WO2014091866A1 - 液体供給システム - Google Patents
液体供給システム Download PDFInfo
- Publication number
- WO2014091866A1 WO2014091866A1 PCT/JP2013/080818 JP2013080818W WO2014091866A1 WO 2014091866 A1 WO2014091866 A1 WO 2014091866A1 JP 2013080818 W JP2013080818 W JP 2013080818W WO 2014091866 A1 WO2014091866 A1 WO 2014091866A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- sealed container
- ultra
- low temperature
- pipe
- Prior art date
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 136
- 238000001816 cooling Methods 0.000 abstract description 11
- 230000007423 decrease Effects 0.000 abstract description 7
- 239000007789 gas Substances 0.000 description 18
- 230000010349 pulsation Effects 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000000872 buffer Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 230000003139 buffering effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000008602 contraction Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/04—Arrangement or mounting of valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D3/00—Devices using other cold materials; Devices using cold-storage bodies
- F25D3/10—Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/02—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D29/00—Arrangement or mounting of control or safety devices
- F25D29/001—Arrangement or mounting of control or safety devices for cryogenic fluid systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/01—Intermediate tanks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a liquid supply system that supplies an ultra-low temperature liquid such as liquid nitrogen or liquid helium.
- An object of the present invention is to provide a liquid supply system that suppresses a decrease in the function of a relief valve and improves cooling efficiency.
- the present invention employs the following means in order to solve the above problems.
- the liquid supply system of the present invention is A sealed container; A pump disposed in a cryogenic liquid contained in a sealed container and driven by a linear actuator; A first pipe that guides the cryogenic liquid delivered by the pump to a cooled apparatus provided outside the sealed container; A second pipe for returning the cryogenic liquid from the cooled device to the inside of the sealed container; A relief valve connected to the first pipe in the sealed container and allowing the cryogenic liquid to escape into the sealed container; It is characterized by providing.
- the relief valve is provided in the sealed container. Therefore, heat is not exchanged with the outside of the sealed container in the relief valve, and the ultra-low temperature liquid is returned to the sealed container with the ultra-low temperature. Therefore, the cooling efficiency can be improved. Moreover, it can suppress that the function of a relief valve falls by icing or the like.
- the set value of the pressure at which the valve in the relief valve opens may be set to a value smaller than the maximum pulsation pressure in the first pipe and the second pipe when no relief valve is provided. Thereby, the maximum pressure of pulsation can be reduced.
- a relief valve may be arranged in the liquid layer. Thereby, it can suppress that gas is contained in the flow path through which ultra-low-temperature liquid flows.
- the pump is formed with a first pump chamber and a second pump chamber partitioned by a bellows fixed to a rod that reciprocates by the linear actuator, In the process in which the bellows contracts, the volume of the first pump chamber increases, the volume of the second pump chamber decreases, In the process of extending the bellows, the volume of the first pump chamber decreases, the volume of the second pump chamber increases,
- the pump is provided with a first suction port for sucking the cryogenic liquid in the sealed container into the first pump chamber, and a first delivery port for feeding the sucked ultracold liquid from the first pump chamber to the first pipe,
- a second suction port for sucking the ultra-low temperature liquid in the first container into the second pump chamber, and a second delivery port for sending the sucked ultra-low temperature liquid from the second pump chamber to the first pipe may be provided.
- the cryogenic liquid is sent from the second pump chamber to the first pipe, and the cryogenic liquid is sucked into the first pump chamber.
- the ultra-low temperature liquid is sucked and the ultra-low temperature liquid is sent from the first pump chamber to the first pipe. Therefore, the liquid supply amount by the expansion and contraction operation of the bellows can be increased as compared with the case where the pump function is exhibited by only one pump chamber.
- the ultra-low temperature liquid is intermittently supplied, whereas if configured as described above, both the bellows contracts and extends. A cryogenic liquid is supplied. Therefore, since the ultra-low temperature liquid is continuously supplied, the pulsation itself can be suppressed. Therefore, it is not necessary to provide a damper outside the system, so that space can be saved and cooling efficiency can be increased as compared with the case where a damper is provided outside the system.
