WO2014091851A1 - 燃料電池システム及びその制御方法 - Google Patents

燃料電池システム及びその制御方法 Download PDF

Info

Publication number
WO2014091851A1
WO2014091851A1 PCT/JP2013/080383 JP2013080383W WO2014091851A1 WO 2014091851 A1 WO2014091851 A1 WO 2014091851A1 JP 2013080383 W JP2013080383 W JP 2013080383W WO 2014091851 A1 WO2014091851 A1 WO 2014091851A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
fuel cell
pressure
anode gas
anode
Prior art date
Application number
PCT/JP2013/080383
Other languages
English (en)
French (fr)
Inventor
英高 西村
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014551931A priority Critical patent/JP5967219B2/ja
Publication of WO2014091851A1 publication Critical patent/WO2014091851A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04529Humidity; Ambient humidity; Water content of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and a control method thereof.
  • the fuel cell system of JP2008-277215A controls the supply pressure of anode gas and cathode gas in consideration of the pressure difference (differential pressure) between the anode side and the cathode side across the electrolyte membrane.
  • the anode gas supplied to the MEA (Membrane Electrode Assembly) and the cooling water for cooling the fuel cell are supplied via a separator adjacent to the MEA.
  • the pulsation pressure is controlled according to the required power generation, and the cooling water flow rate is controlled according to the load state such as a wet state or a high load.
  • An object of the present invention is to provide a fuel cell system that is less prone to vibration.
  • a fuel cell system including a cooling system to which cooling water is supplied via an anode electrode and a separator.
  • This fuel cell system is based on a fuel gas supply unit that supplies anode gas to the anode electrode of the fuel cell at a predetermined pulsating pressure based on the required power generation amount, a wet state of the electrolyte membrane of the fuel cell, or a heat dissipation requirement of the fuel cell.
  • a cooling water supply unit for supplying a predetermined cooling water flow rate.
  • the fuel cell system further includes a control unit that controls the flow rate of the cooling water and / or the pulsation pressure of the anode gas so that the pressure of the cooling water in the fuel cell stack falls outside the fluctuation range of the pulsation pressure.
  • FIG. 1 is a diagram showing a first embodiment of a fuel cell system according to the present invention.
  • FIG. 2A is a plan view showing an example of an MEA.
  • FIG. 2B is an enlarged view of a part of the 2B-2B cross section of FIG. 2A.
  • FIG. 3 is a control block diagram showing control contents when correcting the flow rate of the cooling water when the pressure of the cooling water is lower than the pulsation lower limit pressure of the anode gas.
  • FIG. 4 is a diagram illustrating an example of a map for setting the pump rotation correction amount.
  • FIG. 5 is a timing chart when the control for correcting the flow rate of the cooling water is executed when the pressure of the cooling water is lower than the pulsation lower limit pressure of the anode gas.
  • FIG. 1 is a diagram showing a first embodiment of a fuel cell system according to the present invention.
  • FIG. 2A is a plan view showing an example of an MEA.
  • FIG. 2B is an enlarged view of
  • FIG. 6 is a control block diagram showing the control contents when the coolant flow rate is corrected when the coolant pressure is higher than the pulsation upper limit pressure of the anode gas in the fuel cell system according to the present invention.
  • FIG. 7 is a diagram illustrating an example of a map for setting the pump rotation correction amount.
  • FIG. 8 is a timing chart when the control for correcting the flow rate of the cooling water is executed when the pressure of the cooling water is higher than the pulsation upper limit pressure of the anode gas.
  • FIG. 9 is a control block diagram showing the control contents of the third embodiment of the fuel cell system according to the present invention.
  • FIG. 10 is a timing chart when the control of the third embodiment is executed.
  • FIG. 1 is a diagram showing a first embodiment of a fuel cell system according to the present invention.
  • the fuel cell system according to the present invention is a so-called anode dead end type system in which the supply of the anode gas H 2 is repeatedly stopped and the anode gas H 2 is supplied in a pulsating manner.
  • the anode gas H 2 is supplied, the anode pressure in the fuel cell stack increases.
  • the anode gas H 2 is the anode gas is generated consumed in is stopped the fuel cell stack anode pressure is lowered. By repeating this, the utilization efficiency of the anode gas H 2 is improved.
  • the fuel cell stack 10 maintains the electrolyte membrane in an appropriate wet state.
  • the cathode line 20, the anode line 30, and the cooling water circulation line 40 are connected to the fuel cell stack 10.
  • the cathode gas O 2 supplied to the fuel cell stack 10 flows through the cathode line 20.
  • the cathode line 20 is provided with a compressor 21, a WRD (Water Recovery Device) 22, and a cathode pressure regulating valve 23.
  • the compressor 21 is disposed in the cathode line 20 upstream of the fuel cell stack 10 and the WRD 22.
  • the compressor 21 is driven by a motor, for example.
  • the compressor 21 adjusts the flow rate of the cathode gas O 2 flowing through the cathode line 20.
  • the flow rate of the cathode gas O 2 is adjusted by the rotational speed of the compressor 21.
  • the WRD 22 humidifies the air introduced into the fuel cell stack 10.
  • the WRD 22 includes a humidified part through which a gas to be humidified flows and a humidified part through which a water-containing gas as a humidification source flows.
  • the air introduced by the compressor 21 flows through the humidified portion.
  • a gas containing water flows through the fuel cell stack 10 through the humidifying unit.
  • the cathode pressure regulating valve 23 is provided in the cathode line 20 downstream of the fuel cell stack 10.
  • the cathode pressure regulating valve 23 adjusts the pressure of the cathode gas O 2 flowing through the cathode line 20.
  • the pressure of the cathode gas O 2 is adjusted by the opening degree of the cathode pressure regulating valve 23.
  • the anode gas H 2 supplied to the fuel cell stack 10 flows through the anode line 30.
  • the anode line 30 is provided with an H 2 tank 31, an anode pressure regulating valve 32, a buffer tank 33, and a purge valve 34.
  • the anode gas H 2 is stored in a high pressure state.
  • the H 2 tank 31 is provided on the uppermost stream of the anode line 30.
  • the anode pressure regulating valve 32 is provided downstream of the H 2 tank 31.
  • the anode pressure regulating valve 32 adjusts the pressure of the anode gas H 2 supplied from the H 2 tank 31 to the anode line 30.
  • the pressure of the anode gas H 2 is adjusted by the opening degree of the anode pressure regulating valve 32.
  • the supply stop of the anode gas H 2 is repeated. That is, by opening and closing the anode pressure regulating valve 32 is repeated, the supply stop of the anode gas H 2 is repeated.
  • the supply pressure of the anode gas H 2 is set according to the amount of power generation required for the fuel cell. That higher required power generation amount, the supply pressure of the anode gas H 2 is also increased.
  • the buffer tank 33 is provided downstream of the fuel cell stack 10.
  • the buffer tank 33 stores the anode gas H 2 that has flowed out of the fuel cell stack 10.
  • the purge valve 34 is provided downstream of the buffer tank 33.
  • air oxygen
  • hydrogen is supplied to the cathode channel.
  • a power generation reaction occurs in the electrolyte membrane.
