WO2013015259A1 - Laminated sheet and method for producing same - Google Patents

Laminated sheet and method for producing same Download PDF

Info

Publication number
WO2013015259A1
WO2013015259A1 PCT/JP2012/068651 JP2012068651W WO2013015259A1 WO 2013015259 A1 WO2013015259 A1 WO 2013015259A1 JP 2012068651 W JP2012068651 W JP 2012068651W WO 2013015259 A1 WO2013015259 A1 WO 2013015259A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mass
laminated sheet
resin
less
Prior art date
Application number
PCT/JP2012/068651
Other languages
French (fr)
Japanese (ja)
Inventor
塩見篤史
青山滋
巽規行
高橋弘造
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2013015259A1 publication Critical patent/WO2013015259A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/544Torsion strength; Torsion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a laminated sheet capable of achieving both flame retardancy and curl characteristics.
  • the present invention relates to a laminated sheet that can be suitably used as a back sheet for a solar cell, and a method for producing the laminated sheet.
  • a solar cell is composed of a power generation element sealed with a transparent sealing material such as ethylene-vinyl acetate copolymer (EVA), and a transparent substrate such as glass and a resin sheet called a back sheet bonded together.
  • EVA ethylene-vinyl acetate copolymer
  • the Sunlight is introduced into the solar cell through the transparent substrate. Sunlight introduced into the solar cell is absorbed by the power generation element, and the absorbed light energy is converted into electrical energy. The converted electric energy is taken out by a lead wire connected to the power generation element and used for various electric devices.
  • the structure which provides gas barrier property and an electrical property by pasting together various raw materials to the biaxially-stretched polyethylene terephthalate (PET) which is a cheap and high-performance with the back laminate has been examined.
  • the olefin resin is a material generally used as a back sheet because it has good adhesion to the sealing material.
  • Patent Document 1 A configuration in which olefins are laminated on both sides of the polycarbonate (Patent Document 1), and a configuration in which a polycarbonate layer is laminated on a cyclic olefin-based resin ( Patent Document 2) has been proposed.
  • the sheet in which the olefin resin is laminated on both surface layers of the polycarbonate resin has a drawback that the flame retardance is low because the layers made of the olefin resin are provided on both surface layers of the sheet.
  • the whole laminated sheet from the asymmetry of the layer which consists of cyclic olefin-type resin and the layer which consists of polycarbonate-type resin When curled, when used as a solar cell backsheet, there were problems such as causing a positional deviation from the sealing material.
  • the present invention provides a solar cell backsheet that achieves both flame retardancy and curl characteristics.
  • the present invention has the following configuration. That is, a laminated sheet having a layer (P1 layer) having a polycarbonate-based resin as a main component (P1 layer), an adhesive layer (P2 layer), and a layer (P3 layer) having a polyolefin-based resin as a main component,
  • P1 layer has a thickness of T1
  • P2 layer has a thickness of T2
  • P3 layer has a thickness of T3 and satisfies the following formulas (1) and (2) Sheet.
  • a laminated sheet that is superior in flame retardancy and curl characteristics as compared with conventional laminated sheets of olefin resin and polycarbonate resin.
  • Such a laminated sheet can be suitably used for a solar cell backsheet, and a high-performance solar cell can be provided by using the backsheet.
  • the present invention has a layer (P1 layer) mainly composed of polycarbonate-based resin, an adhesive layer (P2 layer), and a layer (P3 layer) mainly composed of polyolefin-based resin.
  • P1 layer mainly composed of polycarbonate-based resin
  • P2 layer an adhesive layer
  • P3 layer a layer mainly composed of polyolefin-based resin.
  • the main component is contained exceeding 50 mass%.
  • the polycarbonate resin which is the main component of the P1 layer, is a polymer obtained by reacting a dihydroxydiaryl compound with a carbonate such as phosgene or diphenyl carbonate.
  • dihydroxydiaryl compounds used in polycarbonate resins include 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A), bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxy Phenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, 2,2-bis (4-hydroxyphenyl) -3-methylphenyl) propane, 1,1-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis ( 4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis
  • a compound having 3 or more phenolic hydroxyl groups may be used for the polycarbonate resin in the present invention.
  • examples thereof include phloroglucin, 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) -heptene, 2,4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl)- Heptane, 1,3,5-tri- (4-hydroxyphenyl) -benzol, 1,1,1-tri- (4-hydroxyphenyl) -ethane and 2,2-bis [4,4- (4,4 And '-dihydroxydiphenyl) -cyclohexyl] -propane.
  • the polycarbonate-based resin which is the main component of the P1 layer is a polycarbonate whose main component is 2,2-bis (4-hydroxyphenyl) propane (commonly referred to as bisphenol A) as a dihydroxydiaryl compound. It is preferable to use a resin based on heat resistance and heat and humidity resistance.
  • the main component referred to here is bisphenol A of 80 mol% or more, more preferably 90 mol% or more, and more preferably 95 mol% or more of all dihydroxydiaryl compounds used in the polycarbonate resin. (In the present specification, the same applies to the main component in the case of other structures).
  • the polycarbonate-based resin that is the main component of the P1 layer is that 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A) as a dihydroxydiaryl compound can further improve heat resistance and moist heat resistance. And more preferable.
  • the P1 layer preferably does not contain a polyolefin-based resin or is less than 3% by mass.
  • the P1 layer polycarbonate resin preferably has a number average molecular weight (Mn) of 10,000 or more and 50,000 or less. More preferably, it is 12000 or more and 40000 or less, More preferably, it is 15000 or more and 30000 or less.
  • the higher the glass transition temperature (Tg) of the P1 layer polycarbonate-based resin the higher the moisture and heat resistance and the heat resistance. It is preferable from the viewpoint of form retention in the sealing step of the laminated sheet in the step of sealing together.
  • the Tg was measured by heating the resin from 25 ° C. to 300 ° C. (1st RUN) at a rate of temperature increase of 20 ° C./min.
  • the differential scanning calorimetry chart of 2ndRUN obtained by rapidly cooling to room temperature or below and then raising the temperature from room temperature to 300 ° C. at a rate of temperature increase of 20 ° C./min.
  • the glass transition temperature Tg is preferably 125 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 135 ° C. or higher, and particularly preferably 140 ° C. or higher.
  • the P1 layer constituting the laminated sheet of the present invention contains inorganic particles in a range of 3% by mass to less than 50% by mass. More preferably, they are 5 mass% or more and 30 mass% or less, More preferably, they are 10 mass% or more and 20 mass% or less.
  • the inorganic particles are used for imparting a necessary function to the sheet depending on the purpose. When it is contained in an amount of 50% by mass or more, handling properties may be deteriorated.
  • examples of inorganic particles that can be suitably used in the present invention include inorganic particles having ultraviolet absorbing ability, particles having a large refractive index difference from polycarbonate resins, conductive particles, pigments, and the like.
  • a particle means a thing with 5 nm or more as a primary particle size by the diameter of the projected equivalent conversion circle
  • the particle size means a primary particle size
  • the particle means a primary particle.
  • the inorganic particles in the present invention for example, gold, silver, copper, platinum, palladium, rhenium, vanadium, osmium, cobalt, iron, zinc, ruthenium, praseodymium, chromium, nickel, aluminum, tin, Metals such as zinc, titanium, tantalum, zirconium, antimony, indium, yttrium, lanthanum, zinc oxide, titanium oxide, cesium oxide, antimony oxide, tin oxide, indium tin oxide, yttrium oxide, lanthanum oxide, zirconium oxide, oxide Metal oxides such as aluminum and silicon oxide, lithium fluoride, magnesium fluoride, aluminum fluoride, metal fluorides such as cryolite, metal phosphates such as calcium phosphate, carbonates such as calcium carbonate, barium sulfate, etc. Sulfate , Talc, kaolin and the like.
  • titanium oxide is preferably used as the inorganic particles in that high reflection characteristics can be imparted, and rutile titanium oxide is more preferably used in terms of higher ultraviolet resistance.
  • the method of causing the polycarbonate resin constituting the P1 layer to contain inorganic particles is preferably a method in which the polycarbonate resin and the inorganic particles are melt-kneaded in advance using a vented biaxial kneading extruder or a tandem extruder.
  • a high-concentration master pellet having a higher inorganic particle content than the amount of inorganic particles contained in the P1 layer is prepared, mixed with a polycarbonate resin, and diluted to obtain a predetermined P1 layer inorganic particle content. Is preferable from the viewpoint of heat and moisture resistance.
  • the P1 layer constituting the laminated sheet of the present invention contains organic particles in the range of 0.1% by mass or more and 20% by mass or less.
  • the organic particles include silicone compounds, crosslinked particles such as crosslinked styrene, crosslinked acryl, and crosslinked melamine, and carbon compounds such as carbon, fullerene, carbon fiber, and carbon nanotube.
  • the ultraviolet absorbing ability of the particles can be utilized for a long time.
  • the effect of the present invention that suppresses the change in color tone can be remarkably exhibited, and the sheet can also have a design property.
  • It is preferably 0.5% by mass or more from the viewpoint of design properties, and is preferably 12% by mass or less from the viewpoint of suppressing thickening during melt extrusion caused by organic particles. More preferably, it is 1 mass% or more and 8 mass% or less.
  • the P1 layer and the P3 layer of the laminated sheet of the present invention may have other additives (for example, a heat stabilizer, an ultraviolet absorber, a weather stabilizer, an organic lubricant, as long as the effects of the present invention are not impaired). Pigments, dyes, fillers, antistatic agents, nucleating agents, etc.
  • the inorganic particles referred to in the present invention may not be implied by the additives herein.
  • an ultraviolet absorber is selected as an additive, it is possible to further improve the ultraviolet resistance of the laminated sheet of the present invention.
  • a benzotriazole type ultraviolet ray it is preferable to contain an absorbent.
  • an antistatic agent or the like an improvement in withstand voltage can be expected.
  • P1 layer in this invention is provided in the surface layer from a flame-retardant viewpoint.
  • an adhesive layer is provided between the P1 layer and the P3 layer.
  • the resin used for the P2 layer is preferably one that adheres to both the P1 and P3 layers.
  • low crystalline soft polymers such as acid-modified polyolefins and unsaturated polyolefins, ethylene-acrylic acid ester-maleic anhydride ternary Examples thereof include acrylic adhesives such as copolymers and ethylene vinyl acetate copolymers.
  • the acid-modified polyolefin examples include “Admer” manufactured by Mitsui Chemicals, Inc. and “Modic” manufactured by Mitsubishi Chemical Corporation as commercially available products.
  • the P2 layer contains a polyolefin-based elastomer in a proportion of 5% by mass or more and 50% by mass or less with respect to the P2 layer from the viewpoint that the interlayer adhesion after the wet heat treatment can be improved.
  • the interlayer adhesion after the wet heat treatment is the delamination strength after the treatment at 120 ° C. and 100% RH for 48 hours, and the details are as described in “Characteristic Evaluation Method F. Item” in the Examples.
  • the polyolefin-based elastomer may be contained according to the required interlayer adhesion, but is preferably 10% by mass or more for improving interlayer adhesion, and is preferably 30% by mass or less from the viewpoint of cost.
  • the polyolefin-based elastomer generally refers to a copolymer obtained by copolymerizing other ⁇ -olefin with polypropylene or polyethylene. Examples of the ⁇ -olefin include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene, and the like.
  • the polyolefin-based elastomer may be a commercially available product, for example, “Thermo Run”, “Zeras” manufactured by Mitsubishi Chemical Corporation, “Excellen”, “Tough Selenium”, “Esplen”, “Hibler” manufactured by Kuraray, Preferred examples include “Septon”, “Notio” manufactured by Mitsui Chemicals, Inc., “ENGAGE” manufactured by Dow Chemical Co., Ltd., and the like.
  • the P2 layer contains the modified styrene thermoplastic elastomer in a proportion of 3% by mass or more and 15% by mass or less with respect to the P2 layer, so that the interlayer adhesion after treatment at 120 ° C. and 100% RH for 48 hours can be improved.
  • the fall of the delamination strength by wet heat processing can be suppressed.
  • the degree to which the decrease in delamination strength due to wet heat treatment is suppressed is determined by the degree of delamination strength after wet heat treatment relative to the initial delamination strength between the P1 and P2 layers and between the P2 and P3 layers.
  • the ratio is determined based on the ratio of decrease, and details are as described in “Characteristic Evaluation Method J. Section” in the Examples. In order to improve interlayer adhesion, it is preferably 5% by mass or more, and preferably 12% by mass or less from the viewpoint of cost.
  • modified styrene thermoplastic elastomer examples include a modified styrene-ethylene-butylene-styrene block copolymer.
  • the modified styrene thermoplastic elastomer may be a commercially available product, for example, “Tuftec” M1913 manufactured by Asahi Kasei Chemicals Corporation.
  • the P3 layer in the present invention is mainly composed of a polyolefin resin.
  • the polyolefin resin in the present invention include polyethylene, polypropylene, polybutene, polymethylpentene, polycycloolefin, polyhexene, polyoctene, polydecene, and polydodecene.
  • polyethylene and polypropylene are preferable because they are easy to process and relatively inexpensive.
  • These polyolefin resins may be mixed and copolymerized with other olefin components. For example, when an ethylene-propylene copolymer or an ethylene-propylene-butene copolymer is used, the crystallinity of the resin can be lowered.
  • the polyolefin resin which comprises P3 layer contains 70 mass% or more of propylene components.
  • the polyolefin resin constituting the P3 layer when a mixture of a plurality of polyolefin resins is used as the polyolefin resin constituting the P3 layer, it is preferable to contain a polyethylene resin as a constituent component in the range of 5% by mass to 30% by mass. Since the polyethylene resin does not contain tertiary carbon, it is less likely to be oxidized than polypropylene resin, and has high durability against deterioration due to oxidation.
  • the component mentioned here is mixed in the P3 layer and is distinguished from the copolymerized component. If the content is less than 5% by mass, the improvement effect is low.
  • mixing of incompatible olefins such as polypropylene and polyethylene may reduce brittleness due to poor dispersion.
  • a compatibilizer for the P3 layer is preferable to include a compatibilizer for the P3 layer.
  • a compatibilizing agent for example, in a combination of polypropylene and polyethylene, an ethylene-ethylene / butylene / ethylene copolymer is preferably used as a compatibilizing agent, and “Dynalon” 6200P manufactured by JSR Corporation is an example of a commercially available product.
  • the compatibilizing agent is preferably contained in the range of 0.1% by mass to 10% by mass. If it is 0.1% by mass or less, the compatibility effect is low, and if it is 10% by mass or more, the adhesion with the sealant may be lowered.
  • polyolefin elastomer may be used as the polyolefin resin that can be used when a mixture of a plurality of polyolefin resins is used.
  • Polyolefin elastomers are those obtained by copolymerizing polypropylene and polyethylene with other ⁇ -olefins.
  • Preferred ⁇ -olefins are 1-butene, 1-pentene, 1-hexene, 1-heptene, 1- Examples include octene, 1-nonene, 1-decene, 1-dodecene and 4-methyl-1-pentene.
  • polyolefin-based elastomers are preferably contained in a proportion of 5% by mass or more and 50% by mass or less with respect to the P3 layer.
  • a polyolefin-based elastomer in addition to the improvement in interlayer adhesion after treatment at 120 ° C. and 100% RH for 48 hours, the rigidity of the P3 layer is reduced, so that the curling of the laminated sheet is improved, which is preferable.
  • P3 layer contains polyolefin-type elastomer, it is preferable also from a viewpoint which can suppress the fall of the delamination strength by wet heat processing.
  • it is 10 mass% or more and 30 mass% or less.
  • the polyolefin-based elastomer may be a commercially available product, for example, “Thermo Run”, “Zeras” manufactured by Mitsubishi Chemical Corporation, “Excellen”, “Tough Selenium”, “Esplen”, “Hibler” manufactured by Kuraray, Preferred examples include “Septon”, “Notio” manufactured by Mitsui Chemicals, Inc., “ENGAGE” manufactured by Dow Chemical Co., Ltd., and the like.
  • the crystal melting energy of the P3 layer is preferably 80 J / g or less. Setting the crystal melting energy within this range is preferable from the viewpoint of reducing curling and improving the adhesion to the sealing material. More preferably, it is 70 J / g or less, More preferably, it is 60 J / g or less.
  • the crystal melting energy refers to the differential scanning calorimeter “Robot DSC-RDC220” manufactured by Seiko Denshi Kogyo Co., Ltd. according to JIS-K7122 (1987 version), and the disk session “SSC / 5200” for data analysis. This is a value obtained from the second run measured using, and the details are as described in “Characteristic Evaluation Method C. Item” in the Examples.
  • the crystal melting energy can be adjusted by copolymerizing other olefin components in the olefin molecular chain or by the stereoregularity of the olefin crystal form.
  • the stereoregularity can be adjusted by a catalyst during polymerization.
  • the copolymer component ⁇ -olefin is preferable as described above, and ethylene-propylene copolymer and ethylene-propylene-butene copolymer are particularly preferable.
  • the stereoregularity of the olefin is preferably atactic.
  • the lower limit of the crystal melting energy is not particularly limited, but most of them are 10 J / g or more when a polyolefin resin is the main component.
  • the melting endothermic peak temperature of the P3 layer in the present invention is preferably 100 ° C. or higher and 150 ° C. or lower. If it is less than 100 ° C, the heat resistance may be inferior. On the other hand, if it exceeds 150 ° C., the adhesiveness to the sealing material may be lowered.
  • the P3 layer has a phase separation structure and exhibits a melting endothermic peak temperature
  • all of them are preferably 100 ° C. or higher and 150 ° C. or lower.
  • the crystal melting energy is The sum of the peaks is preferably 80 J / g or less.
  • the melt flow rate (MFR) (230 ° C.) of the polyolefin resin is preferably from 0.5 to 30. If it is less than 0.5 or more than 30, the fluidity is low, and stacking unevenness or flow marks may occur.
  • the polycarbonate resin is contained in the range of 5% by mass to 25% by mass with respect to the P3 layer.
  • the polycarbonate-based resin within this range, it is possible to minimize a decrease in gas barrier properties and improve flame retardancy and curl characteristics. If it is less than 5% by mass, the effect of improving the flame retardancy is low, and if it exceeds 25% by mass, the gas barrier property and the adhesion to the sealing material may be inferior.
  • the gas barrier property refers to the water vapor permeability obtained by measuring according to the method prescribed in Appendix B of “Water vapor permeability test method for plastic films and sheets (instrument measurement method)” JIS-K7129 (1992 edition).
  • the details are as described in “Characteristic Evaluation Method I. Item” in the Examples.
  • the flame retardancy is a burning rate of the sheet when the sheet is ignited, and details are as described in “Characteristic Evaluation Method G. Item” in the Examples.
  • In view of the adhesion to the sealing material it is preferably 15% by mass or less.
  • the P3 layer constituting the laminated sheet of the present invention preferably contains inorganic particles in the range of 1% by mass to 30% by mass with respect to the P3 layer. More preferably, they are 2 mass% or more and 20 mass% or less, More preferably, they are 3 mass% or more and 10 mass% or less.
  • the inorganic particles are used for imparting a necessary function to the film according to the purpose.
  • inorganic oxides having ultraviolet absorbing ability use metal oxides such as titanium oxide, zinc oxide, and cerium oxide, they are resistant to ultraviolet rays caused by the particles.
  • titanium oxide is preferably used as the inorganic particles in that high reflection characteristics can be imparted
  • rutile titanium oxide is more preferably used in terms of higher ultraviolet resistance.
  • the P3 layer constituting the laminated sheet of the present invention contains organic particles in the range of 0.1% by mass to 20% by mass with respect to the P3 layer. 0.5 mass% or more is preferable from a viewpoint of concealability and design property, and 12 mass% or less is preferable from a viewpoint of the thickening suppression at the time of the melt extrusion resulting from an organic particle. More preferably, it is 1 mass% or more and 8 mass% or less.
  • the organic particles include silicone compounds, crosslinked particles such as crosslinked styrene, crosslinked acryl, and crosslinked melamine, and carbon compounds such as carbon, fullerene, carbon fiber, and carbon nanotube. Further, when carbon is used as the organic particles in the P3 layer, it is particularly preferable because design properties and ultraviolet resistance can be simultaneously imparted.
  • the expressions (1) and (2) when the thickness of the P1 layer is T1, the thickness of the P2 layer is T2, and the thickness of the P3 layer is T3, the expressions (1) and (2) must be satisfied.
  • T2 ⁇ 12 ⁇ m (2) By satisfying the expressions (1) and (2) at the same time, curling of the entire sheet can be suppressed.
  • curl is a total value of the height at which the four corners of the sheet float from the plane when the laminated sheet having a thickness of 27 ⁇ m or more is cut into a 100 mm square and the cut sheet is placed on a flat surface in an unweighted state.
  • the details are as described in “Characteristic Evaluation Method D. Item” in the Examples.
  • T1 / T3 is preferably 15 or less. More preferably, it is 10 or less, More preferably, it is 5 or less, Most preferably, it is 2 or less.
  • T1 / T3 is less than 0.5, the lamination ratio of polyolefin is too large, and the curl becomes large regardless of the thickness of T2.
  • T1 / T3 is preferably 0.6 or more, and most preferably 0.7 or more.
  • curling occurs when T2 is less than 12 ⁇ m. Curling can be reduced by satisfying this range. Furthermore, satisfying the formula (2) also has an effect of improving interlayer adhesion after treatment at 120 ° C. and 100% RH for 48 hours, and further has an effect of suppressing a decrease in delamination strength due to wet heat treatment.
  • the degree to which the decrease in the delamination strength due to the wet heat treatment is suppressed is determined by the delamination strength after the wet heat treatment relative to the initial delamination strength between the P1 layer and the P2 layer and between the P2 layer and the P3 layer. Judgment is made based on the ratio of the degree of decrease, and details are as described in “Characteristic Evaluation Method J. Section” in the Examples.
  • the upper limit of the thickness T2 of the P2 layer is not particularly limited, but is preferably 100 ⁇ m or less for reasons such as production speed. Furthermore, if considering the curling characteristics, delamination strength, production speed, etc., the thickness of the P2 layer is preferably 5% or more and 20% or less, and 15 ⁇ m or more and 60 ⁇ m or less with respect to the total thickness of the laminated sheet. Is preferred. More preferably, it is 20 ⁇ m or more and 40 ⁇ m or less.
  • the delamination strength refers to the strength when peeling with the T-type measured according to JIS-K6854-3 (1999 edition). In view of use outdoors such as a solar cell backsheet, the initial delamination strength and the delamination strength after 120 ° C.
  • RH 48 hr wet heat treatment are both preferably 3 N / 15 mm or more. More preferably, both are 5 N / 15 mm or more, More preferably, both are 8 N / 15 mm or more, Most preferably, both are 10 N / 15 mm or more.
  • the initial delamination strength is determined by the interaction between the release interface resins in addition to the thickness of T2, and the resin may be selected according to the required peel strength.
  • the main component of the P1 layer is polycarbonate. Therefore, the resin constituting the P2 layer should have a high acid value, or a polar functional group should be introduced into the resin. Etc. are effective.