- the above relief valve may be provided in each of the first pump chamber and the second pump chamber. Thereby, it can suppress that the internal pressure of each pump chamber becomes more than predetermined pressure.
- a sealed space into which a rod that reciprocates by the linear actuator is inserted is formed, and a layer of ultra-low temperature liquid and a gas layer in which ultra-low temperature liquid is vaporized are formed in the sealed space. It is preferable that a buffer structure for buffering fluctuations in pressure of the cryogenic liquid supplied through the first pipe is provided by connecting the branched pipe to the sealed space.
- a buffer structure for buffering pressure fluctuation (pulsation) of the ultra-low temperature liquid supplied through the first pipe is provided in the system.
- pulsation pressure fluctuation
- FIG. 1 is a schematic configuration diagram showing a usage state of a liquid supply system according to an embodiment of the present invention.
- FIG. 2 is a graph showing pressure fluctuation.
- FIG. 3 is a schematic configuration diagram illustrating a usage state of the liquid supply system according to the first embodiment of the present invention.
- FIG. 4 is a schematic configuration diagram illustrating a usage state of the liquid supply system according to the second embodiment of the present invention.
- the liquid supply system 100 is a system that supplies the ultra-low temperature liquid L to the apparatus 300 to be cooled.
- Specific examples of the ultra-low temperature liquid L include liquid nitrogen and liquid helium.
- the liquid supply system 100 includes a sealed container 110 in which a cryogenic fluid is accommodated, and a pump 120 driven by a linear actuator 130. Inside the sealed container 110, a layer of the ultra-low temperature liquid L and a layer of the gas G in which the ultra-low temperature liquid L is vaporized are formed.
- the pump 120 is disposed in the ultra-low temperature liquid L accommodated in the sealed container 110.
- the pump 120 is configured to be driven by a rod 140 that reciprocates by a linear actuator 130. Further, the suction port 150 and the delivery port 160 provided in the pump 120 are provided with one-way valves 150a and 160a, respectively.
- the liquid supply system 100 includes a first pipe K1 that guides the ultra-low temperature liquid L delivered by the pump 120 to the cooled apparatus 300 provided outside the sealed container 110, and the ultra-low temperature liquid from the cooled apparatus 300 to the sealed container 110.
- a second pipe K2 for returning L is provided.
- a cooler 200 that cools the liquid to an ultra-low temperature is provided in the middle of the first pipe K1.
- the liquid supply system 100 includes a first relief valve 170 that is connected to the first pipe K1 in the sealed container 110 and that allows the cryogenic liquid L to escape in the sealed container 110.
- the liquid supply system 100 also includes a relief valve 180 that is connected to the pump 120 in the sealed container 110 and that allows the cryogenic liquid L to escape into the sealed container 110.
- the first relief valve 170 and the second relief valve 180 may employ various known valve structures such as poppet valves. However, it is necessary to use a material that does not embrittle at a low temperature as a material constituting the valve. For example, austenitic stainless steel can be adopted as the metal material constituting the valve seat. Moreover, a polytetrafluoroethylene-type material, a polyimide, etc. are employable as a valve body material.
- first relief valve 170 and the second relief valve 180 are provided in the sealed container 110, heat exchange with the outside of the sealed container 110 is not performed in these relief valves, and the ultra-low temperature liquid L However, it is returned into the sealed container 110 at an ultra-low temperature. Therefore, the cooling efficiency can be improved. Moreover, it can suppress that the function of these relief valves falls by icing.
- the set pressure values for opening the valves in the first relief valve 170 and the second relief valve 180 are determined based on the maximum pulsation pressure in the first pipe K1 and the second pipe K2 when these relief valves are not provided. It is desirable to set a small value. Thereby, the maximum pressure of pulsation can be reduced. That is, as shown in FIG. 2, the maximum pressure in the first piping K1 and the second piping K2 is set by setting the set value of the pressure at which the valves in the first relief valve 170 and the second relief valve 180 open to Px. Px or less can be set.