  • a part of the air supplied to the cathode channel may permeate the electrolyte membrane and leak into the anode channel.
  • nitrogen N 2 in the air accumulates in the buffer tank 33 without reacting.
  • the purge valve 34 is opened, and nitrogen N 2 is purged together with the anode gas H 2 .
  • the pressure of the anode gas is detected by the pressure sensor 131.
  • the cooling water supplied to the fuel cell stack 10 flows through the cooling water circulation line 40.
  • the cooling water circulation line 40 is provided with a radiator 41, a three-way valve 42, and a water pump 43.
  • a bypass line 400 is provided in parallel with the cooling water circulation line 40.
  • the bypass line 400 branches from the upstream side of the radiator 41 and joins downstream of the radiator 41. For this reason, the cooling water flowing through the bypass line 400 bypasses the radiator 41.
  • the radiator 41 cools the cooling water.
  • the radiator 41 is provided with a cooling fan 410.
  • the three-way valve 42 is located at the junction of the bypass line 400.
  • the three-way valve 42 adjusts the flow rate of the cooling water flowing through the radiator side line and the flow rate of the cooling water flowing through the bypass line according to the opening degree. Thereby, the temperature of the cooling water is adjusted.
  • the water pump 43 is located downstream of the three-way valve 42.
  • the water pump 43 sends the cooling water that has flowed through the three-way valve 42 to the fuel cell stack 10. If the rotational speed of the water pump 43 increases, the flow rate of the cooling water increases and the pressure of the cooling water increases. If the rotation speed of the water pump 43 decreases, the flow rate of the cooling water decreases and the pressure of the cooling water decreases.
  • a pressure cap 421 is provided in the middle of the cooling water circulation line 40.
  • the pressure cap 421 opens.
  • the cooling water in the cooling water circulation line 40 is released to the reservoir tank 422.
  • the pressure cap 421 is opened.
  • the cooling water in the reservoir tank 422 is returned to the cooling water circulation line 40.
  • the cooling water pressure is detected by the stack inlet pressure sensor 141 and the stack outlet pressure sensor 142.
  • the temperature of the cooling water is detected by the temperature sensor 143.
  • the controller controls the operations of the compressor 21, the cathode pressure regulating valve 23, the anode pressure regulating valve 32, the purge valve 34, the three-way valve 42, and the water pump 43.
  • the fuel cell stack 10 is maintained at an appropriate temperature, so that the electrolyte membrane is maintained in an appropriate wet state, and the reaction gas (cathode gas O 2 , anode gas H 2 ) is supplied to generate power.
  • the reaction gas cathode gas O 2 , anode gas H 2
  • the wetness of the electrolyte membrane can be grasped from the impedance. That is, the lower the wetness of the electrolyte membrane (the less dry the electrolyte membrane is, the more dry it is), the greater the impedance. The greater the wetness of the electrolyte membrane (the more moisture in the electrolyte membrane, the more wet it is), the lower the impedance.
  • the generated current of the fuel cell stack is changed with a sine wave of 1 kHz, for example, and the change in voltage is observed. Then, the impedance is obtained by dividing the AC voltage amplitude of 1 kHz by the AC current amplitude. Based on this impedance, the wetness of the electrolyte membrane can be obtained. Since the impedance is obtained by using high-frequency alternating current in this way, it is hereinafter referred to as HFR (High Frequency Resistance) as appropriate.
  • HFR High Frequency Resistance
  • the flow rate of the cooling water may be adjusted. If the flow rate of the cooling water increases, the temperature of the fuel cell stack decreases, and the moisture contained in the cathode gas O 2 discharged from the fuel cell stack decreases. As a result, the wetness of the electrolyte membrane increases. If the flow rate of the cooling water decreases, the temperature of the fuel cell stack increases and the moisture contained in the cathode gas O 2 discharged from the fuel cell stack increases. As a result, the wetness of the electrolyte membrane decreases.
  • FIG. 2A is a plan view showing an example of MEA.
  • FIG. 2B is an enlarged view of a part of the 2B-2B cross section of FIG. 2A.
  • FIG. 2B (a) shows a state where the anode pressure is larger than the cooling water pressure.
  • FIG. 2B (b) shows a state where the anode pressure is smaller than the cooling water pressure.
  • the MEA 100 constituting the fuel cell stack 10 has gas diffusion portions 120 formed on both sides of the electrolyte membrane 110. Embossing is formed in the gas diffusion part 120.
  • the MEA 100 is provided with an anode supply port 101a, an anode discharge port 101b, a cathode supply port 102a, a cathode discharge port 102b, a cooling water supply port 103a, and a cooling water discharge port 103b.
  • the cathode supply port 102a, the cooling water supply port 103a, and the anode discharge port 101b are provided on the right side in the drawing.
  • the anode supply port 101a, the cooling water discharge port 103b, and the cathode discharge port 102b are provided on the left side in the drawing.
  • the anode separator 200 is overlaid on one surface of the MEA 100, and the cathode separator 300 is overlaid on the other surface.
  • a space formed by the MEA 100 and the anode separator 200 is an anode flow path.
  • a space formed by the MEA 100 and the cathode separator 300 is a cathode channel.
  • the fuel cell stack 10 is configured by stacking another assembly on one assembly. That is, the fuel cell stack 10 is configured by stacking the cathode separator 300 of another assembly on the anode separator 200 of one assembly.
  • a space formed by the anode separator 200 of one assembly and the cathode separator 300 of another assembly is a cooling water flow path.
  • the respective assemblies are in contact with each other in the vicinity of the electrolyte membrane 110, but in the vicinity of the gas diffusion portion 120 without the electrolyte membrane 110 as shown in FIG. A minute gap is provided in the thickness direction.
  • the anode gas H 2 is pulsating supplied at a pressure corresponding to the required power generation amount.
  • the flow rate of the cooling water is adjusted according to the wetness of the electrolyte membrane. This is controlled based on different parameters as, in some cases overlap the pulsation pressure of the anode gas between H 2 and pressure of the cooling water.
  • the pressure of the anode gas H 2 is greater than the pressure of the cooling water rises, as shown in FIG. 2B (a)
  • the cooling water passage narrows anode channel is spread.
  • the pressure of the anode gas H 2 is less than the pressure of the cooling water is lowered, as shown in FIG. 2B (b)
  • the cooling water pulsates and flows out of the fuel cell stack 10. Then, it was discovered by the inventors that the cooling water circulation line 40 pulsates and abnormal noise and vibration occur. Therefore, the pulsation pressure of the anode gas or the cooling water flow rate is adjusted so that such a situation does not occur.
  • specific control contents will be described.
  • FIG. 3 is a control block diagram showing the control contents when the coolant flow rate is corrected when the coolant pressure is lower than the pulsation lower limit pressure of the anode gas.
  • the pressure of the anode gas is controlled by the block B101 and the block B102. Specific contents will be described below.
  • Block B101 sets the pulsating pressure of the anode gas H 2 (pulsating upper pressure and pulsation lower pressure) based on the required power generation amount I.
  • block B101 for example by applying the required amount of generated electricity I to the map that has been set in advance may be set pulsation pressure of the anode gas H 2 (pulsating upper pressure and pulsation lower pressure).
