WO2014088302A1 - Plasma chemical vapour deposition device - Google Patents

Plasma chemical vapour deposition device Download PDF

Info

Publication number
WO2014088302A1
WO2014088302A1 PCT/KR2013/011133 KR2013011133W WO2014088302A1 WO 2014088302 A1 WO2014088302 A1 WO 2014088302A1 KR 2013011133 W KR2013011133 W KR 2013011133W WO 2014088302 A1 WO2014088302 A1 WO 2014088302A1
Authority
WO
WIPO (PCT)
Prior art keywords
circular electrode
plasma
circular
substrate
chemical vapor
Prior art date
Application number
PCT/KR2013/011133
Other languages
French (fr)
Korean (ko)
Inventor
안경준
권오대
Original Assignee
(주) 에스엔텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130098377A external-priority patent/KR20150002408A/en
Application filed by (주) 에스엔텍 filed Critical (주) 에스엔텍
Publication of WO2014088302A1 publication Critical patent/WO2014088302A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32403Treating multiple sides of workpieces, e.g. 3D workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/3277Continuous moving of continuous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3423Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets

Definitions

  • the present invention relates to a plasma chemical vapor apparatus, and more particularly, to a plasma chemical vapor apparatus capable of forming a film at high speed and quality on an insulating and conductive material.
  • PVD method physical vapor deposition method
  • PVD method plasma enhanced chemical vapor deposition method
  • lasma Enhanced Chemical Vapor Deposition plasma enhanced chemical vapor deposition method
  • the plasma chemical vapor deposition method is a method of decomposing a source gas by plasma to deposit a thin film of a desired material on a substrate, and recently, a plasma chemical vapor apparatus using a cylindrical plasma cathode has attracted attention.
  • Plasma chemical vapor devices using cylindrical plasma cathodes are excellent in the strength of the cathode surface magnetic field and can concentrate the magnetic field in a small area to form a high quality plasma, so the quality of the thin film deposited on the substrate is excellent, and sputtering is common. Compared to the PVD deposition method, there is an advantage of providing a fast deposition rate.
  • a pair of cylindrical plasma cathodes 210 are installed at a position in which a substrate S is transferred through a drum 220 in a roll-to-roll form and faces a surface of the drum 220.
  • a plasma is formed from the cylindrical plasma cathode 210 toward the drum 220, and a thin film is deposited in a form in which a source gas decomposed by the plasma is deposited on the substrate S passing through the drum 220.
  • the thin film is deposited in such a manner that the source gas decomposed in the deposition region between the plasma cathodes 110 is deposited on the substrate S.
  • a plasma chemical vapor apparatus may be proposed in which a plurality of pairs of cylindrical plasma cathodes are disposed at a position opposite to the drum surface to form a thick thin film at high speed, but the size of the apparatus may be increased as the number of cylindrical plasma cathodes increases. The problem arises that it enlarges and the manufacturing cost rises significantly.
  • the prior patent 2 is an alternative that can solve the problems of the plasma chemical vapor apparatus, such as the prior patent 1, this prior patent 2 is generated by the plasma when the plasma is generated by applying power to both cylindrical plasma cathode Most of the particles are in the form of neutral particles, cations and anions. In the same structure as the prior patent 1, the charged particles cations and anions are mainly captured by the magnetic field near the surface of the cylindrical plasma cathode, and only neutral particles reach the substrate.
  • the substrate passes through the cylindrical plasma cathode surface of one side of the pair of cylindrical plasma cathodes and then passes through the cylindrical plasma cathode of the other side, the thin film is deposited on the substrate, thereby allowing the thickness of the thin film to be thick and quickly formed.
  • the substrate since the substrate moves in close contact with the surface of the cylindrical plasma cathode to which power is input, the substrate is limited to an insulating material such as a plastic film.
  • the plasma is contacted with the cylindrical plasma cathode and the ground, the guide roll, the unwinding roll, the unwinding roll, and the like through the substrate to form a plasma.
  • the plasma chemical vapor apparatus of the type as in the prior patent 2 has a problem in recent years that it is difficult to meet the increasing demand of the film formation by the plasma chemical vapor deposition method on the substrate of the conductive material.
  • Cu Foil is used as a base material, and researches are actively conducted to switch from the conventional chemical vapor deposition method to the plasma chemical vapor deposition method in order to lower the process temperature.
  • a thin substrate stainless steel substrate is used as a substrate for the flexible thin film solar cell. Since the stainless steel substrate is conductive, it is necessary to form an insulating thin film such as silicon oxide or silicon nitride before depositing an electrode on the substrate. .
  • the insulating thin film is advantageous in that the plasma chemical vapor deposition method is excellent in film formation speed and quality.
  • the plasma chemical vapor apparatus of the type has a limitation in the deposition rate
  • the plasma chemical vapor apparatus of the type as the prior patent 2 has a limitation in the material of the substrate, as described above. There is a problem.
  • an object of the present invention is to provide a plasma chemical vapor apparatus capable of forming a film of high speed and high quality on a substrate of insulating and conductive material.
  • a plasma chemical vapor apparatus comprising: a vacuum chamber; A vacuum control unit for adjusting the degree of vacuum in the vacuum chamber; A gas supply unit supplying a process gas into the vacuum chamber; At least one circular electrode rotatably provided in a roll shape in the vacuum chamber and having an insulating layer formed on an outer circumferential surface thereof; At least one magnetic field generating member provided in the circular electrode to generate a magnetic field for plasma formation outside the circular electrode; A substrate transfer part for transferring the substrate in a roll-to-roll form so that the substrate adheres to the plasma forming portion of the circular electrode; It is achieved by a plasma chemical vapor apparatus comprising a power supply for supplying power to the circular electrode.
  • the insulating layer is preferably formed by depositing or coating an insulating material of any one of an insulating ceramic, Teflon, silicon oxide, silicon nitride on the outer peripheral surface of the circular electrode.
  • the insulating layer may be formed by subjecting the insulating material of Al 2 O 3 , MgO, TiO 2 to the outer circumferential surface of the circular electrode according to the material of the circular electrode.
  • the insulating layer may be an insulator surrounding the outer circumferential surface of the circular electrode.
  • the insulator may be provided in the form of a hollow tube, and the circular electrode may be inserted into the insulator.
  • the insulator may be provided in a sheet form and bonded to the outer circumferential surface of the circular electrode.
  • the circular electrode may be provided in plurality arranged adjacent to each other.
  • the circular electrodes are preferably arranged adjacent to each other in at least one pair.
  • the circular electrodes may be disposed adjacent to each other in series, or may be disposed in plural pairs adjacent to each other in parallel.
  • the plasma forming portion is effectively formed in the region between the two adjacent circular electrodes.
  • the magnetic field generating member may be installed to reciprocate to a position spaced apart from the position approaching the inner peripheral surface of the circular electrode.
  • the magnetic field generating member may be installed to adjust the rotation angle in the circumferential direction of the electrode.
  • the apparatus may further include at least one drum wound around the substrate in an area adjacent to the circular electrode, and the plasma forming part may be formed in an area between the circular electrode and the drum.
  • the power supplied from the power supply to the circular electrode is preferably a high frequency AC power.
  • the high frequency AC power supply is effectively an HF (High Frequency: AC of 3 to 30 MHz) power or a VHF (Very High Frequency: AC of 30 to 300 MHz) power.
  • HF High Frequency: AC of 3 to 30 MHz
  • VHF Very High Frequency: AC of 30 to 300 MHz
  • a plasma chemical vapor apparatus capable of forming a film of high speed and high quality on a substrate of insulating and conductive material.
  • 1 to 3 is a block diagram of a conventional plasma chemical vapor apparatus
  • FIG. 4 is a block diagram of a plasma chemical vapor apparatus according to the present invention.
  • FIG. 5 is an enlarged view of an electrode unit region of FIG. 4;
  • 6 to 11 are views showing an example of the arrangement of the various electrode units of the plasma chemical vapor apparatus according to the present invention.
  • the plasma chemical vapor apparatus 1 is a vacuum chamber 10 to form a vacuum space, and a vacuum control unit for adjusting the degree of vacuum inside the vacuum chamber 10 ( 20, a gas supply unit 30 for supplying process gas into the vacuum chamber 10, at least one electrode unit 40 rotatably provided in a roll form inside the vacuum chamber 10, and a substrate ( And a substrate transfer part 50 for unwinding and winding S) in a roll-to-roll form with respect to the electrode unit 40, and a power supply part 60 for supplying power to the electrode unit 40.
  • a vacuum control unit for adjusting the degree of vacuum inside the vacuum chamber 10 ( 20, a gas supply unit 30 for supplying process gas into the vacuum chamber 10, at least one electrode unit 40 rotatably provided in a roll form inside the vacuum chamber 10, and a substrate ( And a substrate transfer part 50 for unwinding and winding S) in a roll-to-roll form with respect to the electrode unit 40, and a power supply part 60 for supplying power to the electrode unit 40.
  • the vacuum chamber 10 may be manufactured to have an appropriately formed vacuum space by using a plate member and a frame such as a metal or an alloy having excellent pressure resistance and heat resistance.
  • a shield cover 11 may be provided to partition a region different from a process region for performing a film forming, etching, or surface treatment process.
  • the process region is a plasma forming region formed outside the circular electrode 41, and the shield cover 11 is disposed to surround the process region, and one side (lower portion of the drawing) of the process region is the vacuum control unit 20.
  • the vacuum control unit 20 may include a configuration in which a configuration such as a vacuum pump and a valve is connected in various forms.
  • the low vacuum pump 21, the high vacuum pump 23, the plurality of valves 25, and the pressure control may be performed such that the vacuum exhaust may be performed in the order of low vacuum to high vacuum in the process of adjusting the degree of vacuum in the vacuum chamber 10.
  • the valve 27, the high vacuum valve 29, etc. can be included suitably.
  • the gas supply unit 30 supplies a process gas into the vacuum chamber 10.
  • the gas supply unit 30 includes a gas supply source 31 for supplying the process gas into the vacuum chamber 10, and a gas supply flow path extending from the gas supply source 31 into the vacuum chamber 10 (not shown). And a gas flow controller 37, a vacuum gauge 38, a valve 39, and the like, as a gas supply controller 35 that opens and closes a gas supply passage (not shown).
  • the gas supply passage may extend from the gas supply source 31 to a plurality of regions of the process region.
  • the gas supply passage may have both circular shapes of the electrode unit 40 to be described later. It may be located in an upper region between the electrodes 41 and in a lower region of both circular electrodes 41.
  • a gas supply passage (not shown) extending to each region may be provided with a nozzle (not shown) for injecting gas into the corresponding deposition region.
  • the film forming gas is HMDSO, TEOS, SiH 4 , dimethylsilane, trimethylsilane, tetramethylsilane containing Si as a source gas.
  • HMDS, TMOS and the like and may be C containing methane, ethane, ethylene, acetyrene and the like.
  • various source gases can be suitably selected according to the kind of film-forming, including titanium tetrachloride containing Ti, etc.
  • reaction gas oxygen, ozone, nitrous oxide, or the like can be used for forming the oxide, and for forming nitride, nitrogen, ammonia, or the like can be appropriately selected depending on the type of film formation.
  • auxiliary gas Ar, He, H 2, etc. may be selectively used, and various auxiliary gases may be selectively used depending on the type of film formation.
  • film forming gas suitable for the film forming process to be performed is not limited.
  • the etching gas as the process gas may be formed according to the material of the substrate S and the thin film deposited on the substrate S.
  • the etching gas may be a Cl-based gas such as Cl2 or BCl3 and an F-based gas such as CF4, SF6, or NF3.
  • various etching gases such as HF, hfacH, XeF2, Acetone, NH3, and CH4 may be selected. That is, the etching gas suitable for the etching process to be performed is not limited.
  • a mask corresponding to the etching pattern may be included on the surface of the substrate S.
  • the plasma chemical vapor apparatus 1 according to the present invention is a surface treatment apparatus that performs a surface treatment process
  • various process gases may be used in the use for changing the surface characteristics of the substrate S as the process gas.
  • gas for pre-treatment use may use gases such as Ar, H2, O2, N2, He, CF4, NF3, and gas for ashing use may use gas such as Ar, O2, CF4, and the like.
  • a process gas suitable for the surface treatment process to be performed is not limited.
  • the electrode unit 40 may be provided as a single unit or a plurality of units having various arrangements in the process area.
  • a description of the single electrode unit 40 will be omitted, and a plurality of electrode units preferable for improving process performance efficiency will be omitted. An example in which 40 is provided will be described.
  • the electrode unit 40 includes a pair of circular electrodes 41 spaced apart in parallel at positions adjacent to the process region, and a magnetic field generating member provided in both circular electrodes 41 to generate a magnetic field for plasma formation. (44).
  • Both circular electrodes 41 are provided to rotate about a rotation axis by driving means (not shown). Both of these circular electrodes 41 are supplied with a high frequency AC power from the power supply unit 60.
  • These circular electrodes 41 are preferably made of a metal material having excellent plasma resistance, excellent heat resistance, cooling efficiency and thermal conductivity, and excellent workability as a nonmagnetic material. Specifically, aluminum, iron, copper, stainless steel, or the like It may be provided with a metal material. In addition, the cooling water or the heating water for cooling or heating the circular electrode 41 may flow through the inside of each circular electrode 41.
  • an insulating layer 43 is formed on the outer circumferential surface of the two circular electrodes 41.
  • the insulating layer 43 may be formed by depositing or coating an insulating material such as an insulating ceramic such as Al 2 O 3 , Teflon, silicon oxide, silicon nitride, or the like, and according to the material of the circular electrode 41.
  • an insulating material such as Al 2 O 3 , MgO when the material of the circular electrode 41 is magnesium, and TiO 2 when the material of the circular electrode 41 is Ti, is formed on the outer circumference of the circular electrode 41.
  • the surface may be formed by surface modification such as anodization or plasma electrolysis.
  • the insulating layer 43 formed on the outer circumferential surface of both circular electrodes 41 may be provided in a form in which an insulator having a hollow tube shape surrounds the circular electrode 41.
  • the insulating layer 43 may be provided in the form of inserting the circular electrode 41 or in bonding the insulating sheet to the outer circumferential surface of the circular electrode 41.
  • each circular electrode 41 may be variously changed according to the area of the substrate S or the type of process conditions, and the diameter may be appropriately selected from 100 mm to 2000 mm.
  • the diameter may be appropriately selected from 100 mm to 2000 mm.
  • all of the circular electrodes 41 may have the same diameter or may have different diameters.
  • at least some of the circular electrodes 41 of the plurality of circular electrodes 41 may have the same diameter, and the remaining circular electrodes 41 may have different diameters.
  • the magnetic field generating member 44 includes a yoke plate 45 supported along the longitudinal direction on the central rotation axis of each circular electrode 41, and a magnet 46 supported on the yoke plate 45.
  • the magnet 46 is disposed in a track shape around the central magnet 47 having a different polarity from the central magnet 47 and the central magnet 47 arranged in the longitudinal direction of the central region of the yoke plate 45. It has an outer magnet 48.
  • the structure of the magnet 46 is a structure for generating a race track-shaped plasma track outside the circular electrode 41.
  • the magnets 46 of both magnetic field generating members 44 provided in the two circular electrodes 41 may be disposed so that magnetic poles having the same polarity face each other, or magnetic poles having different polarities may face each other.
  • plasma may be densely formed in the region between the two circular electrodes 41, and the substrate S may have two plasmas while winding the two circular electrodes 41. Pass the formation.
  • both magnetic field generating members 44 provided on both circular electrodes 41 may be arranged so as not to face each other.
  • the plasma chemical vapor apparatus 1 as shown in Figure 6, to enable the reciprocating movement to a position spaced apart from the position that the magnetic field generating member 44 approaches the inner peripheral surface of the circular electrode 41 It may be installed.
  • the guide portion 74 for supporting the reciprocating movement of the, and the distance adjusting portion 77 for moving the magnet so as to adjust the moving distance with respect to the guide portion 74 can be provided.
  • the guide portion 74 moves relative to the fixed guide 75 while supporting the magnet and the fixed guide 75 toward one side of the inner circumferential surface of the circular electrode 41 from the inner central region of the circular electrode 41.
  • It may be provided as a guide 76, and between the fixed guide 75 and the movement guide 76 may be interposed rolling means such as rolling rollers or bearings for smooth relative movement.
  • the distance adjusting unit 77 provides a driving force for relatively moving the movement guide 76 with respect to the fixed guide 75, the inner circumferential surface of the circular electrode 41 to adjust the movement distance of the movement guide 76
  • the motor includes a solenoid or a cylinder, a motor, a motor, a motor, or the like, driven by a motor, including a driven gear or cam and driven gear or cam. It can be provided with an automatic configuration such as configuration.
  • the distance adjusting unit 77 forms a stopper structure between the fixed guide 75 and the moving guide 76, and the operator opens the circular electrode 41 to adjust the moving distance of the moving guide 76 to several species. It may be a passive configuration.
  • the magnetic field generating member 44 may be provided to be fixed inside the circular electrode 41 or may be provided to adjust the rotation angle.
  • the magnetic field generating member 44 When the magnetic field generating member 44 is fixed, only the circular electrode 41 may be rotated.
  • an additional angle adjusting means 73a is provided. It can be provided to automatically or manually adjust the rotation angle of the magnetic field generating member 44.
  • a rotation support member (74a) for supporting the magnetic field generating member 44 on the rotating shaft (75a) provided in the center of the circular electrode 41 such as a motor It can be implemented in a configuration to rotate the rotating shaft (75a) using.
  • the motor (not shown) may be used together with the purpose of rotating the circular electrode 41 in addition to adjusting the rotation angle of the magnetic field generating member 44 including a clutch (not shown) configuration.
  • Such a distance control and rotation angle control configuration of the magnetic field generating member 44 may be applied to any number or arrangement of the circular electrode 41 in the above-described and later embodiments.
  • the strength of the magnetic field or the plasma forming portion can be adjusted.
  • the substrate transfer unit 50 allows the substrate (S) to move through the electrode unit 40 in a roll-to-roll manner to form a thin film on its surface in the film formation region.
  • the substrate transfer part 50 includes a unwinding roll 51 for unwinding the wound substrate S, a winding roll 55 for winding the substrate S past the electrode unit 40, and a unwinding roll 51.
  • a plurality of guide rolls 53 and a tension adjusting means (not shown) for guiding the substrate (S) unwound from the coil) to the winding rolls 55 through the circular electrodes 41 on both sides of the electrode unit 40 at an appropriate tension. ) May be provided.
  • the substrate S may be provided with various synthetic resin materials such as PET, PEN, PES, polycarbonate, polyolefin, polyimide, or the like as a synthetic resin film or sheet which is an insulating material.
  • the base material S may be a conductive material such as metal foil, Cu foil, stainless steel foil, or the like.
  • the unwinding roll 51, the unwinding roll 55, and the guide roll 53 may have the substrate S unwound from the unwinding roll 51 to have a circular electrode 41 on one side of the circular electrodes 41 on both sides.
  • the arrangement may be changed in various forms according to the conditions in the range of being wound on the winding roll 55 again past the circular electrode 41 on the other side.
  • the power supply unit 60 supplies high-frequency AC power to both circular electrodes 41 as power for plasma generation.
  • the selection of the high frequency AC power source as the power source takes into account that the insulating layer 43 is formed on the outer circumferential surface of the circular electrode 41.
  • the high frequency AC power supply is preferably an HF (High Frequency: AC alternating current of 3 to 30 MHz frequency) power source or VHF (Very High Frequency: AC alternating frequency of 30 to 300 MHz frequency) power source to form a high density plasma.
  • HF High Frequency: AC alternating current of 3 to 30 MHz frequency
  • VHF Very High Frequency: AC alternating frequency of 30 to 300 MHz frequency
  • the polarity of the power source may be selectively connected to the positive electrode (+) or the negative electrode (-) in consideration of the plasma form, process quality and the like.
  • the inside of the vacuum chamber 10 is vacuumed to an appropriate vacuum degree in the vacuum control unit 20.
  • the deposition gas is introduced into the process region at an appropriate flow rate from the gas supply unit 30, and the vacuum control unit 20 maintains the vacuum in the vacuum chamber 10 at an appropriate vacuum degree.
  • the high frequency AC power is supplied from the power supply unit 60 to the circular electrode 41.
  • the base material S may be the conductive base material S as described above. Of course, the insulating base material S may be sufficient.
  • the substrate S In the film forming process in which the substrate S passes through both the circular electrodes 41, the substrate S is in close contact with both surfaces of the circular electrodes 41, so that not only neutral particles but also a plurality of cations are strongly directed by the external electric field. Force, and a high density plasma region is present on the surface of the substrate (S), thereby greatly increasing the deposition rate.
  • the thin film is deposited on the base material S in a process in which the base material S passes through the surface of the circular electrode 41 on one side of the pair of circular electrodes 41 and then passes through the circular electrode 41 on the other side.
  • the thickness of the film can be thick and quickly formed with high quality.
  • the power supply is cut off from the power supply unit 60, the gas supply unit 30 stops supplying gas. Then, the vacuum control unit 20 discards the vacuum in the vacuum chamber 10.
  • the substrate S on which the thin film wound on the winding roll 55 is formed is taken out to the outside of the vacuum chamber 10, whereby the plasma chemical vapor apparatus 1 according to the present invention.
  • the film forming process is finished.
  • the plasma chemical vapor apparatus 1 forms the insulating layer 43 on the outer circumferential surface of the circular electrode 41, thereby providing a high-speed and high-quality process for the substrate S of insulating and conductive materials. Is done.
  • the circular electrodes 41 having the insulating layer 43 may be arranged in various forms, as shown in FIGS. 8 to 11.
  • a plurality of circular electrodes 41 may be disposed adjacent to each other in series.
  • the guide roll 53 of the substrate transfer part 50 is provided in an area between one side of the circular electrodes 41 so that the substrate S is wound around the guide roll 53 and the circular electrode 41 in a zigzag shape.
  • the corresponding step any one of film formation, etching or surface treatment
  • the magnetic field generating member 44 forms a magnetic field toward the substrate S, which winds the circular electrode 41, thereby densifying the plasma.
  • FIG. 9 it may also be used for performing a corresponding process on both sides of the substrate (S).
  • the substrate S is wound around the circular electrode 41 in a zigzag form without winding the guide roll 53, the magnetic field generating members 44 of the adjacent circular electrodes 41 are in the opposite direction to each other ( A magnetic field is formed toward S) to condense the plasma.
  • the process any one of film-forming, etching, or surface treatment process
  • the insulating layer 43 is provided on the outer circumferential surfaces of the circular electrodes 41, so that a corresponding process of high speed and high quality is performed on the substrate S of insulating and conductive materials.
  • the plasma chemical vapor apparatus may have a shape in which a plurality of pairs of circular electrodes 41 having an insulating layer 43 are arranged in parallel as shown in FIG. 10.
  • the magnetic field generating members 44 of the adjacent circular electrodes 41 may be disposed to face each other in a parallel direction or may be disposed to face each other in a series direction although not shown.
  • the process may be performed at a higher speed and higher quality to the substrate S of the insulating and conductive material.
  • the plasma chemical vapor apparatus has at least a region adjacent to the circular electrode 41 in a form in which at least one pair of the circular electrodes 41 having the insulating layer 43 is arranged adjacent to each other as shown in FIG. 11.
  • One drum 80 may have a form rotatably provided. The base material S is moved from the circular electrode 41 on one side via the drum 80 to wind the circular electrode 41 on the other side.
  • the magnetic field generating members 44 of the adjacent circular electrodes 41 are disposed to face the drum 80, so that plasma is concentrated in the regions a to d between the both circular electrodes 41 and the drum 80. .
  • the substrate S is exposed to the plasma four times in the regions a to d between the two circular electrodes 41 and the drum 80 during the transfer process.
  • the number of the circular electrodes 41 and the number of the drums 80 may be provided in a plurality, and in this case, the area where the substrate S is exposed to the plasma increases further.
  • the area of the substrate S exposed to the plasma is increased to a plurality of areas, so that the process may be performed at a higher speed and higher quality to the substrate S of the insulating and conductive material.
  • a single circular electrode 41 and a single drum 80 are used and the magnetic field generated by the magnetic field generating member 44 is directed toward the drum 80 so that the substrate S is plasma. Two areas may be exposed.
  • the magnetic field generating member 44 may be located inside the drum 80 to form a magnetic field in a direction toward the circular electrode.
  • the number or arrangement of the circular electrodes 41 having the insulating layer 43 may be configured in various forms.
  • the plasma chemical vapor apparatus may perform a high-speed and high-quality film formation or etching or surface treatment process on an insulating and conductive material by forming an insulating layer on the outer circumferential surface of the circular electrode.
  • the present invention enables high-speed and high-quality film formation on an insulating and conductive material substrate in a plasma chemical vapor apparatus.