- the dotted line in a figure is a pressure fluctuation produced when the 1st relief valve 170 and the 2nd relief valve 180 are not provided.
- the cooling efficiency is improved as described above regardless of whether they are in the liquid layer or the air layer. Can do.
- these relief valves in the liquid layer, an effect of suppressing the inclusion of gas in the flow path through which the ultra-low temperature liquid L flows is also exhibited. That is, when the gas remains in the flow path through which the ultra-low temperature liquid L flows, the gas may vibrate and a defect such as pulsation may occur. Therefore, in order to prevent such a problem from occurring, the first relief valve 170 and the second relief valve 180 may be disposed in the liquid layer.
- FIG. 3 shows a first embodiment of the present invention. Since the basic configuration is the same as the configuration and operation shown in the above embodiment, the same reference numerals are given to the same components, and the description thereof will be omitted as appropriate.
- the ultra-low temperature liquid L is supplied to the cooled apparatus 300 in which the superconducting coil 320 is provided inside the resin container 310 will be described as an example.
- the pump 120 in this embodiment includes a container 121 disposed in the ultra-low temperature liquid L accommodated in the sealed container 110, and a bellows 122 disposed in the container 121.
- the container 121 has its upper opening in FIG. 3 closed by a small bellows 123, and the inside thereof is a sealed space.
- the sealed space inside the container 121 is partitioned by the bellows 122, thereby forming the first pump chamber P1 and the second pump chamber P2.
- a first suction port 151 for sucking the ultra-low temperature liquid L in the sealed container 110 into the first pump chamber P1, and the sucked ultra-low temperature liquid L from the first pump chamber P1 to the outside of the sealed container 110 are communicated.
- a first delivery port 161 that feeds the first piping K1 is provided.
- the container 121 includes a second suction port 152 for sucking the ultra-low temperature liquid L in the sealed container 110 into the second pump chamber P2, and the sucked ultra-low temperature liquid L from the second pump chamber P2 to the first pipe K1.
- a second delivery port 162 for delivery is also provided.
- the first suction port 151 and the second suction port 152 are respectively provided with one-way valves 151a and 152a.
- the first and second delivery ports 161 and 162 are also provided with one-way valves 161a and 162a, respectively. Is provided.
- the rod 140 configured to reciprocate by the linear actuator 130 enters the inside of the sealed container 110 from the outside, and the tip thereof is fixed to the tip of the bellows 122. Thereby, when the rod 140 reciprocates, the bellows 122 expands and contracts.
- a sealed space R is formed around the rod 140.
- the sealed space R includes a cylindrical (preferably cylindrical) tube portion 141 through which a rod 140 extending from the outside of the sealed container 110 to the bellows 122 is inserted, and a lower end portion and an upper end portion of the tube portion 141. It is formed by small bellows 123 and 111 provided respectively. Note that the tip of each of the small bellows 123 separating the sealed space R and the second pump chamber P2 and the small bellows 111 separating the sealed space R and the external space are fixed to the rod 140.
- the rod 140 is configured to expand and contract as the rod 140 reciprocates.
- the small bellows 123 and 111 are configured such that the outer diameter thereof is smaller than the outer diameter of the bellows 122.
- the volume of the first pump chamber P1 increases and the volume of the second pump chamber P2 decreases. Accordingly, in this process, the cryogenic liquid L is sent from the second pump chamber P2 to the first pipe K1 via the second delivery port 162, and the cryogenic liquid L is sent to the first pump chamber via the first suction port 151. Inhaled into P1. Further, in the process of extending the bellows 122, the volume of the first pump chamber P1 decreases and the volume of the second pump chamber P2 increases.