  • the pulsation limit pressure is the upper limit of the variation range of the pulsation pressure is varied for the pulsation pressure when the pressure of the anode gas H 2 is pulsating.
  • the pulsation lower limit pressure is the lower limit value of the fluctuation range of the pulsation pressure.
  • Block B102 feeds back the actual pressure PH2 of the anode gas detected by the pressure sensor 131, and controls the anode pressure regulating valve 32 so that the actual pressure PH2 matches the target value.
  • the flow rate of the cooling water is controlled by block B201, block B202, block B203, block B204, and block B205. Specific contents will be described below.
  • Block B201 sets a target HFR based on the required power generation amount I.
  • the target HFR may be set by applying the required power generation amount I to a preset map, for example.
  • Block B202 feeds back the detected actual HFR and sets the rotation speed of the water pump 43 so that the actual HFR matches the target HFR.
  • the block B203 compares the rotation speed of the water pump set in the block B202 with the rotation speed of the water pump set by the heat release request of the fuel cell stack, and the larger one is the basic rotation speed value of the water pump 43. Output as.
  • Block B204 is a pulsating lower pressure of the anode gas H 2 which is set in block B101, based on the actual pressure of the cooling water detected by the stack inlet pressure sensor 141, and sets the pump rotational compensation amount.
  • the pressure of the cooling water when compared to the pulsating lower pressure of the anode gas H 2 is used to detect values of the stack inlet pressure sensor 141.
  • the pressure of the stack inlet highest, there is a high possibility that over the pulsating lower pressure of the anode gas H 2.
  • the detection value of the stack outlet pressure sensor 142 is used.
  • the pressure of the stack outlet lowest it is highly likely below the pulsation limit pressure of the anode gas H 2.
  • Pump rotational compensation amount is, for example previously has been set to the map as shown in FIG. 4, are set by applying a value obtained by subtracting the coolant actual pressure pulsation lower pressure of the anode gas H 2.
  • a constant correction amount negative value is set only in a certain range in which the value obtained by subtracting the actual cooling water pressure from the pulsation lower limit pressure of the anode gas H 2 is greater than zero.
  • Block B205 sets the rotation speed of the water pump 43 by correcting the rotation speed basic value of the water pump 43 output from the block B203 with the pump rotation correction amount output from the block B204. Then, the rotation of the water pump 43 is controlled.
  • FIG. 5 is a timing chart when the control for correcting the flow rate of the cooling water is executed when the pressure of the cooling water is lower than the pulsation lower limit pressure of the anode gas.
  • the required power generation is low.
  • the pulsation upper limit pressure and the pulsation lower limit pressure of the anode gas are set, and the anode gas is pulsated and supplied.
  • the flow rate of the cooling water is controlled.
  • the pressure of the cooling water is significantly lower than the pulsation lower limit pressure of the anode gas.
  • the pump rotation correction amount is zero, and the rotation of the water pump 43 is not corrected.
  • the actual pressure of the cooling water is reduced to the pulsation lower limit of the anode gas by the blocks B204 and B205.
  • the flow rate of the cooling water is reduced so as to be lower than the pressure (pulsation pressure).
  • the pressure of the cooling water is always lower than the pressure of the anode gas. Therefore, even when the anode gas is supplied in a pulsating manner, as shown in FIG. 2B (a), the anode flow path is always expanded and the cooling water flow path is kept narrow. Therefore, even if the anode gas is supplied with pulsation, the cooling water flows out of the fuel cell stack 10 without pulsating. Therefore, abnormal noise and vibration caused by the pulsation of the cooling water circulation line 40 can be suppressed.
  • the correction is made so that the flow rate of the cooling water is reduced. Therefore, the temperature of the fuel cell stack is increased, and the wetness of the electrolyte membrane tends to be dry.
  • This can be followed by controlling the compressor 21 to decrease the flow rate of the cathode gas O 2 , or controlling the cathode pressure regulating valve 23 to increase the pressure of the cathode gas O 2 .
  • the cooling fan 410 may be rotated or the three-way valve 42 may be controlled to lower the temperature of the cooling water.
  • the control for correcting the flow rate of the cooling water may be stopped to give priority to cooling of the fuel cell stack.
  • control of the coolant flow rate correction may be stopped to give priority to cooling of the fuel cell stack. Even in such a case, since the background noise is large, the driver is unlikely to feel uncomfortable even if abnormal noise or vibration due to the pulsation of the cooling water occurs. Note that the reference vehicle speed for stopping the correction may be set as appropriate through experiments or the like.
  • FIG. 6 is a control block diagram showing the control contents when the coolant flow rate is corrected when the coolant pressure is higher than the pulsation upper limit pressure of the anode gas in the fuel cell system according to the present invention.
  • block B101, block B102, block B201, block B202, and block B203 are the same as those in the first embodiment, description thereof is omitted.
  • Block B224 is a pulsation limit pressure of the anode gas H 2 which is set in block B101, based on the actual pressure of the cooling water detected by the stack outlet pressure sensor 142, and sets the pump rotational compensation amount.
  • Pump rotational compensation amount for example in advance, a map that is set as shown in FIG. 7, it is set by applying a value obtained by subtracting the coolant actual pressure pulsation limit pressure of the anode gas H 2.
  • a constant correction amount positive value is set only in a certain range where the value obtained by subtracting the actual cooling water pressure from the pulsation upper limit pressure of the anode gas H 2 is smaller than zero.
  • FIG. 8 is a timing chart when the control for correcting the flow rate of the cooling water is executed when the pressure of the cooling water is higher than the pulsation upper limit pressure of the anode gas.
  • the required power generation amount is low until time t21.
  • the pulsation upper limit pressure and the pulsation lower limit pressure of the anode gas are set, and the anode gas is pulsated and supplied.
  • the flow rate of the cooling water is controlled. At this time, the pressure of the cooling water is significantly higher than the pulsation upper limit pressure of the anode gas. In such a case, the pump rotation correction amount is zero, and the rotation of the water pump 43 is not corrected.
  • the rotation of the water pump 43 is controlled so that the cooling water pressure exceeds the pulsation upper limit pressure of the anode gas by a predetermined amount.
  • the actual cooling water pressure is changed to the pulsation upper limit pressure of the anode gas by the blocks B205 and B224.
  • the flow rate of the cooling water is increased so as to be higher than (pulsation pressure).
  • the pressure of the cooling water always exceeds the pressure of the anode gas. Therefore, even if the anode gas is supplied in a pulsating manner, the state where the anode flow path is narrowed and the cooling water flow path is always widened is maintained as shown in FIG. 2B (b). Therefore, even if the anode gas is supplied with pulsation, the cooling water flows out of the fuel cell stack 10 without pulsating. Therefore, abnormal noise and vibration caused by the pulsation of the cooling water circulation line 40 can be suppressed.
  • FIG. 9 is a control block diagram showing the control contents of the third embodiment of the fuel cell system according to the present invention.
  • This third embodiment is a combination of the first embodiment and the second embodiment, and switches the control in response to a heat release request.
  • FIG. 10 is a timing chart when the control of the third embodiment is executed.
  • Control is performed in the same manner as in the first embodiment until time t31.