  • the delamination strength after the wet heat treatment at 120 ° C. and 100% RH for 48 hours can suppress a decrease from the initial delamination strength by including the polyolefin elastomer in the P2 layer and the P3 layer in addition to the thickness of T2.
  • the total thickness of the laminated sheet of the present invention is preferably 27 ⁇ m or more and 600 ⁇ m or less, more preferably 30 ⁇ m or more and 450 ⁇ m or less, and most preferably 40 ⁇ m or more and 400 ⁇ m or less.
  • thickness is suitably adjusted within the said range according to the withstand voltage requested
  • the thickness of the laminated sheet of the present invention is less than 27 ⁇ m, the flatness of the sheet may be reduced, or the P2 layer may be too thin, and the effect of improving characteristics due to the inclusion of particles may be reduced. In this case, for example, when used as a solar cell backsheet, the overall thickness of the solar cell may become too thick.
  • the thickness T1 of the P1 layer in the laminated sheet of the present invention is preferably 5 ⁇ m or more and 200 ⁇ m or less, and when used for a solar cell backsheet, it may be determined by a required withstand voltage. Preferably they are 30 micrometers or more and 190 micrometers or less, More preferably, they are 50 micrometers or more and 180 micrometers or less. If it is less than 5 ⁇ m, there is no self-supporting property, and if it exceeds 200 ⁇ m, the overall thickness of the solar battery cell may be too thick.
  • the thickness T3 of the P3 layer in the laminated sheet of the present invention is preferably 10 ⁇ m or more and 400 ⁇ m or less, and when used for a solar cell backsheet, it may be determined by the required water vapor permeability and withstand voltage. Preferably they are 10 micrometers or more and 250 micrometers or less, More preferably, they are 30 micrometers or more and 200 micrometers or less. When the thickness is less than 10 ⁇ m, the adhesiveness with the sealing material is deteriorated, the water vapor permeability is deteriorated, and when the thickness is more than 400 ⁇ m, the entire thickness of the solar battery cell may be too thick.
  • the laminated structure of the laminated sheet in the present invention is at least P1 layer / P2 layer / P3 layer, and the P3 layer is provided on any one of the surface layers.
  • the adhesion to the sealing material is improved.
  • P3 layer is provided in both surface layers, although it is excellent in adhesiveness, since a polyolefin resin is made into a main structural component, a flame retardance is hard to be acquired.
  • P1 layer is provided in both surface layers, although it is excellent in a flame retardance, sufficient adhesiveness with a sealing material cannot be obtained.
  • each of the P1 layer, the P2 layer, and the P3 layer may have a laminated structure, and may have a multilayer structure according to a required function.
  • the laminated sheet of the present invention can be laminated with other films and the like.
  • the P3 layer may have a laminated structure provided on any one of the surface layers.
  • other films include polyester layers for increasing mechanical strength, antistatic layers, adhesion layers with other materials, UV resistant layers for further improving UV resistance, and flame resistance for imparting flame resistance
  • a layer, a hard coat layer for improving impact resistance and scratch resistance, and the like can be arbitrarily selected and used depending on applications.
  • the adhesion to other sheet materials and a sealing material for example, ethylene vinyl acetate
  • an ultraviolet resistant layer, a flame retardant layer, a conductive layer for improving a voltage at which a partial discharge phenomenon, which is an index of insulation, is generated can be used.
  • the laminated sheet of the present invention preferably has a ⁇ b of 10 or less when the P1 layer is used as the incident surface from the viewpoint of ultraviolet resistance.
  • ⁇ b is a value calculated using K0 as the b value measured with the laminated sheet P1 layer before the ultraviolet treatment as the incident surface, and K as the b value measured with the laminated sheet P1 layer after the ultraviolet treatment as the incident surface, Details are as described in “Characteristic Evaluation Method H. Item” in the Examples.
  • Preferably it is 6 or less. More preferably, it is 3 or less.
  • a preferable method is to add 10% by mass or more of inorganic particles to the P1 layer, and ⁇ b can be reduced according to the content of inorganic particles.
  • the laminated sheet of the present invention preferably has a water vapor permeability of 0.0001 g / m 2 ⁇ day to 10 g / m 2 ⁇ day. More preferably, it is 0.0001 g / m 2 ⁇ day or more and 5 g / m 2 ⁇ day or less, and most preferably 0.0001 g / m 2 ⁇ day or more and 3 g / m 2 ⁇ day or less. By setting it as this range, deterioration inside the solar cell due to permeation of gas from the back sheet to the sealing material can be prevented.
  • the water vapor transmission rate is a value obtained by measurement according to the method prescribed in Appendix B of “Test method for water vapor transmission rate of plastic film and sheet (instrument measurement method)” JIS-K7129 (1992). Is as described in “Characteristic Evaluation Method I. Item” in the Examples.
  • the water vapor transmission rate can be adjusted by the total thickness of the P2 layer thickness T2 and the P3 layer thickness T3, and the water vapor transmission rate decreases as the total thickness increases.
  • the manufacturing method of the lamination sheet of the present invention As a method of laminating the P1, P2, and P3 layers in the laminated sheet of the present invention, for example, the P1 layer raw material, the P2 layer raw material, and the P3 layer raw material are respectively charged into three extruders and melted. Co-extrusion onto a cast drum cooled from the die and processing it into a sheet (co-extrusion method), and the raw material of the coating layer is put into an extruder and melt extruded and laminated while extruding from the die.
  • melt laminating method each film is prepared separately, heat-pressed by a heated group of rolls (heat laminating method), method of bonding via an adhesive (adhesion method), and other solvents
  • a method (coating method) of applying and drying the dissolved material, a method combining these, and the like can be used.
  • the coextrusion method is preferred in that the production process is short and the adhesion between the layers is good.
  • the manufacturing method by a coextrusion method is explained in full detail.
  • a composition for P1 layer having a polycarbonate resin as a main constituent, a composition for P2 layer, and a P3 layer having a polyolefin resin as a main constituent are fed to separate extruders and melted respectively.
  • the composition for the P1 layer is 240 ° C. or more and 300 ° C. or less under a nitrogen stream, and the composition for the P2 layer and It is preferable that the composition for the P3 layer is supplied to each of three extruders heated to 180 ° C. or higher and 280 ° C.
  • the P1 layer, the P2 layer, and the P3 layer are joined and laminated in this order, and extruded from the T-die into a sheet shape to form a laminated sheet.
  • the P1 layer, the P2 layer, and the P3 layer are joined and laminated using a multi-manifold die, a feed block, a static mixer, pinol, or the like, and co-extruded from the die.
  • a multi-manifold is preferable from the viewpoint of suppressing lamination unevenness.
  • the laminate sheet of the present invention can be obtained by extruding the laminate sheet discharged from the die by the above method onto a cooling body such as a casting drum and cooling and solidifying it.
  • a composition obtained by mixing a resin obtained by processing the laminated sheet of the present invention into chips or flakes in a range of 5% by mass or more and 50% by mass or less with respect to the composition for P3 layer and a composition for P3 layer It is also possible to do.
  • a known method may be used as a method of processing into a chip shape or flake shape, but it is preferable to form a flake shape without melting and heating as much as possible from the viewpoint of suppressing a decrease in molecular weight and oxidation deterioration.
  • the cooling temperature at the first stage is 50 ° C. or higher, “the glass transition temperature of the polycarbonate resin—10 ° C.”
  • the casting is performed by a calendar method.
  • the drum roll temperature in contact with the P3 layer is set to 15 ° C. or less, the volume shrinkage at the time of olefin cooling solidification is suppressed and the curling of the sheet is reduced. This is preferable.
  • winding a laminated sheet in a roll shape it is preferable from the viewpoint of reducing the curl of the sheet when the P3 layer is wound around the outer surface.
  • the laminated sheet of the present invention obtained by the above-described method may be subjected to processing such as heat treatment or aging as necessary within the range where the effects of the present invention are not impaired.
  • the upper limit of the heat treatment temperature is not more than “glass transition temperature ⁇ 10 ° C.”, more preferably “glass transition temperature ⁇ 30 ° C.” or less, more preferably “less than“ glass transition temperature ”of the resin constituting the P1 layer, from the planarity of the sheet.
  • the glass transition temperature is ⁇ 50 ° C. or lower.
  • the heat treatment time is preferably 5 seconds or more and 30 minutes or less. By heat-treating, the thermal dimensional stability of the laminated sheet of the present invention can be improved.
  • corona treatment or plasma treatment may be performed.
  • the solar cell of the present invention is characterized by using the laminated sheet of the present invention as a back sheet.
  • the laminated sheet of the present invention By using the laminated sheet of the present invention, it becomes possible to increase the durability or to make it thinner as compared to conventional solar cells.
  • An example of the configuration is shown in FIG.
  • a power generating element connected with a lead wire for taking out electricity (not shown in FIG. 1) is sealed with a transparent sealing material 2 such as EVA resin, a transparent substrate 4 such as glass, and the laminate of the present invention.
  • seat is bonded and comprised as the solar cell backsheet 1, it is not limited to this, It can use for arbitrary structures.
  • unit of this invention was shown in FIG. 1, it is also possible to use the composite sheet of the lamination sheet of this invention and another film according to the other required required characteristic.
  • a method of laminating with other films, etc. for example, a method of co-extrusion and processing into a sheet (co-extrusion method), a coating layer raw material is put into an extruder into a sheet made of a single film Then, melt extrusion and laminating while extruding from the die (melt laminating method), making each film separately, thermocompression bonding with heated rolls etc. (thermal laminating method), pasting through adhesive A method of bonding (adhesion method), a method of applying and drying a solution dissolved in a solvent (coating method), a method of combining these, and the like can be used.
  • the above-described solar cell backsheet 1 is installed on the back surface of the sealing material 2 in which the power generating element is sealed.
  • the P3 layer is disposed so as to be positioned on the sealing material 2 side. This is preferable in that the adhesion to the stopper can be further increased.
  • the power generating element 3 converts light energy of sunlight into electric energy, and is based on crystalline silicon, polycrystalline silicon, microcrystalline silicon, amorphous silicon, copper indium selenide, compound semiconductor, dye enhancement Arbitrary elements such as a sensitive system can be used in series or in parallel according to the desired voltage or current depending on the purpose. Since the transparent substrate 4 having translucency is located on the outermost surface layer of the solar cell, a transparent material having high weather resistance, high contamination resistance, and high mechanical strength characteristics in addition to high transmittance is used. In the solar cell of the present invention, the transparent substrate 4 having translucency can be made of any material as long as it satisfies the above characteristics.
  • Examples thereof include glass, tetrafluoroethylene-ethylene copolymer (ETFE), polyfluoride.
  • glass it is more preferable to use a tempered glass.
  • when using the resin-made translucent base material what extended
  • the sealing material 2 for sealing the power generating element covers the surface of the power generating element with resin and fixes it, protects the power generating element from the external environment, and has a light-transmitting base material for the purpose of electrical insulation.
  • a material having high transparency, high weather resistance, high adhesion, and high heat resistance is used to adhere to the backsheet and the power generation element. Examples thereof include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA) resin, ethylene-methacrylic acid copolymer (EMAA), Ionomer resins, polyvinyl butyral resins, and mixtures thereof are preferably used.
  • the solar cell backsheet used in the laminated sheet of the present invention into the solar cell system, it is possible to obtain a highly durable and / or thin solar cell system compared to conventional solar cells. It becomes.
  • the solar cell of the present invention can be suitably used for various applications without being limited to outdoor use and indoor use such as a solar power generation system and a power source for small electronic components.
  • the observation location is determined randomly, the vertical direction of the image is parallel to the thickness direction of the laminated sheet, and the horizontal direction of the image is parallel to the surface direction of the laminated sheet.
  • observation is performed by shifting the observation position in the thickness direction, and an image that can confirm the entire thickness is prepared by combining a plurality of images.
  • A3 The layer thickness T1 of the P1 layer, the layer thickness T2 of the P2 layer, and the thickness T3 of the P3 layer in the image obtained in (A2) were determined.
  • T1 was divided by T3, and the lamination ratio T1 / T3 was calculated.
  • Inorganic particle content Wa1, Wa2, organic particle content Wa3, Wa4 Each of the P1 layer and the P3 layer is scraped or peeled off from the laminated sheet to separate the P1 layer and the P3 layer. About them, the inorganic particle content rate Wa1 of the P1 layer and the inorganic particle content rate Wa2 of the P3 layer are as follows. The organic particle content Wa3 of the P1 layer and the organic particle content Wa4 of the P3 layer were determined. The mass wa1 ′′ (g) of the material cut out from the P1 layer and the mass wa3 ′′ (g) of the material cut out from the P3 layer were measured.
  • FIG. 2A is a peak top showing the melting point Tm
  • FIG. 2B is a peak top showing the melting point Tm
  • E. Adhesiveness to sealing material Using the strength when peeled at 180 ° measured according to JIS-K6854-2 (1994 edition), the adhesiveness of the sealing material was evaluated from the peel strength between the EVA sheet and the P3 layer. did.
  • the test specimen is a 500 ⁇ m-thick EVA sheet manufactured by Sanvic Co., Ltd., and a laminated sheet of Examples and Comparative Examples subjected to corona treatment on a semi-tempered glass having a thickness of 3 mm, and a commercially available glass laminator is used. After depressurization, a product subjected to press treatment at 143 ° C. under a load of 29.4 N / cm 2 for 15 minutes was used.
  • the width of the test piece for the peel strength test was 10 mm, two test pieces were prepared, and each test piece was measured at three locations with different locations, and the average value of the obtained measured values was taken as the peel strength value.
  • the adhesiveness of the sealing material was determined as follows.
  • peel strength is 50 N / 10 mm or more: S
  • peel strength is 40 N / 10 mm or more and less than 50 N / 10 mm: A
  • peel strength is 30N / 10mm or more and less than 40N / 10mm: B
  • the peel strength is 20 N / 10 mm or more and less than 30 N / 10 mm:
  • C When peel strength is less than 20 N / 10 mm: D S to C are good, and S is the best among them.
  • Interlayer adhesion after wet heat treatment Adhesion was evaluated from the delamination strength after wet heat treatment.
  • the delamination strength the strength at the time of peeling with a T-type measured according to JIS-K6854-3 (1994 edition) was used.
  • the interlayer may be an interlayer capable of interfacial separation such as between the P1 layer and the P2 layer and between the P2 layer and the P3 layer.
  • the width of the test piece for the peel strength test is 15 mm, and two test pieces are prepared. The test piece is changed in place and measured at three points, and the average value of the obtained measured values is the delamination strength after the wet heat treatment. As described below, the interlayer adhesion after the wet heat treatment was determined.
  • peel strength is 10N / 15mm or more: S When the peel strength is 6 N / 15 mm or more and less than 10 N / 15 mm: A When peel strength is 3N / 15mm or more and less than 6N / 15mm: B When peel strength is 1N / 15mm or more and less than 3N / 15mm: C When peel strength is less than 1 N / 15 mm: D S to C are good, and S is the best among them.
  • the sheet was cut into a size of 13 mm x 125 mm, and the first marked line was drawn at 25.4 mm from the cut end in the longitudinal direction, and the second marked line was drawn at 101.6 mm.
  • the obtained burning rate was determined as follows.
  • the ultraviolet ray treatment is performed using a xenon weather meter SC750 manufactured by Suga Test Instruments Co., Ltd., at a temperature of 65 ° C., a relative humidity of 50% RH, and an intensity of 150 mW / cm 2 (light source: xenon lamp).
  • the P1 layer side was irradiated for 1000 hours.
  • the interlayer may be an interlayer capable of interfacial separation such as between the P1 layer and the P2 layer and between the P2 layer and the P3 layer.
  • the width of the test piece for the peel strength test was 15 mm, two test pieces were prepared, and each test piece was measured at three locations by changing the location. The average value of the obtained measured values was taken as the delamination strength. Further, as a wet heat treatment condition, a pressure cooker manufactured by Tabai Espec Co., Ltd. was used for 48 hours under the conditions of a temperature of 120 ° C. and 100% RH. From the value calculated from the equation (6), the degree of suppression of decrease in delamination strength due to wet heat treatment was determined as follows.
  • delamination strength reduction ratio after wet heat treatment When the delamination strength reduction ratio after wet heat treatment is 1.0 or more: S When delamination strength reduction ratio after wet heat treatment is 0.7 or more and less than 1.0: A When the delamination strength reduction ratio after wet heat treatment is 0.5 or more and less than 0.7: B When the delamination strength reduction ratio after wet heat treatment is 0.3 or more and less than 0.5: C When the delamination strength reduction ratio after wet heat treatment is less than 0.3: D S to B are good, and S is the best among them.
  • PC1 "Taflon” A2200 manufactured by Idemitsu Kosan Co., Ltd. Used in Examples 1-35, 37-80 and Comparative Examples 1-4.
  • PC2 "Taflon” A1700 manufactured by Idemitsu Kosan Co., Ltd. Used in Example 36 and Examples 81-101.
  • Adhesive Resin 1 “Modic” F534A manufactured by Mitsubishi Chemical Corporation, acid-modified polyolefin Used in Examples 1-36, 40-80, and Comparative Examples 1-4.
  • Adhesive resin 2 “Modic” F532 manufactured by Mitsubishi Chemical Corporation, acid-modified polyolefin Used in Example 37.
  • Adhesive Resin 3 “Modic” P553A manufactured by Mitsubishi Chemical Corporation, acid-modified polyolefin Used in Example 38.
  • Adhesive Resin 4 “Admer” SF731, manufactured by Mitsui Chemicals, Inc., acid-modified polyolefin Used in Example 39.
  • Adhesive resin 5 “Modic” F535 manufactured by Mitsubishi Chemical Corporation, acid-modified polyolefin Used in Examples 81 to 101.
  • LLCPE1 "Sumikasen L” GA401 manufactured by Sumitomo Chemical Co., Ltd. Used in Examples 1 to 7 and Examples 81 to 101.
  • PP1 Prime Polymer Co., Ltd. “Prime Polypro” E100GV Used in Examples 8-14.
  • PP2 Prime Polymer Co., Ltd. “Prime Polypro” F704NP manufactured by Prime Polymer Used in Examples 15-21 and Comparative Examples 1-4.
  • PP3 Prime Polymer Co., Ltd. “Prime Polypro” F744NP (ethylene content 4.2 mass%) Used in Examples 22-28.
  • EPBC1 "Noblen” FL6745A manufactured by Sumitomo Chemical Co., Ltd. Used in Examples 29-80.
  • EPC1 "Nobren” FL6412 manufactured by Sumitomo Chemical Co., Ltd. Used in Examples 81-101.
  • Inorganic particles Rutile type titanium dioxide was used as inorganic particles.
  • the following mastered resin was used so that it might become a mixing ratio of a table
  • (MB2) Resin obtained by mastering PC2 and titanium dioxide at a ratio of 50% by mass / 50% by mass Reference Example 2, Examples 6 to 39, 42, 43, 68 to 78, Used for P1 layer of 88-94 and Comparative Examples 1-4.
  • (MB5) Resin in which EPC1 and titanium dioxide were mastered at a ratio of 30% by mass / 70% by mass Reference Examples 1, 2, Examples 12, 13, 19, 20, 26, Used for P3 layer of 27, 81-94.
  • (MB6) Resin in which EPBC1 and titanium dioxide were mastered at a ratio of 30% by mass / 70% by mass Used for P3 layer of Examples 33, 34, 36 to 42, 44 to 62, 68 to 78.
  • Examples 1 to 101, Comparative Examples 1 and 2 Using the extruder 1, the extruder 2 and the extruder 3, the resin was put into each extruder at the resin mixing ratio shown in Table 1 for each layer and melted at the extrusion temperature shown in Table 1. Next, the layers melt-extruded from the extruder 1 are the P1 layer, the extruder 2 is the P2 layer, the extruder 3 is the P3 layer, and the layers are joined together in the order of P1 layer / P2 layer / P3 layer. The resin discharged from the die was cooled and solidified on the cast drum to obtain a laminated sheet. The P1 layer, P2 layer, and P3 layer had thicknesses and lamination ratios shown in Table 1.
  • the P1 layer PC and the resin mastered with PC were those dried at 110 ° C. for 6 hours.
  • the obtained laminated sheet was evaluated for flame retardancy, curl characteristics, and adhesion to a sealing material.
  • Table 1 it was found that the examples were laminated sheets excellent in flame retardancy and curl characteristics.
  • Examples 6 to 39, 42, 43, and 68 to 78 had excellent ultraviolet resistance because the P1 layer contained titanium dioxide as inorganic particles.
  • the P3 layer also contained titanium dioxide as inorganic particles, and thus was further excellent in UV resistance.
  • Examples 1 to 7 and 22 to 80 had excellent adhesion to the sealing material because the melting point of the P3 layer was about 130 ° C.
  • the P3 layer of Examples 14, 21, 28, 35, 50 to 55, 59, 63 to 72, 79, 80, and the P2 layer of Examples 56 to 62, 73 to 78 contained polyolefin elastomer. It was excellent in curling, adhesion to a sealing material, and suppression of a decrease in delamination strength after wet heat treatment. Furthermore, the polyolefin elastomer was contained in the P3 layer of Examples 14, 21, 28, 35, 50 to 55, 59, 63 to 72, 79, 80 and the P2 layer of Examples 56 to 62, 73 to 78. In addition, the degree of suppression of decrease in delamination strength was excellent.
  • Example 59 included polyolefin elastomer in both P2 and P3 layers, and Examples 62 and 78 included 50% by mass of polyolefin elastomer in P2 layer. Excellent suppression. Further, in Examples 14 and 21 to 80, since the crystal melting energy of the P3 layer was 80 J / g or less, the curl characteristics and the adhesion to the sealing material were excellent. Further, the P1 layer of Examples 40, 41, 44 to 67, 79, and 80 and the P3 layer of Examples 63 to 67 contained carbon black as organic particles, and thus were excellent in ultraviolet resistance and design. On the other hand, Comparative Example 1 was inferior in curl characteristics because the thickness of the P2 layer was less than 12 ⁇ m. Since Comparative Example 2 had T1 / T3 of less than 0.5, the curl characteristics were inferior.
  • P2 layers of Examples 84 to 87, 91 to 94, and 98 to 101 contained a modified styrene elastomer, they were excellent in the degree of suppressing the decrease in delamination strength.
  • Examples 85 to 87, 92 to 94, and 99 to 101 were more excellent in flame retardancy and curl characteristics because the P3 layer contained a polycarbonate resin. Moreover, since the loss generated during the production of the laminated sheet was reused, the yield was improved and the productivity was excellent.
  • the P1 layer PC used was dried at 110 ° C. for 6 hours.
  • the obtained laminated sheet was evaluated for flame retardancy and curl characteristics. As a result, as shown in Table 1, since the P3 layer was not provided on at least one surface layer, the adhesion with the sealing material was inferior.
  • the laminated sheet of the present invention can provide a laminated sheet having excellent compatibility between flame retardancy and curl characteristics as compared with conventional laminated sheets of polycarbonate resin and polyolefin resin.
  • Such laminated sheets are suitable for applications where importance is placed on wet heat resistance, resistance to ultraviolet rays, and light reflectivity, including back plates for solar cells, liquid crystal display reflectors, automotive materials, and building materials. Can be used.
  • a solar cell backsheet having high durability and a solar cell using the same can be provided.
  • Back sheet for solar cell 2 Sealing material 3: Power generation element 4: Transparent substrate 5: Surface on the sealing material 2 side of the back sheet for solar cell 6: Side opposite to the sealing material 2 of the back sheet for solar cell Surface a: melting endothermic peak temperature b: crystal melting energy

