WO2014022972A1 - 获取可重构光分插复用设备内部连纤关系的方法及装置 - Google Patents

获取可重构光分插复用设备内部连纤关系的方法及装置 Download PDF

Info

Publication number
WO2014022972A1
WO2014022972A1 PCT/CN2012/079783 CN2012079783W WO2014022972A1 WO 2014022972 A1 WO2014022972 A1 WO 2014022972A1 CN 2012079783 W CN2012079783 W CN 2012079783W WO 2014022972 A1 WO2014022972 A1 WO 2014022972A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
port
selective switch
optical signal
wavelength selective
Prior art date
Application number
PCT/CN2012/079783
Other languages
English (en)
French (fr)
Inventor
韩建蕊
张森
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/079783 priority Critical patent/WO2014022972A1/zh
Priority to EP12882766.4A priority patent/EP2874328A4/en
Priority to CN201280001232.8A priority patent/CN102907028B/zh
Publication of WO2014022972A1 publication Critical patent/WO2014022972A1/zh
Priority to US14/616,372 priority patent/US9525505B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0213Groups of channels or wave bands arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing

Definitions

  • the present invention relates to the field of optical processing technologies, and in particular, to a method and apparatus for acquiring an internal fiber connection relationship of a reconfigurable optical add/drop multiplexer.
  • the DWDM dense wavelength division multiplexing system is the most common optical layer networking technology at present.
  • the multiplexing/demultiplexing device can realize the transmission capability of dozens of waves or even hundreds of waves, with the demand of IP and packetization of service networks.
  • the WDM network has evolved from a traditional point-to-point line system to a Mesh system that can achieve intelligent wavelength scheduling.
  • Reconfigurable optical add/drop multiplexer (Reconf igurable Opt i ca l Add/Drop Mul The t iplexer, ROADM) is the main enabling technology for optical layer reconstruction, which can complete the optical channel's add/drop (Add/Drop) and the cross-level scheduling of the wavelength level between the through-channels.
  • a ROADM based on WSS can provide wavelength-grained channels in all directions, and remotely reconfigure all through ports and upper and lower ports, which is suitable for multi-directional inter-ring interconnection and Building a Mesh network has gradually become the technology of choice for ROADMs above 4 dimensions.
  • a WSS-based ROADM traffic scheduling between two different directions (ie, service reception direction and service transmission direction) is implemented by a pair of WSSs.
  • a port is set for local signals.
  • N ports Up and down, there are also N ports for network cross-connection between N! 0ADM modules to realize N-degree-of-freedom service scheduling. The larger the connection between the ports, the more the connection relationship between the ports is. If you want to accurately perform the service scheduling, you must know exactly which pair of WSSs have a fiber connection relationship between the ports. If the actual connection between the fibers does not match the planned connection. , will cause the business schedule to be invalid.
  • the embodiments of the present invention provide a method and a device for acquiring the internal fiber connection relationship of the reconfigurable optical add/drop multiplexer, which can accurately and efficiently obtain the internal fiber connection relationship of the reconfigurable optical add/drop multiplexer.
  • a method for obtaining an internal fiber connection relationship of a reconfigurable optical add/drop multiplexer includes: obtaining a logical optical propagation path between an egress port of a wavelength selective switch of a receiving end and an ingress port of a wavelength selective switch of a transmitting end;
  • a device for obtaining an internal fiber connection relationship of a reconfigurable optical add/drop multiplexer includes:
  • An acquiring unit configured to acquire an inter-logic optical propagation path between an egress port of the receiving end wavelength selective switch and an ingress port of the transmitting end wavelength selective switch;
  • a configuration unit configured to separately configure different wavelength crossings for the logical light propagation paths acquired by the acquiring unit
  • a light source access unit configured to access a communication light source at an inflow port of the wavelength selective switch of the receiving end;
  • an acquisition unit configured to collect an optical signal wavelength of an output port of the wavelength selective switch of the transmitting end;
  • the wavelength of the optical signal collected by the collecting unit determines a logical light propagation path corresponding to the wavelength of the collected optical signal;
  • the determining unit is configured to determine, according to the logical light propagation path corresponding to the wavelength of the collected optical signal, a fiber-to-fiber relationship between an output port of the wavelength selective switch of the receiving end and an input port of the wavelength selective switch of the transmitting end;
  • a storage unit configured to store the connection relationship.
  • the method and device for obtaining the internal fiber connection relationship of the reconfigurable optical add/drop multiplexer are provided by the embodiment of the present invention.
  • the optical propagation path of the ingress port of the wavelength selective switch of the receiving end to the output port of the wavelength selective switch of the transmitting end is traversed. , then set different wavelengths for each light propagation path, and then collect the transmitting end
  • the optical signal of the output port of the wavelength selective switch determines the wavelength of the optical signal from the input port of the wavelength selective switch of the receiving end to the output port of the wavelength selective switch of the transmitting end, and determines the wavelength selection of the receiving end by the wavelength of the collected optical signal.
  • the fiber-to-fiber relationship between the outbound port of the switch and the ingress port of the wavelength selective switch of the transmitting end avoids complicated manual operations, reduces the manual workload, and can accurately and efficiently obtain the internal fiber of the reconfigurable optical add/drop multiplexer. relationship.
  • FIG. 1 is a flowchart of a method for acquiring an internal fiber connection relationship of a reconfigurable optical add/drop multiplexer according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of a method for obtaining an internal fiber connection relationship of a reconfigurable optical add/drop multiplexer according to Embodiment 2 of the present invention
  • FIG. 3 is a structural block diagram of an apparatus for acquiring an internal fiber connection relationship of a reconfigurable optical add/drop multiplexer according to Embodiment 3 of the present invention
  • FIG. 4 is a structural block diagram of another apparatus for acquiring an internal fiber link relationship of a reconfigurable optical add/drop multiplexer according to Embodiment 3 of the present invention.
  • FIG. 5 is a structural block diagram of another apparatus for acquiring an internal fiber link relationship of a reconfigurable optical add/drop multiplexer according to Embodiment 3 of the present invention.
  • FIG. 6 is a structural block diagram of another apparatus for acquiring an internal fiber link relationship of a reconfigurable optical add/drop multiplexer according to Embodiment 3 of the present invention.
  • FIG. 7 is a structural block diagram of another apparatus for acquiring an internal fiber link relationship of a reconfigurable optical add/drop multiplexer according to Embodiment 3 of the present invention.
  • FIG. 8 is a structural block diagram of another apparatus for acquiring an internal fiber link relationship of a reconfigurable optical add/drop multiplexer according to Embodiment 3 of the present invention.
  • An embodiment of the present invention provides a method for obtaining an internal fiber connection relationship of a reconfigurable optical add/drop multiplexer. As shown in FIG. 1, the method includes:
  • the logical light propagation path is an optical port that sequentially passes through an ingress port of the receiving end wavelength selection switch, an out port of the receiving end wavelength selection switch, an in port of the transmitting end wavelength selection switch, and an out port of the transmitting end wavelength selection switch.
  • the logical light propagation path is a virtual light propagation path, which is a path that an optical signal may pass during transmission.
  • each optical propagation path can only allow the optical signal of one wavelength to pass.
  • wavelengths that can be used for configuration depend on the capacity of the R0DAM system.
  • the ingress port of the wavelength selective start at the receiving end is connected to the communication light source.
  • the communication light source may be a noise light source emitted when the pump source is working, or may be an artificial artificial light source.
  • the optical signal wavelength of the egress port of the wavelength selective switch of the transmitting end can be obtained by using an optical power meter.
  • the specific implementation method is a well-known technology, and the embodiment of the present invention is not described in detail herein. .
  • the method for obtaining the internal fiber connection relationship of the reconfigurable optical add/drop multiplexer is provided by the embodiment of the present invention.
  • the logical light propagation path of the ingress port of the wavelength selective switch of the receiving end to the output port of the wavelength selective switch of the transmitting end is obtained.
  • different wavelength crossovers are set for each obtained optical propagation path, and then the optical signal of the output port of the wavelength selective switch of the transmitting end is collected to determine the outbound port of the wavelength selective switch from the receiving end to the wavelength selective switch of the transmitting end.
  • the wavelength of the optical signal of the port determines the fiber-to-fiber relationship between the output port of the wavelength selective switch of the receiving end and the input port of the wavelength selective switch of the transmitting end by using the wavelength of the collected optical signal, thereby avoiding complicated manual operations and reducing manual