Abstract

The present invention relates to a plasma chemical vapour deposition device, the device comprising: a vacuum chamber; a vacuum adjusting unit for adjusting the degree of vacuum inside the vacuum chamber; a gas supply unit for supplying a process gas into the vacuum chamber; a circular electrode which is rotatably provided in the form of a roll on the inside of the vacuum chamber, and on the outer circumferential surface of which is formed an insulating layer; at least one magnetic field generating member which is provided on the inside of the circular electrode, and generates a magnetic field for forming a plasma on the outside of the circular electrode; a substrate-material-forwarding unit in which a substrate material is forwarded roll-to-roll in such a way that the substrate material wraps in close contact around a plasma-forming part of the circular electrode; and a power-source-supply unit for supplying power to the circular electrode. In this way, a plasma chemical vapour deposition device is provided which is capable of high-speed and high-quality film formation on a substrate of an insulating and electrically-conductive material.

Description

플라즈마 화학기상 장치Plasma chemical vapor apparatus
본 발명은 플라즈마 화학기상 장치에 관한 것으로서, 보다 상세하게는 절연성 및 전도성 재질의 기재에 고속 및 고품질의 성막이 가능한 플라즈마 화학기상 장치에 관한 것이다.The present invention relates to a plasma chemical vapor apparatus, and more particularly, to a plasma chemical vapor apparatus capable of forming a film at high speed and quality on an insulating and conductive material.
반도체나 디스플레이, 태양전지 또는 포장지 제조분야 등에서 박막을 기재에 성막하는 기술로 사용되는 증착법으로 진공 증착법, 스퍼터법 등의 물리 증착법(PVD법)이나, 플라즈마 화학기상 증착(Plasma Enhanced Chemical Vapor Deposition)법을 꼽을 수 있다. As a deposition method used as a technology for forming a thin film on a substrate in a semiconductor, display, solar cell, or packaging paper manufacturing field, it is a physical vapor deposition method (PVD method) such as vacuum deposition method or sputtering method, or plasma enhanced chemical vapor deposition method (Plasma Enhanced Chemical Vapor Deposition) method. Can be mentioned.
이 중 플라즈마 화학기상 증착법은 플라즈마에 의해 원료 가스를 분해하여 목적하는 물질의 박막을 기재 상에 증착하는 방법으로서, 최근에는 원통형 플라즈마 캐소드를 이용한 플라즈마 화학기상 장치가 주목받고 있다. Among them, the plasma chemical vapor deposition method is a method of decomposing a source gas by plasma to deposit a thin film of a desired material on a substrate, and recently, a plasma chemical vapor apparatus using a cylindrical plasma cathode has attracted attention.
원통형 플라즈마 캐소드를 이용한 플라즈마 화학기상 장치는 캐소드 표면자기장의 강도가 우수하고 좁은 면적에 자기장을 집중시켜서 고품질의 플라즈마를 형성할 수 있기 때문에, 기재에 증착되는 박막의 품질이 우수하고, 스퍼터링과 같은 일반적인 PVD 증착방식에 비해 빠른 성막 속도를 제공하는 장점이 있다. Plasma chemical vapor devices using cylindrical plasma cathodes are excellent in the strength of the cathode surface magnetic field and can concentrate the magnetic field in a small area to form a high quality plasma, so the quality of the thin film deposited on the substrate is excellent, and sputtering is common. Compared to the PVD deposition method, there is an advantage of providing a fast deposition rate.
이러한 원통형 플라즈마 캐소드를 이용한 플라즈마 화학기상 장치의 예가 일본 공개특허 제2006-299361호(이하 '선행특허1'라 함) 및 대한민국 등록특허 제10-1148760호(이하 '선행특허2'이라 함)에 개시된 바 있다. Examples of plasma chemical vapor apparatuses using such cylindrical plasma cathodes are disclosed in Japanese Patent Application Laid-Open No. 2006-299361 (hereinafter referred to as “prior patent 1”) and Korean Patent No. 10-1148760 (hereinafter referred to as “prior patent 2”). It has been disclosed.
선행특허1은 도 1에 도시된 바와 같이, 기재(S)가 롤투롤 형태로 드럼(220)을 거쳐 이송되고 드럼(220) 표면에 대향하는 위치에 한 쌍의 원통형 플라즈마 캐소드(210)가 설치된 형태로서 원통형 플라즈마 캐소드(210)로부터 드럼(220)을 향해 플라즈마가 형성되면서 드럼(220)을 지나는 기재(S)에 플라즈마에 의해 분해된 원료 가스가 성막되는 형태로 박막이 증착된다. As shown in FIG. 1, as shown in FIG. 1, a pair of cylindrical plasma cathodes 210 are installed at a position in which a substrate S is transferred through a drum 220 in a roll-to-roll form and faces a surface of the drum 220. As a form, a plasma is formed from the cylindrical plasma cathode 210 toward the drum 220, and a thin film is deposited in a form in which a source gas decomposed by the plasma is deposited on the substrate S passing through the drum 220.
그리고 선행특허2은 도 2 및 도 3에 도시된 바와 같이, 기재(S)가 롤투롤 방식으로 이송되는 형태로써 기재(S)가 한 쌍의 원통형 플라즈마 캐소드(110) 표면을 지나는 과정에서 양 원통형 플라즈마 캐소드(110) 사이의 성막 영역에서 분해된 원료 가스가 기재(S)에 성막되는 형태로 박막이 증착된다. 2 and 3, both of the cylindrical in the process of passing the substrate (S) the surface of the pair of cylindrical plasma cathode 110 in a form that the substrate (S) is transferred in a roll-to-roll manner. The thin film is deposited in such a manner that the source gas decomposed in the deposition region between the plasma cathodes 110 is deposited on the substrate S.
그런데, 이러한 종래 플라즈마 화학기상 장치 중 선행특허1과 같은 경우, 기재가 드럼을 거쳐 이동하는 과정에서 기재에 박막이 증착되기 때문에, 기재에 박막의 두께를 두껍게 성막하기 위해서는 보다 빠른 고속의 성막 속도가 요구된다. However, since the thin film is deposited on the substrate in the process of moving the substrate through the drum in the case of the conventional plasma chemical vapor apparatus, a faster and faster film formation speed is required in order to form a thick film on the substrate. Required.
이를 위해 드럼 표면에 대향하는 위치에 복수 쌍의 원통형 플라즈마 캐소드를 배치하여 두꺼운 박막을 고속으로 성막하는 형태의 플라즈마 화학기상 장치가 제안될 수 있지만, 이는 원통형 플라즈마 캐소드의 수량이 증가하면서 장치의 크기가 비대해지고 제작비용이 크게 상승하는 문제점이 발생한다. For this purpose, a plasma chemical vapor apparatus may be proposed in which a plurality of pairs of cylindrical plasma cathodes are disposed at a position opposite to the drum surface to form a thick thin film at high speed, but the size of the apparatus may be increased as the number of cylindrical plasma cathodes increases. The problem arises that it enlarges and the manufacturing cost rises significantly.
한편, 선행특허2는 선행특허1과 같은 플라즈마 화학기상 장치가 가지고 있는 문제점을 해소할 수 있는 대안으로서, 이 선행특허2는 양 원통형 플라즈마 캐소드에 전원을 투입하여 플라즈마를 발생시키면 플라즈마에 의해 발생되는 입자는 대부분 중성입자, 양이온, 음이온의 형태를 갖게 된다. 선행특허1과 같은 구조에서는 하전입자인 양이온과 음이온은 주로 자기장에 의해 원통형 플라즈마 캐소드 표면근처에 포획되고 중성입자들만이 기재에 도달하게 된다. 하지만 선행특허2의 구조에서는 기재가 원통형 플라즈마 캐소드의 표면에 밀착되어 있어 중성입자뿐만 아니라 다수의 양이온들이 외부 전기장에 의해 강하게 기재방향으로 힘을 받게 되며, 밀도가 높은 플라즈마 영역이 기재 바로 표면에 존재하게 되어 성막속도가 월등히 증가하게 된다.On the other hand, the prior patent 2 is an alternative that can solve the problems of the plasma chemical vapor apparatus, such as the prior patent 1, this prior patent 2 is generated by the plasma when the plasma is generated by applying power to both cylindrical plasma cathode Most of the particles are in the form of neutral particles, cations and anions. In the same structure as the prior patent 1, the charged particles cations and anions are mainly captured by the magnetic field near the surface of the cylindrical plasma cathode, and only neutral particles reach the substrate. However, in the structure of the prior patent 2, since the substrate is in close contact with the surface of the cylindrical plasma cathode, not only neutral particles but also a large number of cations are strongly forced in the direction of the substrate by an external electric field, and a high density plasma region exists directly on the surface of the substrate. The film formation speed is greatly increased.
또한, 기재가 한 쌍의 원통형 플라즈마 캐소드 중 일 측의 원통형 플라즈마 캐소드 표면을 지나고 이후 타 측의 원통형 플라즈마 캐소드를 지나는 과정으로 기재에 박막이 성막되므로 박막의 두께를 두껍고 빠르게 성막할 수 있다. In addition, since the substrate passes through the cylindrical plasma cathode surface of one side of the pair of cylindrical plasma cathodes and then passes through the cylindrical plasma cathode of the other side, the thin film is deposited on the substrate, thereby allowing the thickness of the thin film to be thick and quickly formed.
그러나 이러한 선행특허2의 경우, 전원이 입력되는 원통형 플라즈마 캐소드 표면에 기재가 밀착되어 이동하기 때문에, 기재가 플라스틱 필름과 같은 절연성 재질로 한정되게 된다. However, in the case of this prior patent 2, since the substrate moves in close contact with the surface of the cylindrical plasma cathode to which power is input, the substrate is limited to an insulating material such as a plastic film.
이는 기재가 Metal Foil 등과 같은 전도성 재질인 경우 기재를 통해 원통형 플라즈마 캐소드와 접지인 가이드롤, 권출롤, 권취롤 등에 접하게 되어 플라즈마를 형성할 수 없기 때문이다.This is because when the substrate is a conductive material such as a metal foil, the plasma is contacted with the cylindrical plasma cathode and the ground, the guide roll, the unwinding roll, the unwinding roll, and the like through the substrate to form a plasma.
이에 따라, 선행특허2와 같은 형태의 플라즈마 화학기상 장치는 최근 여러 분야에서 전도성 재질의 기재에 플라즈마 화학기상 증착방식에 의한 성막의 필요성이 증가하는 요구에 부합하기 어려운 문제점이 있다. Accordingly, the plasma chemical vapor apparatus of the type as in the prior patent 2 has a problem in recent years that it is difficult to meet the increasing demand of the film formation by the plasma chemical vapor deposition method on the substrate of the conductive material.
예를 들면 최근 각광받고 있는 그래핀(Graphene)의 경우 기재로 Cu Foil을 사용하고 있으며 공정온도를 낮추기 위해 기존 가열방식의 화학기상 증착방식에서 플라즈마 화학기상 증착방식으로 전환하기 위한 연구가 활발히 진행되고 있고, 또한 유연박막태양전지의 기재로 얇은 기판 형태의 스테인레스 스틸 기재를 사용하고 있는데 스테인레스 스틸 기재의 경우 전도성이기 때문에 기재 상부에 전극을 증착하기 전에 산화규소나 질화규소와 같은 절연박막의 성막이 필요하다. For example, in the case of graphene, which is in the spotlight recently, Cu Foil is used as a base material, and researches are actively conducted to switch from the conventional chemical vapor deposition method to the plasma chemical vapor deposition method in order to lower the process temperature. In addition, a thin substrate stainless steel substrate is used as a substrate for the flexible thin film solar cell. Since the stainless steel substrate is conductive, it is necessary to form an insulating thin film such as silicon oxide or silicon nitride before depositing an electrode on the substrate. .
이러한 절연박막은 성막속도가 뛰어나고 품질이 우수한 플라즈마 화학기상 증착방식이 유리하다. The insulating thin film is advantageous in that the plasma chemical vapor deposition method is excellent in film formation speed and quality.