- the cryogenic liquid L is sucked into the second pump chamber P2 through the second suction port 152, and the first cryogenic liquid L is fed from the first pump chamber P1 through the first outlet 161. It is sent to the pipe K1.
- the ultra-low temperature liquid L is sent to the first pipe K1 when the bellows 122 contracts and extends.
- the liquid supply system 100 also includes the first relief valve 170 that is connected to the first pipe K1 in the sealed container 110 and that allows the cryogenic liquid L to escape in the sealed container 110.
- the liquid supply system 100 according to the present embodiment is connected to the first pump chamber P1 in the sealed container 110, and in the sealed container 110, the second relief valve 181 that allows the cryogenic liquid L to escape into the sealed container 110, and the sealed container 110.
- a second relief valve 182 that is connected to the second pump chamber P2 and that allows the cryogenic liquid L to escape in the sealed container 110 is provided.
- the first pump chamber P1 and the second pump chamber P2 are provided, and the ultra-low temperature liquid L is sent to the first pipe K1 when the bellows 122 contracts and expands. .
- the liquid supply amount by the expansion / contraction operation of the bellows 122 can be increased (for example, about twice) as compared with the case where the pump function is exhibited by only one pump chamber. Therefore, compared with the case where the pump function is exhibited by only one pump chamber with respect to the desired supply amount, the supply amount for one time can be reduced (for example, halved), and in the first pipe K1.
- the maximum pressure of the liquid can be lowered. Therefore, adverse effects due to pressure fluctuations (pulsations) of the supplied liquid can be suppressed.
- the ultra-low temperature liquid L is intermittently supplied, whereas in the case of the present embodiment, both when the bellows 122 contracts and extends.
- An ultra-low temperature liquid L is supplied. Therefore, since the ultra-low temperature liquid L is continuously supplied, the pulsation itself can be suppressed. Therefore, space saving can be achieved as compared with the case where a shock absorber (damper) is provided outside the system, and the number of parts where heat exchange occurs can be reduced, so that the cooling efficiency can be increased.
- a shock absorber damper
- the sealed space R is formed by the pipe portion 141 and the pair of small bellows 123 and 111 . Further, the small bellows 123 and 111 are both fixed to the rod 140 at the tip, and are configured to expand and contract as the rod 140 reciprocates. Therefore, since the sealed space R is formed without forming a sliding portion, heat is not generated with frictional resistance due to sliding.
- Example 2 With reference to FIG. 4, the liquid supply system 100 which concerns on Example 2 of this invention is demonstrated.
- the case of functioning as a gas damper by forming a liquid layer and a gas layer in the sealed space R through which the shaft is inserted in the configuration of the first embodiment will be described. Since other configurations and operations are the same as those of the above-described embodiment and Example 1, the same components are denoted by the same reference numerals, and description thereof is omitted.
- a buffer structure for buffering fluctuations (pulsations) of the pressure of the ultra-low temperature liquid L supplied through the first pipe K1 is provided around the rod 140.
- This buffer structure has a cylindrical (preferably cylindrical) tube portion 141 through which a rod 140 extending from the outside of the sealed container 110 to the bellows 122 is inserted, and a lower end portion and an upper end portion of the tube portion 141, respectively.
- small bellows 123 and 111 provided. The inside of the pipe portion 141 and the pair of small bellows 123 and 111 forms a sealed space R.
- each of the small bellows 123 separating the sealed space R and the second pump chamber P2 and the small bellows 111 separating the sealed space R and the external space are fixed to the rod 140.
- the rod 140 is configured to expand and contract as the rod 140 reciprocates.
- the small bellows 123 and 111 are configured such that the outer diameter thereof is smaller than the outer diameter of the bellows 122.
- the ultra-low temperature liquid L and a layer of the gas G in which the ultra-low temperature liquid L is vaporized are formed.
- the temperature is stable (in the case of liquid nitrogen, about 70K), and the temperature increases toward the upper side exposed to the outside air.