  • the workload can accurately and efficiently obtain the internal fiber connection relationship of the reconfigurable optical add/drop multiplexer.
  • the embodiment of the invention provides a method for obtaining the internal fiber connection relationship of the reconfigurable optical add/drop multiplexer, which can be applied to the WSS (Wavelength Selective Switch) based on WSS (Recover igurable) as shown in FIG.
  • the system includes: WSS, OA (optical amplifier), and 0PM (Optical Power Meter).
  • the WSS can be divided into a receiving end WSS and a transmitting end WSS according to the configuration location, which are respectively used for receiving the service optical signal and transmitting the service optical signal.
  • Each receiving end WSS has an ingress port and multiple egress ports
  • each sender WSS has an egress port and multiple ingress ports.
  • the method for obtaining the internal fiber connection relationship of the reconfigurable optical add/drop multiplexer is provided by using the WSS-based R0DAM system structure to obtain the fiber-to-fiber relationship between the WSS1 and the WSS1'. As shown in Figure 3, the method includes:
  • a port as the first port from the egress port (numbered 1 to n) in WSS1.
  • port 1 can be selected as the first port.
  • a port as the second port from the ingress port (numbered 1 to n) in WSS1.
  • port 1 can be selected as the second port.
  • the path through which the egress port of WSS1, is determined is a logical optical propagation path between WSS1 and WSS1.
  • step 204 Repeat step 201 to step 203 until all logical light propagation paths that need to be configured with wavelength crossings between WSS1 and WSS1' are obtained.
  • one out port of the receiving end WSS can only have a fiber-fibre relationship with one in-port port of the transmitting end WSS, and two ports with a fiber-connected relationship cannot be combined with other ports.
  • the port has a fiber connection. It can be seen that when some ports in the optical selection switch are passing the service optical signal, a certain number of propagation paths cannot be realized in all the logical light propagation paths acquired in step 204, so The detection process provides efficiency. Before performing the step 201, the following steps are also included:
  • the step 201 is performed by selecting an out port as the first port from the outbound port through which the unallowed service optical signal in the wavelength selective switch of the receiving end passes.
  • an ingress port is selected as the second port.
  • step 205 Determine whether the logical light propagation path has been configured with a wavelength crossover. If it is determined that the logical light propagation path is configured with wavelength crossing, step 206 is performed; otherwise, step 209 is performed.
  • the wavelengths that have been used include wavelengths that are being used as service wavelengths and wavelengths that are configured for other light propagation paths.
  • the unused wavelength is the wavelength that can be used in the R0ADM system to remove the remaining wavelengths of the used wavelengths.
  • step 210 Set an out-of-port optical continuity state of the passed WSS1 to allow an optical signal having a wavelength of a selected wavelength to pass.
  • the in-port optical on-off state of the passed WSS1' is set to allow an optical signal having a wavelength of the selected wavelength to pass, and step 210 is performed.
  • the noise source emitted by the pump and the service light source are connected to the WSS1 as a communication light source.
  • the optical propagation path corresponding to the wavelength of the collected optical signal is determined.
  • the optical propagation path corresponding to the wavelength of the collected optical signal is determined to be the optical propagation path obtained in the step 203 according to the wavelength of the collected optical signal, it is considered that the port 1 and the port have a fiber-to-fiber relationship.
  • steps 201 to 213 only describe a method for obtaining a fiber-to-fiber relationship between WSS1 and WSS1, and the fiber-to-fiber relationship between other wavelength selection switches can also be obtained by this method.
  • the foregoing steps 201 to 213 are only used to describe the connection between a receiving end wavelength selective switch and a transmitting end wavelength selective switch, which is only the implementation of the present invention.
  • the technical solution provided by the embodiment of the present invention may also be used to obtain a fiber connection relationship between a receiving end wavelength selection switch and a plurality of transmitting end wavelength selection switches, or for acquiring several receiving A fiber-to-fiber relationship between the end wavelength selective switch and a transmitting end wavelength selective switch; and may also be used to obtain one or more egress ports of the receiving end wavelength selective switch and one or more ingress ports of all the transmitting end wavelength selective switches The connection between the fibers.
  • the receiving wavelength selection switch and the transmitting wavelength selection switch do not carry the service optical signal, nor do they have any wavelength cross configuration.
  • the logical light propagation path between the receiving end wavelength selection switch and the transmitting end wavelength selective switch is all light propagation formed by the full combination between the output port of the receiving end wavelength selective switch and the input port of the transmitting end wavelength selective switch.
  • the number of the inbound port of the receiving end WSS and the number of inbound ports of the transmitting end WSS' are 8 as an example.
  • the configuration content is: 3 ⁇ 4 port:
  • the specific configuration is as follows: The wavelengths that are accessed from the In port are ⁇ 1, ⁇ 2, ⁇ 3, The optical signals of ⁇ 4, ⁇ 5, ⁇ 6, ⁇ 7, ⁇ 8 are allowed to pass through port 1 of WSS1, and the wavelengths accessed from the In port are ⁇ 8, ⁇ 9, ⁇ 10, ⁇ 11, ⁇ 12, ⁇ 13, ⁇ 14.
  • the optical signal of ⁇ 15 is allowed to pass through port 2 of WSS1, and the optical signals of wavelengths ⁇ 17, ⁇ 18, ⁇ 19, ⁇ 20, ⁇ 21, ⁇ 22, ⁇ 23, ⁇ 24 are allowed to be accessed from the In port. Pass through port 3 of WSS1, and so on, and configure 64 wavelengths to all outbound ports of WSS1.
  • WSS V port Allowable wavelengths of ⁇ 1, ⁇ 9, ⁇ 17, ⁇ 25, ⁇ 33, ⁇ 41, ⁇ 49, ⁇ 57 optical signal, port 2, allowable wavelength
  • the optical signals for ⁇ 2, ⁇ 10, ⁇ 18, ⁇ 26, ⁇ 34, ⁇ 42, ⁇ 50, ⁇ 58 pass through, port 3, the allowable wavelengths are ⁇ 3, ⁇ 11, ⁇ 19, ⁇ 27, ⁇ 35, ⁇ 43, ⁇ 51, ⁇ 59 optical signal passes, and so on, 64 wavelengths are assigned to WSS1, all into the port.
  • the fiber connection relationship between several outbound ports of WSS1 and several ingress ports of WSS1 may be determined first. For example, 25 wavelengths can be used to obtain the fiber-to-fiber relationship between the five outbound ports of WSS1 and the five outbound ports of WSS1', and then use the nine wavelengths to obtain the remaining three outbound ports of WSS1 and WSS1' The fiber-to-fiber relationship between the remaining three egress ports.
  • the method for obtaining the internal fiber connection relationship of the reconfigurable optical add/drop multiplexer is provided by the embodiment of the present invention.
  • the optical propagation path of the ingress port of the wavelength selective switch of the receiving end to the output port of the wavelength selective switch of the transmitting end is obtained, and then Setting different wavelengths for each light propagation path, and collecting the optical signals of the output ports of the wavelength selective switch of the transmitting end to determine the optical signal from the input port of the wavelength selective switch of the receiving end to the output port of the wavelength selective switch of the transmitting end.
  • the wavelength, the wavelength of the collected optical signal is used to determine the fiber-to-fiber relationship between the output port of the wavelength selective switch of the receiving end and the input port of the wavelength selective switch of the transmitting end, thereby avoiding complicated manual operations and reducing the manual workload, which can be accurate. Efficiently acquire the internal fiber connection relationship of the reconfigurable optical add/drop multiplexer.
  • the embodiment of the invention provides a device for acquiring the internal fiber connection relationship of the reconfigurable optical add/drop multiplexer. As shown in FIG. 4, the method includes: an obtaining unit 31, a configuration unit 32, a light source access unit 33, and an acquisition unit 34. The determining unit 35 and the storage unit 36.
  • the obtaining unit 31 is configured to obtain an output path of the wavelength selective switch at the receiving end of the wavelength selective switch of the receiving end.
  • the configuration unit 32 is configured to respectively configure different wavelength crossings for the logical light propagation paths acquired by the obtaining unit 31.
  • the light source access unit 33 is configured to access the communication light source at an ingress port of the wavelength selective switch of the receiving end.
  • the collecting unit 34 is configured to collect optical signal parameters of an output port of the wavelength selective switch of the transmitting end, where the optical signal parameter includes an optical signal wavelength.
  • the determining unit 35 is configured to determine, according to the wavelength of the optical signal collected by the collecting unit 34, a logical light propagation path corresponding to the wavelength of the collected optical signal.
  • the determining unit 36 is configured to determine, according to the logical optical transmission path corresponding to the wavelength of the collected optical signal, a fiber-to-fiber relationship between an egress port of the wavelength selective switch of the receiving end and an ingress port of the wavelength selective switch of the transmitting end.
  • the storage unit 37 is configured to store the fiber relationship determined by the determining unit 34.
  • the obtaining unit 31 includes: a port selection module 311 and a path determining module 312.
