WO2014089854A1 - 一种储仓的空气微粒的检测系统及其检测方法 - Google Patents

一种储仓的空气微粒的检测系统及其检测方法 Download PDF

Info

Publication number
WO2014089854A1
WO2014089854A1 PCT/CN2012/086762 CN2012086762W WO2014089854A1 WO 2014089854 A1 WO2014089854 A1 WO 2014089854A1 CN 2012086762 W CN2012086762 W CN 2012086762W WO 2014089854 A1 WO2014089854 A1 WO 2014089854A1
Authority
WO
WIPO (PCT)
Prior art keywords
detecting
air
air particles
air filter
console
Prior art date
Application number
PCT/CN2012/086762
Other languages
English (en)
French (fr)
Inventor
李晨阳子
吴俊豪
林昆贤
齐明虎
汪永强
陈增宏
蒋运芍
郭振华
舒志优
杨国坤
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/808,581 priority Critical patent/US9234830B2/en
Publication of WO2014089854A1 publication Critical patent/WO2014089854A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/18Testing of filters, filter elements, sealings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/084Testing filters

Definitions

  • the invention relates to the technical field of automatic storage bins, in particular to a detection system of air particles of a storage bin and a detection method thereof.
  • the storage bin in the automatic storage system requires a dust-free environment. Therefore, an air filter is installed in the storage bin to absorb abnormal air particles, such as acid-base gas particles and water particles, so that the storage bin remains dust-free and pollution-free. environment of.
  • the working state of the air filter must be frequently checked to ensure the dust-free environment of the storage bin.
  • manual detection is used to detect whether the air filter in the storage bin leaks.
  • the worker stands on the mechanical arm of the lifting device.
  • the lifting device sends the worker to the predetermined height
  • the worker uses the detector to detect the air particles on the surface of the air filter to determine whether the air filter has a leak. phenomenon.
  • the measurement results are unstable, because it is manual detection, so it is difficult to ensure that each detection point is the same action, which may affect the measurement data.
  • the technical problem to be solved by the present invention is to provide a detection system for air particles of a storage bin and a detection method thereof, which can safely and accurately detect a leakage condition of the air filter.
  • a technical solution adopted by the present invention is to provide a method for detecting air particles of a storage bin, the detecting method comprising the steps of: setting a detecting module in a cassette; detecting the presence of air particles in the storage bin An abnormal abnormal storage position; the transport mechanism is used to transfer the cassette to the abnormal storage position to detect the air particles on the surface of the air filter corresponding to the abnormal storage position by the detecting module; the detecting module further calculates the particle size value of the air particles, and The particle size value is transmitted to the console through the wireless network; the console determines whether the air filter corresponding to the abnormal storage location is leaked according to the particle size value; wherein the detection module includes the detection probe, and the air filter corresponding to the abnormal storage location is detected by the detection module
  • the step of air particles on the surface of the device further comprises: driving the detection probe to move; detecting that the probe absorbs air particles on the surface of the air filter corresponding to the abnormal storage position while moving; the console determines the air filter corresponding to the abnormal storage
  • the area of the detection probe moving area is equal to the surface area of the air filter.
  • another technical solution adopted by the present invention is to provide a method for detecting air particles of a storage bin, the detecting method comprising the steps of: arranging a detecting module in a cassette; detecting the presence of air in the storage bin An abnormal storage location of the particulate abnormality; the transport mechanism is used to transfer the cassette to the abnormal storage position to detect the air particles on the surface of the air filter corresponding to the abnormal storage position by the detecting module; the detecting module further calculates the particle diameter value of the air particle, The particle size value is transmitted to the console through the wireless network; the console determines whether the air filter corresponding to the abnormal storage location leaks according to the particle size value.
  • the detecting module includes a detecting probe, wherein the step of detecting the air particles on the surface of the air filter corresponding to the abnormal storage by the detecting module further comprises: driving the detecting probe to move; and detecting the air filtering corresponding to the abnormal storage position when the detecting probe moves Air particles on the surface of the device.
  • the step of determining, by the console, whether the air filter corresponding to the abnormal storage location is leaked according to the particle diameter value further comprises: the console saves the particle size value of the air particles detected by the detecting module, and the statistics are within a preset particle size value range. The cumulative number of air particles, and whether the cumulative quantity is greater than the threshold number of air particles corresponding to the preset particle size value range; if the result of the determination is yes, the console determines that the air filter corresponding to the abnormal storage position leaks.
  • the area of the detection probe moving area is equal to the surface area of the air filter.
  • another technical solution adopted by the present invention is to provide a detection system for air particles of a storage bin, the detection system comprising a storage bin, the storage bin comprising a plurality of storage positions, wherein the storage space comprises air particles An abnormal abnormal storage location; an air filter correspondingly disposed outside the storage space for filtering air particles in the storage location; a cassette, a cassette is provided with a detection module; and a conveying mechanism for conveying the cassette to An abnormal storage position for detecting air particles on the surface of the air filter corresponding to the abnormal storage position by the detecting module; wherein the detecting module further calculates the particle diameter value of the air particles, and transmits the particle diameter value to the console through the wireless network; The station determines whether the air filter corresponding to the abnormal storage position leaks according to the particle diameter value.
  • the detecting module comprises a driving mechanism, a detecting probe, a particle detecting device and a wireless communication module, wherein: the driving mechanism is configured to drive the detecting probe to move; and the detecting probe is configured to absorb the air of the surface of the air filter corresponding to the abnormal storage position when moving Particles; the particle detector is connected to the detection probe, the particle detector calculates the particle size value of the air particles absorbed by the detection probe, and transmits the particle size value to the wireless communication module; the wireless communication module transmits the particle size value by wireless transmission To the console.
  • the console saves the particle size value of the air particles detected by the detecting module, and counts the accumulated quantity of air particles in the range of the preset particle size value, and determines whether the accumulated quantity is greater than the air corresponding to the preset particle size value range.
  • the threshold of the number of particles if the result of the determination is yes, the console determines that the air filter corresponding to the abnormal storage has leaked.
  • the detecting probe when the air particles on the surface of the air filter are not detected, the detecting probe is disposed on the surface of the cassette, and when the air particles on the surface of the air filter are detected, one end of the detecting probe is rotated by 90 degrees from the surface of the cassette rising.
  • the distance between the top end of the detecting probe and the surface of the air filter is 50 mm - 100 mm.
  • the driving mechanism comprises a first driving mechanism and a second driving mechanism, wherein the first driving mechanism drives the detecting probe in a first direction, and the second driving mechanism drives the detecting probe in a second direction, wherein the first direction and the second direction Vertical to each other.
  • the area of the detection probe moving area is equal to the surface area of the air filter.
  • the drive mechanism is disposed at the top of the cassette.
  • the driving mechanism is disposed at the side of the cassette.