하지만, 선행특허1와 같은 형태의 플라즈마 화학기상 장치는 전술한 바와 같이, 성막속도에서 한계를 가지며, 선행특허2와 같은 형태의 플라즈마 화학기상 장치는 전술한 바와 같이, 기재의 재질에서 한계를 갖는 문제점이 있다. However, as described above, the plasma chemical vapor apparatus of the type has a limitation in the deposition rate, and the plasma chemical vapor apparatus of the type as the prior patent 2 has a limitation in the material of the substrate, as described above. There is a problem.
따라서 본 발명의 목적은 절연성 및 전도성 재질의 기재에 고속 및 고품질의 성막이 가능한 플라즈마 화학기상 장치를 제공하는 것이다. Accordingly, an object of the present invention is to provide a plasma chemical vapor apparatus capable of forming a film of high speed and high quality on a substrate of insulating and conductive material.
상기 목적은 본 발명에 따라, 플라즈마 화학기상 장치에 있어서, 진공챔버; 상기 진공챔버 내부의 진공도를 조절하는 진공조절부; 상기 진공챔버 내부에 공정 가스를 공급하는 가스공급부; 상기 진공챔버 내부에 롤 형태로 회전 가능하게 마련되며, 외주 표면에 절연층이 형성되어 있는 적어도 하나의 원형전극; 상기 원형전극 내에 마련되어 상기 원형전극의 외측으로 플라즈마 형성을 위한 자기장을 발생하는 적어도 하나의 자기장발생부재; 기재가 상기 원형전극의 플라즈마 형성 부분에 밀착되어 감아돌도록 상기 기재를 롤투롤 형태로 이송하는 기재이송부; 상기 원형전극에 전원을 공급하는 전원공급부를 포함하는 것을 특징으로 하는 플라즈마 화학기상 장치에 의해 달성된다.The object is, according to the present invention, a plasma chemical vapor apparatus, comprising: a vacuum chamber; A vacuum control unit for adjusting the degree of vacuum in the vacuum chamber; A gas supply unit supplying a process gas into the vacuum chamber; At least one circular electrode rotatably provided in a roll shape in the vacuum chamber and having an insulating layer formed on an outer circumferential surface thereof; At least one magnetic field generating member provided in the circular electrode to generate a magnetic field for plasma formation outside the circular electrode; A substrate transfer part for transferring the substrate in a roll-to-roll form so that the substrate adheres to the plasma forming portion of the circular electrode; It is achieved by a plasma chemical vapor apparatus comprising a power supply for supplying power to the circular electrode.
여기서, 상기 절연층은 절연성 세라믹, 테프론, 산화규소, 질화규소 중 어느 하나의 절연물질을 상기 원형전극의 외주 표면에 증착 또는 코팅하여 형성되는 것이 바람직하다. Here, the insulating layer is preferably formed by depositing or coating an insulating material of any one of an insulating ceramic, Teflon, silicon oxide, silicon nitride on the outer peripheral surface of the circular electrode.
또는 상기 절연층은 상기 원형전극의 재질에 따라 Al2O3, MgO, TiO2 중 어느 하나의 절연물질을 상기 원형전극의 외주 표면에 표면개질처리하여 형성되는 것이 효과적이다. Alternatively, the insulating layer may be formed by subjecting the insulating material of Al 2 O 3 , MgO, TiO 2 to the outer circumferential surface of the circular electrode according to the material of the circular electrode.
이때, 상기 절연층은 상기 원형전극의 외주 표면에 둘러싸는 절연체일 수 있다. In this case, the insulating layer may be an insulator surrounding the outer circumferential surface of the circular electrode.
혹은 상기 절연체는 중공관 형태로 마련되며, 상기 원형전극이 상기 절연체에 삽입되는 것일 수 있다. Alternatively, the insulator may be provided in the form of a hollow tube, and the circular electrode may be inserted into the insulator.
또는 상기 절연체는 시트 형태로 마련되어 상기 원형전극의 외주표면에 접합되는 것일 수 있다. Alternatively, the insulator may be provided in a sheet form and bonded to the outer circumferential surface of the circular electrode.
한편, 상기 원형전극은 상호 인접하게 배치되는 복수로 마련될 수 있다. On the other hand, the circular electrode may be provided in plurality arranged adjacent to each other.
여기서, 상기 원형전극들은 적어도 한 쌍으로 상호 인접하게 배치되는 것이 바람직하다. Here, the circular electrodes are preferably arranged adjacent to each other in at least one pair.
이때, 상기 원형전극들은 직렬형으로 상호 인접하게 배치되거나, 병렬형으로 상호 인접하게 복수 쌍으로 배치될 수 있다. In this case, the circular electrodes may be disposed adjacent to each other in series, or may be disposed in plural pairs adjacent to each other in parallel.
그리고 상기 플라즈마 형성 부분은 상호 인접하는 양 원형전극의 사이 영역에 형성되는 것이 효과적이다. In addition, the plasma forming portion is effectively formed in the region between the two adjacent circular electrodes.
한편, 상기 자기장발생부재는 상기 원형전극의 내주면에 대해 접근하는 위치와 이격되는 위치로 왕복 이동 가능하게 설치될 수 있다. On the other hand, the magnetic field generating member may be installed to reciprocate to a position spaced apart from the position approaching the inner peripheral surface of the circular electrode.
또는 상기 자기장발생부재는 상기 전극의 원주 방향으로 회전각 조절 가능하게 하는 설치될 수 있다. Alternatively, the magnetic field generating member may be installed to adjust the rotation angle in the circumferential direction of the electrode.
한편, 상기 원형전극에 인접하는 영역에서 상기 기재가 감아 도는 적어도 하나의 드럼을 더 포함하며, 상기 플라즈마 형성 부분은 상기 원형전극과 상기 드럼 사이 영역에 형성될 수 있다. The apparatus may further include at least one drum wound around the substrate in an area adjacent to the circular electrode, and the plasma forming part may be formed in an area between the circular electrode and the drum.
한편, 상기 전원공급부로부터 상기 원형전극에 공급되는 전원은 고주파 교류 전원인 것이 바람직하다. On the other hand, the power supplied from the power supply to the circular electrode is preferably a high frequency AC power.
이때, 상기 고주파 교류 전원은 HF(High Frequency : 3~30 MHz 주파수의 교류)전원이거나, VHF(Very High Frequency : 30~300 MHz 주파수의 교류)전원인 것이 효과적이다. In this case, the high frequency AC power supply is effectively an HF (High Frequency: AC of 3 to 30 MHz) power or a VHF (Very High Frequency: AC of 30 to 300 MHz) power.
본 발명에 따르면, 절연성 및 전도성 재질의 기재에 고속 및 고품질의 성막이 가능한 플라즈마 화학기상 장치가 제공된다.According to the present invention, there is provided a plasma chemical vapor apparatus capable of forming a film of high speed and high quality on a substrate of insulating and conductive material.
도 1 내지 도 3은 종래 플라즈마 화학기상 장치의 구성도, 1 to 3 is a block diagram of a conventional plasma chemical vapor apparatus,
도 4는 본 발명에 따른 플라즈마 화학기상 장치의 구성도, 4 is a block diagram of a plasma chemical vapor apparatus according to the present invention,
도 5는 도 4의 전극유닛 영역 확대도,5 is an enlarged view of an electrode unit region of FIG. 4;
도 6 내지 도 11은 본 발명에 따른 플라즈마 화학기상 장치의 다양한 전극유닛 배치 예를 나타낸 도면.6 to 11 are views showing an example of the arrangement of the various electrode units of the plasma chemical vapor apparatus according to the present invention.
도 4 및 도 5에 도시된 바와 같이, 본 발명에 따른 플라즈마 화학기상 장치(1)는 진공 공간을 형성하는 진공챔버(10)와, 진공챔버(10) 내부의 진공도를 조절하는 진공조절부(20)와, 진공챔버(10) 내부에 공정 가스를 공급하는 가스공급부(30)와, 진공챔버(10) 내부에 롤 형태로 회전 가능하게 마련되는 적어도 하나의 전극유닛(40)과, 기재(S)를 전극유닛(40)에 대해 롤투롤 형태로 권출 및 권취하는 기재이송부(50)와, 전극유닛(40)에 전원을 공급하는 전원공급부(60)를 포함한다. 4 and 5, the plasma chemical vapor apparatus 1 according to the present invention is a vacuum chamber 10 to form a vacuum space, and a vacuum control unit for adjusting the degree of vacuum inside the vacuum chamber 10 ( 20, a gas supply unit 30 for supplying process gas into the vacuum chamber 10, at least one electrode unit 40 rotatably provided in a roll form inside the vacuum chamber 10, and a substrate ( And a substrate transfer part 50 for unwinding and winding S) in a roll-to-roll form with respect to the electrode unit 40, and a power supply part 60 for supplying power to the electrode unit 40.
진공챔버(10)는 내압 및 내열 성능이 우수한 금속 또는 합금 등의 판상부재와 프레임 등을 이용하여 적절한 형태의 진공 공간을 갖도록 제작될 수 있다. The vacuum chamber 10 may be manufactured to have an appropriately formed vacuum space by using a plate member and a frame such as a metal or an alloy having excellent pressure resistance and heat resistance.
이 진공챔버(10) 내부의 일영역에는 성막이나 식각 또는 표면처리 공정 수행을 위한 공정 영역과 다른 영역을 구획하기 위한 쉴드커버(11)가 마련될 수 있다. 여기서, 공정 영역은 원형전극(41) 외측에 형성되는 플라즈마 형성 영역으로서 쉴드커버(11)는 공정 영역 주변을 둘러싸도록 배치되며, 공정 영역의 일측(도면 상으로 하부)는 진공조절부(20)에 의해 진공 배기될 수 있다. In one region of the vacuum chamber 10, a shield cover 11 may be provided to partition a region different from a process region for performing a film forming, etching, or surface treatment process. Here, the process region is a plasma forming region formed outside the circular electrode 41, and the shield cover 11 is disposed to surround the process region, and one side (lower portion of the drawing) of the process region is the vacuum control unit 20. By vacuum evacuation.
진공조절부(20)는 진공펌프 및 밸브 등의 구성을 다양한 형태로 연결한 구성으로 포함할 수 있다. 바람직하게는 진공챔버(10) 내부의 진공도를 조절하는 과정에서 진공배기가 저진공에서 고진공 순으로 이루어질 수 있도록 저진공펌프(21) 및 고진공펌프(23)와 복수의 밸브(25) 및 압력조절밸브(27) 및 고진공 밸브(29) 등을 적절히 포함할 수 있다. The vacuum control unit 20 may include a configuration in which a configuration such as a vacuum pump and a valve is connected in various forms. Preferably, the low vacuum pump 21, the high vacuum pump 23, the plurality of valves 25, and the pressure control may be performed such that the vacuum exhaust may be performed in the order of low vacuum to high vacuum in the process of adjusting the degree of vacuum in the vacuum chamber 10. The valve 27, the high vacuum valve 29, etc. can be included suitably.
가스공급부(30)는 진공챔버(10) 내부로 공정 가스를 공급한다. 이 가스공급부(30)는 해당 공정 가스를 진공챔버(10) 내부로 공급하기 위한 가스공급원(31)과, 가스공급원(31)으로부터 진공챔버(10) 내부로 연장되는 가스공급유로(미도시)와, 가스공급유로(미도시)를 개폐하는 가스공급조절기(35)로서 가스유량제어기(37) 및 진공게이지(38)와 밸브(39) 등을 구비할 수 있다. The gas supply unit 30 supplies a process gas into the vacuum chamber 10. The gas supply unit 30 includes a gas supply source 31 for supplying the process gas into the vacuum chamber 10, and a gas supply flow path extending from the gas supply source 31 into the vacuum chamber 10 (not shown). And a gas flow controller 37, a vacuum gauge 38, a valve 39, and the like, as a gas supply controller 35 that opens and closes a gas supply passage (not shown).
여기서 가스공급유로(미도시)는 가스공급원(31)으로부터 공정 영역의 복수 영역으로 연장될 수 있는데, 일 예로 가스공급유로(미도시)는 도면으로 볼 때 후술할 전극유닛(40)의 양 원형전극(41) 사이의 상부 영역과 양 원형전극(41)의 하부 영역에 위치할 수 있다. 각 영역으로 연장된 가스공급유로(미도시)에는 해당 성막 영역으로 가스를 분사하는 노즐(미도시)이 구비될 수 있다. Here, the gas supply passage (not shown) may extend from the gas supply source 31 to a plurality of regions of the process region. For example, the gas supply passage (not shown) may have both circular shapes of the electrode unit 40 to be described later. It may be located in an upper region between the electrodes 41 and in a lower region of both circular electrodes 41. A gas supply passage (not shown) extending to each region may be provided with a nozzle (not shown) for injecting gas into the corresponding deposition region.