  • the control is switched, and the rotation of the water pump 43 is controlled so that the cooling water pressure exceeds the pulsation upper limit pressure of the anode gas by a predetermined amount.
  • the cooling water pressure (flow rate) is increased only when the cooling water temperature rises and the heat release requirement is high. If the pressure (flow rate) of the cooling water is increased, there is a concern that the power consumption of the water pump 43 will increase and the fuel efficiency will deteriorate. However, in this embodiment, such a situation is minimized, so the fuel efficiency is good. .
  • the flow rate of the cooling water is increased or decreased so that the pressure of the cooling water in the fuel cell stack 10 is outside the fluctuation range of the pulsation pressure of the anode gas. It can suppress that the pressure of the cooling water in 10 and the pulsation pressure of anode gas overlap. For this reason, the vibration of the anode separator 200 can be suppressed.
  • the correction amount for correcting the flow rate of the cooling water is a constant amount, but is not limited thereto. It can be set by various methods, and even such a case is included in the technical scope of the present invention.
  • the flow rate of the cooling water (pressure of the cooling water is set so that the pulsation pressure of the anode gas H 2 and the pressure of the cooling water do not overlap, that is, the cooling water pressure is out of the fluctuation range of the pulsation pressure. ) Is adjusted, but the pulsation pressure of the anode gas H 2 may be adjusted.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 カソード極に供給されるカソードガスと、アノード極に供給されるアノードガスとを電気化学的に反応させることにより、電力を発生する燃料電池であって、アノード極とセパレーターを介して冷却水が供給される冷却システムを備えた燃料電池システムにおいて、要求発電量に基づいて燃料電池のアノード極に所定の脈動圧力でアノードガスを供給する燃料ガス供給部と、燃料電池の電解質膜の湿潤状態又は燃料電池の放熱要求に基づいて所定の冷却水流量を供給する冷却水供給部と、燃料電池スタック内の冷却水の圧力が脈動圧力の変動範囲外となるように、冷却水の流量及び/又はアノードガスの脈動圧を制御する制御部と、を含む。

Description

燃料電池システム及びその制御方法
 この発明は、燃料電池システム及びその制御方法に関する。
 JP2008-277215Aの燃料電池システムは、電解質膜を挟んだアノード側及びカソード側の圧力差(差圧)を考慮して、アノードガス及びカソードガスの供給圧力を制御している。
 MEA(Membrane Electrode Assembly;膜電極接合体)に供給されるアノードガスと、燃料電池を冷却するための冷却水とは、MEAに隣接するセパレーターを介して供給される。
 現在、脈動システムの開発が進められている。
 このようなシステムでは、通常、要求発電に応じて脈動圧力を制御するとともに、湿潤状態や高負荷時などの負荷状態に応じて冷却水流量を制御する。
 上記のようにして制御される脈動圧力と冷却水圧力とが重なる圧力になると、アノード側の圧力が冷却水側の圧力より高くなるのと低くなるのとを繰り返す。これによってセパレーターが振動し、音振やセパレーターへの耐久性劣化の可能性があることが発明者らによって知見された。
 本発明は、このような問題点に着目してなされた。本発明の目的は、振動が生じにくい燃料電池システムを提供することである。
 本発明による燃料電池システムのひとつの態様は、カソード極に供給されるカソードガスと、アノード極に供給されるアノードガスとを電気化学的に反応させることにより、電力を発生する燃料電池であって、アノード極とセパレーターを介して冷却水が供給される冷却システムを備えた燃料電池システムである。この燃料電池システムは、要求発電量に基づいて燃料電池のアノード極に所定の脈動圧力でアノードガスを供給する燃料ガス供給部と、燃料電池の電解質膜の湿潤状態又は燃料電池の放熱要求に基づいて所定の冷却水流量を供給する冷却水供給部と、を含む。さらに燃料電池システムは、燃料電池スタック内の冷却水の圧力が脈動圧力の変動範囲外となるように、冷却水の流量及び/又はアノードガスの脈動圧を制御する制御部と、を含む。
図1は、本発明による燃料電池システムの第1実施形態を示す図である。 図2Aは、MEAの一例を示す平面図である。 図2Bは、図2Aの2B-2B断面の一部を拡大した図である。 図3は、冷却水の圧力がアノードガスの脈動下限圧よりも低圧である場合に冷却水の流量を補正するときの制御内容を示す制御ブロック図である。 図4は、ポンプ回転補正量を設定するマップの一例を示す図である。 図5は、冷却水の圧力がアノードガスの脈動下限圧よりも低圧である場合に冷却水の流量を補正するときの制御を実行したときのタイミングチャートである。 図6は、本発明による燃料電池システムの、冷却水の圧力がアノードガスの脈動上限圧よりも高圧である場合に冷却水の流量を補正するときの制御内容を示す制御ブロック図である。 図7は、ポンプ回転補正量を設定するマップの一例を示す図である。 図8は、冷却水の圧力がアノードガスの脈動上限圧よりも高圧である場合に冷却水の流量を補正するときの制御を実行したときのタイミングチャートである。 図9は、本発明による燃料電池システムの第3実施形態の制御内容を示す制御ブロック図である。 図10は、第3実施形態の制御を実行したときのタイミングチャートである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
(第1実施形態)
 図1は、本発明による燃料電池システムの第1実施形態を示す図である。
 最初に図1を参照して、本発明による燃料電池システムの基本構成について説明する。
 本発明による燃料電池システムは、アノードガスHの供給停止が繰り返されて、アノードガスHが脈動供給される、いわゆるアノードデッドエンドタイプのシステムである。アノードガスHが供給されると燃料電池スタック内のアノード圧が上昇する。アノードガスHが停止されて燃料電池スタック内でアノードガスが発電消費されるとアノード圧が下降する。これが繰り返されることで、アノードガスHの利用効率が向上する。また発電反応を促進すべく、燃料電池スタック10は、電解質膜が適度な湿潤状態に維持される。このようにするために、燃料電池スタック10には、カソードライン20と、アノードライン30と、冷却水循環ライン40と、が接続される。