  • the invention has the beneficial effects that the detection module is disposed in the cassette in the prior art, and the cassette is transported to the abnormal storage position by the transmission mechanism to detect the abnormal storage position by the detection module. Air particles on the surface of the air filter, and calculate the particle size value of the air particles, and finally the console receives the particle size value through the wireless network, and judges whether the air filter corresponding to the abnormal storage port leaks according to the particle diameter value. .
  • the present invention can automatically detect the leakage condition of the air filter corresponding to the abnormal storage by using the cassette in which the detection module is installed, thereby improving the safety, convenience and accuracy of the detection.
  • FIG. 1 is a schematic structural view of a detection system of air particles of a storage bin of a first embodiment of the present invention
  • Figure 2 is a partial perspective structural view of the air particulate detecting system of the storage bin shown in Figure 1;
  • Figure 3 is a schematic view showing the positional structure of an air filter of the air particulate detecting system of the storage bin shown in Figure 1;
  • Figure 4 is a perspective view showing the structure of the cassette in the air particle detecting system of the storage bin shown in Figure 1;
  • FIG. 5 is a schematic structural view of the driving mechanism of the cassette shown in Figure 4;
  • Figure 6 is a schematic view showing the path of the drive mechanism driving detection probe shown in Figure 5;
  • Figure 7 is a flow chart showing a method of detecting air particles in a storage bin according to a second embodiment of the present invention.
  • Fig. 8 is a flow chart showing a specific embodiment of a method for detecting air particles of the storage bin of the present invention.
  • FIG. 1 is a schematic structural view of an air particle detecting system of a first embodiment of the present invention
  • FIG. 2 is a partial three-dimensional structure of the air particle detecting system of the storage bin shown in FIG. schematic diagram.
  • the air particulate detection system 10 of the storage bin of the present invention includes a storage bin 11, an air filter 12, a cassette 13, a transport mechanism 14, a console 15, a wireless base station 16, and a repeater 17.
  • each storage bin 11 includes a plurality of storage locations 111, wherein the storage location 111 includes a normal storage location 112 and an abnormal storage location 113 for airborne particulate anomalies, and the airborne particulate anomaly refers to an excess of airborne particulates in the storage location.
  • the principle of judging excessive standards is:
  • PMS power production management System, engineering production management system
  • the particle detector extracts 1 cubic foot of air and counts the cumulative number of air particles within a preset particle size value. If the cumulative amount exceeds the air particle size corresponding to the preset particle size value range If the number threshold is used, it is judged that the air particles are exceeding the standard. For the specific standard values, refer to Table 1 below.
  • Table 1 Judging criteria for airborne particles: U209E 0-0.3 ⁇ 0.3-0.5 ⁇ 0.5-1 ⁇ 1-3 ⁇ 3-5 ⁇ 5-10 ⁇ total Level 10 cumulative quantity 30 10 0 0 0 0 30 100-level cumulative quantity 297 97 20 1 0 0 297 1000 cumulative quantity 3000 1000 226 20 7 0 3000
  • the air filter 12 is disposed on the outer side of each storage port 111 (FIG. 2 shows only a part of the air filter 12 for the convenience of displaying the structure of the air detecting system 10 of the storage bin) for filtering the storage location 111.
  • Air particles Specifically, please refer to FIG. 3.
  • FIG. 3 is a schematic structural view of the air filter shown in FIG. As shown in FIG. 3, the air filter 12 is disposed on the inner side of each storage location 111 or on the ceiling of the storage bin 11 and above the highest storage location 111.
  • FIG. 4 is a schematic perspective structural view of the cassette 13 shown in FIG. 1
  • FIG. 5 is a schematic structural view of the driving mechanism of the cassette 13 shown in FIG.
  • the detection module 131 includes a drive mechanism 132, a detection probe 133, a particle detector 134, a wireless communication module 135, and an elastic tube 136.
  • the air particles of the storage location 111 are first detected, and then the normal storage location 112 and the abnormal storage location 113 are determined. Specifically, the principle of determining that the air particles exceed the standard is determined as described above, and details are not described herein again. Then, the transport mechanism 14 transports the cassette 13 to the abnormal storage position 113 to detect the air particles on the surface of the air filter 12 corresponding to the abnormal storage 113 by the detecting module 131 provided in the cassette 13, specifically:
  • the drive mechanism 132 drives the detection probe 133 to move.
  • the drive mechanism 132 includes a first drive mechanism 137 and a second drive mechanism 138.
  • the first drive mechanism 137 drives the detection probe 133 in the first direction X
  • the second drive mechanism 138 drives the detection probe 133 in the second direction Y.
  • the second drive mechanism 138 is mounted on the first drive mechanism 137
  • the detection probe 133 is mounted on the second drive mechanism 138.
  • the first drive mechanism 137 drives the detection probe 133 and the second drive mechanism 138 to move in the X direction as a whole
  • the second drive mechanism 138 drives the detection probe 133 to move in the Y direction.
  • the first direction X and the second direction Y are perpendicular to each other.
  • the position of the drive mechanism 132 in the cassette 13 varies with the measured position of the air filter 12: when the measured air filter 12 is disposed on the ceiling of the storage bin 11, the drive mechanism 132 is provided on the top of the cassette 13 as shown in FIG. 4; when the measured air filter 12 is disposed on the inner side of the storage position 111, the drive mechanism 132 is disposed at the side of the cassette 13. It will be appreciated that for ease of operation and to save time in replacing the drive mechanism 132, the drive mechanism 132 can be two, disposed on the top and sides of the cassette 13, respectively.
  • the detecting probe 133 absorbs air particles on the surface of the air filter 12 corresponding to the abnormal storage position 113 while moving.
  • the detecting probe 133 is preferably moved along a sinusoidal path (as shown in FIG. 6) under the driving of the first driving mechanism 137 and the second driving mechanism 138.
  • the distance between the tip end 1331 of the detecting probe 133 and the surface of the air filter 12 in the present embodiment is preferably 50 mm to 100 mm, and the area of the moving area of the detecting probe 133 is detected.
  • S1 is equal to the surface area S2 of the air filter 12.
  • the detecting probe 133 is disposed on the surface of the cassette 13 when the air particles on the surface of the air filter 12 are not detected, and the air filter is detected.
  • the tip end 1331 of the detecting probe 133 is rotated 90 degrees from the surface of the cassette 13 and then raised.
  • the particle detector 134 is in communication with the detecting probe 133 through the elastic tube 136 to receive the air particles absorbed by the detecting probe 133, and the particle detector 134 further calculates the particle diameter value of the air particles absorbed by the detecting probe 133.
  • the particle size value is transmitted to the wireless communication module 135.
  • the wireless communication module 135 transmits the particle size value to the console 15 by wireless transmission, for example, by a wireless local area network serial server.
  • the wireless base station 16 is installed in the storage bin 11, and the transponder 17 is installed outside the adjacent two storage bins 11, and the console 15 is, for example, a computer disposed outside the storage bin 11.
  • the wireless base station 16 may be one or other numbers according to the distance of the storage bin 11.
  • the particle size value is transmitted to the console 15 via the wireless network formed by the wireless base station 16 and the repeater 17, and then by the console 15 Whether or not the air filter 12 corresponding to the abnormal storage 113 is leaked is determined based on the particle diameter value.
  • the console 15 first saves the particle size value of the air particles detected by the detecting module 131, and counts the accumulated number of air particles in the range of the preset particle size value, and determines whether the accumulated quantity is greater than the preset particle.
