester polyol obtained by reacting at 220 ° C. for 24 hours under a nitrogen stream and 2 parts by mass of 1,4-butanediol as a chain extender.
  • a coating liquid containing the resin (B) was prepared.
  • Coating composition for forming the P2 layer Using pure water as a diluent solvent, the total solid content in the coating composition is 17% by mass, and the components of each coating composition forming the P2 layer are solid parts by weight described in the table.
  • a surfactant plus coat RY-2 manufactured by Kyoyo Chemical Industry Co., Ltd. was added in an amount of 0.06% by mass with respect to the weight of each coating agent.
  • blends so that it may become a ratio and forms P2 layer was prepared. All of the obtained coating compositions were stored in an environment of 28 ° C. and applied to the P1 layer within 2 days after preparation.
  • PET raw material A PET raw material A
  • PET raw material A-based titanium oxide master PET raw material A-based titanium oxide master
  • the intrinsic viscosity IV was 0.68 dl / g
  • the amount of terminal carboxyl groups was 15 equivalents / ton
  • the P1 layer contained Mg element.
  • the surface energy was 7.9 mN / m in polar force, 3.8 mN / m in hydrogen bonding force, and the thickness was 0.6 ⁇ m.
  • the obtained laminate was evaluated for adhesion to the solar cell encapsulant. As a result, as shown in the table, it was found that the laminate had very excellent initial adhesion and adhesion retention. Moreover, it was found that the obtained laminate had excellent heat and heat resistance as a solar cell back surface protection sheet and good ultraviolet resistance, and the mounted solar cell had excellent durability.
  • Example 5 As described in the table, a laminate was obtained in the same manner as in Example 1 except that the polyester resin component of the P1 layer was changed. At this time, only in Example 5, the torque of the extruder increased during the extrusion, but it was in the range where there was no problem. Moreover, the polymer characteristic of P1 layer of the obtained laminated body and the characteristic of P2 layer were as Table.
  • the adhesion of the obtained laminate to the solar cell encapsulant was excellent as compared to Example 1, although the initial adhesion decreased as the amount of terminal carboxyl groups in the P1 layer increased. .
  • the adhesion retention was in a favorable range, although it decreased with changes in the amount of terminal carboxyl groups in the P1 layer as compared with Example 1.
  • the heat-and-moisture resistance as a solar cell back surface protection sheet fell with the increase in the amount of terminal carboxyl groups of the P1 layer, it was a good range, and the durability of the solar cell also decreased with the increase in the amount of terminal carboxyl groups of the P1 layer. Was in a good range.
  • Example 6 to 20 As described in the table, a laminate was obtained in the same manner as in Example 1 except that the content of the resin component contained in the P2 layer was changed.
  • the polymer properties of the P1 layer and the properties of the P2 layer of the obtained laminate are as shown in the table, and the surface energy of the P2 layer changed depending on the resin component contained in the P2 layer and its content.
  • the adhesion of the obtained laminate to the solar cell encapsulant decreased with changes in the surface energy of the P2 layer as compared with Example 1, but the initial adhesion and adhesion retention were good. It was in range. The durability of the solar cell was also in a good range although it decreased with the change in the surface energy of the P2 layer.
  • Example 21 As described in the table, a laminate was obtained in the same manner as in Example 1 except that the metabar during coating was changed and the thickness of the P2 layer was changed. At this time, in Example 23, coating unevenness was confirmed on the P2 surface of the laminate, but it was in a range where there was no problem.
  • the polymer properties of the P1 layer and the properties of the P2 layer of the obtained laminate are as shown in the table, and the surface energy of the P2 layer changed as the thickness of the P2 layer was reduced.
  • the adhesion of the obtained laminate to the solar cell encapsulant decreased with a decrease in the thickness of the P2 layer as compared to Example 1, but the initial adhesion and adhesion retention were in a good range. Met.
  • the durability of the solar cell was also in a good range although it decreased with the change in the surface energy of the P2 layer.
  • Example 23 As described in the table, a laminate was obtained in the same manner as in Example 1 except that the configuration of the P1 layer and the polyester resin component were changed.
  • the PET raw material A (PET-A) and the PET raw material A-based titanium oxide master (PETa-TiO 2 ) were mixed in the P1 layer separately so that the P11 layer and the P12 layer had the particle amounts shown in the table.
  • the raw materials previously prepared were melted and kneaded separately by two extruders, introduced into the T die die from the two extruders via a feed block, and a P11 / P12 laminated sheet was obtained. Similarly, a sheet was obtained.
  • Example 23 contained 69 ppm of Mn element and 29 ppm of Na element in the P1 layer.
  • the adhesion of the obtained laminate to the solar cell encapsulant was found to be a laminate having very excellent initial adhesion and adhesion retention as shown in the table.
  • Example 23 is a laminate having particularly excellent adhesion retention, and the moisture and heat resistance as a solar cell back surface protection sheet is very superior to that of Example 1, and Examples 24 and 25 are back surfaces of solar cells. It was found that the ultraviolet resistance as a protective sheet was superior to that of Example 1. Further, it was found that the durability of the solar cell was very excellent as in Example 1.
  • the adhesion of the obtained laminate to the solar cell encapsulant was very good initial adhesion, but it was found to be a laminate having poor adhesion retention. Moreover, it turned out that it is similarly inferior also about the durability of a solar cell.
  • the adhesion of the obtained laminate to the solar cell encapsulant decreases with changes in the surface energy of the P2 layer, and it is found that the laminate is inferior in initial adhesion and / or adhesion retention. It was. Moreover, it turned out that it is similarly inferior also about the durability of a solar cell.
  • the laminate of the present invention is excellent in adhesion to EVA that is a sealing material for solar cells, and adhesion retention, and is used not only for solar cell back surface protection sheets but also for industrial materials such as process sheets and adhesive tapes and extrusion. It can be suitably used as an easy-adhesive substrate application such as laminating or heat laminating. Moreover, the solar cell excellent in durability can be provided by mounting this laminated body in a solar cell.

Abstract

A layered product characterized by comprising a base layer (layer P1) including, as a main component, a polyester resin having a terminal carboxyl group amount of 25 equivalents or less per ton and a readily bondable layer (layer P2), the layer P2 satisfying the following requirements (1) and (2): (1) to have a polar force γp of 4.8-21.0 mN/m, and (2) to have a difference between the polar force γp and the hydrogen bonding force γh, γp-γh, of 1.0-20.0 mN/m. Layered products produced by conventional methods have had a problem wherein the adhesion to encapsulating materials is so low that separation at the boundary with the encapsulating material or delamination thereof from the readily bondable layer is prone to occur not only during the fabrication of solar cells but also during outdoor use as solar cells. In view of such conventional problem, the present invention provides the layered product which is superior to conventional, readily bondable, layered products in adhesion to encapsulating materials and which is suitable for use as a sheet for protecting the back surfaces of solar cells which retain the adhesion (excellent adhesion retentivity) even when placed outdoors for a long period.