 カソードライン20には、燃料電池スタック10に供給されるカソードガスOが流れる。カソードライン20には、コンプレッサー21と、WRD(Water Recovery Device)22と、カソード調圧弁23と、が設けられる。
 コンプレッサー21は、燃料電池スタック10やWRD22よりも上流のカソードライン20に配置される。コンプレッサー21は、たとえばモーターによって駆動される。コンプレッサー21は、カソードライン20を流れるカソードガスOの流量を調整する。カソードガスOの流量は、コンプレッサー21の回転速度によって調整される。
 WRD22は、燃料電池スタック10に導入される空気を加湿する。WRD22は、加湿対象となるガスが流れる被加湿部と、加湿源となる水含有ガスが流れる加湿部と、を含む。被加湿部には、コンプレッサー21によって導入された空気が流れる。加湿部には、燃料電池スタック10を通流して水を含有しているガスが流れる。
 カソード調圧弁23は、燃料電池スタック10よりも下流のカソードライン20に設けられる。カソード調圧弁23は、カソードライン20を流れるカソードガスOの圧力を調整する。カソードガスOの圧力は、カソード調圧弁23の開度によって調整される。
 アノードライン30には、燃料電池スタック10に供給されるアノードガスHが流れる。アノードライン30には、Hタンク31と、アノード調圧弁32と、バッファータンク33と、パージ弁34と、が設けられる。
 Hタンク31には、アノードガスHが高圧状態で貯蔵されている。Hタンク31は、アノードライン30の最上流に設けられる。
 アノード調圧弁32は、Hタンク31の下流に設けられる。アノード調圧弁32は、Hタンク31からアノードライン30に供給するアノードガスHの圧力を調整する。アノードガスHの圧力は、アノード調圧弁32の開度によって調整される。上述のように、本発明による燃料電池システムでは、アノードガスHの供給停止が繰り返される。すなわち、アノード調圧弁32の開閉が繰り返されることで、アノードガスHの供給停止が繰り返される。アノードガスHの供給圧力は、燃料電池に要求される発電量に応じて設定される。すなわち要求発電量が高いほど、アノードガスHの供給圧力も高くなる。
 バッファータンク33は、燃料電池スタック10の下流に設けられる。バッファータンク33は、燃料電池スタック10から流出したアノードガスHを蓄える。
 パージ弁34は、バッファータンク33の下流に設けられる。燃料電池スタックでは、カソード流路に空気(酸素)が供給されるとともに、アノード流路に水素が供給される。この結果、電解質膜で発電反応が生じる。このとき、カソード流路に供給された空気の一部が電解質膜を透過してアノード流路に漏れることがある。この場合、空気中の窒素Nは、反応することなく、バッファータンク33に溜まる。このような窒素Nが、燃料電池スタックのアノード流路に逆流しては、水素分圧が下がってしまって、発電反応が阻害される。そこで適時、パージ弁34が開かれて、アノードガスHとともに窒素Nがパージされる。
 アノードガスの圧力は、圧力センサー131で検出される。
 冷却水循環ライン40には、燃料電池スタック10に供給される冷却水が流れる。冷却水循環ライン40には、ラジエーター41と、三方弁42と、ウォーターポンプ43と、が設けられる。また冷却水循環ライン40には、バイパスライン400が並設される。バイパスライン400は、ラジエーター41よりも上流から分岐し、ラジエーター41よりも下流に合流する。このためバイパスライン400を流れる冷却水は、ラジエーター41をバイパスする。
 ラジエーター41は、冷却水を冷却する。ラジエーター41には、クーリングファン410が設けられている。
 三方弁42は、バイパスライン400の合流部分に位置する。三方弁42は、開度に応じて、ラジエーター側のラインを流れる冷却水の流量と、バイパスラインを流れる冷却水の流量と、を調整する。これによって冷却水の温度が調整される。
 ウォーターポンプ43は、三方弁42の下流に位置する。ウォーターポンプ43は、三方弁42を流れた冷却水を燃料電池スタック10に送る。ウォーターポンプ43の回転速度が上がれば、冷却水の流量が増すとともに、冷却水の圧力が上昇する。ウォーターポンプ43の回転速度が下がれば、冷却水の流量が減るとともに、冷却水の圧力が下降する。
 また冷却水循環ライン40の途中には、加圧キャップ421が設けられる。冷却水循環ライン40の冷却水の圧力が第1設定圧よりも高圧になると、加圧キャップ421が開弁する。この結果、冷却水循環ライン40の冷却水がリザーバータンク422に逃がされる。また冷却水循環ライン40の冷却水の圧力が第2設定圧よりも低圧になると、加圧キャップ421が開弁する。この結果、リザーバータンク422の冷却水が冷却水循環ライン40に戻される。
 冷却水の圧力は、スタック入口圧力センサー141及びスタック出口圧力センサー142で検出される。冷却水の温度は、温度センサー143で検出される。
 種々センサーの信号は、コントローラーに送られる。コントローラーは、これらの信号に基づいて、コンプレッサー21、カソード調圧弁23、アノード調圧弁32、パージ弁34、三方弁42、ウォーターポンプ43の作動を制御する。
 このような構成によって、燃料電池スタック10は、適温に維持されることで、電解質膜が適度な湿潤状態に維持されて、反応ガス(カソードガスO、アノードガスH)が供給されて発電する。なお、電解質膜の湿潤度は、インピーダンスから把握できる。すなわち電解質膜の湿潤度が小さいほど(電解質膜中の水分が少なく乾き気味であるほど)、インピーダンスは大きくなる。電解質膜の湿潤度が大きいほど(電解質膜中の水分が多く濡れ気味であるほど)、インピーダンスは小さくなる。この特性を利用して、たとえば燃料電池スタックの発電電流をたとえば1kHzの正弦波で変動させて電圧の変動を見る。そして1kHzの交流電圧振幅を交流電流振幅で除算することでインピーダンスを求める。そしてこのインピーダンスに基づいて電解質膜の湿潤度を得ることができる。なおインピーダンスは、このように高周波の交流を用いて求めるので、以下では、適宜、HFR(High Frequency Resistance)と称する。
 電解質膜の湿潤度を調整するには、たとえば冷却水の流量を調整すればよい。冷却水の流量が上がれば、燃料電池スタックの温度が下がり、燃料電池スタックから排出されるカソードガスOに含まれる水分が減る。この結果、電解質膜の湿潤度が上がる。冷却水の流量が下がれば、燃料電池スタックの温度が上がり、燃料電池スタックから排出されるカソードガスOに含まれる水分が増す。この結果、電解質膜の湿潤度が下がる。
 次に本発明の理解を容易にすべく、図2A及び図2Bを参照して、一般的な燃料電池システムで起こり得る事象について説明する。
 図2Aは、MEAの一例を示す平面図である。図2Bは、図2Aの2B-2B断面の一部を拡大した図である。図2B(a)は、アノード圧が冷却水圧よりも大きい状態を示す。図2B(b)は、アノード圧が冷却水圧よりも小さい状態を示す。
 図2Aに示されるように、燃料電池スタック10を構成するMEA100は、電解質膜110の両側にガス拡散部120が形成されている。ガス拡散部120には、エンボスが形成されている。またMEA100には、アノード供給口101aと、アノード排出口101bと、カソード供給口102aと、カソード排出口102bと、冷却水供給口103aと、冷却水排出口103bとが設けられている。本実施形態では、カソード供給口102a、冷却水供給口103a及びアノード排出口101bは図中右側に設けられている。またアノード供給口101a、冷却水排出口103b及びカソード排出口102bは図中左側に設けられている。MEA100が積層されると、これによってマニホールドが形成される。
 図2B(a)に示されるように、MEA100の一方の面にアノードセパレーター200が重ねられ、他方の面にカソードセパレーター300が重ねられる。このようなアッセンブリーのうち、MEA100とアノードセパレーター200とで形成される空間がアノード流路である。MEA100とカソードセパレーター300とで形成される空間がカソード流路である。そして、ひとつのアッセンブリーに別のアッセンブリーが積層されて燃料電池スタック10が構成される。すなわち、ひとつのアッセンブリーのアノードセパレーター200の上に、別のアッセンブリーのカソードセパレーター300が重ねられて燃料電池スタック10が構成される。なおひとつのアッセンブリーのアノードセパレーター200と、別のアッセンブリーのカソードセパレーター300とで形成される空間が冷却水流路である。