  • the port selection module 311 determines the egress port of the receiving end wavelength selection switch as the first group port, and determines the ingress port of the transmitting end wavelength selection switch as the second group port.
  • the path determining module 312 is configured to pass through an ingress port of the receiving end wavelength selective switch, one of the first group of ports, one of the second group of ports, and an egress port of the transmitting end wavelength selection switch.
  • the path is determined as a logical light propagation path between the receiving end wavelength selective switch and the transmitting end wavelength selective switch.
  • the configuration unit 32 includes: a determining module 321, a port obtaining module 322, a wavelength selecting module 323, and a wavelength setting module 324.
  • the determining module 321 is configured to determine whether the wavelength of the logical light propagation path configuration wavelength has been configured to cross.
  • the port obtaining module 322 is configured to determine, in the determining module 321, that the logical light propagation path is not configured with a wavelength crossing, and obtain an ingress port of the receiving end wavelength selection switch and a receiving port of the transmitting end wavelength selection switch.
  • the wavelength selection module 323 is configured to select one wavelength from the currently unused wavelengths.
  • the wavelength setting module 324 is configured to set an optical port on/off state of the egress port of the received wavelength selective switch to allow an optical signal of a wavelength selected by the wavelength selection module 323 to pass.
  • the wavelength setting module 324 is configured to set an in-port optical on/off state of the passed-end wavelength selective switch to allow an optical signal having a wavelength selected by the wavelength selection module to pass.
  • the wavelength setting module 324 is further configured to determine the logic in the determining module. If the optical propagation path configuration wavelength has been configured with wavelength crossover, the current wavelength cross configuration remains unchanged.
  • the obtaining unit 31 further includes: a configuration information acquiring module 31 3 and a port determining module 314.
  • the configuration information obtaining module 31 3 is configured to obtain current service wavelength cross configuration information.
  • the port determining module 314 is configured to determine, according to the current service wavelength cross-configuration information acquired by the configuration information acquiring module 31 3, an out port that passes the unallowed service optical signal in the wavelength selective switch of the receiving end, and an output port in the transmitting end wavelength selection switch.
  • the port selection module 311 is specifically configured to select an out port as the first port from the outbound port through which the unallowed service optical signal in the wavelength selective switch of the receiving end passes; and the unallowed service light in the wavelength selection switch from the sending end In the ingress port through which the signal passes, select an ingress port as the second port.
  • the device for obtaining the internal fiber connection relationship of the reconfigurable optical add/drop multiplexer is provided by the embodiment of the present invention, and firstly, the light propagation path of the input port of the wavelength selective switch of the receiving end to the output port of the wavelength selective switch of the transmitting end is obtained, and then Setting different wavelengths for each light propagation path, and collecting the optical signals of the output ports of the wavelength selective switch of the transmitting end to determine the optical signal from the input port of the wavelength selective switch of the receiving end to the output port of the wavelength selective switch of the transmitting end.
  • the wavelength, the wavelength of the collected optical signal is used to determine the fiber-to-fiber relationship between the output port of the wavelength selective switch of the receiving end and the input port of the wavelength selective switch of the transmitting end, thereby avoiding complicated manual operations and reducing the manual workload, which can be accurate. Efficiently acquire the internal fiber connection relationship of the reconfigurable optical add/drop multiplexer.
  • the embodiment of the invention provides a device for acquiring the internal fiber connection relationship of the reconfigurable optical add/drop multiplexer. As shown in FIG. 8, the device includes a processor 41, a detector 42 and a memory 43.
  • the processor 41 is configured to acquire a logical light propagation path between an output port of the wavelength selective switch of the receiving end and an input port of the wavelength selective switch of the transmitting end, and configure different wavelength crossings for the acquired logical light propagation paths; Determining a wavelength of the optical signal, determining a logical light propagation path corresponding to the wavelength of the collected optical signal; determining, from the logical optical propagation path corresponding to the wavelength of the collected optical signal, an output port of the wavelength selective switch at the receiving end The fiber connection relationship between the ingress ports of the wavelength selective switch of the transmitting end.
  • the detector 42 is configured to access a communication light source at an ingress port of the wavelength selective switch of the receiving end; and collect an optical signal wavelength of an output port of the wavelength selective switch of the transmitting end.
  • the memory 43 is configured to store the connection relationship.
  • the processor 41 is further configured to determine an egress port of the receiving end wavelength selection switch as the first group port, and determine an ingress port of the transmitting end wavelength selection switch as the second group port; a path through which an ingress port of the end wavelength selective switch, one of the first group of ports, one of the second group of ports, and an egress port of the transmitting end wavelength selection switch pass through is determined to be the memory 43 Used to store the logical light propagation path.
  • the processor 41 is further configured to determine whether the logical optical propagation path has been configured with a wavelength crossover; if it is determined that the logical optical propagation path is not configured with a wavelength crossover, acquiring optical propagation of the unconfigured wavelength crossover
  • the outbound port of the wavelength selective switch of the receiving end of the path and the inflow port of the wavelength selective switch of the transmitting end; one wavelength selected from the currently unused wavelengths; the on/off state of the outgoing port of the passing wavelength selective switch of the receiving end is set To allow the optical signal having the wavelength of the selected wavelength to pass; set the in-port optical on/off state of the passing wavelength selective switch of the transmitting end to allow the optical signal whose wavelength is the selected wavelength to pass.
  • the processor 43 is further configured to store a currently unused wavelength, an out port optical on/off state of the current receiving end wavelength selection switch, and an in-port optical on/off state of the passed transmit end wavelength selection switch. .
  • the processor 41 is further configured to keep the current wavelength cross configuration unchanged when it is determined that the logical light propagation path has been configured with a wavelength crossing.
  • the memory 43 is configured to store a current wavelength cross configuration.
  • the processor 41 is further configured to obtain current service wavelength cross-configuration information, and determine, according to the current service wavelength cross-configuration information, an egress port through which an unallowed service optical signal in the wavelength selective switch of the receiving end passes An ingress port of the wavelength selective switch of the transmitting end that does not allow the service optical signal to pass; an outbound port is selected as the first port from the outbound port through which the unallowed service optical signal in the wavelength selective switch of the receiving end passes; Unallowed service optical signal in the switch In the ingress port through which the number passes, select an ingress port as the second port.
  • the memory 41 is further configured to store current service wavelength cross configuration information.
  • the device for obtaining the internal fiber connection relationship of the reconfigurable optical add/drop multiplexer is provided by the embodiment of the present invention, first traversing the optical transmission path of the ingress port of the wavelength selective switch of the receiving end to the output port of the wavelength selective switch of the transmitting end, and then Setting different wavelengths for each light propagation path, and collecting the optical signals of the output ports of the wavelength selective switch of the transmitting end to determine the optical signal from the input port of the wavelength selective switch of the receiving end to the output port of the wavelength selective switch of the transmitting end.
  • the wavelength, the wavelength of the collected optical signal is used to determine the fiber-to-fiber relationship between the output port of the wavelength selective switch of the receiving end and the input port of the wavelength selective switch of the transmitting end, thereby avoiding complicated manual operations and reducing the manual workload, which can be accurate. Efficiently acquire the internal fiber connection relationship of the reconfigurable optical add/drop multiplexer.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, by hardware, but in many cases, the former is a better implementation. .
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种获取可重构光分插复用设备内部连纤关系的方法及装置,涉及光处理技术领域,可以准确高效地获取可重构光分插复用设备内部连纤关系。本发明包括:获取接收端波长选择开关的出端口和发送端波长选择开关的入端口之间的逻辑光传播路径;为获取到的逻辑光传播路径分别配置不同的波长交叉;在所述接收端波长选择开关的入端口接入通信光源;采集发送端波长选择开关的出端口的光信号波长;根据采集到的光信号波长,确定与采集到的光信号波长对应的逻辑光传播路径;根据所述与采集到的光信号波长对应的逻辑光传播路径,确定接收端波长选择开关的出端口与发送端波长选择开关的入端口之间的连纤关系,并将所述连纤关系进行存储。本发明实施例主要用于获取可重构光分插复用设备内部连纤关系的过程中。