  • the threshold value of the number of air particles corresponding to the range of diameters If the result of the determination is YES, the console 15 determines that the air filter 12 corresponding to the abnormal storage location 113 is leaking, and the air filter 12 corresponding to the abnormal storage location 113 needs to be repaired or replaced in time. If the result of the determination is negative, the console 15 determines that the air filter 12 corresponding to the abnormal storage location 113 has not leaked.
  • the air particulate received by the console 15 has a cumulative amount of 25 in the range of particle diameter values of 0-0.3 ⁇ , a cumulative amount of 11 in the range of particle diameter values of 0.3-0.5 ⁇ , and a particle diameter value of 0.5.
  • the cumulative number in the range of -10 ⁇ is 0.
  • the threshold value of the number of air particles corresponding to the range of 0-0.3 ⁇ is 30, and the threshold of the number of air particles corresponding to the range of 0.3-0.5 ⁇ is 10.
  • the threshold value of the number of air particles corresponding to the particle diameter value of 0.5-10 ⁇ is 0.
  • the cumulative amount of air particles received by the console 15 in the range of the particle diameter value of 0-0.3 ⁇ and the cumulative number of air particles in the range of the particle diameter value of 0.5-10 ⁇ are less than or equal to the corresponding particle diameter.
  • the air particles received by the console 15 have a cumulative number in each of the particle size values defined in Table 1, the cumulative number of air particles is less than or equal to the number of air particles corresponding to the corresponding particle size range, but each When the sum of the cumulative numbers in the range of the particle diameter values is larger than the total number in Table 1, the console 15 still determines that the air filter 12 corresponding to the abnormal storage 113 has leaked.
  • the air particulate received by the console 15 has a cumulative number of 25 in the range of particle diameter values of 0-0.3 ⁇ , a cumulative number of 10 in the range of particle diameter values of 0.3-0.5 ⁇ , and a particle diameter of 0.5.
  • the cumulative number in the range of -10 ⁇ is 0, then the cumulative number of air particles in each particle size value is less than or equal to the threshold number of air particles corresponding to the particle size value range, but the air within each particle size value range The sum of the cumulative numbers of the particles is 35, which is greater than the preset threshold number 30 of the 10th level, so the console 15 still determines that the air filter 12 corresponding to the abnormal storage 113 is leaking.
  • the transport mechanism 14 transfers the cassettes 13 to another storage bin 11 for detection.
  • FIG. 7 is a flow chart showing a method for detecting air particles in a storage bin according to a second embodiment of the present invention. As shown in FIG. 7, the method for detecting air particles of the storage bin of the present invention comprises the following steps:
  • Step S1 setting the detection module in the cassette
  • Step S2 detecting an abnormal storage location in which an air particle is abnormal in the storage bin
  • step S2 a plurality of storage places for storing glass panels or other panels are arranged in the storage bin. Since the storage bins are required to be dust-free storage bins, it is necessary to periodically detect the environment of each storage place in the storage bins such as air particles. Etc., to ensure that the storage bin is in a dust-free environment. In practical applications, the PMS particle detector is usually used to extract 1 cubic foot of air in each storage location, and the cumulative amount of air particles within a preset particle size value is counted, if the cumulative quantity is greater than the preset particle size value range. The threshold value of the corresponding air particles is determined to be abnormal. The specific standard values can be referred to Table 1.
  • Step S3 transferring the cassette to the abnormal storage position by using the conveying mechanism to detect the air particles on the surface of the air filter corresponding to the abnormal storage position by the detecting module;
  • step S3 after the transport mechanism transports the cassette provided with the detecting module to the abnormal storage position, the detecting module detects the air particles on the surface of the air filter corresponding to the abnormal storage position, and after detecting the abnormal storage position, The transport mechanism transports the cassette to the next abnormal storage location to be detected until the detection of all abnormal storage locations to be detected is completed.
  • Step S4 calculating the particle size value of the air particles, and transmitting the particle size value to the console through the wireless network;
  • step S4 each time the detection module completes the detection of an abnormal storage location, the particle size value of the air particles is calculated, and then the particle size value is transmitted to the console through the wireless network.
  • Step S5 The console determines whether the air filter corresponding to the abnormal storage location leaks according to the particle diameter value.
  • step S5 the console first saves the particle size value of the air particles detected by the detecting module, and counts the cumulative amount of air particles in the range of the preset particle size value, and determines whether the accumulated quantity is greater than the preset particle size value. The threshold number of air particles corresponding to the range. If the result of the determination is yes, the console determines that the air filter corresponding to the abnormal storage location has leaked. If the result of the determination is no, the console determines that the air filter corresponding to the abnormal storage location has not leaked.
  • FIG. 8 is a schematic flow chart of a specific embodiment of a method for detecting air particles in a storage bin of the present invention. As shown in FIG. 8 , the method for detecting air particles in the embodiment includes the following steps:
  • Step S11 detecting an abnormal storage location in which an air particle is abnormal in the storage bin
  • Step S12 driving the detection probe to move
  • the detection module includes a detection probe, a drive mechanism, a particle detector, and a wireless communication module.
  • the transport mechanism transports the cassette to the abnormal storage position, and then the drive mechanism in the cassette drives the detection probe to move.
  • Step S13 detecting that the probe absorbs air particles on the surface of the air filter corresponding to the abnormal storage position while moving;
  • Step S14 calculating a particle diameter value of the air particles absorbed by the detecting probe
  • step S14 the particle detector first receives the air particles absorbed by the detecting probe, and further calculates the particle diameter value of the air particles.
  • Step S15 counting the cumulative quantity of air particles in a range of preset particle diameter values, and determining whether the accumulated quantity is greater than a threshold value of the number of air particles corresponding to the preset particle size value range;
  • step S15 if the result of the determination is yes, the process goes to step S16, and if the result of the determination is no, the process returns to step S12 to continue detecting the air particles on the surface of the air filter corresponding to the next abnormal storage location. .
  • Step S16 The console determines that the air filter corresponding to the abnormal storage location generates a leak.
  • step S16 after it is determined that the air filter corresponding to the abnormal storage position has leaked, the air filter is further repaired or replaced.
  • the air particle detecting system of the storage bin of the present invention detects the air particles on the surface of the air filter corresponding to the abnormal storage by using the cassette provided with the detecting module, and then transmits the detection result.
  • the console judges the leakage condition of the corresponding air filter according to the detected result. According to the above manner, the present invention can automatically detect the air filter corresponding to the abnormal storage by using the cassette provided with the detecting module, The detection method of the present invention is safer, more convenient and more accurate than the manual detection method of the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Air Conditioning Control Device (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种储仓(11)的空气微粒的检测系统(10)及其检测方法,该检测系统(10)包括储位(111)、空气过滤器(12)、卡匣(13)以及控制台(15),空气过滤器(12)对应设置在每个储位(111)的外侧;卡匣(13)中的检测模块(131)检测异常储位(113)对应的空气过滤器(12)的表面的空气微粒;检测模块(131)进一步计算空气微粒的粒径值,并将该粒径值传送至控制台(15);控制台(15)根据该粒径值判断异常储位(113)对应的空气过滤器(12)是否产生泄露。本发明能够提高检测的安全性、方便性和准确性。