 各アッセンブリーは、電解質膜110の付近では互いに当接しているが、図2B(a)に示されるような電解質膜110が無いガス拡散部120の付近では、積層時の誤差が吸収できるように、板厚方向で微小な隙間が設けられている。
 上述のように、アノードガスHは、要求発電量に応じた圧力で脈動供給される。また冷却水の流量は、電解質膜の湿潤度に応じて調整される。このように別々のパラメーターに基づいて制御されるので、アノードガスHの脈動圧と冷却水の圧力と重なる場合がある。アノードガスHの圧力が上昇して冷却水の圧力よりも大きくなると、図2B(a)に示されるように、アノード流路が広がり冷却水流路が狭まる。アノードガスHの圧力が下降して冷却水の圧力よりも小さくなると、図2B(b)に示されるように、アノード流路が狭まり冷却水流路が広がる。これが繰り返されると、冷却水が脈動して燃料電池スタック10から流出することとなる。すると、冷却水循環ライン40が脈動してしまい、異音や振動が生じることが発明者らによって知見された。そこで、このような事態が生じないように、アノードガスの脈動圧又は冷却水流量を調整するようにしたのである。以下では、具体的な制御内容について説明する。
 図3は、冷却水の圧力がアノードガスの脈動下限圧よりも低圧である場合に冷却水の流量を補正するときの制御内容を示す制御ブロック図である。
 アノードガスの圧力は、ブロックB101と、ブロックB102とで制御される。具体的な内容は、以下で説明される。
 ブロックB101は、要求発電量Iに基づいてアノードガスHの脈動圧(脈動上限圧及び脈動下限圧)を設定する。具体的には、ブロックB101は、たとえば予め設定されているマップに要求発電量Iを適用して、アノードガスHの脈動圧(脈動上限圧及び脈動下限圧)を設定すればよい。なお、脈動上限圧は、アノードガスHの圧力が脈動しているときの脈動圧力について脈動圧力が変動する変動範囲の上限値である。また脈動下限圧は、脈動圧力の変動範囲の下限値である。
 ブロックB102は、圧力センサー131で検出されたアノードガスの実圧力PH2をフィードバックして、その実圧力PH2が目標値に一致するようにアノード調圧弁32を制御する。
 冷却水の流量は、ブロックB201と、ブロックB202と、ブロックB203と、ブロックB204と、ブロックB205とで制御される。具体的な内容は、以下で説明される。
 ブロックB201は、要求発電量Iに基づいて目標HFRを設定する。具体的には、たとえば予め設定されているマップに要求発電量Iを適用して、目標HFRを設定すればよい。
 ブロックB202は、検出された実HFRをフィードバックして、その実HFRが目標HFRに一致するようにウォーターポンプ43の回転速度を設定する。
 ブロックB203は、ブロックB202で設定されたウォーターポンプの回転速度と、燃料電池スタックの放熱要求によって設定されるウォーターポンプの回転速度とを比較して、大きい方を、ウォーターポンプ43の回転速度基本値として出力する。
 ブロックB204は、ブロックB101で設定されたアノードガスHの脈動下限圧と、スタック入口圧力センサー141で検出された冷却水の実圧とに基づいて、ポンプ回転補正量を設定する。なお、冷却水の圧力は、アノードガスHの脈動下限圧と比較するときには、スタック入口圧力センサー141の検出値を用いる。スタック入口の圧力が最も高く、アノードガスHの脈動下限圧を上回る可能性が高いからである。また後述の実施形態のように、アノードガスHの脈動上限圧と比較するときには、スタック出口圧力センサー142の検出値を用いる。スタック出口の圧力が最も低く、アノードガスHの脈動上限圧を下回る可能性が高いからである。
 ポンプ回転補正量は、たとえば予め図4のように設定されているマップに、アノードガスHの脈動下限圧から冷却水実圧を減算した値を適用して設定される。図4に示される例では、アノードガスHの脈動下限圧から冷却水実圧を減算した値がゼロよりも大きい一定範囲でのみ、一定の補正量(負値)が設定される。
 ブロックB205は、ブロックB203から出力されたウォーターポンプ43の回転速度基本値を、ブロックB204から出力されたポンプ回転補正量で補正して、ウォーターポンプ43の回転速度を設定する。そして、ウォーターポンプ43の回転を制御する。
 図5は、冷却水の圧力がアノードガスの脈動下限圧よりも低圧である場合に冷却水の流量を補正するときの制御を実行したときのタイミングチャートである。
 時刻t11までは、要求発電量が低い。この要求発電量に基づいて、アノードガスの脈動上限圧及び脈動下限圧が設定され、アノードガスが脈動供給される。また冷却水の流量が制御される。このとき、冷却水の圧力は、アノードガスの脈動下限圧を大幅に下回っている。このような場合には、ポンプ回転補正量はゼロであり、ウォーターポンプ43の回転は補正されない。
 時刻t11で要求発電量が上がる。この結果、アノードガスの脈動上限圧及び脈動下限圧も上昇する。また燃料電池スタックの発熱量も増えて、湿潤度が乾燥気味になるので、それを抑制すべく、冷却水の流量が上がって冷却水の圧力が上昇する。
 そして時刻t12以降は、冷却水圧が、アノードガスの脈動下限圧を所定量だけ下回るように、ウォーターポンプ43の回転が制御される。
 このように燃料電池スタック10内において、冷却水の圧力が、脈動圧力よりも低い状態から脈動圧力の下限値に近づく場合にはブロックB204及びB205によって、冷却水の実圧がアノードガスの脈動下限圧(脈動圧)よりも低くなるように冷却水の流量が減らされる。
 本実施形態によれば、冷却水の圧力が、アノードガスの圧力を常に下回る。そのため、アノードガスが脈動供給されても、常に、図2B(a)に示されるように、アノード流路が広がって冷却水流路が狭まった状態が維持される。そのため、アノードガスが脈動供給されても、冷却水は脈動することなく燃料電池スタック10から流出する。したがって、冷却水循環ライン40の脈動に起因する異音や振動を抑制できるのである。
 なお本実施形態では、冷却水の流量が小さくなるように補正するので、燃料電池スタックの温度が高めになって、電解質膜の湿潤度が乾燥気味になりやすい。これについては、コンプレッサー21を制御してカソードガスOの流量を下げることや、カソード調圧弁23を制御してカソードガスOの圧力を上げることで、フォローすることができる。またクーリングファン410の回転を増やすことや、三方弁42を制御することで、冷却水の温度を下げることで対応してもよい。
 また本実施形態のように、冷却水の圧力が、アノードガスの圧力を常に下回るように制御しては、燃料電池スタックを冷却しきれないおそれがある。そこでたとえば一時的な急加速のような大きな要求発電量になったときには、冷却水の流量を補正する制御を停止して、燃料電池スタックの冷却を優先してもよい。このような場合は、暗騒音が大きいため、仮に冷却水の脈動による異音や振動が生じても、ドライバーは違和感を受けにくいからである。なお冷却水の流量を補正する制御を停止するための基準発電量は、実験等を通じて適宜設定すればよい。
 また同様に、車速が高いときに、冷却水の流量補正の制御を停止して、燃料電池スタックの冷却を優先してもよい。このような場合も、暗騒音が大きいため、仮に冷却水の脈動による異音や振動が生じても、ドライバーは違和感を受けにくいからである。なお補正を停止するための基準車速は、実験等を通じて適宜設定すればよい。
 (第2実施形態)
 図6は、本発明による燃料電池システムの、冷却水の圧力がアノードガスの脈動上限圧よりも高圧である場合に冷却水の流量を補正するときの制御内容を示す制御ブロック図である。
 なお以下では前述と同様の機能を果たす部分には同一の符号を付して重複する説明を適宜省略する。
 ブロックB101,ブロックB102,ブロックB201,ブロックB202,ブロックB203は、第1実施形態と同じであるので、説明を省略する。
 ブロックB224は、ブロックB101で設定されたアノードガスHの脈動上限圧と、スタック出口圧力センサー142で検出された冷却水の実圧とに基づいて、ポンプ回転補正量を設定する。