Description

获取可重构光分插复用设备内部连纤关系的方法 ^置 技术领域
本发明涉及光处理技术领域, 尤其涉及一种获取可重构光分插复用设备 内部连纤关系的方法及装置。
背景技术
DWDM密集波分复用系统是当前最常见的光层组网技术, 通过复用 /解复用 器可以实现数十波甚至上百波的传送能力, 随着业务网络 IP化和分组化的需 求越来越多, 波分网络也从传统的点到点的线路系统逐步演变成可实现波长 智能调度的 Mesh系统, 可重构光分插复用设备(Reconf igurable Opt i ca l Add/Drop Mul t iplexer, ROADM)是实现光层重构的主要使能技术, 其可以在 一个节点上完成光通道的上下路(Add/Drop) , 以及穿通光通道之间的波长级 别的交叉调度。 目前, 基于 WSS ( Wavelength Se lect ive Swi tch, 波长选择 开关) 的 ROADM, 可以在所有方向提供波长粒度的信道, 远程可重配置所有直 通端口和上下端口, 适宜于实现多方向的环间互联和构建 Mesh网络, 逐渐成 为 4维度以上 ROADM的首选技术。
在基于 WSS的 ROADM中, 两个不同方向(即业务接收方向和业务发送方向) 之间的业务调度是通过一对 WSS实现的, 在每个 WSS中, 设置有一个端口被用 于本地信号的上下, 还设置有 N个端口用于在 N个! 0ADM模块间的网络交叉互 联, 从而实现 N个自由度的业务调度。 N越大端口之间的连接关系就越多, 要 想准确的进行业务调度, 必须准确知道哪一对 WSS的哪一对端口之间有光纤连 接关系, 如果光纤实际连接与规划的连接关系不符, 会导致业务调度无效。
现有技术中光纤的连接关系需要用户手工创建, 工作时间长且容易出错。 发明内容
本发明的实施例提供一种获取可重构光分插复用设备内部连纤关系的方 法及装置, 可以准确高效地获取可重构光分插复用设备内部连纤关系。
为达到上述目的, 本发明的实施例采用如下技术方案: 一种获取可重构光分插复用设备内部连纤关系的方法, 包括: 获取接收端波长选择开关的出端口和发送端波长选择开关的入端口之间 的逻辑光传播路径;
为获取到的逻辑光传播路径分别配置不同的波长交叉;
在所述接收端波长选择开关的入端口接入通信光源;
采集发送端波长选择开关的出端口的光信号波长;
根据采集到的光信号波长, 确定与采集到的光信号波长对应的逻辑光传 播路径;
根据所述与采集到的光信号波长对应的逻辑光传播路径, 确定接收端波 长选择开关的出端口与发送端波长选择开关的入端口之间的连纤关系, 并将 所述连纤关系进行存储。
一种获取可重构光分插复用设备内部连纤关系的装置, 包括:
获取单元, 用于获取接收端波长选择开关的出端口和发送端波长选择开 关的入端口之的间逻辑光传播路径;
配置单元, 用于为获取单元获取到的所述逻辑光传播路径分别配置不同 的波长交叉;
光源接入单元, 用于在所述接收端波长选择开关的入端口接入通信光源; 采集单元, 用于采集发送端波长选择开关的出端口的光信号波长; 确定单元, 用于根据所述采集单元采集到的光信号波长, 确定与采集到 的光信号波长对应的逻辑光传播路径;
所述确定单元, 用于根据所述与采集到的光信号波长对应的逻辑光传播 路径, 确定接收端波长选择开关的出端口与发送端波长选择开关的入端口之 间的连纤关系;
存储单元, 用于将所述连纤关系进行存储。
本发明实施例提供的一种获取可重构光分插复用设备内部连纤关系的方 法及装置, 先遍历接收端波长选择开关的入端口到发送端波长选择开关的出 端口的光传播路径, 然后为每条光传播路径设置不同的波长, 再采集发送端 波长选择开关的出端口的光信号, 来确定达从接收端波长选择开关的入端口 到发送端波长选择开关的出端口的光信号的波长, 通过采集到的光信号波长 来确定接收端波长选择开关的出端口到发送端波长选择开关的入端口之间的 连纤关系, 避免了复杂的人工操作, 降低了人工工作量, 可以准确高效地获 取可重构光分插复用设备内部连纤关系。
附图说明
施例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例 1提供的一种获取可重构光分插复用设备内部连纤 关系的方法流程图;
图 2为本发明实施例 2提供的一种获取可重构光分插复用设备内部连纤 关系的方法流程图;
图 3为本发明实施例 3提供的一种获取可重构光分插复用设备内部连纤 关系的装置的组成框图;
图 4为本发明实施例 3提供的另一种获取可重构光分插复用设备内部连 纤关系的装置的组成框图;
图 5为本发明实施例 3提供的另一种获取可重构光分插复用设备内部连 纤关系的装置的组成框图;
图 6为本发明实施例 3提供的另一种获取可重构光分插复用设备内部连 纤关系的装置的组成框图;
图 7为本发明实施例 3提供的另一种获取可重构光分插复用设备内部连 纤关系的装置的组成框图;
图 8为本发明实施例 3提供的另一种获取可重构光分插复用设备内部连 纤关系的装置的组成框图。
具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
实施例 1
本发明实施例提供了一种获取可重构光分插复用设备内部连纤关系的方 法, 如图 1所示, 该方法包括:
101、 获取接收端波长选择开关的出端口和发送端波长选择开关的入端口 之间的逻辑光传播路径。
其中, 所述逻辑光传播路径为光信号依次通过接收端波长选择开关的入 端口、 接收端波长选择开关的一个出端口、 发送端波长选择开关的一个入端 口以及发送端波长选择开关的出端口所经过的路径。 所述逻辑光传播路径是 一种虚拟的光传播路径, 是光信号在传输过程中可能经过的路径。
102、 为获取到的逻辑光传播路径分别配置不同的波长交叉。
其中, 波长交叉的配置与光传播路径满足——对应关系, 也就是说, 每 一条光传播路径只能允许一种波长的光信号通过。
需要说明的是, 可用于配置的波长的数量和种类取决于 R0DAM系统容量。
103、 在所述接收端波长选择开端的入端口接入通信光源。
其中, 所述通信光源可以为泵浦源工作时发出的噪声光源, 也可以是人 工制造的人工光源。
104、 采集发送端波长选择开关的出端口的光信号波长。
其中, 所述采集发送端波长选择开关的出端口的光信号波长可以通过使 用光功率计测量来实现, 具体的实现方法为本领域技术人员公知的技术, 本 发明实施例在此不进行详细描述。
105、 根据采集到的光信号波长, 确定与采集到的光信号波长对应的逻辑 光传播路径。
106、 从所述与采集到的光信号波长对应的逻辑光传播路径中, 确定接收 并将所述连纤关系进行存储。
本发明实施例提供的一种获取可重构光分插复用设备内部连纤关系的方 法, 先获取接收端波长选择开关的入端口到发送端波长选择开关的出端口的 逻辑光传播路径, 然后为获取到的每条光传播路径设置不同的波长交叉, 再 采集发送端波长选择开关的出端口的光信号, 来确定达从接收端波长选择开 关的入端口到发送端波长选择开关的出端口的光信号的波长, 通过采集到的 光信号波长来确定接收端波长选择开关的出端口到发送端波长选择开关的入 端口之间的连纤关系, 避免了复杂的人工操作, 降低了人工工作量, 可以准 确高效地获取可重构光分插复用设备内部连纤关系。
实施例 2
本发明实施例提供了一种获取可重构光分插复用设备内部连纤关系的方 法, 可以应用于如图 2所示的基于 WSS (Wavelength Selective Switch, 波 长选择开关) 的 R0DAM ( Reconf igurable Optical Add/Drop Multiplexer, 可重构光分插复用设备)系统中, 该系统包括: WSS、 OA (optical amplifier, 光发大器)、 0PM (Optical Power Meter, 光功率计)。 WSS可以根据配置位置 划分为接收端 WSS和发送端 WSS,分别用于进行业务光信号的接收和业务光信 号的发送。 其中, 每个接收端 WSS都有一个入端口和多个出端口, 每个发送 端 WSS都有一个出端口和多个入端口。
