WO2014089772A1 - 链路检测方法及装置 - Google Patents

链路检测方法及装置 Download PDF

Info

Publication number
WO2014089772A1
WO2014089772A1 PCT/CN2012/086429 CN2012086429W WO2014089772A1 WO 2014089772 A1 WO2014089772 A1 WO 2014089772A1 CN 2012086429 W CN2012086429 W CN 2012086429W WO 2014089772 A1 WO2014089772 A1 WO 2014089772A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
node
test
path
difference
Prior art date
Application number
PCT/CN2012/086429
Other languages
English (en)
French (fr)
Inventor
韩建蕊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280002561.4A priority Critical patent/CN103229516B/zh
Priority to PCT/CN2012/086429 priority patent/WO2014089772A1/zh
Publication of WO2014089772A1 publication Critical patent/WO2014089772A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a link detection method and apparatus. Background technique
  • DWDM Dense Wavelength Division Multiplexing
  • ASON Automatically Switched Optical Network
  • Wavelength division networks have many physical constraints on the optical path, such as distance, fiber loss, and device attenuation, which affect the performance of services transmitted on the path.
  • the physical constraints of the path after rerouting must be guaranteed. (such as line attenuation, optical signal-to-noise ratio, etc.) is within an acceptable range to ensure that the performance meets the requirements after service rerouting.
  • the possible rerouting path is pre-verified in the initial phase, that is, the service is manually switched to the path for performance verification. If the performance requirements are met, Then switch back to the working path; if the performance requirements are not met, perform the necessary operations, such as adjusting the physical parameters of the link (such as adding an electrical relay, or changing the rerouting path).
  • the present invention provides a link detection method and device, which is used to solve the performance verification of the manual re-routing path in the initial stage in the prior art, and needs to perform re-routing when a fault occurs. In the inter-segment, if the line quality changes, the re-routing may fail.
  • the link detection method provided by the embodiment of the present invention includes:
  • Determining whether the service crossover is configured in the node If no service crossover is configured, the test wavelength is crossed according to the fiber connection relationship in the node, and the wavelength path where the test wavelength is located is obtained.
  • the difference is compared with a preset threshold, and if the difference is greater than or equal to the threshold, the abnormal message is reported.
  • the method further includes: if a service crossover is configured, configuring, according to the fiber connection relationship in the node, the test wavelength except the service cross Intersection, and the remaining intersections and the business intersections do not conflict;
  • the service crossover and the remaining cross combination are combined to obtain a wavelength path in which the test wavelength is located.
  • the wavelength path is a path between an output port of the ingress optical amplifier OA of the node and an input port of the egress OA.
  • an entry of the wavelength path is an output port of the ingress OA
  • an exit of the wavelength path is the egress OA Input port.
  • the method further includes:
  • the obtaining, by using the difference between the power values at the ingress and the exit of the wavelength path where each of the test wavelengths is located Steps, including:
  • the method before the step of determining whether a service crossover is configured in the node, the method further includes:
  • the method before the step of determining whether a service crossover is configured in the node, the method further includes:
  • a laser that determines that at least one of the inlets OA inside the node is open.
  • the second aspect, the link detecting apparatus provided by the embodiment of the present invention includes:
  • a determining unit configured to determine whether a service crossover has been configured in the node
  • a wavelength path acquiring unit configured to: when the determining unit determines that the service cross is not configured, configure a crossover of the test wavelength according to the fiber connection relationship in the node, to obtain a wavelength path in which the test wavelength is located;
  • a difference obtaining unit configured to acquire, after the wavelength path acquiring unit acquires the wavelength path, a difference between power values at an inlet and an exit of a wavelength path where each test wavelength of the test wavelength is located;
  • the reporting unit is configured to compare the difference with a preset threshold after the difference obtaining unit obtains the difference, and report an abnormality message if the difference is greater than or equal to the threshold.
  • the wavelength path acquiring unit is further used to
  • the determining unit determines that the service crossover is configured, the remaining intersections of the test wavelengths except the service crossover are configured according to the optical fiber connection relationship in the node, and the remaining crosses do not conflict with the service crossover. ;
  • the service crossover and the remaining cross combination are combined to obtain a wavelength path in which the test wavelength is located.
  • the wavelength path is a path between an output port of the ingress optical amplifier OA of the node and an input port of the egress OA.
  • an entry of the wavelength path is an output port of the ingress OA
  • an egress of the wavelength path is an egress of the egress OA Input port.
  • the apparatus further includes:
  • a canceling unit configured to cancel the intersection of the configured test wavelengths after the difference obtaining unit acquires the difference.
  • the difference obtaining unit is specifically used to
  • the OPM unit Observing, by the optical performance of the wavelength path inlet OA, the OPM unit acquires a first power value at an entrance of a wavelength path in which each of the test wavelengths is located;
  • the apparatus further includes:
  • the optical fiber connection relationship acquiring unit is configured to acquire, before the determining unit determines whether the service crossover is configured in the node, the optical fiber connection relationship of the port where the internal link is located in the node, where the optical fiber connection relationship is the wavelength in the node Select the fiber connection relationship of the switch WSS.
  • the apparatus further includes:
  • a determining unit configured to determine, before the determining unit determines whether a service crossover has been configured in the node, determining that the laser of the at least one ingress OA inside the node is turned on.
  • the link detection method and device of the present invention obtains the wavelength path of the test wavelength by configuring the intersection of the test wavelengths, and obtains the power at the entrance and the exit of the wavelength path where each test wavelength is located.
  • the value is used to detect the change of the attenuation of the wavelength path, and then the change of the line quality is detected, which can better solve the performance verification of the manual re-routing path in the initial stage in the prior art, and the re-routing period needs to be performed when the fault occurs. If the line quality changes, rerouting may fail.
  • FIG. 1 is a schematic structural diagram of an optical channel according to an embodiment of the prior art
  • FIG. 2 is a schematic structural diagram of an optical channel according to an embodiment of the present invention.
  • FIG. 3 is an enlarged schematic diagram of a node of an optical channel according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a link detecting method according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart diagram of a link detection method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a link detecting apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a link detecting apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a link detecting apparatus according to an embodiment of the present invention. detailed description
  • the re-routing may fail if the line quality changes during the re-routing period.
  • the industry also proposes another solution.
  • OA optical amplifier
  • EDFA Erbium-doped Optical Fiber Amplifier
  • the above method cannot judge whether one of the channels is abnormal or that it cannot determine which channel has an abnormality, and there is no way to judge when there is no service in the path to be rerouted. That is to say, there is no treatment for the exception of a single channel (ie, each wavelength channel).
  • the embodiment of the present invention can perform quality detection on a line that has not been operated in real time or in a timely manner. If the line quality is abnormal, the network management unit is notified to perform timely processing, that is, an abnormal message is sent to the network management unit, so that the network management unit according to the abnormality The message handles the fault in the above line.
  • the embodiment of the present invention divides the network into two parts, a line part and a node part, wherein two line parts and three node parts are shown in FIG. 2 (Node 1, Node 2, Node 3).
  • the embodiments of the present invention are directed to a method for detecting a link quality problem within a node.
  • the node is responsible for certain processing of the input signal, such as cross-scheduling, and then output.
  • the so-called intra-node link is defined in the embodiment of the invention as the link between the output port of the ingress OA and the input port of the egress OA.
  • a plurality of combinations may be formed between the plurality of input ports and the output ports to form a plurality of possible paths, for example, a path between an operating port of the input OA and an input port of the outlet OA, that is, a wavelength of the working wavelength. path.