 ポンプ回転補正量は、たとえば予め、図7のように設定されているマップに、アノードガスHの脈動上限圧から冷却水実圧を減算した値を適用して設定される。図7に示される例では、アノードガスHの脈動上限圧から冷却水実圧を減算した値がゼロよりも小さい一定範囲でのみ、一定の補正量(正値)が設定される。
 図8は、冷却水の圧力がアノードガスの脈動上限圧よりも高圧である場合に冷却水の流量を補正するときの制御を実行したときのタイミングチャートである。
 時刻t21までは、要求発電量が低い。この要求発電量に基づいて、アノードガスの脈動上限圧及び脈動下限圧が設定され、アノードガスが脈動供給される。また冷却水の流量が制御される。このとき、冷却水の圧力は、アノードガスの脈動上限圧を大幅に上回っている。このような場合には、ポンプ回転補正量はゼロであり、ウォーターポンプ43の回転は補正されない。
 時刻t21で要求発電量が上がる。この結果、アノードガスの脈動上限圧及び脈動下限圧も上昇する。また燃料電池スタックの発熱量も増えて、湿潤度が乾燥気味になるので、それを抑制すべく、冷却水の流量が上がって冷却水の圧力が上昇する。
 そして時刻t22以降は、冷却水圧が、アノードガスの脈動上限圧を所定量だけ上回るように、ウォーターポンプ43の回転が制御される。
 このように燃料電池スタック10内において冷却水の圧力が、脈動圧力よりも高い状態から脈動圧力の上限値に近づく場合にはブロックB205及びB224によって、冷却水の実圧がアノードガスの脈動上限圧(脈動圧)よりも高くなるように冷却水の流量が増やされる。
 本実施形態によれば、冷却水の圧力が、アノードガスの圧力を常に上回る。そのため、アノードガスが脈動供給されても、常に、図2B(b)に示されるように、アノード流路が狭まって冷却水流路が広がった状態が維持される。そのため、アノードガスが脈動供給されても、冷却水は脈動することなく燃料電池スタック10から流出する。したがって、冷却水循環ライン40の脈動に起因する異音や振動を抑制できるのである。
 なお本実施形態では、冷却水の流量が大きくなるように補正するので、燃料電池スタックの温度が低めになって、電解質膜の湿潤度が湿潤気味になりやすい。これについては、コンプレッサー21を制御してカソードガスOの流量を上げることや、カソード調圧弁23を制御してカソードガスOの圧力を下げることで、フォローすることができる。またクーリングファン410の回転を下げることや、三方弁42を制御することで、冷却水の温度を上げることで対応してもよい。
 (第3実施形態)
 図9は、本発明による燃料電池システムの第3実施形態の制御内容を示す制御ブロック図である。
 この第3実施形態は、いわば第1実施形態と第2実施形態とを組み合わせたものであり、放熱要求に応じて制御を切り換える。
 図10は、第3実施形態の制御を実行したときのタイミングチャートである。
 時刻t31までは、第1実施形態と同様に制御する。
 そして、温度センサー143で検出している冷却水温が、時刻t33で基準温度を超える。これを受けて、制御が切り換えられて、冷却水圧が、アノードガスの脈動上限圧を所定量だけ上回るように、ウォーターポンプ43の回転が制御される。
 このように、燃料電池スタック10内の冷却水の圧力が上昇し、燃料電池スタック10内のアノードガスの脈動圧力の下限値に近づく場合、冷却水の温度が所定値よりも大きいときには、冷却水の実圧が脈動上限圧よりも高くなるように冷却水の流量が増やされる。
 本実施形態によれば、冷却水循環ライン40の脈動に起因する異音や振動の抑制と、燃料電池スタックの過剰な温度上昇の防止とを両立できる。
 また、冷却水の圧力(流量)を無闇に上げるのではなく、冷却水温が上昇して放熱要求が高いときにのみ、冷却水の圧力(流量)を上げるようにした。冷却水の圧力(流量)を上げれば、ウォーターポンプ43の消費電力が上がって燃費が悪化することが懸念されるが、本実施形態では、そのような事態を最小限にとどめるので、燃費もよい。
 第1から第3までの実施形態によれば、燃料電池スタック10内の冷却水の圧力がアノードガスの脈動圧力の変動範囲外となるように冷却水の流量が増減されるので、燃料電池スタック10内の冷却水の圧力とアノードガスの脈動圧とが重なることを抑制できる。このため、アノードセパレーター200の振動を抑制することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 たとえば上記実施形態では、冷却水の流量を補正するための補正量を一定量としているが、それには限られない。種々の手法で設定でき、このような場合であっても本発明の技術的範囲に含まれる。
 また上記実施形態では、アノードガスHの脈動圧と冷却水の圧力とが重ならないように、すなわち冷却水の圧力が脈動圧力の変動範囲外となるように冷却水の流量(冷却水の圧力)を調整するようにしたが、アノードガスHの脈動圧を調整するようにしてもよい。
 なお上記実施形態は、適宜組み合わせ可能である。
 本願は、2012年12月14日に日本国特許庁に出願された特願2012-273619に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
 

Claims (7)

  1.  カソード極に供給されるカソードガスと、アノード極に供給されるアノードガスとを電気化学的に反応させることにより、電力を発生する燃料電池であって、アノード極とセパレーターを介して冷却水が供給される冷却システムを備えた燃料電池システムにおいて、
     要求発電量に基づいて前記燃料電池のアノード極に所定の脈動圧力でアノードガスを供給する燃料ガス供給部と、
     前記燃料電池の電解質膜の湿潤状態又は前記燃料電池の放熱要求に基づいて所定の冷却水流量を供給する冷却水供給部と、
     燃料電池スタック内の前記冷却水の圧力が前記脈動圧力の変動範囲外となるように、前記冷却水の流量及び/又は前記アノードガスの脈動圧を制御する制御部と、
    を含む燃料電池システム。
  2.  請求項1に記載の燃料電池システムにおいて、
     前記冷却水の圧力が前記燃料電池内の前記アノードガスの脈動圧力よりも高い状態から両圧力が近づく場合、前記制御部は、前記冷却水の圧力が前記アノードガスの脈動圧よりも高くなるように前記冷却水の流量を増加させる、
    燃料電池システム。
  3.  請求項1又は請求項2に記載の燃料電池システムにおいて、
     前記冷却水の圧力が前記燃料電池内の前記アノードガスの脈動圧力よりも低い状態から両圧力が近づく場合、前記制御部は、前記冷却水の圧力が前記アノードガスの脈動圧よりも低くなるように前記冷却水の流量を減少させる、
    燃料電池システム。
  4.  請求項3に記載の燃料電池システムにおいて、
     前記冷却水の温度を検出する温度検出部をさらに含み、
     前記冷却水の圧力が前記燃料電池内のアノードガスの脈動圧力よりも低い状態から両圧力が近づく場合、前記冷却水の温度が所定値よりも大きいときには、前記制御部は、前記冷却水の圧力が前記アノードガスの脈動圧よりも高くなるように前記冷却水の流量を増加させる、
    燃料電池システム。
  5.  請求項1から請求項4までのいずれか1項に記載の燃料電池システムにおいて、
     要求発電量が所定値よりも大きい場合には、前記制御部による、前記冷却水の流量又は前記アノードガスの脈動圧の制御を禁止する、
    燃料電池システム。
  6.  請求項1から請求項5までのいずれか1項に記載の燃料電池システムにおいて、
     車速が所定値よりも大きい場合には、前記制御部は、前記冷却水の流量又は前記アノードガスの脈動圧の制御を禁止する、
    燃料電池システム。
  7.  カソード極に供給されるカソードガスと、アノード極に供給されるアノードガスとを電気化学的に反応させることにより、電力を発生する燃料電池であって、アノード極とセパレーターを介して冷却水が供給される冷却システムを備えた燃料電池システムの制御方法であって、
     要求発電量に基づいて前記燃料電池のアノード極に所定の脈動圧力でアノードガスを供給する燃料ガス供給工程と、
     前記燃料電池の電解質膜の湿潤状態又は前記燃料電池の放熱要求に基づいて所定の冷却水流量を供給する冷却水供給工程と、
     燃料電池スタック内の前記冷却水の圧力が前記脈動圧力の変動範囲外となるように、前記冷却水の流量及び/又は前記アノードガスの脈動圧を制御する制御工程と、
    を含む燃料電池システムの制御方法。