Description

積層体Laminated body
 本発明は太陽電池セルの封止材であるEVAとの密着性に優れ、長期間屋外に置かれても密着性を維持する(密着保持性が優れた)、太陽電池裏面保護用シートとして好適な積層体に関する。 The present invention has excellent adhesion to EVA, which is a sealing material for solar cells, and is suitable as a sheet for protecting the back surface of a solar cell, which maintains adhesion even when placed outdoors for a long period of time (excellent adhesion retention). Related to a laminate.
 近年、半永久的で無公害の次世代エネルギー源として太陽光発電が注目を浴びており、太陽電池は急速に普及しつつある。太陽電池は、発電素子をエチレン-酢酸ビニル共重合体(以降EVAと称することがある)などの透明な封止材により封止したものに、ガラスなどの透明基板と、バックシート(裏面保護用シート)と呼ばれる樹脂シートを貼り合わせて構成される。太陽光は透明基板を通じて太陽電池内に導入される。太陽電池内に導入された太陽光は、発電素子にて、吸収され、吸収された光エネルギーは、電気エネルギーに変換される。変換された電気エネルギーは発電素子に接続したリード線にて取り出されて、各種電気機器に使用される。 In recent years, photovoltaic power generation has attracted attention as a semi-permanent and pollution-free next-generation energy source, and solar cells are rapidly spreading. In a solar cell, a power generating element is sealed with a transparent sealing material such as ethylene-vinyl acetate copolymer (hereinafter sometimes referred to as EVA), a transparent substrate such as glass, and a back sheet (for back surface protection). A resin sheet called a “sheet” is bonded together. Sunlight is introduced into the solar cell through the transparent substrate. Sunlight introduced into the solar cell is absorbed by the power generation element, and the absorbed light energy is converted into electrical energy. The converted electric energy is taken out by a lead wire connected to the power generation element and used for various electric devices.
 ここで、太陽電池裏面保護用シートには、安価で高性能である二軸延伸ポリエチレンテレフタレート(以降PETと称する)が広く用いられており、種々の素材をドライラミネートなどの方法にて貼り合わせることによってバリア性や電気特性を付与する検討がされてきた。しかしながら、PETなどのポリエステル樹脂は封止材との密着性が弱い。そのため、従来では、PETなどのポリエステル樹脂に封止材との密着性に優れたポリオレフィン樹脂シートをラミネートし、ポリオレフィン樹脂シートを太陽電池裏面保護用シートの封止材接着面として用いることが一般的であった。 Here, inexpensive and high-performance biaxially stretched polyethylene terephthalate (hereinafter referred to as PET) is widely used for the solar cell back surface protection sheet, and various materials are bonded together by a method such as dry lamination. Thus, studies have been made to impart barrier properties and electrical characteristics. However, polyester resins such as PET have poor adhesion to the sealing material. Therefore, conventionally, it is common to laminate a polyolefin resin sheet excellent in adhesion to a sealing material on a polyester resin such as PET and use the polyolefin resin sheet as a sealing material adhesion surface of a solar cell back surface protection sheet. Met.
 また、最近では、二軸延伸されたポリエステルフィルムの表面に易接着層を設け、封止材に直接張り合わせることが可能な積層ポリエステルシート(特許文献1、2、3)などが開示されている。 Moreover, recently, a laminated polyester sheet ( Patent Documents 1, 2, and 3) that can provide an easy-adhesion layer on the surface of a biaxially stretched polyester film and can be directly bonded to a sealing material has been disclosed. .
特開2006-152013号公報JP 2006-152013 A 特許第4803317号公報Japanese Patent No. 4803317 特開2012-69835号公報JP 2012-69835 A
 特許文献1~3に挙げられた積層ポリエステルシートは、二軸延伸されたポリエステルフィルム(基材フィルム)の表面に設けられた易接着層と、EVAなどの封止材(被着体)が接着するように用いられる(基材フィルム/易接着層/被着体)。しかしながら、特許文献1~3に記載の積層ポリエステルシートでは、基材フィルムと易接着層、易接着層とEVAなどの被着体の密着性のバランスが悪い。そのため、当該積層ポリエステルシートを太陽電池裏面保護用シートして用いる場合、太陽電池セルの加工時はもちろん、太陽電池セルとして屋外で用いられている間に、基材フィルムと易接着層、易接着層と被着体との間で剥離が発生するという問題があった。また、従来のフィルムでは、長期間屋外に置かれた場合、密着性が低下する(密着保持性が悪い)という問題があった。この問題を解決するため、本発明では従来の課題を鑑みて、基材フィルムと易接着層、易接着層と被着体の密着性のバランスに優れ、長期間屋外に置かれても密着性を維持する(密着保持性が優れた)太陽電池裏面保護用シートとして好適な積層体を提供することを目的とする。 In the laminated polyester sheets listed in Patent Documents 1 to 3, the easy adhesion layer provided on the surface of the biaxially stretched polyester film (base film) and the sealing material (adherent) such as EVA are bonded. (Base film / adhesive layer / adhered body). However, the laminated polyester sheets described in Patent Documents 1 to 3 have a poor balance of adhesion between the base film and the easy-adhesion layer and between the easy-adhesion layer and the adherend such as EVA. Therefore, when the laminated polyester sheet is used as a sheet for protecting the back surface of a solar battery, not only during processing of the solar battery cell, but also while being used outdoors as a solar battery cell, the base film and the easy adhesion layer, easy adhesion There was a problem that peeling occurred between the layer and the adherend. In addition, the conventional film has a problem that when it is placed outdoors for a long period of time, the adhesion is deteriorated (adhesion retention is poor). In order to solve this problem, in the present invention, in view of the conventional problems, the substrate film and the easy adhesion layer, and the adhesion balance between the easy adhesion layer and the adherend are excellent, and the adhesion is good even when left outdoors for a long time. It aims at providing the laminated body suitable as a sheet | seat for solar cell back surface protections (it was excellent in contact | adherence retainability).
 上記課題を解決するために本発明は以下の構成をとる。すなわち、末端カルボキシル基量が25当量/トン以下であるポリエステル樹脂からなる基材層(P1層)と易接着層(P2層)を有し、前記のP2層が次の要件(1)および(2)を満たすことを特徴とする積層体である。
(1)極性力γpが4.8mN/m以上、21.0mN/m以下
(2)極性力γpと水素結合力γhの差γp-γhが1.0mN/m以上、20.0mN/m以下
In order to solve the above problems, the present invention has the following configuration. That is, it has a base material layer (P1 layer) and an easy adhesion layer (P2 layer) made of a polyester resin having a terminal carboxyl group amount of 25 equivalents / ton or less, and the P2 layer has the following requirements (1) and ( It is a laminate characterized by satisfying 2).
(1) Polar force γp is 4.8 mN / m or more and 21.0 mN / m or less (2) Difference γp−γh between polar force γp and hydrogen bonding force γh is 1.0 mN / m or more and 20.0 mN / m or less
 本発明によれば、ポリエステルフィルムに易接着層を設けた従来の積層体に比べて、太陽電池の封止材であるEVAとの密着性に優れ、長期間屋外に置かれても密着性を維持する(密着保持性が優れた)太陽電池裏面保護用シートとして好適に使用できる積層体を提供できる。さらに該積層体を搭載することによって耐久性の高い太陽電池を提供することができる。 According to the present invention, compared to a conventional laminate in which an easy-adhesion layer is provided on a polyester film, it has excellent adhesion with EVA, which is a sealing material for solar cells, and has excellent adhesion even when placed outdoors for a long period of time. The laminated body which can be used suitably as a sheet | seat for solar cell back surface protection to maintain (it was excellent in close_contact | adherence retainability) can be provided. Furthermore, a highly durable solar cell can be provided by mounting the laminate.
本発明の積層体を用いた太陽電池裏面保護用シート、および太陽電池の構成の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of a structure of the solar cell back surface protection sheet using the laminated body of this invention, and a solar cell.
 本発明の積層体は、末端カルボキシル基量が25当量/トン以下であるポリエステル樹脂からなる基材層(P1層)と易接着層(P2層)を有し、前記のP2層が次の要件(1)および(2)を満たすことを特徴とする。
(1)極性力γpが4.8mN/m以上、21.0mN/m以下
(2)極性力γpと水素結合力γhの差γp-γhが1.0mN/m以上、20.0mN/m以下
 以下、本発明の積層体について詳細に説明する。
The laminate of the present invention has a base material layer (P1 layer) and an easy-adhesion layer (P2 layer) made of a polyester resin having a terminal carboxyl group amount of 25 equivalents / ton or less, and the P2 layer has the following requirements: It is characterized by satisfying (1) and (2).
(1) Polar force γp is 4.8 mN / m or more and 21.0 mN / m or less (2) Difference γp−γh between polar force γp and hydrogen bonding force γh is 1.0 mN / m or more and 20.0 mN / m or less Hereinafter, the laminate of the present invention will be described in detail.
 (基材層(P1層))
 本発明のP1層は、ポリエステル樹脂を主たる構成成分とする。ここでポリエステル樹脂を主たる構成成分とするとは、該P1層を構成する樹脂に対してポリエステル樹脂が50質量%を超えて含有されていることをいう。P1層を構成するポリエステル樹脂としては、具体的にはポリエチレンテレフタレート、ポリエチレン-2、6-ナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸などが挙げられる。また、本発明に用いられるポリエステル樹脂は、1)ジカルボン酸もしくはそのエステル形成性誘導体(以下、「ジカルボン酸成分」と総称する)とジオール成分の重縮合、2)一分子内にカルボン酸もしくはカルボン酸誘導体と水酸基を有する化合物の重縮合、および1)2)の組み合わせにより得ることができる。また、ポリエステル樹脂の重合は常法により行うことができる。
(Base material layer (P1 layer))
The P1 layer of the present invention contains a polyester resin as a main component. Here, the polyester resin as a main constituent means that the polyester resin is contained in an amount exceeding 50% by mass with respect to the resin constituting the P1 layer. Specific examples of the polyester resin constituting the P1 layer include polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, and polylactic acid. The polyester resin used in the present invention includes 1) polycondensation of dicarboxylic acid or an ester-forming derivative thereof (hereinafter collectively referred to as “dicarboxylic acid component”) and a diol component, and 2) carboxylic acid or carboxylic acid in one molecule. It can be obtained by a polycondensation of an acid derivative and a compound having a hydroxyl group, and 1) 2). The polymerization of the polyester resin can be performed by a conventional method.
 1)において、ジカルボン酸成分としては、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸などの脂環族ジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルエンダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸などの芳香族ジカルボン酸、もしくはそのエステル誘導体などが代表例としてあげられる。また、これらは単独で用いても、複数種類用いても構わない。 In 1), as the dicarboxylic acid component, malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid, Aliphatic dicarboxylic acids such as ethylmalonic acid, alicyclic dicarboxylic acids such as adamantane dicarboxylic acid, norbornene dicarboxylic acid, cyclohexane dicarboxylic acid, decalin dicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, 4,4′-diphenylsulfonedicarboxylic acid Acid, 5-sodium Ruhoisofutaru acid, phenyl ene boys carboxylic acid, anthracene dicarboxylic acid, phenanthrene carboxylic acid, 9,9'-bis (4-carboxyphenyl) aromatic dicarboxylic acids such as fluorene acid, or the like its ester derivatives and the like as a typical example. These may be used alone or in combination.
 また、上述のジカルボン酸成分の少なくとも一方のカルボキシ末端に、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸類およびその誘導体や該オキシ酸類が複数個連なったもの等を縮合させたジカルボキシ化合物も用いることができる。 In addition, dicarboxyl obtained by condensing oxyacids such as l-lactide, d-lactide, and hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of such oxyacids, at least one carboxy terminus of the dicarboxylic acid component described above. Compounds can also be used.
 次にジオール成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオールなどの脂肪族ジオール、シクロヘキサンジメタノール、スピログリコール、イソソルビドなどの脂環式ジオール、ビスフェノールA、1,3-ベンゼンジメタノール,1,4-ベンセンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレンなどの芳香族ジオールが代表例としてあげられる。また、これらは単独で用いても、必要に応じて、複数種類用いても構わない。また、上述のジオール成分の少なくとも一方のヒドロキシ末端にジオール類を縮合させて形成されるジヒドロキシ化合物も用いることができる。 Next, as the diol component, aliphatic diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, Aromatic diols such as cyclohexanedimethanol, spiroglycol, isosorbide, bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 9,9'-bis (4-hydroxyphenyl) fluorene Group diols are typical examples. Moreover, these may be used independently or may be used in multiple types as needed. In addition, a dihydroxy compound formed by condensing a diol with at least one hydroxy terminal of the diol component described above can also be used.
 2)において、一分子内にカルボン酸もしくはカルボン酸誘導体と水酸基を有する化合物の例としては、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸、およびその誘導体、オキシ酸類のオリゴマー、ジカルボン酸の一方のカルボキシル基にオキシ酸が縮合したもの等があげられる。 In 2), examples of the compound having a carboxylic acid or a carboxylic acid derivative and a hydroxyl group in one molecule include oxyacids such as l-lactide, d-lactide and hydroxybenzoic acid, and derivatives thereof, oligomers of oxyacids, dicarboxylic acids Examples thereof include those obtained by condensing an oxyacid with one carboxyl group of the acid.
 ポリエステル樹脂を構成するジカルボン酸成分およびジオール成分は、上述した中から1種類ずつを選択して共重合させても良いし、それぞれ複数種を選択して共重合させても良い。またP1層を構成するポリエステル樹脂は、単一種でも良いし、2種以上のポリエステル樹脂をブレンドしたものでも良い。 The dicarboxylic acid component and the diol component constituting the polyester resin may be copolymerized by selecting one from the above, or may be copolymerized by selecting a plurality of each. Further, the polyester resin constituting the P1 layer may be a single type or a blend of two or more types of polyester resins.
 さらに本発明のP1層を構成するポリエステル樹脂は末端カルボキシル基量が25当量/トン以下であることが重要である。ここでいう末端カルボキシル基量とはMauliceの方法に準じて得られた値であり詳細は後述する。 Furthermore, it is important that the polyester resin constituting the P1 layer of the present invention has a terminal carboxyl group amount of 25 equivalents / ton or less. The term “terminal carboxyl group amount” as used herein refers to a value obtained according to the method of Malice and will be described in detail later.
 P1層を構成するポリエステル樹脂の末端カルボキシル基量は19当量/トン以下が好ましく、16当量/トン以下がより好ましい。P1層を構成するポリエステル樹脂の末端カルボキシル基量が25当量/トンを超えるとP1層の耐湿熱性が低下し、長期間屋外で置かれた場合、被着体と易接着層が剥離する前にP1層内部の劣化によって積層体が破壊され、結果的に密着性が低下する問題が発生する。 The amount of terminal carboxyl groups of the polyester resin constituting the P1 layer is preferably 19 equivalents / ton or less, and more preferably 16 equivalents / ton or less. When the amount of terminal carboxyl groups of the polyester resin constituting the P1 layer exceeds 25 equivalents / ton, the moisture and heat resistance of the P1 layer is lowered, and when it is placed outdoors for a long period of time, before the adherend and the easy adhesion layer peel off. The laminated body is destroyed due to the deterioration inside the P1 layer, and as a result, the problem that the adhesiveness is lowered occurs.
 一方でP1層を構成するポリエステル樹脂の末端カルボキシル基量の下限については、本発明の効果を損なわない範囲であれば特に限定するものでは無いが、1当量/トン以上が好ましく、13量/トン以上がより好ましい。P1層を構成するポリエステル樹脂は末端カルボキシル基量が1当量/トン未満の場合、積層体の耐湿熱性は優れるものの易接着層との密着性が不足する場合がある。 On the other hand, the lower limit of the amount of terminal carboxyl groups of the polyester resin constituting the P1 layer is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 1 equivalent / ton or more, and 13 amounts / ton. The above is more preferable. When the amount of terminal carboxyl groups in the polyester resin constituting the P1 layer is less than 1 equivalent / ton, the laminate may be excellent in moisture and heat resistance but may be insufficient in adhesion to the easy adhesion layer.
 本発明のP1層を構成するポリエステル樹脂の末端カルボキシル基量を25当量/トン以下とすることで優れた耐湿熱性と密着性、密着保持性を両立した積層体とすることができる。 </ RTI> By setting the terminal carboxyl group amount of the polyester resin constituting the P1 layer of the present invention to 25 equivalents / ton or less, it is possible to obtain a laminate having both excellent heat and moisture resistance, adhesion, and adhesion retention.
 また本発明のP1層を構成するポリエステル樹脂の固有粘度IVは0.65dl/g以上0.80dl/g以下が好ましく、該ポリエステル樹脂はポリエチレンテレフタレート(PET)を主たる構成成分とすることが好ましい。ここでの主たる構成成分とは、該ポリエステル樹脂に対して50質量%を超えて含有されていることをいう。 In addition, the intrinsic viscosity IV of the polyester resin constituting the P1 layer of the present invention is preferably 0.65 dl / g or more and 0.80 dl / g or less, and the polyester resin preferably contains polyethylene terephthalate (PET) as a main constituent. The main component here means that it is contained in excess of 50% by mass with respect to the polyester resin.
 P1層を構成する樹脂がPETを主たる構成成分とする場合、該PETの固有粘度IVは0.65dl/g以上が好ましく、より好ましくは0.69dl/g以上であり、固有粘度IVが0.65dl/g未満の場合、積層体の耐湿熱性が悪くなる場合がある。また、固有粘度IVが0.80dl/gを超える場合、P1層を製造する際に樹脂の押出性が悪くシート成型が困難となる場合がある。よってP1層を構成する樹脂がPETを主たる構成成分とする場合、固有粘度IVが上記範囲を満たすことによって、優れた成型性、耐湿熱性を両立した積層体とすることが出来る。 When the resin constituting the P1 layer contains PET as a main component, the intrinsic viscosity IV of the PET is preferably 0.65 dl / g or more, more preferably 0.69 dl / g or more, and the intrinsic viscosity IV is 0.00. When it is less than 65 dl / g, the heat and humidity resistance of the laminate may be deteriorated. Moreover, when intrinsic viscosity IV exceeds 0.80 dl / g, when the P1 layer is manufactured, the extrudability of the resin may be poor and sheet molding may be difficult. Therefore, when the resin constituting the P1 layer contains PET as the main constituent component, a laminate having both excellent moldability and wet heat resistance can be obtained by satisfying the above-described range of the intrinsic viscosity IV.
 また本発明の積層体において、P1層を構成するポリエステル樹脂の数平均分子量Mnは8000~40000が好ましく、より好ましくは数平均分子量Mnが9000~30000、更に好ましくは10000~20000である。ここでいうP1層を構成するポリエステル樹脂の数平均分子量Mnとは、本発明の積層体からP1層を分離し、ヘキサフルオロイソプロノール(HEIP)に溶解させ、ゲル浸透クロマトグラフ法(GPC法)で測定、示差屈折率計で検出した値から、標準試料として分子量既知のポリエチレンテレフタレートとジメチルテレフタレートを用いて得られた値である。 In the laminate of the present invention, the number average molecular weight Mn of the polyester resin constituting the P1 layer is preferably 8000 to 40000, more preferably 9000 to 30000, and still more preferably 10,000 to 20000. Here, the number average molecular weight Mn of the polyester resin constituting the P1 layer means that the P1 layer is separated from the laminate of the present invention, dissolved in hexafluoroisopronol (HEIP), and gel permeation chromatography (GPC method). This is a value obtained by using polyethylene terephthalate and dimethyl terephthalate having a known molecular weight as standard samples from the values measured by and detected with a differential refractometer.
 P1層を構成するポリエステル樹脂の数平均分子量Mnが8000に満たない場合、耐湿熱性や耐熱性などの耐久性が落ちる可能性がある。一方で数平均分子量Mnが40000を超えると、重合が困難であるか重合できたとしても押出機による樹脂の押出が困難となり、成型加工が困難となる場合がある。 When the number average molecular weight Mn of the polyester resin constituting the P1 layer is less than 8000, durability such as heat and moisture resistance and heat resistance may be lowered. On the other hand, when the number average molecular weight Mn exceeds 40000, even if the polymerization is difficult or the polymerization can be performed, it is difficult to extrude the resin with an extruder and the molding process may be difficult.
 また本発明の積層体において、P1層を構成するポリエステル樹脂には金属元素として、Mn、Ca、Mgから選ばれる少なくとも1種類以上の金属元素を含有することが好ましい。特にMn元素を含有することが好ましく、さらにMn元素及びNa元素が含まれていることが好ましく、特にMn元素が50~200ppm、Na元素が10~80ppmの範囲で含まれていることがより好ましい。本発明の積層体のP1層にMn元素及びNa元素が前記の範囲で含まれていると、P1層を構成するポリエステル樹脂の加水分解が抑制され、積層体の耐湿熱性と密着保持性をより高めることができる。 In the laminate of the present invention, the polyester resin constituting the P1 layer preferably contains at least one metal element selected from Mn, Ca, and Mg as a metal element. In particular, it is preferable to contain Mn element, and it is more preferable that Mn element and Na element are contained, and it is more preferable that Mn element is contained in the range of 50 to 200 ppm and Na element is contained in the range of 10 to 80 ppm. . When the P1 layer of the laminate of the present invention contains Mn element and Na element in the above ranges, hydrolysis of the polyester resin constituting the P1 layer is suppressed, and the moisture resistance and adhesion retention of the laminate are further improved. Can be increased.
 本発明の積層体においてP1層は一軸、もしくは二軸に配向していることが好ましい。P1層が一軸、もしくは二軸に配向していると、配向結晶化により耐湿熱性や耐熱性などのシートの耐久性を向上させることができる。 In the laminate of the present invention, the P1 layer is preferably uniaxially or biaxially oriented. When the P1 layer is uniaxially or biaxially oriented, the durability of the sheet, such as moisture and heat resistance, can be improved by orientation crystallization.
 本発明のP1層に耐紫外線性、光反射性、光隠蔽性、意匠性、視認性などの特性を付与する目的で、おのおのの機能を有した粒子を含有させる方法も好ましく用いられる。例えば、耐紫外線性と光反射性の両方を向上させるためには、P1層を構成する樹脂に対して酸化チタン粒子を1質量%以上30質量%以下の範囲で含有させることが好ましい。これによって酸化チタン粒子による紫外線吸収能と光反射性を活かして、長期に亘って光劣化による着色を低減するという効果と本発明の積層体を搭載した太陽電池の発電効率を高める効果の両方を期待することができる。 For the purpose of imparting properties such as ultraviolet resistance, light reflectivity, light hiding property, designability, and visibility to the P1 layer of the present invention, a method of incorporating particles having respective functions is also preferably used. For example, in order to improve both ultraviolet resistance and light reflectivity, it is preferable to contain titanium oxide particles in the range of 1% by mass to 30% by mass with respect to the resin constituting the P1 layer. This makes it possible to take advantage of the ultraviolet absorption ability and light reflectivity of the titanium oxide particles to reduce the coloration due to light deterioration over a long period of time and the effect of increasing the power generation efficiency of the solar cell equipped with the laminate of the present invention. You can expect.
 本発明のP1層に酸化チタン粒子を含有させる場合、1質量%未満では耐紫外線性や光反射性が不足する場合があり、30質量%より多いとP2層との密着性が悪化する場合がある。より好ましい範囲としては1質量%以上25質量%以下であり、さらに好ましくは2質量%以上25質量%以下であり、特に好ましくは3質量%以上20質量%以下である。また優れた耐紫外線性と光反射性の両立という観点で、酸化チタン粒子としてはルチル型酸化チタンを用いるのがより好ましい。 When titanium oxide particles are contained in the P1 layer of the present invention, if less than 1% by mass, UV resistance and light reflectivity may be insufficient, and if more than 30% by mass, adhesion to the P2 layer may deteriorate. is there. A more preferable range is 1% by mass or more and 25% by mass or less, further preferably 2% by mass or more and 25% by mass or less, and particularly preferably 3% by mass or more and 20% by mass or less. From the viewpoint of achieving both excellent ultraviolet resistance and light reflectivity, it is more preferable to use rutile titanium oxide as the titanium oxide particles.
 更に耐紫外線性と光隠蔽性、意匠性を向上させるためには、P1層を構成する樹脂に対してフラーレン、カーボンブラック、カーボンファイバー、カーボンナノチューブなどの炭素系材料からなる粒子(以下、カーボン粒子)を0.1質量%以上5質量%以下の範囲で含有することが好ましい。これによってカーボン粒子による紫外線吸収能と光隠蔽性を活かして、長期に亘って積層体の光劣化による着色を低減するという効果を発揮することができる。含有量が0.1質量%未満では耐紫外線性が不足する場合があり、5質量%より多いとP2層との密着性が悪化する場合がある。より好ましい範囲としては0.2質量%以上4質量%以下であり、さらに好ましくは0.5質量%以上3質量%以下である。 Furthermore, in order to improve UV resistance, light hiding properties, and design, particles made of carbon-based materials such as fullerene, carbon black, carbon fiber, and carbon nanotube (hereinafter referred to as carbon particles) with respect to the resin constituting the P1 layer. ) Is preferably contained in the range of 0.1% by mass to 5% by mass. This makes it possible to exhibit the effect of reducing coloration due to light degradation of the laminate over a long period of time by utilizing the ultraviolet absorbing ability and light hiding property of the carbon particles. When the content is less than 0.1% by mass, the UV resistance may be insufficient. When the content is more than 5% by mass, the adhesion with the P2 layer may be deteriorated. A more preferable range is 0.2% by mass or more and 4% by mass or less, and further preferably 0.5% by mass or more and 3% by mass or less.
 本発明のP1層を構成するポリエステル樹脂に前記の粒子を含有させる方法としては、ポリエステル樹脂と粒子をベント式二軸混練押出機やタンデム型押出機を用いて、溶融混練する方法が好ましく用いられる。ここでポリエステル樹脂に粒子を含有させる際にポリエステル樹脂が熱負荷を受けると、ポリエステル樹脂は少なからず劣化し、末端カルボキシル基量の増加や、固有粘度IVや数平均分子量が低下する場合がある。そのため、最終的にP1層を構成するポリエステル樹脂に含まれる粒子含有量よりも含有量を多くした高濃度マスターペレットを予め作製しておき、それをポリエステル樹脂と混合して希釈し、所望の粒子含有量となるように調整したP1層を作製することにより、耐湿熱性や易接着層との密着性保持を高めることができる。 As a method of incorporating the particles into the polyester resin constituting the P1 layer of the present invention, a method of melt-kneading the polyester resin and particles using a vent type twin-screw kneading extruder or a tandem type extruder is preferably used. . Here, when the polyester resin is subjected to a heat load when the polyester resin contains particles, the polyester resin deteriorates not a little, and the amount of terminal carboxyl groups may increase, and the intrinsic viscosity IV and number average molecular weight may decrease. Therefore, a high-concentration master pellet having a content higher than that of the polyester resin finally constituting the P1 layer is prepared in advance, and mixed with the polyester resin to dilute the desired particles. By preparing the P1 layer adjusted to have a content, it is possible to enhance moisture heat resistance and adhesion retention with an easy adhesion layer.
 本発明の積層体におけるP1層には、前記の酸化チタン粒子やカーボン粒子以外にも、本発明の効果が損なわれない範囲で必要に応じて、耐熱安定剤、耐酸化安定剤、紫外線吸収剤、紫外線安定剤、有機系/無機系の易滑剤、有機系/無機系の微粒子、充填剤、核剤、染料、分散剤、カップリング剤等の添加剤や、気泡が配合されていてもよい。例えば、添加剤として紫外線吸収剤を選択した場合には、本発明の積層体の耐紫外線性をより高めることが可能となる。また帯電防止剤などを添加して電気絶縁性を向上させたり、有機系/無機系の微粒子や気泡を含有して光反射性を発現させたり、着色したい色の材料を添加して意匠性を付与することもできる。 In addition to the titanium oxide particles and carbon particles, the P1 layer in the laminate of the present invention may include a heat-resistant stabilizer, an oxidation-resistant stabilizer, and an ultraviolet absorber as long as the effects of the present invention are not impaired. , UV stabilizers, organic / inorganic lubricants, organic / inorganic fine particles, fillers, nucleating agents, dyes, dispersants, coupling agents, etc., and bubbles may be blended. . For example, when an ultraviolet absorber is selected as an additive, the ultraviolet resistance of the laminate of the present invention can be further improved. Add antistatic agents to improve electrical insulation, or to develop light reflectivity by containing organic / inorganic fine particles and bubbles, or add color material you want to color to improve design. It can also be granted.
 本発明のP1層は、積層構造を有しても構わない。例えば、耐湿熱性に優れたP11層と、紫外線吸収剤や紫外線吸収能を持つ酸化チタン粒子を高濃度で含有する層P12層との積層構造などが好ましく用いられる。本発明の積層体を太陽電池裏面保護シートして用いた場合や太陽電池の搭載する場合、このようなP1層の構成はP12層/P11層//P2層となることが、優れた耐湿熱性と耐紫外線性との両立の観点から好ましい。この場合、P11層、P12層に用いる樹脂や粒子は、上記のP1層で例示したものを好適に用いることができる。 The P1 layer of the present invention may have a laminated structure. For example, a laminated structure of a P11 layer excellent in heat and moisture resistance and a layer P12 layer containing a high concentration of an ultraviolet absorber or titanium oxide particles having an ultraviolet absorbing ability is preferably used. When the laminated body of the present invention is used as a solar cell back surface protection sheet or when a solar cell is mounted, such a P1 layer configuration is P12 layer / P11 layer // P2 layer. Is preferable from the viewpoint of achieving both UV resistance and UV resistance. In this case, as the resin and particles used for the P11 layer and the P12 layer, those exemplified for the P1 layer can be preferably used.
 本発明の積層体はP1層の厚みが30μm以上500μm未満であることが好ましい。P1層の厚みが30μm未満であると本発明の積層体を太陽電池裏面保護用シートとして用いた場合、電気絶縁性が不足し、例えば、本発明の積層体を太陽電池に搭載した場合、高電圧下で使用した際に絶縁破壊を起こすことがあり好ましくない場合がある。また、厚みが500μmより厚いと積層体の加工性が悪くなることや、搭載した太陽電池セルの全体厚みが厚くなり過ぎることがあり好ましくない場合がある。よってP1層の厚みの好ましい範囲は38μm以上400μm以下、さらに好ましくは50μm以上300μm以下である。 In the laminate of the present invention, the thickness of the P1 layer is preferably 30 μm or more and less than 500 μm. When the laminate of the present invention is used as a solar cell back surface protection sheet when the thickness of the P1 layer is less than 30 μm, for example, when the laminate of the present invention is mounted on a solar cell, the When used under voltage, dielectric breakdown may occur, which may be undesirable. On the other hand, if the thickness is greater than 500 μm, the processability of the laminate may deteriorate, and the overall thickness of the mounted solar battery cell may become too thick, which may be undesirable. Therefore, the preferable range of the thickness of the P1 layer is 38 μm or more and 400 μm or less, and more preferably 50 μm or more and 300 μm or less.
 (P2層(以降易接着層と称する場合がある))
 本発明の積層体は易接着層としてP2層を有しており、該P2層の表面エネルギーは次の(1)および(2)の範囲を満たしていることが必要である。ここでの表面エネルギーとはJIS K 6768(1999)に準じた方法で測定して得られた値であり詳細は後述する。
(1)極性力γpが4.8mN/m以上、21.0mN/m以下
(2)極性力γpと水素結合力γhの差γp-γhが1.0mN/m以上、20.0mN/m以下
 従来の知見では、P2層を、一定の表面エネルギーを持つ対象の被着体(例えば、EVA)との密着性を向上させようとする場合、P2層の表面エネルギーを、被着体の表面エネルギーと近づけることが有効と考えられる。この方法では、P2層の表面エネルギーと被着体の表面エネルギーを近づけることで、P2層と被着体の親和性が高くなるため、初期密着性を向上させることが可能である。
しかしながら、本発明の積層体のP1層やP2層を構成するポリエステル樹脂やその他の成分は、ポリマーの特性や劣化状態によって表面エネルギーが変化する特徴がある。同様に、被着体として例えば太陽電池セルの封止材として一般的に用いられるEVAも、架橋状態(架橋度)によって表面エネルギーが変化する特徴を持つ。
つまり、本発明においてP2層、および、被着体は、長期間屋外に置かれると、経時で表面エネルギーが変化する。そのため、たとえ、上述した通りにP2層の表面エネルギーを被着体の表面エネルギーに近づけたとしても、湿熱条件下で長期間置かれた後では、密着性が低下する。
上記の現象を鑑みて、本発明の積層体は、P2層の表面エネルギーを(1)および(2)の範囲を満たす範囲とすることで、初期の密着性と長期の密着保持性を両立するといった効果を有するものである。以下、(1)、(2)について、詳細を説明する。
(P2 layer (hereinafter sometimes referred to as easy-adhesion layer))
The laminate of the present invention has a P2 layer as an easy-adhesion layer, and the surface energy of the P2 layer needs to satisfy the following ranges (1) and (2). The surface energy here is a value obtained by measurement by a method according to JIS K 6768 (1999), and will be described in detail later.
(1) Polar force γp is 4.8 mN / m or more and 21.0 mN / m or less (2) Difference γp−γh between polar force γp and hydrogen bonding force γh is 1.0 mN / m or more and 20.0 mN / m or less According to the conventional knowledge, when the P2 layer is to be improved in adhesion with a target adherend having a constant surface energy (for example, EVA), the surface energy of the P2 layer is determined as the surface energy of the adherend. It is considered effective to be close. In this method, since the affinity between the P2 layer and the adherend is increased by bringing the surface energy of the P2 layer close to the surface energy of the adherend, the initial adhesion can be improved.
However, the polyester resin and other components constituting the P1 layer and P2 layer of the laminate of the present invention are characterized in that the surface energy changes depending on the properties and the deterioration state of the polymer. Similarly, EVA, which is generally used as an adherend, for example, as a sealing material for solar cells, has a feature that the surface energy changes depending on the crosslinking state (crosslinking degree).