  • Figure 2 above is only an example of the network.
  • the network in the actual application is more than the Wavelength Selective Switch (WSS) and OA devices shown in Figure 2.
  • WSS Wavelength Selective Switch
  • Figure 2 above shows only Out of the OA and WSS parts.
  • the WSS described above may also be replaced with a wavelength multiplexing/demultiplexing unit.
  • a node may have multiple directions of input and multiple directions of output, as illustrated by one of the nodes in Figure 2 above.
  • the node contains three directions of entrance and three In the direction of the exit, the middle WSS can realize the scheduling of different wavelength channels, that is, the wavelengths from the different direction inlets can be respectively scheduled to exit in different directions.
  • the same entry direction may contain multiple wavelengths, which may be scheduled in any direction of the exit.
  • the node in Figure 3 illustrates how the internal link inside the node achieves quality assessment.
  • FIG. 4 is a schematic flowchart of a link detection method according to an embodiment of the present invention; as shown in FIG. 4, the link detection method in this embodiment is as follows.
  • test wavelength can be all or part of the wavelength within the operating wavelength range supported by the system.
  • the above wavelength path may be one wavelength path or multiple wavelength paths.
  • the wavelength path described above is the path between the output port of the node OA of the node to the input port of the egress OA.
  • the fiber connection relationship is the physical connection relationship of the fiber. As shown in Figure 3, the fiber on the WSS port 1 is connected to one port 3 of the other WSS3'.
  • the power value described above can be a noise power value.
  • the entrance of the wavelength path is an output port of the ingress OA
  • the egress of the wavelength path is an input port of the egress OA
  • the foregoing step 202 may be specifically as follows:
  • the first power value can be a first noise power value and the second power value can be a second noise power value.
  • the OPM unit belongs to the structure of the OA.
  • the OPM unit and the OA may be separated separately, which is not limited in this embodiment. This may be done by detecting the first power value through the OPM unit at the inlet and detecting the second power value through the OPM unit at the outlet.
  • the abnormality message may be reported to the network management unit or the control plane, and the network management unit or the control plane may repair the abnormal wavelength path.
  • the difference is less than the threshold, it can be stated that the physical constraint of the wavelength path in the node is within an acceptable range, and the performance can be satisfied after the service re-routing, and the service can perform reliability in the re-routing path. transmission.
  • wavelength path in this embodiment may also be referred to as a wavelength channel segment, and one or more wavelength paths belong to an internal link within the node.
  • the intersection of the configured test wavelengths may all be canceled.
  • the link detection method shown in Fig. 4 above can be repeated periodically.
  • the wavelength of the test wavelength is obtained by configuring the intersection of the test wavelengths, and the power value at the inlet and the exit of the wavelength path where each test wavelength is located, such as the noise power value, is detected.
  • the change of the attenuation of the wavelength path and the detection of the change of the line quality can better solve the performance verification of the manual re-routing path in the initial stage in the prior art, and the re-routing time period needs to be performed if the line quality occurs. With changes, rerouting may fail.
  • the link detection method can detect the dark channel abnormality of the alternate path (that is, the preset path or the potential rerouting path) in advance, thereby avoiding possible rerouting failure.
  • the service may be in the standby path.
  • the link detection method is as shown in Figure 5.
  • the link detection method in this embodiment is as follows:
  • the service crossover and the remaining cross combination are combined to obtain a wavelength path in which the test wavelength is located.
  • the above wavelength path is the path between the output port of the node OA of the node to the input port of the egress OA.
  • the power value of the wavelength path corresponding to the service crossover is the signal power value
  • the power value of the remaining cross-corresponding wavelength path may be the noise power value
  • step 301 described above is performed, for example, to obtain the fiber connection relationship between the portal 1 and the other outlets (1 ', 2', 3') and the service intersection involving all WSSs, and record the configured service cross. .
  • the fiber connection relationship at this point is the fiber connection relationship of the WSS in the node.
  • port 1 of WSS1 is connected to port 1 of WSS1 '
  • port 2 of WSS1 is connected to port 1 of WSS2'
  • port 3 of WSS1 is connected to port 3 of WSS3'.
  • the foregoing service crossover is a wavelength cross-correlation relationship that has already been configured by the user, and thus, the remaining crossovers of the test wavelength except the service crossover (ie, the intersection of the ROADMs in the configuration node) are configured according to the above-mentioned fiber connection relationship, and the remaining crossovers (the remaining crossovers) That is, the non-service crossover is unable to cross the traffic, and the wavelength path is obtained to perform the subsequent steps 302 and 303.
  • the foregoing WSS shown in FIG. 3 is an implementation of a Reconfigurable Optical Add/Drop Multiplexer (ROADM).
  • ROADM Reconfigurable Optical Add/Drop Multiplexer
  • the above-mentioned link detection method can detect the dark channel abnormality of the preset path or the potential rerouting path in advance, avoiding the possible rerouting failure, and simultaneously implementing the link start and expansion.
  • the link detecting method shown in Figs. 4 and 5 described above further includes step S01 which is not shown in the following figure.
  • the intersection of the configured test wavelengths is all intersections of the test wavelengths
  • the intersection of the test wavelengths that is, the intersection of the test wavelengths other than the service crossover, that is, the non-service crossover is configured.
  • intersection of the configured test wavelengths can be cancelled after the aforementioned first power value and second power value are obtained.
  • the configuration of the test wavelength 1 to the test wavelength 40 corresponds to the intersection includes: The in port of WSS1 to port 1 of WSS1, the port of WSS1 to port 1 of WSS1 ', the port of WSS1 ' to the out port of WSS1 ', obtains a wavelength path, and obtains the first power value of wavelength 1 and a second power value, and comparing the difference between the first power value and the second power value with a preset threshold; sequentially, acquiring the first power value and the second power value of the test wavelength 2 to the test wavelength 40, and Comparing the difference between the power value and the second power value with a preset threshold, as long as the difference between the first power value and the second power value of one test wavelength is greater than or equal to a preset threshold, directly to the network management unit The abnormal message of the wavelength path is reported.
  • the link detecting method further includes the following step 201a not shown in FIG. 4:
  • determining that the laser of at least one of the inlets OA inside the node is turned on That is, it is checked whether the laser of the inlet OA inside the node is turned on, and if the laser is not turned on, the laser is turned on.
  • the step of checking that the laser is turned on and the step of obtaining the configured service intersection may be exchanged, which is not limited in this embodiment. That is to say, in other embodiments, the configured service crossover can be obtained first, and then the laser is turned on.
  • the laser can be turned on or off by a software configuration command. Accordingly, before step 301 in Fig. 5, it is also necessary to perform the above-described step 201a. As shown in FIG. 3, the laser in the OA1 is turned on, and the wavelength path of each test wavelength is monitored according to the above steps 301 to 303. After the monitoring, the laser in the OA1 is turned off, and the test wavelength in the OA1 is cancelled. The other intersections except the service crossover (ie, non-service crossover); turn on the laser in OA2, monitor the wavelength path of each test wavelength according to steps 301 to 303 above, and close the OA2 after the monitoring.
  • the service crossover ie, non-service crossover
  • the laser cancels the crossover or non-service crossover except for the service crossover for the test wavelength in OA2; turns on the laser in OA3, and monitors the wavelength path of each test wavelength according to steps 301 to 303 above, After the monitoring, the laser in OA3 is turned off, and the remaining crossover or non-traffic crossovers other than the service crossover for the test wavelength in OA3 are cancelled.
  • OA1 -WSS1 -WSS1 '-OA1 The following is an example of OA1 -WSS1 -WSS1 '-OA1. It can be understood that when there is no service in the path of the alternate path/re-routing, the laser of the ingress direction OA is forcibly opened based on the fiber connection relationship inside the node, such as Turn on the laser of OA1; configure the Ins of WSS1 at this time.
  • the intersection of the port to the mouth of WSS1, the intersection can correspond to one or more test wavelengths. For example, the intersection of the test wavelengths of Lambdal ⁇ Lambda40 (ie, wavelength 1 to wavelength 40) can be configured.