Abstract

The present invention provides a laminated sheet having both flame resistance and curl properties when compared to a conventional laminated sheet of a polycarbonate resin and polyolefin resin. Also provided is a high-durability back sheet for a solar cell, realized by using the laminated sheet, and a solar cell using the back sheet. The laminated sheet comprises a laminated structure having a layer (P1 layer) whose primary structural component is a polycarbonate resin, an adhesive layer (P2 layer), and a layer (P3 layer) whose primary structural component is a polyolefin resin, wherein at least one surface layer is the P3 layer. The laminated sheet satisfies formulas (1) and (2) where the thickness of the P1 layer of the laminated sheet is T1, thickness of the P2 layer is T2, and thickness of the P3 layer is T3. T1/T3 > 0.5··· (1) T2 > 12 µm··· (2)

Description

積層シートおよびその製造方法Laminated sheet and method for producing the same
 本発明は難燃性とカール特性の両立が可能な積層シートに関する。特に太陽電池用バックシートとして好適に使用できる積層シート、および該積層シートの製造方法に関する。 The present invention relates to a laminated sheet capable of achieving both flame retardancy and curl characteristics. In particular, the present invention relates to a laminated sheet that can be suitably used as a back sheet for a solar cell, and a method for producing the laminated sheet.
 近年、半永久的で無公害の次世代エネルギー源として太陽光発電が注目を浴びており、太陽電池は急速に普及しつつある。太陽電池は、発電素子をエチレン-ビニルアセテート共重合体(EVA)などの透明な封止材により封止したものに、ガラスなどの透明基板と、バックシートと呼ばれる樹脂シートを貼り合わせて構成される。太陽光は透明基板を通じて太陽電池内に導入される。太陽電池内に導入された太陽光は、発電素子にて、吸収され、吸収された光エネルギーは、電気エネルギーに変換される。変換された電気エネルギーは発電素子に接続したリード線にて取り出されて、各種電気機器に使用される。ここで、従来のバックシートは安価で高性能である二軸延伸ポリエチレンテレフタレート(PET)に種々の素材をドライラミネートにて貼り合わせることによってガスバリア性や電気特性を付与する構成が検討されてきた。また、オレフィン系樹脂はガスバリア性に加えて上記封止材との密着性が良好であるため、バックシートとして一般的に用いられる素材である。 In recent years, photovoltaic power generation has attracted attention as a semi-permanent and pollution-free next-generation energy source, and solar cells are rapidly spreading. A solar cell is composed of a power generation element sealed with a transparent sealing material such as ethylene-vinyl acetate copolymer (EVA), and a transparent substrate such as glass and a resin sheet called a back sheet bonded together. The Sunlight is introduced into the solar cell through the transparent substrate. Sunlight introduced into the solar cell is absorbed by the power generation element, and the absorbed light energy is converted into electrical energy. The converted electric energy is taken out by a lead wire connected to the power generation element and used for various electric devices. Here, the structure which provides gas barrier property and an electrical property by pasting together various raw materials to the biaxially-stretched polyethylene terephthalate (PET) which is a cheap and high-performance with the back laminate has been examined. In addition to gas barrier properties, the olefin resin is a material generally used as a back sheet because it has good adhesion to the sealing material.
 一方、バックシートの生産性を高めるためにドライラミネートの工程を省き、共押出での検討が行われているが、PETとオレフィンを共押出してもガラス転移温度、結晶性の違いなどから共延伸が困難であり、耐湿熱性が不足する。そこで、未延伸でも耐湿熱性があるポリカーボネートをベースとしたバックシートが開発されており、ポリカーボネートの両側にオレフィンを積層した構成(特許文献1)や、環状オレフィン系樹脂にポリカーボネート層を積層した構成(特許文献2)が提案されている。 On the other hand, in order to increase the productivity of backsheets, the process of dry lamination has been omitted and coextrusion has been studied, but coextrusion is possible due to differences in glass transition temperature and crystallinity even when PET and olefin are coextruded. Is difficult and lacks heat and humidity resistance. Therefore, a back sheet based on polycarbonate that has heat and moisture resistance even when unstretched has been developed. A configuration in which olefins are laminated on both sides of the polycarbonate (Patent Document 1), and a configuration in which a polycarbonate layer is laminated on a cyclic olefin-based resin ( Patent Document 2) has been proposed.
特開2001-111077号公報Japanese Patent Laid-Open No. 2001-111077 特開2006-253427号公報JP 2006-253427 A
 しかしながら、ポリカーボネート系樹脂の両表層にオレフィン系樹脂を積層したシートでは、オレフィン系樹脂からなる層がシートの両表層に設けられていることによって、難燃性が低いという欠点を有していた。また、環状オレフィン系樹脂からなる層にポリカーボネート系樹脂からなる層を設けた構成では、難燃性はあるものの、環状オレフィン系樹脂からなる層とポリカーボネート系樹脂からなる層の非対称性から積層シート全体がカールすることによって、太陽電池用バックシートとして用いた際に、封止材との位置ズレを起こす等の課題があった。本発明では従来の課題を鑑みて、難燃性とカール特性を両立した太陽電池用バックシートを提供する。 However, the sheet in which the olefin resin is laminated on both surface layers of the polycarbonate resin has a drawback that the flame retardance is low because the layers made of the olefin resin are provided on both surface layers of the sheet. Moreover, in the structure which provided the layer which consists of polycarbonate-type resin in the layer which consists of cyclic olefin resin, although there is a flame retardance, the whole laminated sheet from the asymmetry of the layer which consists of cyclic olefin-type resin and the layer which consists of polycarbonate-type resin When curled, when used as a solar cell backsheet, there were problems such as causing a positional deviation from the sealing material. In view of the conventional problems, the present invention provides a solar cell backsheet that achieves both flame retardancy and curl characteristics.
 上記課題を解決するために本発明は以下の構成をとる。すなわち、ポリカーボネート系樹脂を主たる構成成分とする層(P1層)、接着層(P2層)、および、ポリオレフィン系樹脂を主たる構成成分とする層(P3層)を有する積層シートであって、いずれか一方の表層がP3層である積層構成であり、P1層の厚みをT1、P2層の厚みをT2、P3層の厚みをT3としたとき、下記(1)式、(2)式を満たす積層シート。 In order to solve the above problems, the present invention has the following configuration. That is, a laminated sheet having a layer (P1 layer) having a polycarbonate-based resin as a main component (P1 layer), an adhesive layer (P2 layer), and a layer (P3 layer) having a polyolefin-based resin as a main component, One surface layer is a P3 layer, and the P1 layer has a thickness of T1, the P2 layer has a thickness of T2, and the P3 layer has a thickness of T3, and satisfies the following formulas (1) and (2) Sheet.
 T1/T3≧0.5・・・(1)
 T2≧12μm・・・(2)
T1 / T3 ≧ 0.5 (1)
T2 ≧ 12 μm (2)
 本発明によれば、従来のオレフィン系樹脂とポリカーボネート系樹脂の積層シートに比べて難燃性およびカール特性に優れた積層シートを提供することができる。かかる積層シートは太陽電池用バックシートに好適に使用でき、さらに該バックシートを用いることによって高性能な太陽電池を提供することができる。 According to the present invention, it is possible to provide a laminated sheet that is superior in flame retardancy and curl characteristics as compared with conventional laminated sheets of olefin resin and polycarbonate resin. Such a laminated sheet can be suitably used for a solar cell backsheet, and a high-performance solar cell can be provided by using the backsheet.
本発明の積層シートを用いた太陽電池の構成の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of a structure of the solar cell using the lamination sheet of this invention. 示差走査型熱量計(DSC)の測定結果から得られたチャートの一例を模式的に示す図である。It is a figure which shows typically an example of the chart obtained from the measurement result of the differential scanning calorimeter (DSC).
 本発明では、ポリカーボネート系樹脂を主たる構成成分とする層(P1層)と接着層(P2層)およびポリオレフィン系樹脂を主たる構成成分とする層(P3層)を有する。なお、本明細書において主たる構成成分は50質量%を超えて含有されていることをいう。 In the present invention, it has a layer (P1 layer) mainly composed of polycarbonate-based resin, an adhesive layer (P2 layer), and a layer (P3 layer) mainly composed of polyolefin-based resin. In addition, in this specification, it says that the main component is contained exceeding 50 mass%.
 本発明におけるP1層の主たる構成成分であるポリカーボネート系樹脂とはジヒドロキシジアリール化合物とホスゲンや、ジフェニルカーボネートなどの炭酸エステルとを反応させて得られる重合体である。ポリカーボネート系樹脂に用いられるジヒドロキシジアリール化合物の例としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、2,2-ビス(4-ヒドロキシフェニル-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-第三ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン等のビス(ヒドロキシアリール)アルカン系化合物、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン等のビス(ヒドロキシアリール)シクロアルカン系化合物、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテルの等のジヒドロキシジアリールエーテル系化合物、4,4’-ジヒドロキシジフェニルスルフィド等のジヒドロキシジアリールスルフィド系化合物、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド系化合物、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン系化合物、などが例として挙げられるがこれらに限定されない。また、これらは単独で用いても、必要に応じて、複数種類用いても構わない。 In the present invention, the polycarbonate resin, which is the main component of the P1 layer, is a polymer obtained by reacting a dihydroxydiaryl compound with a carbonate such as phosgene or diphenyl carbonate. Examples of dihydroxydiaryl compounds used in polycarbonate resins include 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A), bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxy Phenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, 2,2-bis (4-hydroxyphenyl) -3-methylphenyl) propane, 1,1-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis ( 4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis (4-hydroxy-3,5) Bis (hydroxyaryl) alkane compounds such as dichlorophenyl) propane, bis (hydroxyaryl) cycloalkane compounds such as 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane Compounds, dihydroxydiaryl ether compounds such as 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxy-3,3′-dimethyldiphenyl ether, dihydroxydiaryl sulfide compounds such as 4,4′-dihydroxydiphenyl sulfide, 4 Dihydroxydiaryl sulfoxide compounds such as 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, 4,4'-dihydroxydiphenyl sulfoxide Emissions, 4,4'-dihydroxy-3,3'-dimethyl diphenyl sulfone dihydroxydiaryl sulfone compounds such as but and the like as examples without limitation. Moreover, these may be used independently or may be used in multiple types as needed.
 また、本発明におけるポリカーボネート系樹脂には上述のジヒドロキシジアリール化合物に加えてフェノール性水酸基を3個以上有する化合物を使用しても良い。その例としてフロログルシン、4,6-ジメチル-2,4,6-トリ(4-ヒドロキシフェニル)-ヘプテン、2,4,6-ジメチル-2,4,6-トリ-(4-ヒドロキシフェニル)-ヘプタン、1,3,5-トリ-(4-ヒドロキシフェニル)-ベンゾール、1,1,1-トリ-(4-ヒドロキシフェニル)-エタンおよび2,2-ビス[4,4-(4,4’-ジヒドロキシジフェニル)-シクロヘキシル]-プロパンなどが挙げられる。 In addition to the above-mentioned dihydroxydiaryl compound, a compound having 3 or more phenolic hydroxyl groups may be used for the polycarbonate resin in the present invention. Examples thereof include phloroglucin, 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) -heptene, 2,4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl)- Heptane, 1,3,5-tri- (4-hydroxyphenyl) -benzol, 1,1,1-tri- (4-hydroxyphenyl) -ethane and 2,2-bis [4,4- (4,4 And '-dihydroxydiphenyl) -cyclohexyl] -propane.
 ここで、本発明の積層シートにおいて、P1層の主たる構成成分であるポリカーボネート系樹脂は、ジヒドロキシジアリール化合物として2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)が主たる成分であるポリカーボネート系樹脂であるのが、耐熱性、耐湿熱性の点から好ましい。なお、ここでいう主たる成分とは、ポリカーボネート系樹脂に用いられる全ジヒドロキシジアリール化合物のうち、ビスフェノールAが80モル%以上をいい、より好ましくは90モル%以上、更には95モル%以上で構成されていることが好ましい(なお、本明細書において他の構造の場合の主たる成分についても同様とする)。さらには、P1層の主たる構成成分であるポリカーボネート系樹脂は、ジヒドロキシジアリール化合物として2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)が、耐熱性、耐湿熱性をより高められるという点でより好ましい。P1層にはポリオレフィン系樹脂を含まない、または、3質量%未満であることが好ましい。 Here, in the laminated sheet of the present invention, the polycarbonate-based resin which is the main component of the P1 layer is a polycarbonate whose main component is 2,2-bis (4-hydroxyphenyl) propane (commonly referred to as bisphenol A) as a dihydroxydiaryl compound. It is preferable to use a resin based on heat resistance and heat and humidity resistance. The main component referred to here is bisphenol A of 80 mol% or more, more preferably 90 mol% or more, and more preferably 95 mol% or more of all dihydroxydiaryl compounds used in the polycarbonate resin. (In the present specification, the same applies to the main component in the case of other structures). Furthermore, the polycarbonate-based resin that is the main component of the P1 layer is that 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A) as a dihydroxydiaryl compound can further improve heat resistance and moist heat resistance. And more preferable. The P1 layer preferably does not contain a polyolefin-based resin or is less than 3% by mass.
 本発明の積層シートにおいて、P1層のポリカーボネート系樹脂の分子量は数平均分子量(Mn)が10000以上50000以下であることが好ましい。より好ましくは12000以上40000以下、更に好ましくは15000以上30000以下である。 In the laminated sheet of the present invention, the P1 layer polycarbonate resin preferably has a number average molecular weight (Mn) of 10,000 or more and 50,000 or less. More preferably, it is 12000 or more and 40000 or less, More preferably, it is 15000 or more and 30000 or less.
 本発明の積層シートにおいて、P1層のポリカーボネート系樹脂のガラス転移温度(Tg)は、高い方が耐湿熱性や耐熱性が高くなり、太陽電池用バックシートとして用いた場合に発電セルを封止材と共に封止する工程での積層シートの封止工程での形態保持性の点から好ましい。Tgの測定は、JIS-K7122(1987年版)に準じて、昇温速度20℃/minで樹脂を25℃から300℃まで昇温(1stRUN)し、その状態で5分間保持した後、次いで25℃以下となるよう急冷し、再度室温から20℃/minの昇温速度で300℃まで昇温を行って得られた2ndRUNの示差走査熱量測定チャートにおいて、ガラス転移の階段状の変化部分において、JIS-K7121(1987年版)の「9.3ガラス転移温度の求め方(1)中間点ガラス転移温度Tg」記載の方法で求める。ガラス転移温度Tgは好ましくは125℃以上、より好ましくは130℃以上、更に好ましくは135℃以上、特に好ましくは140℃以上である。 In the laminated sheet of the present invention, the higher the glass transition temperature (Tg) of the P1 layer polycarbonate-based resin, the higher the moisture and heat resistance and the heat resistance. It is preferable from the viewpoint of form retention in the sealing step of the laminated sheet in the step of sealing together. According to JIS-K7122 (1987 version), the Tg was measured by heating the resin from 25 ° C. to 300 ° C. (1st RUN) at a rate of temperature increase of 20 ° C./min. In the differential scanning calorimetry chart of 2ndRUN obtained by rapidly cooling to room temperature or below and then raising the temperature from room temperature to 300 ° C. at a rate of temperature increase of 20 ° C./min. It is determined by the method described in “9.3 Determination of Glass Transition Temperature (1) Intermediate Glass Transition Temperature Tg” of JIS-K7121 (1987 edition). The glass transition temperature Tg is preferably 125 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 135 ° C. or higher, and particularly preferably 140 ° C. or higher.
 本発明の積層シートを構成するP1層には3質量%以上50質量%未満の範囲にて無機粒子が含まれていることが好ましい。より好ましくは5質量%以上30質量%以下、さらに好ましくは10質量%以上20質量%以下である。この無機粒子はその目的に応じて必要な機能をシートに付与するために用いられる。50質量%以上含有するとハンドリング性が低下したり、3質量%未満であると無機粒子含有の効果が得られにくい場合がある。本発明に好適に用いうる無機粒子としては紫外線吸収能のある無機粒子やポリカーボネート系樹脂との屈折率差が大きな粒子、導電性を持つ粒子、顔料といったものが例示され、これにより耐紫外線性や、光反射性、白色性といった光学特性、帯電防止性などを付与することができる。なお、粒子とは投影した等価換算円の直径による一次粒径として5nm以上のものをいう。また、特に断らない限り、本発明において粒径は一次粒径を意味し、粒子は一次粒子を意味する。 It is preferable that the P1 layer constituting the laminated sheet of the present invention contains inorganic particles in a range of 3% by mass to less than 50% by mass. More preferably, they are 5 mass% or more and 30 mass% or less, More preferably, they are 10 mass% or more and 20 mass% or less. The inorganic particles are used for imparting a necessary function to the sheet depending on the purpose. When it is contained in an amount of 50% by mass or more, handling properties may be deteriorated. Examples of inorganic particles that can be suitably used in the present invention include inorganic particles having ultraviolet absorbing ability, particles having a large refractive index difference from polycarbonate resins, conductive particles, pigments, and the like. Further, optical properties such as light reflectivity and whiteness, antistatic properties and the like can be imparted. In addition, a particle means a thing with 5 nm or more as a primary particle size by the diameter of the projected equivalent conversion circle | round | yen. Unless otherwise specified, in the present invention, the particle size means a primary particle size, and the particle means a primary particle.
 さらに詳細に説明すると、本発明における無機粒子としては、例えば、金、銀、銅、白金、パラジウム、レニウム、バナジウム、オスミウム、コバルト、鉄、亜鉛、ルテニウム、プラセオジウム、クロム、ニッケル、アルミニウム、スズ、亜鉛、チタン、タンタル、ジルコニウム、アンチモン、インジウム、イットリウム、ランタニウム等の金属、酸化亜鉛、酸化チタン、酸化セシウム、酸化アンチモン、酸化スズ 、インジウム・スズ酸化物、酸化イットリウム 、酸化ランタニウム 、酸化ジルコニウム、酸化アルミニウム、酸化ケイ素等の金属酸化物、フッ化リチウム、フッ化マグネシウム 、フッ化アルミニウム 、氷晶石等の金属フッ化物、リン酸カルシウム等の金属リン酸塩、炭酸カルシウム等の炭酸塩、硫酸バリウム等の硫酸塩、タルクおよびカオリン等が挙げられる。 More specifically, as the inorganic particles in the present invention, for example, gold, silver, copper, platinum, palladium, rhenium, vanadium, osmium, cobalt, iron, zinc, ruthenium, praseodymium, chromium, nickel, aluminum, tin, Metals such as zinc, titanium, tantalum, zirconium, antimony, indium, yttrium, lanthanum, zinc oxide, titanium oxide, cesium oxide, antimony oxide, tin oxide, indium tin oxide, yttrium oxide, lanthanum oxide, zirconium oxide, oxide Metal oxides such as aluminum and silicon oxide, lithium fluoride, magnesium fluoride, aluminum fluoride, metal fluorides such as cryolite, metal phosphates such as calcium phosphate, carbonates such as calcium carbonate, barium sulfate, etc. Sulfate , Talc, kaolin and the like.
 本発明においては、屋外で使用されることが多いことを鑑みれば、紫外線吸収能を有する無機粒子として酸化チタン、酸化亜鉛、酸化セリウム、などの金属酸化物を用いた場合に、粒子による耐紫外線性を活かして、長期に亘ってシートの劣化による着色を低減するという効果を発揮することができる。さらには、高い反射特性を付与できるという点で無機粒子として酸化チタンを用いるのがよく、耐紫外線性がより高いという点でルチル型酸化チタンを用いるのがより好ましい。 In the present invention, in view of the fact that it is often used outdoors, when metal oxides such as titanium oxide, zinc oxide, cerium oxide, etc. are used as inorganic particles having ultraviolet absorbing ability, UV resistance due to the particles By taking advantage of the properties, it is possible to exhibit the effect of reducing coloring due to deterioration of the sheet over a long period of time. Furthermore, titanium oxide is preferably used as the inorganic particles in that high reflection characteristics can be imparted, and rutile titanium oxide is more preferably used in terms of higher ultraviolet resistance.
 P1層を構成するポリカーボネート系樹脂に無機粒子を含有せしめる方法は、予めポリカーボネート系樹脂と無機粒子をベント式二軸混練押出機やタンデム型押出機を用いて、溶融混練する方法が好ましい。ここで、無機粒子を含有させる際に熱履歴を受けるため、少なからずポリカーボネート系樹脂が劣化する。そのため、P1層に含まれる無機粒子量に比べて無機粒子含有量の多い高濃度マスターペレットを作製し、それをポリカーボネート系樹脂と混合して希釈し、所定のP1層の無機粒子含有率とするのが、耐湿熱性の観点から好ましい。 The method of causing the polycarbonate resin constituting the P1 layer to contain inorganic particles is preferably a method in which the polycarbonate resin and the inorganic particles are melt-kneaded in advance using a vented biaxial kneading extruder or a tandem extruder. Here, since the heat history is received when the inorganic particles are contained, the polycarbonate-based resin is deteriorated. Therefore, a high-concentration master pellet having a higher inorganic particle content than the amount of inorganic particles contained in the P1 layer is prepared, mixed with a polycarbonate resin, and diluted to obtain a predetermined P1 layer inorganic particle content. Is preferable from the viewpoint of heat and moisture resistance.
 本発明の積層シートを構成するP1層には0.1質量%以上20質量%以下の範囲にて有機粒子が含まれていることが好ましい。有機粒子としては、例えば、シリコーン系化合物、架橋スチレンや架橋アクリル、架橋メラミンなどの架橋粒子の他、カーボン、フラーレン、カーボンファイバー、カーボンナノチューブなどの炭素系化合物等が挙げられる。また、屋外で使用される用途においては、紫外線吸収能を有する粒子、例えばカーボン、フラーレン、カーボンファイバー、カーボンナノチューブなどの炭素系材料等を用いた場合に粒子による紫外線吸収能を活かして、長期に亘って色調変化を抑制するという本発明の効果を顕著に発揮することができると共に、意匠性も兼ね備えたシートとすることができる。意匠性の観点から0.5質量%以上であることが好ましく、有機粒子に起因した溶融押出時の増粘抑制の観点から12質量%以下であることが好ましい。さらに好ましくは1質量%以上8質量%以下である。 It is preferable that the P1 layer constituting the laminated sheet of the present invention contains organic particles in the range of 0.1% by mass or more and 20% by mass or less. Examples of the organic particles include silicone compounds, crosslinked particles such as crosslinked styrene, crosslinked acryl, and crosslinked melamine, and carbon compounds such as carbon, fullerene, carbon fiber, and carbon nanotube. In addition, in applications used outdoors, when using carbon-based materials such as particles, such as carbon, fullerene, carbon fiber, and carbon nanotube, which have ultraviolet absorbing ability, the ultraviolet absorbing ability of the particles can be utilized for a long time. In addition, the effect of the present invention that suppresses the change in color tone can be remarkably exhibited, and the sheet can also have a design property. It is preferably 0.5% by mass or more from the viewpoint of design properties, and is preferably 12% by mass or less from the viewpoint of suppressing thickening during melt extrusion caused by organic particles. More preferably, it is 1 mass% or more and 8 mass% or less.
 また、本発明の積層シートのP1層およびP3層には、本発明の効果が損なわれない範囲内でその他添加剤(例えば、耐熱安定剤、紫外線吸収剤、耐候安定剤、有機の易滑剤、顔料、染料、充填剤、帯電防止剤、核剤などが挙げられる。但し、本発明にいう無機粒子はここでいう添加剤には含意されない)が配合されていてもよい。例えば、添加剤として紫外線吸収剤を選択した場合には、本発明の積層シートの耐紫外線性をより高めることが可能であり、特にP1層の耐紫外線性を向上させる点においてはベンゾトリアゾール系紫外線吸収剤を含有せしめることが好ましい。また、帯電防止剤などを含有せしめると耐電圧向上が期待できる。また、本発明におけるP1層は難燃性の観点から表層に設けられていることが好ましい。 In addition, the P1 layer and the P3 layer of the laminated sheet of the present invention may have other additives (for example, a heat stabilizer, an ultraviolet absorber, a weather stabilizer, an organic lubricant, as long as the effects of the present invention are not impaired). Pigments, dyes, fillers, antistatic agents, nucleating agents, etc. However, the inorganic particles referred to in the present invention may not be implied by the additives herein. For example, when an ultraviolet absorber is selected as an additive, it is possible to further improve the ultraviolet resistance of the laminated sheet of the present invention. In particular, in terms of improving the ultraviolet resistance of the P1 layer, a benzotriazole type ultraviolet ray It is preferable to contain an absorbent. In addition, with the addition of an antistatic agent or the like, an improvement in withstand voltage can be expected. Moreover, it is preferable that P1 layer in this invention is provided in the surface layer from a flame-retardant viewpoint.