That is, in the present invention, when the P2 layer and the adherend are left outdoors for a long time, the surface energy changes with time. Therefore, even if the surface energy of the P2 layer is brought close to the surface energy of the adherend as described above, the adhesion is deteriorated after being left for a long period of time under wet heat conditions.
In view of the above phenomenon, the laminate of the present invention achieves both initial adhesion and long-term adhesion retention by setting the surface energy of the P2 layer to a range that satisfies the ranges of (1) and (2). It has such an effect. Hereinafter, (1) and (2) will be described in detail.
 本発明でのP2層の極性力γpとは、易接着層(P2層)の表面エネルギーを構成する力の一つであり、分子内の極性によって発生する分子間引力の程度を表す指標である。易接着層の極性力γpが4.8mN/m未満、または21.0mN/mを超えると、被着体、または、P1層との表面エネルギーの差が大きくなるため、初期密着性、密着保持性が低下する。
具体的にはP2層の極性力γpが4.8mN/m未満であると、P1層を構成するポリエステル樹脂の末端カルボキシル基量が小さい場合や、ポリエステル樹脂の劣化が進行した場合、易接着層との表面エネルギーの差が大きくなり基材フィルム(P1層)/易接着層(P2層)の界面での剥離が発生しやすくなり、密着性や密着保持性が悪化する。また初期の被着体との表面エネルギーの差が経時で大きくなるため、易接着層(P2層)/被着体の界面での剥離が発生しやすくなり、密着性が悪化する。
一方、P2層の極性力γpが21.0mN/mを超えると、P1層を構成するポリエステル樹脂との表面エネルギーの差が大きくなるため、基材フィルム(P1層)/易接着層(P2層)の界面での剥離が発生し、密着性や密着保持性が悪化する。また、被着体として太陽電池用の封止材であるEVAを用いた場合、長期間屋外に置かれると被着体との表面エネルギーの差が経時で大きくなり、易接着層(P2層)/被着体の界面での剥離が発生しやすくなり、密着性保持性が悪化する。
尚、(1)に記載のP2層の極性力γpの範囲は5.4mN/m以上、12.0mN/m以下が好ましく、6.0mN/m以上、8.4mN/m以下がより好ましい。
The polar force γp of the P2 layer in the present invention is one of the forces constituting the surface energy of the easy adhesion layer (P2 layer) and is an index representing the degree of intermolecular attractive force generated by the polarity in the molecule. . Since the difference in surface energy from the adherend or the P1 layer increases when the polar force γp of the easy-adhesion layer is less than 4.8 mN / m or more than 21.0 mN / m, initial adhesion and adhesion retention Sex is reduced.
Specifically, when the polar force γp of the P2 layer is less than 4.8 mN / m, when the amount of terminal carboxyl groups of the polyester resin constituting the P1 layer is small, or when the deterioration of the polyester resin proceeds, the easy adhesion layer And the difference in surface energy increases, and peeling at the interface of the base film (P1 layer) / easy-adhesive layer (P2 layer) is likely to occur, and the adhesion and adhesion retention deteriorate. In addition, since the difference in surface energy from the initial adherend increases with time, peeling at the interface between the easy-adhesion layer (P2 layer) and the adherend tends to occur, resulting in poor adhesion.
On the other hand, if the polar force γp of the P2 layer exceeds 21.0 mN / m, the difference in surface energy from the polyester resin constituting the P1 layer becomes large, so that the base film (P1 layer) / easily adhesive layer (P2 layer) ) Occurs at the interface, and adhesion and adhesion retention deteriorate. In addition, when EVA, which is a sealing material for solar cells, is used as an adherend, the difference in surface energy from the adherend increases with time when placed outdoors for a long period of time, and an easy adhesion layer (P2 layer). / Peeling at the interface of the adherend tends to occur, and the adhesiveness retention deteriorates.
In addition, the range of the polar force γp of the P2 layer described in (1) is preferably 5.4 mN / m or more and 12.0 mN / m or less, more preferably 6.0 mN / m or more and 8.4 mN / m or less.
 次に、本発明でのP2層の水素結合力γhとは、易接着層(P2層)の電気陰性度による分子間の相互作用の力の程度を表す指標である。更に本発明においては、易接着層(P2層)の耐加水分解性に影響する成分の程度を表すものである。すなわち、本発明において、P2層の極性力γpと水素結合力γhの差とは、被着体、及びP1層との易接着層(P2層)の親和性と耐加水分解性のバランスを表すものである。
ここで、(2)に記載の極性力γpと水素結合力γhの差γp-γhは2.5mN/m以上、9.0mN/m以下が好ましく、3.7mN/m以上、4.9mN/m以下がより好ましい。P2層の極性力γpと水素結合力γhの差γp-γhが1.0mN/m未満の場合、易接着層の加水分解は抑えられるものの、同時に密着性に寄与する成分が不足していることを示し、密着強度自体が低下する。一方で、20.0mN/mを超えると易接着層の加水分解により凝集力が低下する。
つまり、本発明においてP2層の極性力γpと水素結合力γhの差γp-γhを上記の範囲とすることで、例えば、被着体として太陽電池用の封止材であるEVAを用いた場合、長期間屋外に置かれたとしてもP2層とEVAの表面エネルギーの差が小さくすることが可能となり、密着保持性を高めることが可能となる。
更に、P2層の水素結合力γhとしては1.0mN/m以上、4.5mN/m以下とすることが好ましく、P2層の水素結合力γhを前記の好ましい範囲とすることで、P1層とP2層の密着性の向上とP2層の加水分解を抑える効果がより期待できる。
Next, the hydrogen bonding force γh of the P2 layer in the present invention is an index representing the degree of interaction force between molecules due to the electronegativity of the easy-adhesion layer (P2 layer). Furthermore, in the present invention, it represents the degree of the component that affects the hydrolysis resistance of the easily adhesive layer (P2 layer). That is, in the present invention, the difference between the polar force γp and the hydrogen bonding force γh of the P2 layer represents a balance between the affinity of the adherend and the easy adhesion layer (P2 layer) with the P1 layer and the hydrolysis resistance. Is.
Here, the difference γp−γh between the polar force γp and the hydrogen bond force γh described in (2) is preferably 2.5 mN / m or more and 9.0 mN / m or less, preferably 3.7 mN / m or more and 4.9 mN / m. m or less is more preferable. When the difference γp-γh between the polar force γp and the hydrogen bonding force γh of the P2 layer is less than 1.0 mN / m, hydrolysis of the easy-adhesion layer can be suppressed, but at the same time, the component contributing to adhesion is insufficient. The adhesion strength itself decreases. On the other hand, if it exceeds 20.0 mN / m, the cohesive force decreases due to hydrolysis of the easy-adhesion layer.
That is, in the present invention, by setting the difference γp−γh between the polar force γp and the hydrogen bonding force γh of the P2 layer in the above range, for example, when EVA which is a sealing material for solar cells is used as an adherend Even when placed outdoors for a long period of time, the difference in surface energy between the P2 layer and EVA can be reduced, and the adhesion retention can be improved.
Furthermore, the hydrogen bonding force γh of the P2 layer is preferably 1.0 mN / m or more and 4.5 mN / m or less, and the hydrogen bonding force γh of the P2 layer is within the above preferable range, The effect which suppresses the improvement of the adhesiveness of P2 layer and the hydrolysis of P2 layer can be expected more.
 上述した表面エネルギーはP2層に含まれる樹脂成分や含有量によって適宜調整することができる。具体的には、例えばP2層の極性力γpを高くするためにはP2層に含まれる樹脂成分として、ウレタン樹脂成分、メラミン樹脂成分、ポリエステル樹脂成分を併用することが有効である。一方で、極性力γpを低くするためには、P2層に含まれる樹脂成分として、ウレタン樹脂成分、オキサゾリン樹脂成分を併用することが有効である。
特に、P2層がウレタン樹脂成分のみしか含まない場合、極性力γpが大幅に高くなることがある。また、併用するポリエステル樹脂成分をアクリル変性されたポリエステル樹脂成分とすることで極性力γpは増加するが、アクリル変性部の構造を親水性のラジカル重合性ビニルモノマーが重合されたアクリルとすると極性力γpの増加幅を小さくすることができる。
The surface energy mentioned above can be appropriately adjusted depending on the resin component and content contained in the P2 layer. Specifically, for example, in order to increase the polar force γp of the P2 layer, it is effective to use a urethane resin component, a melamine resin component, and a polyester resin component together as the resin component contained in the P2 layer. On the other hand, in order to reduce the polar force γp, it is effective to use a urethane resin component and an oxazoline resin component in combination as the resin component contained in the P2 layer.
In particular, when the P2 layer contains only the urethane resin component, the polar force γp may be significantly increased. In addition, when the polyester resin component used in combination is an acrylic-modified polyester resin component, the polar force γp is increased. However, when the structure of the acrylic modified portion is an acrylic polymer obtained by polymerizing a hydrophilic radical polymerizable vinyl monomer, the polar force is increased. The increase width of γp can be reduced.
 同様に水素結合力γhを高くするためには、P2層に含まれるオキサゾリン樹脂成分の量を多くすることが有効であり、逆に水素結合力γhを小さくしたい場合はオキサゾリン樹脂成分の量を抑えればよい。またメラミン樹脂成分、及びウレタン樹脂成分の量にも多少は影響され、水素結合力γhを高くするためには、メラミン樹脂成分の量を多く、ウレタン樹脂成分の量を少なくする。逆に水素結合力γhを低くするためには、メラミン樹脂成分の量を少なく、ウレタン樹脂成分の量を多くすればよい。尚、P2層に含まれるウレタン樹脂成分がポリカーボネートポリオール化合物からなるウレタン樹脂の場合、水素結合力γhが大幅に高くなることがある。
ここで、P2層に含まれる各樹脂成分の量は、P2層を構成する塗剤組成物中に含まれる各樹脂成分の添加量により、調節することができる。
Similarly, in order to increase the hydrogen bond strength γh, it is effective to increase the amount of the oxazoline resin component contained in the P2 layer. Conversely, when it is desired to reduce the hydrogen bond strength γh, the amount of the oxazoline resin component is suppressed. Just do it. Further, the amount of the melamine resin component and the urethane resin component is somewhat affected, and in order to increase the hydrogen bond strength γh, the amount of the melamine resin component is increased and the amount of the urethane resin component is decreased. Conversely, in order to reduce the hydrogen bonding force γh, the amount of the melamine resin component should be small and the amount of the urethane resin component should be large. In the case where the urethane resin component contained in the P2 layer is a urethane resin made of a polycarbonate polyol compound, the hydrogen bonding force γh may be significantly increased.
Here, the quantity of each resin component contained in P2 layer can be adjusted with the addition amount of each resin component contained in the coating composition which comprises P2 layer.
 尚、現在のところ詳細は良く分かっていないが、P2層が同成分の場合でもP2層の厚みによって極性力γp、及び水素結合力γhが変化する場合がある。これは例えばP2層の厚みが厚くなった場合は、P2層を形成する段階でP2層が受ける温度履歴が変わり、架橋構造が変化することによって発生するものと推測している。一方、厚みが薄くなった場合については、厚みムラの影響を受けやすくなり表面状態が変化したと推測している。そのため、本発明においては、P2層の厚みは、0.1μm以上3.0μm以下が好ましい。P2層の厚みを上記の範囲とすることで、P2層の厚みムラやP2層を構成する樹脂成分の影響による表面エネルギーの値の変化を小さくでき、密着性を良好にすることができる。 Although details are not well understood at present, the polar force γp and the hydrogen bonding force γh may vary depending on the thickness of the P2 layer even when the P2 layer is the same component. For example, it is assumed that when the thickness of the P2 layer is increased, the temperature history experienced by the P2 layer is changed at the stage of forming the P2 layer, and the cross-linked structure is changed. On the other hand, when the thickness is reduced, it is presumed that the surface condition has changed due to being easily affected by thickness unevenness. Therefore, in the present invention, the thickness of the P2 layer is preferably 0.1 μm or more and 3.0 μm or less. By setting the thickness of the P2 layer within the above range, it is possible to reduce the change in the surface energy value due to the uneven thickness of the P2 layer and the influence of the resin component constituting the P2 layer, and to improve the adhesion.
 ここでいうP2層に含まれる樹脂成分は、P2層の表面についてX線光電子分光分析装置(ESCA)、フーリエ赤外分光光度計(FT-IR)ATR法、飛行時間型二次イオン質量分析装置(TOF-SIMS)、またはP2層を溶剤にて溶解抽出し、プロトン核磁気共鳴分光法(1H-NMR)、カーボン核磁気共鳴分光法(13C-NMR)、フーリエ赤外分光光度計(FT-IR)、またはP2層を分離し、クロマトグラフィー質量分析(GC-MS)などによって実施したP2層の定性分析を行うことによって確認することができる。 The resin component contained in the P2 layer referred to here is an X-ray photoelectron spectrometer (ESCA), Fourier infrared spectrophotometer (FT-IR) ATR method, time-of-flight secondary ion mass spectrometer on the surface of the P2 layer. (TOF-SIMS) or P2 layer is dissolved and extracted with a solvent, and proton nuclear magnetic resonance spectroscopy (1H-NMR), carbon nuclear magnetic resonance spectroscopy ( 13 C-NMR), Fourier infrared spectrophotometer (FT -IR), or by separating the P2 layer and performing a qualitative analysis of the P2 layer, such as by chromatography mass spectrometry (GC-MS).
 以下、本発明の積層体のP2層の含まれると好ましい成分について詳細を述べるが、本発明の効果を損なわない範囲であれば、特に限定されるものでは無い。 Hereinafter, the components that are preferable to be contained in the P2 layer of the laminate of the present invention will be described in detail, but are not particularly limited as long as the effects of the present invention are not impaired.
 本発明のP2層にはウレタン樹脂成分、メラミン樹脂成分、オキサゾリン樹脂成分の3成分を含まれるのが好ましい。ここでいうウレタン樹脂成分とは、主鎖中にポリオール化合物とポリイソシアネート化合物との反応で得られるウレタン結合を有する樹脂、および、前記樹脂と他の成分が反応して得られる樹脂からなる成分を示す。 The P2 layer of the present invention preferably contains three components, a urethane resin component, a melamine resin component, and an oxazoline resin component. The urethane resin component here means a component comprising a resin having a urethane bond obtained by reaction of a polyol compound and a polyisocyanate compound in the main chain, and a resin obtained by reacting the resin with other components. Show.
 具体的には被着体との親和性の観点から脂肪族ポリイソシアネート化合物とポリオール化合物を重合したものであることが好ましく、脂肪族ポリイソシアネート化合物としては、分子内に複数のイソシアネート基を有するものであり、例えば、1,6-ヘキサンジイソシアネート、イソホロンジイソシアネート、トルエンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、2,2,4-トリメチルヘキサメチレンジイソシアネート、1,4-ヘキサメチレンジイソシアネート、ビス(2-イソシアネートエチル)フマレート、ビス(4-イソシアネートシクロヘキシル)メタン、ジシクロヘキシルメタン4,4-ジイソシアナートリジンジイソシアネート、水添キシリレンジイソシアネート、水添フェニルメタンジイソシアネートなどが挙げられ、中でもP2層の耐久性を高める点から脂環式構造を有する脂肪族ポリイソシアネート化合物がより好ましい。 Specifically, from the viewpoint of affinity with the adherend, it is preferable to polymerize an aliphatic polyisocyanate compound and a polyol compound, and the aliphatic polyisocyanate compound has a plurality of isocyanate groups in the molecule. For example, 1,6-hexane diisocyanate, isophorone diisocyanate, toluene diisocyanate, methylene bis (4-cyclohexyl isocyanate), 2,2,4-trimethylhexamethylene diisocyanate, 1,4-hexamethylene diisocyanate, bis (2-isocyanate) Ethyl) fumarate, bis (4-isocyanatocyclohexyl) methane, dicyclohexylmethane 4,4-diisocyanatotrizine diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated phenylmethanedi Such as isocyanate and the like, aliphatic polyisocyanate compounds having an alicyclic structure from the viewpoint of enhancing the durability of inter alia P2 layer is more preferred.
 またポリオール化合物としては、例えば、芳香族ポリエーテルポリオール、脂肪族ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、および、ポリカプロラクトンポリオール等を挙げることができる。 Examples of the polyol compound include aromatic polyether polyol, aliphatic polyether polyol, polyester polyol, polycarbonate polyol, and polycaprolactone polyol.
 具体的に芳香族ポリエーテルポリオールとしては、例えば、ビスフェノールAのエチレンオキサイド付加ジオール、ビスフェノールAのプロピレンオキサイド付加ジオール、ビスフェノールAのブチレンオキサイド付加ジオール、ビスフェノールFのエチレンオキサイド付加ジオール、ビスフェノールFのプロピレンオキサイド付加ジオール、ビスフェノールFのプロピレンオキサイド付加ジオール、ハイドロキノンのアルキレンオキサイド付加ジオール、ナフトキノンのアルキレンオキサイド付加ジオール等を挙げることができる。 Specific examples of the aromatic polyether polyol include bisphenol A ethylene oxide addition diol, bisphenol A propylene oxide addition diol, bisphenol A butylene oxide addition diol, bisphenol F ethylene oxide addition diol, and bisphenol F propylene oxide. An addition diol, a propylene oxide addition diol of bisphenol F, an alkylene oxide addition diol of hydroquinone, an alkylene oxide addition diol of naphthoquinone, and the like.
 脂肪族ポリエーテルポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、1,2-ポリブチレングリコール、ポリイソブチレングリコール、プロピレンオキシドとテトラヒドロフランの共重合体ポリオール、エチレンオキサイドとテトラヒドロフランの共重合体ポリオール、エチレンオキサイドとプロピレンオキサイドの共重合体ポリオール、テトラヒドロフランと3-メチルテトラヒドロフランの共重合体ポリオール、エチレンオキサイドと1,2-ブチレンオキサイドの共重合体ポリオール、また脂肪族ポリエーテルポリオールの中でも脂環族ポリエーテルポリオールとしては、水添ビスフェノールAのエチレンオキサイド付加ジオール、水添ビスフェノールAのプロピレンオキサイド付加ジオール、水添ビスフェノールAのブチレンオキサイド付加ジオール、水添ビスフェノールFのエチレンオキサイド付加ジオール、水添ビスフェノールFのプロピレンオキサイド付加ジオール、水添ビスフェノールFのブチレンオキサイド付加ジオール、ジシクロペンタジエンのジメチロール化合物、トリシクロデカンジメタノール等を挙げることができる。 Examples of the aliphatic polyether polyol include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, 1,2-polybutylene glycol, polyisobutylene glycol, a copolymer polyol of propylene oxide and tetrahydrofuran, and a copolymer of ethylene oxide and tetrahydrofuran. Copolymer polyol, copolymer polyol of ethylene oxide and propylene oxide, copolymer polyol of tetrahydrofuran and 3-methyltetrahydrofuran, copolymer polyol of ethylene oxide and 1,2-butylene oxide, and aliphatic polyether polyol Examples of the cyclic polyether polyol include hydrogenated bisphenol A ethylene oxide addition diol and hydrogenated bisphenol A Rene oxide addition diol, hydrogenated bisphenol A butylene oxide addition diol, hydrogenated bisphenol F ethylene oxide addition diol, hydrogenated bisphenol F propylene oxide addition diol, hydrogenated bisphenol F butylene oxide addition diol, dicyclopentadiene dimethylol Examples thereof include compounds and tricyclodecane dimethanol.
 ポリエステルポリオールとしては、例えば、エチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、テトラメチレングリコール、ポリテトラメチレングリコール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール等の多価アルコールと、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、フマール酸、アジピン酸、セバシン酸等の多塩基酸と反応して得られるポリエステルポリオール等を挙げることができる。 Examples of the polyester polyol include ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, tetramethylene glycol, polytetramethylene glycol, 1,6-hexanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, and 3-methyl. Polyhydric alcohols such as 1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8-octanediol, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, fumaric acid, adipic acid, Mention may be made of polyester polyols obtained by reacting with polybasic acids such as sebacic acid.
 ポリカーボネートポリオールとしては、例えば、1,6-ヘキサンポリカーボネート等を挙げることができる。 Examples of the polycarbonate polyol include 1,6-hexane polycarbonate.
 ポリカプロラクトンポリオールとしては、例えば、ε-カプロラクトンと、エチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、テトラメチレングリコール、ポリテトラメチレングリコール、1,2-ポリブチレングリコール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、1,4-ブタンジオール等の2価のジオールとを反応させて得られるポリカプロラクトンジオール等を挙げることができる。 Examples of the polycaprolactone polyol include ε-caprolactone and ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, tetramethylene glycol, polytetramethylene glycol, 1,2-polybutylene glycol, 1,6-hexanediol, neo Examples thereof include polycaprolactone diols obtained by reacting divalent diols such as pentyl glycol, 1,4-cyclohexanedimethanol and 1,4-butanediol.
 その他、本発明に用いることができるポリオール化合物としては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ポリβ-メチル-δ-バレロラクトン、ヒドロキシ末端ポリブタジエン、ヒドロキシ末端水添ポリブタジエン、ひまし油変性ポリオール、ポリジメチルシロキサンの末端ジオール化合物、ポリジメチルシロキサンカルビトール変性ポリオール等を挙げることができる。 Other polyol compounds that can be used in the present invention include, for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 1,4 -Cyclohexanedimethanol, poly β-methyl-δ-valerolactone, hydroxy-terminated polybutadiene, hydroxy-terminated hydrogenated polybutadiene, castor oil-modified polyol, polydimethylsiloxane-terminated diol compound, polydimethylsiloxane carbitol-modified polyol, etc. .
 中でもP2層を柔軟化することで、被着体との密着性をより高めることができる観点ではポリエーテルポリオールが好ましく、P1層との密着性をより高めることができる観点では芳香族系ポリオールやポリエステルポリオールが好ましい。またこれらを組み合わせて用いてもよい。 Among them, polyether polyol is preferable from the viewpoint of improving the adhesiveness with the adherend by softening the P2 layer, and aromatic polyols and the like from the viewpoint of improving the adhesiveness with the P1 layer. Polyester polyol is preferred. Moreover, you may use combining these.
 P2層に含まれるウレタン樹脂成分を被着体との親和性や耐久性を高められるイソシアネート化合物、P2を柔軟化できるポリオール化合物や、P1層との密着性に優れるポリオール化合物を重合したウレタン樹脂とすることで加速試験後の密着保持性を高めることができる。 The urethane resin component contained in the P2 layer is an isocyanate compound that can increase the affinity and durability with the adherend, a polyol compound that can soften P2, and a urethane resin obtained by polymerizing a polyol compound that is excellent in adhesion to the P1 layer. By doing so, it is possible to improve the adhesion retention after the acceleration test.
 尚、これらのウレタン樹脂は、例えば、DIC株式会社製ハイドランシリーズ、ボンディックシリーズ、第一工業製薬株式会社製スーパーフレックスシリーズ、東亜合成株式会社製アロンネオタンシリーズなど市販の樹脂を入手して用いることもできる。 These urethane resins are obtained by using commercially available resins such as DIC's Hydran series, Bondic series, Daiichi Kogyo Seiyaku Co., Ltd. Superflex series, Toa Gosei Co., Ltd. Aron Neotan series, etc. You can also.
 次にP2層に含まれると好ましいメラミン樹脂成分とは、分子中にトリアジン環とその周辺に三つのアミノ基を有する樹脂、および、前記樹脂と他の成分が反応して得られる樹脂からなる成分を示す。具体的にはヘキサ型(トリアジン環に直接結合している3つのアミノ基に結合している官能基の数が6つ)のヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサキス-(メトキシメチル)メラミン、トリ型(トリアジン環に直接結合している3つのアミノ基に結合している官能基の数が3つ)のN,N’,N’’-トリメチル-N,N’,N’’-トリメチロールメラミン、N,N’,N’’-トリメチロールメラミン、N-メチロールメラミン、N,N’-(メトキシメチル)メラミン、N,N’,N’’-トリブチル-N,N’,N’’-トリメチロールメラミンなどが挙げられる。 Next, a preferable melamine resin component contained in the P2 layer is a component comprising a resin having a triazine ring in the molecule and three amino groups in the periphery thereof, and a resin obtained by reacting the resin with other components. Indicates. Specifically, hexamethylol melamine, hexamethoxymethyl melamine, hexaethoxymethyl melamine, hexakis- (hexatype (the number of functional groups bonded to three amino groups directly bonded to the triazine ring is 6)) Methoxymethyl) melamine, tri-type (three functional groups bonded to three amino groups directly bonded to the triazine ring) N, N ′, N ″ -trimethyl-N, N ′, N ″ -trimethylol melamine, N, N ′, N ″ -trimethylol melamine, N-methylol melamine, N, N ′-(methoxymethyl) melamine, N, N ′, N ″ -tributyl-N, N ′, N ″ -trimethylolmelamine and the like can be mentioned.
 P2層に前記のメラミン樹脂成分を含むことで、自己縮合反応によってP2層の凝集力を高めることが可能となり、凝集破壊を抑制することで結果的に密着性を高めることができる。 By including the melamine resin component in the P2 layer, it is possible to increase the cohesive force of the P2 layer by a self-condensation reaction, and as a result, it is possible to increase adhesion by suppressing cohesive failure.
 尚、これらのメラミン樹脂は、例えば、DIC株式会社製ベッカミンシリーズ、株式会社三和ケミカル製ニカラックシリーズなど市販の樹脂を入手して用いることもできる。 In addition, these melamine resins can also be obtained by using commercially available resins such as, for example, Becamine series manufactured by DIC Corporation, and Nicarak series manufactured by Sanwa Chemical Co., Ltd.
 次にP2層に含まれると好ましいオキサゾリン樹脂成分とは、分子中にオキサゾリン基構造を有する樹脂、および、前記樹脂と他の成分が反応して得られる樹脂からなる成分を示す。具体的には1,4-ビス(4,5-ジヒドロ-2-オキサゾリル)ベンゼン、2,2’-ビス(2-オキサゾリン)のようなビスオキサゾリン(低分子型オキサゾリン基含有化合物)や、ポリオレフィンを骨格構造としてオキサゾリン変性してオキサゾリン基を導入したもの、ポリスチレンを骨格構造としてオキサゾリン基を導入したような高分子型オキサゾリン基含有化合物などが挙げられる。 Next, a preferable oxazoline resin component contained in the P2 layer indicates a component comprising a resin having an oxazoline group structure in the molecule and a resin obtained by reacting the resin with other components. Specifically, 1,4-bis (4,5-dihydro-2-oxazolyl) benzene, bisoxazolines (low molecular oxazoline group-containing compounds) such as 2,2′-bis (2-oxazoline), polyolefins And oxazoline group-modified compounds in which oxazoline groups are introduced with polystyrene as a skeleton structure.
 P2層に前記のオキサゾリン樹脂成分を含むことで、P2層中に存在する末端基やP1層のポリエステル樹脂由来の末端カルボキシル基とオキサゾリン基が反応し、P2層の加水分解抑制や、P1層との密着性を高めることができる。 By including the oxazoline resin component in the P2 layer, the terminal group present in the P2 layer or the terminal carboxyl group derived from the polyester resin of the P1 layer reacts with the oxazoline group, and the hydrolysis of the P2 layer is suppressed. It is possible to improve the adhesion.
 尚、これらのオキサゾリン樹脂は、例えば、株式会社日本触媒製エポクロスシリーズなど市販の樹脂を入手して用いることもできる。 In addition, these oxazoline resins can also be obtained and used, for example, commercially available resins such as Nippon Shokubai Epocross series.
 また、本発明のP2層にはポリエステル樹脂成分が含まれることが好ましい。ここでP2層に含まれると好ましいポリエステル樹脂成分とは、P1層で例示したポリエステル樹脂を水溶性化、あるいは水分散化を容易にするため、スルホン酸塩基やカルボン酸塩基などの親水基を導入、またはこれらの親水基を含む化合物を共重合した樹脂、および前記樹脂と他の成分が反応して得られる樹脂からなる成分を示す。
具体的には例えばスルホン酸塩基を含む化合物としては、スルホテレフタル酸、5-スルホイソフタル酸、5-ナトリウムスルホイソフタル酸、4-スルホイソフタル酸など、カルボン酸塩基を含む化合物としては、トリメリット酸、無水トリメリット酸、ピロメリット酸、無水ピロメリット酸、4-メチルシクロヘキセン-1,2,3-トリカルボン酸、トリメシン酸、1,2,3,4-ブタンテトラカルボン酸、1,2,3,4-ペンタンテトラカルボン酸、などのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩などが挙げられる。
The P2 layer of the present invention preferably contains a polyester resin component. Here, the polyester resin component preferably contained in the P2 layer is to introduce a hydrophilic group such as a sulfonate group or a carboxylate group in order to make the polyester resin exemplified in the P1 layer water-soluble or facilitate water dispersion. Or a resin comprising a copolymer obtained by copolymerizing a compound containing these hydrophilic groups and a resin obtained by reacting the resin with other components.
Specifically, for example, the compound containing a sulfonate group includes sulfoterephthalic acid, 5-sulfoisophthalic acid, 5-sodium sulfoisophthalic acid, 4-sulfoisophthalic acid, and the like. , Trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, 4-methylcyclohexene-1,2,3-tricarboxylic acid, trimesic acid, 1,2,3,4-butanetetracarboxylic acid, 1,2,3 , 4-pentanetetracarboxylic acid, alkali metal salts, alkaline earth metal salts, ammonium salts, and the like.
 P2層にポリエステル樹脂成分が含まれることで、P1層との親和性を高めることが可能となり、結果的に密着性を高めることができる。 When the polyester resin component is contained in the P2 layer, it is possible to increase the affinity with the P1 layer, and as a result, it is possible to increase the adhesion.
 更にP2層に含まれるポリエステル樹脂成分はアクリル変性されたポリエステル樹脂成分であることが好ましい。P2層に含まれるポリエステル樹脂成分をアクリル変性されたポリエステル樹脂成分とすることで、P2層内に含まれるウレタン樹脂成分などの他成分との親和性を高めることが可能となり、樹脂成分の分離による凝集破壊などを抑制することができる。 Further, the polyester resin component contained in the P2 layer is preferably an acrylic-modified polyester resin component. By making the polyester resin component contained in the P2 layer an acrylic-modified polyester resin component, it becomes possible to increase the affinity with other components such as the urethane resin component contained in the P2 layer, and by separating the resin component Cohesive failure can be suppressed.
 ここでいうアクリル変性されたポリエステル樹脂成分とは、アクリル樹脂とポリエステル樹脂とが互いに混合および/または結合した樹脂からなる成分であって、例えばグラフトタイプ、ブロック共重合タイプを包含する。またアクリル樹脂とポリエステル樹脂の混合比率、共重合比率はどちらが高くてもよく、他の樹脂成分との関係によって適宜調整することが好ましい。
前記のアクリル樹脂としては具体的には、アルキルメタクリレートおよび/またはアルキルアクリレートから構成されるアクリル樹脂の主鎖に、ラジカル重合性ビニルモノマーが重合されていることが好ましく、被着体とのエネルギー差を小さくする観点から親水性のラジカル重合性ビニルモノマーが重合されていることがより好ましい。
The acrylic-modified polyester resin component here is a component composed of a resin in which an acrylic resin and a polyester resin are mixed and / or bonded to each other, and includes, for example, a graft type and a block copolymer type. Further, either the mixing ratio or copolymerization ratio of the acrylic resin and the polyester resin may be high, and it is preferable to appropriately adjust depending on the relationship with other resin components.
Specifically, the acrylic resin preferably has a radical polymerizable vinyl monomer polymerized on the main chain of the acrylic resin composed of alkyl methacrylate and / or alkyl acrylate, and the difference in energy from the adherend. It is more preferable that a hydrophilic radically polymerizable vinyl monomer is polymerized from the viewpoint of reducing the size.
 アルキルメタクリレートおよび/またはアルキルアクリレートとしては、具体的にはメタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸n-ヘキシル、メタクリル酸ラウリル、メタクリル酸2-ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸n-ヘキシル、アクリル酸ラウリル、アクリル酸2-エチルヘキシルなどが挙げられ、これらは1種もしくは2種以上を用いてもよい。 Specific examples of the alkyl methacrylate and / or alkyl acrylate include methacrylic acid, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, lauryl methacrylate, methacrylic acid. 2-hydroxyethyl acid, hydroxypropyl methacrylate, acrylic acid, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-hexyl acrylate, lauryl acrylate, 2-acrylic acid 2- Examples thereof include ethylhexyl, and these may be used alone or in combination of two or more.
 親水性のラジカル重合性ビニルモノマーとしては、具体的にはアクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシエチル、アクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシプロピル等のヒドロキシアクリル酸エステル、エチレングリコールアクリレート、エチレグリコールメタクリリレート、ポリエチレングリコールアクリレート、ポリエチレングリコールメタクリレート等のグリコールエステル、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、メトキシメチロールアクリルアミド等のアクリルアミド系化合物、アクリル酸アミノアルキル、メタクリル酸アミノアルキルエステル及びその4級アンモニウム塩等のカチオン系モノマー、アクリル酸グリシジル、メタクリル酸グリシジル等のグリシジルアクリレート系化合物、その他、アクリル酸、メタクリル酸、無水マレイン酸、イタコン酸、クロトン酸等の不飽和酸及びその塩などが挙げられ、これらは単独で用いてもよいし、数種組み合わせて用いてもよい。更にこれらの親水性モノマーに他の共重合可能なビニルモノマーを併用することもできる。 Specific examples of hydrophilic radically polymerizable vinyl monomers include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, and other hydroxyacrylic esters, ethylene glycol acrylate, and ethylene. Glycol esters such as glycol methacrylate, polyethylene glycol acrylate, polyethylene glycol methacrylate, acrylamide compounds such as acrylamide, methacrylamide, N-methylol acrylamide, methoxymethylol acrylamide, aminoalkyl acrylate, aminoalkyl methacrylate, and quaternary ammonium thereof Cationic monomers such as salts, glycidyl acrylate, glycidyl methacrylate, etc. Examples include diacrylate compounds, unsaturated acids such as acrylic acid, methacrylic acid, maleic anhydride, itaconic acid, and crotonic acid, and salts thereof. These may be used alone or in combination. May be. Furthermore, these hydrophilic monomers can be used in combination with other copolymerizable vinyl monomers.
 ここで具体的な共重合可能な他のビニルモノマーとしては、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、塩化ビニル、臭化ビニル等のハロゲン化ビニル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等の不飽和カルボン酸エステル、ジメチルビニルメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等のビニルシラン、エチレン、プロピレン、スチレン、ブタジエン等のオレフィンやジオレフィン化合物などが挙げられる。 Specific examples of other copolymerizable vinyl monomers include vinyl esters such as vinyl acetate and vinyl propionate, vinyl halides such as vinyl chloride and vinyl bromide, methyl acrylate, ethyl acrylate, and butyl acrylate. , Unsaturated carboxylic esters such as methyl methacrylate, ethyl methacrylate and butyl methacrylate, vinyl silanes such as dimethylvinylmethoxysilane and γ-methacryloxypropyltrimethoxysilane, olefins and diolefins such as ethylene, propylene, styrene and butadiene Compound etc. are mentioned.