  • WSS1 1 port and Connect the 1 port of WSS1 ' According to the fiber connection relationship, WSS1 1 port and Connect the 1 port of WSS1 ', and then configure the intersection of the 1 port of WSS1 ' to the OUT port of WSS1 '.
  • the first power value at the inlet is obtained by the OPM1 unit of OA1
  • the second power value at the outlet is obtained by the OPM1' unit of OA1'
  • the difference between the power values at the inlet and the outlet is calculated, and the difference is compared with The difference between the preset thresholds, if the difference exceeds the preset threshold, reports an exception message to the network management unit.
  • the first power value of the Lambdal ⁇ Lambda 40 on the OA1 output port is obtained by the OPM1
  • the second power value of the Lambdal ⁇ Lambda 40 on the OA1 'input port is obtained by OPM1 ', and the difference between the two is compared. If the difference exceeds the preset threshold, the abnormal message is reported to the network management unit.
  • test wavelengths are automatically unconfigured, and the service crosses. Prevail.
  • the link detection method does not need to add additional equipment such as a light source, and can be processed in a single station, which is simple and flexible.
  • the steps of detecting a plurality of channels on the alternate path inside the node are periodically repeated, that is, the steps of the link detecting method shown in FIG. 4 or FIG. 5 are repeated.
  • an embodiment of the present invention further provides a link detecting apparatus.
  • the link detecting apparatus includes: a determining unit 61, a wavelength path acquiring unit 62, a difference obtaining unit 63, and Reporting unit 64;
  • the determining unit 61 is configured to determine whether a service crossover has been configured in the node
  • the wavelength path obtaining unit 62 is configured to: when the determining unit 61 determines that the service cross is not configured, configure the intersection of the test wavelengths according to the fiber connection relationship in the node, and obtain the wavelength path where the test wavelength is located;
  • the difference obtaining unit 63 is configured to acquire the wavelength path in the wavelength path acquiring unit 62. Afterwards, obtaining a difference between power values at the ingress and the exit of the wavelength path where each of the test wavelengths is located;
  • the reporting unit 64 is configured to compare the difference with a preset threshold after the difference obtaining unit 63 obtains the difference, and report an abnormality message if the difference is greater than or equal to the threshold.
  • the wavelength path acquiring unit 62 is further configured to: when the determining unit 61 determines that the service crossover is configured, configure the remaining crosses of the test wavelength except the service cross according to the fiber connection relationship in the node. And the remaining intersections and the business are not crossed
  • the service crossover and the remaining cross combination are combined to obtain a wavelength path in which the test wavelength is located.
  • the difference obtaining unit 63 is configured to acquire, after the wavelength path acquiring unit 62 acquires the wavelength path, a difference between power values at the entrance and the exit of the wavelength path where each of the test wavelengths is located.
  • the reporting unit 64 is configured to compare the difference with a preset threshold after the difference obtaining unit 63 obtains the difference, and report an abnormality message if the difference is greater than or equal to the threshold.
  • the wavelength path described above may be the path between the output port of the node's ingress optical amplifier OA to the input port of the egress OA.
  • the entrance to the wavelength path is the output port of the inlet OA, and the outlet of the wavelength path is the input port of the outlet OA.
  • the difference obtaining unit 63 is specifically configured to acquire, by using an OPM unit of the wavelength path entry OA, a first power value at an entrance of a wavelength path where each test wavelength of the test wavelength is located; Obtaining, by the OPM unit of the wavelength path exit OA, a second power value at an exit of a wavelength path where each test wavelength of the test wavelength is located; subtracting the first power value from the second power value , get the difference.
  • the link detecting apparatus may further include a canceling unit 65, and the canceling unit 65 is configured to cancel the identifier after the difference acquiring unit 63 acquires the difference. The intersection of the configured test wavelengths.
  • the foregoing link detecting apparatus may further include a fiber connection relationship acquiring unit 66 (not shown), and the fiber connecting relationship acquiring unit 66 is configured to be in the determining unit.
  • the fiber connection relationship of the port where the internal link is located in the node is obtained, and the fiber connection relationship is the fiber connection relationship of the WSS in the node.
  • the link detecting device may further include a determining unit 67, not shown in the figure, for determining, before the determining unit 61 determines whether a service crossover has been configured in the node.
  • the laser of at least one inlet OA inside the node is turned on.
  • the determining unit and the wavelength path acquiring unit acquire the wavelength path where the test wavelength is located, and obtain the power value at the entrance and the exit of the wavelength path where each test wavelength is located by using the difference obtaining unit.
  • the performance verification of the manual re-routing path in the initial stage in the prior art can be better solved, and the line needs to be re-routed in the time when the fault occurs. If the quality changes, the rerouting may fail.
  • an embodiment of the present invention further provides a link detecting apparatus, where the link detecting apparatus includes: a memory 81, a processor 82, and a transmitter 83;
  • the memory 81 is coupled to a processor 82 for storing information including program routines executed by the processor 82;
  • the processor 82 is coupled to the memory 81 and the transmitter 83 for controlling the execution of the program routine, and specifically includes:
  • Determining whether the service crossover is configured in the node If no service crossover is configured, the test wavelength is crossed according to the fiber connection relationship in the node, and the wavelength path where the test wavelength is located is obtained.
  • the transmitter 83 is configured to report an abnormality message when the difference obtained by the processor 82 is greater than or equal to the threshold.
  • the processor 82 is further configured to determine whether a service crossover is configured in the node, and when determining the configured service crossover, configure the test wavelength according to the optical fiber connection relationship in the node.
  • the remaining intersections other than the intersections, and the remaining intersections and the business intersections do not conflict;
  • the service cross and the remaining cross combination are combined to obtain a wavelength path in which the test wavelength is located.
  • the wavelength path is a path between an output port of the node entry OA to an input port of the egress OA.
  • the entrance of the wavelength path is an output port of the ingress OA
  • the egress of the wavelength path is an input port of the egress OA.
  • the processor 82 is further configured to cancel the intersection of the configured test wavelengths after obtaining a difference in power values at the ingress and the exit of the wavelength path of each of the test wavelengths.
  • the processor 82 is configured to obtain a difference between power values at an ingress and an exit of a wavelength path of each of the test wavelengths, where:
  • the processor 82 obtains a first power value at an entrance of a wavelength path where each test wavelength of the test wavelength is located by an OPM unit of the wavelength path entry OA;
  • the processor 82 is configured to obtain, after determining whether a service crossover is configured in the node, the optical fiber connection relationship of the port where the internal link in the node is located, where The fiber connection relationship is the fiber connection relationship of the WSS in the node.
  • the processor 82 is configured to determine that the laser of the at least one portal OA inside the node is turned on before determining whether the service crossover has been configured in the node.
  • the link detecting apparatus in this embodiment stores information including a program routine executed by the processor through a memory, and further, a processor coupled to the memory controls execution of the program routine to obtain a wavelength at which the test wavelength is located.
  • the path obtains the power value at the entrance and the exit of the wavelength path where each test wavelength is located, and detects the change in the attenuation of the wavelength path, thereby detecting the change of the line quality, which can better solve the opening stage in the prior art.
  • Manually verify the performance of the rerouting path If the fault occurs during the rerouting period, if the line quality changes, the rerouting may fail.
  • the link detecting apparatus can detect the dark channel abnormality of the standby path (that is, the preset path or the potential rerouting path) in advance, thereby avoiding possible rerouting failure.
  • the aforementioned program can be stored in a computer readable storage medium. When the program is executed, the steps including the foregoing method embodiments are performed; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供一种链路检测方法及装置,其中,所述方法包括:判断节点内是否已配置业务交叉,若未配置业务交叉,则根据所述节点内的光纤连接关系配置测试波长的交叉,得到所述测试波长所在的波长路径;获取所述测试波长中的每一测试波长所在的波长路径的入口和出口处的功率值的差值;将所述差值与预置的阈值进行比较,若所述差值大于等于所述阈值,则上报异常消息。上述方法解决了现有技术中在开局阶段手工进行重路由路径的性能验证,到故障发生需要进行重路由时间段内,若线路质量发生了变化,则重路由可能失败的问题。