基于上述基于 WSS的 R0DAM系统结构,以获取 WSS1与 WSS1' 之间的连纤 关系为例说明本发明实施例提供的一种获取可重构光分插复用设备内部连纤 关系的方法, 如图 3所示, 该方法包括:
201、 从 WSS1中的出端口 (编号为 1至 n)选取一个端口作为第一端口, 例如, 可选择端口 1为第一端口。
202、从 WSS1, 中的入端口(编号为 1至 n)选取一个端口作为第二端口, 例如, 可选择端口 1为第二端口。
203、 将依次通过 WSS1 的入端口、 WSS1 的出端口 1、 WSST 的入端口 1 和 WSS1, 的出端口所经过的路径确定为 WSS1和 WSS1, 之间一条逻辑光传播 路径。
204、 重复执行步骤 201至步骤 203 , 直至得到 WSS1和 WSS1 ' 之间所有 需要配置波长交叉的逻辑光传播路径。
需要说明的是, 根据光纤连接的单一性, 接收端 WSS 中的一个出端口只 能与发送端 WSS 中的一个入端口存在连纤关系, 具有连纤关系的两个端口是 不能够再与其它端口存在连纤关系的。 由此可知, 当光选择开关中有一些端 口正在通过业务光信号时, 在步骤 204 中获取到的所有逻辑光传播路径中, 就会存在一定数量的传播路径是不能够实现的, 故为了筒化检测流程, 提供 效率, 在执行所述步骤 201之前, 还包括以下步骤:
获取当前业务波长交叉配置信息, 其中, 所述当前业务波长交叉配置信 息用于标识接收端波长选择开关中的允许业务光信号通过的出端口和发送端 波长选择开关中的允许业务光信号通过的入端口。
根据所述当前业务波长交叉配置信息, 确定接收端波长选择开关中的未 允许业务光信号通过的出端口以及发送端波长选择开关中的未允许业务光信 号通过的入端口。
则所述步骤 201 的执行过程具体为从接收端波长选择开关中的未允许业 务光信号通过的出端口中, 选取一个出端口作为第一端口。 务光信号通过的入端口中, 选取一个入端口作为第二端口。
205、 判断所述逻辑光传播路径是否已经配置了波长交叉。 若确定所述逻 辑光传播路径配置了波长交叉, 则执行步骤 206; 否则执行步骤 209。
其中, 所述判断所述逻辑光传播路径是否已经配置了波长交叉的方法,以 步骤 203获取到的逻辑光传播路径为例, 具体包括: 判断端口 1和端口 Γ 是 否允许相同的波长通过, 若端口 1和端口 Γ 允许相同的波长通过, 则认为该 条光传播路径已配置了波长交叉;若端口 1和端口 允许通过的波长没有相 同的波长, 则认为该条光传播路径未配置波长交叉。 206、 获取所述逻辑光传播路径经过的 WSS1的出端口以及 WSS1, 的入端 口。
207、 从当前未使用的波长中选取一个波长。
需要说明的是, 已使用的波长包括正在作为业务波长使用的波长和配置 给其它光传播路径的波长。 未使用的波长为在该 R0ADM 系统中可使用的波长 除去已使用的波长的剩余的波长。
208、 将所述经过的 WSS1 的出端口光通断状态设置为允许波长为选取的 波长的光信号通过。 将所述经过的 WSS1 ' 的入端口光通断状态设置为允许波 长为选取的波长的光信号通过, 并执行步骤 210。
209、 保持当前波长交叉配置不变, 并执行步骤 210。
210、 在 WSS1的入端口接入噪声光源作为通信光源。
需要说明的是, 若 WSS1已接入了业务光源, 则将泵浦原发出的噪声光源 和业务光源一同接入 WSS1作为通信光源。
211、监测 WSS1 ' 的出端口的光信号, 并获取监测到的光信号对应的光信 号波长。
212、 ^^据采集到的光信号波长, 确定与采集到的光信号波长对应的光传 播路径。
213、 从所述与采集到的光信号波长对应的光传播路径中, 确定 WSS的出 端口与 WSS ' 的入端口之间的连纤关系, 并将所述连纤关系进行存储。
其中, 若根据采集到的光信号波长, 确定与采集到的光信号波长对应的 光传播路径为所述步骤 203中获取到的光传播路径,则认为端口 1和端口 之间具有连纤关系。
进一步值得说明的是,步骤 201至步骤 213仅描述了获取 WSS1和 WSS1, 之间的连纤关系的方法, 其它波长选择开关之间的连纤关系也可以由此方法 来获取。
值得说明的是, 上述步骤 201至步骤 213仅用于描述获取一个接收端波 长选择开关与一个发送端波长选择开关之间的连纤关系, 这只是本发明实施 例的一种实现方式, 本发明实施例提供的技术方案, 还可以用于获取一个接 收端波长选择开关与若干个发送端波长选择开关之间的连纤关系, 或者, 用 于获取若干个接收端波长选择开关与一个发送端波长选择开关之间的连纤关 系; 也可以用于获取接收端波长选择开关的一个或多个出端口与所有发送端 波长选择开关的一个或多个入端口之间的连纤关系。
另外值得说明的是, 当 R0DAM 系统没有任何业务开通运行时, 接收端波 长选择开关和发送端波长选择开关均未承载业务光信号, 也没有任何波长交 叉配置。 此时, 接收端波长选择开关和发送端波长选择开关之间的逻辑光传 播路径为由接收端波长选择开关的出端口和发送端波长选择开关的入端口之 间的全组合形成的所有光传播路径, 故可选择如下配置方法对接收端 WSS 的 所有出端口和发送端 WSS, 的所有入端口进行波长交叉遍历配置。 以接收端 WSS的出端口和发送端 WSS' 的入端口数量均为 8个为例具体说明, 配置内容 :¾口下:
选取 64 (8*8 )个波长进行交叉配置, 使 WSS1单板的每个出端口均允许 8个波长通过, 具体配置为: 从 In口接入的波长为 λ 1, λ 2, λ 3, λ4, λ5, λ 6, λ 7, λ 8的光信号允许从 WSS1的端口 1通过, 从 In口接入的波长为 λ 8, λ 9, λ 10, λ 11, λ 12, λ 13, λ 14, λ 15的光信号允许从 WSS1的端口 2通过, 从 In口接入的波长为 λ 17, λ 18, λ 19, λ 20, λ 21, λ 22, λ 23, λ 24的光信号允许从 WSS1的端口 3通过,以此类推,将 64个波长配置给 WSS1 所有出端口。
然后对 WSS1, 交叉配置, 具体配置为: WSS V 的端口 Γ 允许波长为 λ 1, λ 9, λ 17, λ 25, λ 33, λ 41, λ49, λ57的光信号通过, 端口 2, 允 许波长为 λ 2, λ 10, λ 18, λ26, λ 34, λ42, λ50, λ 58的光信号通过, 端口 3, 允许波长为 λ 3, λ 11, λ 19, λ 27, λ 35, λ43, λ 51, λ59 的 光信号通过, 依次类推, 将 64个波长配置给 WSS1, 所有入端口。
在 WSS1的入端口接入泵浦源产生的通信信号,并根据在 WSS1, 的出端口 检测到的光信号波长来确定 WSS的出端口和发送端 WSS,的入端口之间的连纤 关系。
进一步的,若波长不足 64个,则可以先判断 WSS1的几个出端口和 WSS1, 的所的几个入端口之间的连纤关系。 例如, 可以使用 25 个波长来获取 WSS1 的 5个出端口与 WSS1 ' 的 5个出端口之间的连纤关系, 然后在使用 9个波长 来获取 WSS1的剩余的 3个出端口与 WSS1 ' 的剩余的 3个出端口之间的连纤关 系。
本发明实施例提供的一种获取可重构光分插复用设备内部连纤关系的方 法, 先获取接收端波长选择开关的入端口到发送端波长选择开关的出端口的 光传播路径, 然后为每条光传播路径设置不同的波长, 再采集发送端波长选 择开关的出端口的光信号, 来确定达从接收端波长选择开关的入端口到发送 端波长选择开关的出端口的光信号的波长, 通过采集到的光信号波长来确定 接收端波长选择开关的出端口到发送端波长选择开关的入端口之间的连纤关 系, 避免了复杂的人工操作, 降低了人工工作量, 可以准确高效地获取可重 构光分插复用设备内部连纤关系。