PCT/JP2013/080383 2012-12-14 2013-11-11 燃料電池システム及びその制御方法 WO2014091851A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014551931A JP5967219B2 (ja) 2012-12-14 2013-11-11 燃料電池システム及びその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012273619 2012-12-14
JP2012-273619 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014091851A1 true WO2014091851A1 (ja) 2014-06-19

Family

ID=50934149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080383 WO2014091851A1 (ja) 2012-12-14 2013-11-11 燃料電池システム及びその制御方法

Country Status (2)

Country Link
JP (1) JP5967219B2 (ja)
WO (1) WO2014091851A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127451A (ja) * 2012-12-27 2014-07-07 Nissan Motor Co Ltd 燃料電池システム
JP2014127452A (ja) * 2012-12-27 2014-07-07 Nissan Motor Co Ltd 燃料電池システム
JP2014186858A (ja) * 2013-03-22 2014-10-02 Honda Motor Co Ltd 燃料電池及びその運転方法
JP7400757B2 (ja) 2021-03-05 2023-12-19 トヨタ自動車株式会社 燃料電池システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152666A (ja) * 2002-10-31 2004-05-27 Nissan Motor Co Ltd 燃料電池システム
JP2004207141A (ja) * 2002-12-26 2004-07-22 Nissan Motor Co Ltd 燃料電池搭載車両
WO2006006589A1 (ja) * 2004-07-13 2006-01-19 Nissan Motor Co., Ltd. 燃料電池スタック
JP2007122962A (ja) * 2005-10-26 2007-05-17 Nissan Motor Co Ltd 燃料電池システム及び冷却系凍結防止方法
JP2008010311A (ja) * 2006-06-29 2008-01-17 Honda Motor Co Ltd 燃料電池の運転方法
JP2011028937A (ja) * 2009-07-23 2011-02-10 Nissan Motor Co Ltd 燃料電池システム及び燃料電池システムの運転方法
JP2012109072A (ja) * 2010-11-16 2012-06-07 Toshiba Fuel Cell Power Systems Corp 燃料電池、燃料電池システムおよびその運転方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5877492B2 (ja) * 2010-07-21 2016-03-08 日産自動車株式会社 燃料電池システム及びその運転方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152666A (ja) * 2002-10-31 2004-05-27 Nissan Motor Co Ltd 燃料電池システム
JP2004207141A (ja) * 2002-12-26 2004-07-22 Nissan Motor Co Ltd 燃料電池搭載車両
WO2006006589A1 (ja) * 2004-07-13 2006-01-19 Nissan Motor Co., Ltd. 燃料電池スタック
JP2007122962A (ja) * 2005-10-26 2007-05-17 Nissan Motor Co Ltd 燃料電池システム及び冷却系凍結防止方法
JP2008010311A (ja) * 2006-06-29 2008-01-17 Honda Motor Co Ltd 燃料電池の運転方法
JP2011028937A (ja) * 2009-07-23 2011-02-10 Nissan Motor Co Ltd 燃料電池システム及び燃料電池システムの運転方法
JP2012109072A (ja) * 2010-11-16 2012-06-07 Toshiba Fuel Cell Power Systems Corp 燃料電池、燃料電池システムおよびその運転方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127451A (ja) * 2012-12-27 2014-07-07 Nissan Motor Co Ltd 燃料電池システム
JP2014127452A (ja) * 2012-12-27 2014-07-07 Nissan Motor Co Ltd 燃料電池システム
JP2014186858A (ja) * 2013-03-22 2014-10-02 Honda Motor Co Ltd 燃料電池及びその運転方法
JP7400757B2 (ja) 2021-03-05 2023-12-19 トヨタ自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
JP5967219B2 (ja) 2016-08-10
JPWO2014091851A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6299683B2 (ja) 燃料電池システム
JP6065117B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
WO2014148151A1 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP5737395B2 (ja) 燃料電池システム
WO2013105590A1 (ja) 燃料電池システム
JP5967219B2 (ja) 燃料電池システム及びその制御方法
CA2917408C (en) Fuel cell system and method for controlling fuel cell system
JP5804181B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP6079227B2 (ja) 燃料電池システム
JP5983395B2 (ja) 燃料電池システム
JP6304366B2 (ja) 燃料電池システム
US10651486B2 (en) Fuel cell system
JP2013182690A (ja) 燃料電池システム
JP6094214B2 (ja) 燃料電池システム
JP2017147038A (ja) 燃料電池システムの出力加速時における圧力制御方法
JP2015125911A (ja) 燃料電池システム
JP6287010B2 (ja) 燃料電池システム
JP5279005B2 (ja) 燃料電池システム
WO2013129241A1 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP2008016349A (ja) 燃料電池システム
WO2014192649A1 (ja) 燃料電池システム及び燃料電池システムの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861775

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861775

Country of ref document: EP

Kind code of ref document: A1