 本発明ではP1層とP3層の間に接着層(P2層)が設けられている。P2層に用いる樹脂としてはP1層とP3層の両層に接着するものが好ましく、例えば酸変性ポリオレフィン、不飽和ポリオレフィンなどの低結晶性軟質重合体、エチレン-アクリル酸エステル-無水マレイン酸3元共重合体などを始めとするアクリル系接着剤、エチレン酢酸ビニル系共重合体が挙げられる。中でもP1層とP3層接着の観点から極性基を導入した酸変性ポリオレフィンを用いることが好ましい。酸変性ポリオレフィンとして、例えば市販品では三井化学(株)社製“アドマー”や三菱化学(株)社製の“モディック”が挙げられる。また、P2層にはポリオレフィン系エラストマーをP2層に対して5質量%以上50質量%以下の割合で含有することが、湿熱処理後の層間密着性を向上させることができる点から好ましい。ここで湿熱処理後の層間密着性とは120℃100%RH48時間処理後の層間剥離強度であり、詳細は実施例の「特性の評価方法F.項」に記載したとおりである。ポリオレフィン系エラストマーは必要な層間密着性に応じて含有せしめれば良いが、層間密着性を向上させる上では10質量%以上が好ましく、高価である点から30質量%以下とすることが好ましい。ポリオレフィン系エラストマーとは、一般的にポリプロピレンやポリエチレンなどに他のα-オレフィンを共重合させたものなどをいう。また、α-オレフィンとしては1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、4-メチル-1-ペンテンなどが挙げられる。ポリオレフィン系エラストマーは市販品でもよく、例えば三菱化学(株)社製“サーモラン”、“ゼラス”、住友化学(株)社製“エクセレン”、“タフセレン”、“エスプレン”、クラレ製“ハイブラー”、“セプトン”、三井化学(株)社製“ノティオ”、ダウケミカル(株)社製“ENGAGE”などが好ましく挙げられる。また、P2層は変性スチレン系熱可塑性エラストマーをP2層に対して3質量%以上15質量%以下の割合で含有することが、120℃100%RH48時間処理後の層間密着性を向上させることができる点から好ましい。また、P2層が変性スチレン系熱可塑性エラストマーを含有すると、湿熱処理による層間剥離強度の低下を抑制できる。湿熱処理による層間剥離強度の低下をどの程度抑制しているかは、P1層とP2層の層間およびP2層とP3層の層間における初期層間剥離強度に対して湿熱処理後の層間剥離強度がどの程度低下しているかの比で判定を行い、詳細は実施例の「特性の評価方法J.項」に記載したとおりである。層間密着性を向上させる上では5質量%以上が好ましく、高価である点から12質量%以下とすることが好ましい。変性スチレン系熱可塑性エラストマーとは、例えば、変性スチレン-エチレン-ブチレン-スチレンブロック共重合体などが挙げられる。変性スチレン系熱可塑性エラストマーは市販品でもよく、例えば旭化成ケミカルズ(株)社製“タフテック”M1913などが好ましく挙げられる。 In the present invention, an adhesive layer (P2 layer) is provided between the P1 layer and the P3 layer. The resin used for the P2 layer is preferably one that adheres to both the P1 and P3 layers. For example, low crystalline soft polymers such as acid-modified polyolefins and unsaturated polyolefins, ethylene-acrylic acid ester-maleic anhydride ternary Examples thereof include acrylic adhesives such as copolymers and ethylene vinyl acetate copolymers. Among them, it is preferable to use an acid-modified polyolefin having a polar group introduced from the viewpoint of adhesion between the P1 layer and the P3 layer. Examples of the acid-modified polyolefin include “Admer” manufactured by Mitsui Chemicals, Inc. and “Modic” manufactured by Mitsubishi Chemical Corporation as commercially available products. Further, it is preferable that the P2 layer contains a polyolefin-based elastomer in a proportion of 5% by mass or more and 50% by mass or less with respect to the P2 layer from the viewpoint that the interlayer adhesion after the wet heat treatment can be improved. Here, the interlayer adhesion after the wet heat treatment is the delamination strength after the treatment at 120 ° C. and 100% RH for 48 hours, and the details are as described in “Characteristic Evaluation Method F. Item” in the Examples. The polyolefin-based elastomer may be contained according to the required interlayer adhesion, but is preferably 10% by mass or more for improving interlayer adhesion, and is preferably 30% by mass or less from the viewpoint of cost. The polyolefin-based elastomer generally refers to a copolymer obtained by copolymerizing other α-olefin with polypropylene or polyethylene. Examples of the α-olefin include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene, and the like. . The polyolefin-based elastomer may be a commercially available product, for example, “Thermo Run”, “Zeras” manufactured by Mitsubishi Chemical Corporation, “Excellen”, “Tough Selenium”, “Esplen”, “Hibler” manufactured by Kuraray, Preferred examples include “Septon”, “Notio” manufactured by Mitsui Chemicals, Inc., “ENGAGE” manufactured by Dow Chemical Co., Ltd., and the like. Further, the P2 layer contains the modified styrene thermoplastic elastomer in a proportion of 3% by mass or more and 15% by mass or less with respect to the P2 layer, so that the interlayer adhesion after treatment at 120 ° C. and 100% RH for 48 hours can be improved. It is preferable from the point which can be performed. Moreover, when P2 layer contains a modified styrene-type thermoplastic elastomer, the fall of the delamination strength by wet heat processing can be suppressed. The degree to which the decrease in delamination strength due to wet heat treatment is suppressed is determined by the degree of delamination strength after wet heat treatment relative to the initial delamination strength between the P1 and P2 layers and between the P2 and P3 layers. The ratio is determined based on the ratio of decrease, and details are as described in “Characteristic Evaluation Method J. Section” in the Examples. In order to improve interlayer adhesion, it is preferably 5% by mass or more, and preferably 12% by mass or less from the viewpoint of cost. Examples of the modified styrene thermoplastic elastomer include a modified styrene-ethylene-butylene-styrene block copolymer. The modified styrene thermoplastic elastomer may be a commercially available product, for example, “Tuftec” M1913 manufactured by Asahi Kasei Chemicals Corporation.
 本発明におけるP3層は、ポリオレフィン系樹脂を主たる構成成分とする。本発明におけるポリオレフィン系樹脂とは、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、ポリシクロオレフィン、ポリヘキセン、ポリオクテン、ポリデセン、ポリドデセン等が挙げられる。この中でも加工が容易で比較的安価であることなどからポリエチレン、ポリプロピレンであることが好ましい。これらポリオレフィン系樹脂は混合および他のオレフィン成分を共重合しても良く、例えばエチレン-プロピレンコポリマー、エチレン-プロピレン-ブテンコポリマーとすると樹脂の結晶性を低下させることができる。ポリオレフィン系樹脂としてポリプロピレンとその他のオレフィン成分を共重合したものを適用する場合、P3層を構成するポリオレフィン系樹脂がプロピレン成分を70質量%以上含むものであることが、カールを小さくする観点から好ましい。 The P3 layer in the present invention is mainly composed of a polyolefin resin. Examples of the polyolefin resin in the present invention include polyethylene, polypropylene, polybutene, polymethylpentene, polycycloolefin, polyhexene, polyoctene, polydecene, and polydodecene. Among these, polyethylene and polypropylene are preferable because they are easy to process and relatively inexpensive. These polyolefin resins may be mixed and copolymerized with other olefin components. For example, when an ethylene-propylene copolymer or an ethylene-propylene-butene copolymer is used, the crystallinity of the resin can be lowered. When applying what copolymerized polypropylene and the other olefin component as polyolefin resin, it is preferable from a viewpoint of making curl small that the polyolefin resin which comprises P3 layer contains 70 mass% or more of propylene components.
 本発明では、P3層を構成するポリオレフィン系樹脂として、複数のポリオレフィン系樹脂を混合したものを用いる場合、5質量%以上30質量%以下の範囲でポリエチレン樹脂を構成成分として含有することが好ましい。ポリエチレン樹脂は3級炭素を含まないためポリプロピレン系樹脂に比べると酸化されにくく、酸化に起因した劣化に対する耐久性が高い。ここで言う構成成分とは、P3層中に混合されているものであり、共重合されている成分とは区別する。5質量%未満では向上効果は低く、30質量%以上含有すると結晶性が高くなりシートのカールが大きくなる。また、ポリプロピレンとポリエチレンなどの非相溶であるオレフィン同士の混合は分散不良に起因して脆性が低下する事がある。脆性の低下は封止材との密着性を低下させることがあるため、P3層に対して相溶化剤を含むことが好ましい。例えば、ポリプロピレンとポリエチレンの組み合わせにおいては相溶化剤としてエチレン-エチレン/ブチレン/エチレン共重合体が好ましく挙げられ、市販品としてJSR(株)社製“ダイナロン”6200Pが挙げられる。該相溶化剤は0.1質量%以上10質量%以下の範囲で含有することが好ましい。0.1質量%以下であると相溶効果が低く、10質量%以上であると封止剤との密着性が低下することがある。 In the present invention, when a mixture of a plurality of polyolefin resins is used as the polyolefin resin constituting the P3 layer, it is preferable to contain a polyethylene resin as a constituent component in the range of 5% by mass to 30% by mass. Since the polyethylene resin does not contain tertiary carbon, it is less likely to be oxidized than polypropylene resin, and has high durability against deterioration due to oxidation. The component mentioned here is mixed in the P3 layer and is distinguished from the copolymerized component. If the content is less than 5% by mass, the improvement effect is low. In addition, mixing of incompatible olefins such as polypropylene and polyethylene may reduce brittleness due to poor dispersion. Since the decrease in brittleness may decrease the adhesion with the sealing material, it is preferable to include a compatibilizer for the P3 layer. For example, in a combination of polypropylene and polyethylene, an ethylene-ethylene / butylene / ethylene copolymer is preferably used as a compatibilizing agent, and “Dynalon” 6200P manufactured by JSR Corporation is an example of a commercially available product. The compatibilizing agent is preferably contained in the range of 0.1% by mass to 10% by mass. If it is 0.1% by mass or less, the compatibility effect is low, and if it is 10% by mass or more, the adhesion with the sealant may be lowered.
 また、P3層を構成するポリオレフィン系樹脂として、複数のポリオレフィン系樹脂を混合したものを用いる場合に用い得るポリオレフィン系樹脂として、ポリオレフィン系エラストマーも挙げられる。ポリオレフィン系エラストマーとは、ポリプロピレンおよびポリエチレンに他のα-オレフィンを共重合させたものをいい、好ましく用いられるα-オレフィンとしては1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、4-メチル-1-ペンテンなどが挙げられる。これらポリオレフィン系エラストマーは、P3層に対して5質量%以上50質量%以下の割合で含むことが好ましい。ポリオレフィン系エラストマーを含むことにより120℃100%RH48時間処理後の層間密着性が向上することに加えて、P3層の剛性が低下することによって積層シートのカールが改善するため好ましい。また、P3層がポリオレフィン系エラストマーを含有すると、湿熱処理による層間剥離強度の低下を抑制できる観点からも好ましい。好ましくは、10質量%以上30質量%以下である。ポリオレフィン系エラストマーは市販品でもよく、例えば三菱化学(株)社製“サーモラン”、“ゼラス”、住友化学(株)社製“エクセレン”、“タフセレン”、“エスプレン”、クラレ製“ハイブラー”、“セプトン”、三井化学(株)社製“ノティオ”、ダウケミカル(株)社製“ENGAGE”などが好ましく挙げられる。 Also, as the polyolefin resin constituting the P3 layer, polyolefin elastomer may be used as the polyolefin resin that can be used when a mixture of a plurality of polyolefin resins is used. Polyolefin elastomers are those obtained by copolymerizing polypropylene and polyethylene with other α-olefins. Preferred α-olefins are 1-butene, 1-pentene, 1-hexene, 1-heptene, 1- Examples include octene, 1-nonene, 1-decene, 1-dodecene and 4-methyl-1-pentene. These polyolefin-based elastomers are preferably contained in a proportion of 5% by mass or more and 50% by mass or less with respect to the P3 layer. By including a polyolefin-based elastomer, in addition to the improvement in interlayer adhesion after treatment at 120 ° C. and 100% RH for 48 hours, the rigidity of the P3 layer is reduced, so that the curling of the laminated sheet is improved, which is preferable. Moreover, when P3 layer contains polyolefin-type elastomer, it is preferable also from a viewpoint which can suppress the fall of the delamination strength by wet heat processing. Preferably, it is 10 mass% or more and 30 mass% or less. The polyolefin-based elastomer may be a commercially available product, for example, “Thermo Run”, “Zeras” manufactured by Mitsubishi Chemical Corporation, “Excellen”, “Tough Selenium”, “Esplen”, “Hibler” manufactured by Kuraray, Preferred examples include “Septon”, “Notio” manufactured by Mitsui Chemicals, Inc., “ENGAGE” manufactured by Dow Chemical Co., Ltd., and the like.
 また、P3層の結晶融解エネルギーは80J/g以下であることが好ましい。結晶融解エネルギーをこの範囲とすることでカールを小さくすることや、封止材との接着性が向上する観点から好ましい。さらに好ましくは、70J/g以下であり、より好ましくは60J/g以下である。ここで、結晶融解エネルギーとはJIS-K7122(1987年版)に準じて、セイコー電子工業(株)製示差走査熱量測定装置“ロボットDSC-RDC220”を、データ解析にはディスクセッション“SSC/5200”を用いて測定したセカンドランから得られる値であり、詳細は実施例の「特性の評価方法C.項」に記載したとおりである。結晶融解エネルギーはオレフィン分子鎖中に他のオレフィン成分を共重合することや、オレフィン結晶形態の立体規則性などで調整可能である。立体規則性は重合時の触媒で調整可能である。共重合成分例としては前述のとおりα-オレフィンが好ましく、特にエチレン-プロピレンコポリマー、エチレン-プロピレン-ブテンコポリマーが好ましい。また、オレフィンの立体規則性としてはアタクチックとすることが好ましく挙げられる。結晶融解エネルギーの下限は特に限定されるものではないが、ポリオレフィン系樹脂を主たる成分とすれば10J/g以上となるものが大半である。 The crystal melting energy of the P3 layer is preferably 80 J / g or less. Setting the crystal melting energy within this range is preferable from the viewpoint of reducing curling and improving the adhesion to the sealing material. More preferably, it is 70 J / g or less, More preferably, it is 60 J / g or less. Here, the crystal melting energy refers to the differential scanning calorimeter “Robot DSC-RDC220” manufactured by Seiko Denshi Kogyo Co., Ltd. according to JIS-K7122 (1987 version), and the disk session “SSC / 5200” for data analysis. This is a value obtained from the second run measured using, and the details are as described in “Characteristic Evaluation Method C. Item” in the Examples. The crystal melting energy can be adjusted by copolymerizing other olefin components in the olefin molecular chain or by the stereoregularity of the olefin crystal form. The stereoregularity can be adjusted by a catalyst during polymerization. As an example of the copolymer component, α-olefin is preferable as described above, and ethylene-propylene copolymer and ethylene-propylene-butene copolymer are particularly preferable. In addition, the stereoregularity of the olefin is preferably atactic. The lower limit of the crystal melting energy is not particularly limited, but most of them are 10 J / g or more when a polyolefin resin is the main component.
 本発明におけるP3層の融解吸熱ピーク温度は100℃以上150℃以下であることが好ましい。100℃未満であると耐熱性に劣る可能性がある。一方、150℃超であると封止材との接着性が低くなることがある。 The melting endothermic peak temperature of the P3 layer in the present invention is preferably 100 ° C. or higher and 150 ° C. or lower. If it is less than 100 ° C, the heat resistance may be inferior. On the other hand, if it exceeds 150 ° C., the adhesiveness to the sealing material may be lowered.
 なお、P3層が相分離構造を有することにより融解吸熱ピーク温度を示す場合にはそのすべてが、100℃以上150℃以下であることが好ましく、そのような場合には、結晶融解エネルギーは、それぞれのピークの和が80J/g以下であることが好ましい。 In the case where the P3 layer has a phase separation structure and exhibits a melting endothermic peak temperature, all of them are preferably 100 ° C. or higher and 150 ° C. or lower. In such a case, the crystal melting energy is The sum of the peaks is preferably 80 J / g or less.
 ポリオレフィン系樹脂のメルトフローレート(MFR)(230℃)は0.5以上30以下が好ましい。0.5未満または30超であると流動性が低く積層ムラやフローマークなどが発生する可能性がある。 The melt flow rate (MFR) (230 ° C.) of the polyolefin resin is preferably from 0.5 to 30. If it is less than 0.5 or more than 30, the fluidity is low, and stacking unevenness or flow marks may occur.
 本発明では、P3層に対して5質量%以上25質量%以下の範囲でポリカーボネート系樹脂を含むことが好ましい。この範囲でポリカーボネート系樹脂を含むことによりガスバリア性の低下を最小限に留め、且つ難燃性およびカール特性を向上させることができる。5質量%未満であると難燃性を向上する効果は低く、25質量%を超えるとガスバリア性および封止材との密着性に劣ることがある。ここで、ガスバリア性とは「プラスチックフィルムおよびシートの水蒸気透過度試験方法(機器測定法)」JIS-K7129(1992年版)の付属書Bに規定の方法に従い測定して得られた水蒸気透過度の値から判定し、詳細は実施例の「特性の評価方法I.項」に記載したとおりである。また、難燃性とは、シートに火を付けた場合のシートの燃焼速度であり、詳細は実施例の「特性の評価方法G.項」に記載したとおりである。封止材との密着性を鑑みれば、15質量%以下であることが好ましい。 In the present invention, it is preferable that the polycarbonate resin is contained in the range of 5% by mass to 25% by mass with respect to the P3 layer. By including the polycarbonate-based resin within this range, it is possible to minimize a decrease in gas barrier properties and improve flame retardancy and curl characteristics. If it is less than 5% by mass, the effect of improving the flame retardancy is low, and if it exceeds 25% by mass, the gas barrier property and the adhesion to the sealing material may be inferior. Here, the gas barrier property refers to the water vapor permeability obtained by measuring according to the method prescribed in Appendix B of “Water vapor permeability test method for plastic films and sheets (instrument measurement method)” JIS-K7129 (1992 edition). The details are as described in “Characteristic Evaluation Method I. Item” in the Examples. The flame retardancy is a burning rate of the sheet when the sheet is ignited, and details are as described in “Characteristic Evaluation Method G. Item” in the Examples. In view of the adhesion to the sealing material, it is preferably 15% by mass or less.
 本発明の積層シートを構成するP3層にはP3層に対して無機粒子を1質量%以上30質量%以下の範囲で含有することが好ましい。より好ましくは2質量%以上20質量%以下、さらに好ましくは3質量%以上10質量%以下である。この無機粒子はその目的に応じて必要な機能をフィルムに付与するために用いられる。本発明においては、屋外で使用されることが多いことを鑑みれば、紫外線吸収能を有する無機粒子では酸化チタン、酸化亜鉛、酸化セリウム、などの金属酸化物を用いた場合に、粒子による耐紫外線性を活かして、長期に亘ってシートの劣化による着色を低減するという効果を発揮することができる。さらには、高い反射特性を付与できるという点で無機粒子として酸化チタンを用いるのがよく、耐紫外線性がより高いという点でルチル型酸化チタンを用いるのがより好ましい。 The P3 layer constituting the laminated sheet of the present invention preferably contains inorganic particles in the range of 1% by mass to 30% by mass with respect to the P3 layer. More preferably, they are 2 mass% or more and 20 mass% or less, More preferably, they are 3 mass% or more and 10 mass% or less. The inorganic particles are used for imparting a necessary function to the film according to the purpose. In the present invention, in view of the fact that it is often used outdoors, when inorganic oxides having ultraviolet absorbing ability use metal oxides such as titanium oxide, zinc oxide, and cerium oxide, they are resistant to ultraviolet rays caused by the particles. By taking advantage of the properties, it is possible to exhibit the effect of reducing coloring due to deterioration of the sheet over a long period of time. Furthermore, titanium oxide is preferably used as the inorganic particles in that high reflection characteristics can be imparted, and rutile titanium oxide is more preferably used in terms of higher ultraviolet resistance.
 本発明の積層シートを構成するP3層にはP3層に対して、0.1質量%以上20質量%以下の範囲にて有機粒子が含まれていることが好ましい。隠蔽性や意匠性の観点から0.5質量%以上が好ましく、有機粒子に起因した溶融押出時の増粘抑制の観点から12質量%以下が好ましい。より好ましくは1質量%以上8質量%以下である。有機粒子としては、例えば、シリコーン系化合物、架橋スチレンや架橋アクリル、架橋メラミンなどの架橋粒子の他、カーボン、フラーレン、カーボンファイバー、カーボンナノチューブなどの炭素系化合物等が挙げられる。また、P3層に有機粒子としてカーボンを用いた場合、意匠性と耐紫外線性を同時に付与することができるため特に好ましい。 It is preferable that the P3 layer constituting the laminated sheet of the present invention contains organic particles in the range of 0.1% by mass to 20% by mass with respect to the P3 layer. 0.5 mass% or more is preferable from a viewpoint of concealability and design property, and 12 mass% or less is preferable from a viewpoint of the thickening suppression at the time of the melt extrusion resulting from an organic particle. More preferably, it is 1 mass% or more and 8 mass% or less. Examples of the organic particles include silicone compounds, crosslinked particles such as crosslinked styrene, crosslinked acryl, and crosslinked melamine, and carbon compounds such as carbon, fullerene, carbon fiber, and carbon nanotube. Further, when carbon is used as the organic particles in the P3 layer, it is particularly preferable because design properties and ultraviolet resistance can be simultaneously imparted.
 本発明では、P1層の厚みをT1、P2層の厚みをT2、P3層の厚みをT3としたとき、(1)および(2)式を満たす必要がある。
T1/T3≧0.5・・・(1)
T2≧12μm・・・(2)
(1)および(2)式を同時に満たすことによって、シート全体のカールを抑制することができる。ここでカールとは厚み27μm以上の積層シートを100mmの正方形に切り出し、切り出したシートを平面に無加重の状態で置いた時、シートの4隅が平面から浮いた高さの合計値であり、詳細は実施例の「特性の評価方法D.項」に記載したとおりである。本発明におけるポリカーボネート系樹脂とポリオレフィン系樹脂の積層構成では、ポリオレフィン側(P3層)が内側となるようにシートの少なくとも3隅が平面から浮いたカールが発生する。ポリカーボネート系樹脂の積層比が上昇するとシートの剛性が上昇し、カールは小さくなるものである。従って(1)式において、T1/T3が大きいほどカールは良化する傾向にあるが、積層シート中のオレフィン層割合が小さくなることによってガスバリア性が低下することがある。このため、T1/T3は15以下であることが好ましい。より好ましくは10以下、さらに好ましくは5以下、最も好ましくは2以下である。一方、T1/T3が0.5未満であるとポリオレフィンの積層比が大きすぎT2の厚みによらずカールが大きくなる。ガスバリア性とカールの両方を鑑みるのであれば、T1/T3は好ましくは0.6以上であり、最も好ましくは0.7以上である。
In the present invention, when the thickness of the P1 layer is T1, the thickness of the P2 layer is T2, and the thickness of the P3 layer is T3, the expressions (1) and (2) must be satisfied.
T1 / T3 ≧ 0.5 (1)
T2 ≧ 12 μm (2)
By satisfying the expressions (1) and (2) at the same time, curling of the entire sheet can be suppressed. Here, curl is a total value of the height at which the four corners of the sheet float from the plane when the laminated sheet having a thickness of 27 μm or more is cut into a 100 mm square and the cut sheet is placed on a flat surface in an unweighted state. The details are as described in “Characteristic Evaluation Method D. Item” in the Examples. In the laminated structure of the polycarbonate-based resin and the polyolefin-based resin in the present invention, a curl is generated in which at least three corners of the sheet are lifted from the plane so that the polyolefin side (P3 layer) is the inside. When the lamination ratio of the polycarbonate resin is increased, the rigidity of the sheet is increased and the curl is reduced. Therefore, in the formula (1), as T1 / T3 is larger, the curl tends to be improved, but the gas barrier property may be lowered by decreasing the ratio of the olefin layer in the laminated sheet. For this reason, T1 / T3 is preferably 15 or less. More preferably, it is 10 or less, More preferably, it is 5 or less, Most preferably, it is 2 or less. On the other hand, when T1 / T3 is less than 0.5, the lamination ratio of polyolefin is too large, and the curl becomes large regardless of the thickness of T2. In view of both gas barrier properties and curl, T1 / T3 is preferably 0.6 or more, and most preferably 0.7 or more.
 また(2)式において、T2が12μm未満であるとカールが発生する。この範囲を満たすことによってカールを低減できる。さらに、(2)式を満たすと120℃100%RH48時間処理後の層間密着性を向上する効果もあり、さらに、湿熱処理による層間剥離強度の低下を抑制する効果がある。また、湿熱処理による層間剥離強度の低下をどの程度抑制しているかは、P1層とP2層の層間およびP2層とP3層の層間における初期層間剥離強度に対して湿熱処理後の層間剥離強度がどの程度低下しているかの比で判定を行い、詳細は実施例の「特性の評価方法J.項」に記載したとおりである。P2層の厚みT2の上限については特に限定されないが、作製速度等の理由から100μm以下であることが好ましい。さらにカール特性、層間剥離強度および作製速度等を鑑みるのであれば、積層シート全体の厚みに対してP2層の厚みが5%以上20%以下であることが好ましく、且つ15μm以上60μm以下であることが好ましい。より好ましくは20μm以上40μm以下である。ここで、層間剥離強度はJIS-K6854-3(1999年版)に則って測定されたT型で剥離した際の強度をいう。また、太陽電池用バックシートなど屋外で使用することに鑑みれば初期層間剥離強度、および120℃100%RH48hr湿熱処理後の層間剥離強度は共に3N/15mm以上が好ましい。より好ましくは共に5N/15mm以上であり、さらに好ましくは共に8N/15mm以上であり、最も好ましくは共に10N/15mm以上である。初期層間剥離強度は、T2の厚みに加えて剥離界面樹脂間の相互作用で決定され、必要な剥離強度に応じて樹脂を選択すれば良い。特にP1層とP2層の界面剥離の場合、P1層は主たる構成成分がポリカーボネートであるので、P2層を構成する樹脂を高酸価とすることや、極性のある官能基を樹脂に導入することなどが有効である。また、120℃100%RH48hr湿熱処理後の層間剥離強度はT2の厚みに加え、P2層および、P3層がポリオレフィン系エラストマーを含有することにより、初期層間剥離強度からの低下を抑制できる。 In the formula (2), curling occurs when T2 is less than 12 μm. Curling can be reduced by satisfying this range. Furthermore, satisfying the formula (2) also has an effect of improving interlayer adhesion after treatment at 120 ° C. and 100% RH for 48 hours, and further has an effect of suppressing a decrease in delamination strength due to wet heat treatment. The degree to which the decrease in the delamination strength due to the wet heat treatment is suppressed is determined by the delamination strength after the wet heat treatment relative to the initial delamination strength between the P1 layer and the P2 layer and between the P2 layer and the P3 layer. Judgment is made based on the ratio of the degree of decrease, and details are as described in “Characteristic Evaluation Method J. Section” in the Examples. The upper limit of the thickness T2 of the P2 layer is not particularly limited, but is preferably 100 μm or less for reasons such as production speed. Furthermore, if considering the curling characteristics, delamination strength, production speed, etc., the thickness of the P2 layer is preferably 5% or more and 20% or less, and 15 μm or more and 60 μm or less with respect to the total thickness of the laminated sheet. Is preferred. More preferably, it is 20 μm or more and 40 μm or less. Here, the delamination strength refers to the strength when peeling with the T-type measured according to JIS-K6854-3 (1999 edition). In view of use outdoors such as a solar cell backsheet, the initial delamination strength and the delamination strength after 120 ° C. and 100% RH 48 hr wet heat treatment are both preferably 3 N / 15 mm or more. More preferably, both are 5 N / 15 mm or more, More preferably, both are 8 N / 15 mm or more, Most preferably, both are 10 N / 15 mm or more. The initial delamination strength is determined by the interaction between the release interface resins in addition to the thickness of T2, and the resin may be selected according to the required peel strength. In particular, in the case of interfacial peeling between the P1 layer and the P2 layer, the main component of the P1 layer is polycarbonate. Therefore, the resin constituting the P2 layer should have a high acid value, or a polar functional group should be introduced into the resin. Etc. are effective. Further, the delamination strength after the wet heat treatment at 120 ° C. and 100% RH for 48 hours can suppress a decrease from the initial delamination strength by including the polyolefin elastomer in the P2 layer and the P3 layer in addition to the thickness of T2.