实施例 3
本发明实施例提供了一种获取可重构光分插复用设备内部连纤关系的装 置, 如图 4所示, 包括: 获取单元 31、 配置单元 32、 光源接入单元 33、 采集 单元 34、 确定单元 35、 存储单元 36。
获取单元 31 , 用于获取接收端波长选择开关接收端波长选择开关的出端 径。
配置单元 32 ,用于为获取单元 31获取到的所述逻辑光传播路径分别配置 不同的波长交叉。
光源接入单元 33 , 用于在所述接收端波长选择开关的入端口接入通信光 源。
采集单元 34 , 用于采集发送端波长选择开关的出端口的光信号参数, 所 述光信号参数包括光信号波长。 确定单元 35 , 用于根据所述采集单元 34采集到的光信号波长, 确定与采 集到的光信号波长对应的逻辑光传播路径。
所述确定单元 36 , 用于根据所述与采集到的光信号波长对应的逻辑光传 播路径, 确定接收端波长选择开关的出端口与发送端波长选择开关的入端口 之间的连纤关系。
存储单元 37 , 用于将所述确定单元 34确定的连纤关系进行存储。
可选的是, 如图 5所示, 所述获取单元 31包括: 端口选择模块 311、 路 径确定模块 312。
端口选择模块 311 , 将接收端波长选择开关的出端口确定为第一组端口, 将发送端波长选择开关的入端口确定为第二组端口。
路径确定模块 312 , 用于将依次通过接收端波长选择开关的入端口、所述 第一组端口中的一个端口、 第二组端口中的一个端口和发送端波长选择开关 的出端口所经过的路径确定为接收端波长选择开关和发送端波长选择开关之 间的逻辑光传播路径。
可选的是, 如图 6所示, 所述配置单元 32包括: 判断模块 321、 端口获 取模块 322、 波长选取模块 323、 波长设置模块 324。
判断模块 321 ,用于判断所述逻辑光传播路径配置波长是否已经配置波长 交叉。
端口获取模块 322 ,用于在判断模块 321确定所述逻辑光传播路径未配置 波长交叉, 获取所述逻辑光传播路径经过的接收端波长选择开关的出端口以 及发送端波长选择开关的入端口。
波长选取模块 323 , 用于从当前未使用的波长中选取一个波长。
波长设置模块 324 ,用于将所述经过的接收端波长选择开关的出端口光通 断状态设置为允许波长为所述波长选取模块 323选取的波长的光信号通过。
所述波长设置模块 324 ,用于将所述经过的发送端波长选择开关的入端口 光通断状态设置为允许波长为所述波长选取模块选取的波长的光信号通过。
可选的是, 所述波长设置模块 324还用于在所述判断模块确定所述逻辑 光传播路径配置波长已经配置了波长交叉, 则保持当前波长交叉配置不变。 可选的是,如图 7所示,所述获取单元 31还包括:配置信息获取模块 31 3、 端口确定模块 314。
配置信息获取模块 31 3 , 用于获取当前业务波长交叉配置信息。
端口确定模块 314 ,用于根据所述配置信息获取模块 31 3获取的当前业务 波长交叉配置信息, 确定接收端波长选择开关中的未允许业务光信号通过的 出端口以及发送端波长选择开关中的未允许业务光信号通过的入端口。
所述端口选择模块 311 ,具体用于从接收端波长选择开关中的未允许业务 光信号通过的出端口中, 选取一个出端口作为第一端口; 从发送端波长选择 开关中的未允许业务光信号通过的入端口中, 选取一个入端口作为第二端口。
本发明实施例提供的一种获取可重构光分插复用设备内部连纤关系的装 置, 先获取接收端波长选择开关的入端口到发送端波长选择开关的出端口的 光传播路径, 然后为每条光传播路径设置不同的波长, 再采集发送端波长选 择开关的出端口的光信号, 来确定达从接收端波长选择开关的入端口到发送 端波长选择开关的出端口的光信号的波长, 通过采集到的光信号波长来确定 接收端波长选择开关的出端口到发送端波长选择开关的入端口之间的连纤关 系, 避免了复杂的人工操作, 降低了人工工作量, 可以准确高效地获取可重 构光分插复用设备内部连纤关系。
实施例 4
本发明实施例提供了一种获取可重构光分插复用设备内部连纤关系的装 置, 如图 8所示, 该装置包括处理器 41、 检测器 42和存储器 43。
所述处理器 41 , 用于获取接收端波长选择开关的出端口和发送端波长选 择开关的入端口之间的逻辑光传播路径; 为获取到的逻辑光传播路径分别配 置不同的波长交叉; 根据采集到的光信号波长, 确定与采集到的光信号波长 对应的逻辑光传播路径; 从所述与采集到的光信号波长对应的逻辑光传播路 径中, 确定接收端波长选择开关的出端口与发送端波长选择开关的入端口之 间的连纤关系。 检测器 42 , 用于在所述接收端波长选择开关的入端口接入通信光源; 采 集发送端波长选择开关的出端口的光信号波长。
存储器 43 , 用于将所述连纤关系进行存储。
可选的是, 所述处理器 41 , 还用于将接收端波长选择开关的出端口确定 为第一组端口, 将发送端波长选择开关的入端口确定为第二组端口; 将依次 通过接收端波长选择开关的入端口、 所述第一组端口中的一个端口、 所述第 二组端口中的一个端口和发送端波长选择开关的出端口所经过的路径确定为 所述存储器 43 , 还用于存储所述逻辑光传播路径。
可选的是, 所述处理器 41 , 还用于判断所述逻辑光传播路径是否已经配 置了波长交叉; 若确定所述逻辑光传播路径未配置波长交叉, 则获取未配置 波长交叉的光传播路径经过的接收端波长选择开关的出端口以及发送端波长 选择开关的入端口; 从当前未使用的波长中选取一个波长; 将所述经过的接 收端波长选择开关的出端口光通断状态设置为允许波长为选取的波长的光信 号通过; 将所述经过的发送端波长选择开关的入端口光通断状态设置为允许 波长为选取的波长的光信号通过。
所述处理器 43 , 还用于存储当前未使用的波长、 当前所述经过的接收端 波长选择开关的出端口光通断状态和所述经过的发送端波长选择开关的入端 口光通断状态。
可选的是, 所述处理器 41 , 还用于在确定所述逻辑光传播路径已经配置 了波长交叉时, 保持当前波长交叉配置不变。
所述存储器 43 , 用于存储当前波长交叉配置。
可选的是, 所述处理器 41 , 还用于获取当前业务波长交叉配置信息; 根 据所述当前业务波长交叉配置信息, 确定接收端波长选择开关中的未允许业 务光信号通过的出端口以及发送端波长选择开关中的未允许业务光信号通过 的入端口; 从接收端波长选择开关中的未允许业务光信号通过的出端口中, 选取一个出端口作为第一端口; 从发送端波长选择开关中的未允许业务光信 号通过的入端口中, 选取一个入端口作为第二端口。
所述存储器 41 , 还用于存储当前业务波长交叉配置信息。
本发明实施例提供的一种获取可重构光分插复用设备内部连纤关系的装 置, 先遍历接收端波长选择开关的入端口到发送端波长选择开关的出端口的 光传播路径, 然后为每条光传播路径设置不同的波长, 再采集发送端波长选 择开关的出端口的光信号, 来确定达从接收端波长选择开关的入端口到发送 端波长选择开关的出端口的光信号的波长, 通过采集到的光信号波长来确定 接收端波长选择开关的出端口到发送端波长选择开关的入端口之间的连纤关 系, 避免了复杂的人工操作, 降低了人工工作量, 可以准确高效地获取可重 构光分插复用设备内部连纤关系。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬件, 但 很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本 质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该 计算机软件产品存储在可读取的存储介质中, 如计算机的软盘, 硬盘或光盘 等, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求 书