 本発明の積層体のP2層にポリエステル樹脂成分が含まれる場合、アクリル変性されたポリエステル樹脂で、尚且つアクリル樹脂を親水性のラジカル重合性ビニルモノマーが重合されたアクリル樹脂とすることで、P2層内での分離を抑制した上で被着体との密着性を両立した積層体とすることができる。 When the polyester resin component is contained in the P2 layer of the laminate of the present invention, P2 is obtained by making the acrylic resin an acrylic resin in which a hydrophilic radically polymerizable vinyl monomer is polymerized with an acrylic-modified polyester resin. It can be set as the laminated body which made compatible adhesiveness, after suppressing the separation in a layer.
 尚、これらのアクリル変性されたポリエステル樹脂は、例えば、高松油脂株式会社製ペスレジンシリーズなど市販の樹脂を入手して用いることもできる。 Note that these acrylic-modified polyester resins can be obtained by using commercially available resins such as the Pes Resin series manufactured by Takamatsu Yushi Co., Ltd.
 本発明の積層体のP2層は、前記の樹脂成分を含む塗剤組成物から形成される層である。ここでP2層にウレタン樹脂成分が含まれる場合、P2層中の含有量、またはP2層を形成する塗剤組成物中の固形分重量で40質量%以下含まれることが好ましく、10質量%以上30質量%以下がより好ましい。 The P2 layer of the laminate of the present invention is a layer formed from a coating composition containing the above resin component. Here, when the urethane resin component is contained in the P2 layer, the content in the P2 layer or the solid content in the coating composition forming the P2 layer is preferably 40% by mass or less, preferably 10% by mass or more. 30 mass% or less is more preferable.
 また、P2層にメラミン樹脂成分が含まれる場合、P2層中の含有量が1質量%以上20質量%以下含まれることが好ましく、7質量%以上16質量%以下がより好ましい。P2層にメラミン樹脂成分を1質量%以上20質量%以下含まれるP2層を得るには、メラミン樹脂成分を固形分重量で1質量%以上20質量%以下含む塗剤組成物からP2層を形成させることが好ましい。より好ましくは、7質量%以上16質量%以下である。 Further, when the melamine resin component is contained in the P2 layer, the content in the P2 layer is preferably contained in the range of 1% by mass to 20% by mass, and more preferably 7% by mass to 16% by mass. In order to obtain a P2 layer containing 1% by mass to 20% by mass of the melamine resin component in the P2 layer, the P2 layer is formed from a coating composition containing the melamine resin component by 1% by mass to 20% by mass in terms of solid content. It is preferable to make it. More preferably, it is 7 mass% or more and 16 mass% or less.
 また、P2層にオキサゾリン樹脂成分が含まれる場合、P2層中の含有量が1質量%以上20質量%以下含まれることが好ましく、10質量%以上18質量%以下がより好ましい。P2層にオキサゾリン樹脂成分を1質量%以上25質量%以下含まれるP2層を得るには、オキサゾリン樹脂成分を固形分重量で1質量%以上25質量%以下含む塗剤組成物からP2層を形成させることが好ましい。より好ましくは、10質量%以上18質量%以下である。 When the oxazoline resin component is contained in the P2 layer, the content in the P2 layer is preferably contained in the range of 1% by mass to 20% by mass, and more preferably in the range of 10% by mass to 18% by mass. In order to obtain a P2 layer containing 1% by mass to 25% by mass of the oxazoline resin component in the P2 layer, the P2 layer is formed from a coating composition containing 1% by mass to 25% by mass of the oxazoline resin component in terms of solid weight. It is preferable to make it. More preferably, it is 10 mass% or more and 18 mass% or less.
 また、P2層にポリエステル樹脂成分、またはアクリル変性されたポリエステル樹脂成分が含まれる場合、P2層中の含有量が30質量%以上75質量%以下含まれることが好ましく、40質量%以上50質量%以下がより好ましい。P2層にアクリル変性されたポリエステル樹脂成分を30質量%以上75質量%以下含まれるP2層を得るには、アクリル変性されたポリエステル樹脂成分を固形分重量で30質量%以上75質量%以下含む塗剤組成物からP2層を形成させることが好ましい。より好ましくは、40質量%以上50質量%以下である。 Further, when the polyester resin component or the acrylic resin-modified polyester resin component is contained in the P2 layer, the content in the P2 layer is preferably 30% by mass or more and 75% by mass or less, and preferably 40% by mass or more and 50% by mass. The following is more preferable. In order to obtain a P2 layer containing 30% by mass or more and 75% by mass or less of an acrylic-modified polyester resin component in the P2 layer, a coating containing 30% by mass or more and 75% by mass or less of an acrylic-modified polyester resin component by solid content weight. The P2 layer is preferably formed from the agent composition. More preferably, it is 40 mass% or more and 50 mass% or less.
 本発明の積層体のP2層に前記のウレタン樹脂成分、メラミン樹脂成分、オキサゾリン樹脂成分、ポリエステル樹脂成分あるいはアクリル変性されたポリエステル樹脂成分が含まれる場合、P2層中の含有量、またはP2層を形成する塗剤組成物中の固形分重量が前記の好ましい範囲よりも小さい場合、各樹脂成分に期待する効果が不足することがある。一方で、好ましい範囲よりも大きい場合、その他の成分の効果を阻害する可能性がある。 When the P2 layer of the laminate of the present invention contains the urethane resin component, melamine resin component, oxazoline resin component, polyester resin component or acrylic-modified polyester resin component, the content in the P2 layer, or the P2 layer is When the solid content weight in the coating composition to be formed is smaller than the above preferred range, the effect expected of each resin component may be insufficient. On the other hand, when larger than a preferable range, there exists a possibility of inhibiting the effect of another component.
 また、本発明の積層体におけるP2層の厚みは0.1μm以上3.0μm以下が好ましく、より好ましくは0.2μm以上2.0μm以下であり、さらに好ましくは0.4μm以上1.0μm以下である。本発明の積層体におけるP2層の厚みが0.1μm未満の場合、P2層の厚みのムラが大きくなり、その影響で表面エネルギーの値が変化したり、P2層の機能が不足することがある。一方で、P2層の厚みが3.0μmより厚いと、乾燥不足による巻取り性の悪化や塗布性が悪化する場合がある。 Further, the thickness of the P2 layer in the laminate of the present invention is preferably 0.1 μm or more and 3.0 μm or less, more preferably 0.2 μm or more and 2.0 μm or less, and further preferably 0.4 μm or more and 1.0 μm or less. is there. When the thickness of the P2 layer in the laminate of the present invention is less than 0.1 μm, the thickness unevenness of the P2 layer becomes large, and the surface energy value may change due to the influence, or the function of the P2 layer may be insufficient. . On the other hand, when the thickness of the P2 layer is thicker than 3.0 μm, the winding property and the coating property may be deteriorated due to insufficient drying.
 即ち、本発明の積層体のP2層に含まれる樹脂成分、及びそれらの含有量、P2層の厚みを好ましい範囲とすることで、本発明の積層体において表面エネルギーが前記の(1)及び(2)の範囲を満たすP2層を得ることができる。それによって、太陽電池セルの封止材であるEVAのような被着体との優れた密着性と、本発明の積層体におけるP1層のような末端カルボキシル基量が25当量/トン以下のポリエステル基材であっても良好な密着性を両立することが可能となり、長期間屋外に置かれても密着性を維持する(密着保持性が優れた)太陽電池裏面保護用シートのような用途に好適な積層体とすることできる。 That is, by making the resin components contained in the P2 layer of the laminate of the present invention, their content, and the thickness of the P2 layer into a preferable range, the surface energy in the laminate of the present invention is the above (1) and ( A P2 layer satisfying the range of 2) can be obtained. Thereby, excellent adhesion to an adherend such as EVA which is a sealing material for solar cells, and a polyester having a terminal carboxyl group amount of 25 equivalents / ton or less as in the P1 layer in the laminate of the present invention. Even if it is a base material, it is possible to achieve both good adhesion and maintain the adhesion even when placed outdoors for a long time (excellent adhesion retention). It can be set as a suitable laminated body.
 また、本発明の積層体のP2層には、本発明の効果を損なわない範囲で、公知の熱安定剤、滑剤、帯電防止剤、耐ブロッキング剤、染料、顔料、光増感剤、界面活性剤、紫外線吸収剤などの各種添加剤を添加することができる。 In addition, the P2 layer of the laminate of the present invention has a known heat stabilizer, lubricant, antistatic agent, anti-blocking agent, dye, pigment, photosensitizer, and surface activity, as long as the effects of the present invention are not impaired. Various additives such as an agent and an ultraviolet absorber can be added.
 例えば、P2層に紫外線吸収剤を添加することで、本発明の積層体を太陽電池裏面保護用シートとして太陽電池に搭載した場合、発電セル側からの紫外線によって積層体と封止材との密着性が低下することを抑制することができる。この場合、紫外線吸収剤としては酸化チタンや酸化亜鉛などの無機粒子、紫外線吸収剤が配合されたものや紫外線吸収能を有する分子骨格を共重合したような樹脂成分が好適に用いられ、好ましい含有量としてはP2層を形成する塗剤組成物中の固形分重量で1重量%以上50重量%以下、より好ましくは5重量%以上40重量%以下、更に好ましくは重量10%以上30%重量以下である。 For example, when the laminate of the present invention is mounted on a solar cell as a solar cell back surface protection sheet by adding an ultraviolet absorber to the P2 layer, the laminate and the sealing material are adhered to each other by ultraviolet rays from the power generation cell side. It can suppress that property falls. In this case, as the ultraviolet absorber, inorganic particles such as titanium oxide and zinc oxide, those containing an ultraviolet absorber, and a resin component copolymerized with a molecular skeleton having ultraviolet absorbing ability are preferably used and preferably contained. The amount of the solid content in the coating composition forming the P2 layer is 1% by weight to 50% by weight, more preferably 5% by weight to 40% by weight, and still more preferably 10% by weight to 30% by weight. It is.
 また、本発明の積層体のP2層は、より被着体との密着性を向上させる目的で、積層構造を有してもよい。例えば、予めP1層の片側表面にP1層と接着性に優れるアンカーコート層(P21層とする)を設けておき、P21層の上に、さらに易接着性に優れる層(P22層とする)を設ける手法も好ましく用いられる。その場合、シートの構成は、P1層//P21層/P22層の順で積層され、P2層の厚みは、P21層+P22層で表される。
このとき、P21層は、P1層およびP22層を構成する樹脂と接着性が良く、また、P22層はP21層および被着体を構成する樹脂と密着性に優れ、本発明の積層体を太陽電池裏面保護用シートとして太陽電池に搭載した場合、太陽電池セル作成時の熱圧着ラミネート時の温度で封止材と相溶性を生じるものであれば、特に限定されない。また、P21層、P22層に用いる樹脂は、上記のP2層で例示したものを適宜好適に用いることができる。
Further, the P2 layer of the laminate of the present invention may have a laminate structure for the purpose of further improving the adhesion with the adherend. For example, an anchor coat layer (referred to as P21 layer) having excellent adhesion with the P1 layer is provided in advance on one surface of the P1 layer, and a layer (referred to as P22 layer) that is further excellent in easy adhesion on the P21 layer. The providing method is also preferably used. In that case, the structure of the sheet is laminated in the order of P1 layer // P21 layer / P22 layer, and the thickness of the P2 layer is represented by P21 layer + P22 layer.
At this time, the P21 layer has good adhesiveness with the resin constituting the P1 layer and the P22 layer, and the P22 layer has excellent adhesiveness with the resin constituting the P21 layer and the adherend. When it is mounted on a solar battery as a battery back surface protection sheet, it is not particularly limited as long as it is compatible with the sealing material at the temperature at the time of thermocompression laminating at the time of solar battery cell creation. Moreover, what was illustrated by said P2 layer can be suitably used suitably for resin used for P21 layer and P22 layer.
 更に、P2層に耐ブロッキング剤としてシリカ粒子を添加することで、巻き取り時のブロッキングを防止することができる。またP2層に界面活性剤を添加することで、P1層への塗液の親和性を高め、塗布ムラを抑えることができる。 Furthermore, blocking at the time of winding can be prevented by adding silica particles as an anti-blocking agent to the P2 layer. Further, by adding a surfactant to the P2 layer, it is possible to increase the affinity of the coating liquid for the P1 layer and suppress coating unevenness.
 (積層体の製造方法)
 次に、本発明の積層体の製造方法について例を挙げて説明する。これは一例であり、本発明は、かかる例によって得られる物のみに限定して解釈されるものではない。
(Laminate manufacturing method)
Next, an example is given and demonstrated about the manufacturing method of the laminated body of this invention. This is an example, and the present invention should not be construed as being limited to the product obtained by such an example.
 まず、本発明のP1層の原料となるポリエステル樹脂は、ジカルボン酸、もしくはそのエステル誘導体と、ジオールを周知の方法でエステル交換反応、もしくはエステル化反応させることによって得ることができる。従来公知の反応触媒としてはアルカリ金属化合物、アルカリ土類金属化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、リン化合物などを挙げることが出来る。好ましくは、通常の製造方法が完結する以前の任意の段階において、重合触媒としてアルカリ金属化合物、マンガン化合物、アンチモン化合物またはゲルマニウム化合物、チタン化合物を添加することが好ましく、積層体の耐湿熱性を高める観点からナトリウム化合物、マンガン化合物を添加することがより好ましい。このような方法としては例えば、マンガン化合物を例に取るとマンガン化合物粉体をそのまま添加することが好ましい。 First, the polyester resin used as a raw material for the P1 layer of the present invention can be obtained by subjecting a dicarboxylic acid or its ester derivative and a diol to a transesterification reaction or an esterification reaction by a known method. Examples of conventionally known reaction catalysts include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and phosphorus compounds. Preferably, an alkali metal compound, a manganese compound, an antimony compound, a germanium compound, or a titanium compound is preferably added as a polymerization catalyst at any stage before the normal production method is completed, and the viewpoint of improving the heat and moisture resistance of the laminate It is more preferable to add a sodium compound or a manganese compound. As such a method, for example, when a manganese compound is taken as an example, it is preferable to add the manganese compound powder as it is.
 また、ポリエステル樹脂の末端カルボキシル基量は重合時の温度や、ポリエステル樹脂を重合した後、190℃~ポリエステル樹脂の融点未満の温度で、減圧または窒素ガスのような不活性気体の流通下で加熱する、いわゆる固相重合の時間によってコントロールすることができる。具体的には重合時の温度が高くなると末端カルボキシル基量が増加し、固相重合の時間を長くすると末端カルボキシル基量が低くなる。 The amount of terminal carboxyl groups of the polyester resin is the temperature at the time of polymerization, or after polymerization of the polyester resin, at a temperature of 190 ° C. to less than the melting point of the polyester resin, and heated under reduced pressure or an inert gas such as nitrogen gas. The so-called solid-state polymerization time can be controlled. Specifically, the amount of terminal carboxyl groups increases as the polymerization temperature increases, and the amount of terminal carboxyl groups decreases as the time of solid phase polymerization increases.
 次にP1層の製造方法は、P1層が単膜構成の場合、P1層用原料を押出機内で加熱溶融し、口金から冷却したキャストドラム上に押し出してシート状に加工する方法(溶融キャスト法)を使用することができる。その他の方法として、P1層用の原料を溶媒に溶解させ、その溶液を口金からキャストドラム、エンドレスベルト等の支持体上に押し出して膜状とし、次いでかかる膜層から溶媒を乾燥除去させてシート状に加工する方法(溶液キャスト法)等も使用することができる。またP1層が積層構造の場合の製造方法は、積層する各層の材料が熱可塑性樹脂を主たる構成とする場合、二つの異なる熱可塑性樹脂を二台の押出機に投入し溶融してから合流させて、口金から冷却したキャストドラム上に共押出してシート状に加工する方法(共押出法)を好ましく用いることができる。 Next, when the P1 layer has a single film structure, the P1 layer manufacturing method is a method in which the P1 layer raw material is heated and melted in an extruder and extruded from a die onto a cooled cast drum (a melt casting method). ) Can be used. As another method, the raw material for the P1 layer is dissolved in a solvent, and the solution is extruded from a die onto a support such as a cast drum or an endless belt to form a film, and then the solvent is dried and removed from the film layer. A method of processing into a shape (solution casting method) or the like can also be used. In addition, when the P1 layer has a laminated structure, when the material of each layer to be laminated is mainly composed of a thermoplastic resin, two different thermoplastic resins are put into two extruders and melted to join. Thus, a method of coextrusion onto a cast drum cooled from the die and processing it into a sheet (coextrusion method) can be preferably used.
 P1層および/またはP1層を含む積層体として一軸もしくは、二軸延伸されたシート基材を選択した場合、その製造方法として、まず、押出機(積層構造の場合は複数台の押出機)に原料を投入し、溶融して口金から押出し(積層構造の場合は共押出)し、冷却した表面温度10~60℃に冷却されたドラム上で静電気により密着冷却固化し、未延伸シートを作製する。 When a uniaxial or biaxially stretched sheet base material is selected as a laminate including the P1 layer and / or the P1 layer, as a manufacturing method thereof, first, an extruder (a plurality of extruders in the case of a laminated structure) is used. The raw materials are charged, melted and extruded from the die (in the case of a laminated structure, co-extruded), and cooled and solidified by static electricity on a cooled drum cooled to a surface temperature of 10 to 60 ° C. to produce an unstretched sheet .
 次に、この未延伸シートを70~140℃の温度に加熱されたロール群に導き、長手方向(縦方向、すなわちシートの進行方向)に3~4倍延伸し、20~50℃の温度のロール群で冷却する。続いて、シートの両端をクリップで把持しながらテンターに導き、80~150℃の温度に加熱された雰囲気中で、長手方向に直角な方向(幅方向)に3~4倍に延伸する。 Next, the unstretched sheet is led to a group of rolls heated to a temperature of 70 to 140 ° C., stretched 3 to 4 times in the longitudinal direction (longitudinal direction, that is, the traveling direction of the sheet), and the temperature is 20 to 50 ° C. Cool with rolls. Subsequently, the both ends of the sheet are guided to a tenter while being gripped by clips, and are stretched 3 to 4 times in a direction (width direction) perpendicular to the longitudinal direction in an atmosphere heated to a temperature of 80 to 150 ° C.
 延伸倍率は、長手方向と幅方向それぞれ3~5倍とするが、その面積倍率(縦延伸倍率×横延伸倍率)は9~15倍であることが好ましい。面積倍率が9倍未満であると、得られる二軸延伸シートの耐久性が不十分となり、逆に面積倍率が15倍を超えると延伸時に破れを生じ易くなる傾向がある。尚、二軸延伸する方法としては、上述の様に長手方向と幅方向の延伸とを分離して行う逐次二軸延伸方法の他に、長手方向と幅方向の延伸を同時に行う同時二軸延伸方法のどちらであっても構わない。 The stretching ratio is 3 to 5 times in each of the longitudinal direction and the width direction, but the area ratio (longitudinal stretching ratio × lateral stretching ratio) is preferably 9 to 15 times. When the area magnification is less than 9 times, the durability of the resulting biaxially stretched sheet is insufficient, and conversely when the area magnification exceeds 15 times, there is a tendency that tearing tends to occur during stretching. As the biaxial stretching method, in addition to the sequential biaxial stretching method in which the stretching in the longitudinal direction and the width direction is separated as described above, simultaneous biaxial stretching in which stretching in the longitudinal direction and the width direction is simultaneously performed. Either method can be used.
 本発明の積層体においてP2層を形成するための塗剤組成物の調製方法として、まず樹脂成分の分散溶媒としては、例えば、トルエン、キシレン、酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、メタノール、エタノールおよび水等を例示することができ、エマルジョン型および溶解型のいずれでも良い。
更に、近年では環境保護、省資源化、製造時における有機溶剤の排気問題などが重視され、水を溶媒の主体とした溶解型、もしくはエマルジョン型が好ましい形態である。また、P2層に含まれる樹脂成分を塗剤組成物の調製のため水にエマルジョン化させる方法としては、特に制限されるものではなく、固/液撹拌装置や乳化機として広く当業者に知られている装置によって作製することができる。
As a method for preparing a coating composition for forming a P2 layer in the laminate of the present invention, as a dispersion solvent for resin components, for example, toluene, xylene, ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone , Tetrahydrofuran, dimethylformamide, dimethylacetamide, methanol, ethanol, water and the like, and any of emulsion type and dissolution type may be used.
Further, in recent years, importance has been given to environmental protection, resource saving, exhaust problems of organic solvents at the time of production, etc., and a dissolved type or an emulsion type mainly composed of water is the preferred form. The method for emulsifying the resin component contained in the P2 layer in water for preparing the coating composition is not particularly limited, and is widely known to those skilled in the art as a solid / liquid stirring device or an emulsifier. It can be produced by a device.
 また、P2層を形成するための塗剤組成物を調製後、保管する環境としては5℃以上、35℃以下の室温環境下で保管することが好ましい。また調整から塗布を行うまでの保管期間としては1週間以内が好ましい。塗剤組成物の保管環境が前記の条件を満たさない場合、分散している樹脂成分の安定性が損なわれ、所望の特性を有するP2層が得られない場合がある。 Also, after preparing the coating composition for forming the P2 layer, the environment for storage is preferably stored in a room temperature environment of 5 ° C. or more and 35 ° C. or less. The storage period from adjustment to application is preferably within one week. When the storage environment of the coating composition does not satisfy the above conditions, the stability of the dispersed resin component is impaired, and a P2 layer having desired characteristics may not be obtained.
 次に、P2層をP1層の上に形成する方法は、特に制限されるべきものではないが、コーティング手法を用いるのが好ましい。コーティング手法としては、公知の方法を適用することができる。具体的には、ロールコーティング法、ディップコーティング法、バーコーティング法、ダイコーティング法およびグラビアロールコーティング法等や、これらを組み合わせた方法を利用することができる。中でも塗剤の選択幅が広い観点からはバーコーティング法が好ましく、一方でP2層の厚みを大きくしたい場合は厚膜塗布性の観点からダイコーティング法およびグラビアロールコーティング法が好ましく選択できる。 Next, the method for forming the P2 layer on the P1 layer is not particularly limited, but it is preferable to use a coating technique. A known method can be applied as a coating technique. Specifically, a roll coating method, a dip coating method, a bar coating method, a die coating method, a gravure roll coating method, or a combination of these methods can be used. Among them, the bar coating method is preferable from the viewpoint of a wide selection range of the coating agent, while the die coating method and the gravure roll coating method can be preferably selected from the viewpoint of thick film coating property when it is desired to increase the thickness of the P2 layer.
 更に、P2層の形成はP1層の製造工程の中で設けるインラインコーティングにて行うのが工程簡略化の観点からより好ましい。具体的には、逐次二軸延伸方法の場合には、未延伸シートあるいは一軸延伸したシートを形成した後に、同時二軸延伸方法の場合には未延伸シートを形成した後に、それぞれ前記のコーティング工程を設けP2層を形成する塗剤組成物を塗布した後、塗剤組成物の乾燥工程と同時にP1層の熱固定を行う。この時、塗剤組成物の乾燥温度は基材層P1層の熱寸法安定性と耐湿熱性の両立の観点から150℃以上250℃以下が好ましく、より好ましくは170℃以上230℃以下、更に好ましくは180℃以上220℃以下である。 Furthermore, it is more preferable to form the P2 layer by in-line coating provided in the manufacturing process of the P1 layer from the viewpoint of process simplification. Specifically, in the case of the sequential biaxial stretching method, after forming an unstretched sheet or a uniaxially stretched sheet, in the case of the simultaneous biaxial stretching method, after forming the unstretched sheet, the above coating step After applying the coating composition for forming the P2 layer, the P1 layer is heat-set simultaneously with the drying step of the coating composition. At this time, the drying temperature of the coating composition is preferably 150 ° C. or higher and 250 ° C. or lower, more preferably 170 ° C. or higher and 230 ° C. or lower, and still more preferably, from the viewpoint of the compatibility between the thermal dimensional stability and the wet heat resistance of the base layer P1. Is 180 ° C. or higher and 220 ° C. or lower.
 また、必要に応じてP1層への塗剤組成物の濡れ性向上、P2層形成後の層間接着力向上の観点から、コーティング工程の直前に基材層P1層の表面へコロナ処理を行ってもよい。 Further, if necessary, from the viewpoint of improving the wettability of the coating composition to the P1 layer and improving the interlayer adhesion after the formation of the P2 layer, a corona treatment is performed on the surface of the base material layer P1 immediately before the coating step. Also good.
 本発明の積層体は前記の製造方法によって製造することができる。得られた積層体は、太陽電池セルの封止材であるEVAとの密着性に優れ、長期間屋外に置かれても密着性を維持し(密着保持性が優れ)、さらには、耐湿熱性にも優れるという性能を有するものである。 The laminate of the present invention can be manufactured by the above manufacturing method. The obtained laminate is excellent in adhesiveness with EVA which is a sealing material for solar cells, maintains adhesiveness even when placed outdoors for a long time (excellent retention property), and further has heat and moisture resistance. It also has the performance of being excellent.
 (太陽電池裏面保護用シート)
 次に、本発明の積層体を太陽電池裏面保護用シートとして適用する例を挙げて説明する。
本発明の太陽電池裏面保護用シートは、積層体のP1層の片側表面(ただし、P2層と接する表面とは反対側の表面)に、例えばガスバリア性、耐紫外線性などの他の機能を持つ層を設けることができる。これらの層を設ける方法としては、P1層と積層する材料をそれぞれ別々に作製し、加熱されたロール群などにより熱圧着する方法(熱ラミネート法)、接着剤を介して貼り合わせる方法(接着法)、その他、積層する材料の形成用材料を溶媒に溶解させ、その溶液をあらかじめ作製していたP1層上に塗布する方法(コーティング法)、硬化性材料をP1層上に塗布した後に電磁波照射、加熱処理などで硬化させる方法、積層する材料をP1層上に蒸着/スパッタする方法、およびこれらを組み合わせた方法等を使用することができる。
(Solar cell backside protection sheet)
Next, an example in which the laminate of the present invention is applied as a solar cell back surface protection sheet will be described.
The solar cell back surface protective sheet of the present invention has other functions such as gas barrier property and ultraviolet resistance on one surface of the P1 layer of the laminate (however, the surface opposite to the surface in contact with the P2 layer). A layer can be provided. As a method of providing these layers, a method of separately preparing materials to be laminated with the P1 layer and thermocompression bonding with a heated group of rolls (thermal laminating method), a method of bonding together with an adhesive (adhesion method) ) In addition, a method of dissolving the material for forming the material to be laminated in a solvent and applying the solution onto the P1 layer prepared in advance (coating method), electromagnetic wave irradiation after applying a curable material onto the P1 layer A method of curing by heat treatment or the like, a method of depositing / sputtering a material to be laminated on the P1 layer, a method combining these, and the like can be used.
 また、本発明の太陽電池裏面保護用シートは耐湿熱性に優れていることが好ましい。具体的には本発明の太陽電池裏面保護用シートに湿熱処理を加えた後の破断伸度が10%以上であることが好ましく、より好ましくは20%以上、さらに好ましくは40%以上である。ここでいう湿熱処理を加えた後の破断伸度の測定方法の詳細については後述する。
本発明の太陽電池裏面保護用シートにおいて、湿熱処理を加えた後の破断伸度が10%未満の場合、本発明の太陽電池裏面保護用シートを搭載した太陽電池を長期間屋外に置いた際に、劣化による亀裂などが発生し太陽電池の外観が悪くなる可能性がある。
本発明の太陽電池裏面保護用シートにおいて耐湿熱性を向上させるには、P1層を構成するポリエステル樹脂の固有粘度IVを0.65dl/g以上、かつ末端カルボキシル基量を25当量/トン以下のポリエチレンテレフタレートとすることが好ましい方法として挙げられる。P1層を構成するポリエステル樹脂の固有粘度IVや末端カルボキシル基量を上記の範囲とすることにより、湿熱処理を加えた後の破断伸度を向上させることが可能となる。
Moreover, it is preferable that the solar cell back surface protection sheet of this invention is excellent in heat-and-moisture resistance. Specifically, the elongation at break after applying the wet heat treatment to the solar cell back surface protective sheet of the present invention is preferably 10% or more, more preferably 20% or more, and further preferably 40% or more. The details of the method for measuring the elongation at break after the wet heat treatment here will be described later.
In the solar cell back surface protection sheet of the present invention, when the breaking elongation after applying wet heat treatment is less than 10%, when the solar cell equipped with the solar cell back surface protection sheet of the present invention is placed outdoors for a long time In addition, cracks and the like due to deterioration may occur and the appearance of the solar cell may deteriorate.
In order to improve the heat and moisture resistance in the solar cell back surface protection sheet of the present invention, polyethylene having an intrinsic viscosity IV of 0.65 dl / g or more and a terminal carboxyl group content of 25 equivalents / ton or less is used for the polyester resin constituting the P1 layer. A preferable method is to use terephthalate. By setting the intrinsic viscosity IV and the terminal carboxyl group amount of the polyester resin constituting the P1 layer within the above ranges, it is possible to improve the elongation at break after applying the wet heat treatment.
 本発明の太陽電池裏面保護用シートは耐紫外線性に優れていることが好ましい。具体的には本発明の太陽電池裏面保護用シートのP1層を入射面として紫外線処理試験を行ったときの色調変化Δbが10未満であることが好ましく、より好ましくは3未満である。ここでいう紫外線処理試験を行ったときの色調変化Δbの測定方法の詳細については後述する。
本発明の太陽電池裏面保護用シートにおいて、P1層を入射面として紫外線処理試験を行ったときの色調変化Δbが10を超える場合、本発明の太陽電池裏面保護用シートを搭載した太陽電池を長期間屋外に置いた際に、紫外線による変色によって太陽電池の外観が悪くなる可能性がある。
本発明の太陽電池裏面保護用シートにおいて耐紫外線性に優れている範囲とするには、P1層に対して酸化チタン粒子を3質量%以上添加することが好ましい方法として挙げられ、酸化チタン粒子の添加量に応じて色調変化Δbを低下させることが可能である。
The solar cell back surface protective sheet of the present invention is preferably excellent in ultraviolet resistance. Specifically, it is preferable that the color tone change Δb when the ultraviolet ray treatment test is performed using the P1 layer of the solar cell back surface protective sheet of the present invention as an incident surface is less than 10, more preferably less than 3. Details of the method for measuring the color tone change Δb when the ultraviolet treatment test is performed will be described later.
In the solar cell back surface protection sheet of the present invention, when the color change Δb when the ultraviolet treatment test is performed with the P1 layer as the incident surface exceeds 10, the solar cell mounted with the solar cell back surface protection sheet of the present invention is long. When placed outdoors during the period, the appearance of the solar cell may deteriorate due to discoloration due to ultraviolet rays.
In the solar cell back surface protective sheet of the present invention, in order to make the range excellent in UV resistance, it is mentioned as a preferable method that titanium oxide particles are added in an amount of 3% by mass or more with respect to the P1 layer. It is possible to reduce the color tone change Δb depending on the amount added.
 本発明の太陽電池裏面保護用シートにおいて、耐湿熱性と耐紫外線性に優れた太陽電池裏面保護用シートとすることで、本発明の太陽電池裏面保護用シートを搭載した太陽電池を長期間屋外に置いても外観不良の無い太陽電池とすることができる。 In the solar cell back surface protection sheet of the present invention, a solar cell back surface protection sheet excellent in moist heat resistance and ultraviolet resistance is used for a long time outdoors with the solar cell mounted with the solar cell back surface protection sheet of the present invention. Even if it is placed, it can be a solar cell having no appearance defect.
 (太陽電池)
 次に、本発明の積層体を太陽電池に搭載する例を挙げて説明する。
本発明の太陽電池は、本発明の積層体を裏面保護用シートとして搭載することを特徴とする。本発明の太陽電池は前記の積層体を用いることで、従来の太陽電池と比べて耐久性を高めることが可能となる。その構成の例を図1に示す。電気を取り出すリード線(図1には示していない)を接続した発電素子をEVA樹脂などの透明な封止材2で封止したものに、ガラスなどの透明基板4と、太陽電池裏面保護用シート1として貼り合わせて構成されるが、これに限定されず、任意の構成に用いることができる。なお、図1では太陽電池裏面保護用シートは単体での例を示したが、その他必要とされる要求特性に応じて太陽電池裏面保護用シートは他のフィルムを張り合わせた、複合シートとすることも可能である。
(Solar cell)
Next, an example in which the laminate of the present invention is mounted on a solar cell will be described.
The solar cell of the present invention is characterized in that the laminate of the present invention is mounted as a back surface protection sheet. The solar cell of the present invention can increase the durability as compared with a conventional solar cell by using the above laminate. An example of the configuration is shown in FIG. A power generating element connected with a lead wire for taking out electricity (not shown in FIG. 1) is sealed with a transparent sealing material 2 such as EVA resin, a transparent substrate 4 such as glass, and a solar cell back surface protection Although it is configured to be bonded as the sheet 1, it is not limited to this and can be used for any configuration. In addition, in FIG. 1, although the solar cell back surface protection sheet shows an example of a single body, the solar cell back surface protection sheet should be a composite sheet in which other films are laminated according to other required characteristics. Is also possible.