 本発明の積層シートの総厚みは27μm以上600μm以下であるのが好ましく、さらに好ましくは30μm以上450μm以下、最も好ましくは40μm以上400μm以下である。また、本発明の積層シートを太陽電池用バックシート用途に用いる場合は、バックシートに要求される耐電圧に応じて上記範囲内で適宜厚みを調整する。本発明の積層シートの厚みが27μm未満の場合、シートの平坦性が低下したり、P2層が薄くなりすぎて、粒子を含有せしめたことによる特性向上効果が低下することがある、600μmより厚い場合、例えば、太陽電池用バックシートとして用いた場合に、太陽電池セルの全体厚みが厚くなり過ぎる場合がある。 The total thickness of the laminated sheet of the present invention is preferably 27 μm or more and 600 μm or less, more preferably 30 μm or more and 450 μm or less, and most preferably 40 μm or more and 400 μm or less. Moreover, when using the laminated sheet of this invention for the solar cell backsheet use, thickness is suitably adjusted within the said range according to the withstand voltage requested | required of a backsheet. When the thickness of the laminated sheet of the present invention is less than 27 μm, the flatness of the sheet may be reduced, or the P2 layer may be too thin, and the effect of improving characteristics due to the inclusion of particles may be reduced. In this case, for example, when used as a solar cell backsheet, the overall thickness of the solar cell may become too thick.
 本発明の積層シートにおけるP1層の厚みT1は、5μm以上200μm以下であるのが好ましく、太陽電池用バックシートに用いる場合は、要求される耐電圧で決定すれば良い。好ましくは30μm以上190μm以下、さらに好ましくは50μm以上180μm以下である。5μm未満であると、自己支持性がなかったり、200μm超であると太陽電池セルの全体厚みが厚くなり過ぎることがある。 The thickness T1 of the P1 layer in the laminated sheet of the present invention is preferably 5 μm or more and 200 μm or less, and when used for a solar cell backsheet, it may be determined by a required withstand voltage. Preferably they are 30 micrometers or more and 190 micrometers or less, More preferably, they are 50 micrometers or more and 180 micrometers or less. If it is less than 5 μm, there is no self-supporting property, and if it exceeds 200 μm, the overall thickness of the solar battery cell may be too thick.
 本発明の積層シートにおけるP3層の厚みT3は、10μm以上400μm以下であるのが好ましく、太陽電池用バックシートに用いる場合は、要求される水蒸気透過度および耐電圧で決定すれば良い。好ましくは10μm以上250μm以下、さらに好ましくは30μm以上200μm以下である。10μm未満であると、封止材との接着性低下や、水蒸気透過度が悪化したり、400μm超であると太陽電池セルの全体厚みが厚くなり過ぎることがある。 The thickness T3 of the P3 layer in the laminated sheet of the present invention is preferably 10 μm or more and 400 μm or less, and when used for a solar cell backsheet, it may be determined by the required water vapor permeability and withstand voltage. Preferably they are 10 micrometers or more and 250 micrometers or less, More preferably, they are 30 micrometers or more and 200 micrometers or less. When the thickness is less than 10 μm, the adhesiveness with the sealing material is deteriorated, the water vapor permeability is deteriorated, and when the thickness is more than 400 μm, the entire thickness of the solar battery cell may be too thick.
 本発明における積層シートの積層構成は少なくともP1層/P2層/P3層という構成であり、P3層はいずれか一方の表層に設けられる。P3層が表層に設けられることによって封止材との密着性が良好となる。また、P3層が両表層に設けられた場合は密着性に優れるものの、ポリオレフィン系樹脂を主たる構成成分とするため難燃性が得られ難い。一方、P1層を両表層に設けた場合、難燃性に優れるものの封止材との十分な密着性を得ることができない。P3層を片側表面にのみ設けることによって難燃性と封止材との密着性を両立することができる。また、P1層、P2層、P3層はそれぞれが積層構造でもよく、必要な機能に応じて多層構造とすれば良い。 The laminated structure of the laminated sheet in the present invention is at least P1 layer / P2 layer / P3 layer, and the P3 layer is provided on any one of the surface layers. By providing the P3 layer on the surface layer, the adhesion to the sealing material is improved. Moreover, when P3 layer is provided in both surface layers, although it is excellent in adhesiveness, since a polyolefin resin is made into a main structural component, a flame retardance is hard to be acquired. On the other hand, when P1 layer is provided in both surface layers, although it is excellent in a flame retardance, sufficient adhesiveness with a sealing material cannot be obtained. By providing the P3 layer only on one surface, both flame retardancy and adhesion with the sealing material can be achieved. In addition, each of the P1 layer, the P2 layer, and the P3 layer may have a laminated structure, and may have a multilayer structure according to a required function.
 また、本発明の積層シートは、他のフィルム等と積層することができる。この場合もP3層はいずれか一方の表層に設けられる積層構成を取れば良い。他のフィルムの例として、機械的強度を高めるためのポリエステル層、帯電防止層、他素材との密着層、耐紫外線性をさらに向上させるための耐紫外線層、難燃性付与のための難燃層、耐衝撃性や耐擦過性を高めるためのハードコート層など、用途に応じて、任意に選択して用いることができる。その具体例として、本発明の積層シートを太陽電池用バックシートとして用いる場合は、他のシート材料や、発電素子を埋包している封止材(例えばエチレンビニルアセテート)との密着性を更に向上させるため易接着層、耐紫外線層、難燃層の他、絶縁性の指標である部分放電現象の発生する電圧を向上させる導電層を形成させることなどが挙げられる。 Also, the laminated sheet of the present invention can be laminated with other films and the like. Also in this case, the P3 layer may have a laminated structure provided on any one of the surface layers. Examples of other films include polyester layers for increasing mechanical strength, antistatic layers, adhesion layers with other materials, UV resistant layers for further improving UV resistance, and flame resistance for imparting flame resistance A layer, a hard coat layer for improving impact resistance and scratch resistance, and the like can be arbitrarily selected and used depending on applications. As a specific example, when the laminated sheet of the present invention is used as a back sheet for a solar cell, the adhesion to other sheet materials and a sealing material (for example, ethylene vinyl acetate) in which a power generation element is embedded is further increased. In order to improve, in addition to an easy-adhesion layer, an ultraviolet resistant layer, a flame retardant layer, a conductive layer for improving a voltage at which a partial discharge phenomenon, which is an index of insulation, is generated can be used.
 本発明の積層シートは、耐紫外線性の観点からP1層を入射面としたときのΔbが10以下であることが好ましい。ここでΔbは、紫外線処理前の積層シートP1層を入射面として測定したb値をK0、紫外線処理後の積層シートP1層を入射面として測定したb値をKとして算出された値であり、詳細は実施例の「特性の評価方法H.項」に記載したとおりである。好ましくは6以下である。さらに好ましくは3以下である。Δbを10以下とするためにはP1層に対して無機粒子を10質量%以上含有せしめることが好ましい方法として挙げられ、無機粒子の含有量に応じてΔbを低下させることが可能である。 The laminated sheet of the present invention preferably has a Δb of 10 or less when the P1 layer is used as the incident surface from the viewpoint of ultraviolet resistance. Here, Δb is a value calculated using K0 as the b value measured with the laminated sheet P1 layer before the ultraviolet treatment as the incident surface, and K as the b value measured with the laminated sheet P1 layer after the ultraviolet treatment as the incident surface, Details are as described in “Characteristic Evaluation Method H. Item” in the Examples. Preferably it is 6 or less. More preferably, it is 3 or less. In order to set Δb to 10 or less, a preferable method is to add 10% by mass or more of inorganic particles to the P1 layer, and Δb can be reduced according to the content of inorganic particles.
 本発明の積層シートはガスバリア性の観点から水蒸気透過度が0.0001g/m・day以上10g/m・day以下であることが好ましい。より好ましくは0.0001g/m・day以上5g/m・day以下であり、最も好ましくは0.0001g/m・day以上3g/m・day以下である。この範囲とすることでバックシートから封止材へのガスが透過することによる太陽電池内部の劣化を防ぐことができる。ここで水蒸気透過度は「プラスチックフィルムおよびシートの水蒸気透過度試験方法(機器測定法)」JIS-K7129(1992年)の付属書Bに規定の方法に従い測定して得られた値であり、詳細は実施例の「特性の評価方法I.項」に記載したとおりである。本発明においては水蒸気透過度はP2層の厚みT2とP3層の厚みT3の合計厚みで調整可能であり、合計厚みが大きいほど水蒸気透過度は小さくなる。 From the viewpoint of gas barrier properties, the laminated sheet of the present invention preferably has a water vapor permeability of 0.0001 g / m 2 · day to 10 g / m 2 · day. More preferably, it is 0.0001 g / m 2 · day or more and 5 g / m 2 · day or less, and most preferably 0.0001 g / m 2 · day or more and 3 g / m 2 · day or less. By setting it as this range, deterioration inside the solar cell due to permeation of gas from the back sheet to the sealing material can be prevented. Here, the water vapor transmission rate is a value obtained by measurement according to the method prescribed in Appendix B of “Test method for water vapor transmission rate of plastic film and sheet (instrument measurement method)” JIS-K7129 (1992). Is as described in “Characteristic Evaluation Method I. Item” in the Examples. In the present invention, the water vapor transmission rate can be adjusted by the total thickness of the P2 layer thickness T2 and the P3 layer thickness T3, and the water vapor transmission rate decreases as the total thickness increases.
 次に、本発明の積層シートの製造方法について例を挙げて説明する。本発明の積層シートにおいてP1層、P2層、P3層を積層する方法としては、例えば、P1層用原料、P2層用原料およびP3層用原料をそれぞれ3台の押出機に投入し、溶融して口金から冷却したキャストドラム上に共押出してシート状に加工する方法(共押出法)、単膜で作製したシートに被覆層原料を押出機に投入して溶融押出して口金から押出しながらラミネートする方法(溶融ラミネート法)、各フィルムをそれぞれ別々に作製し、加熱されたロール群などにより熱圧着する方法(熱ラミネート法)、接着剤を介して貼り合わせる方法(接着法)、その他、溶媒に溶解させたものを塗布・乾燥する方法(コーティング法)、およびこれらを組み合わせた方法等を使用することができる。これらのうち製造工程が短く、かつ層間の接着性が良好であるという点で共押出法が好ましい。以下、共押出法での製法を詳述する。 Next, an example is given and demonstrated about the manufacturing method of the lamination sheet of the present invention. As a method of laminating the P1, P2, and P3 layers in the laminated sheet of the present invention, for example, the P1 layer raw material, the P2 layer raw material, and the P3 layer raw material are respectively charged into three extruders and melted. Co-extrusion onto a cast drum cooled from the die and processing it into a sheet (co-extrusion method), and the raw material of the coating layer is put into an extruder and melt extruded and laminated while extruding from the die. Method (melt laminating method), each film is prepared separately, heat-pressed by a heated group of rolls (heat laminating method), method of bonding via an adhesive (adhesion method), and other solvents A method (coating method) of applying and drying the dissolved material, a method combining these, and the like can be used. Of these, the coextrusion method is preferred in that the production process is short and the adhesion between the layers is good. Hereafter, the manufacturing method by a coextrusion method is explained in full detail.
 本発明の積層シートを共押出法で作製する場合、まずポリカーボネート系樹脂を主たる構成成分とするP1層用の組成物、P2層用の組成物およびポリオレフィン系樹脂を主たる構成成分とするP3層用の組成物を、それぞれ別の押出機に供給し、各々溶融する。このとき、前記各層用の組成物は乾燥しておくことが好ましく、溶融時の条件としては、窒素気流下でP1層用の組成物は240℃以上300℃以下、P2層用の組成物およびP3層用の組成物は180℃以上280℃以下に加熱された3台の押出機にそれぞれ供給し溶融することが好ましい。次いで、各々溶融後にP1層、P2層、P3層をこの順に合流させて積層し、Tダイからシート状に押し出し、積層シートを形成する。このとき、マルチマニホールドダイやフィードブロックやスタティックミキサー、ピノール等を用いてP1層、P2層およびP3層を合流、積層させてダイから共押出することが好ましい。溶融粘度差が大きい場合は積層ムラ抑制の観点からマルチマニホールドが好ましい。前記の方法によってダイから吐出した積層シートを、キャスティングドラム等の冷却体上に押出、冷却固化することにより、本発明の積層シートを得ることができる。 When the laminated sheet of the present invention is produced by a co-extrusion method, first, a composition for P1 layer having a polycarbonate resin as a main constituent, a composition for P2 layer, and a P3 layer having a polyolefin resin as a main constituent Are fed to separate extruders and melted respectively. At this time, it is preferable to dry the composition for each layer, and as a condition at the time of melting, the composition for the P1 layer is 240 ° C. or more and 300 ° C. or less under a nitrogen stream, and the composition for the P2 layer and It is preferable that the composition for the P3 layer is supplied to each of three extruders heated to 180 ° C. or higher and 280 ° C. or lower and melted. Next, after melting, the P1 layer, the P2 layer, and the P3 layer are joined and laminated in this order, and extruded from the T-die into a sheet shape to form a laminated sheet. At this time, it is preferable that the P1 layer, the P2 layer, and the P3 layer are joined and laminated using a multi-manifold die, a feed block, a static mixer, pinol, or the like, and co-extruded from the die. When the difference in melt viscosity is large, a multi-manifold is preferable from the viewpoint of suppressing lamination unevenness. The laminate sheet of the present invention can be obtained by extruding the laminate sheet discharged from the die by the above method onto a cooling body such as a casting drum and cooling and solidifying it.
 また、本発明の積層シートをチップ状またはフレーク状に加工した樹脂をP3層用の組成物に対して5質量%以上50質量%以下の範囲で混合した組成物をP3層用の組成物とすることも可能である。この場合において、チップ状またはフレーク状に加工する積層シートとして本発明の積層シートの生産工程で発生した断裁ロスや屑などを用いるとロスが減り、生産性が向上するので特に好ましい。チップ状またはフレーク状に加工する方法には公知の方法を用いれば良いが、分子量低下や酸化劣化を抑制する観点から、可能な限り溶融加熱せずにフレーク状にすることが好ましい。
本発明の積層シートを共押出法で作製する際、P1層がキャスティングドラム面に接する場合は第1段目の冷却時の温度は50℃以上、「ポリカーボネート系樹脂のガラス転移温度-10℃」以下とするのが、得られたシートの平面性が良い点から好ましい。また、カレンダー方式によるキャスティングであることも平面性を得る観点から好ましく、この際、P3層と接するドラムロール温度を15℃以下とするとオレフィン冷却固化時の体積収縮が抑制されシートのカールを小さくすることができるので好ましい。さらに、積層シートをロール状に巻き取る場合、P3層を巻き外面にしてロール巻きするとシートのカールを低減させる観点から好ましい。
Further, a composition obtained by mixing a resin obtained by processing the laminated sheet of the present invention into chips or flakes in a range of 5% by mass or more and 50% by mass or less with respect to the composition for P3 layer and a composition for P3 layer It is also possible to do. In this case, it is particularly preferable to use cutting loss or waste generated in the production process of the laminated sheet of the present invention as the laminated sheet to be processed into chips or flakes because loss is reduced and productivity is improved. A known method may be used as a method of processing into a chip shape or flake shape, but it is preferable to form a flake shape without melting and heating as much as possible from the viewpoint of suppressing a decrease in molecular weight and oxidation deterioration.
When the laminated sheet of the present invention is produced by the co-extrusion method, when the P1 layer is in contact with the casting drum surface, the cooling temperature at the first stage is 50 ° C. or higher, “the glass transition temperature of the polycarbonate resin—10 ° C.” The following is preferable from the viewpoint of good flatness of the obtained sheet. Moreover, it is also preferable from the viewpoint of obtaining flatness that the casting is performed by a calendar method. In this case, if the drum roll temperature in contact with the P3 layer is set to 15 ° C. or less, the volume shrinkage at the time of olefin cooling solidification is suppressed and the curling of the sheet is reduced. This is preferable. Furthermore, when winding a laminated sheet in a roll shape, it is preferable from the viewpoint of reducing the curl of the sheet when the P3 layer is wound around the outer surface.
 前記の方法で得られた本発明の積層シートを本発明の効果が損なわれない範囲で、必要に応じて熱処理やエージングなどの加工処理を加えてもよい。なお、熱処理温度の上限としては、シートの平面性などから、P1層を構成する樹脂の「ガラス転移温度-10℃」以下、より好ましくは「ガラス転移温度-30℃」以下、更に好ましくは「ガラス転移温度-50℃」以下である。また、熱処理時間は好ましくは5秒以上30分以下である。熱処理することで、本発明の積層シートの熱寸法安定性を向上することができる。また、前記の方法で得られた本発明の積層シートの密着性を向上させるために、コロナ処理、プラズマ処理を実施してもよい。 The laminated sheet of the present invention obtained by the above-described method may be subjected to processing such as heat treatment or aging as necessary within the range where the effects of the present invention are not impaired. The upper limit of the heat treatment temperature is not more than “glass transition temperature −10 ° C.”, more preferably “glass transition temperature −30 ° C.” or less, more preferably “less than“ glass transition temperature ”of the resin constituting the P1 layer, from the planarity of the sheet. The glass transition temperature is −50 ° C. or lower. The heat treatment time is preferably 5 seconds or more and 30 minutes or less. By heat-treating, the thermal dimensional stability of the laminated sheet of the present invention can be improved. Moreover, in order to improve the adhesiveness of the laminated sheet of the present invention obtained by the above method, corona treatment or plasma treatment may be performed.
 本発明の太陽電池は、本発明の積層シートをバックシートとして用いることを特徴とする。本発明の積層シートを用いることで、従来の太陽電池と比べて耐久性を高めたり、薄くすることが可能となる。その構成の例を図1に示す。電気を取り出すリード線(図1には示していない)を接続した発電素子をEVA系樹脂などの透明な封止材2で封止したものに、ガラスなどの透明基板4と、本発明の積層シートを太陽電池用バックシート1として貼り合わせて構成されるが、これに限定されず、任意の構成に用いることができる。なお、図1では本発明の積層シート単体での例を示したが、その他必要とされる要求特性に応じて本発明の積層シートと他のフィルムとの複合シートを用いることも可能である。 The solar cell of the present invention is characterized by using the laminated sheet of the present invention as a back sheet. By using the laminated sheet of the present invention, it becomes possible to increase the durability or to make it thinner as compared to conventional solar cells. An example of the configuration is shown in FIG. A power generating element connected with a lead wire for taking out electricity (not shown in FIG. 1) is sealed with a transparent sealing material 2 such as EVA resin, a transparent substrate 4 such as glass, and the laminate of the present invention. Although a sheet | seat is bonded and comprised as the solar cell backsheet 1, it is not limited to this, It can use for arbitrary structures. In addition, although the example by the lamination sheet single-piece | unit of this invention was shown in FIG. 1, it is also possible to use the composite sheet of the lamination sheet of this invention and another film according to the other required required characteristic.
 本発明の積層シートにおいて、他のフィルム等と積層する方法としては、例えば、共押出してシート状に加工する方法(共押出法)、単膜で作製したシートに被覆層原料を押出機に投入して溶融押出して口金から押出しながらラミネートする方法(溶融ラミネート法)、各フィルムをそれぞれ別々に作製し、加熱されたロール群などにより熱圧着する方法(熱ラミネート法)、接着剤を介して貼り合わせる方法(接着法)、その他、溶媒に溶解させたものを塗布・乾燥する方法(コーティング法)、およびこれらを組み合わせた方法等を使用することができる。 In the laminated sheet of the present invention, as a method of laminating with other films, etc., for example, a method of co-extrusion and processing into a sheet (co-extrusion method), a coating layer raw material is put into an extruder into a sheet made of a single film Then, melt extrusion and laminating while extruding from the die (melt laminating method), making each film separately, thermocompression bonding with heated rolls etc. (thermal laminating method), pasting through adhesive A method of bonding (adhesion method), a method of applying and drying a solution dissolved in a solvent (coating method), a method of combining these, and the like can be used.
 本発明の太陽電池において、上述の太陽電池用バックシート1は発電素子を封止した封止材2の背面に設置される。ここで、本発明の積層シートが非対称の構成であって、もう一方の片側表面がP1層からなる場合においては、P3層は封止材2側に位置するように配置されるのが、封止材との密着性をより高くすることができるという点で好ましい。また、少なくとも封止材2と反対側に本発明の積層シートのP1層が位置するように配置されているのが好ましい。この構成とすることによって、地面からの照り返しの紫外線などに対する耐性を高めることが可能となり、高耐久の太陽電池としたり、厚さを薄くすることができる。 In the solar cell of the present invention, the above-described solar cell backsheet 1 is installed on the back surface of the sealing material 2 in which the power generating element is sealed. Here, in the case where the laminated sheet of the present invention has an asymmetric configuration and the other one-side surface is composed of the P1 layer, the P3 layer is disposed so as to be positioned on the sealing material 2 side. This is preferable in that the adhesion to the stopper can be further increased. Moreover, it is preferable to arrange | position so that P1 layer of the lamination sheet of this invention may be located at least on the opposite side to the sealing material 2. FIG. By adopting this configuration, it becomes possible to increase resistance to ultraviolet rays reflected from the ground, and a highly durable solar cell can be obtained or the thickness can be reduced.
 発電素子3は、太陽光の光エネルギーを電気エネルギーに変換するものであり、結晶シリコン系、多結晶シリコン系、微結晶シリコン系、アモルファスシリコン系、銅インジウムセレナイド系、化合物半導体系、色素増感系など、目的に応じて任意の素子を、所望する電圧あるいは電流に応じて複数個を直列または並列に接続して使用することができる。透光性を有する透明基板4は太陽電池の最表層に位置するため、高透過率のほかに、高耐候性、高耐汚染性、高機械強度特性を有する透明材料が使用される。本発明の太陽電池において、透光性を有する透明基板4は上記特性を満たせばいずれの材質を用いることができ、その例としてはガラス、四フッ化エチレン-エチレン共重合体(ETFE)、ポリフッ化ビニル樹脂(PVF)、ポリフッ化ビニリデン樹脂(PVDF)、ポリ四フッ化エチレン樹脂(TFE)、四フッ化エチレン-六フッ化プロピレン共重合体(FEP)、ポリ三フッ化塩化エチレン樹脂(CTFE)、ポリフッ化ビニリデン樹脂などのフッ素系樹脂、オレフィン系樹脂、アクリル系樹脂、およびこれらの混合物などが好ましく挙げられる。ガラスの場合、強化されているものを用いるのがより好ましい。また樹脂製の透光基材を用いる場合は、機械的強度の観点から、上記樹脂を一軸または二軸に延伸したものも好ましく用いられる。 The power generating element 3 converts light energy of sunlight into electric energy, and is based on crystalline silicon, polycrystalline silicon, microcrystalline silicon, amorphous silicon, copper indium selenide, compound semiconductor, dye enhancement Arbitrary elements such as a sensitive system can be used in series or in parallel according to the desired voltage or current depending on the purpose. Since the transparent substrate 4 having translucency is located on the outermost surface layer of the solar cell, a transparent material having high weather resistance, high contamination resistance, and high mechanical strength characteristics in addition to high transmittance is used. In the solar cell of the present invention, the transparent substrate 4 having translucency can be made of any material as long as it satisfies the above characteristics. Examples thereof include glass, tetrafluoroethylene-ethylene copolymer (ETFE), polyfluoride. Vinyl fluoride resin (PVF), polyvinylidene fluoride resin (PVDF), polytetrafluoroethylene resin (TFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polytrifluoroethylene chloride resin (CTFE) ), Fluorinated resins such as polyvinylidene fluoride resin, olefinic resins, acrylic resins, and mixtures thereof. In the case of glass, it is more preferable to use a tempered glass. Moreover, when using the resin-made translucent base material, what extended | stretched the said resin uniaxially or biaxially from a viewpoint of mechanical strength is used preferably.
 また、これら基材には発電素子の封止材であるEVA系樹脂などとの接着性を付与するために、表面に、コロナ処理、プラズマ処理、オゾン処理、易接着処理を施すことも好ましく行われる。 In addition, in order to provide these substrates with adhesion to an EVA resin or the like that is a sealing material for power generation elements, it is preferable to subject the surface to corona treatment, plasma treatment, ozone treatment, and easy adhesion treatment. Is called.
 発電素子を封止するための封止材2は、発電素子の表面の凹凸を樹脂で被覆し固定し、外部環境から発電素子保護し、電気絶縁の目的の他、透光性を有する基材やバックシートと発電素子に接着するため、高透明性、高耐候性、高接着性、高耐熱性を有する材料が使用される。その例としては、エチレン-ビニルアセテート共重合体(EVA)、エチレン-メチルアクリレート共重合体(EMA)、エチレン-エチルアクリレート共重合体(EEA)樹脂、エチレン-メタクリル酸共重合体(EMAA)、アイオノマー樹脂、ポリビニルブチラール樹脂、およびこれらの混合物などが好ましく用いられる。 The sealing material 2 for sealing the power generating element covers the surface of the power generating element with resin and fixes it, protects the power generating element from the external environment, and has a light-transmitting base material for the purpose of electrical insulation. In addition, a material having high transparency, high weather resistance, high adhesion, and high heat resistance is used to adhere to the backsheet and the power generation element. Examples thereof include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA) resin, ethylene-methacrylic acid copolymer (EMAA), Ionomer resins, polyvinyl butyral resins, and mixtures thereof are preferably used.
 以上のように、本発明の積層シートに用いた太陽電池用バックシートを太陽電池システムに組み込むことにより、従来の太陽電池と比べて、高耐久および/または薄型の太陽電池システムとすることが可能となる。本発明の太陽電池は、太陽光発電システム、小型電子部品の電源など、屋外用途、屋内用途に限定されず各種用途に好適に用いることができる。 As described above, by incorporating the solar cell backsheet used in the laminated sheet of the present invention into the solar cell system, it is possible to obtain a highly durable and / or thin solar cell system compared to conventional solar cells. It becomes. The solar cell of the present invention can be suitably used for various applications without being limited to outdoor use and indoor use such as a solar power generation system and a power source for small electronic components.
     