1、 一种获取可重构光分插复用设备内部连纤关系的方法, 其特征在于, 包 括:
获取接收端波长选择开关的出端口和发送端波长选择开关的入端口之间的 逻辑光传播路径;
为获取到的逻辑光传播路径分别配置不同的波长交叉;
在所述接收端波长选择开关的入端口接入通信光源;
采集发送端波长选择开关的出端口的光信号波长;
根据采集到的光信号波长, 确定与采集到的光信号波长对应的逻辑光传播 路径;
根据所述与采集到的光信号波长对应的逻辑光传播路径, 确定接收端波长 选择开关的出端口与发送端波长选择开关的入端口之间的连纤关系, 并将所述 连纤关系进行存储。
2、 根据权利要求 1所述的方法, 其特征在于, 所述获取接收端波长选择开 关的出端口和发送端波长选择开关的入端口之间的逻辑光传播路径具体包括: 将接收端波长选择开关的出端口确定为第一组端口, 将发送端波长选择开 关的入端口确定为第二组端口;
将依次通过接收端波长选择开关的入端口、 所述第一组端口中的一个端口、 所述第二组端口中的一个端口和发送端波长选择开关的出端口所经过的路径确
3、 根据权利要求 1所述的方法, 其特征在于, 所述为获取到的逻辑光传播 路径分别配置不同的波长交叉具体包括:
判断所述逻辑光传播路径是否已经配置了波长交叉;
若确定所述逻辑光传播路径未配置波长交叉, 则获取未配置波长交叉的光 传播路径经过的接收端波长选择开关的出端口以及发送端波长选择开关的入端 口;
从当前未使用的波长中选取一个波长; 将所述经过的接收端波长选择开关的出端口光通断状态设置为允许波长为 选取的波长的光信号通过;
将所述经过的发送端波长选择开关的入端口光通断状态设置为允许波长为 选取的波长的光信号通过。
4、 根据权利要求 3所述的方法, 其特征在于, 还包括:
若确定所述逻辑光传播路径已经配置了波长交叉, 则保持当前波长交叉配 置不变。
5、 根据权利要求 2所述的方法, 其特征在于, 在所述选取接收端波长选择 开关的一个出端口作为第一端口, 选取发送端波长选择开关的一个入端口作为 第二端口之前, 还包括:
获取当前业务波长交叉配置信息;
根据所述当前业务波长交叉配置信息, 确定接收端波长选择开关中的未允 许业务光信号通过的出端口以及发送端波长选择开关中的未允许业务光信号通 过的入端口;
则所述选取接收端波长选择开关的一个出端口作为第一端口具体为从接收 端波长选择开关中的未允许业务光信号通过的出端口中, 选取一个出端口作为 第一端口;
则所述选取发送端波长选择开关的一个入端口作为第二端口具体为从发送 端波长选择开关中的未允许业务光信号通过的入端口中, 选取一个入端口作为 第二端口。
6、 一种获取可重构光分插复用设备内部连纤关系的装置, 其特征在于, 包 括:
获取单元, 用于获取接收端波长选择开关的出端口和发送端波长选择开关 的入端口之的间逻辑光传播路径;
配置单元, 用于为获取单元获取到的所述逻辑光传播路径分别配置不同的 波长交叉;
光源接入单元, 用于在所述接收端波长选择开关的入端口接入通信光源; 采集单元, 用于采集发送端波长选择开关的出端口的光信号波长; 确定单元, 用于根据所述采集单元采集到的光信号波长, 确定与采集到的 光信号波长对应的逻辑光传播路径;
所述确定单元, 用于根据所述与采集到的光信号波长对应的逻辑光传播路 径, 确定接收端波长选择开关的出端口与发送端波长选择开关的入端口之间的 连纤关系;
存储单元, 用于将所述连纤关系进行存储。
7、 根据权利要求 6所述的装置, 其特征在于, 所述获取单元包括: 端口确定模块, 用于将接收端波长选择开关的出端口确定为第一组端口, 将发送端波长选择开关的入端口确定为第二组端口;
路径确定模块, 用于将依次通过接收端波长选择开关的入端口、 所述第一 组端口中的一个端口、 第二组端口中的一个端口和发送端波长选择开关的出端 光传播路径。
8、 根据权利要求 6所述的装置, 其特征在于, 所述配置单元包括: 判断模块, 用于判断所述逻辑光传播路径配置波长是否已经配置了波长交 叉;
端口获取模块, 用于在判断模块确定所述逻辑光传播路径未配置波长交叉 时, 获取未配置波长交叉的光传播路径经过的接收端波长选择开关的出端口以 及发送端波长选择开关的入端口;
波长选取模块, 用于从当前未使用的波长中选取一个波长;
波长设置模块, 用于将所述经过的接收端波长选择开关的出端口光通断状 态设置为允许波长为所述波长选取模块选取的波长的光信号通过;
所述波长设置模块, 用于将所述经过的发送端波长选择开关的入端口光通 断状态设置为允许波长为所述波长选取模块选取的波长的光信号通过。
9、 根据权利要求 8所述的装置, 其特征在于, 所述波长设置模块还用于在 所述判断模块确定所述逻辑光传播路径已经配置了波长交叉, 则保持当前波长 交叉配置不变。
10、 根据权利要求 7所述的装置, 其特征在于, 所述获取单元还包括: 配置信息获取模块, 用于获取当前业务波长交叉配置信息;
端口确定模块, 用于根据所述配置信息获取模块获取的当前业务波长交叉 配置信息, 确定接收端波长选择开关中的未允许业务光信号通过的出端口以及 发送端波长选择开关中的未允许业务光信号通过的入端口;
所述端口选择模块, 具体用于从接收端波长选择开关中的未允许业务光信 号通过的出端口中, 选取一个出端口作为第一端口; 从发送端波长选择开关中 的未允许业务光信号通过的入端口中, 选取一个入端口作为第二端口。
PCT/CN2012/079783 2012-08-07 2012-08-07 获取可重构光分插复用设备内部连纤关系的方法及装置 WO2014022972A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2012/079783 WO2014022972A1 (zh) 2012-08-07 2012-08-07 获取可重构光分插复用设备内部连纤关系的方法及装置
EP12882766.4A EP2874328A4 (en) 2012-08-07 2012-08-07 METHOD AND APPARATUS FOR OBTAINING INTERNAL FIBER CONNECTION RELATION IN A RECONFIGURABLE OPTICAL INSERTION-EXTRACTION MULTIPLEXER
CN201280001232.8A CN102907028B (zh) 2012-08-07 2012-08-07 获取可重构光分插复用设备内部连纤关系的方法及装置
US14/616,372 US9525505B2 (en) 2012-08-07 2015-02-06 Method and apparatus for acquiring internal fiber connection relationship in reconfigurable optical add/drop multiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/079783 WO2014022972A1 (zh) 2012-08-07 2012-08-07 获取可重构光分插复用设备内部连纤关系的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/616,372 Continuation US9525505B2 (en) 2012-08-07 2015-02-06 Method and apparatus for acquiring internal fiber connection relationship in reconfigurable optical add/drop multiplexer