Description

一种储仓的空气微粒的检测系统及其检测方法
【技术领域】
本发明涉及自动储仓技术领域,特别是涉及一种储仓的空气微粒的检测系统及其检测方法。
【背景技术】
自动储仓系统中储仓要求为无尘的环境,因此在储仓中会安装空气过滤器,以吸收异常的空气微粒,如酸碱气体微粒、水微粒等,使得储仓保持无尘无污染的环境。
因此,必须经常检测空气过滤器的工作状态,以保证储仓的无尘环境,现有技术中采用人工检测方式来检测储仓中的空气过滤器是否发生泄漏。具体而言,工作人员站在升降装置的机械臂上,待升降装置把工作人员送到预定的高度时,工作人员用检测仪检测空气过滤器表面的空气微粒,以判断空气过滤器是否有泄漏现象。
上述的检测方法存在以下弊端:
1、操作不方便,不安全。在检测时,工作人员必须站在升降装置的机械臂上,如果操作升降装置不恰当或者工作人员在移动位置时重心不稳容易造成跌落事故。
2、测量结果不稳定,因为是人工检测,因此很难保证每个检测点都是一样的动作,从而可能影响测量数据。
【发明内容】
本发明主要解决的技术问题是提供一种储仓的空气微粒的检测系统及其检测方法,能够安全、准确地检测空气过滤器的泄漏状况。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种储仓的空气微粒的检测方法,该检测方法包括以下步骤:将检测模块设置在卡匣中;检测储仓中存在空气微粒异常的异常储位;利用传送机构将卡匣传送至异常储位中,以通过检测模块检测异常储位对应的空气过滤器的表面的空气微粒;检测模块进一步计算空气微粒的粒径值,并将粒径值通过无线网络传送至控制台;控制台根据粒径值判断异常储位对应的空气过滤器是否产生泄露;其中,检测模块包括检测探头,通过检测模块检测异常储位对应的空气过滤器的表面的空气微粒的步骤进一步包括:驱动检测探头移动;检测探头在移动时吸收异常储位对应的空气过滤器的表面的空气微粒;控制台根据粒径值判断异常储位对应的空气过滤器是否产生泄露的步骤进一步包括:控制台保存检测模块检测到的空气微粒的粒径值,并统计处于预设粒径值范围内的空气微粒的累计数量,并判断累计数量是否大于预设粒径值范围所对应的空气微粒的数量阈值;如果判断的结果为是,则控制台判断异常储位对应的空气过滤器产生泄露。
其中,检测探头移动区域的面积等于空气过滤器的表面积。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种储仓的空气微粒的检测方法,该检测方法包括以下步骤:将检测模块设置在卡匣中;检测储仓中存在空气微粒异常的异常储位;利用传送机构将卡匣传送至异常储位中,以通过检测模块检测异常储位对应的空气过滤器的表面的空气微粒;检测模块进一步计算空气微粒的粒径值,并将粒径值通过无线网络传送至控制台;控制台根据粒径值判断异常储位对应的空气过滤器是否产生泄露。
其中,检测模块包括检测探头,其中,通过检测模块检测异常储位对应的空气过滤器的表面的空气微粒的步骤进一步包括:驱动检测探头移动;检测探头在移动时吸收异常储位对应的空气过滤器的表面的空气微粒。
其中,控制台根据粒径值判断异常储位对应的空气过滤器是否产生泄露的步骤进一步包括:控制台保存检测模块检测到的空气微粒的粒径值,并统计处于预设粒径值范围内的空气微粒的累计数量,并判断累计数量是否大于预设粒径值范围所对应的空气微粒的数量阈值;如果判断的结果为是,则控制台判断异常储位对应的空气过滤器产生泄露。
其中,检测探头移动区域的面积等于空气过滤器的表面积。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种储仓的空气微粒的检测系统,该检测系统包括储仓,储仓包括多个储位,其中,储位包括空气微粒异常的异常储位;空气过滤器,对应设置在每个储位的外侧,用于过滤储位中的空气微粒;卡匣,卡匣设置有检测模块;传送机构,用于将卡匣传送至异常储位,以通过检测模块检测异常储位对应的空气过滤器的表面的空气微粒;其中,检测模块进一步计算空气微粒的粒径值,并将粒径值通过无线网络传送至控制台;控制台根据粒径值判断异常储位对应的空气过滤器是否产生泄露。
其中,检测模块包括驱动机构、检测探头、微粒检测仪以及无线通信模块,其中:驱动机构用于驱动检测探头移动;检测探头用于在移动时吸收异常储位对应的空气过滤器的表面的空气微粒;微粒检测仪与检测探头连通,微粒检测仪计算检测探头吸收到的空气微粒的粒径值,并将粒径值传送给无线通信模块;无线通信模块将粒径值通过无线传输的方式发送至控制台。
其中,控制台保存检测模块检测到的空气微粒的粒径值,并统计处于预设粒径值范围内的空气微粒的累计数量,并判断累计数量是否大于预设粒径值范围所对应的空气微粒的数量阈值;如果判断的结果为是,则控制台判断异常储位对应的空气过滤器产生泄露。
其中,在未检测空气过滤器的表面的空气微粒时,检测探头设置在卡匣的表面上,在检测空气过滤器的表面的空气微粒时,检测探头的一端自卡匣的表面旋转90度后升起。
其中,检测探头的顶端与空气过滤器的表面的距离为50毫米-100毫米。
其中,驱动机构包括第一驱动机构和第二驱动机构,其中,第一驱动机构沿第一方向驱动检测探头,第二驱动机构沿第二方向驱动检测探头,其中,第一方向和第二方向相互垂直。
其中,检测探头移动区域的面积等于空气过滤器的表面积。
其中,驱动机构设置在卡匣的顶部。
其中,驱动机构设置在卡匣的侧部。
本发明的有益效果是:区别于现有技术的情况,本发明将检测模块设置在卡匣中,进而利用传动机构将卡匣搬运到异常的储位,以通过检测模块检测异常储位对应的空气过滤器的表面的空气微粒,并计算该空气微粒的粒径值,最后控制台通过无线网络接收该粒径值,并根据该粒径值判断该异常储位对应的空气过滤器是否产生泄漏。通过上述方式,本发明能够利用安装了检测模块的卡匣自动检测异常储位对应的空气过滤器的泄漏情况,从而提高了检测的安全性、方便性和准确性。