 [特性の評価方法]
 A.層厚みT1、T2、T3、積層比T1/T3
 下記(A1)~(A4)の手順にて求めた。なお、測定は10ヶ所場所を変えて測定し、その平均値でもってP1層の層厚みT1(μm)、P2層の層厚みT2(μm)、P3層の層厚みT3(μm)、積層比T1/T3とした。
(A1)ミクロトームを用いて、積層シート断面を厚み方向に潰すことなく、積層シート面方向に対して垂直に切断する。
(A2)次いで切断した断面を、電子顕微鏡を用いて観察し、500倍に拡大観察した画像を得る。なお、観察場所は無作為に定めるものとするが、画像の上下方向が積層シートの厚み方向と、画像の左右方向が積層シートの面方向とそれぞれ平行になるようにするものとする。なお、厚み方向全体が1枚の画像中に入りきらない場合は、厚み方向に観察位置をずらして観察し、複数の画像をあわせることによって厚み全体が確認できる画像を準備する。
(A3)前記(A2)で得られる画像中におけるP1層の層厚みT1、P2層の層厚みT2、P3層の厚みT3を求めた。
(A4)T1をT3で除し、積層比T1/T3を算出した。

[Characteristic evaluation method]
A. Layer thickness T1, T2, T3, stacking ratio T1 / T3
It was determined by the following procedures (A1) to (A4). In addition, the measurement is performed by changing the location at 10 locations, and the average value of the layer thickness T1 (μm) of the P1 layer, the layer thickness T2 (μm) of the P2 layer, the layer thickness T3 (μm) of the P3 layer, the lamination ratio T1 / T3.
(A1) Using a microtome, the laminate sheet is cut perpendicular to the laminate sheet surface direction without crushing the laminate sheet in the thickness direction.
(A2) Next, the cut section is observed using an electron microscope, and an image magnified 500 times is obtained. Although the observation location is determined randomly, the vertical direction of the image is parallel to the thickness direction of the laminated sheet, and the horizontal direction of the image is parallel to the surface direction of the laminated sheet. When the entire thickness direction does not fit in one image, observation is performed by shifting the observation position in the thickness direction, and an image that can confirm the entire thickness is prepared by combining a plurality of images.
(A3) The layer thickness T1 of the P1 layer, the layer thickness T2 of the P2 layer, and the thickness T3 of the P3 layer in the image obtained in (A2) were determined.
(A4) T1 was divided by T3, and the lamination ratio T1 / T3 was calculated.
 B.無機粒子含有率Wa1、Wa2、有機粒子含有率Wa3、Wa4
 積層シートからP1層、P3層のそれぞれを削る、または剥がしてP1層およびP3層を分離し、それらについて、以下の方法でP1層の無機粒子含有率Wa1、P3層の無機粒子含有率Wa2、P1層の有機粒子含有率Wa3、P3層の有機粒子含有量Wa4を求めた。
P1層について削りだしたものの質量wa1’’(g)およびP3層について削りだしたものの質量wa3’’(g)を測定した。次いで、塩化メチレン中に溶解させ、遠心分離により不溶分のうち、無機粒子および有機粒子を分取した。得られた無機粒子および有機粒子を塩化メチレンにて洗浄、遠心分離した。なお、洗浄作業は、遠心分離後の洗浄液にエタノールを添加しても白濁しなくなるまで繰り返した。得られた無機粒子の質量wa1’(g)、有機粒子の質量wa3’を求め、下記式(4)および(5)から無機粒子含有率Wa1および有機粒子含有率Wa3を測定した。
P1層の無機粒子含有率(質量%)Wa1=(wa1’/wa1’’)×100・・・(4)
P1層の有機粒子含有率(質量%)Wa3=(wa3’/wa3’’)×100・・・(5)
P3層においても溶解させる溶剤をオルト-ジクロロベンゼン(100℃)に変更してP1層の場合と同様の方法で、P3層の無機粒子含有率Wa2および有機粒子含有量Wa4を求めた。
B. Inorganic particle content Wa1, Wa2, organic particle content Wa3, Wa4
Each of the P1 layer and the P3 layer is scraped or peeled off from the laminated sheet to separate the P1 layer and the P3 layer. About them, the inorganic particle content rate Wa1 of the P1 layer and the inorganic particle content rate Wa2 of the P3 layer are as follows. The organic particle content Wa3 of the P1 layer and the organic particle content Wa4 of the P3 layer were determined.
The mass wa1 ″ (g) of the material cut out from the P1 layer and the mass wa3 ″ (g) of the material cut out from the P3 layer were measured. Subsequently, it was made to melt | dissolve in a methylene chloride, and the inorganic particle and the organic particle were fractionated among the insoluble matters by centrifugation. The obtained inorganic particles and organic particles were washed with methylene chloride and centrifuged. The washing operation was repeated until no white turbidity occurred even when ethanol was added to the washing solution after centrifugation. The mass wa1 ′ (g) of the obtained inorganic particles and the mass wa3 ′ of the organic particles were determined, and the inorganic particle content Wa1 and the organic particle content Wa3 were measured from the following formulas (4) and (5).
P1 layer inorganic particle content (% by mass) Wa1 = (wa1 ′ / wa1 ″) × 100 (4)
Organic particle content of P1 layer (mass%) Wa3 = (wa3 ′ / wa3 ″) × 100 (5)
Also in the P3 layer, the solvent to be dissolved was changed to ortho-dichlorobenzene (100 ° C.), and the inorganic particle content Wa2 and the organic particle content Wa4 in the P3 layer were determined in the same manner as in the P1 layer.
 C.P3層の融点Tmおよび結晶融解エネルギー
示差走査型熱量分析(DSC)を用い、JIS-K7122(1987年版)に従って測定・算出した。積層シートからP3層を削りだし、サンプルをセットして25℃から200℃まで20℃/minで昇温した。ここで得られた測定結果はファーストランである。次いで25℃まで急冷し、再び25℃から200℃まで20℃/minで昇温し、ここで得られた測定結果をセカンドランとした。このときのセカンドランの測定結果を模式的に図2に示す。図2(a)が融点Tmを示すピークトップであり、ベースラインからの積分値である図2(b)(斜線部分の面積)を結晶融解エネルギーとした。
装置:セイコー電子工業(株)製“ロボットDSC-RDC220”
データ解析“ディスクセッションSSC/5200”
サンプル質量:2mg
 D.カール
厚み27μm以上の積層シートを100mmの正方形に切り出し、切り出したシートを水平、平面の上に無加重、無風の状態でカールしている場合で下に凸になるように静置し、シートの4隅が平面から浮いた高さの合計値であり、その値から次のように判定を行った。
4隅高さ合計値が20mm未満の場合:◎
4隅高さ合計値が20mm以上50mm未満の場合:○
4隅高さ合計値が50mm以上100mm未満の場合:△
4隅高さ合計値が100mm以上の場合:×
◎~△が良好であり、その中でも◎が最も優れている。
C. It was measured and calculated according to JIS-K7122 (1987 version) using the melting point Tm of the P3 layer and crystal melting energy differential scanning calorimetry (DSC). The P3 layer was cut out from the laminated sheet, a sample was set, and the temperature was raised from 25 ° C. to 200 ° C. at 20 ° C./min. The measurement result obtained here is a first run. Next, it was rapidly cooled to 25 ° C., and again heated from 25 ° C. to 200 ° C. at a rate of 20 ° C./min. The measurement result of the second run at this time is schematically shown in FIG. FIG. 2A is a peak top showing the melting point Tm, and FIG. 2B (area of the hatched portion), which is an integrated value from the base line, was used as the crystal melting energy.
Equipment: “Robot DSC-RDC220” manufactured by Seiko Electronics Industry Co., Ltd.
Data Analysis “Disk Session SSC / 5200”
Sample mass: 2mg
D. A laminated sheet having a curl thickness of 27 μm or more is cut into a square of 100 mm, and the cut sheet is left so as to be convex downward when curled in a state of no load and no wind on a horizontal and flat surface. The four corners are the total values of the heights above the plane, and the determination was made as follows based on these values.
When the total height of the four corners is less than 20 mm: ◎
When the total height of the four corners is 20 mm or more and less than 50 mm: ○
When the total height of the four corners is 50 mm or more and less than 100 mm: △
When the total height of the four corners is 100 mm or more: ×
~ to △ are good, among which ◎ is the best.
 E.封止材との密着性
 JIS-K6854-2(1994年版)に則って測定された180°で剥離した際の強度を用い、EVAシートとP3層の剥離強度から封止材の密着性を評価した。測定試験片は、厚さ3mmの半強化ガラス上に、サンビック(株)製の500μm厚のEVAシート、およびコロナ処理を行った実施例、比較例の積層シートを重ね、市販のガラスラミネーターを用いて減圧後に143℃加熱条件下、29.4N/cm荷重で15分プレス処理をしたものを用いた。剥離強度試験の試験片の幅は10mmとし、2つの試験片を準備し、それぞれの試験片について場所を変えて3カ所測定し、得られた測定値の平均値を剥離強度の値とした。
得られた剥離強度から封止材の密着性を以下のように判定した。
剥離強度が50N/10mm以上の場合:S
剥離強度が40N/10mm以上50N/10mm未満の場合:A
剥離強度が30N/10mm以上40N/10mm未満の場合:B
剥離強度が20N/10mm以上30N/10mm未満の場合:C
剥離強度が20N/10mm未満の場合:D
S~Cが良好であり、その中でもSが最も優れている。
E. Adhesiveness to sealing material Using the strength when peeled at 180 ° measured according to JIS-K6854-2 (1994 edition), the adhesiveness of the sealing material was evaluated from the peel strength between the EVA sheet and the P3 layer. did. The test specimen is a 500 μm-thick EVA sheet manufactured by Sanvic Co., Ltd., and a laminated sheet of Examples and Comparative Examples subjected to corona treatment on a semi-tempered glass having a thickness of 3 mm, and a commercially available glass laminator is used. After depressurization, a product subjected to press treatment at 143 ° C. under a load of 29.4 N / cm 2 for 15 minutes was used. The width of the test piece for the peel strength test was 10 mm, two test pieces were prepared, and each test piece was measured at three locations with different locations, and the average value of the obtained measured values was taken as the peel strength value.
From the obtained peel strength, the adhesiveness of the sealing material was determined as follows.
When peel strength is 50 N / 10 mm or more: S
When the peel strength is 40 N / 10 mm or more and less than 50 N / 10 mm: A
When peel strength is 30N / 10mm or more and less than 40N / 10mm: B
When the peel strength is 20 N / 10 mm or more and less than 30 N / 10 mm: C
When peel strength is less than 20 N / 10 mm: D
S to C are good, and S is the best among them.
 F.湿熱処理後の層間密着性
 湿熱処理後の層間剥離強度から密着性を評価した。層間剥離強度はJIS-K6854-3(1994年版)に則って測定されたT型で剥離した際の強度を用いた。ここで、層間とはP1層とP2層の間およびP2層とP3層の間など界面剥離できる層間とすれば良い。剥離強度試験の試験片の幅は15mmとし、2つの試験片を準備し、それぞれの試験片について場所を変えて3カ所測定し、得られた測定値の平均値を湿熱処理後の層間剥離強度として、以下のように湿熱処理後の層間密着性の判定を行った。また、湿熱処理条件としてタバイエスペック(株)製プレッシャークッカーにて、温度120℃、100%RHの条件下にて48時間処理を行った。
剥離強度が10N/15mm以上の場合:S
剥離強度が6N/15mm以上10N/15mm未満の場合:A
剥離強度が3N/15mm以上6N/15mm未満の場合:B
剥離強度が1N/15mm以上3N/15mm未満の場合:C
剥離強度が1N/15mm未満の場合:D
S~Cが良好であり、その中でもSが最も優れている。
F. Interlayer adhesion after wet heat treatment Adhesion was evaluated from the delamination strength after wet heat treatment. As the delamination strength, the strength at the time of peeling with a T-type measured according to JIS-K6854-3 (1994 edition) was used. Here, the interlayer may be an interlayer capable of interfacial separation such as between the P1 layer and the P2 layer and between the P2 layer and the P3 layer. The width of the test piece for the peel strength test is 15 mm, and two test pieces are prepared. The test piece is changed in place and measured at three points, and the average value of the obtained measured values is the delamination strength after the wet heat treatment. As described below, the interlayer adhesion after the wet heat treatment was determined. Moreover, it processed for 48 hours on the conditions of temperature 120 degreeC and 100% RH in the pressure cooker by Tabay Espec Co., Ltd. as wet heat treatment conditions.
When peel strength is 10N / 15mm or more: S
When the peel strength is 6 N / 15 mm or more and less than 10 N / 15 mm: A
When peel strength is 3N / 15mm or more and less than 6N / 15mm: B
When peel strength is 1N / 15mm or more and less than 3N / 15mm: C
When peel strength is less than 1 N / 15 mm: D
S to C are good, and S is the best among them.
 G.難燃性
 UL94HB試験に基づいて、シートを13mm×125mmの大きさに切り出し、切り出した長手方向の端から25.4mmのところに第一標線、101.6mmのところに第二標線を引き、水平に保持して燃焼試験を行った時の第一標線から第二標線までの燃焼速度で、シートの幅方向及び長手方向についてそれぞれN=3で行いその平均値とした。得られた燃焼速度について以下のように判定を行った。
燃焼速度が100mm/分未満の場合:A
燃焼速度が100mm/分以上110mm/分未満の場合:B
燃焼速度が110mm/分以上130mm/分未満の場合:C
燃焼速度が130mm/分以上150mm/分未満の場合:D
燃焼速度が150mm/分以上の場合:E
難燃性はA~Dが良好であり、その中でAが最も優れている。
G. Flame retardance Based on the UL94HB test, the sheet was cut into a size of 13 mm x 125 mm, and the first marked line was drawn at 25.4 mm from the cut end in the longitudinal direction, and the second marked line was drawn at 101.6 mm. The burning rate from the first marked line to the second marked line when the combustion test was performed while being held horizontally was performed at N = 3 in the width direction and the longitudinal direction of the sheet, and the average value was obtained. The obtained burning rate was determined as follows.
When the burning rate is less than 100 mm / min: A
When the burning rate is 100 mm / min or more and less than 110 mm / min: B
When the burning rate is 110 mm / min or more and less than 130 mm / min: C
When the burning rate is 130 mm / min or more and less than 150 mm / min: D
When the burning rate is 150 mm / min or more: E
As for flame retardancy, A to D are good, and A is the best among them.
 H.耐紫外線性
 紫外線処理前の積層シートP1層側から測定したb値をK0、紫外線処理後の積層シートP1層側から測定したb値をKとした時に、下記(3)式により求められる値をP1層側のΔbとして、この値より積層シートの耐紫外線性を評価した。
Δb=K-K0・・・(3)式
紫外線処理は、スガ試験機(株)製キセノンウェザーメーターSC750にて、温度65℃、相対湿度50%RH、強度150mW/cm(光源:キセノンランプ、波長範囲:290~400nm)の条件下でP1層側に1000時間照射した。また、b値の求め方は次の通りである。
分光式色差計SE-2000型(日本電色工業(株)製)を用い、JIS-Z8722(2000年版)に準じて反射モードにて、P1層のb値を測定した。サンプル数はn=5とし、試料測定径を30mmφとして、それぞれのb値を測定して、その平均値を算出した。得られたP1層側のΔbより積層シートの耐紫外線性について以下のように判定を行った。
色調変化Δbが3未満の場合:S
色調変化Δbが3以上6未満の場合:A
色調変化Δbが6以上10以下の場合:B
色調変化Δbが10を超える場合:C
S~Bが良好であり、その中でもSが最も優れている。
H. UV resistance When the b value measured from the laminated sheet P1 layer side before the ultraviolet ray treatment is K0, and the b value measured from the laminated sheet P1 layer side after the ultraviolet ray treatment is K, the value obtained by the following equation (3) is The UV resistance of the laminated sheet was evaluated from this value as Δb on the P1 layer side.
Δb = K−K0 (3) The ultraviolet ray treatment is performed using a xenon weather meter SC750 manufactured by Suga Test Instruments Co., Ltd., at a temperature of 65 ° C., a relative humidity of 50% RH, and an intensity of 150 mW / cm 2 (light source: xenon lamp). , Wavelength range: 290 to 400 nm), the P1 layer side was irradiated for 1000 hours. The method for obtaining the b value is as follows.
Using a spectroscopic color difference meter SE-2000 (manufactured by Nippon Denshoku Industries Co., Ltd.), the b value of the P1 layer was measured in the reflection mode according to JIS-Z8722 (2000 version). The number of samples was n = 5, the sample measurement diameter was 30 mmφ, each b value was measured, and the average value was calculated. From the obtained Δb on the P1 layer side, the ultraviolet resistance of the laminated sheet was determined as follows.
When the color change Δb is less than 3: S
When the color change Δb is 3 or more and less than 6: A
When the color change Δb is 6 or more and 10 or less: B
When color change Δb exceeds 10: C
S to B are good, and S is the best among them.
 I.ガスバリア性
 MOCON社製PERMATRAN W-TWINを用いて、「プラスチックフィルムおよびシートの水蒸気透過度試験方法(機器測定法)」JIS-K7129(1992年版)の付属書Bに規定の方法に従い、40℃、90%RH条件下で測定を行った。得られた水蒸気透過度より積層シートのガスバリア性について以下のように判定を行った。
水蒸気透過度が3g/m・day未満の場合:S
水蒸気透過度が3g/m・day以上、5g/m・day未満の場合:A
水蒸気透過度が5g/m・day以上、10g/m・day以下の場合:B
水蒸気透過度が10g/m・dayを超える場合:C
S~Bが良好であり、その中でもSが最も優れている。
I. Gas barrier property Using PERMATRAN W-TWIN manufactured by MOCON, according to the method prescribed in Appendix B of “Test method for water vapor permeability of plastic films and sheets (instrument measurement method)” JIS-K7129 (1992 version), Measurements were performed under 90% RH conditions. The gas barrier property of the laminated sheet was determined from the obtained water vapor permeability as follows.
When the water vapor transmission rate is less than 3 g / m 2 · day: S
When the water vapor transmission rate is 3 g / m 2 · day or more and less than 5 g / m 2 · day: A
When the water vapor transmission rate is 5 g / m 2 · day or more and 10 g / m 2 · day or less: B
When the water vapor permeability exceeds 10 g / m 2 · day: C
S to B are good, and S is the best among them.
 J.湿熱処理による層間剥離強度の低下抑制度合い
 湿熱処理による層間剥離強度の低下抑制度合いは初期層間剥離強度をG、湿熱処理後の層間剥離強度Gとしたとき、下記式(6)から算出した湿熱処理後の層間剥離強度低下比より判定を行う。
湿熱処理後の層間剥離強度低下比=G/G・・・(6)
ここで、層間剥離強度はJIS-K6854-3(1994年版)に則って測定されたT型で剥離した際の強度を用いた。また、層間とはP1層とP2層の間およびP2層とP3層の間など界面剥離できる層間とすれば良い。剥離強度試験の試験片の幅は15mmとし、2つの試験片を準備し、それぞれの試験片について場所を変えて3カ所測定し、得られた測定値の平均値を層間剥離強度とした。また、湿熱処理条件としてタバイエスペック(株)製プレッシャークッカーにて、温度120℃、100%RHの条件下にて48時間処理を行った。(6)式から算出された値より、湿熱処理による層間剥離強度の低下抑制度合いを以下のように判定した。
湿熱処理後の層間剥離強度低下比が1.0以上の場合:S
湿熱処理後の層間剥離強度低下比が0.7以上1.0未満の場合:A
湿熱処理後の層間剥離強度低下比が0.5以上0.7未満の場合:B
湿熱処理後の層間剥離強度低下比が0.3以上0.5未満の場合:C
湿熱処理後の層間剥離強度低下比が0.3未満の場合:D
S~Bが良好であり、その中でもSが最も優れている。
J. et al. Depression suppression degree of delamination strength due to wet heat treatment Depression suppression degree of delamination strength due to wet heat treatment was calculated from the following formula (6) when the initial delamination strength was G 0 and delamination strength G 1 after wet heat treatment. Judgment is made from the delamination strength reduction ratio after the wet heat treatment.
Ratio of reduction in delamination strength after wet heat treatment = G 1 / G 0 (6)
Here, as the delamination strength, the strength at the time of peeling with the T type measured according to JIS-K6854-3 (1994 edition) was used. The interlayer may be an interlayer capable of interfacial separation such as between the P1 layer and the P2 layer and between the P2 layer and the P3 layer. The width of the test piece for the peel strength test was 15 mm, two test pieces were prepared, and each test piece was measured at three locations by changing the location. The average value of the obtained measured values was taken as the delamination strength. Further, as a wet heat treatment condition, a pressure cooker manufactured by Tabai Espec Co., Ltd. was used for 48 hours under the conditions of a temperature of 120 ° C. and 100% RH. From the value calculated from the equation (6), the degree of suppression of decrease in delamination strength due to wet heat treatment was determined as follows.
When the delamination strength reduction ratio after wet heat treatment is 1.0 or more: S
When delamination strength reduction ratio after wet heat treatment is 0.7 or more and less than 1.0: A
When the delamination strength reduction ratio after wet heat treatment is 0.5 or more and less than 0.7: B
When the delamination strength reduction ratio after wet heat treatment is 0.3 or more and less than 0.5: C
When the delamination strength reduction ratio after wet heat treatment is less than 0.3: D
S to B are good, and S is the best among them.
 [原料]
 ・ポリカーボネート系樹脂
 P1層を構成するポリカーボネート系樹脂として、以下のものを用いた。