- a boundary surface between the ultra-low temperature liquid L layer and the gas G layer is formed in the vicinity of the saturation temperature (about 78 K in the case of liquid nitrogen).
- a branch pipe K3 branched from the first pipe K1 is provided so as to be connected to the sealed space R.
- the buffer structure a structure in which the inside of the cylindrical tube portion 141 through which the rod 140 is inserted is used as the sealed space R, and the ultra-low temperature liquid L layer and the gas G layer are formed therein. is doing. Therefore, since the gas G layer exhibits a function of hindering heat transfer, heat generated from the linear actuator 130 and atmospheric heat can be prevented from being transmitted to the ultra-low temperature liquid L. Moreover, even if heat is transmitted to the ultra-low temperature liquid L and vaporizes, new ultra-low temperature liquid L is always supplied and the cooling effect is exhibited. Therefore, the layer of the gas G that exhibits a buffer function (function as a gas damper) in the sealed space R is only thickened. Therefore, it is possible to suppress the temperature inside the pump chamber from rising to the temperature at which the ultra-low temperature liquid L is vaporized, and the pump function is not deteriorated.
- a buffer function function as a gas damper
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Reciprocating Pumps (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
密閉容器と、
密閉容器内に収容される超低温液体中に配置され、リニアアクチュエータによって駆動されるポンプと、
前記ポンプによって送り出される超低温液体を密閉容器の外部に設けられた被冷却装置に導く第1配管と、
被冷却装置から密閉容器内部まで超低温液体を戻す第2配管と、
密閉容器内において第1配管に接続され、かつ密閉容器内に超低温液体を逃がす逃し弁と、
を備えることを特徴とする。
前記ベローズが縮む過程では、第1ポンプ室の容積は増加し、第2ポンプ室の容積は減少し、
前記ベローズが伸びる過程では、第1ポンプ室の容積は減少し、第2ポンプ室の容積は増加すると共に、
前記ポンプには、前記密閉容器内の超低温液体を第1ポンプ室内に吸入する第1吸入口、及び吸入した超低温液体を第1ポンプ室内から第1配管に送出する第1送出口が設けられ、かつ第1容器内の超低温液体を第2ポンプ室内に吸入する第2吸入口、及び吸入した超低温液体を第2ポンプ室内から第1配管に送出する第2送出口が設けられているとよい。
図1及び図2を参照して、本発明の実施形態に係る液体供給システムについて説明する。
図1を参照して、本実施形態に係る液体供給システム100の全体構成、及び使用方法について説明する。本実施形態に係る液体供給システム100は、被冷却装置300に超低温液体Lを供給するシステムである。なお、超低温液体Lの具体例としては、液体窒素や液体ヘリウムを挙げることができる。
以上のように構成された本実施形態に係る液体供給システム100によれば、第1逃し弁170を備えていることで、何らかの原因によって、超低温液体Lの流れが不十分になってしまっても、第1配管K1中の内部圧力が所定圧以上になってしまうことを抑制できる。また、第2逃し弁180を備えていることから、何らかの原因によって、超低温液体Lの流れが不十分になってしまっても、ポンプ120中の内部圧力が所定圧以上になってしまうことを抑制できる。これらのことから、内部圧力が異常に高くなってしまうことを起因とする各部材の破損を抑制できる。
図3には、本発明の実施例1が示されている。基本的な構成は、上記実施形態で示した構成および作用と同一なので、同一の構成部分については同一の符号を付して、その説明は適宜省略する。
以上説明したように、本実施例に係る液体供給システム100においても、上記実施形態の場合と同様の作用効果が得られる。なお、本実施例の場合には、第1ポンプ室P1と第2ポンプ室P2とが設けられ、各ポンプ室にそれぞれ第2逃し弁181,182が備えられている。従って、各ポンプ室の内部圧力が所定以上になってしまうことを抑制できる。