 ここで、本発明の太陽電池において、太陽電池裏面保護用シート1は発電素子を封止した封止材2の背面に設置される発電セルを保護する役目を担う。ここで太陽電池裏面保護用シートはP2層が封止材2と接するように配置することが好ましい。この構成とすることによって、本発明の優れた密着性を生かして、屋外に曝されても長期間、発電セルを保護することで太陽電池の耐久性を高めることができる。 Here, in the solar cell of the present invention, the solar cell back surface protection sheet 1 plays a role of protecting the power generation cell installed on the back surface of the sealing material 2 sealing the power generation element. Here, the solar cell back surface protection sheet is preferably arranged so that the P2 layer is in contact with the sealing material 2. By adopting this configuration, the durability of the solar cell can be enhanced by protecting the power generation cell for a long period of time even when exposed to the outdoors, taking advantage of the excellent adhesion of the present invention.
 発電素子3は、太陽光の光エネルギーを電気エネルギーに変換するものであり、結晶シリコン系、多結晶シリコン系、微結晶シリコン系、アモルファスシリコン系、銅インジウムセレナイド系、化合物半導体系、色素増感系など、目的に応じて任意の素子を、所望する電圧あるいは電流に応じて複数個を直列または並列に接続して使用することができる。透光性を有する透明基板4は太陽電池の最表層に位置するため、高透過率のほかに、高耐候性、高耐汚染性、高機械強度特性を有する透明材料が使用される。本発明の太陽電池において、透光性を有する透明基板4は上記特性と満たせばいずれの材質を用いることができ、その例としてはガラス、四フッ化エチレン-エチレン共重合体(ETFE)、ポリフッ化ビニル樹脂(PVF)、ポリフッ化ビニリデン樹脂(PVDF)、ポリ四フッ化エチレン樹脂(TFE)、四フッ化エチレン-六フッ化プロピレン共重合体(FEP)、ポリ三フッ化塩化エチレン樹脂(CTFE)、ポリフッ化ビニリデン樹脂などのフッ素系樹脂、オレフィン系樹脂、アクリル系樹脂、およびこれらの混合物などが好ましく挙げられる。ガラスの場合、強化されているものを用いるのがより好ましい。また樹脂製の透光基材を用いる場合は、機械的強度の観点から、上記樹脂を一軸または二軸に延伸したものも好ましく用いられる。また、これら基材には発電素子の封止材料であるEVA樹脂などとの接着性を付与するために、表面に、コロナ処理、プラズマ処理、オゾン処理、易接着処理を施すことも好ましく行われる。 The power generating element 3 converts light energy of sunlight into electric energy, and is based on crystalline silicon, polycrystalline silicon, microcrystalline silicon, amorphous silicon, copper indium selenide, compound semiconductor, dye enhancement Arbitrary elements such as a sensitive system can be used in series or in parallel according to the desired voltage or current depending on the purpose. Since the transparent substrate 4 having translucency is located on the outermost surface layer of the solar cell, a transparent material having high weather resistance, high contamination resistance, and high mechanical strength characteristics in addition to high transmittance is used. In the solar cell of the present invention, the transparent substrate 4 having translucency can be made of any material as long as the above characteristics are satisfied. Examples thereof include glass, ethylene tetrafluoride-ethylene copolymer (ETFE), polyfluoride. Vinyl fluoride resin (PVF), polyvinylidene fluoride resin (PVDF), polytetrafluoroethylene resin (TFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polytrifluoroethylene chloride resin (CTFE) ), Fluorinated resins such as polyvinylidene fluoride resin, olefinic resins, acrylic resins, and mixtures thereof. In the case of glass, it is more preferable to use a tempered glass. Moreover, when using the resin-made translucent base material, what extended | stretched the said resin uniaxially or biaxially from a viewpoint of mechanical strength is used preferably. Moreover, in order to give these substrates the adhesiveness with EVA resin etc. which are the sealing materials of an electric power generation element, it is also preferably performed to give the surface a corona treatment, a plasma treatment, an ozone treatment, and an easy adhesion treatment. .
 発電素子を封止するための封止材2は、発電素子の表面の凹凸を樹脂で被覆し固定し、外部環境から発電素子保護し、電気絶縁の目的の他、透光性を有する基材やバックシートと発電素子に接着するため、高透明性、高耐候性、高接着性、高耐熱性を有する材料が使用される。その例としては、エチレン-ビニルアセテート共重合体(EVA)、エチレン-メチルアクリレート共重合体(EMA)、エチレン-エチルアクリレート共重合体(EEA)樹脂、エチレン-メタクリル酸共重合体(EMAA)、アイオノマー樹脂、ポリビニルブチラール樹脂、およびこれらの混合物などが好ましく用いられる。 The sealing material 2 for sealing the power generating element covers the surface of the power generating element with resin and fixes it, protects the power generating element from the external environment, and has a light-transmitting base material for the purpose of electrical insulation. In addition, a material having high transparency, high weather resistance, high adhesion, and high heat resistance is used to adhere to the backsheet and the power generation element. Examples thereof include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA) resin, ethylene-methacrylic acid copolymer (EMAA), Ionomer resins, polyvinyl butyral resins, and mixtures thereof are preferably used.
 以上のように、本発明の積層体を太陽電池裏面保護用シートとして太陽電池に組み込むことにより、従来の太陽電池と比べて、耐久性を高めることが可能となる。本発明の太陽電池は、太陽光発電システム、小型電子部品の電源など、屋外用途、屋内用途に限定されず各種用途に好適に用いることができる。 As described above, by incorporating the laminate of the present invention into a solar cell as a solar cell back surface protection sheet, it becomes possible to enhance the durability as compared with a conventional solar cell. The solar cell of the present invention can be suitably used for various applications without being limited to outdoor use and indoor use such as a solar power generation system and a power source for small electronic components.
 〔特性の測定方法および評価方法〕
 (1)ポリマー特性
(1-1)末端カルボキシル基量(表中ではCOOH量と記載する。)
 末端カルボキシル基量については、Mauliceの方法に準じて、以下の方法にて測定した。(文献:M.J. Maulice, F. Huizinga,  Anal.Chim.Acta,22  363(1960))
測定試料(ポリエステル樹脂(原料)または積層体のP1層のみを分離したもの)2gをo-クレゾール/クロロホルム(重量比7/3)50mLに温度80℃にて溶解し、0.05NのKOH/メタノール溶液によって滴定し、末端カルボキシル基濃度を測定し、当量/ポリエステル1tの値で示した。なお、滴定時の指示薬はフェノールレッドを用いて、黄緑色から淡紅色に変化したところを滴定の終点とした。なお、測定試料を溶解させた溶液に無機粒子などの不溶物がある場合は、溶液を濾過して不溶物の重量測定を行い、不溶物の重量を測定試料重量から差し引いた値を測定試料重量とする補正を実施した。
[Measurement method and evaluation method of characteristics]
(1) Polymer characteristics (1-1) Amount of terminal carboxyl groups (in the table, described as COOH amount)
The terminal carboxyl group amount was measured by the following method according to the method of Malice. (Reference: M. J. Malice, F. Huizinga, Anal. Chim. Acta, 22 363 (1960))
2 g of a measurement sample (polyester resin (raw material) or separated P1 layer of the laminate) was dissolved in 50 mL of o-cresol / chloroform (weight ratio 7/3) at a temperature of 80 ° C., and 0.05 N KOH / The solution was titrated with a methanol solution, the terminal carboxyl group concentration was measured, and the value was represented by the value of equivalent / polyester 1t. In addition, the indicator at the time of titration used phenol red, and the place where it changed from yellowish green to light red was set as the end point of titration. If there is insoluble matter such as inorganic particles in the solution in which the measurement sample is dissolved, the solution is filtered to measure the weight of the insoluble matter, and the value obtained by subtracting the weight of the insoluble matter from the measurement sample weight The following correction was made.
 (1-2)固有粘度IV
 オルトクロロフェノール100mlに、測定試料(ポリエステル樹脂(原料)又は積層体のP1層のみを分離したもの)を溶解させ(溶液濃度C(測定試料重量/溶液体積)=1.2g/ml)、その溶液の25℃での粘度をオストワルド粘度計を用いて測定した。また、同様に溶媒の粘度を測定した。得られた溶液粘度、溶媒粘度を用いて、下記式(4)により、[η]を算出し、得られた値をもって固有粘度(IV)とした。
ηsp/C=[η]+K[η]・C ・・・(4)
(ここで、ηsp=(溶液粘度/溶媒粘度)―1、Kはハギンス定数(0.343とする)である。)
なお、測定試料を溶解させた溶液に無機粒子などの不溶物がある場合は、以下の方法を用いて測定を行った。
(i)オルトクロロフェノール100mLに測定試料を溶解させ、溶液濃度が1.2mg/mLよりも濃い溶液を作成する。ここで、オルトクロロフェノールに供した測定試料の重量を測定試料重量とする。
(ii)次に、不溶物を含む溶液を濾過し、不溶物の重量測定と、濾過後の濾液の体積測定を行う。
(iii)濾過後の濾液にオルトクロロフェノールを追加して、(測定試料重量(g)-不溶物の重量(g))/(濾過後の濾液の体積(mL)+追加したオルトクロロフェノールの体積(mL))が、1.2g/100mLとなるように調整する。
(例えば、測定試料重量2.0g/溶液体積100mLの濃厚溶液を作成したときに、該溶液を濾過したときの不溶物の重量が0.2g、濾過後の濾液の体積が99mLであった場合は、オルトクロロフェノールを51mL追加する調整を実施する。((2.0g-0.2g)/(99mL+51mL)=1.2g/mL))
(iv)(iii)で得られた溶液を用いて、25℃での粘度をオストワルド粘度計を用いて測定し、得られた溶液粘度、溶媒粘度を用いて、上記式(C)により、[η]を算出し、得られた値をもって固有粘度(IV)とする。
(1-2) Intrinsic viscosity IV
In 100 ml of orthochlorophenol, a measurement sample (polyester resin (raw material) or a layer separated from the P1 layer alone) is dissolved (solution concentration C (measurement sample weight / solution volume) = 1.2 g / ml). The viscosity of the solution at 25 ° C. was measured using an Ostwald viscometer. Similarly, the viscosity of the solvent was measured. [Η] was calculated by the following formula (4) using the obtained solution viscosity and solvent viscosity, and the obtained value was defined as the intrinsic viscosity (IV).
ηsp / C = [η] + K [η] 2 · C (4)
(Where ηsp = (solution viscosity / solvent viscosity) −1, K is the Huggins constant (assuming 0.343))
In addition, when there existed insoluble matters, such as inorganic particles, in the solution in which the measurement sample was dissolved, the measurement was performed using the following method.
(I) A measurement sample is dissolved in 100 mL of orthochlorophenol to prepare a solution having a solution concentration higher than 1.2 mg / mL. Here, let the weight of the measurement sample used for orthochlorophenol be a measurement sample weight.
(Ii) Next, the solution containing insoluble matter is filtered, and the weight of the insoluble matter is measured and the volume of the filtrate after filtration is measured.
(Iii) Orthochlorophenol was added to the filtrate after filtration, and (measured sample weight (g) −insoluble matter weight (g)) / (volume of filtrate after filtration (mL) + added orthochlorophenol) The volume (mL) is adjusted to 1.2 g / 100 mL.
(For example, when a concentrated solution having a measurement sample weight of 2.0 g / solution volume of 100 mL was prepared, the weight of insoluble matter when the solution was filtered was 0.2 g, and the filtrate volume after filtration was 99 mL Adjust to add 51 mL of orthochlorophenol ((2.0 g-0.2 g) / (99 mL + 51 mL) = 1.2 g / mL))
(Iv) Using the solution obtained in (iii), the viscosity at 25 ° C. is measured using an Ostwald viscometer, and using the obtained solution viscosity and solvent viscosity, η] is calculated, and the obtained value is defined as intrinsic viscosity (IV).
 (1-3)金属元素含有量
 積層体のP1層について、Mg、Mn、Sb金属元素量については蛍光X線分析法(理学電機(株)製蛍光X線分析装置(型番:3270))にて、Na金属元素については原子吸光分析法(曰立製作所製:偏光ゼーマン原子吸光光度計180-80。フレーム:アセチレンー空気)にて定量を行った。
(1-3) Metal Element Content Regarding the P1 layer of the laminate, the Mg, Mn, and Sb metal element amounts are determined by the fluorescent X-ray analysis method (fluorescence X-ray analyzer manufactured by Rigaku Corporation (model number: 3270)). The Na metal element was quantified by atomic absorption spectrometry (manufactured by Tadate Corporation: polarization Zeeman atomic absorption photometer 180-80, frame: acetylene-air).
 (2)表面自由エネルギー
 表面エネルギーについて、JIS K 6768(1999)の方法に準じて以下の方法で測定を行った。まず、積層体を室温23℃相対湿度65%の雰囲気中に48時間放置後した。その後、同雰囲気下で、P2層に対して、純水、エチレングリコール、ホルムアミド、ジヨードメタンの4種の溶液のそれぞれの接触角を、接触角計CA-D型(協和界面科学(株)社製)により、それぞれ5点測定する。5点の測定値の最大値と最小値を除いた3点の測定値の平均値をそれぞれの溶液の接触角とする。
(2) Surface free energy The surface energy was measured by the following method according to the method of JIS K 6768 (1999). First, the laminate was allowed to stand for 48 hours in an atmosphere having a room temperature of 23 ° C. and a relative humidity of 65%. Thereafter, the contact angle of each of the four solutions of pure water, ethylene glycol, formamide, and diiodomethane was contact angle meter CA-D type (Kyowa Interface Science Co., Ltd.) under the same atmosphere. ) To measure 5 points each. The average value of the three measured values excluding the maximum value and the minimum value of the five measured values is defined as the contact angle of each solution.
 次に、得られた4種類の溶液の接触角を用いて、畑らによって提案された「固体の表面自由エネルギー(γ)を分散力成分(γ )、極性力成分(γ )、および水素結合力成分(γ )の3成分に分離し、Fowkes式を拡張した式(拡張Fowkes式)」に基づく幾何平均法により、本発明に記載の極性力γp、及び水素結合力γhを算出する。(文献:日本接着協会誌、1972年、Vol.8、No.3、131~141頁)
 次に、具体的な算出方法を示す。固体と液体の界面での張力である場合、数式(1)が成立する。各記号の意味について下記の通り。
Next, using the contact angles of the four types of solutions obtained, “the surface free energy (γ) of the solid, which is proposed by Hata et al., Is expressed as a dispersion force component (γ S d ) and a polar force component (γ S p ). , And a hydrogen bonding force component (γ S h ), and a geometrical average method based on a formula (expanded Fowkes formula) obtained by extending the Fowkes formula ”, the polar force γp and the hydrogen bond strength described in the present invention γh is calculated. (Reference: Journal of Japan Adhesion Association, 1972, Vol. 8, No. 3, pp. 131-141)
Next, a specific calculation method is shown. When the tension is at the interface between the solid and the liquid, Formula (1) is established. The meaning of each symbol is as follows.
  γ : P2層と表1に記載の既知の溶液の表面自由エネルギー
  γS : P2層の表面自由エネルギー
  γL : 表1に記載の既知の溶液の表面自由エネルギー
  γ : P2層の表面自由エネルギーの分散力成分
  γ : P2層の表面自由エネルギーの極性力成分
  γ : P2層の表面自由エネルギーの水素結合力成分
  γL d : 表1に記載の既知の溶液の表面自由エネルギーの分散力成分
  γL p : 表1に記載の既知の溶液の表面自由エネルギーの極性力成分
  γL : 表1に記載の既知の溶液の表面自由エネルギーの水素結合力成分
γ =γ+γ-2(γ ・γ )1/2-2(γ ・γp)1/2-2(γ ・γ )1/2 ・・・ 数式(1)。
γ S L : surface free energy of the known solution described in Table 1 and γ S : surface free energy of the P2 layer γ L : surface free energy of known solution described in Table 1 γ S d : of the P2 layer Dispersive force component of surface free energy γ S p : Polar force component of surface free energy of P2 layer γ S h : Hydrogen bond force component of surface free energy of P2 layer γ L d : Surface of known solution described in Table 1 Dispersion force component of free energy γ L p : Polar force component of surface free energy of known solutions listed in Table 1 γ L h : Hydrogen bond strength component of surface free energy of known solutions listed in Table 1 γ S L = Γ S + γ L -2 (γ S d · γ L d ) 1/2 -2 (γ S p · γ L p) 1/2 -2 (γ S h · γ L h ) 1/2 ... Formula (1).
 また、平滑な固体面と液滴が接触角(θ)で接しているときの状態は次式で表現される(Youngの式)。 Also, the state when the smooth solid surface is in contact with the liquid droplet at the contact angle (θ) is expressed by the following equation (Young's equation).
  γ=γ +γcosθ ・・・ 数式(2)。 γ S = γ S L + γ L cos θ (2)
 これら数式(1)、数式(2)を組み合わせると、次式が得られる。
・γ )1/2+(γ ・γ )1/2+(γ ・γ )1/2=γ(1+cosθ)/2 ・・・ 数式(3)。
When these mathematical formulas (1) and (2) are combined, the following formula is obtained.
(γ S d · γ L d ) 1/2 + (γ S p · γ L p) 1/2 + (γ S h · γ L h) 1/2 = γ L (1 + cosθ) / 2 ··· formula (3).
 実際には、水、エチレングリコール、ホルムアミド、及びジヨードメタンの4種類の溶液に接触角(θ)と、表1に記載の既知の溶液の表面張力の各成分(γL 、γL 、γL )を数式(3)に代入し、4つの連立方程式を解く。その結果、固体の表面自由エネルギー(γ)、分散力成分(γ )、極性力成分(γ )、および水素結合力成分(γ )が算出される。
尚、本発明に記載の分散力γdは分散力成分(γ )に、極性力γpは極性力成分(γ )、水素結合力γhは水素結合力成分(γ )に該当する。
Actually, the four components of water, ethylene glycol, formamide, and diiodomethane have contact angles (θ) and the components of the surface tension of known solutions listed in Table 1 (γ L d , γ L p , γ L h ) is substituted into Equation (3) to solve the four simultaneous equations. As a result, the surface free energy (γ), the dispersion force component (γ S d ), the polar force component (γ S p ), and the hydrogen bonding force component (γ S h ) of the solid are calculated.
The dispersion force γd described in the present invention corresponds to the dispersion force component (γ S d ), the polar force γp corresponds to the polar force component (γ S p ), and the hydrogen bond force γh corresponds to the hydrogen bond force component (γ S h ). To do.
 (3)P2層の成分定性
 P2層の成分定性はP2層の表面について、X線光電子分光分析装置(ESCA)、フーリエ赤外分光光度計(FT-IR)ATR法、飛行時間型二次イオン質量分析装置(TOF-SIMS)、またはP2層を溶剤にて溶解抽出し、プロトン核磁気共鳴分光法(1H-NMR)、カーボン核磁気共鳴分光法(13C-NMR)、フーリエ赤外分光光度計(FT-IR)、またはP2層を分離し、熱分解ガスクロマトグラフィー質量分析(GC-MS)により構造を解析して行う。以下、熱分解ガスクロマトグラフィー質量分析(GC-MS)を用いた解析例について述べる。
(3) Component qualification of the P2 layer The component qualification of the P2 layer is the X2 photoelectron spectrometer (ESCA), Fourier infrared spectrophotometer (FT-IR) ATR method, time-of-flight secondary ion on the surface of the P2 layer. Mass spectrometer (TOF-SIMS) or P2 layer is dissolved and extracted with solvent, proton nuclear magnetic resonance spectroscopy (1H-NMR), carbon nuclear magnetic resonance spectroscopy ( 13 C-NMR), Fourier infrared spectrophotometry This is done by separating the total (FT-IR) or P2 layer and analyzing the structure by pyrolysis gas chromatography mass spectrometry (GC-MS). An analysis example using pyrolysis gas chromatography mass spectrometry (GC-MS) will be described below.
 (3-1)熱分解ガスクロマトグラフィー質量分析(GC-MS)
 まず測定装置には熱分解装置PY-2010DD型(フロンティア・ラボ社製)とガスクロマトグラフGC-14AF型((株)島津製作所製)、検出器には水素炎イオン化検出器(FID)、カラムにはメチルシリコーン系キャピラリーカラムを接続して用いた。また、必要に応じてTMAH(テトラメチルアンモニウムハイドロオキサイド)で誘導体化を行い実施した。
(A)ウレタン樹脂成分
 熱分解生成物からジイソシアネート化合物とグリコール化合物の2種類が検出された場合、P2層中にウレタン樹脂成分が含有されているとする。
(B)メラミン樹脂成分
 熱分解生成物からメラミン化合物が検出された場合、P2層中にメラミン樹脂成分が含有されているとする。
(C)オキサゾリン樹脂成分
 熱分解生成物からオキサゾリン化合物が検出された場合、またはTMAHで誘導体化を行った場合の熱分解生成物からエタノールアミン構造が検出された場合、P2層中にオキサゾリン樹脂成分が含有されているとする。
(3-1) Pyrolysis gas chromatography mass spectrometry (GC-MS)
First, the pyrolyzer PY-2010DD (frontier lab) and gas chromatograph GC-14AF (manufactured by Shimadzu Corporation) are used as the measuring device, the flame ionization detector (FID) is used as the detector, and the column Was used with a methyl silicone capillary column connected. Further, derivatization was performed with TMAH (tetramethylammonium hydroxide) as necessary.
(A) Urethane resin component When two types of diisocyanate compound and glycol compound are detected from the thermal decomposition product, it is assumed that the urethane resin component is contained in the P2 layer.
(B) Melamine resin component When a melamine compound is detected from a thermal decomposition product, melamine resin component shall be contained in P2 layer.
(C) Oxazoline resin component When the oxazoline compound is detected from the thermal decomposition product or when the ethanolamine structure is detected from the thermal decomposition product when derivatized with TMAH, the oxazoline resin component in the P2 layer Is assumed to be contained.
 (4)P2層の厚み
 ミクロトームを用いて、積層体の表面に対して垂直方向に切削した小片を作成し、その断面を電界放射走査型電子顕微鏡JSM-6700F(日本電子(株)製)を用いて10000倍に拡大観察して撮影した。その断面写真よりP2層の厚みを拡大倍率から逆算して求めた。なお、厚みは異なる測定視野から任意に選んだ計5箇所の断面写真を使用し、その平均値を用いた。
(4) Thickness of P2 layer Using a microtome, a small piece cut in a direction perpendicular to the surface of the laminate was prepared, and the cross section was measured with a field emission scanning electron microscope JSM-6700F (manufactured by JEOL Ltd.). The image was taken with a magnification of 10,000 times. From the cross-sectional photograph, the thickness of the P2 layer was calculated from the magnification. In addition, the thickness used the cross-sectional photograph of five places arbitrarily selected from the different measurement visual field, and used the average value.
 (5)太陽電池用封止材との密着性評価
 (5-1)封止材との初期密着性
 JIS K 6854-2(1999)に基づいて、太陽電池用封止材であるEVAシートと積層体のP2層側の面との剥離強度から接着性を評価した。測定試験片は、厚さ3mmの半強化ガラス上に、500μm厚のEVAシート(酢酸ビニル共重合比率:28mol%)、および実施例、比較例のシートをP2層側がEVAシート側になるように重ね、市販の真空ラミネーターを用いて熱盤温度145℃、真空引き4分、プレス1分、保持時間10分の条件でプレス処理をしたものを用いた。剥離強度試験は180°剥離で行い、試験片の幅は15mmとし、2つの試験片を準備し、それぞれの試験片について場所を変えて3カ所測定し、得られた測定値の平均値を剥離強度の値とし、初期密着性を以下のように判定した。尚、本測定において界面での剥離が生じる前に、本発明のシートが破断した場合は、破断が生じた時点の測定値を剥離強度の値とした。
剥離強度が60.0N/15mm以上の場合:S
剥離強度が50.0N/15mm以上、60.0N/15mm未満の場合:A
剥離強度が45.0N/15mm以上、50.0N/15mm未満の場合:B
剥離強度が40.0N/15mm以上、45.0N/15mm未満の場合:C
剥離強度が30.0N/15mm以上、40.0N/15mm未満の場合:D
剥離強度が30.0N/15mm未満の場合:E
初期密着性はS~Dが良好であり、その中でもSが最も優れている。
(5) Adhesive evaluation with solar cell encapsulant (5-1) Initial adhesion with encapsulant Based on JIS K 6854-2 (1999), an EVA sheet which is an encapsulant for solar cell Adhesiveness was evaluated from the peel strength from the P2 layer side surface of the laminate. The measurement test piece is a 500 μm thick EVA sheet (vinyl acetate copolymerization ratio: 28 mol%) on a semi-tempered glass having a thickness of 3 mm, and the P2 layer side of the sheet of the example and the comparative example is the EVA sheet side. A layer obtained by press treatment using a commercially available vacuum laminator under conditions of a hot platen temperature of 145 ° C., a vacuum drawing of 4 minutes, a press of 1 minute, and a holding time of 10 minutes was used. The peel strength test is performed at 180 ° peel, the width of the test piece is 15 mm, two test pieces are prepared, the place is changed for each test piece, and three places are measured, and the average value of the obtained measurement values is peeled off The initial adhesion was determined as follows using the strength value. In addition, when the sheet | seat of this invention fractured | ruptured before peeling at an interface in this measurement, the measured value at the time of the fracture | rupture was made into the value of peeling strength.
When peel strength is 60.0N / 15mm or more: S
When the peel strength is 50.0 N / 15 mm or more and less than 60.0 N / 15 mm: A
When peel strength is 45.0 N / 15 mm or more and less than 50.0 N / 15 mm: B
When peel strength is 40.0 N / 15 mm or more and less than 45.0 N / 15 mm: C
When the peel strength is 30.0 N / 15 mm or more and less than 40.0 N / 15 mm: D
When peel strength is less than 30.0 N / 15 mm: E
S to D are good initial adhesion, and S is the best among them.
 (5-2)密着保持性
 上記(5-1)項と同様にして、測定試験片を作製し、高度加速寿命試験装置プレッシャークッカー(エスペック(株)製)にて、温度120℃、相対湿度100%RHの条件下にて48時間処理を行った。その後、温度27℃、湿度35%RHの環境下で48hr調湿を行い、(5-1)項と同様にEVAシートとの加速試験後の剥離強度を測定し、密着保持性を以下のように判定した。
加速試験後の剥離強度が50.0N/15mm以上の場合:SS
加速試験後の剥離強度が40.0N/15mm以上、50.0N/15mm未満の場合:S
加速試験後の剥離強度が40.0N/15mm以上、45.0N/15mm未満の場合:A
加速試験後の剥離強度が35.0N/15mm以上、40.0N/15mm未満の場合:B
加速試験後の剥離強度が30.0N/15mm以上、35.0N/15mm未満の場合:C
加速試験後の剥離強度が20.0N/15mm以上、30.0N/15mm未満の場合:D
加速試験後の剥離強度が20N/15mm未満の場合:E
 密着保持性はSS~Dが良好であり、その中でもSSが最も優れている。
(5-2) Adhesion retention In the same manner as in (5-1) above, a measurement test piece was prepared, and the temperature was 120 ° C. and the relative humidity was measured with a pressure cooker (manufactured by Espec Corp.). The treatment was performed for 48 hours under the condition of 100% RH. Thereafter, the humidity was adjusted for 48 hours in an environment of a temperature of 27 ° C. and a humidity of 35% RH, and the peel strength after the acceleration test with the EVA sheet was measured in the same manner as in the section (5-1). Judged to.
When peel strength after acceleration test is 50.0 N / 15 mm or more: SS
When peel strength after acceleration test is 40.0 N / 15 mm or more and less than 50.0 N / 15 mm: S
When peel strength after accelerated test is 40.0 N / 15 mm or more and less than 45.0 N / 15 mm: A
When peel strength after acceleration test is 35.0 N / 15 mm or more and less than 40.0 N / 15 mm: B
When peel strength after accelerated test is 30.0 N / 15 mm or more and less than 35.0 N / 15 mm: C
When peel strength after accelerated test is 20.0 N / 15 mm or more and less than 30.0 N / 15 mm: D
When peel strength after accelerated test is less than 20 N / 15 mm: E
The adhesion retention is good in SS to D, and SS is the best among them.
 (6)耐湿熱性(湿熱試験後の破断伸度測定)
 積層体を測定片の形状10mm×200mmに切り出した後、高度加速寿命試験装置プレッシャークッカー(エスペック(株)製)にて、温度125℃、相対湿度100%RHの条件下にて48時間処理を行い、その後、ASTM-D882(1997)に基づいて破断伸度を測定した。なお、測定はチャック間50mm、引っ張り速度300mm/min、測定回数n=5とし、また、シートの長手方向、幅方向のそれぞれについて測定した後、その平均値を湿熱試験後の破断伸度とした。得られた湿熱試験後の破断伸度から、耐湿熱性を以下のように判定した。
湿熱試験後の破断伸度が湿熱試験前の破断伸度の60%以上の場合:S
湿熱試験後の破断伸度が湿熱試験前の破断伸度の40%以上60%未満の場合:A
湿熱試験後の破断伸度が湿熱試験前の破断伸度の20%以上40%未満の場合:B
湿熱試験後の破断伸度が湿熱試験前の破断伸度の10%以上20%未満の場合:C
湿熱試験後の破断伸度が湿熱試験前の破断伸度の10%未満の場合:D
 耐湿熱性はA~Cが良好であり、その中でもAが最も優れている。
(6) Moist heat resistance (measurement of elongation at break after wet heat test)
After the laminate was cut into a 10 mm × 200 mm shape of the measurement piece, it was processed for 48 hours under the conditions of temperature 125 ° C. and relative humidity 100% RH with a highly accelerated life tester pressure cooker (manufactured by Espec Corp.). After that, the elongation at break was measured based on ASTM-D882 (1997). Note that the measurement was performed between the chuck 50 mm, the pulling speed 300 mm / min, the number of measurements n = 5, and after measuring for each of the longitudinal direction and the width direction of the sheet, the average value was defined as the breaking elongation after the wet heat test. . From the elongation at break after the obtained wet heat test, the wet heat resistance was determined as follows.
When the breaking elongation after the wet heat test is 60% or more of the breaking elongation before the wet heat test: S
When the breaking elongation after the wet heat test is 40% or more and less than 60% of the breaking elongation before the wet heat test: A
When the breaking elongation after the wet heat test is 20% or more and less than 40% of the breaking elongation before the wet heat test: B
When the breaking elongation after the wet heat test is 10% or more and less than 20% of the breaking elongation before the wet heat test: C
When the breaking elongation after the wet heat test is less than 10% of the breaking elongation before the wet heat test: D
The wet heat resistance is good in A to C, and A is the best among them.
 (7)耐紫外線性(紫外線処理試験時の色調変化)
 (7-1)色調(b値)測定
 JIS-Z-8722(2000)に基づき、分光式色差計SE-2000(日本電色工業(株)製、光源 ハロゲンランプ 12V4A、0°~-45°後分光方式)を用いて反射法により積層体のP1層側の面の色調(b値)をn=3で測定した。
(7) UV resistance (color change during UV treatment test)
(7-1) Color tone (b value) measurement Based on JIS-Z-8722 (2000), a spectroscopic color difference meter SE-2000 (manufactured by Nippon Denshoku Industries Co., Ltd., light source halogen lamp 12V4A, 0 ° to −45 °) The color tone (b value) of the surface on the P1 layer side of the laminate was measured at n = 3 by a reflection method using a post-spectral method.
 (7-2)色調変化Δb
 積層体のP1層側の面に試験光が当たるようにアイスーパー紫外線テスターS-W151(岩崎電気(株)製)にて、温度60℃、相対湿度60%、照度100mW/cm(光源:メタルハライドランプ、波長範囲:295~450nm、ピーク波長:365nm)の条件下で48時間照射した前後の色調(b値)を前記(8-1)項に従い測定し、次の(α)式より紫外線照射後の色調変化(Δb)を算出した。
紫外線照射後の色調変化(Δb)=b1―b0  (α)
b0:紫外線照射前の色調(b値)
b1:紫外線照射後の色調(b値)
 得られた紫外線処理試験前後の色調変化(Δb)から、耐紫外線性を以下のように判定した。
紫外線照射処理試験前後の色調変化(Δb)が1未満の場合:A
紫外線照射処理試験前後の色調変化(Δb)が1以上10未満の場合:B
紫外線照射処理試験前後の色調変化(Δb)が10以上20未満の場合:C
紫外線照射処理試験前後の色調変化(Δb)が20以上の場合:D
 耐紫外線性はA~Cが良好であり、その中で最もAが優れている。
(7-2) Color tone change Δb
With an i-super ultraviolet tester S-W151 (manufactured by Iwasaki Electric Co., Ltd.) so that the test light hits the P1 layer side surface of the laminate, the temperature is 60 ° C., the relative humidity is 60%, and the illuminance is 100 mW / cm 2 (light source: The color tone (b value) before and after irradiation for 48 hours under the conditions of a metal halide lamp (wavelength range: 295 to 450 nm, peak wavelength: 365 nm) was measured according to the above item (8-1), and ultraviolet rays were obtained from the following equation (α). The change in color tone (Δb) after irradiation was calculated.
Color tone change after UV irradiation (Δb) = b1−b0 (α)
b0: Color tone before UV irradiation (b value)
b1: Color tone after UV irradiation (b value)
From the color tone change (Δb) before and after the obtained ultraviolet treatment test, ultraviolet resistance was determined as follows.
When the color change (Δb) before and after the ultraviolet irradiation treatment test is less than 1: A
When the color tone change (Δb) before and after the ultraviolet irradiation treatment test is 1 or more and less than 10: B
When the color change (Δb) before and after the ultraviolet irradiation treatment test is 10 or more and less than 20: C
When the color change (Δb) before and after the ultraviolet irradiation treatment test is 20 or more: D
The UV resistance is good in A to C, and A is the best among them.
 (8)太陽電池特性
 (8-1)太陽電池の作製
 Qcells社製の太陽電池セルQ6LPT-G2の表面、裏面の銀電極部分にHOZAN社製フラックスH722をディスペンサーで塗布し、表面、裏面の銀電極の上に155mmの長さに切断した配線材として日立電線社製銅箔SSA―SPS0.2×1.5(20)を表面側のセルの片端から10mm離れたところが配線材の端に、裏面側は表面側と対称になるように乗せ、半田ごてを用いてセル裏面側から半田ごてを接触させて表面、裏面を同時に半田溶着し1セルストリングスを作製した。
(8) Solar cell characteristics (8-1) Production of solar cell Flux H722 from HOZAN was applied to the front and back silver electrode portions of solar cell Q6LPT-G2 from Qcells with a dispenser, and silver on the front and back surfaces. As a wiring material cut to a length of 155 mm on the electrode, the copper foil SSA-SPS0.2 × 1.5 (20) manufactured by Hitachi Cable Co., Ltd. is 10 mm away from one end of the cell on the surface side. The back side was placed symmetrically with the front side, and the soldering iron was contacted from the back side of the cell using a soldering iron, and the front and back sides were simultaneously soldered to produce one cell string.
 作製した1セルストリングスのセルから飛び出している該配線材の長手方向と180mmに切断した取り出し電極として日立電線社製銅箔A―SPS0.23×6.0の長手方向が垂直になるよう置き、該配線材と取り出し電極が重なる部分に該フラックスを塗布して半田溶着を行い、取り出し電極付きストリングスを作製した。 Placed so that the longitudinal direction of the copper foil A-SPS 0.23 × 6.0 made by Hitachi Cable Co., Ltd. is perpendicular to the longitudinal direction of the wiring material protruding from the cell of the produced 1-cell string and the extraction electrode cut into 180 mm, The flux was applied to the portion where the wiring material and the take-out electrode overlapped, and solder welding was performed to produce strings with the take-out electrode.
 次に、190mm×190mmの旭硝子社製太陽電池用3.2mm厚白板熱処理ガラス、190mm×190mmの500μm厚のEVAシート(酢酸ビニル共重合比率:28mol%)、作製した取り出し電極付きストリングス、190mm×190mmの500μm厚のEVAシート、190mm×190mmに切り出した積層体をP2層側の面がEVA側に位置するように順に重ねて、該ガラスを真空ラミネーターの熱盤と接触するようにセットし、熱盤温度145℃、真空引き4分、プレス1分、保持時間10分の条件で真空ラミネートを行った。このとき、取り出し電極付きストリングスはガラス面がセル表面側になるようにセットした。 Next, 190 mm × 190 mm 3.2 mm thick white plate heat-treated glass for solar cells manufactured by Asahi Glass Co., Ltd., 190 mm × 190 mm 500 μm thick EVA sheet (vinyl acetate copolymerization ratio: 28 mol%), prepared strings with extraction electrodes, 190 mm × A 190 mm 500 μm thick EVA sheet, a laminate cut into 190 mm × 190 mm, stacked in order so that the P2 layer side surface is located on the EVA side, and set the glass in contact with the hot platen of the vacuum laminator, Vacuum laminating was carried out under the conditions of a hot platen temperature of 145 ° C., vacuuming for 4 minutes, pressing for 1 minute, and holding time of 10 minutes. At this time, the strings with extraction electrodes were set so that the glass surface was on the cell surface side.