여기서, 본 발명에 따른 플라즈마 화학기상 장치(1)가 성막 공정을 수행하는 성막 장치일 경우, 성막 가스는 원료 가스로 Si를 함유하는 HMDSO, TEOS, SiH4, 디메틸실란, 트리메틸실란, 테트라메틸실란, HMDS, TMOS 등일 수 있으며, C를 함유하는 메탄, 에탄, 에틸렌, 아세티렌 등일 수 있다. 또한, Ti를 함유하는 4염화티탄 등을 포함하여 성막의 종류에 따라 다양한 원료 가스를 적절히 선택할 수 있다. 그리고 반응 가스로는 산화물 형성용으로서 산소, 오존, 아산화질소 등을 이용할 수 있으며, 질화물 형성용으로는 질소, 암모니아 등을 성막의 종류에 따라 적절히 선택할 수 있다. 또한, 보조 가스로는 Ar, He, H2 등이 선택적으로 사용될 수 있으며, 이 역시 성막의 종류에 따라 다양한 보조 가스가 선택적으로 사용될 수 있다. 이외 수행하고자 하는 성막 공정에 적합한 성막 가스는 한정되지 않는다. Here, when the plasma chemical vapor apparatus 1 according to the present invention is a film forming apparatus performing a film forming process, the film forming gas is HMDSO, TEOS, SiH 4 , dimethylsilane, trimethylsilane, tetramethylsilane containing Si as a source gas. , HMDS, TMOS and the like, and may be C containing methane, ethane, ethylene, acetyrene and the like. Moreover, various source gases can be suitably selected according to the kind of film-forming, including titanium tetrachloride containing Ti, etc. As the reaction gas, oxygen, ozone, nitrous oxide, or the like can be used for forming the oxide, and for forming nitride, nitrogen, ammonia, or the like can be appropriately selected depending on the type of film formation. In addition, as the auxiliary gas, Ar, He, H 2, etc. may be selectively used, and various auxiliary gases may be selectively used depending on the type of film formation. In addition, the film forming gas suitable for the film forming process to be performed is not limited.
또는, 본 발명에 따른 플라즈마 화학기상 장치(1)가 식각 공정을 수행하는 식각 장치일 경우, 공정 가스로서 식각 가스는 식각 대상인 기재(S) 및 기재(S) 상에 성막된 박막의 재질에 따라 변동될 수 있다. 예컨대, 식각 가스는 Cl2, BCl3 등 Cl 계열 가스 및 CF4, SF6, NF3 등 F 계열 가스를 이용할 수도 있으며, 그 외에 HF, hfacH, XeF2, Acetone, NH3, CH4 등의 다양한 식각 가스를 선택할 수 있다. 즉, 수행하고자 하는 식각 공정에 적합한 식각 가스는 한정되지 않는다. 식각 공정의 경우 기재(S)의 표면에 식각 패턴에 대응하는 마스크가 포함될 수 있다.Alternatively, when the plasma chemical vapor apparatus 1 according to the present invention is an etching apparatus that performs an etching process, the etching gas as the process gas may be formed according to the material of the substrate S and the thin film deposited on the substrate S. Can vary. For example, the etching gas may be a Cl-based gas such as Cl2 or BCl3 and an F-based gas such as CF4, SF6, or NF3. In addition, various etching gases such as HF, hfacH, XeF2, Acetone, NH3, and CH4 may be selected. That is, the etching gas suitable for the etching process to be performed is not limited. In the etching process, a mask corresponding to the etching pattern may be included on the surface of the substrate S.
또는, 본 발명에 따른 플라즈마 화학기상 장치(1)가 표면 처리 공정을 수행하는 표면처리장치일 경우, 공정 가스로서 기재(S)의 표면 특성을 변화시키기 위한 용도에서 다양한 공정 가스가 사용될 수 있다. 예컨대, Pre-treatment 용도의 가스는 Ar, H2, O2, N2, He, CF4, NF3 등의 가스를 이용할 수 있고, Ashing 용도의 가스는 Ar, O2, CF4 등의 가스를 이용할 수 있다. 이외 수행하고자 하는 표면 처리 공정에 적합한 공정 가스는 한정되지 않는다. Alternatively, when the plasma chemical vapor apparatus 1 according to the present invention is a surface treatment apparatus that performs a surface treatment process, various process gases may be used in the use for changing the surface characteristics of the substrate S as the process gas. For example, gas for pre-treatment use may use gases such as Ar, H2, O2, N2, He, CF4, NF3, and gas for ashing use may use gas such as Ar, O2, CF4, and the like. In addition, a process gas suitable for the surface treatment process to be performed is not limited.
전극유닛(40)은 공정 영역에 단일의 유닛 또는 다양한 배치 형태의 복수 유닛으로 마련될 수 있는데, 이하에서는 단일의 전극유닛(40)에 대한 설명은 생략하고 공정 수행 효율 향상에 바람직한 복수의 전극유닛(40)이 마련된 예에 대해 설명한다. The electrode unit 40 may be provided as a single unit or a plurality of units having various arrangements in the process area. Hereinafter, a description of the single electrode unit 40 will be omitted, and a plurality of electrode units preferable for improving process performance efficiency will be omitted. An example in which 40 is provided will be described.
바람직한 예로서 전극유닛(40)은 공정 영역에 상호 인접한 위치에서 평행하게 이격 배치된 한 쌍의 원형전극(41)과, 양 원형전극(41) 내에 마련되어 플라즈마 형성을 위한 자기장을 발생하는 자기장발생부재(44)를 포함한다. As a preferred example, the electrode unit 40 includes a pair of circular electrodes 41 spaced apart in parallel at positions adjacent to the process region, and a magnetic field generating member provided in both circular electrodes 41 to generate a magnetic field for plasma formation. (44).
양 원형전극(41)은 도시하지 않은 구동수단에 의해 회전축을 중심으로 회전하도록 설치된다. 이들 양 원형전극(41)에는 전원공급부(60)로부터의 고주파 교류전원이 전달된다.Both circular electrodes 41 are provided to rotate about a rotation axis by driving means (not shown). Both of these circular electrodes 41 are supplied with a high frequency AC power from the power supply unit 60.
이들 원형전극(41)은 플라즈마 내성이 우수하고, 내열성과 냉각 효율 및 열전도율이 우수하면서 비자성재료로서 가공성이 우수한 금속재료로 마련되는 것이 바람직한데, 구체적으로는 알루미늄이나 철, 동, 스테인레스 등의 금속재로 마련될 수 있다. 또한, 각 원형전극(41)의 내부에는 원형전극(41)의 냉각 또는 히팅을 위한 냉각수 또는 히팅수가 관류될 수 있다. These circular electrodes 41 are preferably made of a metal material having excellent plasma resistance, excellent heat resistance, cooling efficiency and thermal conductivity, and excellent workability as a nonmagnetic material. Specifically, aluminum, iron, copper, stainless steel, or the like It may be provided with a metal material. In addition, the cooling water or the heating water for cooling or heating the circular electrode 41 may flow through the inside of each circular electrode 41.
한편, 이들 양 원형전극(41)의 외주 표면에는 절연층(43)이 형성된다. 이 절연층(43)은 Al2O3 등과 같은 절연성 세라믹, 테프론, 산화규소, 질화규소 등의 절연물질을 증착이나 코팅 방식에 의해 형성될 수도 있으며, 원형전극(41)의 재질에 따라 원형전극(41)이 알루미늄일 경우 Al2O3, 원형전극(41)의 재질이 마그네슘일 경우 MgO, 원형전극(41)의 재질이 Ti 일 경우 TiO2 등의 절연물질을 상기 원형전극(41)의 외주 표면에 양극산화 또는 플라즈마전해산화 등의 표면개질 처리하여 형성할 수도 있다. On the other hand, an insulating layer 43 is formed on the outer circumferential surface of the two circular electrodes 41. The insulating layer 43 may be formed by depositing or coating an insulating material such as an insulating ceramic such as Al 2 O 3 , Teflon, silicon oxide, silicon nitride, or the like, and according to the material of the circular electrode 41. When 41 is aluminum, an insulating material such as Al 2 O 3 , MgO when the material of the circular electrode 41 is magnesium, and TiO 2 when the material of the circular electrode 41 is Ti, is formed on the outer circumference of the circular electrode 41. The surface may be formed by surface modification such as anodization or plasma electrolysis.
물론, 양 원형전극(41)의 외주 표면에 형성되는 절연층(43)은 중공관 형상의 별도의 절연체가 원형전극(41)을 둘러싸는 형태로 마련될 수 있는데, 중공관 형상의 절연체 내부에 원형전극(41)을 삽입하는 형태나 절연시트를 원형전극(41)의 외주 표면에 접합하는 형태로 절연층(43)을 마련할 수도 있다. Of course, the insulating layer 43 formed on the outer circumferential surface of both circular electrodes 41 may be provided in a form in which an insulator having a hollow tube shape surrounds the circular electrode 41. The insulating layer 43 may be provided in the form of inserting the circular electrode 41 or in bonding the insulating sheet to the outer circumferential surface of the circular electrode 41.
여기서 각 원형전극(41)의 직경은 기재(S)의 면적이나 종류 공정 여건 등에 따라 다양하게 변경될 수 있는 것으로 그 직경은 100mm 내지 2000mm에서 적절히 선택될 수 있다. 이때, 원형전극(41)이 복수로 마련되는 경우 모든 원형전극(41)은 동일한 직경을 가질 수도 있으며, 각각 상이한 직경을 가질 수도 있다. 또한, 복수의 원형전극(41) 중 적어도 일부의 원형전극(41)은 동일한 직경을 가지고 나머지 원형전극(41)은 상이한 직경을 가질 수 있음은 물론이다. Herein, the diameter of each circular electrode 41 may be variously changed according to the area of the substrate S or the type of process conditions, and the diameter may be appropriately selected from 100 mm to 2000 mm. In this case, when the plurality of circular electrodes 41 are provided, all of the circular electrodes 41 may have the same diameter or may have different diameters. In addition, at least some of the circular electrodes 41 of the plurality of circular electrodes 41 may have the same diameter, and the remaining circular electrodes 41 may have different diameters.
자기장발생부재(44)는 각 원형전극(41)의 중앙 회전축 상에 길이 방향을 따라 지지되는 요크플레이트(45)와, 요크플레이트(45) 상에 지지되는 마그네트(46)를 포함한다. The magnetic field generating member 44 includes a yoke plate 45 supported along the longitudinal direction on the central rotation axis of each circular electrode 41, and a magnet 46 supported on the yoke plate 45.
여기서, 마그네트(46)는 요크플레이트(45)의 중앙 영역 길이 방향으로 배치되는 중앙 마그네트(47)와, 중앙 마그네트(47)와 다른 극성을 가지고 중앙 마그네트(47)의 둘레에 트랙형상으로 배치되는 외측 마그네트(48)를 가지고 있다. 이러한 마그네트(46)의 구조는 원형전극(41) 외부에 레이스 트랙 형상의 플라즈마 트랙을 발생시키기 위한 구조이다.Here, the magnet 46 is disposed in a track shape around the central magnet 47 having a different polarity from the central magnet 47 and the central magnet 47 arranged in the longitudinal direction of the central region of the yoke plate 45. It has an outer magnet 48. The structure of the magnet 46 is a structure for generating a race track-shaped plasma track outside the circular electrode 41.
그리고 양 원형전극(41) 내부에 마련되는 양측 자기장발생부재(44)의 마그네트(46)는 상호 동일한 극성의 자극이 대향하도록 배치될 수도 있으며, 상이한 극성의 자극이 대향하도록 배치될 수도 있다. 이렇게 양측 자기장발생부재(44)가 상호 대향하게 배치되면 양 원형전극(41) 사이 영역에 플라즈마가 밀집 형성될 수 있고, 기재(S)는 양 원형전극(41)을 감아돌면서 두 번에 걸쳐 플라즈마 형성 부분을 지나게 된다. In addition, the magnets 46 of both magnetic field generating members 44 provided in the two circular electrodes 41 may be disposed so that magnetic poles having the same polarity face each other, or magnetic poles having different polarities may face each other. When the two magnetic field generating members 44 are disposed to face each other, plasma may be densely formed in the region between the two circular electrodes 41, and the substrate S may have two plasmas while winding the two circular electrodes 41. Pass the formation.
물론, 양 원형전극(41)에 마련된 양측 자기장발생부재(44)는 상호 대향하지 않는 형태로 배치될 수도 있다. Of course, both magnetic field generating members 44 provided on both circular electrodes 41 may be arranged so as not to face each other.