Description

链路检测方法及装置 技术领域 本发明涉及通信技术领域, 尤其涉及一种链路检测方法及装置。 背景技术
密集型光波复用 ( Dense Wavelength Division Multiplexing , 简称 DWDM ) 是当前最常见的光层组网技术, 通过复用 /解复用器可以实现数 十波甚至上百波的传送能力, 在这样大容量的网络中, 业务传输的可靠性 是必须要保证的, 自动交换光网络 ( Automatically Switched Optical Network, 简称 ASON ) 重路由特性可以对故障业务进行重路由, 满足业 务的高可靠性传输需求。
波分网络由于光路存在很多物理约束, 比如距离, 光纤衰耗, 器件衰 耗等会影响到业务在该路径传输的性能, ASON重路由要想成功, 必须要 保证重路由后的路径的物理约束(如线路衰耗、 光信噪比等)在可接受范 围内, 从而保证业务重路由之后性能满足要求。
为保证重路由后的路径的物理约束在可接受范围内, 通常会在开局阶 段对可能的重路由路径进行提前验证, 即将业务手工倒换到该路径上进行 性能验证; 若可以满足性能要求, 则再倒换回工作路径上; 若不能满足性 能要求, 则进行必要的操作, 例如调整链路物理参数(如增加电中继, 或 者更改重路由路径) 。 而这种方法会存在一个问题, 就是虽然待重路由的 路径在开局阶段提前被验证过了, 但是网络的故障发生时间是随机的, 在 发生故障需要重路由的时候, 之前验证过的路径的性能可能已经发生了劣 化, 这时进行故障重路由就有可能失败, 因为此时的路径质量不能满足业 务性能需求了。 发明内容
有鉴于此, 本发明提供一种链路检测方法及装置, 用于解决现有技术中 在开局阶段手工进行重路由路径的性能验证, 到故障发生需要进行重路由时 间段内, 若线路质量发生了变化, 则重路由可能失败的问题。
第一方面, 本发明实施例提供的链路检测方法, 包括:
判断节点内是否已配置业务交叉, 若未配置业务交叉, 则根据所述节 点内的光纤连接关系配置测试波长的交叉, 得到所述测试波长所在的波长 路径;
获取所述测试波长中的每一测试波长所在的波长路径的入口和出口 处的功率值的差值;
将所述差值与预置的阈值进行比较, 若所述差值大于等于所述阈值, 则上报异常消息。
结合第一方面, 在第一种可能的实现方式中, 所述方法还包括: 若已配置业务交叉, 则根据节点内的光纤连接关系, 配置所述测试波 长的除所述业务交叉以外的其余的交叉, 且所述其余的交叉和所述业务交 叉不冲突;
所述业务交叉和所述其余的交叉组合, 得到所述测试波长所在的波长 路径。
结合第一方面及上述可能的实现方式, 在第二种可能的实现方式中, 所述波长路径为所述节点的入口光放大器 OA的输出端口到出口 OA的输 入端口之间的路径。
结合第一方面及上述第二种可能的实现方式, 在第三种可能的实现方 式中, 所述波长路径的入口为所述入口 OA的输出端口, 所述波长路径的 出口为所述出口 OA的输入端口。
结合第一方面及上述可能的实现方式, 在第四种可能的实现方式中, 所述方法还包括:
所述获取所述测试波长中的每一测试波长所在的波长路径的入口和 出口处的功率值的差值后, 取消所述配置的测试波长的交叉。
结合第一方面及上述可能的实现方式, 在第五种可能的实现方式中, 所述获取所述测试波长中的每一测试波长所在的波长路径的入口和出口 处的功率值的差值的步骤, 包括:
通过所述波长路径入口 OA的光性能监测 OPM单元获取所述测试波 长中的每一测试波长所在的波长路径的入口处的第一功率值; 通过所述波长路径出口 OA的 OPM单元获取所述测试波长中的每一 测试波长所在的波长路径的出口处的第二功率值;
将所述第一功率值与所述第二功率值相减, 得到所述差值。
结合第一方面及上述可能的实现方式, 在第六种可能的实现方式中, 所述判断节点内是否已配置业务交叉的步骤之前, 所述方法还包括:
获取所述节点内的内部链路所在端口的光纤连接关系, 所述光纤连接 关系为所述节点内波长选择开关 WSS的光纤连接关系。
结合第一方面及上述可能的实现方式, 在第七种可能的实现方式中, 所述判断节点内是否已配置业务交叉的步骤之前, 所述方法还包括:
确定所述节点内部的至少一个入口 OA的激光器已打开。
第二方面, 本发明实施例提供的链路检测装置, 包括:
判断单元, 用于判断节点内是否已配置业务交叉;
波长路径获取单元, 用于在所述判断单元确定未配置业务交叉时, 根 据所述节点内的光纤连接关系配置测试波长的交叉, 得到所述测试波长所 在的波长路径;
差值获取单元, 用于在所述波长路径获取单元获取所述波长路径之 后, 获取所述测试波长中的每一测试波长所在的波长路径的入口和出口处 的功率值的差值;
上报单元, 用于在所述差值获取单元获取所述差值之后, 将所述差值 与预置的阈值进行比较,若所述差值大于等于所述阈值,则上报异常消息。
结合第二方面,在第一种可能的实现方式中,所述波长路径获取单元, 还用于
在所述判断单元确定已配置业务交叉时, 根据节点内的光纤连接关 系, 配置所述测试波长的除所述业务交叉以外的其余的交叉, 且所述其余 的交叉和所述业务交叉不冲突;
所述业务交叉和所述其余的交叉组合, 得到所述测试波长所在的波长 路径。
结合第二方面及上述可能的实现方式, 在第二种可能的实现方式中, 所述波长路径为所述节点的入口光放大器 OA的输出端口到出口 OA的输 入端口之间的路径。 结合第二方面及第二种可能的实现方式, 在第三种可能的实现方式 中, 所述波长路径的入口为所述入口 OA的输出端口, 所述波长路径的出 口为所述出口 OA的输入端口。
结合第二方面及上述可能的实现方式, 在第四种可能的实现方式中, 所述装置还包括:
取消单元, 用于在所述差值获取单元获取所述差值之后, 取消所述配 置的测试波长的交叉。
结合第二方面及上述可能的实现方式, 在第五种可能的实现方式中, 所述差值获取单元, 具体用于
通过所述波长路径入口 OA的光性能监测 OPM单元获取所述测试波 长中的每一测试波长所在的波长路径的入口处的第一功率值;
通过所述波长路径出口 OA的 OPM单元获取所述测试波长中的每一 测试波长所在的波长路径的出口处的第二功率值;
将所述第一功率值与所述第二功率值相减, 得到所述差值。
结合第二方面及上述可能的实现方式, 在第六种可能的实现方式中, 所述装置还包括:
光纤连接关系获取单元, 用于在所述判断单元判断节点内是否已配置 业务交叉之前, 获取所述节点内的内部链路所在端口的光纤连接关系, 所 述光纤连接关系为所述节点内波长选择开关 WSS的光纤连接关系。
结合第二方面及上述可能的实现方式, 在第七种可能的实现方式中, 所述装置还包括:
确定单元, 用于在所述判断单元判断节点内是否已配置业务交叉之 前, 确定所述节点内部的至少一个入口 OA的激光器已打开。
由上述技术方案可知, 本发明的链路检测方法及装置, 通过配置测试 波长的交叉, 得到所述测试波长所在的波长路径, 通过获取每一测试波长 所在的波长路径的入口和出口处的功率值, 以检测波长路径的衰耗变化, 进而检测线路质量的变化, 可较好的解决现有技术中在开局阶段手工进行 重路由路径的性能验证, 到故障发生需要进行重路由时间段内, 若线路质量 发生了变化, 则重路由可能失败的问题。 附图说明 为了更清楚地说明本发明的技术方案, 下面将对实施例中所需要使用的 附图作一简单地介绍, 显而易见地: 下面附图只是本发明的一些实施例的附 图, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可 以根据这些附图获得同样能实现本发明技术方案的其它附图。
图 1为现有技术中一实施例提供的光通道的结构示意图;
图 2为本发明中一实施例提供的光通道的结构示意图;
图 3为本发明中一实施例提供的光通道的一个节点的放大示意图; 图 4为本发明中一实施例提供的链路检测方法的流程示意图;
图 5为本发明中一实施例提供的链路检测方法的流程示意图;
图 6为本发明中一实施例提供的链路检测装置的结构示意图;
图 7为本发明中一实施例提供的链路检测装置的结构示意图;
图 8为本发明中一实施例提供的链路检测装置的结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合本发明实 施例中的附图, 对本发明的技术方案进行清楚、 完整地描述。 显然, 下述 的各个实施例都只是本发明一部分的实施例。 基于本发明下述的各个实施 例, 本领域普通技术人员即使没有作出创造性劳动, 也可以通过等效变换 部分甚至全部的技术特征, 而获得能够解决本发明技术问题, 实现本发明 技术效果的其它实施例, 而这些变换而来的各个实施例显然并不脱离本发 明所公开的范围。