 (8-2)太陽電池の耐久性
 前記(8-1)項で作製した太陽電池を10個準備し、85℃85%RHに調整した恒温恒湿槽(エスペック(株)製)で4000hr処理した後、ラミネートした太陽電池裏面保護用シートに剥離が発生していないかを目視で確認を行った。太陽電池の耐久性は、10個の太陽電池のうち、目視でシートが剥離しているものが何個あるかについて確認し、以下のように判定を行った。
全ての太陽電池で剥離が発生していない場合:A
作製した太陽電池のうち1個以上4個未満の太陽電池からシートが剥離していた場合:B
作製した太陽電池のうち4個以上8個未満の太陽電池からシートが剥離していた場合:C
作製した太陽電池のうち8個以上シートが太陽電池から剥離していた場合:D
 太陽電池の耐久性はA~Cが良好であり、その中でもAが最も優れている。
(8-2) Durability of Solar Cell Ten solar cells prepared in the above section (8-1) were prepared and treated for 4000 hr in a constant temperature and humidity chamber (manufactured by ESPEC Corporation) adjusted to 85 ° C. and 85% RH. Then, it was visually confirmed whether or not peeling occurred on the laminated solar cell back surface protection sheet. The durability of the solar cell was determined as follows by checking how many of the 10 solar cells had the sheet peeled off visually.
When peeling does not occur in all solar cells: A
When the sheet is peeled from one or more than four solar cells among the produced solar cells: B
When sheets are peeled from 4 or more and less than 8 solar cells among the produced solar cells: C
When 8 or more sheets of the produced solar cells are peeled from the solar cells: D
The durability of the solar cell is good from A to C, and among them, A is the best.
 以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not necessarily limited thereto.
 (P1層に用いるポリエステル系樹脂原料)
 1.PET原料A(PET-A)
 テレフタル酸ジメチル100質量部、エチレングリコール57.5質量部、酢酸マグネシウム2水和物0.03質量部、三酸化アンチモン0 .03質量部を150℃、窒素雰囲気下で溶融した。この溶融物を撹拌しながら230℃まで3時間かけて昇温し、メタノールを留出させ、エステル交換反応を終了した。エステル交換反応終了後、リン酸0.005質量部をエチレングリコール0.5質量部に溶解したエチレングリコール溶液(pH5.0)を添加した。このときのポリエステル組成物の固有粘度は0.2未満であった。
この後、重合反応を最終到達温度285℃、真空度0.1Torrで行い、固有粘度0.52、末端カルボキシル基量が15当量/トンのポリエチレンテレフタレートを得た。得られたポリエチレンテレフタレートを160℃で6時間乾燥、結晶化させた。
その後、220℃、真空度0.3Torr、8時間の固相重合を行い、固有粘度0.80、末端カルボキシル基量が10当量/トンのポリエチレンテレフタレート(PET-A)を得た。得られたポリエチレンテレフタレート組成物のガラス転移温度は82℃、融点は255℃であった。
(Polyester resin material used for P1 layer)
1. PET raw material A (PET-A)
100 parts by mass of dimethyl terephthalate, 57.5 parts by mass of ethylene glycol, 0.03 parts by mass of magnesium acetate dihydrate, 0. 03 parts by mass were melted at 150 ° C. in a nitrogen atmosphere. While stirring this melt, the temperature was raised to 230 ° C. over 3 hours to distill methanol, and the transesterification reaction was completed. After completion of the transesterification reaction, an ethylene glycol solution (pH 5.0) in which 0.005 parts by mass of phosphoric acid was dissolved in 0.5 parts by mass of ethylene glycol was added. The intrinsic viscosity of the polyester composition at this time was less than 0.2.
Thereafter, the polymerization reaction was performed at a final temperature of 285 ° C. and a degree of vacuum of 0.1 Torr to obtain polyethylene terephthalate having an intrinsic viscosity of 0.52 and a terminal carboxyl group amount of 15 equivalents / ton. The obtained polyethylene terephthalate was dried and crystallized at 160 ° C. for 6 hours.
Thereafter, solid phase polymerization was performed at 220 ° C. and a vacuum degree of 0.3 Torr for 8 hours to obtain polyethylene terephthalate (PET-A) having an intrinsic viscosity of 0.80 and a terminal carboxyl group amount of 10 equivalents / ton. The obtained polyethylene terephthalate composition had a glass transition temperature of 82 ° C. and a melting point of 255 ° C.
 2.PET原料B(PET-B)
 重合反応の最終到達温度290℃とした以外はPET原料Aと同様に行い、固有粘度0.79、末端カルボキシル基量が15当量/トンのポリエチレンテレフタレート(PET-B)を得た。
2. PET raw material B (PET-B)
A polyethylene terephthalate (PET-B) having an intrinsic viscosity of 0.79 and a terminal carboxyl group content of 15 equivalents / ton was obtained except that the final temperature of the polymerization reaction was 290 ° C.
 3.PET原料C(PET-C)
 固相重合の時間を10時間とした以外はPET原料Aと同様に行い、固有粘度0.85、末端カルボキシル基量が13当量/トンのポリエチレンテレフタレート(PET-C)を得た。
3. PET raw material C (PET-C)
A polyethylene terephthalate (PET-C) having an intrinsic viscosity of 0.85 and a terminal carboxyl group amount of 13 equivalents / ton was obtained except that the solid phase polymerization time was 10 hours.
 4.PET原料D(PET-D)
 重合反応の最終到達温度295℃とした以外はPET原料Aと同様に行い、固有粘度0.77、末端カルボキシル基量が20当量/トンのポリエチレンテレフタレート(PET-D)を得た。
4). PET raw material D (PET-D)
Except that the final temperature of the polymerization reaction was 295 ° C., the same procedure as for PET raw material A was carried out to obtain polyethylene terephthalate (PET-D) having an intrinsic viscosity of 0.77 and a terminal carboxyl group amount of 20 equivalents / ton.
 5.PET原料E(PET-E)
 反応触媒として酢酸マグネシウムの代わりに酢酸マンガン4水和物0.03質量部、エステル交換反応終了後、リン酸0.005質量部とリン酸二水素ナトリウム2水和物0.021質量部を添加した以外はPET原料Aと同様に行い、固有粘度0.80、末端カルボキシル基量が10当量/トンのポリエチレンテレフタレート(PET-E)を得た。
5. PET raw material E (PET-E)
As a reaction catalyst, 0.03 parts by mass of manganese acetate tetrahydrate instead of magnesium acetate, and after completion of the transesterification, 0.005 parts by mass of phosphoric acid and 0.021 parts by mass of sodium dihydrogen phosphate dihydrate were added. Except that, polyethylene terephthalate (PET-E) having an intrinsic viscosity of 0.80 and a terminal carboxyl group amount of 10 equivalents / ton was obtained.
 6.PET原料F(PET-F)
重合反応の最終到達温度300℃とした以外はPET原料Aと同様に行い、固有粘度0.75、末端カルボキシル基量が28当量/トンのポリエチレンテレフタレート(PET-F)を得た。
6). PET raw material F (PET-F)
A polyethylene terephthalate (PET-F) having an intrinsic viscosity of 0.75 and a terminal carboxyl group content of 28 equivalents / ton was obtained except that the final temperature of the polymerization reaction was 300 ° C.
 7.PET原料Aベース酸化チタンマスター
 上記1.項によって得られたPET樹脂A(PET-A)100質量部と、平均粒子径210nmのルチル型酸化チタン粒子100質量部を、ベントした290℃の押出機内で溶融混練し、酸化チタン原料(PETa-TiO)を作製した。
7). PET raw material A base titanium oxide master 100 parts by mass of PET resin A (PET-A) obtained according to the above and 100 parts by mass of rutile-type titanium oxide particles having an average particle diameter of 210 nm were melt-kneaded in a vented 290 ° C. extruder, and a titanium oxide raw material (PETa -TiO 2) was prepared.
 8.PET原料Bベース酸化チタンマスター
 上記2.項によって得られたPET樹脂B(PET-B)100質量部と、平均粒子径210nmのルチル型酸化チタン粒子100質量部を、ベントした290℃の押出機内で溶融混練し、酸化チタン原料(PETb-TiO)を作製した。
8). PET raw material B-based titanium oxide master 2. 100 parts by mass of PET resin B (PET-B) obtained according to the above and 100 parts by mass of rutile titanium oxide particles having an average particle diameter of 210 nm were melt-kneaded in a vented 290 ° C. extruder, and a titanium oxide raw material (PETb -TiO 2) was prepared.
 9.PET原料Cベース酸化チタンマスター
 上記2.項によって得られたPET樹脂C(PET-C)100質量部と、平均粒子径210nmのルチル型酸化チタン粒子100質量部を、ベントした290℃の押出機内で溶融混練し、酸化チタン原料(PETc-TiO)を作製した。
9. PET raw material C-based titanium oxide master 2. 100 parts by mass of PET resin C (PET-C) obtained according to the above and 100 parts by mass of rutile-type titanium oxide particles having an average particle diameter of 210 nm were melt-kneaded in a vented 290 ° C. extruder to obtain a titanium oxide raw material (PETc -TiO 2) was prepared.
 10.PET原料Cベース末端封止剤マスター
 上記3.項によって得られたPET樹脂C(PET-C)100質量部と、ラインケミー社製末端封止剤スタバクゾールP-400を10質量部とを、ベントした290℃の押出機内で溶融混練し、末端封止剤原料(PETc-CDI)を作製した。
10. 2. PET raw material C base terminal sealant master 100 parts by mass of PET resin C (PET-C) obtained according to the above and 10 parts by mass of Rhein Chemie's end-capping agent Stavacuxol P-400 were melt-kneaded in a vented 290 ° C. extruder and end-capped. A stopper material (PETc-CDI) was prepared.
 11.PET原料Aベースカーボン粒子マスター
 上記1.項によって得られたPET樹脂A(PET-A)100質量部と、平均粒子径40nmのカーボン粒子25質量部を、ベントした290℃の押出機内で溶融混練し、カーボン粒子原料(PETa-CB)を作製した。
11. PET raw material A base carbon particle master 100 parts by mass of PET resin A (PET-A) obtained according to the above and 25 parts by mass of carbon particles having an average particle diameter of 40 nm were melt-kneaded in a vented 290 ° C. extruder to obtain a carbon particle raw material (PETa-CB). Was made.
 12.PET原料Dベース酸化チタンマスター
 上記4.項によって得られたPET樹脂D(PET-D)100質量部と、平均粒子径210nmのルチル型酸化チタン粒子100質量部を、ベントした290℃の押出機内で溶融混練し、酸化チタン原料(PETd-TiO)を作製した。
12 PET raw material D-based titanium oxide master 4. 100 parts by mass of PET resin D (PET-D) obtained according to the above and 100 parts by mass of rutile-type titanium oxide particles having an average particle diameter of 210 nm are melt-kneaded in a vented 290 ° C. extruder to obtain a titanium oxide raw material (PETd -TiO 2) was prepared.
 13.PET原料Eベース酸化チタンマスター
 上記4.項によって得られたPET樹脂E(PET-E)100質量部と、平均粒子径210nmのルチル型酸化チタン粒子100質量部を、ベントした290℃の押出機内で溶融混練し、酸化チタン原料(PETe-TiO)を作製した。
(P2層に用いる樹脂成分)
 1.ポリエステル(A)
 テレフタル酸50質量部、イソフタル酸50質量部、エチレングリコール50質量部、ネオペンチルグリコール30質量部を重合触媒である三酸化アンチモン0.3質量部と酢酸亜鉛0.3質量部とともに窒素パージした反応器に仕込み、水を除去しながら常圧下で190~220℃で12時間重合反応を行い、ポリエステルグリコールを得た。次に、得られたポリエステルグリコールに5-ナトリウムスルホイソフタル酸を5質量部、溶媒としてキシレンを反応器に仕込み、0.2mmHgの減圧下、260℃にてキシレンを留去しつつ、3時間重合させポリエステル樹脂成分を得た。このポリエステル樹脂成分にアンモニア水およびブチルセロソルブを含む水に溶解させポリエステル(A)を含む塗液得た。
13 PET raw material E-based titanium oxide master 4. 100 parts by mass of PET resin E (PET-E) obtained according to the above and 100 parts by mass of rutile titanium oxide particles having an average particle diameter of 210 nm were melt-kneaded in a vented 290 ° C. extruder to obtain a titanium oxide raw material (PETe). -TiO 2) was prepared.
(Resin component used for P2 layer)
1. Polyester (A)
Reaction in which 50 parts by mass of terephthalic acid, 50 parts by mass of isophthalic acid, 50 parts by mass of ethylene glycol, and 30 parts by mass of neopentyl glycol were purged with nitrogen together with 0.3 parts by mass of antimony trioxide as a polymerization catalyst and 0.3 parts by mass of zinc acetate. A polyester glycol was obtained by charging into a vessel and carrying out a polymerization reaction at 190 to 220 ° C. for 12 hours under normal pressure while removing water. Next, 5 parts by mass of 5-sodium sulfoisophthalic acid and xylene as a solvent were charged into the reactor to the polyester glycol obtained, and polymerization was performed for 3 hours while distilling off xylene at 260 ° C. under a reduced pressure of 0.2 mmHg. To obtain a polyester resin component. This polyester resin component was dissolved in water containing ammonia water and butyl cellosolve to obtain a coating solution containing polyester (A).
 2.アクリル変性ポリエステル(A)
 メタクリル酸メチル40質量部、メタクリルアミド10質量部のアクリル樹脂成分合計50質量部を、1.の項で得られたポリエステル(A)を含む水分散体中にアクリル樹脂成分/ポリエステル樹脂成分=50/50の質量比になるように添加した。さらに、重合開始剤として過酸化ベンゾイルを5質量部添加し、窒素パージした反応器の中で70~80℃で3時間重合反応を行い、アクリル変性ポリエステル(A)を含む塗液得た。
2. Acrylic modified polyester (A)
A total of 50 parts by mass of acrylic resin components of 40 parts by mass of methyl methacrylate and 10 parts by mass of methacrylamide are as follows: It added so that it might become a mass ratio of acrylic resin component / polyester resin component = 50/50 in the water dispersion containing polyester (A) obtained by this term. Further, 5 parts by mass of benzoyl peroxide was added as a polymerization initiator, and a polymerization reaction was carried out at 70 to 80 ° C. for 3 hours in a nitrogen purged reactor to obtain a coating liquid containing acrylic modified polyester (A).
 3.アクリル変性ポリエステル(B)
メタクリル酸2-ヒドロキシエチル40部、メタクリル酸グリシジル10部のアクリル樹脂成分合計50質量部を、1.の項で得られたポリエステル(A)を含む水分散体中にアクリル樹脂成分/ポリエステル樹脂成分=50/50の質量比になるように添加した。さらに、重合開始剤として2,2′-アゾビス-(アミジノプロパン)2塩酸塩0.1部添加し、窒素パージした反応器の中で70~80℃で3時間重合反応を行い、アクリル変性ポリエステル(B)を含む塗液得た。
3. Acrylic modified polyester (B)
50 parts by mass of a total of 50 parts by mass of acrylic resin components of 40 parts of 2-hydroxyethyl methacrylate and 10 parts of glycidyl methacrylate. It added so that it might become a mass ratio of acrylic resin component / polyester resin component = 50/50 in the water dispersion containing polyester (A) obtained by this term. Further, 0.1 part of 2,2'-azobis- (amidinopropane) dihydrochloride as a polymerization initiator was added, and the polymerization reaction was carried out at 70 to 80 ° C. for 3 hours in a nitrogen purged reactor. A coating solution containing (B) was obtained.
 4.ウレタン(A)
 還流冷却管、窒素導入管、温度計、攪拌機を備えた4つ口フラスコ中に、ポリイソシアネート化合物としてイソホロンジイソシアネートを70質量部、ポリオール化合物としてビスフェノールAのエチレンオキサイド付加ジオールを15質量部、ジエチレングリコールを15質量部、溶媒として、アセトニトリル60質量部、N-メチルピロリドン30質量部とを仕込んだ。次に窒素雰囲気下で、反応液温度を75~80℃に調整して、反応触媒としてオクチル酸第1錫を0.06質量部加え、7時間反応させた。次いで、これを30℃まで冷却し、イソシアネート基末端ポリエーテルウレタン樹脂を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水を添加し25℃に調整して、2000rpmで攪拌混合しながら、イソシアネート基末端ポリエーテルウレタン樹脂を添加して水分散した。その後、減圧下で、アセトニトリルおよび水の一部を除去することにより、ポリエーテルウレタン樹脂からなるウレタン樹脂(A)を含む塗液を調製した。
4). Urethane (A)
In a four-necked flask equipped with a reflux condenser, a nitrogen inlet tube, a thermometer, and a stirrer, 70 parts by mass of isophorone diisocyanate as a polyisocyanate compound, 15 parts by mass of an ethylene oxide addition diol of bisphenol A as a polyol compound, and diethylene glycol 15 parts by mass, 60 parts by mass of acetonitrile and 30 parts by mass of N-methylpyrrolidone were charged as a solvent. Next, under a nitrogen atmosphere, the temperature of the reaction solution was adjusted to 75 to 80 ° C., and 0.06 parts by mass of stannous octylate as a reaction catalyst was added and reacted for 7 hours. Subsequently, this was cooled to 30 degreeC and the isocyanate group terminal polyether urethane resin was obtained. Next, to a reaction vessel equipped with a homodisper capable of high-speed stirring, water was added and adjusted to 25 ° C., and an isocyanate group-terminated polyether urethane resin was added and dispersed in water while stirring and mixing at 2000 rpm. Then, the coating liquid containing the urethane resin (A) which consists of polyether urethane resin was prepared by removing a part of acetonitrile and water under reduced pressure.
 5.ウレタン(B)
 4.と同様の方法で、ポリイソシアネート化合物としてトルエンジイソシアネート70質量部と、ポリオール化合物として1,6-ヘキサンジオール30質量部、ネオペンチルグリコール10質量部、セバシン酸60質量部とテトラブチルチタネート0.00001部を仕込み、窒素気流下、220℃で24時間反応させて得られたポリエステルポリオール28質量部、鎖伸長剤として1,4-ブタンジオール2質量部を反応させて得られたポリエステルウレタン樹脂からなるウレタン樹脂(B)を含む塗液を調製した。
5. Urethane (B)
4). In the same manner, 70 parts by mass of toluene diisocyanate as the polyisocyanate compound, 30 parts by mass of 1,6-hexanediol, 10 parts by mass of neopentyl glycol, 60 parts by mass of sebacic acid and 0.00001 part of tetrabutyl titanate as the polyol compound. A urethane comprising a polyester urethane resin obtained by reacting 28 parts by mass of a polyester polyol obtained by reacting at 220 ° C. for 24 hours under a nitrogen stream and 2 parts by mass of 1,4-butanediol as a chain extender. A coating liquid containing the resin (B) was prepared.
 6.ウレタン(C)
 DIC株式会社製ポリカーボネートウレタン樹脂塗液ハイドランWLS-213を用いた。
6). Urethane (C)
DIC Corporation polycarbonate urethane resin coating solution Hydran WLS-213 was used.
 7.メラミン
 株式会社三和ケミカル製メラミン樹脂塗液ニカラックMW12LFを用いた。
7). Melamine A melamine resin coating solution Nikalac MW12LF manufactured by Sanwa Chemical Co., Ltd. was used.
 8.オキサゾリン
 株式会社日本触媒製オキサゾリン樹脂塗液エポクロスWS-500を用いた。
8). Oxazoline Oxazoline resin coating solution Epocros WS-500 manufactured by Nippon Shokubai Co., Ltd. was used.
 (P2層を形成する塗剤組成物)
 純水を希釈溶剤として塗剤組成物中の全体の固形分濃度が17質量%となるようにし、P2層を形成する各塗剤組成物の成分を表に記載の固形分重量部となるように、前項に記載の方法で作製したP2層の樹脂成分を混合した後、互応化学工業株式会社製界面活性剤プラスコートRY-2を、個々の塗剤重量に対して0.06質量%の割合となるように配合し、P2層を形成する塗剤組成物を調製した。また得られた塗剤組成物は全て28℃の環境下で保管し、調製後2日間以内にP1層への塗布を行い使用した。
(Coating composition for forming the P2 layer)
Using pure water as a diluent solvent, the total solid content in the coating composition is 17% by mass, and the components of each coating composition forming the P2 layer are solid parts by weight described in the table. In addition, after mixing the resin component of the P2 layer produced by the method described in the previous section, a surfactant plus coat RY-2 manufactured by Kyoyo Chemical Industry Co., Ltd. was added in an amount of 0.06% by mass with respect to the weight of each coating agent. The coating composition which mix | blends so that it may become a ratio and forms P2 layer was prepared. All of the obtained coating compositions were stored in an environment of 28 ° C. and applied to the P1 layer within 2 days after preparation.
 (実施例1)
 180℃で2時間真空乾燥したPET原料A(PET-A)とPET原料Aベース酸化チタンマスター(PETa-TiO)を、粒子量が表の濃度となるように調合し280℃の押出機内で溶融混練し、Tダイ口金に導入した。次いで、Tダイ口金よりシート状に溶融押出して表面温度25℃に保たれたドラム上に静電印加法で密着冷却固化させて、未延伸シートを得た。
続いて、該未延伸シートを80℃の温度に加熱したロール群で予熱した後、88℃の温度に加熱したロールと25℃の温度に調整したロール間で3倍の速度差をつけることで長手方向(縦方向)に3倍に延伸した後、25℃の温度のロール群で冷却して一軸延伸シートを得た。
次いで、一軸延伸したシートにコロナ処理を施した後、前項に従い、表に記載の重量比となるように調製したP2層を形成する塗剤組成物を#8のメタリングバーにて塗布した。
更に、得られた一軸延伸シートの両端をクリップで把持しながら、テンター内の80℃の温度に設定した予熱ゾーンに導き、引き続き、連続的に90℃に保たれた加熱ゾーンで長手方向に直角な方向(幅方向)に3.5倍に延伸した。さらに引き続いて、テンター内の熱処理ゾーンに導き、220℃で20秒間の熱処理を施し、さらに220℃で幅方向に4%の弛緩処理を行った。次いで均一に徐冷を行い、全体厚みが125μmの積層体を製膜した。
(Example 1)
PET raw material A (PET-A) and PET raw material A-based titanium oxide master (PETa-TiO 2 ), which were vacuum-dried at 180 ° C. for 2 hours, were prepared so that the amount of particles was the concentration shown in the table, and then placed in an extruder at 280 ° C. It was melt-kneaded and introduced into a T die die. Subsequently, it was melt-extruded into a sheet form from a T-die die and adhered and cooled and solidified by an electrostatic application method on a drum maintained at a surface temperature of 25 ° C. to obtain an unstretched sheet.
Subsequently, after preheating the unstretched sheet with a roll group heated to a temperature of 80 ° C., a three-fold speed difference is created between the roll heated to a temperature of 88 ° C. and the roll adjusted to a temperature of 25 ° C. After stretching 3 times in the longitudinal direction (longitudinal direction), it was cooled with a roll group at a temperature of 25 ° C. to obtain a uniaxially stretched sheet.
Next, after the corona treatment was applied to the uniaxially stretched sheet, the coating composition for forming the P2 layer prepared so as to have the weight ratio shown in the table according to the previous section was applied with a # 8 metalling bar.
Further, while holding the both ends of the obtained uniaxially stretched sheet with clips, it is led to a preheating zone set at a temperature of 80 ° C. in the tenter, and subsequently perpendicularly to the longitudinal direction in a heating zone kept at 90 ° C. The film was stretched 3.5 times in one direction (width direction). Subsequently, it was led to a heat treatment zone in the tenter, subjected to heat treatment at 220 ° C. for 20 seconds, and further subjected to a relaxation treatment of 4% in the width direction at 220 ° C. Then, it was gradually cooled gradually to form a laminate having an overall thickness of 125 μm.
 得られた積層体からP1層を分離してポリマー特性を測定したところ表の通り、固有粘度IVは0.68dl/g、末端カルボキシル基量は15当量/トンであり、P1層にはMg元素が33ppm、Sb元素が241ppm含まれていた。またP2層の特性評価を行ったところ表面エネルギーは極性力が7.9mN/m、水素結合力が3.8mN/mであり、厚みは0.6μmであった。 When the P1 layer was separated from the obtained laminate and the polymer properties were measured, as shown in the table, the intrinsic viscosity IV was 0.68 dl / g, the amount of terminal carboxyl groups was 15 equivalents / ton, and the P1 layer contained Mg element. Contained 33 ppm and Sb element contained 241 ppm. When the characteristics of the P2 layer were evaluated, the surface energy was 7.9 mN / m in polar force, 3.8 mN / m in hydrogen bonding force, and the thickness was 0.6 μm.
 得られた積層体について、太陽電池用封止材との密着性評価を行った。その結果、表に示す通り、非常に優れた初期密着性と密着保持性を有する積層体であることがわかった。また得られた積層体は太陽電池裏面保護用シートとして優れた耐湿熱性と、良好な耐紫外線性を有し、搭載した太陽電池は優れた耐久性を有することがわかった。 The obtained laminate was evaluated for adhesion to the solar cell encapsulant. As a result, as shown in the table, it was found that the laminate had very excellent initial adhesion and adhesion retention. Moreover, it was found that the obtained laminate had excellent heat and heat resistance as a solar cell back surface protection sheet and good ultraviolet resistance, and the mounted solar cell had excellent durability.
 (実施例2~5)
 表に記載の通り、P1層のポリエステル樹脂成分を変更した以外は、実施例1と同様に積層体を得た。この際、実施例5のみ押出時に押出機のトルクが高くなったが問題ない範囲であった。また得られた積層体のP1層のポリマー特性、及びP2層の特性は表の通りであった。
(Examples 2 to 5)
As described in the table, a laminate was obtained in the same manner as in Example 1 except that the polyester resin component of the P1 layer was changed. At this time, only in Example 5, the torque of the extruder increased during the extrusion, but it was in the range where there was no problem. Moreover, the polymer characteristic of P1 layer of the obtained laminated body and the characteristic of P2 layer were as Table.
 得られた積層体の太陽電池用封止材との密着性は表の通り、実施例1に比べて初期密着性はP1層の末端カルボキシル基量増加に伴い低下したが優れた範囲であった。また密着保持性については実施例1に比べてP1層の末端カルボキシル基量変化に伴い低下するが良好な範囲であった。また太陽電池裏面保護用シートとしての耐湿熱性はP1層の末端カルボキシル基量増加に伴い低下したが良好な範囲であり、太陽電池の耐久性についてもP1層の末端カルボキシル基量増加に伴い低下したが良好な範囲であった。 As shown in the table, the adhesion of the obtained laminate to the solar cell encapsulant was excellent as compared to Example 1, although the initial adhesion decreased as the amount of terminal carboxyl groups in the P1 layer increased. . In addition, the adhesion retention was in a favorable range, although it decreased with changes in the amount of terminal carboxyl groups in the P1 layer as compared with Example 1. Moreover, although the heat-and-moisture resistance as a solar cell back surface protection sheet fell with the increase in the amount of terminal carboxyl groups of the P1 layer, it was a good range, and the durability of the solar cell also decreased with the increase in the amount of terminal carboxyl groups of the P1 layer. Was in a good range.
 (実施例6~20)
 表に記載の通り、P2層に含まれる樹脂成分の含有量を変更した以外は、実施例1と同様に積層体を得た。得られた積層体のP1層のポリマー特性、及びP2層の特性は表の通りであり、P2層の表面エネルギーはP2層に含まれる樹脂成分、およびその含有量によって変化した。
(Examples 6 to 20)
As described in the table, a laminate was obtained in the same manner as in Example 1 except that the content of the resin component contained in the P2 layer was changed. The polymer properties of the P1 layer and the properties of the P2 layer of the obtained laminate are as shown in the table, and the surface energy of the P2 layer changed depending on the resin component contained in the P2 layer and its content.
 得られた積層体の太陽電池用封止材との密着性は、表の通り、実施例1に比べてP2層の表面エネルギー変化に伴い低下したが、初期密着性及び密着保持性は良好な範囲であった。また太陽電池の耐久性についてもP2層の表面エネルギー変化に伴い低下したが良好な範囲であった。 As shown in the table, the adhesion of the obtained laminate to the solar cell encapsulant decreased with changes in the surface energy of the P2 layer as compared with Example 1, but the initial adhesion and adhesion retention were good. It was in range. The durability of the solar cell was also in a good range although it decreased with the change in the surface energy of the P2 layer.
 (実施例21、22)
 表に記載の通り、塗布時のメタバーを変更し、P2層の厚みを変更した以外は、実施例1と同様に積層体を得た。この際、実施例23は積層体のP2表面に塗布ムラが確認されたが問題ない範囲であった。得られた積層体のP1層のポリマー特性、及びP2層の特性は表の通りであり、P2層の表面エネルギーはP2層の厚みが薄くなると変化した。
(Examples 21 and 22)
As described in the table, a laminate was obtained in the same manner as in Example 1 except that the metabar during coating was changed and the thickness of the P2 layer was changed. At this time, in Example 23, coating unevenness was confirmed on the P2 surface of the laminate, but it was in a range where there was no problem. The polymer properties of the P1 layer and the properties of the P2 layer of the obtained laminate are as shown in the table, and the surface energy of the P2 layer changed as the thickness of the P2 layer was reduced.
 得られた積層体の太陽電池用封止材との密着性は表の通り、実施例1に比べてP2層の厚みの低下に伴い低下したが、初期密着性及び密着保持性は良好な範囲であった。また太陽電池の耐久性についてもP2層の表面エネルギー変化に伴い低下したが良好な範囲であった。 As shown in the table, the adhesion of the obtained laminate to the solar cell encapsulant decreased with a decrease in the thickness of the P2 layer as compared to Example 1, but the initial adhesion and adhesion retention were in a good range. Met. The durability of the solar cell was also in a good range although it decreased with the change in the surface energy of the P2 layer.
 (実施例23~25)
 表に記載の通り、P1層の構成及びポリエステル樹脂成分を変更した以外は、実施例1と同様に積層体を得た。実施例25についてはP1層にPET原料A(PET-A)とPET原料Aベース酸化チタンマスター(PETa-TiO)をP11層及びP12層を別々に表に記載の粒子量となるように混合しておいた原料を2台の押出機でそれぞれ別に溶融混練し、2台の押出機からフィードブロックを介してTダイ口金に導入してP11/P12の積層シートを得て、実施例1と同様にシートを得た。またこの際、P11/P12の積層比が5/1となるように2台の押出機のスクリュー回転数を調整し、P2層はP11層側に塗布を行い作製した。得られた積層体のP1層の特性、及びP2層の特性は表の通りであり、実施例23にはP1層にMn元素69ppm、Na元素29ppmが含まれることが分かった。
(Examples 23 to 25)
As described in the table, a laminate was obtained in the same manner as in Example 1 except that the configuration of the P1 layer and the polyester resin component were changed. For Example 25, the PET raw material A (PET-A) and the PET raw material A-based titanium oxide master (PETa-TiO 2 ) were mixed in the P1 layer separately so that the P11 layer and the P12 layer had the particle amounts shown in the table. The raw materials previously prepared were melted and kneaded separately by two extruders, introduced into the T die die from the two extruders via a feed block, and a P11 / P12 laminated sheet was obtained. Similarly, a sheet was obtained. At this time, the screw speed of the two extruders was adjusted so that the stacking ratio of P11 / P12 was 5/1, and the P2 layer was prepared by coating on the P11 layer side. The properties of the P1 layer and the P2 layer of the obtained laminate are as shown in the table. It was found that Example 23 contained 69 ppm of Mn element and 29 ppm of Na element in the P1 layer.
 得られた積層体の太陽電池用封止材との密着性は、表の通り、非常に優れた初期密着性と密着保持性を有する積層体であることがわかった。中でも実施例23は特に優れた密着保持性を有する積層体であり、太陽電池裏面保護用シートとしての耐湿熱性についても実施例1に比べて非常に優れること、実施例24、25は太陽電池裏面保護用シートとしての耐紫外線性が実施例1に比べて優れることがわかった。また太陽電池の耐久性については実施例1と同様に非常に優れることがわかった。 The adhesion of the obtained laminate to the solar cell encapsulant was found to be a laminate having very excellent initial adhesion and adhesion retention as shown in the table. Among them, Example 23 is a laminate having particularly excellent adhesion retention, and the moisture and heat resistance as a solar cell back surface protection sheet is very superior to that of Example 1, and Examples 24 and 25 are back surfaces of solar cells. It was found that the ultraviolet resistance as a protective sheet was superior to that of Example 1. Further, it was found that the durability of the solar cell was very excellent as in Example 1.
 (比較例1)
 表に記載の通り、P1層のポリエステル樹脂成分を変更した以外は、実施例1と同様に積層体を得た。得られた積層体からP1層を分離してポリマー特性を測定したところ、表の通り、末端カルボキシル基量は35当量/トンであった。
(Comparative Example 1)
As described in the table, a laminate was obtained in the same manner as in Example 1 except that the polyester resin component of the P1 layer was changed. When P1 layer was isolate | separated from the obtained laminated body and the polymer characteristic was measured, the amount of terminal carboxyl groups was 35 equivalent / tons as Table.
 得られた積層体の太陽電池用封止材との密着性は表の通り、非常に優れた初期密着性を有する反面、密着保持性に劣る積層体であることがわかった。また太陽電池の耐久性についても同様に劣ることがわかった。 As shown in the table, the adhesion of the obtained laminate to the solar cell encapsulant was very good initial adhesion, but it was found to be a laminate having poor adhesion retention. Moreover, it turned out that it is similarly inferior also about the durability of a solar cell.
 (比較例2~9)
 表に記載の通り、P2層に含まれる樹脂成分の含有量を変更した以外は、実施例1と同様に積層体を得た。得られた積層体のP2層の特性は表の通り、前記の要件(1)極性力γpが4.8mN/m以上、21.0mN/m以下、及び/または(2)極性力γpと水素結合力γhの差γp-γhが1.0mN/m以上、20.0mN/m以下から外れることがわかった。
(Comparative Examples 2 to 9)
As described in the table, a laminate was obtained in the same manner as in Example 1 except that the content of the resin component contained in the P2 layer was changed. The properties of the P2 layer of the obtained laminate are as shown in the table, and the above requirement (1) Polar force γp is 4.8 mN / m or more and 21.0 mN / m or less, and / or (2) Polar force γp and hydrogen It was found that the difference γp−γh in the binding force γh deviates from 1.0 mN / m to 20.0 mN / m.
 得られた積層体の太陽電池用封止材との密着性は表の通り、P2層の表面エネルギー変化に伴い低下し、初期密着性および/または密着保持性に劣る積層体であることがわかった。また太陽電池の耐久性についても同様に劣ることがわかった。 As shown in the table, the adhesion of the obtained laminate to the solar cell encapsulant decreases with changes in the surface energy of the P2 layer, and it is found that the laminate is inferior in initial adhesion and / or adhesion retention. It was. Moreover, it turned out that it is similarly inferior also about the durability of a solar cell.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
本発明の積層体は太陽電池セルの封止材であるEVAとの密着性、および密着保持性に優れ、太陽電池裏面保護用シートのみならず、工程シートや粘着テープなどの工業材料用途や押出ラミネートや熱ラミネートなどの易接着基材用途として好適に使用することができる。また、かかる積層体を太陽電池に搭載することで、耐久性に優れた太陽電池を提供することができる。 The laminate of the present invention is excellent in adhesion to EVA that is a sealing material for solar cells, and adhesion retention, and is used not only for solar cell back surface protection sheets but also for industrial materials such as process sheets and adhesive tapes and extrusion. It can be suitably used as an easy-adhesive substrate application such as laminating or heat laminating. Moreover, the solar cell excellent in durability can be provided by mounting this laminated body in a solar cell.
1:太陽電池裏面保護用シート
2:封止材
3:発電素子
4:透明基板
5:太陽電池バックシートの封止材2側の面
6:太陽電池バックシートの封止材2と反対側の面
1: Solar cell back surface protection sheet 2: Sealing material 3: Power generation element 4: Transparent substrate 5: Surface on the sealing material 2 side of the solar cell backsheet 6: On the side opposite to the sealing material 2 of the solar cell backsheet surface

Claims (10)

  1.  末端カルボキシル基量が25当量/トン以下であるポリエステル樹脂を主成分とする基材層(P1層)と易接着層(P2層)を有し、前記のP2層が次の要件(1)および(2)を満たすことを特徴とする積層体。
    (1)極性力γpが4.8mN/m以上、21.0mN/m以下
    (2)極性力γpと水素結合力γhの差γp-γhが1.0mN/m以上、20.0mN/m以下
    It has the base material layer (P1 layer) which has the polyester resin whose terminal carboxyl group amount is 25 equivalent / tons or less as a main component, and an easily bonding layer (P2 layer), The said P2 layer has the following requirements (1) and The laminated body characterized by satisfying (2).
    (1) Polar force γp is 4.8 mN / m or more and 21.0 mN / m or less (2) Difference γp−γh between polar force γp and hydrogen bonding force γh is 1.0 mN / m or more and 20.0 mN / m or less
  2. P2層の水素結合力γhが1.0mN/m以上、4.5mN/m以下であることを特徴とする請求項1に記載の積層体。 The layered product according to claim 1, wherein hydrogen bond strength γh of the P2 layer is 1.0 mN / m or more and 4.5 mN / m or less.
  3. P2層がウレタン樹脂成分、メラミン樹脂成分、オキサゾリン樹脂成分の3成分を含むことを特徴とする請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the P2 layer contains three components of a urethane resin component, a melamine resin component, and an oxazoline resin component.
  4.  P2層に含まれるウレタン樹脂成分が脂環構造を有することを特徴とする請求項3に記載の積層体。 4. The laminate according to claim 3, wherein the urethane resin component contained in the P2 layer has an alicyclic structure.
  5.  P2層がさらにポリエステル樹脂成分を含むことを特徴とする請求項3または4に記載の積層体。 The laminate according to claim 3 or 4, wherein the P2 layer further contains a polyester resin component.
  6.  前記P2層に含まれるポリエステル樹脂成分がアクリル変性されたポリエステル樹脂成分であることを特徴とする請求項5に記載の積層体。 6. The laminate according to claim 5, wherein the polyester resin component contained in the P2 layer is an acrylic-modified polyester resin component.
  7.  P2層が、ウレタン樹脂、メラミン樹脂、エポキシ樹脂を含む塗剤組成物から形成される層であり、前記塗剤組成物中、ウレタン樹脂が固形分重量で10質量%以上40質量%以下含有しており、メラミン樹脂が固形分重量で1質量%以上20質量%以下含有しており、オキサゾリン樹脂が固形分重量で1質量%以上25%質量含有することを特徴とする請求項3~6のいずれかに記載の積層体。 The P2 layer is a layer formed from a coating composition containing a urethane resin, a melamine resin, and an epoxy resin. In the coating composition, the urethane resin contains 10% by mass or more and 40% by mass or less in terms of solid weight. The melamine resin is contained in an amount of 1% by mass to 20% by mass in terms of solid content, and the oxazoline resin is contained in an amount of 1% by mass to 25% by mass in terms of solid content. The laminated body in any one.
  8.  P1層が、Mn元素およびNa元素を含有することを特徴とする請求項1~7のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the P1 layer contains Mn element and Na element.
  9.  請求項1~8のいずれかに記載の積層体を用いた太陽電池裏面保護用シート。 A solar cell back surface protection sheet using the laminate according to any one of claims 1 to 8.
  10.  請求項1~8のいずれかに記載の積層体を搭載した太陽電池。 A solar cell on which the laminate according to any one of claims 1 to 8 is mounted.
PCT/JP2015/075776 2014-09-29 2015-09-11 Layered product WO2016052133A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015545567A JPWO2016052133A1 (en) 2014-09-29 2015-09-11 Laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-198077 2014-09-29
JP2014198077 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016052133A1 true WO2016052133A1 (en) 2016-04-07