한편, 본 발명에 따른 플라즈마 화학기상 장치(1)는 도 6에 도시된 바와 같이, 자기장발생부재(44)가 원형전극(41)의 내주면에 대해 접근하는 위치와 이격되는 위치로 왕복 이동 가능하게 설치될 수도 있다. On the other hand, the plasma chemical vapor apparatus 1 according to the present invention, as shown in Figure 6, to enable the reciprocating movement to a position spaced apart from the position that the magnetic field generating member 44 approaches the inner peripheral surface of the circular electrode 41 It may be installed.
이는 자기장발생부재(44)를 구성하는 마그네트를 원형전극(41)의 반경 방향으로 왕복 이동시키는 거리조절수단(73)을 포함하는 구성에 의해 구현될 수 있는 것으로서, 거리조절수단(73)은 마그네트의 왕복 이동을 지지하는 가이드부(74)와, 마그네트를 가이드부(74)에 대해 이동 거리 조절 가능하게 이동시키는 거리조절부(77)로 마련될 수 있다. This can be implemented by a configuration including a distance adjusting means 73 for reciprocating the magnet constituting the magnetic field generating member 44 in the radial direction of the circular electrode 41, the distance adjusting means 73 is a magnet The guide portion 74 for supporting the reciprocating movement of the, and the distance adjusting portion 77 for moving the magnet so as to adjust the moving distance with respect to the guide portion 74 can be provided.
이때, 가이드부(74)는 원형전극(41) 내부 중앙 영역으로부터 원형전극(41)의 내주면 일 측을 향하는 고정가이드(75)와, 마그네트를 지지하면서 고정가이드(75)에 대해 상대 이동하는 이동가이드(76)로 구비될 수 있고, 이들 고정가이드(75)와 이동가이드(76) 사이에는 원활한 상대 이동을 위한 구름롤러나 베어링 등의 구름수단이 개재될 수 있다. At this time, the guide portion 74 moves relative to the fixed guide 75 while supporting the magnet and the fixed guide 75 toward one side of the inner circumferential surface of the circular electrode 41 from the inner central region of the circular electrode 41. It may be provided as a guide 76, and between the fixed guide 75 and the movement guide 76 may be interposed rolling means such as rolling rollers or bearings for smooth relative movement.
또한, 거리조절부(77)는 이동가이드(76)를 고정가이드(75)에 대해 상대 이동시키기 위한 구동력을 제공하는 것으로서, 이동가이드(76)를 이동 거리 조절 가능하게 원형전극(41)의 내주면에 대해 접근하는 위치와 이격되는 위치로 밀거나 당기는 구동력전달수단으로서 솔레노이드 또는 실린더나, 원동 기어나 캠 및 피동 기어나 캠 등을 포함하면서 모터에 의해 원동 기어나 원통 캠을 구동시키는 모터 등을 포함하는 구성등의 자동적 구성으로 마련될 수 있다. In addition, the distance adjusting unit 77 provides a driving force for relatively moving the movement guide 76 with respect to the fixed guide 75, the inner circumferential surface of the circular electrode 41 to adjust the movement distance of the movement guide 76 As a driving force transmission means for pushing or pulling to a position spaced apart from an approaching position, the motor includes a solenoid or a cylinder, a motor, a motor, a motor, or the like, driven by a motor, including a driven gear or cam and driven gear or cam. It can be provided with an automatic configuration such as configuration.
물론, 거리조절부(77)는 고정가이드(75)와 이동가이드(76) 간에 스토퍼 구조를 형성하고, 작업자가 원형전극(41)을 개방하여 수종으로 이동가이드(76)의 이동 거리를 조절하는 수동적 구성일 수도 있다. Of course, the distance adjusting unit 77 forms a stopper structure between the fixed guide 75 and the moving guide 76, and the operator opens the circular electrode 41 to adjust the moving distance of the moving guide 76 to several species. It may be a passive configuration.
또한, 자기장발생부재(44)는 원형전극(41) 내부에 고정되는 형태로 마련되거나, 회전각 조절 가능하게 마련될 수 있다. 자기장발생부재(44)가 고정되는 경우 원형전극(41)만 회전될 수 있으며, 자기장발생부재(44)가 회전각 조절 가능하게 회전될 경우에는 도 7과 같이, 별도의 각도조절수단(73a)를 구비하여 자기장발생부재(44)의 회전각을 자동 또는 수동적으로 조절할 수 있다. 이때, 각도조절수단(73a)을 자동적인 구성으로 마련하는 것은 원형전극(41)의 중심에 마련된 회전축(75a)에 자기장발생부재(44)을 지지하는 회동지지부재(74a)를 구비하여 모터 등을 이용하여 회전축(75a)을 회전시키는 구성으로 구현할 수 있다. 이 경우 모터(미도시)는 클러치(미도시) 구성을 포함하여 자기장발생부재(44)의 회전각 조절 외에 원형전극(41)을 회전시키는 용도로도 함께 이용될 수 있다. In addition, the magnetic field generating member 44 may be provided to be fixed inside the circular electrode 41 or may be provided to adjust the rotation angle. When the magnetic field generating member 44 is fixed, only the circular electrode 41 may be rotated. When the magnetic field generating member 44 is rotated to adjust the rotation angle, as shown in FIG. 7, an additional angle adjusting means 73a is provided. It can be provided to automatically or manually adjust the rotation angle of the magnetic field generating member 44. At this time, to provide the angle adjusting means (73a) in an automatic configuration is provided with a rotation support member (74a) for supporting the magnetic field generating member 44 on the rotating shaft (75a) provided in the center of the circular electrode 41, such as a motor It can be implemented in a configuration to rotate the rotating shaft (75a) using. In this case, the motor (not shown) may be used together with the purpose of rotating the circular electrode 41 in addition to adjusting the rotation angle of the magnetic field generating member 44 including a clutch (not shown) configuration.
이와 같은 자기장발생부재(44)의 거리조절 및 회전각 조절 구성은 전술 및 후술하는 실시예에서 원형전극(41)의 다양한 개수나 배치 형태에 모두 적용될 수 있다. Such a distance control and rotation angle control configuration of the magnetic field generating member 44 may be applied to any number or arrangement of the circular electrode 41 in the above-described and later embodiments.
이러한 자기장발생부재(44)의 거리조절 및 회전각 조절 구성에 의해 자기장의 강도나 플라즈마 형성 부분을 조절할 수 있다. By controlling the distance and rotation angle of the magnetic field generating member 44, the strength of the magnetic field or the plasma forming portion can be adjusted.
한편, 기재이송부(50)는 기재(S)가 롤투롤 방식으로 전극유닛(40)을 거쳐 이동하면서 성막영역에서 그 표면에 박막이 성막되도록 한다. 이를 위해 기재이송부(50)는 권취된 기재(S)를 권출하는 권출롤(51)과, 전극유닛(40)을 지난 기재(S)를 권취하는 권취롤(55)과, 권출롤(51)에서 권출된 기재(S)가 적절한 장력으로 전극유닛(40)의 양측 원형전극(41)을 거쳐 권취롤(55)로 권취되도록 가이드하는 복수의 가이드롤(53) 및 장력조절수단(미도시)을 구비할 수 있다. On the other hand, the substrate transfer unit 50 allows the substrate (S) to move through the electrode unit 40 in a roll-to-roll manner to form a thin film on its surface in the film formation region. To this end, the substrate transfer part 50 includes a unwinding roll 51 for unwinding the wound substrate S, a winding roll 55 for winding the substrate S past the electrode unit 40, and a unwinding roll 51. A plurality of guide rolls 53 and a tension adjusting means (not shown) for guiding the substrate (S) unwound from the coil) to the winding rolls 55 through the circular electrodes 41 on both sides of the electrode unit 40 at an appropriate tension. ) May be provided.
여기서, 기재(S)는 절연성 재료인 합성수지 필름이나 시트로서 PET, PEN, PES, 폴리카보네이트, 폴리올레핀, 폴리이미드 등의 다양한 합성수지재로 마련되거나 종이로 마련될 수 있다. 또한, 기재(S)는 Metal Foil이나 Cu Foil, 스텐레이스 Foil 등의 전도성 재질일 수도 있다. Here, the substrate S may be provided with various synthetic resin materials such as PET, PEN, PES, polycarbonate, polyolefin, polyimide, or the like as a synthetic resin film or sheet which is an insulating material. In addition, the base material S may be a conductive material such as metal foil, Cu foil, stainless steel foil, or the like.
그리고, 권출롤(51)과 권취롤(55) 및 가이드롤(53)은 권출롤(51)에서 권출된 기재(S)가 양측의 원형전극(41) 중 일 측의 원형전극(41)을 거친 이후, 다시 타 측의 원형전극(41)을 지나 권취롤(55)에 권취되는 범위에서 그 배치를 다양한 형태로 여건에 따라 변경할 수 있다. In addition, the unwinding roll 51, the unwinding roll 55, and the guide roll 53 may have the substrate S unwound from the unwinding roll 51 to have a circular electrode 41 on one side of the circular electrodes 41 on both sides. After roughing, the arrangement may be changed in various forms according to the conditions in the range of being wound on the winding roll 55 again past the circular electrode 41 on the other side.
한편, 전원공급부(60)는 플라즈마 발생을 위한 전원으로서 고주파 교류 전원을 양 원형전극(41)으로 공급한다. 전원으로 고주파 교류 전원을 선택하는 것은 원형전극(41)의 외주 표면에 절연층(43)이 형성되어 있는 것을 고려한 것이다. On the other hand, the power supply unit 60 supplies high-frequency AC power to both circular electrodes 41 as power for plasma generation. The selection of the high frequency AC power source as the power source takes into account that the insulating layer 43 is formed on the outer circumferential surface of the circular electrode 41.
여기서, 고주파 교류 전원은 고밀도 플라즈마를 형성하기 위해 HF(High Frequency : 3~30 MHz 주파수의 교류)전원이나, VHF(Very High Frequency : 30~300 MHz 주파수의 교류)전원을 사용하는 것이 바람직하다. Here, the high frequency AC power supply is preferably an HF (High Frequency: AC alternating current of 3 to 30 MHz frequency) power source or VHF (Very High Frequency: AC alternating frequency of 30 to 300 MHz frequency) power source to form a high density plasma.
이때, 전원의 극성은 플라즈마 형태나 공정 품질 등을 고려하여 원형전극(41)에 양극(+) 또는 음극(-)을 선택적으로 접속할 수 있다. At this time, the polarity of the power source may be selectively connected to the positive electrode (+) or the negative electrode (-) in consideration of the plasma form, process quality and the like.
이러한 구성을 갖는 본 발명에 따른 플라즈마 화학기상 장치(1)를 이용한 플라즈마 화학기상 공정 수행 과정을 성막 공정을 예로 하여 간략하게 살펴본다. The process of performing the plasma chemical vapor process using the plasma chemical vapor apparatus 1 according to the present invention having such a configuration will be briefly described using the film forming process as an example.
먼저, 진공챔버(10) 내부를 진공조절부(20)에서 적절한 진공도로 진공시킨다. 그리고 가스공급부(30)에서 적절한 유량으로 성막 가스를 공정영역으로 투입하면서, 진공조절부(20)에서 적절한 진공도로 진공챔버(10) 내부를 진공을 유지시킨다. First, the inside of the vacuum chamber 10 is vacuumed to an appropriate vacuum degree in the vacuum control unit 20. Then, the deposition gas is introduced into the process region at an appropriate flow rate from the gas supply unit 30, and the vacuum control unit 20 maintains the vacuum in the vacuum chamber 10 at an appropriate vacuum degree.
진공챔버(10) 내부가 적절한 진공 상태로 형성되면 전원공급부(60)에서 원형전극(41)으로 고주파 교류 전원을 공급한다. When the inside of the vacuum chamber 10 is formed in an appropriate vacuum state, the high frequency AC power is supplied from the power supply unit 60 to the circular electrode 41.