为解决现有技术中的在开局阶段手工进行重路由路径的性能验证,到故 障发生需要进行重路由时间段内, 若线路质量发生了变化, 则重路由可能失 败的问题。 业内人士还提出另外一种解决方案, 如图 1所示, 当待重路由 路径有业务时, 可以判断上一级光放大器 (Optical amplifier, 简称 OA ) (如 Erbium-doped Optical Fiber Amplifier, 简称 EDFA, 掺铒光纤放大 器)的输出光功率和下一级 OA的输入光功率的差值判断线路衰耗是否异 常 (如图 1 中箭头所示两个 OA之间的部分路径) 。 即, 通过前一个 OA 的输出光功率和下一个 OA的输入光功率的差值的变化判断这一段光路是 否有异常。
然而, 上述方法无法判断其中一个通道发生异常或者说也无法判断是 哪一个通道发生了异常, 同时在待重路由路径没有业务时, 也没有办法判 断。 也就是说, 对单通道(即各个波长通道) 的异常没有任何处理方法。 本发明实施例能够实时或者定时的对尚未运行业务的线路进行质量 检测, 若线路质量异常, 则通知网络管理单元进行及时处理, 即向网络网 管理单元发送异常消息, 以使网络管理单元根据异常消息处理上述线路中 的故障。
另外, 参见图 2所示, 为方便描述, 本发明实施例将网络分成两个部 分, 线路部分和节点部分, 其中图 2中示出了两个线路部分和 3个节点部 分(Node 1、 Node 2, Node 3 ) 。 本发明实施例针对的是节点内部的链 路质量问题的检测方法。
通常情况下, 节点负责将输入信号进行一定的处理, 如交叉调度, 然 后输出。
所谓节点内部链路, 在本发明实施例中定义为入口 OA的输出端口到 出口 OA的输入端口之间的链路。 多个输入口与输出口之间可能会形成多 种组合从而形成多条可能的路径, 例如, 一工作波长从入口 OA的输出端 口到出口 OA的输入端口之间的路径即该工作波长的波长路径。 从入口 OA的输出端口到出口 OA的输入端口之间的路径上可以有多个波长路径。
上述图 2仅为网络的一个示例, 实际应用中的网络比图 2中所示的波 长选择开关(Wavelength Selective Switch , 简称 WSS ) 、 OA器件要更 多一些, 为方便理解, 上述图 2仅示出 OA和 WSS的部分。 在其他实施 例中, 上述的 WSS还可以釆用波长复用 /解复用单元替换。
通常情况下, 一个节点内部可能有多个方向的输入和多个方向的输 出, 以上述图 2中的一个节点进行说明, 如图 3所示, 该节点包含了三个 方向的入口和三个方向的出口,中间的 W S S可实现不同波长通道的调度, 即可以将不同方向入口来的波长分别调度到不同方向的出口。 同一个入口 方向可能包含多个波长, 该多个波长均可往出口的任意方向调度。 以图 3 中的节点举例说明该节点内部的内部链路如何实现质量评估的。 图 4示出了本发明一实施例提供的链路检测方法的流程示意图; 如图 4所示, 本实施例中的链路检测方法如下所述。
201、 判断节点内是否已配置业务交叉, 若未配置业务交叉, 则根据 所述节点内的光纤连接关系配置测试波长的交叉, 得到所述测试波长所在 的波长路径。
举例来说, 测试波长可以是系统所支持的工作波长范围内的全部或部 分波长。 上述的波长路径可以是一个波长路径, 也可以是多个波长路径。
在本实施例中, 上述的波长路径为所述节点的入口 OA的输出端口到 出口 OA的输入端口之间的路径。
光纤连接关系即光纤的物理连接关系, 如图 3中, WSS端口 1上的 光纤与另外 WSS3'的一个端口 3相连。
202、 获取所述测试波长中的每一测试波长所在的波长路径的入口和 出口处的功率值的差值。
举例来说, 上述的功率值可为噪声功率值。
在本实施例中, 波长路径的入口为入口 OA的输出端口, 所述波长路 径的出口为所述出口 OA的输入端口。
结合图 3所示, 举例来说, 上述的步骤 202可具体如下:
通过入口 OA的光' 1 "生能监测 ( Optical Performance Monitor, 简称 OPM )单元获取所述测试波长中的每一测试波长所在的波长路径的入口处 的第一功率值;
通过出口 OA的 OPM单元获取所述测试波长中的每一测试波长所在 的波长路径的出口处的第二功率值;
将所述第一功率值与所述第二功率值相减, 得到所述差值。
举例来说, 第一功率值可为第一噪声功率值, 第二功率值可为第二噪 声功率值。
在图 3中, OPM单元属于 OA的结构, 在其他实施例中, 可能 OPM 单元和 OA是独立分开, 本实施例不对其进行限定。 该处可以是通过入口 处的 OPM单元检测第一功率值, 通过出口处的 OPM单元检测第二功率 值。
203、 将所述差值与预置的阈值进行比较, 若所述差值大于等于所述 阈值, 则上报异常消息。
举例来说, 可以向网络管理单元或者控制平面等上报异常消息, 使得 网络管理单元或者控制平面等对上述异常的波长路径进行修复。
若差值小于所述阈值, 则可以说明的是该节点内的波长路径的物理约 束在可接受范围内, 可以保证业务重路由之后性能能够满足要求, 进而业 务能够在重路由路径中进行可靠性传输。
需要说明的是, 本实施例中的波长路径还可称为波长通道段, 一个或 多个波长路径属于节点内的内部链路。
当然,步骤 202中获取所述测试波长中的每一测试波长所在的波长路 径的入口和出口处的功率值的差值之后, 可将所述配置的测试波长的交叉 全部取消。
特别地,在实际应用中,可以定期重复上述图 4所示的链路检测方法。 本实施例中的链路检测方法, 通过配置测试波长的交叉, 得到测试波 长所在的波长路径, 通过获取每一测试波长所在的波长路径的入口和出口 处的功率值如噪声功率值, 以检测波长路径的衰耗变化, 进而检测线路质 量的变化,可较好的解决现有技术中在开局阶段手工进行重路由路径的性能 验证, 到故障发生需要进行重路由时间段内, 若线路质量发生了变化, 则重 路由可能失败的问题。
由此, 上述链路检测方法还可以提前检测到备用路径(即预置路径或 潜在的重路由路径) 的暗通道异常, 避免可能的重路由失败。
在实际的应用场景中, 可能备用路径存在业务, 此时, 链路检测方法 可如图 5所示, 本实施例中的链路检测方法如下:
301、 判断节点内是否已配置业务交叉, 若已配置业务交叉, 则根据 节点内的光纤连接关系, 配置所述测试波长的除所述业务交叉以外的其余 的交叉, 且所述其余的交叉和所述业务交叉不冲突;
所述业务交叉和所述其余的交叉组合, 得到所述测试波长所在的波长 路径。
上述的波长路径为所述节点的入口 OA的输出端口到出口 OA的输入 端口之间的路径。
302、 获取所述测试波长中的每一测试波长所在的波长路径的入口和 出口处的功率值的差值。
举例来说, 业务交叉对应的波长路径的功率值为信号功率值, 其余的 交叉对应的波长路径的功率值可为噪声功率值。
303、 将所述差值与预置的阈值进行比较, 若所述差值大于等于所述 阈值, 则上报异常消息。
结合图 3来说, 执行上述的步骤 301 , 例如, 获取入口 1与其他各出 口 (1 '、 2'、 3' ) 的光纤连接关系和涉及所有 WSS的业务交叉, 并记录已 经配置的业务交叉。
该处的光纤连接关系为节点内 WSS的光纤连接关系。 如 WSS1的 1 端口与 WSS1 '的 1端口相连, WSS1的 2端口与 WSS2'的 1端口相连, WSS1的 3端口与 WSS3'的 3端口相连。
上述的业务交叉为用户已经配置好的波长交叉关系, 由此, 根据上述 的光纤连接关系配置测试波长的除业务交叉以外的其余的交叉(即配置节 点内 ROADM的交叉) , 该其余的交叉(即非业务交叉)是不能与业务交 叉冲突的, 得到波长路径, 以执行后续的步骤 302和步骤 303。
前述图 3中所示的 WSS为可重构光分插复用设备 ( Reconfigurable Optical Add/Drop Multiplexer, 简称 ROADM ) 的一种实现方式。
上述的链路检测方法可以提前检测到预置路径或潜在的重路由路径 的暗通道异常,避免可能的重路由失败, 同时可以实现链路的开局和扩容。
当然,上述的图 4和图 5所示的链路检测方法还包括如下的图中未示 出的步骤 S01。
S01、 所述获取所述测试波长中的每一测试波长所在的波长路径的入 口和出口处的功率值的差值后, 取消所述配置的测试波长的交叉。
在本实施例中, 若未配置业务交叉, 则配置的测试波长的交叉为测试 波长的所有交叉;
若已配置业务交叉, 则配置测试波长的交叉即测试波长的除业务交叉 之外的其它的交叉, 即非业务交叉。
可以理解的是, 在获取到前述的第一功率值和第二功率值之后, 可取 消所述配置的测试波长的交叉。
结合图 3所示, 若配置测试波长 1到测试波长 40对应的交叉包括: WSS1的 in口到 WSS1的 1 口, WSS1 的 1 口到 WSS1 '的 1 口 , WSS1 ' 的 1 口到 WSS1 '的 out口, 则得到一个波长路径, 此时获取波长 1的第一 功率值和第二功率值, 并将第一功率值和第二功率值的差值与预设的阈值 比较; 依次, 获取测试波长 2至测试波长 40的第一功率值和第二功率值, 并将第一功率值和第二功率值的差值与预设的阈值比较, 只要有一个测试 波长的第一功率值和第二功率值的差值大于等于预设的阈值, 则可直接向 网络管理单元上报该波长路径的异常消息。
进一步地, 在上述图 4所示的链路检测方法中的步骤 201之前, 链路 检测方法还包括如下图 4中未示出的步骤 201 a:
201 a, 确定所述节点内部的至少一个入口 OA的激光器已打开。 也就 是说, 查看所述节点内部的入口 OA的激光器是否打开, 若所述激光器未 打开, 则打开所述激光器。
另外, 在本发明实施例中, 检查激光器打开的步骤和获取已配置的业 务交叉的步骤可以交换, 本实施例不对其进行限定。 也就是说, 在其他实 施例中, 可以先获取已配置的业务交叉, 再打开激光器。
在实际应用中, 激光器可以通过软件配置命令使其打开或者关闭。 相应地, 在图 5中的步骤 301之前, 也需要执行上述的步骤 201 a。 结合图 3所示, 打开 OA1 中的激光器, 根据上述的步骤 301至 303 对每一测试波长所在的波长路径进行监测, 在监测完之后, 关闭 OA1 中 的激光器, 同时取消针对 OA1 中的测试波长的除业务交叉以外的其余的 交叉(即非业务交叉) ; 打开 OA2中的激光器, 根据上述的步骤 301至 303对每一测试波长所在的波长路径进行监测, 在监测完之后, 关闭 OA2 中的激光器, 同时取消针对 OA2中的测试波长的除业务交叉以外的其余 的交叉即非业务交叉;打开 OA3中的激光器,根据上述的步骤 301至 303 对每一测试波长所在的波长路径进行监测, 在监测完之后, 关闭 OA3中 的激光器, 以及取消针对 OA3中的测试波长的除业务交叉以外的其余的 交叉即非业务交叉。
以下以 OA1 -WSS1 -WSS1 '-OA1,举例说明, 可以理解的是, 当备用路 径 /待重路由的路径无业务时,基于节点内部的光纤连接关系, 强制打开一 个入口方向 OA的激光器, 如打开 OA1的激光器; 此时配置 WSS1的 In 口到 WSS1的 1 口的交叉, 交叉可以对应一个或者多个测试波长, 比如 可以配置 Lambdal ~ Lambda40 (即波长 1到波长 40 ) 的测试波长所对 应的交叉, 根据光纤连接关系, WSS1 1 口与 WSS1 '的 1 口相连, 再配置 WSS1 '的 1 口到 WSS1 '的 OUT口的交叉。
进而, 通过 OA1的 OPM1单元获取入口处的第一功率值, 通过 OA1 ' 的 OPM1 '单元获取出口处的第二功率值,计算入口处和出口处的功率值的 差值, 比较该差值与预设的阈值的差异, 若差值超过预设的阈值, 向网络 管理单元上报异常消息。
基于上述配置的交叉,通过 OPM1获取 Lambdal ~ Lambda40在 OA1 输出端口上的第一功率值, 通过 OPM1 '获取 Lambdal ~ Lambda40在 OA1 '输入端口上的第二功率值 ,比较二者的差值 ,若差值超过预设的阈值 , 则向网络管理单元上报异常消息。
最后, 将 OA1 中的激光器关闭, 并取消上述配置的与 Lambdal ~ Lambda40对应的交叉, 对其他入口方向的 OA (如 OA2和 OA3 )执行上 述相同的动作, 直到遍历完所有的方向。
需要说明的是, 在交叉配置和生效的过程中, 若有新的业务交叉配置 命令下发, 业务交叉和配置的测试波长的交叉有冲突时, 自动取消配置的 测试波长的交叉, 以业务交叉为准。
本实施例中链路检测方法不需要增加额外的设备如光源, 单站即可处 理, 简单灵活。
在实际应用中, 周期性的重复上述检测节点内部的备用路径上的多个 通道的步骤, 即重复上述图 4或图 5所示的链路检测方法的步骤。
根据本发明的另一方面, 本发明实施例还提供一种链路检测装置, 如 图 6所示, 该链路检测装置包括: 判断单元 61、 波长路径获取单元 62、 差值获取单元 63和上报单元 64;
其中, 判断单元 61用于判断节点内是否已配置业务交叉;
波长路径获取单元 62用于在所述判断单元 61确定未配置业务交叉 时, 根据所述节点内的光纤连接关系配置测试波长的交叉, 得到所述测试 波长所在的波长路径;
差值获取单元 63用于在所述波长路径获取单元 62获取所述波长路径 之后, 获取所述测试波长中的每一测试波长所在的波长路径的入口和出口 处的功率值的差值;
上报单元 64用于在所述差值获取单元 63获取所述差值之后,将所述 差值与预置的阈值进行比较, 若所述差值大于等于所述阈值, 则上报异常 消息。
举例来说, 波长路径获取单元 62还用于, 在所述判断单元 61确定已 配置业务交叉时, 根据节点内的光纤连接关系, 配置所述测试波长的除所 述业务交叉以外的其余的交叉, 且所述其余的交叉和所述业务交叉不冲
·
所述业务交叉和所述其余的交叉组合, 得到所述测试波长所在的波长 路径。
此时,差值获取单元 63用于在所述波长路径获取单元 62获取所述波 长路径之后, 获取所述测试波长中的每一测试波长所在的波长路径的入口 和出口处的功率值的差值;
上报单元 64用于在所述差值获取单元 63获取所述差值之后 ,将所述 差值与预置的阈值进行比较, 若所述差值大于等于所述阈值, 则上报异常 消息。
举例来说, 上述的波长路径可为所述节点的入口光放大器 OA的输出 端口到出口 OA的输入端口之间的路径。 波长路径的入口为所述入口 OA 的输出端口, 所述波长路径的出口为所述出口 OA的输入端口。
又举例来说, 所述差值获取单元 63具体用于, 通过所述波长路径入 口 OA的 OPM单元获取所述测试波长中的每一测试波长所在的波长路径 的入口处的第一功率值; 通过所述波长路径出口 OA的 OPM单元获取所 述测试波长中的每一测试波长所在的波长路径的出口处的第二功率值; 将 所述第一功率值与所述第二功率值相减, 得到所述差值。
在一种应用场景中, 如图 7所示, 上述的链路检测装置还可包括取消 单元 65, 该取消单元 65用于在所述差值获取单元 63获取所述差值之后 , 取消所述配置的测试波长的交叉。
在另一应用场景中, 上述的链路检测装置还可包括图中未示出的光纤 连接关系获取单元 66, 该光纤连接关系获取单元 66用于在所述判断单元 61判断节点内是否已配置业务交叉之前, 获取所述节点内的内部链路所 在端口的光纤连接关系, 所述光纤连接关系为所述节点内 WSS的光纤连 接关系。
在再一应用场景中, 上述的链路检测装置还可包括图中未示出的确定 单元 67, 该确定单元 67用于在所述判断单元 61判断节点内是否已配置 业务交叉之前, 确定所述节点内部的至少一个入口 OA的激光器已打开。
本实施例中的链路检测装置, 通过判断单元和波长路径获取单元获取 到测试波长所在的波长路径, 通过差值获取单元获取每一测试波长所在的 波长路径的入口和出口处的功率值, 以检测波长路径的衰耗变化, 进而检 测线路质量的变化,可较好的解决现有技术中在开局阶段手工进行重路由路 径的性能验证, 到故障发生需要进行重路由时间段内, 若线路质量发生了变 化, 则重路由可能失败的问题。
根据本发明的另一方面, 本发明实施例还提供一种链路检测装置, 该 链路检测装置包括: 存储器 81、 处理器 82和发送器 83;
其中, 存储器 81和处理器 82耦合, 该存储器 81用于存储包括所述 处理器 82所执行的程序例程的信息;
所述处理器 82分别与存储器 81、 发送器 83耦合, 用于控制所述程 序例程的执行, 具体包括:
判断节点内是否已配置业务交叉, 若未配置业务交叉, 则根据所述节 点内的光纤连接关系配置测试波长的交叉, 得到所述测试波长所在的波长 路径;
获取所述测试波长中的每一测试波长所在的波长路径的入口和出口 处的功率值的差值;
将所述差值与预置的阈值进行比较;
所述发送器 83用于在处理器 82中获取的差值大于等于所述阈值时, 上报异常消息。
在一种实现场景中, 所述处理器 82还用于判断节点内是否已配置业 务交叉, 在确定已配置业务交叉时, 根据节点内的光纤连接关系, 配置所 述测试波长的除所述业务交叉以外的其余的交叉, 且所述其余的交叉和所 述业务交叉不冲突; 所述业务交叉和所述其余的交叉组合, 得到所述测试波长所在的波长 路径。
在本实施例中, 所述波长路径为所述节点入口 OA的输出端口到出口 OA的输入端口之间的路径。所述波长路径的入口为入口 OA的输出端口, 所述波长路径的出口为所述出口 OA的输入端口。
在实际应用中, 处理器 82还用于在获取所述测试波长中的每一测试 波长所在的波长路径的入口和出口处的功率值的差值后, 取消所述配置的 测试波长的交叉。
在一种可选的应用场景中, 所述处理器 82用于获取所述测试波长中 的每一测试波长所在的波长路径的入口和出口处的功率值的差值的步骤, 具体为:
所述处理器 82通过所述波长路径入口 OA的 OPM单元获取所述测试 波长中的每一测试波长所在的波长路径的入口处的第一功率值;
通过所述波长路径出口 OA的 OPM单元获取所述测试波长中的每一 测试波长所在的波长路径的出口处的第二功率值;
将所述第一功率值与所述第二功率值相减, 得到所述差值。
在另一种可选的应用场景中, 所述处理器 82用于在判断节点内是否 已配置业务交叉之前, 还用于获取所述节点内的内部链路所在端口的光纤 连接关系, 所述光纤连接关系为所述节点内 WSS的光纤连接关系。
或者, 所述处理器 82用于在判断节点内是否已配置业务交叉之前, 确定所述节点内部的至少一个入口 OA的激光器已打开。
本实施例中的链路检测装置, 通过存储器存储包括所述处理器所执行 的程序例程的信息, 进而与存储器耦合的处理器控制所述程序例程的执 行, 以获得测试波长所在的波长路径, 进而获取每一测试波长所在的波长 路径的入口和出口处的功率值, 用以检测波长路径的衰耗变化, 进而检测 线路质量的变化,可较好的解决现有技术中在开局阶段手工进行重路由路径 的性能验证, 到故障发生需要进行重路由时间段内, 若线路质量发生了变化, 则重路由可能失败的问题。
由此, 上述链路检测装置还可以提前检测到备用路径(即预置路径或 潜在的重路由路径) 的暗通道异常, 避免可能的重路由失败。 本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算 机可读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步 骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存 储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要 求 书
1、 一种链路检测方法, 其特征在于, 包括:
判断节点内是否已配置业务交叉, 若未配置业务交叉, 则根据所述节 点内的光纤连接关系配置测试波长的交叉, 得到所述测试波长所在的波长 路径;
获取所述测试波长中的每一测试波长所在的波长路径的入口和出口 处的功率值的差值;
将所述差值与预置的阈值进行比较, 若所述差值大于等于所述阈值, 则上报异常消息。
2、 根据权利要求 1所述的方法, 其特征在于, 还包括:
若已配置业务交叉, 则根据节点内的光纤连接关系, 配置所述测试波 长的除所述业务交叉以外的其余的交叉, 且所述其余的交叉和所述业务交 叉不冲突;
所述业务交叉和所述其余的交叉组合, 得到所述测试波长所在的波长 路径。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述波长路径为 所述节点的入口光放大器 OA的输出端口到出口 OA的输入端口之间的路 径。
4、 根据权利要求 3所述的方法, 其特征在于, 所述波长路径的入口 为所述入口 OA的输出端口, 所述波长路径的出口为所述出口 OA的输入 端口。
5、 根据权利要求 1至 4任一所述的方法, 其特征在于, 还包括: 所述获取所述测试波长中的每一测试波长所在的波长路径的入口和 出口处的功率值的差值后, 取消所述配置的测试波长的交叉。
6、 根据权利要求 1至 5任一所述的方法, 其特征在于, 所述获取所 述测试波长中的每一测试波长所在的波长路径的入口和出口处的功率值 的差值的步骤, 包括:
通过所述波长路径入口 OA的光性能监测 OPM单元获取所述测试波 长中的每一测试波长所在的波长路径的入口处的第一功率值;
通过所述波长路径出口 OA的 OPM单元获取所述测试波长中的每一 测试波长所在的波长路径的出口处的第二功率值;
将所述第一功率值与所述第二功率值相减, 得到所述差值。
7、 根据权利要求 1至 6任一所述的方法, 其特征在于, 所述判断节 点内是否已配置业务交叉的步骤之前, 还包括:
获取所述节点内的内部链路所在端口的光纤连接关系, 所述光纤连接 关系为所述节点内波长选择开关 WSS的光纤连接关系。
8、 根据权利要求 1至 7任一所述的方法, 其特征在于, 所述判断节 点内是否已配置业务交叉的步骤之前, 还包括:
确定所述节点内部的至少一个入口 OA的激光器已打开。
9、 一种链路检测装置, 其特征在于, 包括:
判断单元, 用于判断节点内是否已配置业务交叉;
波长路径获取单元, 用于在所述判断单元确定未配置业务交叉时, 根 据所述节点内的光纤连接关系配置测试波长的交叉, 得到所述测试波长所 在的波长路径;
差值获取单元, 用于在所述波长路径获取单元获取所述波长路径之 后, 获取所述测试波长中的每一测试波长所在的波长路径的入口和出口处 的功率值的差值;
上报单元, 用于在所述差值获取单元获取所述差值之后, 将所述差值 与预置的阈值进行比较,若所述差值大于等于所述阈值,则上报异常消息。
10、 根据权利要求 9所述的装置, 其特征在于, 所述波长路径获取单 元, 还用于
在所述判断单元确定已配置业务交叉时, 根据节点内的光纤连接关 系, 配置所述测试波长的除所述业务交叉以外的其余的交叉, 且所述其余 的交叉和所述业务交叉不冲突;
所述业务交叉和所述其余的交叉组合, 得到所述测试波长所在的波长 路径。
1 1、 根据权利要求 9或 10所述的装置, 其特征在于, 所述波长路径 为所述节点的入口光放大器 OA的输出端口到出口 OA的输入端口之间的 路径。
12、 根据权利要求 1 1所述的装置, 其特征在于, 所述波长路径的入 口为所述入口 OA的输出端口, 所述波长路径的出口为所述出口 OA的输 入端口。
13、 根据权利要求 9至 12任一所述的装置, 其特征在于, 还包括: 取消单元, 用于在所述差值获取单元获取所述差值之后, 取消所述配 置的测试波长的交叉。
14、 根据权利要求 9至 13任一所述的装置, 其特征在于, 所述差值 获取单元, 具体用于
通过所述波长路径入口 OA的光性能监测 OPM单元获取所述测试波 长中的每一测试波长所在的波长路径的入口处的第一功率值;
通过所述波长路径出口 OA的 OPM单元获取所述测试波长中的每一 测试波长所在的波长路径的出口处的第二功率值;
将所述第一功率值与所述第二功率值相减, 得到所述差值。
15、 根据权利要求 9至 14任一所述的装置, 其特征在于, 还包括: 光纤连接关系获取单元, 用于在所述判断单元判断节点内是否已配置 业务交叉之前, 获取所述节点内的内部链路所在端口的光纤连接关系, 所 述光纤连接关系为所述节点内波长选择开关 WSS的光纤连接关系。
16、 根据权利要求 9至 15任一所述的装置, 其特征在于, 还包括: 确定单元, 用于在所述判断单元判断节点内是否已配置业务交叉之 前, 确定所述节点内部的至少一个入口 OA的激光器已打开。
PCT/CN2012/086429 2012-12-12 2012-12-12 链路检测方法及装置 WO2014089772A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280002561.4A CN103229516B (zh) 2012-12-12 链路检测方法及装置
PCT/CN2012/086429 WO2014089772A1 (zh) 2012-12-12 2012-12-12 链路检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/086429 WO2014089772A1 (zh) 2012-12-12 2012-12-12 链路检测方法及装置

Publications (1)

Publication Number Publication Date
WO2014089772A1 true WO2014089772A1 (zh) 2014-06-19

Family

ID=48838365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086429 WO2014089772A1 (zh) 2012-12-12 2012-12-12 链路检测方法及装置

Country Status (1)

Country Link
WO (1) WO2014089772A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112866043A (zh) * 2019-11-12 2021-05-28 中兴通讯股份有限公司 网络质量检测方法、装置、服务器和计算机可读介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141217A (zh) * 2007-01-22 2008-03-12 中兴通讯股份有限公司 一种波长选择装置的自动测试系统和方法
CN101192887A (zh) * 2007-07-25 2008-06-04 中兴通讯股份有限公司 一种波长选择开关的自动测试系统及其方法
CN101340238A (zh) * 2007-07-05 2009-01-07 华为技术有限公司 光口之间连接关系的确定方法及装置
CN102130721A (zh) * 2011-03-16 2011-07-20 烽火通信科技股份有限公司 自动获取可重构光分插复用器节点内部连纤关系的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141217A (zh) * 2007-01-22 2008-03-12 中兴通讯股份有限公司 一种波长选择装置的自动测试系统和方法
CN101340238A (zh) * 2007-07-05 2009-01-07 华为技术有限公司 光口之间连接关系的确定方法及装置
CN101192887A (zh) * 2007-07-25 2008-06-04 中兴通讯股份有限公司 一种波长选择开关的自动测试系统及其方法
CN102130721A (zh) * 2011-03-16 2011-07-20 烽火通信科技股份有限公司 自动获取可重构光分插复用器节点内部连纤关系的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112866043A (zh) * 2019-11-12 2021-05-28 中兴通讯股份有限公司 网络质量检测方法、装置、服务器和计算机可读介质

Also Published As

Publication number Publication date
CN103229516A (zh) 2013-07-31

Similar Documents

Publication Publication Date Title
US10439709B1 (en) Handling channel holder failures in channel holder equipped optical links
US10868614B2 (en) Optical power replacement for faulted spectrum in channel holder based optical links
Liu et al. OpenFlow-based wavelength path control in transparent optical networks: A proof-of-concept demonstration
JP4711203B2 (ja) トランスペアレント光ネットワーク用光接続経路の監視方法および装置
JP5093455B2 (ja) 光通信システム、光通信装置、およびパス区間迂回における障害アラーム監視方法
JP4878479B2 (ja) 光クロスコネクト装置
US8260133B2 (en) Standby restoration signaling for optical networks
WO2013077249A1 (ja) Ponプロテクションシステムの自己診断方法及びponプロテクションシステム
US20110116786A1 (en) Hot-swapping in-line optical amplifiers in an optical network
WO2012000254A1 (zh) 实现无源光网络光链路保护的系统、装置及方法
US9660755B2 (en) Automated node level fibre audit
KR101407943B1 (ko) 근원-장애 분석에 기반한 하의 상달식 다계층 망 복구 방법 및 장치
WO2014022972A1 (zh) 获取可重构光分插复用设备内部连纤关系的方法及装置
US20200228226A1 (en) Network switch and optical transponder connectivity verification for wavelength division multiplexing network
US7564780B2 (en) Time constrained failure recovery in communication networks
JP2006518132A (ja) 光ネットワークの保護スイッチング・アーキテクチャ
JP4119777B2 (ja) リング光ネットワークの動作中に試験を行う方法及びシステム
Montero et al. Dynamic topology discovery in SDN-enabled Transparent Optical Networks
WO2014089772A1 (zh) 链路检测方法及装置
JP2011217293A (ja) 光伝送システム、光伝送方法
WO2023137436A1 (en) Optical switch with integrated fast protection
Xu et al. Emergency optical network construction and control with multi-vendor interconnection for quick disaster recovery
Ramamurthy et al. Cost and reliability considerations in designing the next-generation IP over WDM backbone networks
JP2016103689A (ja) 光伝送システム、管理装置、光伝送ノード及び光伝送方法
Li et al. Field trial of network survivability based on OTN and ROADM hybrid networking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890078

Country of ref document: EP

Kind code of ref document: A1