Family

ID=55630176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075776 WO2016052133A1 (en) 2014-09-29 2015-09-11 Layered product

Country Status (3)

Country Link
JP (1) JPWO2016052133A1 (en)
TW (1) TW201613763A (en)
WO (1) WO2016052133A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018010955A (en) * 2016-07-13 2018-01-18 大日本印刷株式会社 Backside protection sheet for solar battery module and solar battery module arranged by use thereof
JP2018199756A (en) * 2017-05-25 2018-12-20 住友化学株式会社 Adhesive composition and polarizing plate
WO2021054359A1 (en) * 2019-09-17 2021-03-25 テルモ株式会社 Medical instrument
WO2023243692A1 (en) * 2022-06-16 2023-12-21 東レ株式会社 Multilayer film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06255056A (en) * 1993-03-09 1994-09-13 Toray Ind Inc Laminated polyester film
JP2003226851A (en) * 2001-11-29 2003-08-15 Daicel Chem Ind Ltd Heat-sensitive adhesive laminate and method for producing the same
JP2003246033A (en) * 2002-02-22 2003-09-02 Toray Ind Inc Laminated polyester film and its production method
JP2012054289A (en) * 2010-08-31 2012-03-15 Mitsubishi Plastics Inc Rear surface protection sheet for solar cell module
JP2012206721A (en) * 2012-07-17 2012-10-25 Mitsubishi Engineering Plastics Corp Panel structure having window
JP2013026530A (en) * 2011-07-25 2013-02-04 Mitsubishi Plastics Inc Polyester film for solar cell backside sealing material
JP2014065882A (en) * 2012-09-04 2014-04-17 Toray Ind Inc Polyester film, and solar battery back sheet and solar battery using the film
JP2014075508A (en) * 2012-10-05 2014-04-24 Toray Ind Inc Sheet for solar cell back protection
JP2014097595A (en) * 2012-11-14 2014-05-29 Toray Ind Inc Laminate film and heat shielding member using the same
JP2014188937A (en) * 2013-03-28 2014-10-06 Toray Ind Inc Laminated film and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06255056A (en) * 1993-03-09 1994-09-13 Toray Ind Inc Laminated polyester film
JP2003226851A (en) * 2001-11-29 2003-08-15 Daicel Chem Ind Ltd Heat-sensitive adhesive laminate and method for producing the same
JP2003246033A (en) * 2002-02-22 2003-09-02 Toray Ind Inc Laminated polyester film and its production method
JP2012054289A (en) * 2010-08-31 2012-03-15 Mitsubishi Plastics Inc Rear surface protection sheet for solar cell module
JP2013026530A (en) * 2011-07-25 2013-02-04 Mitsubishi Plastics Inc Polyester film for solar cell backside sealing material
JP2012206721A (en) * 2012-07-17 2012-10-25 Mitsubishi Engineering Plastics Corp Panel structure having window
JP2014065882A (en) * 2012-09-04 2014-04-17 Toray Ind Inc Polyester film, and solar battery back sheet and solar battery using the film
JP2014075508A (en) * 2012-10-05 2014-04-24 Toray Ind Inc Sheet for solar cell back protection
JP2014097595A (en) * 2012-11-14 2014-05-29 Toray Ind Inc Laminate film and heat shielding member using the same
JP2014188937A (en) * 2013-03-28 2014-10-06 Toray Ind Inc Laminated film and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018010955A (en) * 2016-07-13 2018-01-18 大日本印刷株式会社 Backside protection sheet for solar battery module and solar battery module arranged by use thereof
JP2018199756A (en) * 2017-05-25 2018-12-20 住友化学株式会社 Adhesive composition and polarizing plate
WO2021054359A1 (en) * 2019-09-17 2021-03-25 テルモ株式会社 Medical instrument
CN114364724A (en) * 2019-09-17 2022-04-15 泰尔茂株式会社 Medical instrument
CN114364724B (en) * 2019-09-17 2024-01-12 泰尔茂株式会社 Medical apparatus and instruments
WO2023243692A1 (en) * 2022-06-16 2023-12-21 東レ株式会社 Multilayer film

Also Published As

Publication number Publication date
JPWO2016052133A1 (en) 2017-07-06
TW201613763A (en) 2016-04-16

Similar Documents

Publication Publication Date Title
JP5145479B2 (en) Laminated polyester film for solar cell back surface protective film
JP4849189B2 (en) POLYESTER FILM, SOLAR CELL BACK SHEET USING SAME, SOLAR CELL, AND METHOD FOR PRODUCING THEM
JP6051868B2 (en) Laminated sheet and method for producing the same
JPWO2007040039A1 (en) Sealing film for solar cell module and solar cell module
JP6743698B2 (en) Film for solar cell back sheet, solar cell back sheet using the same, and solar cell
WO2016052133A1 (en) Layered product
JP2014075508A (en) Sheet for solar cell back protection
WO2015182282A1 (en) Polyester film for solar cell back sheets
WO2018034117A1 (en) Laminate, solar cell rear surface protection sheet using same, and solar cell module
WO2015098520A1 (en) Sheet for solar cell backside protection
JP5614298B2 (en) Laminated polyester film for solar battery backsheet
JP2015188015A (en) Laminate polyester film for solar battery backside protection, solar battery backside protective sheet, and solar battery module
JP2017212438A (en) Back sheet for solar battery module and solar battery module
JP2013055270A (en) Laminate sheet and solar cell using the same
JP2017157831A (en) Solar battery backside protection sheet
JP2017157730A (en) Polyester film for solar battery back sheet
JP2016111037A (en) Solar battery back protection sheet, and solar cell using the same
JP2018083873A (en) Polyester film, and solar cell back sheet and solar cell comprising the same
JP2013028058A (en) Laminated polyester film for solar battery back sheet
JP2019171729A (en) Film for solar cell back sheet
JP2016076537A (en) Sheet for solar battery backside protection and method for manufacturing the same
JP2014231147A (en) Solar cell rear surface protective sheet
JP2016213366A (en) Solar battery backside protection sheet
JP2018088508A (en) Solar cell back sheet, solar cell module, and manufacturing method for solar cell module
JP2015044333A (en) Readily adhesive sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015545567

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847666

Country of ref document: EP

Kind code of ref document: A1