그러면, 회전하는 양 원형전극(41) 사이에 양측 자기장발생부재(44)에서 발생하는 자기장에 의해 플라즈마가 형성되면서, 양 원형전극(41)을 거쳐 이송되는 기재(S)의 표면에 박막이 성막된다. 이때, 양 원형전극(41)의 외주 표면에 절연층(43)이 형성되어 있기 때문에, 기재(S)는 전술한 바와 같이, 도전성 기재(S)일 수 있다. 물론 절연성 기재(S)일 수도 있다. Then, a thin film is formed on the surface of the substrate S transferred through both circular electrodes 41 while plasma is formed by the magnetic fields generated by both magnetic field generating members 44 between the rotating both circular electrodes 41. do. In this case, since the insulating layer 43 is formed on the outer circumferential surface of both circular electrodes 41, the base material S may be the conductive base material S as described above. Of course, the insulating base material S may be sufficient.
기재(S)가 양 원형전극(41)을 지나는 성막과정에서는 기재(S)가 양 원형전극(41) 표면에 밀착되어 있어 중성입자뿐만 아니라 다수의 양이온들이 외부 전기장에 의해 강하게 기재(S) 방향으로 힘을 받게 되며, 밀도가 높은 플라즈마 영역이 기재(S) 바로 표면에 존재하게 되어 성막속도가 월등히 증가하게 된다.In the film forming process in which the substrate S passes through both the circular electrodes 41, the substrate S is in close contact with both surfaces of the circular electrodes 41, so that not only neutral particles but also a plurality of cations are strongly directed by the external electric field. Force, and a high density plasma region is present on the surface of the substrate (S), thereby greatly increasing the deposition rate.
또한, 기재(S)가 한 쌍의 원형전극(41) 중 일 측의 원형전극(41) 표면을 지나고 이후 타 측의 원형전극(41)을 지나는 과정으로 기재(S)에 박막이 성막되므로 박막의 두께를 두껍고 빠르게 고품질로 성막될 수 있다. In addition, the thin film is deposited on the base material S in a process in which the base material S passes through the surface of the circular electrode 41 on one side of the pair of circular electrodes 41 and then passes through the circular electrode 41 on the other side. The thickness of the film can be thick and quickly formed with high quality.
한편, 기재(S)에 박막이 성막되는 성막과정이 완료되면, 전원공급부(60)에서 전원을 차단하고, 가스공급부(30)에서 가스 공급을 중지한다. 그리고, 진공조절부(20)에서 진공챔버(10) 내부의 진공을 파기한다. On the other hand, when the film forming process of forming a thin film on the substrate (S) is completed, the power supply is cut off from the power supply unit 60, the gas supply unit 30 stops supplying gas. Then, the vacuum control unit 20 discards the vacuum in the vacuum chamber 10.
진공챔버(10) 내부의 진공이 파기되면, 권취롤(55)에 권취된 박막이 성막된 기재(S)를 진공챔버(10) 외부로 인출시킴으로써, 본 발명에 따른 플라즈마 화학기상 장치(1)를 이용한 성막 공정을 마무리한다. When the vacuum inside the vacuum chamber 10 is destroyed, the substrate S on which the thin film wound on the winding roll 55 is formed is taken out to the outside of the vacuum chamber 10, whereby the plasma chemical vapor apparatus 1 according to the present invention. The film forming process is finished.
이와 같이, 본 발명에 따른 플라즈마 화학기상 장치(1)는 원형전극(41)의 외주표면에 절연층(43)을 형성함으로써, 절연성 및 전도성 재질의 기재(S)에 고속 및 고품질의 해당 공정이 이루어진다. As described above, the plasma chemical vapor apparatus 1 according to the present invention forms the insulating layer 43 on the outer circumferential surface of the circular electrode 41, thereby providing a high-speed and high-quality process for the substrate S of insulating and conductive materials. Is done.
한편, 본 발명에 따른 플라즈마 화학기상 장치는 절연층(43)을 갖는 원형전극(41)들이 도 8 내지 도 11과 같이, 다양한 형태로 배치될 수 있다. Meanwhile, in the plasma chemical vapor apparatus according to the present invention, the circular electrodes 41 having the insulating layer 43 may be arranged in various forms, as shown in FIGS. 8 to 11.
먼저, 도 8에 도시된 바와 같이, 복수의 원형전극(41)이 직렬형으로 상호 인접하게 배치될 수 있다. 이 경우 기재이송부(50)의 가이드롤(53)은 원형전극(41)들의 일측 사이 영역에 마련되어 기재(S)가 가이드롤(53)과 원형전극(41)을 지그재그 상으로 감아도는 형태로 이동시킴으로써, 기재(S)의 일면에 해당 공정(성막이나 식각 또는 표면처리 공정 중 어느 하나)을 수행할 수 있다. 이때, 자기장발생부재(44)는 원형전극(41)을 감아도는 기재(S)측으로 자기장을 형성하여 플라즈마를 밀집시킨다. First, as shown in FIG. 8, a plurality of circular electrodes 41 may be disposed adjacent to each other in series. In this case, the guide roll 53 of the substrate transfer part 50 is provided in an area between one side of the circular electrodes 41 so that the substrate S is wound around the guide roll 53 and the circular electrode 41 in a zigzag shape. By doing so, the corresponding step (any one of film formation, etching or surface treatment) can be performed on one surface of the substrate S. At this time, the magnetic field generating member 44 forms a magnetic field toward the substrate S, which winds the circular electrode 41, thereby densifying the plasma.
또한, 전술한 도 8의 실시예 경우는 도 9와 같이, 기재(S)의 양면에 해당 공정을 수행하는 용도로도 이용될 수 있다. 이때, 기재(S)는 가이드롤(53)을 감아돌지 않고 원형전극(41)을 지그재그 형태로 감아 돌게 되며, 인접하는 원형전극(41)들의 자기장발생부재(44)들은 상호 반대 방향으로 기재(S)를 향해 자기장을 형성하여 플라즈마를 밀집시킨다. 이에 의해, 기재(S)의 양면에 해당 공정(성막이나 식각 또는 표면처리 공정 중 어느 하나)을 수행할 수 있다.In addition, in the case of the embodiment of FIG. 8 described above, as shown in FIG. 9, it may also be used for performing a corresponding process on both sides of the substrate (S). At this time, the substrate S is wound around the circular electrode 41 in a zigzag form without winding the guide roll 53, the magnetic field generating members 44 of the adjacent circular electrodes 41 are in the opposite direction to each other ( A magnetic field is formed toward S) to condense the plasma. Thereby, the process (any one of film-forming, etching, or surface treatment process) can be performed on both surfaces of the base material S. FIG.
이러한 도 8 및 도 9의 실시예의 경우에도 원형전극(41)들의 외주면에 절연층(43)이 마련됨으로써, 절연성 및 전도성 재질의 기재(S)에 고속 및 고품질의 해당 공정 수행이 이루어진다. 8 and 9, the insulating layer 43 is provided on the outer circumferential surfaces of the circular electrodes 41, so that a corresponding process of high speed and high quality is performed on the substrate S of insulating and conductive materials.
또한, 본 발명에 따른 플라즈마 화학기상 장치는 절연층(43)을 갖는 원형전극(41)들이 도 10에 도시된 바와 같은 복수 쌍이 병렬 배치된 형태를 가질 수 있다. 이때, 인접하는 원형전극(41)들의 자기장발생부재(44)는 병렬 방향으로 상호 대향하게 배치되거나, 도시하지 않았지만 직렬 방향으로 상호 대향하게 배치될 수 있다. 이 실시예의 경우, 기재(S)가 플라즈마에 노출되는 영역이 다수 영역으로 증가되면서 절연성 및 전도성 재질의 기재(S)에 보다 고속이면서 고품질로 해당 공정 수행이 이루어질 수 있다.In addition, the plasma chemical vapor apparatus according to the present invention may have a shape in which a plurality of pairs of circular electrodes 41 having an insulating layer 43 are arranged in parallel as shown in FIG. 10. In this case, the magnetic field generating members 44 of the adjacent circular electrodes 41 may be disposed to face each other in a parallel direction or may be disposed to face each other in a series direction although not shown. In this embodiment, as the substrate S is exposed to the plasma is increased to a plurality of regions, the process may be performed at a higher speed and higher quality to the substrate S of the insulating and conductive material.
또한, 본 발명에 따른 플라즈마 화학기상 장치는 절연층(43)을 갖는 원형전극(41)들이 도 11에 도시된 바와 같은 적어도 한 쌍이 인접 배치된 형태에서 원형전극(41)에 인접하는 영역에 적어도 하나의 드럼(80)이 회전 가능하게 마련되어 있는 형태를 가질 수 있다. 기재(S)는 일측의 원형전극(41)으로부터 드럼(80)을 거쳐 타측의 원형전극(41)을 감아돌도록 이동된다. In addition, the plasma chemical vapor apparatus according to the present invention has at least a region adjacent to the circular electrode 41 in a form in which at least one pair of the circular electrodes 41 having the insulating layer 43 is arranged adjacent to each other as shown in FIG. 11. One drum 80 may have a form rotatably provided. The base material S is moved from the circular electrode 41 on one side via the drum 80 to wind the circular electrode 41 on the other side.
이때, 인접하는 원형전극(41)들의 자기장발생부재(44)는 드럼(80)을 향하도록 배치됨으로서, 양 원형전극(41)과 드럼(80) 사이 영역(a 내지 d)에 플라즈마가 밀집된다. At this time, the magnetic field generating members 44 of the adjacent circular electrodes 41 are disposed to face the drum 80, so that plasma is concentrated in the regions a to d between the both circular electrodes 41 and the drum 80. .
이에 의해, 기재(S)는 이송과정에서 양 원형전극(41)과 드럼(80) 사이 영역들(a 내지 d)에서 모두 4번에 걸쳐 플라즈마에 노출된다. Thereby, the substrate S is exposed to the plasma four times in the regions a to d between the two circular electrodes 41 and the drum 80 during the transfer process.
물론, 도시하지 않았지만, 원형전극(41)의 수와 드럼(80)의 수는 더 많은 복수로 마련될 수 있으며, 이 경우 기재(S)가 플라즈마에 노출되는 영역은 더욱 증가한다. Of course, although not shown, the number of the circular electrodes 41 and the number of the drums 80 may be provided in a plurality, and in this case, the area where the substrate S is exposed to the plasma increases further.
이에 의해 기재(S)가 플라즈마에 노출되는 영역이 다수 영역으로 증가되면서 절연성 및 전도성 재질의 기재(S)에 보다 고속이면서 고품질로 해당 공정 수행이 이루어질 수 있다. As a result, the area of the substrate S exposed to the plasma is increased to a plurality of areas, so that the process may be performed at a higher speed and higher quality to the substrate S of the insulating and conductive material.
도시하지 않았지만, 경우에 따라서, 단일의 원형전극(41)과 단일의 드럼(80)이 이용되고 자기장발생부재(44)에서 발생하는 자기장이 드럼(80)을 향하도록 하여 기재(S)가 플라즈마에 노출되는 영역을 2곳으로 할 수도 있다. 또한, 경우에 따라서 자기장발생부재(44)가 드럼(80) 내부에 위치하고 원형전극을 향하는 방향으로 자기장을 형성할 수 있음은 물론이다. Although not shown, in some cases, a single circular electrode 41 and a single drum 80 are used and the magnetic field generated by the magnetic field generating member 44 is directed toward the drum 80 so that the substrate S is plasma. Two areas may be exposed. In addition, in some cases, the magnetic field generating member 44 may be located inside the drum 80 to form a magnetic field in a direction toward the circular electrode.
이 외에도 본 발명에 따르면, 절연층(43)을 갖는 원형전극(41)의 수나 배치 형태는 다양한 형태로 구성될 수 있음은 자명하다. In addition, according to the present invention, it is obvious that the number or arrangement of the circular electrodes 41 having the insulating layer 43 may be configured in various forms.
이와 같이, 본 발명에 따른 플라즈마 화학기상 장치는 원형전극의 외주표면에 절연층을 형성함으로써, 절연성 및 전도성 재질의 기재에 고속 및 고품질의 성막 또는 식각 또는 표면처리 공정을 수행할 수 있다. As such, the plasma chemical vapor apparatus according to the present invention may perform a high-speed and high-quality film formation or etching or surface treatment process on an insulating and conductive material by forming an insulating layer on the outer circumferential surface of the circular electrode.
본 발명은 플라즈마 화학기상 장치에서 절연성 및 전도성 재질의 기재에 고속 및 고품질의 성막이 가능하다. The present invention enables high-speed and high-quality film formation on an insulating and conductive material substrate in a plasma chemical vapor apparatus.