(PC1)出光興産(株)社製“タフロン”A2200
        実施例1~35、37~80および比較例1~4に使用。
(PC2)出光興産(株)社製“タフロン”A1700
        実施例36および実施例81~101に使用。
[material]
-Polycarbonate-type resin The following were used as polycarbonate-type resin which comprises P1 layer.
(PC1) "Taflon" A2200 manufactured by Idemitsu Kosan Co., Ltd.
Used in Examples 1-35, 37-80 and Comparative Examples 1-4.
(PC2) "Taflon" A1700 manufactured by Idemitsu Kosan Co., Ltd.
Used in Example 36 and Examples 81-101.
 ・接着層樹脂
 P2層を構成する接着層樹脂として以下のものを用いた。
(接着樹脂1)三菱化学(株)社製“モディック”F534A、酸変性ポリオレフィン
        実施例1~36、40~80および比較例1~4に使用。
(接着樹脂2)三菱化学(株)社製“モディック”F532、酸変性ポリオレフィン
        実施例37に使用。
(接着樹脂3)三菱化学(株)社製“モディック”P553A、酸変性ポリオレフィン
        実施例38に使用。
(接着樹脂4)三井化学(株)社製“アドマー”SF731、酸変性ポリオレフィン
        実施例39に使用。
(接着樹脂5)三菱化学(株)社製“モディック”F535、酸変性ポリオレフィン
        実施例81~101に使用。
-Adhesive layer resin The following were used as adhesive layer resin which comprises P2 layer.
(Adhesive Resin 1) “Modic” F534A manufactured by Mitsubishi Chemical Corporation, acid-modified polyolefin Used in Examples 1-36, 40-80, and Comparative Examples 1-4.
(Adhesive resin 2) “Modic” F532 manufactured by Mitsubishi Chemical Corporation, acid-modified polyolefin Used in Example 37.
(Adhesive Resin 3) “Modic” P553A manufactured by Mitsubishi Chemical Corporation, acid-modified polyolefin Used in Example 38.
(Adhesive Resin 4) “Admer” SF731, manufactured by Mitsui Chemicals, Inc., acid-modified polyolefin Used in Example 39.
(Adhesive resin 5) “Modic” F535 manufactured by Mitsubishi Chemical Corporation, acid-modified polyolefin Used in Examples 81 to 101.
 ・ポリオレフィン系樹脂
 ポリオレフィン系樹脂として以下のものを用いた。
(LLDPE1)住友化学(株)社製“スミカセンL”GA401
        実施例1~7、実施例81~101に使用。
(PP1)プライムポリマー(株)社製“プライムポリプロ”E100GV
        実施例8~14に使用。
(PP2)プライムポリマー社製“プライムポリプロ”F704NP
        実施例15~21および比較例1~4に使用。
(PP3)プライムポリマー(株)社製“プライムポリプロ”F744NP(エチレン量4.2質量%)
        実施例22~28に使用。
(EPBC1)住友化学社製“ノーブレン”FL6745A
        実施例29~80に使用。
(EPC1)住友化学社製“ノーブレン”FL6412
        実施例81~101に使用。
-Polyolefin resin The following were used as polyolefin resin.
(LLDPE1) "Sumikasen L" GA401 manufactured by Sumitomo Chemical Co., Ltd.
Used in Examples 1 to 7 and Examples 81 to 101.
(PP1) Prime Polymer Co., Ltd. “Prime Polypro” E100GV
Used in Examples 8-14.
(PP2) "Prime Polypro" F704NP manufactured by Prime Polymer
Used in Examples 15-21 and Comparative Examples 1-4.
(PP3) Prime Polymer Co., Ltd. “Prime Polypro” F744NP (ethylene content 4.2 mass%)
Used in Examples 22-28.
(EPBC1) "Noblen" FL6745A manufactured by Sumitomo Chemical Co., Ltd.
Used in Examples 29-80.
(EPC1) "Nobren" FL6412 manufactured by Sumitomo Chemical Co., Ltd.
Used in Examples 81-101.
 ・ポリオレフィン系エラストマー
 ポリオレフィン系エラストマーとして以下のものを用いた。
(エラストマー1)三井化学(株)社製“ノティオ”PN2060
        実施例14、21、28、35、53のP3層、および
        実施例60、76のP2層に使用。
(エラストマー2)ダウケミカル(株)社製“ENGAGE”8200
        実施例50~52、54、55、59、63~72、79、
        80のP3層、および、
        実施例56~59、61、62、73~75、77、78の
P1層に使用。
-Polyolefin elastomers The following were used as polyolefin elastomers.
(Elastomer 1) “Notio” PN2060 manufactured by Mitsui Chemicals, Inc.
Used for P3 layer of Examples 14, 21, 28, 35, 53, and P2 layer of Examples 60, 76.
(Elastomer 2) “ENGAGE” 8200 manufactured by Dow Chemical Co., Ltd.
Examples 50 to 52, 54, 55, 59, 63 to 72, 79,
80 P3 layers, and
Used for P1 layer of Examples 56 to 59, 61, 62, 73 to 75, 77, 78.
 ・変性スチレン系熱可塑性エラストマー
 変性スチレン系熱可塑性エラストマーとして以下のものを用いた。
(M-SEBS)旭化成ケミカルズ社製“タフテック”M1913
        実施例84~87、91~94、98~101に使用。
-Modified styrene thermoplastic elastomer The following were used as a modified styrene thermoplastic elastomer.
(M-SEBS) "Tough Tech" M1913 manufactured by Asahi Kasei Chemicals
Used in Examples 84-87, 91-94, 98-101.
 ・相溶化剤
 P3層に適用する相溶化剤として以下のものを用いた。
(ダイナロン)JSR(株)社製“ダイナロン”6200P
        実施例83~87、90~94、97~101に使用。
-Compatibilizer The following were used as a compatibilizer applied to the P3 layer.
(Dynalon) “Dynalon” 6200P manufactured by JSR Corporation
Used in Examples 83-87, 90-94, 97-101.
 ・無機粒子
 無機粒子としてルチル型二酸化チタンを用いた。各実施例等においては、以下のマスター化した樹脂を表記載の混合比率となるよう用いた。
(MB2)PC2と二酸化チタンを50質量%/50質量%の割合でマスター化した樹脂
        参考例2、実施例6~39、42、43、68~78、
        88~94及び比較例1~4のP1層に使用。
(MB5)EPC1と二酸化チタンを30質量%/70質量%の割合でマスター化した樹脂
        参考例1、2、実施例12、13、19、20、26、
        27、81~94のP3層に使用。
(MB6)EPBC1と二酸化チタンを30質量%/70質量%の割合でマスター化した樹脂
        実施例33、34、36~42、44~62、68~78の
        P3層に使用。
Inorganic particles Rutile type titanium dioxide was used as inorganic particles. In each Example etc., the following mastered resin was used so that it might become a mixing ratio of a table | surface description.
(MB2) Resin obtained by mastering PC2 and titanium dioxide at a ratio of 50% by mass / 50% by mass Reference Example 2, Examples 6 to 39, 42, 43, 68 to 78,
Used for P1 layer of 88-94 and Comparative Examples 1-4.
(MB5) Resin in which EPC1 and titanium dioxide were mastered at a ratio of 30% by mass / 70% by mass Reference Examples 1, 2, Examples 12, 13, 19, 20, 26,
Used for P3 layer of 27, 81-94.
(MB6) Resin in which EPBC1 and titanium dioxide were mastered at a ratio of 30% by mass / 70% by mass Used for P3 layer of Examples 33, 34, 36 to 42, 44 to 62, 68 to 78.
 ・有機粒子
 有機粒子としてカーボンブラックを用いた。各実施例等においては、以下のマスター化した樹脂を表記載の混合比率となるよう用いた。
(MB1)PC2とカーボンブラックを90質量%/10質量%の割合でマスター化した樹脂
        参考例1、3、実施例40、41、44~47、50~67、
        79~87、95~101のP1層に使用。
(MB4)EPC1とカーボンブラックを90質量%/10質量%の割合でマスター化した樹脂
        参考例3、実施例63~67、95~101のP3層に使用。
(MB7)PC2とカーボンブラックを80質量%/20質量%の割合でマスター化した樹脂
        実施例48、49のP1層に使用。
-Organic particles Carbon black was used as organic particles. In each Example etc., the following mastered resin was used so that it might become a mixing ratio of a table | surface description.
(MB1) Resin in which PC2 and carbon black are mastered at a ratio of 90% by mass / 10% by mass Reference Examples 1, 3, Examples 40, 41, 44 to 47, 50 to 67,
Used for 79-87 and 95-101 P1 layers.
(MB4) Resin obtained by mastering EPC1 and carbon black at a ratio of 90% by mass / 10% by mass Used for P3 layer in Reference Example 3, Examples 63 to 67, 95 to 101.
(MB7) Resin obtained by mastering PC2 and carbon black at a ratio of 80% by mass / 20% by mass Used for the P1 layer of Examples 48 and 49.
 ・紫外線吸収剤
 紫外線吸収剤としてBASFジャパン(株)社製“TINUVIN329”を用いた。各実施例等においては、以下のマスター化した樹脂を表記載の混合比率となるよう用いた。
(MB3)PC2と“TINUVIN329” を90質量%/10質量%の割合でマスター化した樹脂
        実施例81~101に使用。
-Ultraviolet absorber "TINUVIN329" by BASF Japan Ltd. was used as an ultraviolet absorber. In each Example etc., the following mastered resin was used so that it might become a mixing ratio of a table | surface description.
(MB3) Resin in which PC2 and “TINUVIN329” were mastered at a ratio of 90% by mass / 10% by mass Used in Examples 81-101.
 ・積層シートをフレーク状に加工した樹脂
 参考例1~3により得られた積層シートの断裁ロスやエッジ部分など(以下単に「積層シート」と記す)をフレーク状に加工した樹脂として以下のものを用いた。
(フレーク1)参考例1により得られた積層シートをフレーク状にした樹脂。
(フレーク2)参考例2により得られた積層シートをフレーク状にした樹脂。
(フレーク3)参考例3により得られた積層シートをフレーク状にした樹脂。
・ Resin processed into flakes from laminated sheets The following resin was processed into flakes for cutting loss and edge parts (hereinafter simply referred to as “laminated sheets”) of the laminated sheets obtained in Reference Examples 1 to 3. Using.
(Flake 1) A resin in which the laminated sheet obtained in Reference Example 1 is made into flakes.
(Flake 2) A resin obtained by making the laminated sheet obtained in Reference Example 2 into a flake shape.
(Flake 3) A resin in which the laminated sheet obtained in Reference Example 3 is made into flakes.
 (参考例1~3)
 押出機1をP1層、押出機2をP2層、押出機3をP3層として、表2-1に示す樹脂を表2-2に示す押出温度にて各押出機内で溶融した。次いで各押出機から溶融押出された層がP1層/P2層/P3層の順に積層されるようマルチマニホールドダイにて各層を合流させ、口金から吐出された樹脂を表面温度10℃のキャストドラム上にP3層側がキャストドラム面と接するように冷却固化して積層シートを得た。
(Reference Examples 1 to 3)
With the extruder 1 as the P1 layer, the extruder 2 as the P2 layer, and the extruder 3 as the P3 layer, the resins shown in Table 2-1 were melted in each extruder at the extrusion temperatures shown in Table 2-2. Next, the layers melt-extruded from each extruder are joined together in a multi-manifold die so that the layers P1 layer / P2 layer / P3 layer are laminated in order, and the resin discharged from the die is placed on a cast drum having a surface temperature of 10 ° C. Then, it was cooled and solidified so that the P3 layer side was in contact with the cast drum surface to obtain a laminated sheet.
 以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not necessarily limited thereto.
 (実施例1~101、比較例1、2)
押出機1、押出機2および押出機3を用い、各層につき表1に示す樹脂混合比率にて各押出機に樹脂を投入し、表1に示す押出温度にて溶融した。次いで押出機1から溶融押出された層がP1層、押出機2がP2層、押出機3がP3層として、P1層/P2層/P3層の順に積層されるようマルチマニホールドにて各層を合流させ、口金から吐出された樹脂をキャストドラム上に冷却固化して積層シートを得た。P1層、P2層、P3層は表1に示す厚み、積層比となった。また、P1層のPCおよびPCでマスター化した樹脂は110℃で6時間乾燥したものを用いた。
得られた積層シートについて難燃性、カール特性、封止材との密着性を評価した。その結果、表1に示す通り、実施例については難燃性、カール特性に優れた積層シートであることがわかった。
さらに、実施例6~39、42、43、68~78はP1層が無機粒子として二酸化チタンを含有するため、耐紫外線性に優れていた。また、実施例12、13、19、20、26、27、33、34、36~39はP3層も無機粒子として二酸化チタンを含有するため、さらに耐紫外線性に優れていた。
さらに、実施例1~7、22~80はP3層の融点が130℃程度であったため封止材との密着性に優れていた。
さらに、実施例14、21、28、35、50~55、59、63~72、79、80のP3層、実施例56~62、73~78のP2層にポリオレフィン系エラストマーを含んでいたため、カール、封止材との密着性、湿熱処理後の層間剥離強度の低下抑制度合いに優れていた。
さらに、実施例14、21、28、35、50~55、59、63~72、79、80のP3層および実施例56~62、73~78のP2層にポリオレフィン系エラストマーを含んでいたため、層間剥離強度の低下抑制度合いに優れていた。中でも実施例59はP2層、P3層共にポリオレフィン系エラストマーを含んでいたこと、実施例62、78はP2層にポリオレフィン系エラストマーを50質量%含んでいたため特に湿熱処理後の層間剥離強度の低下抑制度合いに優れていた。
さらに、実施例14、21~80はP3層の結晶融解エネルギーが80J/g以下であったため、カール特性、封止材との密着性に優れていた。
さらに、実施例40、41、44~67、79、80のP1層および実施例63~67のP3層は有機粒子としてカーボンブラックを含有するため耐紫外線性、意匠性に優れていた。
一方、比較例1はP2層の厚みが12μm未満であったためカール特性に劣るものであった。
比較例2はT1/T3が0.5未満であったため、カール特性に劣るものであった。
(Examples 1 to 101, Comparative Examples 1 and 2)
Using the extruder 1, the extruder 2 and the extruder 3, the resin was put into each extruder at the resin mixing ratio shown in Table 1 for each layer and melted at the extrusion temperature shown in Table 1. Next, the layers melt-extruded from the extruder 1 are the P1 layer, the extruder 2 is the P2 layer, the extruder 3 is the P3 layer, and the layers are joined together in the order of P1 layer / P2 layer / P3 layer. The resin discharged from the die was cooled and solidified on the cast drum to obtain a laminated sheet. The P1 layer, P2 layer, and P3 layer had thicknesses and lamination ratios shown in Table 1. The P1 layer PC and the resin mastered with PC were those dried at 110 ° C. for 6 hours.
The obtained laminated sheet was evaluated for flame retardancy, curl characteristics, and adhesion to a sealing material. As a result, as shown in Table 1, it was found that the examples were laminated sheets excellent in flame retardancy and curl characteristics.
Further, Examples 6 to 39, 42, 43, and 68 to 78 had excellent ultraviolet resistance because the P1 layer contained titanium dioxide as inorganic particles. In Examples 12, 13, 19, 20, 26, 27, 33, 34, and 36 to 39, the P3 layer also contained titanium dioxide as inorganic particles, and thus was further excellent in UV resistance.
Further, Examples 1 to 7 and 22 to 80 had excellent adhesion to the sealing material because the melting point of the P3 layer was about 130 ° C.
Further, since the P3 layer of Examples 14, 21, 28, 35, 50 to 55, 59, 63 to 72, 79, 80, and the P2 layer of Examples 56 to 62, 73 to 78 contained polyolefin elastomer. It was excellent in curling, adhesion to a sealing material, and suppression of a decrease in delamination strength after wet heat treatment.
Furthermore, the polyolefin elastomer was contained in the P3 layer of Examples 14, 21, 28, 35, 50 to 55, 59, 63 to 72, 79, 80 and the P2 layer of Examples 56 to 62, 73 to 78. In addition, the degree of suppression of decrease in delamination strength was excellent. In particular, Example 59 included polyolefin elastomer in both P2 and P3 layers, and Examples 62 and 78 included 50% by mass of polyolefin elastomer in P2 layer. Excellent suppression.
Further, in Examples 14 and 21 to 80, since the crystal melting energy of the P3 layer was 80 J / g or less, the curl characteristics and the adhesion to the sealing material were excellent.
Further, the P1 layer of Examples 40, 41, 44 to 67, 79, and 80 and the P3 layer of Examples 63 to 67 contained carbon black as organic particles, and thus were excellent in ultraviolet resistance and design.
On the other hand, Comparative Example 1 was inferior in curl characteristics because the thickness of the P2 layer was less than 12 μm.
Since Comparative Example 2 had T1 / T3 of less than 0.5, the curl characteristics were inferior.
 さらに、実施例82~87、89~94、96~101のP1層は紫外線吸収剤を含有するのでより耐紫外線性に優れていた。 Furthermore, since the P1 layers of Examples 82 to 87, 89 to 94, and 96 to 101 contained an ultraviolet absorber, they were more excellent in UV resistance.
 さらに、実施例84~87、91~94、98~101のP2層は変性スチレン系エラストマーを含有するので層間剥離強度の低下抑制度合いに優れていた。 Furthermore, since the P2 layers of Examples 84 to 87, 91 to 94, and 98 to 101 contained a modified styrene elastomer, they were excellent in the degree of suppressing the decrease in delamination strength.
 さらに、実施例85~87、92~94、99~101はP3層にポリカーボネート系樹脂を含有していたためより難燃性、カール特性に優れていた。また、積層シート作製時に発生したロスを再利用したため、収率が改善し生産性に優れていた。 Furthermore, Examples 85 to 87, 92 to 94, and 99 to 101 were more excellent in flame retardancy and curl characteristics because the P3 layer contained a polycarbonate resin. Moreover, since the loss generated during the production of the laminated sheet was reused, the yield was improved and the productivity was excellent.
 (比較例3)
押出機1、押出機2および押出機3を用い、表1に示す樹脂を表1に示す押出温度にて溶融した。次いで押出機1から溶融押出された層がP1層、押出機2がP2層、押出機3がP3層として、P1層/P2層/P3層/P2層/P1層の順に積層されるようマルチマニホールドにて各層を合流させ、口金から吐出された樹脂をキャストドラム上に冷却固化して積層シートを得た。P1層、P2層、P3層は表1に示す厚み、積層比となった。また、P1層のPCは110℃で6時間乾燥したものを用いた。
得られた積層シートについて難燃性、カール特性を評価した。その結果、表1に示す通り、少なくとも片方の表層にP3層が設けられていないため、封止材との密着性が劣るものとなった。
(Comparative Example 3)
Using the extruder 1, the extruder 2 and the extruder 3, the resins shown in Table 1 were melted at the extrusion temperature shown in Table 1. Next, the layer melt-extruded from the extruder 1 is the P1 layer, the extruder 2 is the P2 layer, the extruder 3 is the P3 layer, and the layers are laminated in the order of P1 layer / P2 layer / P3 layer / P2 layer / P1 layer. The layers were joined at the manifold, and the resin discharged from the die was cooled and solidified on the cast drum to obtain a laminated sheet. The P1 layer, P2 layer, and P3 layer had thicknesses and lamination ratios shown in Table 1. The P1 layer PC used was dried at 110 ° C. for 6 hours.
The obtained laminated sheet was evaluated for flame retardancy and curl characteristics. As a result, as shown in Table 1, since the P3 layer was not provided on at least one surface layer, the adhesion with the sealing material was inferior.
 (比較例4)
押出機1、押出機2および押出機3を用い、表1に示す樹脂を表1に示す押出温度にて溶融した。次いで押出機1から溶融押出された層がP1層、押出機2がP2層、押出機3がP3層として、P3層/P2層/P1層/P2層/P3層の順に積層されるようマルチマニホールドにて各層を合流させ、口金から吐出された樹脂をキャストドラム上に冷却固化して積層シートを得た。P1層、P2層、P3層は表1に示す厚み、積層比となった。また、P1層のPCは110℃で6時間乾燥したものを用いた。
得られた積層シートについて難燃性、カール特性を評価した。その結果、表1に示す通り、両表層にP3層が設けられているため、難燃性に劣るものとなった。
(Comparative Example 4)
Using the extruder 1, the extruder 2 and the extruder 3, the resins shown in Table 1 were melted at the extrusion temperature shown in Table 1. Next, the layer melt-extruded from the extruder 1 is the P1 layer, the extruder 2 is the P2 layer, the extruder 3 is the P3 layer, and the layers are laminated in the order of P3 layer / P2 layer / P1 layer / P2 layer / P3 layer. The layers were joined at the manifold, and the resin discharged from the die was cooled and solidified on the cast drum to obtain a laminated sheet. The P1 layer, P2 layer, and P3 layer had thicknesses and lamination ratios shown in Table 1. The P1 layer PC used was dried at 110 ° C. for 6 hours.
The obtained laminated sheet was evaluated for flame retardancy and curl characteristics. As a result, as shown in Table 1, since the P3 layers were provided on both surface layers, the flame retardancy was poor.
 本発明の積層シートは、従来のポリカーボネート系樹脂とポリオレフィン系樹脂の積層シートと比べて難燃性とカール特性の両立性に優れる積層シートを提供することができる。かかる積層シートは、太陽電池用バックシートの他、液晶ディスプレイ用反射板、自動車用材料、建築材料をはじめとした、耐湿熱性、紫外線に対する耐性、光反射性が重視されるような用途に好適に使用することができる。特に、かかる積層シートを用いることで、高い耐久性を有した太陽電池用バックシートおよびそれを用いた太陽電池を提供することができる。 The laminated sheet of the present invention can provide a laminated sheet having excellent compatibility between flame retardancy and curl characteristics as compared with conventional laminated sheets of polycarbonate resin and polyolefin resin. Such laminated sheets are suitable for applications where importance is placed on wet heat resistance, resistance to ultraviolet rays, and light reflectivity, including back plates for solar cells, liquid crystal display reflectors, automotive materials, and building materials. Can be used. In particular, by using such a laminated sheet, a solar cell backsheet having high durability and a solar cell using the same can be provided.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
1:太陽電池用バックシート
2:封止材
3:発電素子
4:透明基板
5:太陽電池用バックシートの封止材2側の面
6:太陽電池用バックシートの封止材2と反対側の面
a:融解吸熱ピーク温度
b:結晶融解エネルギー
1: Back sheet for solar cell 2: Sealing material 3: Power generation element 4: Transparent substrate 5: Surface on the sealing material 2 side of the back sheet for solar cell 6: Side opposite to the sealing material 2 of the back sheet for solar cell Surface a: melting endothermic peak temperature b: crystal melting energy