図4を参照して、本発明の実施例2に係る液体供給システム100について説明する。本実施例においては、上記実施例1の構成において、軸が挿通される密閉空間R内に液体の層と気体の層とを形成することによって、ガスダンパーとして機能させる場合について示す。その他の構成および作用については上記実施形態及び実施例1と同一なので、同一の構成部分については同一の符号を付して、その説明は省略する。
以上説明したように、本実施例に係る液体供給システム100においても、上記実施形態及び実施例1の場合と同様の作用効果が得られる。また、本実施例に係る液体供給システム100によれば、第1配管K1を通じて供給される超低温液体Lの圧力の変動(脈動)を緩衝する緩衝構造が、システム内に設けられている。従って、上記実施形態及び実施例1の場合に比べて、より一層、脈動を抑制することが可能となる。
110 密閉容器
111,123 小ベローズ
120 ポンプ
121 容器
122 ベローズ
130 リニアアクチュエータ
140 ロッド
141 管部
150 吸入口
150a,151a,152a,160a,161a,162a 1方向弁
151 第1吸入口
152 第2吸入口
160 送出口
161 第1送出口
162 第2送出口
170 第1逃し弁
180,181,182 第2逃し弁
200 冷却機
300 被冷却装置
310 容器
320 超電導コイル
K1 第1配管
K2 第2配管
K3 分岐配管
P1 第1ポンプ室
P2 第2ポンプ室
R 密閉空間
Claims (3)
- 密閉容器と、
密閉容器内に収容される超低温液体中に配置され、リニアアクチュエータによって駆動されるポンプと、
前記ポンプによって送り出される超低温液体を密閉容器の外部に設けられた被冷却装置に導く第1配管と、
被冷却装置から密閉容器内部まで超低温液体を戻す第2配管と、
密閉容器内において第1配管に接続され、かつ密閉容器内に超低温液体を逃がす逃し弁と、
を備えることを特徴とする液体供給システム。 - 密閉容器内において前記ポンプに接続され、かつ密閉容器内に超低温液体を逃がす逃し弁を備えることを特徴とする請求項1に記載の液体供給システム。
- 前記逃し弁が前記超低温液体中に配置されることを特徴とする請求項1に記載の液体供給システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380048284.5A CN104641187B (zh) | 2012-12-14 | 2013-11-14 | 液体供给系统 |
US14/431,619 US10047909B2 (en) | 2012-12-14 | 2013-11-14 | Liquid supply system |
JP2014551940A JPWO2014091866A1 (ja) | 2012-12-14 | 2013-11-14 | 液体供給システム |
EP13862998.5A EP2933585B1 (en) | 2012-12-14 | 2013-11-14 | Liquid supply system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-273717 | 2012-12-14 | ||
JP2012273717 | 2012-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014091866A1 true WO2014091866A1 (ja) | 2014-06-19 |
Family
ID=50934162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080818 WO2014091866A1 (ja) | 2012-12-14 | 2013-11-14 | 液体供給システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US10047909B2 (ja) |
EP (1) | EP2933585B1 (ja) |
JP (1) | JPWO2014091866A1 (ja) |
CN (1) | CN104641187B (ja) |
WO (1) | WO2014091866A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016006648A1 (ja) * | 2014-07-10 | 2016-01-14 | イーグル工業株式会社 | 液体供給システム |
CN106715906A (zh) * | 2014-09-22 | 2017-05-24 | 伊格尔工业股份有限公司 | 液体供给系统 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10578085B1 (en) * | 2017-05-01 | 2020-03-03 | Mark Lee Stang | Sealed modular fluid distribution system |
CN107808733A (zh) * | 2017-12-12 | 2018-03-16 | 合肥中科离子医学技术装备有限公司 | 一种用于低温系统降温插拔式输液管 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04335598A (ja) * | 1991-05-13 | 1992-11-24 | Fujitsu Ltd | 冷却システム |
JP2004286404A (ja) * | 2003-03-25 | 2004-10-14 | Sumitomo Heavy Ind Ltd | 冷却液循環装置及び冷却ユニット |
JP2008151269A (ja) * | 2006-12-18 | 2008-07-03 | Ebara Corp | 圧力容器の安全装置 |
JP2008215640A (ja) | 2007-02-28 | 2008-09-18 | Ihi Corp | 超電導コイルの冷却装置およびこれに用いる通気板 |
JP2009500587A (ja) | 2005-06-30 | 2009-01-08 | ゼネラル・エレクトリック・カンパニイ | 超伝導装置を冷却するためのシステム及び方法 |