【附图说明】
图1是本发明第一实施储仓的空气微粒的检测系统的结构示意图;
图2是图1所示的储仓的空气微粒的检测系统的部分立体结构示意图;
图3是图1所示的储仓的空气微粒的检测系统的空气过滤器的位置结构示意图;
图4是图1所示的储仓的空气微粒的检测系统中的卡匣的立体结构示意图;
图5是图4所示的卡匣的驱动机构的结构示意图;
图6是图5所示的驱动机构驱动检测探头移动的路径示意图;
图7是本发明第二实施例储仓的空气微粒的检测方法的流程图;
图8是本发明储仓的空气微粒的检测方法的一种具体实施方式的流程示意图。
【具体实施方式】
请一并参阅图1和图2,图1是本发明第一实施储仓的空气微粒的检测系统的结构示意图,图2是图1所示的储仓的空气微粒的检测系统的部分立体结构示意图。本发明的储仓的空气微粒的检测系统10包括储仓11、空气过滤器12、卡匣13、传送机构14、控制台15、无线基地台16以及转发器17。
本实施例中,每个储仓11包括多个储位111,其中,储位111包括正常储位112和空气微粒异常的异常储位113,空气微粒异常是指储位中的空气微粒超标,判断超标的原则为:
PMS(power production management system,工程生产管理系统)微粒检测仪抽取1立方英尺的空气,统计处于预设粒径值范围内的空气微粒的累计数量,若该累计数量超出预设粒径值范围所对应的空气微粒的数量阈值,则判断为空气微粒超标,具体标准数值可参阅如下表1。
表1:空气微粒的判断准则:
U209E 0-0.3µ 0.3-0.5µ 0.5-1µ 1-3µ 3-5µ 5-10µ 总计
10 级 累计数量 30 10 0 0 0 0 30
100 级 累计数量 297 97 20 1 0 0 297
1000 级 累计数量 3000 1000 226 20 7 0 3000
值得注意的是,表1的判断准则只是一个参考,在实际应用中,可以根据具体情况设置不同的判断准则。本发明在此不作限制。
空气过滤器12对应设置在每个储位111的外侧(图2为了方便显示储仓的空气微粒的检测系统10的结构,只画了部分的空气过滤器12),用于过滤储位111中的空气微粒。具体而言,请参阅图3,图3是图1所示的空气过滤器的位置结构示意图。如图3所示,空气过滤器12设置在每个储位111的内侧面,或者设置在储仓11的天花板上并位于最高的储位111的上方。
请参阅图4和图5,图4是图1所示的卡匣13的立体结构示意图,图5是图4所示的卡匣13的驱动机构的结构示意图。如图4和图5所示,检测模块131包括驱动机构132、检测探头133、微粒检测仪134、无线通信模块135以及弹性管136。
在本实施例中,首先检测储位111的空气微粒,进而判断出正常储位112和异常储位113,具体如上述所述的判断空气微粒超标的原则进行判断,在此不再赘述。然后传送机构14将卡匣13搬运到异常储位113,以通过卡匣13中设置的检测模块131检测异常储位113对应的空气过滤器12的表面的空气微粒,具体而言:
本实施例中,驱动机构132驱动检测探头133移动。其中,驱动机构132包括第一驱动机构137和第二驱动机构138。第一驱动机构137沿第一方向X驱动检测探头133,第二驱动机构138沿第二方向Y驱动检测探头133。具体而言,第二驱动机构138安装在第一驱动机构137上,检测探头133安装第二驱动机构138上。第一驱动机构137驱动检测探头133和第二驱动机构138整体沿X方向移动,第二驱动机构138驱动检测探头133沿Y方向移动。本实施例中,第一方向X和第二方向Y相互垂直。
值得注意的是,驱动机构132在卡匣13中的位置随着所测量的空气过滤器12的位置的不同而不同:当所测量的空气过滤器12设置在储仓11的天花板上时,驱动机构132如图4所示设置在卡匣13的顶部;当所测量的空气过滤器12设置在储位111的内侧面时,驱动机构132设置在卡匣13的侧部。可以理解的是,为了方便操作和节省更换驱动机构132的时间,驱动机构132可为两个,分别设置在卡匣13的顶部和侧部。
检测探头133在移动时吸收异常储位113对应的空气过滤器12的表面的空气微粒。其中,检测探头133在第一驱动机构137和第二驱动机构138的驱动下,优选沿正弦路径移动(如图6所示)。为了更准确地测量空气过滤器的表面的空气微粒,本实施例中的检测探头133的顶端1331与空气过滤器12的表面的距离优选为50毫米-100毫米,并且检测探头133移动区域的面积S1等于空气过滤器12的表面积S2。
值得注意的是,在本实施例中,为了更好的保护检测探头133,检测探头133在未检测空气过滤器12的表面的空气微粒时设置在卡匣13的表面上,在检测空气过滤器12的表面的空气微粒时,检测探头133的顶端1331自卡匣13的表面旋转90度后升起。
本实施例中,微粒检测仪134通过弹性管136与检测探头133连通,以接收检测探头133吸收到的空气微粒,并且微粒检测仪134进一步计算检测探头133吸收到的空气微粒的粒径值,并将该粒径值传送给无线通信模块135。
无线通信模块135例如为无线局域网串口服务器将该粒径值通过无线传输的方式发送至控制台15。具体而言,请再参阅图1,无线基地台16安装在储仓11内,转发器17安装在相邻两座储仓11外,控制台15例如为设置在储仓11外部的计算机。其中,根据储仓11的距离,无线基地台16可以为一台或其他数量。检测模块131中的无线通信模块135获得微粒检测仪134传送的粒径值之后,将该粒径值经由无线基地台16和转发器17构成的无线网络传送至控制台15,进而由控制台15根据该粒径值判断异常储位113对应的空气过滤器12是否产生泄露。
本实施例中,控制台15首先保存检测模块131检测到的空气微粒的粒径值,并统计处于预设粒径值范围内的空气微粒的累计数量,并判断该累计数量是否大于预设粒径值范围所对应的空气微粒的数量阈值。如果判断的结果为是,则控制台15判断异常储位113对应的空气过滤器12产生泄露,需及时维修或更换异常储位113对应的空气过滤器12。如果判断的结果为否,则控制台15判断异常储位113对应的空气过滤器12未产生泄露。
例如,控制台15接收到的空气微粒处于粒径值为0-0.3µ范围内的累计数量为25,处于粒径值为0.3-0.5µ范围内的累计数量为11,处于粒径值为0.5-10µ范围内的累计数量为0。由表1中的10等级的判断准则可得粒径值为0-0.3µ范围所对应的空气微粒的数量阈值为30,粒径值为0.3-0.5µ范围所对应的空气微粒的数量阈值为10,粒径值为0.5-10µ范围所对应的空气微粒的数量阈值为0。因此,控制台15接收到的处于粒径值为0-0.3µ范围内的空气微粒的累计数量和处于粒径值为0.5-10µ范围内的空气微粒的累计数量均小于或等于相应的粒径值范围所对应的空气微粒的数量阈值,但处于粒径值为0.3-0.5µ范围内的空气微粒的累计数量大于该粒径值范围所对应的空气微粒的数量阈值,因此,控制台15判断的结果为异常储位113对应的空气过滤器12产生泄露。
值得注意的是,若控制台15接收到的空气微粒在表1中划分的各个粒径值范围内的累计数量都小于或等于相应的粒径值范围所对应的空气微粒的数量阈值,但各粒径值范围内的累计数量的和大于表1中的总计数量时,控制台15依然判断为异常储位113对应的空气过滤器12产生泄露。例如,控制台15接收到的空气微粒处于粒径值为0-0.3µ范围内的累计数量为25,处于粒径值为0.3-0.5µ范围内的累计数量为10,处于粒径值为0.5-10µ范围内的累计数量为0,那么各粒径值范围内的空气微粒的累计数量都小于或等于该粒径值范围所对应的空气微粒的数量阈值,但各粒径值范围内的空气微粒的累计数量的和为35,大于10等级预设的总计的数量阈值30,因此控制台15依然判断为异常储位113对应的空气过滤器12产生泄露。
其他等级例如100等级和1000等级的判断原则与10等级的判断原则相同,在此不再赘述。
值得注意的是,本发明在完成一个储仓11中所有异常储位113对应的空气过滤器12的检测后,传送机构14会将卡匣13传送到另一个储仓11进行检测。
下面详细介绍本发明储仓的空气微粒的检测系统的工作原理及过程:
请参阅图7,图7是本发明第二实施例储仓的空气微粒的检测方法的流程图。如图7所示,本发明储仓的空气微粒的检测方法包括以下步骤:
步骤S1:将检测模块设置在卡匣中;
步骤S2:检测储仓中存在空气微粒异常的异常储位;
在步骤S2中,储仓内设置多个用于存放玻璃面板或者其他面板的储位,由于储仓要求为无尘储仓,因此必须周期性地检测储仓中各储位的环境如空气微粒等,以保证储仓为无尘环境。在实际应用中,通常利用PMS微粒检测仪抽取每个储位中1立方英尺的空气,统计处于预设粒径值范围内的空气微粒的累计数量,若该累计数量大于预设粒径值范围所对应的空气微粒的数量阈值,则判定为异常,具体标准数值可参考表1。
步骤S3:利用传送机构将卡匣传送至异常储位中,以通过检测模块检测异常储位对应的空气过滤器的表面的空气微粒;
在步骤S3中,传送机构将设有检测模块的卡匣搬运到异常储位后,检测模块对异常储位对应的空气过滤器的表面的空气微粒进行检测,完成一个异常储位的检测后,传送机构将卡匣搬运到下一个待检测的异常储位,直至完成所有待检测的异常储位的检测。
步骤S4:计算空气微粒的粒径值,并将粒径值通过无线网络传送至控制台;
在步骤S4中,检测模块每完成一个异常储位的检测,就会计算空气微粒的粒径值,然后再将该粒径值通过无线网络传送至控制台。
步骤S5:控制台根据粒径值判断异常储位对应的空气过滤器是否产生泄露。
在步骤S5中,控制台首先保存检测模块检测到的空气微粒的粒径值,并统计处于预设粒径值范围内的空气微粒的累计数量,并判断该累计数量是否大于预设粒径值范围所对应的空气微粒的数量阈值。如果判断的结果为是,则控制台判断异常储位对应的空气过滤器产生泄露。如果判断的结果为否,则控制台判断异常储位对应的空气过滤器未产生泄露。
请参阅图8,图8是本发明储仓的空气微粒的检测方法的一种具体实施方式的流程示意图,如图8所示,本实施例的空气微粒的检测方法包括以下步骤:
步骤S11:检测储仓中存在空气微粒异常的异常储位;
步骤S12:驱动检测探头移动;
在步骤S12中,检测模块包括检测探头、驱动机构、微粒检测仪以及无线通信模块。首先,传送机构搬运卡匣至异常储位中,继而卡匣中的驱动机构驱动检测探头移动,具体驱动原理请参见第一实施例的介绍,在此不再赘述。
步骤S13:检测探头在移动时吸收异常储位对应的空气过滤器的表面的空气微粒;
步骤S14:计算检测探头吸收到的空气微粒的粒径值;
在步骤S14中,微粒检测仪首先接收检测探头吸收到的空气微粒,进而计算空气微粒的粒径值。
步骤S15:统计处于预设粒径值范围内的空气微粒的累计数量,并判断该累计数量是否大于预设粒径值范围所对应的空气微粒的数量阈值;
在步骤S15中,如果判断的结果为是,则跳转到步骤S16,如果判断的结果为否,则返回步骤S12,继续对下一个异常储位对应的空气过滤器的表面的空气微粒进行检测。
步骤S16:控制台判断异常储位对应的空气过滤器产生泄露。
在步骤S16中,判断到异常储位对应的空气过滤器产生泄露之后,将进一步对该空气过滤器进修维修或更换。
因此,相比于现有技术,本发明的储仓的空气微粒的检测系统利用设置有检测模块的卡匣对异常储位对应的空气过滤器的表面的空气微粒进行检测,进而将检测结果发送到控制台,控制台根据检测到的结果判断相应的空气过滤器的泄漏情况,通过上述方式,本发明能够利用设置了检测模块的卡匣自动对异常储位对应的空气过滤器进行检测,相对于现有技术的人工检测方式,本发明的检测方式更安全、方便和准确。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

  1. 一种储仓的空气微粒的检测方法,其中,所述检测方法包括以下步骤:
    将检测模块设置在卡匣中;
    检测所述储仓中存在空气微粒异常的异常储位;
    利用传送机构将所述卡匣传送至所述异常储位中,以通过所述检测模块检测所述异常储位对应的空气过滤器的表面的空气微粒;
    所述检测模块进一步计算所述空气微粒的粒径值,并将所述粒径值通过无线网络传送至控制台;
    所述控制台根据所述粒径值判断所述异常储位对应的所述空气过滤器是否产生泄露;
    其中,所述检测模块包括检测探头,所述通过所述检测模块检测所述异常储位对应的空气过滤器的表面的空气微粒的步骤进一步包括:
    驱动所述检测探头移动;
    所述检测探头在移动时吸收所述异常储位对应的所述空气过滤器的表面的所述空气微粒;
    所述控制台根据所述粒径值判断所述异常储位对应的所述空气过滤器是否产生泄露的步骤进一步包括:
    所述控制台保存所述检测模块检测到的所述空气微粒的粒径值,并统计处于预设粒径值范围内的所述空气微粒的累计数量,并判断所述累计数量是否大于所述预设粒径值范围所对应的空气微粒的数量阈值;
    如果判断的结果为是,则所述控制台判断所述异常储位对应的所述空气过滤器产生泄露。
  2. 根据权利要求1所述的检测方法,其中,所述检测探头移动区域的面积等于所述空气过滤器的表面积。
  3. 一种储仓的空气微粒的检测方法,其中,所述检测方法包括以下步骤:
    将检测模块设置在卡匣中;
    检测所述储仓中存在空气微粒异常的异常储位;
    利用传送机构将所述卡匣传送至所述异常储位中,以通过所述检测模块检测所述异常储位对应的空气过滤器的表面的空气微粒;
    所述检测模块进一步计算所述空气微粒的粒径值,并将所述粒径值通过无线网络传送至控制台;
    所述控制台根据所述粒径值判断所述异常储位对应的所述空气过滤器是否产生泄露。
  4. 根据权利要求3所述的检测方法,其中,所述检测模块包括检测探头,其中,所述通过所述检测模块检测所述异常储位对应的空气过滤器的表面的空气微粒的步骤进一步包括:
    驱动所述检测探头移动;
    所述检测探头在移动时吸收所述异常储位对应的所述空气过滤器的表面的所述空气微粒。
  5. 根据权利要求3所述的检测方法,其中,所述控制台根据所述粒径值判断所述异常储位对应的所述空气过滤器是否产生泄露的步骤进一步包括:
    所述控制台保存所述检测模块检测到的所述空气微粒的粒径值,并统计处于预设粒径值范围内的所述空气微粒的累计数量,并判断所述累计数量是否大于所述预设粒径值范围所对应的空气微粒的数量阈值;
    如果判断的结果为是,则所述控制台判断所述异常储位对应的所述空气过滤器产生泄露。
  6. 根据权利要求4所述的检测方法,其中,所述检测探头移动区域的面积等于所述空气过滤器的表面积。
  7. 一种储仓的空气微粒的检测系统,其中,所述检测系统包括:
    储仓,所述储仓包括多个储位,其中,所述储位包括空气微粒异常的异常储位;
    空气过滤器,对应设置在每个所述储位的外侧,用于过滤所述储位中的所述空气微粒;
    卡匣,所述卡匣设置有检测模块;
    传送机构,用于将所述卡匣传送至所述异常储位,以通过所述检测模块检测所述异常储位对应的所述空气过滤器的表面的所述空气微粒;
    其中,所述检测模块进一步计算所述空气微粒的粒径值,并将所述粒径值通过无线网络传送至控制台;
    所述控制台根据所述粒径值判断所述异常储位对应的所述空气过滤器是否产生泄露。
  8. 根据权利要求7所述的检测系统,其中,所述检测模块包括驱动机构、检测探头、微粒检测仪以及无线通信模块,其中:
    所述驱动机构用于驱动所述检测探头移动;
    所述检测探头用于在移动时吸收所述异常储位对应的所述空气过滤器的表面的空气微粒;
    所述微粒检测仪与所述检测探头连通,所述微粒检测仪计算所述检测探头吸收到的所述空气微粒的粒径值,并将所述粒径值传送给所述无线通信模块;
    所述无线通信模块将所述粒径值通过无线传输的方式发送至所述控制台。
  9. 根据权利要求8所述的检测系统,其中,所述控制台保存所述检测模块检测到的所述空气微粒的粒径值,并统计处于预设粒径值范围内的所述空气微粒的累计数量,并判断所述累计数量是否大于所述预设粒径值范围所对应的空气微粒的数量阈值;
    如果判断的结果为是,则所述控制台判断所述异常储位对应的所述空气过滤器产生泄露。
  10. 根据权利要求8所述的检测系统,其中,在未检测所述空气过滤器的表面的所述空气微粒时,所述检测探头设置在所述卡匣的表面上,在检测所述空气过滤器的表面的所述空气微粒时,所述检测探头的顶端自所述卡匣的表面旋转90度后升起。
  11. 根据权利要求10所述的检测系统,其中,所述检测探头的顶端与所述空气过滤器的表面的距离为50毫米-100毫米。
  12. 根据权利要求8所述的检测系统,其中,所述驱动机构包括第一驱动机构和第二驱动机构,其中,所述第一驱动机构沿第一方向驱动所述检测探头,所述第二驱动机构沿第二方向驱动所述检测探头,其中,所述第一方向和所述第二方向相互垂直。
  13. 根据权利要求8所述的检测系统,其中,所述检测探头移动区域的面积等于所述空气过滤器的表面积。
  14. 根据权利要求8所述的检测系统,其中,所述驱动机构设置在所述卡匣的顶部。
  15. 根据权利要求8所述的检测系统,其中,所述驱动机构设置在所述卡匣的侧部。
PCT/CN2012/086762 2012-12-12 2012-12-17 一种储仓的空气微粒的检测系统及其检测方法 WO2014089854A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/808,581 US9234830B2 (en) 2012-12-12 2012-12-17 Warehouse system and method for detecting air particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210535620.6 2012-12-12
CN2012105356206A CN103033451A (zh) 2012-12-12 2012-12-12 一种储仓的空气微粒的检测系统及其检测方法

Publications (1)

Publication Number Publication Date
WO2014089854A1 true WO2014089854A1 (zh) 2014-06-19

Family

ID=48020572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086762 WO2014089854A1 (zh) 2012-12-12 2012-12-17 一种储仓的空气微粒的检测系统及其检测方法

Country Status (3)

Country Link
US (1) US9234830B2 (zh)
CN (1) CN103033451A (zh)
WO (1) WO2014089854A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3115707A1 (fr) * 2020-11-04 2022-05-06 Cylergie Procédé et dispositif de vérification du fonctionnement d’un filtre de traitement de l’air d’un bâtiment par mesure de concentration de particules

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792942B (zh) * 2015-04-30 2018-01-30 深圳市华星光电技术有限公司 挥发性有机化合物自动检测系统及检测方法
CN105953356A (zh) * 2016-04-27 2016-09-21 北京爱空气科技有限公司 空气净化器工作效率检测方法和系统
JP6803607B2 (ja) * 2016-11-16 2020-12-23 株式会社エアレックス リーク検査支援装置及びこれを用いたリーク検査方法
CN108226386B (zh) * 2016-12-14 2020-11-10 盟立自动化股份有限公司 环境侦测系统
CN108226385B (zh) * 2016-12-14 2020-09-08 盟立自动化股份有限公司 环境侦测系统
JP6487499B2 (ja) * 2016-12-14 2019-03-20 盟立自動化股▲フン▼有限公司 検出機器及び揮発性有機化合物検出器
CN106770953B (zh) * 2016-12-22 2019-09-24 徐州市金彭面粉加工有限公司 一种便于移动的空气检测装置
CN113533162A (zh) * 2021-07-09 2021-10-22 重庆影图智能科技有限公司 基于机器视觉运用的空气过滤器检测方法、系统及其设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4324568A (en) * 1980-08-11 1982-04-13 Flanders Filters, Inc. Method and apparatus for the leak testing of filters
CN2687663Y (zh) * 2004-04-05 2005-03-23 王健信 风道微尘粒子在线检测仪
CN1869528A (zh) * 2005-05-25 2006-11-29 孟春 生物安全三级、四级实验室排风过滤器的泄漏监测方法
US20110107819A1 (en) * 2009-11-10 2011-05-12 Taiwan Textile Research Institute Air filter leak inspection method
CN102799205A (zh) * 2012-08-14 2012-11-28 深圳市华星光电技术有限公司 一种储仓的温湿度的监控方法及其监控系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494403A (en) * 1982-07-14 1985-01-22 Flanders Filters, Inc. Filter testing apparatus and method
JPH0529184A (ja) * 1991-07-19 1993-02-05 Hitachi Ltd クリーンベンチ
KR100210599B1 (ko) * 1996-10-10 1999-07-15 윤종용 가변형 프로브를 구비한 파티클 카운터
GB0411403D0 (en) * 2004-05-21 2004-06-23 Tissuomics Ltd Irradiating body tissue
US7253743B2 (en) * 2005-02-07 2007-08-07 Cisco Technology, Inc. Techniques for identifying when to change an air filter
KR100669092B1 (ko) * 2005-05-27 2007-01-15 삼성전자주식회사 공기 중의 파티클 모니터링 장치
US7585345B2 (en) * 2006-01-19 2009-09-08 Phillips Plastics Corporation Baffle filter
US7520668B2 (en) * 2007-01-24 2009-04-21 Innova Electronics Corporation Multi function thermometer
CN101109688A (zh) * 2007-08-20 2008-01-23 封国峥 过滤器全采样粒子计数器法捡漏
CN201421410Y (zh) * 2009-06-01 2010-03-10 苏州市信义电子产品检测研究有限公司 洁净室高效过滤器送风口自动检漏车
CN102019120A (zh) * 2009-09-15 2011-04-20 林惜珠 一种实时监测空气净化机过滤层污染程度的方法
CN202555116U (zh) * 2012-04-10 2012-11-28 苏州市苏信净化设备厂 洁净室高效风口计数检漏装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4324568A (en) * 1980-08-11 1982-04-13 Flanders Filters, Inc. Method and apparatus for the leak testing of filters
CN2687663Y (zh) * 2004-04-05 2005-03-23 王健信 风道微尘粒子在线检测仪
CN1869528A (zh) * 2005-05-25 2006-11-29 孟春 生物安全三级、四级实验室排风过滤器的泄漏监测方法
US20110107819A1 (en) * 2009-11-10 2011-05-12 Taiwan Textile Research Institute Air filter leak inspection method
CN102799205A (zh) * 2012-08-14 2012-11-28 深圳市华星光电技术有限公司 一种储仓的温湿度的监控方法及其监控系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3115707A1 (fr) * 2020-11-04 2022-05-06 Cylergie Procédé et dispositif de vérification du fonctionnement d’un filtre de traitement de l’air d’un bâtiment par mesure de concentration de particules
EP3995200A1 (fr) * 2020-11-04 2022-05-11 Cylergie Procédé et dispositif de vérification du fonctionnement d'un filtre de traitement de l'air d'un bâtiment par mesure de concentration de particules

Also Published As

Publication number Publication date
US9234830B2 (en) 2016-01-12
CN103033451A (zh) 2013-04-10
US20140182359A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
WO2014089854A1 (zh) 一种储仓的空气微粒的检测系统及其检测方法
WO2014026369A1 (zh) 一种储仓的温湿度的监控方法及其监控系统
US8088203B2 (en) Automated warehouse and method of controlling clean environment in the automated warehouse
CN101165751B (zh) 面板检测装置及面板检测方法
CN109164105B (zh) 错混料自动识别点数机及实现方法
CN113030519A (zh) 一种电路板的检测设备
JP5787916B2 (ja) 清浄度測定用台車および清浄度測定システム
CN207325364U (zh) 一种柔性oled产品的art自动电阻检测设备
CN212780558U (zh) Ccd视频检测装置
CN207424148U (zh) 一种电力载波模块多功能检测装置
CN218452401U (zh) 电池检测设备以及电池生产线
JP3219171U (ja) ディスプレイ・パネル中の回路および画素の欠陥を発見するためのシステム
CN207566469U (zh) 电路板测试机的上下料装置
CN216791963U (zh) 一种粉尘浓度测量仪
CN111855684A (zh) Ccd视频检测装置及检测方法
CN209148376U (zh) 一种颗粒物采样装置及β射线法大气颗粒物监测设备
CN220472566U (zh) 一种手机屏尺寸检测设备
WO2013039280A1 (ko) 반도체 장비 진단용 측정장치
CN212692961U (zh) 一种检测精准的高接触面积超声波流量计
CN215261657U (zh) 一种零件外轮廓检测设备
CN212158682U (zh) 一种液晶显示模组的生产环境监测装置
CN219677222U (zh) 一种晶圆预对准检测设备
CN214750396U (zh) 一种电路板的检测设备
CN218995169U (zh) 用于玻璃检测的传送机构
TWI854761B (zh) 半導體自動裝載系統

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13808581

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889979

Country of ref document: EP

Kind code of ref document: A1