Claims (17)

  1. ポリカーボネート系樹脂を主たる構成成分とする層(P1層)、接着層(P2層)、および、ポリオレフィン系樹脂を主たる構成成分とする層(P3層)を有する積層シートであって、いずれか一方の表層がP3層である積層構成であり、P1層の厚みをT1、P2層の厚みをT2、P3層の厚みをT3としたとき、下記(1)式、(2)式を満たす積層シート。
     T1/T3≧0.5・・・(1)
     T2≧12μm・・・(2)
    A laminated sheet having a layer (P1 layer) mainly composed of a polycarbonate-based resin, an adhesive layer (P2 layer), and a layer (P3 layer) mainly composed of a polyolefin-based resin, A laminated sheet having a laminated structure in which the surface layer is a P3 layer, wherein the thickness of the P1 layer is T1, the thickness of the P2 layer is T2, and the thickness of the P3 layer is T3, and satisfies the following formulas (1) and (2).
    T1 / T3 ≧ 0.5 (1)
    T2 ≧ 12 μm (2)
  2. P3層を構成するポリオレフィン系樹脂は、5質量%以上30質量%以下の範囲でポリエチレン樹脂を構成成分として含有する請求項1に記載の積層シート。 The laminated sheet according to claim 1, wherein the polyolefin-based resin constituting the P3 layer contains a polyethylene resin as a constituent component in a range of 5% by mass to 30% by mass.
  3. P2層が変性スチレン系熱可塑性エラストマーを3質量%以上15質量%以下含有する請求項1または請求項2に記載の積層シート。 The laminated sheet according to claim 1 or 2, wherein the P2 layer contains 3% by mass or more and 15% by mass or less of the modified styrene thermoplastic elastomer.
  4. P3層の結晶融解エネルギーが80J/g以下である請求項1~3のいずれかに記載の積層シート。 The laminated sheet according to any one of claims 1 to 3, wherein the crystal melting energy of the P3 layer is 80 J / g or less.
  5. P1層が無機粒子を3質量%以上50質量%未満含有する請求項1~4のいずれかに記載の積層シート。 The laminated sheet according to any one of claims 1 to 4, wherein the P1 layer contains 3% by mass or more and less than 50% by mass of inorganic particles.
  6. P1層が有機粒子を0.1質量%以上20質量%以下含有する請求項1~5のいずれかに記載の積層シート。 The laminated sheet according to any one of claims 1 to 5, wherein the P1 layer contains 0.1% by mass or more and 20% by mass or less of organic particles.
  7. P3層がポリオレフィン系エラストマーを5質量%以上50質量%以下含有する請求項1~6のいずれかに記載の積層シート。 The laminated sheet according to any one of claims 1 to 6, wherein the P3 layer contains 5 mass% or more and 50 mass% or less of a polyolefin-based elastomer.
  8. P3層が無機粒子を1質量%以上30質量%以下含有する請求項1~7のいずれかに記載の積層シート。 The laminated sheet according to any one of claims 1 to 7, wherein the P3 layer contains 1% by mass to 30% by mass of inorganic particles.
  9. P2層が、酸変性ポリオレフィンを主たる構成成分とする請求項1~8のいずれかに記載の積層シート。 The laminated sheet according to any one of claims 1 to 8, wherein the P2 layer comprises acid-modified polyolefin as a main constituent.
  10. P2層にポリオレフィン系エラストマーを5質量%以上50質量%以下含有する請求項1~9のいずれかに記載の積層シート。 The laminated sheet according to any one of claims 1 to 9, wherein the P2 layer contains 5 to 50% by mass of a polyolefin-based elastomer.
  11. P3層に対して5質量%以上25質量%以下の範囲でポリカーボネート系樹脂を含む請求項1~10のいずれかに記載の積層シート。 The laminated sheet according to any one of claims 1 to 10, comprising a polycarbonate-based resin in a range of 5% by mass to 25% by mass with respect to the P3 layer.
  12. 請求項1~11のいずれかに記載の積層シートを用いた太陽電池用バックシート。 A solar cell backsheet using the laminated sheet according to any one of claims 1 to 11.
  13. 請求項12に記載の太陽電池用バックシートを用いた太陽電池。 The solar cell using the solar cell backsheet of Claim 12.
  14. 請求項1~11のいずれかに記載の積層シートの製造方法であって、ポリカーボネート系樹脂を主たる構成成分とするP1層用の組成物、P2層用の組成物、および、ポリオレフィン系樹脂を主たる構成成分とするP3層用の組成物を、それぞれ別の押出機に供給し、各々溶融後にP1層、P2層、P3層をこの順に合流させて積層し、Tダイからシート状に押し出す工程を含む積層シートの製造方法。 The method for producing a laminated sheet according to any one of claims 1 to 11, comprising a composition for P1 layer, a composition for P2 layer, and a polyolefin resin mainly comprising a polycarbonate resin. Supplying the composition for the P3 layer as a constituent component to different extruders, respectively, melting each P1 layer, P2 layer, P3 layer in this order and laminating them, and extruding them from the T die into a sheet The manufacturing method of the laminated sheet containing.
  15. 請求項1~11のいずれかに記載の積層シートをチップ状またはフレーク状に加工した樹脂をP3層用の組成物に対して5質量%以上50質量%以下の範囲で混合した組成物をP3層用の組成物として用いる請求項14に記載の積層シートの製造方法。 A composition obtained by mixing a resin obtained by processing the laminated sheet according to any one of claims 1 to 11 into chips or flakes in a range of 5% by mass or more and 50% by mass or less with respect to the composition for the P3 layer. The manufacturing method of the lamination sheet of Claim 14 used as a composition for layers.
  16. P2層用の組成物として、酸変性ポリオレフィンを主たる構成成分とする樹脂を50質量%以上95質量%以下、ポリオレフィン系エラストマーを5質量%以上50質量%以下の割合で混合して押出機に供給する請求項14または請求項15に記載の積層シートの製造方法。 As a composition for the P2 layer, a resin mainly composed of acid-modified polyolefin is mixed in a proportion of 50% by mass to 95% by mass and a polyolefin elastomer is mixed in a proportion of 5% by mass to 50% by mass and supplied to the extruder. The manufacturing method of the lamination sheet of Claim 14 or Claim 15 to do.
  17. P3層用の組成物として、ポリオレフィン系樹脂を主たる構成成分とする樹脂を50質量%以上95質量%以下、ポリオレフィン系エラストマーを5質量%以上50質量%以下の割合で混合して押出機に供給する請求項14~16のいずれかに記載の積層シートの製造方法。 As a composition for the P3 layer, a resin mainly composed of a polyolefin resin is mixed in a proportion of 50 to 95% by mass and a polyolefin elastomer is mixed in a proportion of 5 to 50% by mass and supplied to an extruder. The method for producing a laminated sheet according to any one of claims 14 to 16.
PCT/JP2012/068651 2011-07-26 2012-07-24 Laminated sheet and method for producing same WO2013015259A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011162795 2011-07-26
JP2011-162795 2011-07-26
JP2012-079364 2012-03-30
JP2012079364 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013015259A1 true WO2013015259A1 (en) 2013-01-31

Family

ID=47601104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068651 WO2013015259A1 (en) 2011-07-26 2012-07-24 Laminated sheet and method for producing same

Country Status (3)

Country Link
JP (1) JPWO2013015259A1 (en)
TW (1) TW201316526A (en)
WO (1) WO2013015259A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021003A1 (en) * 2012-07-30 2014-02-06 東レ株式会社 Laminate sheet and method for manufacturing same
WO2021181315A1 (en) * 2020-03-12 2021-09-16 藤森工業株式会社 Adhesive resin composition, adhesive resin molded article, adhesive resin laminate, and housing sealing member
WO2021181314A1 (en) * 2020-03-12 2021-09-16 藤森工業株式会社 Adhesive resin composition, adhesive resin molded article, adhesive resin laminate, and housing sealing member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109505B (en) * 2019-05-15 2023-11-17 苏州大学 Self-powered multidimensional detection and interaction control device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324556A (en) * 2005-05-20 2006-11-30 Toppan Printing Co Ltd Solar cell back sheet and solar cell module using the same
JP2008004691A (en) * 2006-06-21 2008-01-10 Toppan Printing Co Ltd Sheet for sealing backside of solar battery
JP2009178851A (en) * 2008-01-29 2009-08-13 Techno Polymer Co Ltd Infrared reflecting laminate
JP2010195028A (en) * 2008-05-19 2010-09-09 Techno Polymer Co Ltd Laminate
JP2010199555A (en) * 2009-01-28 2010-09-09 Techno Polymer Co Ltd Back sheet for solar battery, and solar battery module comprising same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324556A (en) * 2005-05-20 2006-11-30 Toppan Printing Co Ltd Solar cell back sheet and solar cell module using the same
JP2008004691A (en) * 2006-06-21 2008-01-10 Toppan Printing Co Ltd Sheet for sealing backside of solar battery
JP2009178851A (en) * 2008-01-29 2009-08-13 Techno Polymer Co Ltd Infrared reflecting laminate
JP2010195028A (en) * 2008-05-19 2010-09-09 Techno Polymer Co Ltd Laminate
JP2010199555A (en) * 2009-01-28 2010-09-09 Techno Polymer Co Ltd Back sheet for solar battery, and solar battery module comprising same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021003A1 (en) * 2012-07-30 2014-02-06 東レ株式会社 Laminate sheet and method for manufacturing same
WO2021181315A1 (en) * 2020-03-12 2021-09-16 藤森工業株式会社 Adhesive resin composition, adhesive resin molded article, adhesive resin laminate, and housing sealing member
WO2021181314A1 (en) * 2020-03-12 2021-09-16 藤森工業株式会社 Adhesive resin composition, adhesive resin molded article, adhesive resin laminate, and housing sealing member

Also Published As

Publication number Publication date
TW201316526A (en) 2013-04-16
JPWO2013015259A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
US10770609B2 (en) Multilayered polyolefin-based films having a layer comprising a crystalline block copolymer composite or a block copolymer composite resin
US10759152B2 (en) Multilayered polyolefin-based films having an integrated backsheet and encapsulation performance comprising a layer comprising crystalline block copolymer composite or block copolymer composite
JP5102392B2 (en) Laminated polyester film for solar cell back surface protective film
WO2013105616A1 (en) Solar cell module having excellent appearance and method for manufacturing same
EP2613362A1 (en) Solar battery cover film for and solar battery module manufactured using same
TW201321187A (en) Back protective sheet for solar cell module and solar cell module using it
JP2009267294A (en) Backsheet for solar cell module
WO2013183344A1 (en) Solar battery module and method of manufacture thereof
JPWO2013021860A1 (en) Laminated sheet and method for producing the same
WO2013015259A1 (en) Laminated sheet and method for producing same
JP2010165873A (en) Rear surface protective sheet and solar battery module using the same
TW201705509A (en) Film for solar-cell back sheet, solar-cell back sheet including same, and solar cell
JP6747474B2 (en) Solar cell module
JP6364811B2 (en) Solar cell module
JP2014004778A (en) Laminate sheet and method for manufacturing the same
WO2012133368A1 (en) Laminated sheet and solar cell using same
JP5729828B2 (en) POLYESTER RESIN SHEET FOR SOLAR CELL, LAMINATED PRODUCT USING SAME, SOLAR CELL BACK PROTECTIVE SHEET, AND MODULE
JP2011056701A (en) Sheet for solar cell and solar cell module
JP5920338B2 (en) Laminated sheet and solar cell using the same
JP6427871B2 (en) Solar cell module
JP5768862B2 (en) POLYESTER RESIN SHEET FOR SOLAR CELL, LAMINATED PRODUCT USING SAME, SOLAR CELL BACK PROTECTIVE SHEET, AND MODULE
JP2013042006A (en) Polymer sheet for solar cell module, method of manufacturing the same, back sheet for solar cell module and solar cell module
JP2018202866A (en) Laminated polyester film
JP2014143259A (en) Rear surface protective sheet for solar cell module
JP2016096324A (en) Solar battery backside protection sheet and solar battery module arranged by use thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012535265

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817167

Country of ref document: EP

Kind code of ref document: A1