WO2012124363A1 (ja) * | 2011-03-15 | 2012-09-20 | イーグル工業株式会社 | 液体供給システム |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2510632A (en) * | 1945-11-27 | 1950-06-06 | Gen Electric | Machine cooling system |
US3131713A (en) * | 1960-03-22 | 1964-05-05 | Herrick L Johnston Inc | Pump for cryogenic liquids |
US3482591A (en) * | 1966-08-31 | 1969-12-09 | Cornelius Co | Pressure regulator valve |
US4852357A (en) * | 1988-10-14 | 1989-08-01 | Ncr Corporation | Cryogenic liquid pump |
US7192426B2 (en) * | 2001-05-31 | 2007-03-20 | Endocare, Inc. | Cryogenic system |
US6640556B2 (en) * | 2001-09-19 | 2003-11-04 | Westport Research Inc. | Method and apparatus for pumping a cryogenic fluid from a storage tank |
US6575712B1 (en) * | 2001-09-28 | 2003-06-10 | Slavcho Slavchev | Air compressor system |
US6581390B2 (en) * | 2001-10-29 | 2003-06-24 | Chart Inc. | Cryogenic fluid delivery system |
US7083612B2 (en) * | 2003-01-15 | 2006-08-01 | Cryodynamics, Llc | Cryotherapy system |
KR100990072B1 (ko) * | 2005-09-02 | 2010-10-29 | 주식회사 만도 | 밀림방지장치 |
GB2453126B (en) * | 2007-09-26 | 2013-02-06 | Intelligent Energy Ltd | Fuel cell system |
EP2330995B1 (en) * | 2008-09-03 | 2015-08-05 | Endocare, Inc. | A cryogenic system and method of use |
US8671700B2 (en) * | 2009-01-21 | 2014-03-18 | Endocare, Inc. | High pressure cryogenic fluid generator |
US8991446B2 (en) * | 2011-01-26 | 2015-03-31 | GM Global Technology Operations LLC | Pump assisted refilling system for LPG fuel tanks |
-
2013
- 2013-11-14 WO PCT/JP2013/080818 patent/WO2014091866A1/ja active Application Filing
- 2013-11-14 JP JP2014551940A patent/JPWO2014091866A1/ja active Pending
- 2013-11-14 CN CN201380048284.5A patent/CN104641187B/zh active Active
- 2013-11-14 US US14/431,619 patent/US10047909B2/en active Active
- 2013-11-14 EP EP13862998.5A patent/EP2933585B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04335598A (ja) * | 1991-05-13 | 1992-11-24 | Fujitsu Ltd | 冷却システム |
JP2004286404A (ja) * | 2003-03-25 | 2004-10-14 | Sumitomo Heavy Ind Ltd | 冷却液循環装置及び冷却ユニット |
JP2009500587A (ja) | 2005-06-30 | 2009-01-08 | ゼネラル・エレクトリック・カンパニイ | 超伝導装置を冷却するためのシステム及び方法 |
JP2008151269A (ja) * | 2006-12-18 | 2008-07-03 | Ebara Corp | 圧力容器の安全装置 |
JP2008215640A (ja) | 2007-02-28 | 2008-09-18 | Ihi Corp | 超電導コイルの冷却装置およびこれに用いる通気板 |
WO2012124363A1 (ja) * | 2011-03-15 | 2012-09-20 | イーグル工業株式会社 | 液体供給システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2933585A4 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016006648A1 (ja) * | 2014-07-10 | 2016-01-14 | イーグル工業株式会社 | 液体供給システム |
KR20170010399A (ko) * | 2014-07-10 | 2017-01-31 | 이글 고오교 가부시키가이샤 | 액체 공급 시스템 |