Claims (17)

  1. 플라즈마 화학기상 장치에 있어서, In the plasma chemical vapor apparatus,
    진공챔버;Vacuum chamber;
    상기 진공챔버 내부의 진공도를 조절하는 진공조절부;A vacuum control unit for adjusting the degree of vacuum in the vacuum chamber;
    상기 진공챔버 내부에 공정 가스를 공급하는 가스공급부;A gas supply unit supplying a process gas into the vacuum chamber;
    상기 진공챔버 내부에 롤 형태로 회전 가능하게 마련되며, 외주 표면에 절연층이 형성되어 있는 적어도 하나의 원형전극;At least one circular electrode rotatably provided in a roll shape in the vacuum chamber and having an insulating layer formed on an outer circumferential surface thereof;
    상기 원형전극 내에 마련되어 상기 원형전극의 외측으로 플라즈마 형성을 위한 자기장을 발생하는 적어도 하나의 자기장발생부재;At least one magnetic field generating member provided in the circular electrode to generate a magnetic field for plasma formation outside the circular electrode;
    기재가 상기 원형전극의 플라즈마 형성 부분에 밀착되어 감아돌도록 상기 기재를 롤투롤 형태로 이송하는 기재이송부;A substrate transfer part for transferring the substrate in a roll-to-roll form so that the substrate adheres to the plasma forming portion of the circular electrode;
    상기 원형전극에 전원을 공급하는 전원공급부를 포함하는 것을 특징으로 하는 플라즈마 화학기상 장치.Plasma chemical vapor apparatus comprising a power supply for supplying power to the circular electrode.
  2. 제1항에 있어서, The method of claim 1,
    상기 절연층은 절연성 세라믹, 테프론, 산화규소, 질화규소 중 어느 하나의 절연물질을 상기 원형전극의 외주 표면에 증착 또는 코팅하여 형성되는 것을 특징으로 하는 플라즈마 화학기상 장치.The insulating layer is plasma chemical vapor apparatus, characterized in that formed by depositing or coating an insulating material of any one of insulating ceramic, Teflon, silicon oxide, silicon nitride on the outer surface of the circular electrode.
  3. 제1항에 있어서, The method of claim 1,
    상기 절연층은 상기 원형전극의 재질에 따라 Al2O3, MgO, TiO2 중 어느 하나의 절연물질을 상기 원형전극의 외주 표면에 표면개질처리하여 형성되는 것을 특징으로 하는 플라즈마 화학기상 장치.The insulating layer is plasma chemical vapor apparatus, characterized in that formed by surface modification treatment of the insulating material of any one of Al 2 O 3 , MgO, TiO 2 according to the material of the circular electrode on the outer peripheral surface of the circular electrode.
  4. 제1항에 있어서, The method of claim 1,
    상기 절연층은 상기 원형전극의 외주 표면에 둘러싸는 절연체인 것을 특징으로 하는 플라즈마 화학기상 장치.And the insulating layer is an insulator surrounding the outer circumferential surface of the circular electrode.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 절연체는 중공관 형태로 마련되며, 상기 원형전극이 상기 절연체에 삽입되는 것을 특징으로 하는 플라즈마 화학기상 장치.The insulator is provided in the form of a hollow tube, the plasma electrode is characterized in that the circular electrode is inserted into the insulator.
  6. 제4항에 있어서, The method of claim 4, wherein
    상기 절연체는 시트 형태로 마련되어 상기 원형전극의 외주표면에 접합되는 것을 특징으로 하는 플라즈마 화학기상 장치.The insulator is provided in the form of a sheet, the plasma chemical vapor apparatus, characterized in that bonded to the outer peripheral surface of the circular electrode.
  7. 제1항에 있어서, The method of claim 1,
    상기 원형전극은 상호 인접하게 배치되는 복수로 마련되는 것을 특징으로 하는 플라즈마 화학기상 장치. Plasma chemical vapor apparatus, characterized in that the plurality of circular electrodes are provided adjacent to each other.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 원형전극들은 적어도 한 쌍으로 상호 인접하게 배치되는 것을 특징으로 하는 플라즈마 화학기상 장치. And said circular electrodes are arranged adjacent to each other in at least one pair.
  9. 제7항에 있어서, The method of claim 7, wherein
    상기 원형전극들은 직렬형으로 상호 인접하게 배치되는 것을 특징으로 하는 플라즈마 화학기상 장치. And said circular electrodes are arranged adjacent to each other in series.
  10. 제7항에 있어서, The method of claim 7, wherein
    상기 원형전극들은 병렬형으로 상호 인접하게 복수 쌍으로 배치되는 것을 특징으로 하는 플라즈마 화학기상 장치. And the circular electrodes are arranged in parallel in a plurality of pairs adjacent to each other.
  11. 제7항 내지 10항 중 어느 한 항에 있어서, The method according to any one of claims 7 to 10,
    상기 플라즈마 형성 부분은 상호 인접하는 양 원형전극의 사이 영역에 형성되는 것을 특징으로 하는 플라즈마 화학기상 장치. And the plasma forming portion is formed in a region between adjacent circular electrodes.
  12. 제1항 내지 제10항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 10,
    상기 자기장발생부재는 상기 원형전극의 내주면에 대해 접근하는 위치와 이격되는 위치로 왕복 이동 가능하게 설치되는 것을 특징으로 하는 플라즈마 화학기상 장치. And the magnetic field generating member is installed to reciprocate to a position spaced apart from a position approaching the inner circumferential surface of the circular electrode.
  13. 제1항 내지 제10항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 10,
    상기 자기장발생부재는 상기 전극의 원주 방향으로 회전각 조절 가능하게 하는 설치되는 것을 특징으로 하는 플라즈마 화학기상 장치. The magnetic field generating member is installed to enable to control the rotation angle in the circumferential direction of the electrode.
  14. 제1항 내지 제10항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 10,
    상기 원형전극에 인접하는 영역에서 상기 기재가 감아 도는 적어도 하나의 드럼을 더 포함하며, Further comprising at least one drum wound around the substrate in a region adjacent to the circular electrode,
    상기 플라즈마 형성 부분은 상기 원형전극과 상기 드럼 사이 영역에 형성되는 것을 특징으로 하는 플라즈마 화학기상 장치. And the plasma forming portion is formed in a region between the circular electrode and the drum.
  15. 제1항 내지 제10항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 10,
    상기 전원공급부로부터 상기 원형전극에 공급되는 전원은 고주파 교류 전원인 것을 특징으로 하는 플라즈마 화학기상 장치.The power supplied to the circular electrode from the power supply unit is a plasma chemical vapor apparatus, characterized in that the high frequency AC power.
  16. 제15항에 있어서, The method of claim 15,
    상기 고주파 교류 전원은 HF(High Frequency : 3~30 MHz 주파수의 교류)전원인 것을 특징으로 하는 플라즈마 화학기상 장치.The high frequency AC power source is a plasma chemical vapor apparatus, characterized in that the HF (High Frequency: AC of 3 ~ 30 MHz) power source.
  17. 제16항에 있어서, The method of claim 16,
    상기 고주파 교류 전원은 VHF(Very High Frequency : 30~300 MHz 주파수의 교류)전원인 것을 특징으로 하는 플라즈마 화학기상 장치.The high frequency AC power source is a plasma chemical vapor apparatus, characterized in that the VHF (Very High Frequency: 30 ~ 300 MHz AC) power.
PCT/KR2013/011133 2012-12-06 2013-12-04 Plasma chemical vapour deposition device WO2014088302A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0140657 2012-12-06
KR20120140657 2012-12-06
KR1020130098377A KR20150002408A (en) 2013-06-28 2013-08-20 Plasma chemical vapor apparatus
KR10-2013-0098377 2013-08-20

Publications (1)

Publication Number Publication Date
WO2014088302A1 true WO2014088302A1 (en) 2014-06-12

Family

ID=50883675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011133 WO2014088302A1 (en) 2012-12-06 2013-12-04 Plasma chemical vapour deposition device

Country Status (1)

Country Link
WO (1) WO2014088302A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3419044A3 (en) * 2017-06-22 2019-02-27 Bobst Manchester Limited Pepvd machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299361A (en) * 2005-04-22 2006-11-02 Dainippon Printing Co Ltd Film-forming apparatus and film-forming method
KR20090107057A (en) * 2007-02-13 2009-10-12 가부시키가이샤 고베 세이코쇼 Continuous film forming apparatus
KR20110062477A (en) * 2009-12-03 2011-06-10 (주)에스엔텍 A cylindrical sputtering cathode
KR20120049554A (en) * 2010-11-09 2012-05-17 경희대학교 산학협력단 Rotating cylindrical facing target sputtering system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299361A (en) * 2005-04-22 2006-11-02 Dainippon Printing Co Ltd Film-forming apparatus and film-forming method
KR20090107057A (en) * 2007-02-13 2009-10-12 가부시키가이샤 고베 세이코쇼 Continuous film forming apparatus
KR20110062477A (en) * 2009-12-03 2011-06-10 (주)에스엔텍 A cylindrical sputtering cathode
KR20120049554A (en) * 2010-11-09 2012-05-17 경희대학교 산학협력단 Rotating cylindrical facing target sputtering system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3419044A3 (en) * 2017-06-22 2019-02-27 Bobst Manchester Limited Pepvd machine

Similar Documents

Publication Publication Date Title
WO2018084508A1 (en) Induction coil structure and device for generating inductively coupled plasma
US7438783B2 (en) Plasma processing apparatus and plasma processing method
RU2417275C1 (en) Device for continuous film forming
US20110232846A1 (en) Magnetic field generator for magnetron plasma
WO2013133552A1 (en) Plasma processing method and substrate processing apparatus
JP2001338912A (en) Plasma processing equipment and method for processing thereof
WO2014104615A1 (en) Plasma apparatus and substrate processing apparatus
WO2014088302A1 (en) Plasma chemical vapour deposition device
KR20140073401A (en) Plasma chemical vapor apparatus
WO2015026087A1 (en) Plasma chemical vapour deposition device
KR20140072492A (en) Plasma cvd apparatus
WO2014208943A1 (en) Plasma chemical vapor deposition device
JP5634317B2 (en) Deposition equipment
WO2016108568A1 (en) Plasma processing apparatus
WO2013073786A1 (en) Method for manufacturing a thin film
WO2017142351A1 (en) Cathode for plasma treatment apparatus
KR101521606B1 (en) Plasma cvd apparatus
KR20140144770A (en) Plasma processing roll-to-roll system using a rotating electrode with capillary
KR101444856B1 (en) Plasma etching device
KR101619152B1 (en) Plasma cvd apparatus
JP5236777B2 (en) Plasma processing equipment
KR101538409B1 (en) Plasma chemical vapor apparatus and Cathode unit for plasma chemical vapor apparatus
WO2024010295A1 (en) Gas spraying apparatus, substrate processing apparatus, and thin film deposition method
JPH07106094A (en) Microwave plasma generating device
WO2023128325A1 (en) Substrate treatment apparatus

Legal Events

Date Code Title Description
WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 10-2013-0098377

Country of ref document: KR

Date of ref document: 20140619

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859923

Country of ref document: EP

Kind code of ref document: A1

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 10-2013-0098377

Country of ref document: KR

Date of ref document: 20140619

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859923

Country of ref document: EP

Kind code of ref document: A1