Publications (1)

Publication Number Publication Date
WO2014022972A1 true WO2014022972A1 (zh) 2014-02-13

Family

ID=47577498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079783 WO2014022972A1 (zh) 2012-08-07 2012-08-07 获取可重构光分插复用设备内部连纤关系的方法及装置

Country Status (4)

Country Link
US (1) US9525505B2 (zh)
EP (1) EP2874328A4 (zh)
CN (1) CN102907028B (zh)
WO (1) WO2014022972A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9414134B2 (en) * 2013-10-02 2016-08-09 Nec Corporation Secure wavelength selective switch-based reconfigurable branching unit for submarine network
CN105263069B (zh) * 2015-09-01 2017-03-15 周雪勤 一种在密集波分网络中建立光通道路由的方法及装置
US10530518B2 (en) * 2015-09-30 2020-01-07 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, an optical communication network and use of an MD-WSS
CN106788699A (zh) * 2015-11-24 2017-05-31 中国电信股份有限公司 光纤连接状态的检测系统和方法、及roadm 设备
CN107154830B (zh) * 2016-03-02 2019-03-15 中卫大河云联网络技术有限公司 一种创建逻辑光纤以及逻辑光纤信号流的方法和装置
CN107479217A (zh) * 2017-09-11 2017-12-15 山东大学 一种基于点阵结构的可重构光波导及其应用
CN109088777B (zh) * 2018-09-14 2021-12-31 武汉光迅科技股份有限公司 一种roadm业务侧光纤连接的匹配装置和方法
CN113099322B (zh) * 2020-01-08 2022-07-29 华为技术有限公司 一种光纤连接的检测方法以及相关设备
JP7435726B2 (ja) * 2020-02-25 2024-02-21 日本電信電話株式会社 伝送装置間接続登録装置、伝送装置間接続登録方法及びプログラム
CN113193936B (zh) * 2021-04-28 2023-06-27 武汉光迅科技股份有限公司 一种支持线路id功能的多播光开关组件及其实现方法
CN115412780A (zh) * 2021-05-27 2022-11-29 中兴通讯股份有限公司 光纤连接检测方法、装置、设备、计算机可读存储介质
CN114172613B (zh) * 2021-12-03 2023-06-27 武汉光迅科技股份有限公司 一种波分复用系统中高隔离度的光源填充装置和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834663A (zh) * 2010-04-08 2010-09-15 中兴通讯股份有限公司 光纤连接的检测方法和系统
CN102130721A (zh) * 2011-03-16 2011-07-20 烽火通信科技股份有限公司 自动获取可重构光分插复用器节点内部连纤关系的方法
CN102495918A (zh) * 2011-11-15 2012-06-13 中兴通讯股份有限公司 绘制单板连纤图前单板坐标的分配方法和系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774245A (en) * 1996-07-08 1998-06-30 Worldcom Network Services, Inc. Optical cross-connect module
KR100301950B1 (ko) * 1999-04-02 2001-10-29 윤덕용 광 회선분배 시스템의 입력단자 판별에 의한 광 경로 감시 장치
US7085445B2 (en) * 2000-08-04 2006-08-01 Seungug Koh Micro-opto-electro-mechanical waveguide switches
US6990268B2 (en) * 2002-03-08 2006-01-24 Pts Corporation Optical wavelength cross connect architectures using wavelength routing elements
CN100544350C (zh) 2004-09-10 2009-09-23 华为技术有限公司 一种获取链路对端接口详细信息的方法
US7983560B2 (en) * 2005-10-11 2011-07-19 Dynamic Method Enterprises Limited Modular WSS-based communications system with colorless add/drop interfaces
US8041213B2 (en) * 2007-11-21 2011-10-18 Hitachi, Ltd. Optical transmission equipment and optical network
US8625994B2 (en) * 2008-03-11 2014-01-07 Ciena Corporation Directionless reconfigurable optical add-drop multiplexer systems and methods
US8948592B2 (en) * 2009-02-27 2015-02-03 Jds Uniphase Corporation Method for auto-configuration of a wavelength selective switch in an optical network
WO2010113740A1 (ja) * 2009-03-30 2010-10-07 日本電気株式会社 波長パス分離多重光伝送装置
CN101621722B (zh) 2009-06-29 2012-11-28 中兴通讯股份有限公司 一种自动发现节点内部资源拓扑的方法及系统
CN101640822B (zh) 2009-08-27 2013-01-16 中兴通讯股份有限公司 一种网元内部光纤连接自动发现的方法、装置和系统
US8964581B2 (en) * 2009-09-14 2015-02-24 Nippon Telegraph And Telephone Corporation Bandwidth variable communication method, bandwidth variable communication apparatus, transmission bandwidth determination apparatus, transmission bandwidth determination method, node apparatus, communication path setting system, communication path setting
JP5447046B2 (ja) * 2010-03-18 2014-03-19 富士通株式会社 光ネットワーク設計装置、光ネットワーク設計方法、および光ネットワーク設計プログラム
WO2011161891A1 (ja) * 2010-06-24 2011-12-29 三菱電機株式会社 Oadm装置
CN101895340B (zh) 2010-07-21 2013-08-07 华为技术有限公司 一种光纤连接关系检查方法和装置
JP5776330B2 (ja) * 2011-05-25 2015-09-09 富士通株式会社 波長再配置方法及びノード装置
WO2013133829A1 (en) * 2012-03-08 2013-09-12 Empire Technology Development Llc Multi-degree reconfigurable optical add-drop multiplexing
JP5849793B2 (ja) * 2012-03-15 2016-02-03 富士通株式会社 光クロスコネクト装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834663A (zh) * 2010-04-08 2010-09-15 中兴通讯股份有限公司 光纤连接的检测方法和系统
CN102130721A (zh) * 2011-03-16 2011-07-20 烽火通信科技股份有限公司 自动获取可重构光分插复用器节点内部连纤关系的方法
CN102495918A (zh) * 2011-11-15 2012-06-13 中兴通讯股份有限公司 绘制单板连纤图前单板坐标的分配方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2874328A4 *

Also Published As

Publication number Publication date
CN102907028B (zh) 2015-07-29
US9525505B2 (en) 2016-12-20
EP2874328A4 (en) 2015-10-28
US20150155964A1 (en) 2015-06-04
EP2874328A1 (en) 2015-05-20
CN102907028A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
WO2014022972A1 (zh) 获取可重构光分插复用设备内部连纤关系的方法及装置
US10454585B2 (en) Data center network system and signal transmission system
US9106983B2 (en) Reconfigurable branching unit for submarine optical communication networks
US8693880B2 (en) Wavelength path communication node apparatus, wavelength path communication control method, and recording medium
US8538267B2 (en) ROADM transponder aggregator systems and methods of operation
CN108900350B (zh) 一种网管系统中光层业务分层模型配置方法及系统
US9680564B2 (en) Protection in metro optical networks
CN101656898B (zh) 一种多域波长路由光网络的路径建立方法
US20170279557A1 (en) Resilient optical networking
JP4662267B2 (ja) 全光ネットワークにおける波長サービス提供装置
WO2012167725A1 (zh) 波分网络中的路由方法及装置
CN107819522B (zh) Roadm设备、光网络系统以及传输方法
JP2013531909A (ja) トランスポンダアグリゲータシステムおよび動作方法
Muñoz et al. Dynamic reconfiguration of wdm virtual network topology over sdm networks for spatial channel failure recovery with grpc telemetry
WO2023216434A1 (zh) 一种roadm系统中拓扑发现及连接性验证的方法和设备
US10374741B2 (en) Optical multiplex level and optical channel layer server trails in wavelength switched optical networks
RU2606397C1 (ru) Способ установления сигнализации, когда электрический регенератор находится на электрическом сетевом элементе, оптический сетевой элемент и электрический сетевой элемент
Li et al. Field trial of network survivability based on OTN and ROADM hybrid networking
Mas-Machuca et al. Optical Networks and Interconnects
WO2011134242A1 (zh) 一种波长分配的计算方法及装置
Muñoz et al. Dynamic bypass of wavelength switching in SDN-enabled WDM VNTs over SDM Networks with high bit-rate optical channels
Xu et al. Flexible Manipulation of OPS Network Topologies with Optical Packet Flow Cut-Through in OPCI Networks
US20230224614A1 (en) Optical switch with integrated fast protection
JP2010130575A (ja) トランスペアレント光ネットワーク及びノード装置及びトランスペアレント光ネットワーク故障監視方法
JP2008259129A (ja) 光クロスコネクト装置を用いた光ネットワークシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001232.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012882766

Country of ref document: EP