JPWO2016006648A1 (ja) * | 2014-07-10 | 2017-04-27 | イーグル工業株式会社 | 液体供給システム |
CN106662372A (zh) * | 2014-07-10 | 2017-05-10 | 伊格尔工业股份有限公司 | 液体供给系统 |
EP3168550A4 (en) * | 2014-07-10 | 2018-02-21 | Eagle Industry Co., Ltd. | Liquid supply system |
KR101885017B1 (ko) * | 2014-07-10 | 2018-08-02 | 이글 고오교 가부시키가이샤 | 액체 공급 시스템 |
US10233913B2 (en) | 2014-07-10 | 2019-03-19 | Eagle Industry Co., Ltd. | Liquid supply system |
CN106662372B (zh) * | 2014-07-10 | 2019-07-12 | 伊格尔工业股份有限公司 | 液体供给系统 |
CN106715906A (zh) * | 2014-09-22 | 2017-05-24 | 伊格尔工业股份有限公司 | 液体供给系统 |
EP3199812A4 (en) * | 2014-09-22 | 2018-04-18 | Eagle Industry Co., Ltd. | Liquid supply system |
US10584692B2 (en) | 2014-09-22 | 2020-03-10 | Eagle Industry Co., Ltd. | Liquid supply system |
Also Published As
Publication number | Publication date |
---|---|
CN104641187B (zh) | 2017-02-08 |
JPWO2014091866A1 (ja) | 2017-01-05 |
CN104641187A (zh) | 2015-05-20 |
US20150276131A1 (en) | 2015-10-01 |
EP2933585B1 (en) | 2018-06-06 |
US10047909B2 (en) | 2018-08-14 |
EP2933585A1 (en) | 2015-10-21 |
EP2933585A4 (en) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014091866A1 (ja) | 液体供給システム | |
US10704736B2 (en) | LNG boiloff gas recondensation configurations and methods | |
US8991658B2 (en) | Liquid supply system | |
US9488390B2 (en) | Regenerator, GM type refrigerator and pulse tube refrigerator | |
KR101885017B1 (ko) | 액체 공급 시스템 | |
US11365915B2 (en) | Ejector and refrigeration system | |
JP2009539036A (ja) | Lng蒸気処理装置および方法 | |
US20120317995A1 (en) | Pump for conveying a cryogenic fluid | |
US9078733B2 (en) | Closed-loop system for cryosurgery | |
US10578099B2 (en) | Cooling device fitted with a compressor | |
US11333408B2 (en) | Cryocooler and cryogenic system | |
JP2015523533A (ja) | 磁気共鳴画像診断装置などに使用するパルス管冷凍機の振動を低減するための装置 | |
JP2011196607A (ja) | 冷却システム | |
CN105518376B (zh) | 低损耗低温流体供应系统和方法 | |
WO2021085157A1 (ja) | クライオスタット用ヘリウム再凝縮装置 | |
JP2015183970A (ja) | 蓄冷器式冷凍機 | |
US9453662B2 (en) | Cryogenic refrigerator | |
JP2015031424A (ja) | 冷凍機 | |
WO2024014117A1 (ja) | 極低温システムおよび極低温システムの制御方法 | |
US9759459B2 (en) | Regenerator and regenerative refrigerator with insertion member | |
US20110185747A1 (en) | Pulse tube refrigerator | |
JP2020115052A (ja) | 極低温冷凍機、冷凍能力抑制器、および冷凍能力抑制器の使用方法 | |
JP2008150972A (ja) | 圧縮機ユニット | |
JP2004183917A (ja) | 極低温冷凍機 | |
JP2006343039A (ja) | ヒートポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13862998 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014551940 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14431619 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013862998 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |