JP5634317B2 - Deposition equipment - Google Patents

Deposition equipment Download PDF

Info

Publication number
JP5634317B2
JP5634317B2 JP2011085846A JP2011085846A JP5634317B2 JP 5634317 B2 JP5634317 B2 JP 5634317B2 JP 2011085846 A JP2011085846 A JP 2011085846A JP 2011085846 A JP2011085846 A JP 2011085846A JP 5634317 B2 JP5634317 B2 JP 5634317B2
Authority
JP
Japan
Prior art keywords
film
cylindrical member
mask plate
film forming
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011085846A
Other languages
Japanese (ja)
Other versions
JP2012222121A (en
Inventor
智彦 岡山
智彦 岡山
菊池 正志
正志 菊池
英之 小形
英之 小形
裕子 加藤
裕子 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011085846A priority Critical patent/JP5634317B2/en
Publication of JP2012222121A publication Critical patent/JP2012222121A/en
Application granted granted Critical
Publication of JP5634317B2 publication Critical patent/JP5634317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、フィルム表面に薄膜を形成する成膜装置に関する。   The present invention relates to a film forming apparatus for forming a thin film on a film surface.

図7は、フィルム151表面に成膜を行うのに用いられる従来の成膜装置100の内部構成図である。
従来の成膜装置100は、真空槽111と、真空槽111内を真空排気する真空排気装置146と、真空槽111内に原料ガスを放出する原料ガス放出部125と、原料ガスをプラズマ化するプラズマ生成部126と、表面に開口128が設けられたマスク板127と、マスク板127の表面と対向して配置された台座112と、フィルム151を台座112とマスク板127との間を、マスク板127表面と平行に走行させる走行手段170と、マスク板127をマスク板127表面に対して直角な方向に移動させるマスク板移動手段179とを有している。
FIG. 7 is an internal configuration diagram of a conventional film forming apparatus 100 used to form a film on the surface of the film 151.
The conventional film forming apparatus 100 includes a vacuum chamber 111, a vacuum exhaust device 146 that evacuates the vacuum chamber 111, a source gas discharge unit 125 that discharges the source gas into the vacuum chamber 111, and converts the source gas into plasma. A plasma generator 126, a mask plate 127 having an opening 128 on the surface, a pedestal 112 disposed to face the surface of the mask plate 127, and a film 151 between the pedestal 112 and the mask plate 127 are masked. A traveling unit 170 that travels in parallel with the surface of the plate 127 and a mask plate moving unit 179 that moves the mask plate 127 in a direction perpendicular to the surface of the mask plate 127 are provided.

従来の成膜装置100を用いた成膜方法を説明すると、まず、真空排気装置146により真空槽111内を真空排気し、真空雰囲気を形成しておく。走行手段170によりフィルム151を走行させて、フィルム151表面の成膜領域がマスク板127の開口128と対向する位置でフィルム151の走行を停止する。
マスク板移動手段179により、マスク板127をフィルム151に近づける方向に移動させ、マスク板127表面をフィルム151表面と密着させる。
The film forming method using the conventional film forming apparatus 100 will be described. First, the vacuum chamber 111 is evacuated by the vacuum evacuating apparatus 146 to form a vacuum atmosphere. The film 151 is caused to travel by the traveling means 170, and the traveling of the film 151 is stopped at a position where the film formation region on the surface of the film 151 faces the opening 128 of the mask plate 127.
The mask plate 127 is moved in a direction approaching the film 151 by the mask plate moving means 179 so that the surface of the mask plate 127 is in close contact with the surface of the film 151.

原料ガス放出部125から真空槽111内に原料ガスを放出させ、プラズマ生成部126により原料ガスをプラズマ化させると、原料ガスのプラズマはフィルム151表面のうちマスク板127の開口128から露出する部分に到達して、化学反応し、フィルム151表面の成膜領域に薄膜が形成される。   When the source gas is discharged from the source gas discharge unit 125 into the vacuum chamber 111 and the source gas is turned into plasma by the plasma generation unit 126, the plasma of the source gas is exposed from the opening 128 of the mask plate 127 on the surface of the film 151. To reach a chemical reaction, and a thin film is formed in the film formation region on the surface of the film 151.

フィルム151表面の成膜領域に薄膜を形成した後、マスク板移動手段179によりマスク板127をフィルム151から遠ざかる方向に移動させ、マスク板127表面をフィルム151表面から離間させる。   After a thin film is formed in the film forming area on the surface of the film 151, the mask plate 127 is moved away from the film 151 by the mask plate moving means 179, and the surface of the mask plate 127 is separated from the surface of the film 151.

走行手段170によりフィルム151を走行させて、フィルム151表面の次の成膜領域がマスク板127の開口128と対向する位置でフィルム151の走行を停止させ、上述の成膜工程と同様にして、次の成膜領域に薄膜を形成する。   The film 151 is caused to travel by the traveling means 170, and the traveling of the film 151 is stopped at a position where the next film formation region on the surface of the film 151 faces the opening 128 of the mask plate 127. A thin film is formed in the next film formation region.

従来の成膜装置100では、フィルム151を静止させた状態で成膜工程を行っていたため、フィルム151の走行の停止、再開に時間と手間がかかり、生産時間が長くなるという問題があった。   In the conventional film forming apparatus 100, since the film forming process is performed in a state where the film 151 is stationary, it takes time and effort to stop and restart the traveling of the film 151, and there is a problem that the production time becomes long.

また、成膜工程では、マスク板127の表面をフィルム151表面に密着させるため、フィルム151表面が損傷しやすく、フィルム151表面にTFTなどの素子構造を作成することは困難であった。   In the film forming process, the surface of the mask plate 127 is brought into close contact with the surface of the film 151, so that the surface of the film 151 is easily damaged, and it is difficult to form an element structure such as a TFT on the surface of the film 151.

特開2008−57020号公報JP 2008-57020 A 特開2008−156669号公報JP 2008-156669 A

本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、マスク板をフィルム表面と接触させずに成膜できる成膜装置を提供することにある。   The present invention was created to solve the above-described disadvantages of the prior art, and an object thereof is to provide a film forming apparatus capable of forming a film without bringing the mask plate into contact with the film surface.

上記課題を解決するために本発明は、真空槽と、前記真空槽内に配置され、中心軸線を中心に回転できる円筒部材と、前記円筒部材の外側に、前記円筒部材の外周に沿って配置された複数の成膜部と、を有し、各前記成膜部は、前記真空槽内に、前記円筒部材の外周に沿って互いに離間して配置された第一、第二の仕切板と、前記第一、第二の仕切板の間の成膜空間を真空排気する真空排気部と、前記成膜空間に原料ガスを放出する原料ガス放出部と、前記成膜空間内の原料ガスをプラズマ化するプラズマ生成部と、前記第一、第二の仕切板に架設され、表面が前記円筒部材の外周側面と対向され、前記表面には開口が設けられたマスク板と、をそれぞれ有し、前記円筒部材の外周側面に裏面が密着し、前記円筒部材の回転に伴って、各前記マスク板の前記開口と対面しながら走行するフィルムの表面に薄膜を形成する成膜装置であって、各前記成膜空間の外側に副ガスを放出する副ガス放出部を有し、各前記マスク板の前記円筒部材と対面する部分には排気口が形成され、前記マスク板と前記円筒部材との間の気体を前記排気口から排気する成膜装置である。
本発明は成膜装置であって、前記排気口は、前記マスク板の前記開口の外側を取り囲んで環状に離間して複数個配置された成膜装置である。
本発明は成膜装置であって、前記排気口は、前記マスク板の前記開口の外側を取り囲む環形状に形成された成膜装置である。
本発明は成膜装置であって、前記排気口は、前記マスク板の前記表面のうち、前記マスク板の外周より前記開口の内周に近い位置に形成された成膜装置である。
In order to solve the above problems, the present invention provides a vacuum chamber, a cylindrical member disposed in the vacuum chamber and capable of rotating around a central axis, and disposed outside the cylindrical member along the outer periphery of the cylindrical member. A plurality of film forming units, and each of the film forming units is disposed in the vacuum chamber and spaced apart from each other along the outer periphery of the cylindrical member. A vacuum evacuation unit that evacuates the film formation space between the first and second partition plates, a source gas discharge unit that discharges a source gas into the film formation space, and a plasma of the source gas in the film formation space And a mask plate provided on the first and second partition plates, the surface of which is opposed to the outer peripheral side surface of the cylindrical member, and the surface is provided with an opening. The back surface is in close contact with the outer peripheral side surface of the cylindrical member, and each said A film forming apparatus for forming a thin film on a surface of a film that travels while facing the opening of a disc plate, wherein the mask includes a sub gas releasing portion that discharges a sub gas outside each of the film forming spaces. An exhaust port is formed in a portion of the plate facing the cylindrical member, and the film forming apparatus exhausts the gas between the mask plate and the cylindrical member from the exhaust port.
The present invention is a film forming apparatus, wherein the exhaust port surrounds the outside of the opening of the mask plate and is arranged in a plurality spaced apart in an annular shape.
This invention is a film-forming apparatus, Comprising: The said exhaust port is a film-forming apparatus formed in the ring shape surrounding the outer side of the said opening of the said mask board.
The present invention is a film forming apparatus, wherein the exhaust port is formed in a position closer to an inner periphery of the opening than an outer periphery of the mask plate in the surface of the mask plate.

マスク板の表面とフィルム表面との間の隙間には副ガスが入るため、プラズマ中のラジカルは副ガスに押しやられて隙間に侵入できず、薄膜端部の膜質が改善される。   Since the secondary gas enters the gap between the mask plate surface and the film surface, radicals in the plasma are pushed by the secondary gas and cannot enter the gap, and the film quality at the end of the thin film is improved.

本発明の成膜装置の内部構成図。The internal block diagram of the film-forming apparatus of this invention. 成膜部の拡大内部構成図。The expansion internal block diagram of the film-forming part. (a)〜(e):TFTの製造方法を説明するための図。(A)-(e): The figure for demonstrating the manufacturing method of TFT. 第二例の成膜部の拡大内部構成図。The expansion internal block diagram of the film-forming part of a 2nd example. マスク板の平面図。The top view of a mask board. マスク板の別例の平面図。The top view of another example of a mask board. 従来の成膜装置の内部構成図。The internal block diagram of the conventional film-forming apparatus. マスク板に排気口が設けられていない構造を説明するための図。The figure for demonstrating the structure where the exhaust port is not provided in the mask board.

<成膜装置の構造>
本発明の成膜装置の構造を説明する。
図1は、成膜装置10の内部構成図である。
成膜装置10は、真空槽11と、真空槽11内に配置され、中心軸線を中心に回転できる円筒部材12と、円筒部材12の外側に、円筒部材12の外周に沿って配置された複数の成膜部201〜204とを有している。
<Structure of deposition system>
The structure of the film forming apparatus of the present invention will be described.
FIG. 1 is an internal configuration diagram of the film forming apparatus 10.
The film forming apparatus 10 includes a vacuum chamber 11, a cylindrical member 12 that is disposed in the vacuum chamber 11 and that can rotate around a central axis, and a plurality of layers that are disposed outside the cylindrical member 12 along the outer periphery of the cylindrical member 12. and a film forming unit 20 1 to 20 4.

各成膜部201〜204の構造は互いに同様であり、図1の図面上では、符号201の成膜部の構造の各部分にそれぞれ個別に符号を付し、符号202〜204の成膜部の構造の各部分には符号を省略する。
各成膜部201〜204の構造を、符号201の成膜部で代表して説明する。
The structures of the film forming units 20 1 to 20 4 are the same as each other, and in the drawing of FIG. 1, each part of the structure of the film forming unit denoted by reference numeral 20 1 is individually denoted by reference numerals 20 2 to 20. Reference numerals are omitted for the respective parts of the structure of the film forming unit 4 .
The structure of each film forming units 20 1 to 20 4 will be explained as a representative in the film forming part of the code 20 1.

図2は成膜部201の内部構成図である。
成膜部201は、真空槽11内に配置され、円筒部材12の外周に沿って互いに離間して配置された第一、第二の仕切板21、22と、第一、第二の仕切板21、22の間の成膜空間23を真空排気する真空排気部24と、成膜空間23に原料ガスを放出する原料ガス放出部25と、成膜空間23内の原料ガスをプラズマ化するプラズマ生成部26と、第一、第二の仕切板21、22に架設され、表面が円筒部材12の外周側面と対向され、前記表面には開口28が設けられたマスク板27とを有している。
Figure 2 is an internal configuration diagram of a film forming unit 20 1.
Film forming unit 20 1 is disposed in the vacuum chamber 11, first they are placed separately from one another along the outer periphery of the cylindrical member 12, the second partition plate 21, first, second partition The evacuation unit 24 for evacuating the film formation space 23 between the plates 21 and 22, the source gas discharge unit 25 for releasing the source gas into the film formation space 23, and the source gas in the film formation space 23 are converted into plasma. It has a plasma generation unit 26, a mask plate 27 that is installed on the first and second partition plates 21 and 22 and whose surface is opposed to the outer peripheral side surface of the cylindrical member 12, and in which the surface is provided with an opening 28. ing.

本実施例では、原料ガス放出部25は、表面に複数の放出孔44が設けられた放出容器41と、放出容器41の内部空間に原料ガスを導入する原料ガス源42とを有している。   In this embodiment, the source gas discharge unit 25 includes a discharge container 41 having a plurality of discharge holes 44 on the surface, and a source gas source 42 for introducing the source gas into the internal space of the discharge container 41. .

以下では、放出容器41の放出孔44が設けられた表面を放出面と呼び、符号60を付して示す。放出容器41の放出面60は真空槽11内に露出され、円筒部材12の外周側面と対向されている。   Hereinafter, the surface of the discharge container 41 in which the discharge hole 44 is provided is referred to as a discharge surface, and is denoted by reference numeral 60. The discharge surface 60 of the discharge container 41 is exposed in the vacuum chamber 11 and faces the outer peripheral side surface of the cylindrical member 12.

放出容器41は絶縁部材49を介して真空槽11の壁面に固定され、放出容器41と真空槽11とは電気的に絶縁されている。
ここでは放出容器41の放出面60は円筒部材12の外周側面に沿って湾曲して形成され、円筒部材12の外周側面と平行にされている。
The discharge container 41 is fixed to the wall surface of the vacuum chamber 11 via an insulating member 49, and the discharge container 41 and the vacuum chamber 11 are electrically insulated.
Here, the discharge surface 60 of the discharge container 41 is formed to be curved along the outer peripheral side surface of the cylindrical member 12, and is parallel to the outer peripheral side surface of the cylindrical member 12.

原料ガス源42は放出容器41に接続され、原料ガス源42から放出容器41内に原料ガスを導入すると、導入された原料ガスは放出容器41の各放出孔44から均一に成膜空間23に放出されるようになっている。   The source gas source 42 is connected to the discharge vessel 41, and when the source gas is introduced from the source gas source 42 into the release vessel 41, the introduced source gas is uniformly introduced into the film formation space 23 from each discharge hole 44 of the release vessel 41. To be released.

プラズマ生成部26は、ここでは上述の放出容器41と、放出容器41に電気的に接続された電源装置43とを有している。
ここでは円筒部材12は接地電位に置かれている。
Here, the plasma generation unit 26 includes the above-described discharge container 41 and a power supply device 43 electrically connected to the discharge container 41.
Here, the cylindrical member 12 is placed at the ground potential.

電源装置43から放出容器41に高周波電圧(交流電圧)を印加すると、放出容器41と円筒部材12との間で放電が生じて、成膜空間23内の原料ガスは電離され、プラズマが生成されるようになっている。   When a high frequency voltage (alternating voltage) is applied from the power supply device 43 to the discharge container 41, a discharge is generated between the discharge container 41 and the cylindrical member 12, and the source gas in the film formation space 23 is ionized to generate plasma. It has become so.

プラズマ生成部26は、放出容器41の放出面60と平行な向きに磁場を形成する磁石装置(不図示)を有していてもよい。磁石装置を有している構成では、プラズマ中の電子が磁石装置が形成する磁力線に拘束されることにより、より効率的にプラズマが生成される。   The plasma generator 26 may include a magnet device (not shown) that forms a magnetic field in a direction parallel to the emission surface 60 of the emission container 41. In the configuration having the magnet device, the plasma is generated more efficiently by the electrons in the plasma being restrained by the lines of magnetic force formed by the magnet device.

プラズマ生成部26は、成膜空間23内の原料ガスをプラズマ化できるならば、上記構成に限定されず、真空槽11の壁面に設けられた透過窓と、真空槽11の外側に透過窓と対向して配置されたコイルと、コイルに電気的に接続された電源装置とを有し、電源装置からコイルに高周波電圧を印加すると、成膜空間23に交番磁界が形成され、成膜空間の原料ガスは交番磁界により電離されてプラズマが生成されるようになっていてもよい。   The plasma generation unit 26 is not limited to the above configuration as long as the source gas in the film formation space 23 can be converted into plasma, and a transmission window provided on the wall surface of the vacuum chamber 11 and a transmission window on the outside of the vacuum chamber 11. When a high-frequency voltage is applied from the power supply device to the coil, an alternating magnetic field is formed in the film formation space 23, and the coil disposed opposite to the coil is electrically connected to the coil. The source gas may be ionized by an alternating magnetic field to generate plasma.

図2を参照し、真空排気部24は、成膜空間23に露出された主排気口45と、主排気口45に接続された環状の溝部材47と、溝部材47に接続された真空排気装置46とを有している。
主排気口45は、ここでは真空槽11の壁面のうち放出容器41の放出面60の外側に、放出面60の外周を取り囲んで環状に複数設けられている。
Referring to FIG. 2, the vacuum exhaust unit 24 includes a main exhaust port 45 exposed in the film formation space 23, an annular groove member 47 connected to the main exhaust port 45, and a vacuum exhaust connected to the groove member 47. Device 46.
Here, a plurality of main exhaust ports 45 are provided in an annular shape so as to surround the outer periphery of the discharge surface 60 on the outside of the discharge surface 60 of the discharge container 41 in the wall surface of the vacuum chamber 11.

溝部材47は、放出容器41の外周を取り囲んで、真空槽11の外壁面に環状に接触して固定され、溝部材47の内部空間は各主排気口45と連通されている。
真空排気装置46は主排気管61を介して溝部材47に接続されている。真空排気装置46を動作させて、溝部材47の内部空間を真空排気させると、成膜空間23は溝部材47を介して各主排気口45から均一に真空排気されるようになっている。
The groove member 47 surrounds the outer periphery of the discharge container 41 and is fixed in an annular contact with the outer wall surface of the vacuum chamber 11, and the internal space of the groove member 47 communicates with each main exhaust port 45.
The vacuum exhaust device 46 is connected to the groove member 47 through the main exhaust pipe 61. When the evacuation device 46 is operated to evacuate the internal space of the groove member 47, the film formation space 23 is uniformly evacuated from each main exhaust port 45 through the groove member 47.

マスク板27はセラミックスの板であり、ここではアルミナ(Al23)が用いられる。マスク板27の表面は円筒部材12の外周側面に沿って湾曲して形成されている。 The mask plate 27 is a ceramic plate, and here, alumina (Al 2 O 3 ) is used. The surface of the mask plate 27 is curved along the outer peripheral side surface of the cylindrical member 12.

本実施例では、マスク板27の外周部が第一、第二の仕切板21、22の先端に固定されており、マスク板27の表面は円筒部材12の外周側面と平行にされ、マスク板27と円筒部材12との間には隙間52が設けられている。   In this embodiment, the outer peripheral portion of the mask plate 27 is fixed to the tips of the first and second partition plates 21 and 22, and the surface of the mask plate 27 is made parallel to the outer peripheral side surface of the cylindrical member 12. A gap 52 is provided between 27 and the cylindrical member 12.

隙間52の厚みは後述するフィルム51の厚みより厚くされ、円筒部材12の外周側面にフィルム51の裏面が密着して配置されても、マスク板27はフィルム51の表面に接触しないようになっている。   The thickness of the gap 52 is made thicker than the thickness of the film 51 described later, and the mask plate 27 does not come into contact with the surface of the film 51 even if the back surface of the film 51 is disposed in close contact with the outer peripheral side surface of the cylindrical member 12. Yes.

図5はマスク板27の平面図である。
マスク板27は、開口28と、開口28の外側の遮蔽部29とを有している。円筒部材12の外周側面は開口28から部分的に成膜空間23に露出されている。
FIG. 5 is a plan view of the mask plate 27.
The mask plate 27 has an opening 28 and a shielding part 29 outside the opening 28. The outer peripheral side surface of the cylindrical member 12 is partially exposed to the film formation space 23 from the opening 28.

開口28のうち円筒部材12の長手方向に平行な方向の長さは、後述するフィルム51の幅方向の長さより短く形成されており、円筒部材12の外周側面にフィルム51の裏面が密着して配置されると、フィルム51の幅方向の両端はマスク板27の遮蔽部29で遮蔽されるようになっている。そのため、円筒部材12の外周側面のうちフィルム51の幅方向の端部からはみ出す部分もマスク板27の遮蔽部29で遮蔽され、円筒部材12のはみ出す部分に薄膜が付着することが防止される。   The length of the opening 28 in the direction parallel to the longitudinal direction of the cylindrical member 12 is shorter than the length in the width direction of the film 51 described later, and the back surface of the film 51 is in close contact with the outer peripheral side surface of the cylindrical member 12. When arranged, both ends in the width direction of the film 51 are shielded by the shielding portions 29 of the mask plate 27. Therefore, the portion of the outer peripheral side surface of the cylindrical member 12 that protrudes from the end portion in the width direction of the film 51 is also shielded by the shielding portion 29 of the mask plate 27, and the thin film is prevented from adhering to the protruding portion of the cylindrical member 12.

図2を参照し、成膜空間23のうち放出面60の中心よりも外周に近い部分では放電が不安定であり、プラズマが不安定になりやすいが、マスク板27の遮蔽部29は放出面60の中心よりも外周に近い部分と対向されており、放出面60の中心よりも外周に近い部分ではプラズマが生成されないようになっている。従って、不安定なプラズマにより端部には中央部より膜質の劣る薄膜が形成されることが防止される。   Referring to FIG. 2, the discharge is unstable and the plasma is likely to be unstable in a portion of the film formation space 23 that is closer to the outer periphery than the center of the emission surface 60. It is opposed to a portion closer to the outer periphery than the center of 60, and plasma is not generated in a portion closer to the outer periphery than the center of the emission surface 60. Therefore, it is possible to prevent a thin film having a lower quality than that of the central portion from being formed at the end due to unstable plasma.

成膜装置10は、真空槽11の内部空間のうち、成膜空間23の外側に副ガスを放出する副ガス放出部31を有している。副ガスには後述するフィルム51の表面と反応しないガスが用いられ、ここではH2ガス、N2ガス、Arガスのいずれか一種類のガス又は二種類以上の混合ガスが用いられるが、副ガスに原料ガスを用いることもできる。 The film forming apparatus 10 includes a sub-gas releasing unit 31 that discharges a sub-gas to the outside of the film forming space 23 in the internal space of the vacuum chamber 11. A gas that does not react with the surface of the film 51, which will be described later, is used as the auxiliary gas. Here, any one of H 2 gas, N 2 gas, and Ar gas, or two or more mixed gases are used. A raw material gas can also be used as the gas.

本実施例では副ガス放出部31の放出口33は、真空槽11の壁面のうち第一、第二の仕切板21、22の外側にそれぞれ設けられている。
副ガス放出部31の放出口33から副ガスを放出させると、副ガスは第一、第二の仕切板21、22の外側の空間を通って、マスク板27の遮蔽部29と円筒部材12との間の隙間52に入るようになっている。
In the present embodiment, the discharge port 33 of the auxiliary gas discharge unit 31 is provided outside the first and second partition plates 21 and 22 in the wall surface of the vacuum chamber 11.
When the secondary gas is released from the discharge port 33 of the secondary gas discharge portion 31, the secondary gas passes through the space outside the first and second partition plates 21 and 22, and the shielding portion 29 of the mask plate 27 and the cylindrical member 12. It enters into the gap 52 between.

図5を参照し、マスク板27の遮蔽部29のうち円筒部材12と対面する部分には排気口32が形成されている。
ここでは排気口32はマスク板27の開口28の外側を取り囲んで環状に離間して複数個形成されているが、図6に示すように、開口28の外側を取り囲む環形状に形成されていてもよい。マスク板27と円筒部材12との間の隙間52に入る副ガスを、開口28の外周に亘って排気することができ、副ガスにより成膜空間23のガス雰囲気が希釈されることを防止できる。
Referring to FIG. 5, an exhaust port 32 is formed in a portion of the shielding portion 29 of the mask plate 27 that faces the cylindrical member 12.
Here, a plurality of exhaust ports 32 are formed so as to surround the outside of the opening 28 of the mask plate 27 and are annularly separated, but as shown in FIG. 6, they are formed in a ring shape surrounding the outside of the opening 28. Also good. The secondary gas entering the gap 52 between the mask plate 27 and the cylindrical member 12 can be exhausted over the outer periphery of the opening 28, and the gas atmosphere in the film formation space 23 can be prevented from being diluted by the secondary gas. .

図2を参照し、真空排気装置46には副排気管62が接続されており、排気口32は副排気管62に接続されている。
本実施例では排気口32は、マスク板27と第一、第二の仕切板21、22の内部にそれぞれ設けられた通路34a、34bを介して副排気管62に接続されているが、排気口32が副排気管62に接続されているならば、上記構成に限定されず、マスク板27や第一、第二の仕切板21、22とは別の位置に配管を設置して副排気管62と排気口32との間を接続してもよい。
Referring to FIG. 2, a sub exhaust pipe 62 is connected to the vacuum exhaust device 46, and the exhaust port 32 is connected to the sub exhaust pipe 62.
In this embodiment, the exhaust port 32 is connected to the sub exhaust pipe 62 via passages 34a and 34b provided in the mask plate 27 and the first and second partition plates 21 and 22, respectively. If the port 32 is connected to the auxiliary exhaust pipe 62, the present invention is not limited to the above configuration, and a pipe is installed at a position different from the mask plate 27 and the first and second partition plates 21 and 22 and the auxiliary exhaust pipe 62 is provided. You may connect between the pipe | tube 62 and the exhaust port 32. FIG.

排気口32は副ガス放出部31の放出口33よりもマスク板27の開口28に近い位置に配置されている。従って、マスク板27の遮蔽部29と円筒部材12との間の隙間52に入る副ガスは排気口32から排気され、開口28を通って成膜空間23に入らないようになっている。   The exhaust port 32 is disposed at a position closer to the opening 28 of the mask plate 27 than the discharge port 33 of the auxiliary gas discharge unit 31. Accordingly, the auxiliary gas entering the gap 52 between the shielding part 29 of the mask plate 27 and the cylindrical member 12 is exhausted from the exhaust port 32 and does not enter the film formation space 23 through the opening 28.

ここでは排気口32は、マスク板27の遮蔽部29表面のうち、マスク板27の外周より開口28の内周に近い位置に形成されている。そのため、第一、第二の仕切板21、22の外側の空間から隙間52に入る副ガスは、マスク板27の外周より開口28の内周に近い位置まで入り込むことができるようになっており、成膜空間23からのラジカルの侵入をより短距離で遮断することができる。   Here, the exhaust port 32 is formed on the surface of the shielding portion 29 of the mask plate 27 at a position closer to the inner periphery of the opening 28 than the outer periphery of the mask plate 27. Therefore, the secondary gas entering the gap 52 from the space outside the first and second partition plates 21 and 22 can enter from the outer periphery of the mask plate 27 to a position closer to the inner periphery of the opening 28. Further, the intrusion of radicals from the film formation space 23 can be blocked at a shorter distance.

副ガス放出部31の放出口33は、成膜空間23の外側に副ガスを放出できるならば、真空槽11の壁面のうち第一、第二の仕切板21、22の外側に設けられた構成に限定されず、例えば第一、第二の仕切板21、22の表面のうち成膜空間の外側に露出する面に設けられていてもよい。   The discharge port 33 of the secondary gas discharge part 31 is provided outside the first and second partition plates 21 and 22 on the wall surface of the vacuum chamber 11 if the secondary gas can be discharged outside the film formation space 23. For example, the surface of the first and second partition plates 21 and 22 may be provided on the surface exposed to the outside of the film formation space.

また隣り合う二つの成膜部201〜204の成膜空間23の間に配置された隣り合う一方の成膜部の第一の仕切板21と他方の成膜部の第二の仕切板22は同一の板であってもよい。すなわち、隣り合う二つの成膜部201〜204の成膜空間23の間は一枚の仕切板で仕切られていてもよい。この場合には、副ガス放出部31の放出口33は、当該一枚の仕切板の先端に設ければよい。
上述の説明では、マスク板27の円筒部材12と対面する部分に排気口32が設けられていたが、図8を参照し、マスク板27に排気口32が設けられていない構成も本発明に含まれる。この構成では、隙間52に入り込む副ガスは、マスク板27の開口28を通って主排気口45から排気される。開口28の端部のラジカルが副ガスに押しやられるので、開口28端部の膜質が改善する。この構成では、副ガスに原料ガス以外のガスを用いると、成膜空間のガス雰囲気が希釈されるため、副ガスには原料ガスを用いるのが好ましい。
Second partition plate The first partition plate 21 of one of the film forming section adjacent disposed between two deposition units 20 1 to 20 4 of the deposition space 23 adjacent the other film forming section 22 may be the same plate. In other words, the film forming spaces 23 of the two adjacent film forming units 20 1 to 20 4 may be partitioned by a single partition plate. In this case, the discharge port 33 of the auxiliary gas discharge unit 31 may be provided at the tip of the one partition plate.
In the above description, the exhaust port 32 is provided in the portion of the mask plate 27 that faces the cylindrical member 12. However, referring to FIG. 8, a configuration in which the exhaust port 32 is not provided in the mask plate 27 is also included in the present invention. included. In this configuration, the secondary gas entering the gap 52 is exhausted from the main exhaust port 45 through the opening 28 of the mask plate 27. Since the radicals at the end of the opening 28 are pushed by the secondary gas, the film quality at the end of the opening 28 is improved. In this configuration, when a gas other than the source gas is used as the auxiliary gas, the gas atmosphere in the film formation space is diluted. Therefore, it is preferable to use the source gas as the auxiliary gas.

<成膜装置の使用方法>
本発明の成膜装置10を用いた薄膜の成膜方法を、TFTの製造方法を一例に説明する。
(準備工程)
図1を参照し、本実施例では、真空槽11には、中間室73が接続され、中間室73には第一、第二の巻き取り室71、72がそれぞれ接続されている。
<Usage method of film forming apparatus>
A thin film forming method using the film forming apparatus 10 of the present invention will be described by taking a TFT manufacturing method as an example.
(Preparation process)
With reference to FIG. 1, in this embodiment, an intermediate chamber 73 is connected to the vacuum chamber 11, and first and second winding chambers 71 and 72 are connected to the intermediate chamber 73, respectively.

第一、第二の巻き取り室71、72内には第一、第二の巻き取り軸74、75がそれぞれ配置され、中間室73内には複数の補助ローラ76が配置されている。
第一、第二の巻き取り軸74、75と各補助ローラ76はそれぞれ中心軸線が円筒部材12の中心軸線と平行に向けられており、それぞれ中心軸線を中心に回転できるようにされている。
First and second winding shafts 74 and 75 are disposed in the first and second winding chambers 71 and 72, respectively, and a plurality of auxiliary rollers 76 are disposed in the intermediate chamber 73.
The first and second take-up shafts 74 and 75 and the auxiliary rollers 76 each have a center axis oriented parallel to the center axis of the cylindrical member 12, and can rotate around the center axis.

ここでは第一、第二の巻き取り軸74、75と円筒部材12にはそれぞれ回転装置77が接続されている。回転装置77はモーターであり、動力を円筒部材12と第一、第二の巻き取り軸74、75とに伝達して、円筒部材12と第一、第二の巻き取り軸74、75を同一の回転速度で、同一方向に回転させるように構成されている。   Here, a rotating device 77 is connected to each of the first and second winding shafts 74 and 75 and the cylindrical member 12. The rotating device 77 is a motor that transmits power to the cylindrical member 12 and the first and second winding shafts 74 and 75 so that the cylindrical member 12 and the first and second winding shafts 74 and 75 are the same. It is comprised so that it may rotate in the same direction with the rotational speed of.

図3(a)は成膜対象物であるフィルム51の断面図である。
フィルム51は、フィルム基板81と、フィルム基板81の表面に配置されたバリア膜82と、バリア膜82の表面にそれぞれ配置された第一、第二の電極膜83a、83bとを有している。
FIG. 3A is a cross-sectional view of a film 51 that is a film formation target.
The film 51 includes a film substrate 81, a barrier film 82 disposed on the surface of the film substrate 81, and first and second electrode films 83a and 83b disposed on the surface of the barrier film 82, respectively. .

フィルム51表面のうち、成膜すべき成膜領域の長手方向の長さを予め定めておく。
フィルム51は第一、第二の電極膜83a、83bが露出する表面を外側に向けて、長手方向の一端を中心にロール状に巻かれている。図1を参照し、ロールを第一の巻き取り室71内に搬入し、第一の巻き取り軸74をロールの中心に挿入する。
Of the surface of the film 51, the length in the longitudinal direction of the film formation region to be formed is predetermined.
The film 51 is wound in a roll shape with one end in the longitudinal direction as the center with the surface where the first and second electrode films 83a and 83b are exposed facing outward. Referring to FIG. 1, the roll is carried into the first winding chamber 71, and the first winding shaft 74 is inserted into the center of the roll.

ロールの外周からフィルム51の端部を引き出すと、引っ張る力に応じて第一の巻き取り軸74が回転して、ロールからフィルム51が繰り出される。引き出したフィルム51の端部を、中間室73内の補助ローラ76に掛け渡しながら、真空槽11内に入れ、円筒部材12に掛けて、フィルム51の裏面を円筒部材12の外周側面に密着させる。フィルム51の裏面が円筒部材12の外周側面に密着した状態を維持しながら、引き出したフィルム51の端部を中間室73内に戻して他の補助ローラ76に掛け渡す。次いで第二の巻き取り室72内に入れ、フィルム51の表面が外側を向く向きで、第二の巻き取り軸75に巻き回して取り付ける。   When the end of the film 51 is pulled out from the outer periphery of the roll, the first winding shaft 74 rotates according to the pulling force, and the film 51 is fed out from the roll. The end of the drawn film 51 is placed in the vacuum chamber 11 while being hung on the auxiliary roller 76 in the intermediate chamber 73 and hung on the cylindrical member 12 so that the back surface of the film 51 is in close contact with the outer peripheral side surface of the cylindrical member 12. . While maintaining the state where the back surface of the film 51 is in close contact with the outer peripheral side surface of the cylindrical member 12, the end portion of the drawn film 51 is returned into the intermediate chamber 73 and is passed over another auxiliary roller 76. Next, the film is placed in the second winding chamber 72 and wound around the second winding shaft 75 so that the surface of the film 51 faces outward.

円筒部材12には不図示の冷却装置が接続され、円筒部材12の外周側面を冷却できるようになっている。フィルム51の裏面は円筒部材12の外周側面と面で接触されており、円筒部材12の外周側面からの熱伝導によりフィルム51は冷却される。   A cooling device (not shown) is connected to the cylindrical member 12 so that the outer peripheral side surface of the cylindrical member 12 can be cooled. The back surface of the film 51 is in contact with the outer peripheral side surface of the cylindrical member 12, and the film 51 is cooled by heat conduction from the outer peripheral side surface of the cylindrical member 12.

また、フィルム51の裏面は円筒部材12の外周側面に密着することにより、フィルム51表面はマスク板27の表面と平行に配置される。
フィルム51の幅の長さは円筒部材12の長手方向の長さより短くされており、円筒部材12の長手方向の両端部はフィルム51の幅方向より外側にはみ出される。
Further, the back surface of the film 51 is in close contact with the outer peripheral side surface of the cylindrical member 12, so that the surface of the film 51 is arranged in parallel with the surface of the mask plate 27.
The length of the width of the film 51 is shorter than the length in the longitudinal direction of the cylindrical member 12, and both ends in the longitudinal direction of the cylindrical member 12 protrude outward from the width direction of the film 51.

真空排気装置46により各室71〜73内と真空槽11内を真空排気し、真空雰囲気を形成する。以後、真空排気装置による真空排気を継続して、各室71〜73内と真空槽11内の真空雰囲気を維持する。   The chambers 71 to 73 and the vacuum chamber 11 are evacuated by the evacuation device 46 to form a vacuum atmosphere. Thereafter, evacuation by the evacuation device is continued, and the vacuum atmosphere in each of the chambers 71 to 73 and the vacuum chamber 11 is maintained.

図2を参照し、排気口32からマスク板27とフィルム51との間の気体を真空排気させる。以後、排気口32からの真空排気を継続する。
副ガス放出部31の放出口33から成膜空間23の外側に副ガスを放出させる。以後、副ガス放出部31から成膜空間の外側への副ガスの放出を継続する。
With reference to FIG. 2, the gas between the mask plate 27 and the film 51 is evacuated from the exhaust port 32. Thereafter, the vacuum exhaust from the exhaust port 32 is continued.
The secondary gas is discharged from the discharge port 33 of the secondary gas discharge part 31 to the outside of the film formation space 23. Thereafter, the secondary gas is continuously discharged from the secondary gas discharge portion 31 to the outside of the film formation space.

マスク板27の遮蔽部29とフィルム51との間の隙間52のうち、開口28から見て排気口32より外側の部分には副ガスが存在し、当該部分の圧力は成膜空間23内の圧力より大きくなる。   In the gap 52 between the shielding part 29 of the mask plate 27 and the film 51, a side gas exists in a portion outside the exhaust port 32 as viewed from the opening 28, and the pressure of the portion is in the film forming space 23. It becomes larger than the pressure.

(ゲート絶縁膜形成工程)
原料ガス源42から放出容器41内にゲート絶縁膜の原料ガスを導入させ、各放出孔44から均一に原料ガスを成膜空間23に放出させる。ここでは原料ガスにSiH4ガスとH2ガスとN2ガスとの混合ガスを使用する。
電源装置43から放出容器41に高周波電圧を印加して、成膜空間23内の原料ガスを電離させ、原料ガスのプラズマを生成させる。
(Gate insulation film formation process)
The source gas of the gate insulating film is introduced from the source gas source 42 into the discharge container 41, and the source gas is uniformly released into the film formation space 23 from each of the discharge holes 44. Here, a mixed gas of SiH 4 gas, H 2 gas, and N 2 gas is used as the source gas.
A high frequency voltage is applied from the power supply device 43 to the discharge container 41 to ionize the source gas in the film formation space 23 and generate plasma of the source gas.

プラズマ中のイオンは、フィルム51表面のうちマスク板27の開口28から露出する部分に到達して、化学反応し、図3(b)を参照し、バリア膜82の露出する表面と第一、第二の電極膜83a、83bの表面に亘ってゲート絶縁膜84が形成される。ここではゲート絶縁膜84はSiNの薄膜である。   The ions in the plasma reach a portion of the surface of the film 51 exposed from the opening 28 of the mask plate 27 and chemically react, and referring to FIG. A gate insulating film 84 is formed over the surfaces of the second electrode films 83a and 83b. Here, the gate insulating film 84 is a thin film of SiN.

図1を参照し、回転装置77により円筒部材12と第一、第二の巻き取り軸74、75とを同一方向に同一速度で回転させて、フィルム51を第二の巻き取り軸75に巻き取らせる。   Referring to FIG. 1, the rotating member 77 rotates the cylindrical member 12 and the first and second winding shafts 74 and 75 in the same direction at the same speed, and winds the film 51 around the second winding shaft 75. Let me take it.

円筒部材12の回転に伴って、フィルム51は各成膜部201〜204のマスク板27の開口28と順に対面しながら走行し、フィルム51の表面にはフィルム51の長手方向に亘って連続して薄膜が形成される。
フィルム51を走行させながら連続して成膜するので、従来よりも成膜時間を短縮できる。
With the rotation of the cylindrical member 12, the film 51 travels while facing the opening 28 and the order of the mask plate 27 of each film forming units 20 1 to 20 4, the surface of the film 51 in the longitudinal direction of the film 51 A thin film is continuously formed.
Since the film is continuously formed while the film 51 is running, the film formation time can be shortened as compared with the conventional case.

またフィルム51表面はマスク板27と接触しないので、フィルム51表面は損傷せず、フィルム51表面の配線膜(第一、第二の電極膜83a、83b)に断線は起こらない。
マスク板27の遮蔽部29とフィルム51表面との間には隙間52があり、フィルム51を走行させても、フィルム51表面はマスク板27と接触せず、損傷しない。
Further, since the surface of the film 51 is not in contact with the mask plate 27, the surface of the film 51 is not damaged, and no disconnection occurs in the wiring films (first and second electrode films 83a and 83b) on the surface of the film 51.
There is a gap 52 between the shielding part 29 of the mask plate 27 and the surface of the film 51, and even if the film 51 is run, the surface of the film 51 does not contact the mask plate 27 and is not damaged.

円筒部材12の外周側面のうちフィルム51の幅方向より外側にはみ出した部分はマスク板27の遮蔽部29で遮蔽されており、円筒部材12の外周側面に薄膜は付着しない。   A portion of the outer peripheral side surface of the cylindrical member 12 that protrudes outside the width direction of the film 51 is shielded by the shielding portion 29 of the mask plate 27, and no thin film adheres to the outer peripheral side surface of the cylindrical member 12.

また、放出面60の中心よりも外周に近い部分はマスク板27の遮蔽部29と対向され、プラズマが立たないようにされており、フィルム51表面のうち開口28から露出する部分には安定なプラズマが接触して、良質な薄膜が形成される。   Further, the portion closer to the outer periphery than the center of the emission surface 60 is opposed to the shielding portion 29 of the mask plate 27 so that plasma does not stand up, and the portion exposed from the opening 28 on the surface of the film 51 is stable. A good quality thin film is formed by plasma contact.

マスク板27の遮蔽部29で遮蔽されている部分ではプラズマが立たないが、開口28で形成されたプラズマ中のラジカルは、マスク板27の遮蔽部29とフィルム51表面との間の隙間52に侵入しようとする。   Plasma does not stand in the portion of the mask plate 27 that is shielded by the shielding portion 29, but radicals in the plasma formed by the opening 28 are in the gap 52 between the shielding portion 29 of the mask plate 27 and the surface of the film 51. Try to invade.

しかしながら、本発明では、マスク板27の遮蔽部29と円筒部材12との間の隙間52のうち、排気口32より外側では副ガスが入れられて圧力が成膜空間の圧力より大きくされており、また、マスク板27の外周から排気口32に向かう方向の副ガスの流れがあり、ラジカルは副ガスに押しやられて排気口32より外側には侵入しない。   However, in the present invention, in the gap 52 between the shielding part 29 of the mask plate 27 and the cylindrical member 12, the auxiliary gas is introduced outside the exhaust port 32, and the pressure is made larger than the pressure in the film formation space. In addition, there is a flow of the secondary gas in the direction from the outer periphery of the mask plate 27 toward the exhaust port 32, and the radicals are pushed by the secondary gas and do not enter outside the exhaust port 32.

そのため、フィルム51表面のうち隙間52の部分がラジカルと反応して膜質が劣化することが防止され、薄膜端部の膜質が改善する。   Therefore, it is prevented that the part of the gap 52 in the surface of the film 51 reacts with radicals to deteriorate the film quality, and the film quality at the end of the thin film is improved.

フィルム51表面の所定の成膜領域全体にゲート絶縁膜84を形成し終えた後、図1を参照し、回転装置77により第一、第二の巻き取り軸74、75と円筒部材12の回転を停止させ、フィルム51の走行を停止させる。
図2を参照し、電源装置43から放出容器41への電力供給を停止し、原料ガス源42からの原料ガスの放出を停止する。
After completing the formation of the gate insulating film 84 over the entire predetermined film formation region on the surface of the film 51, referring to FIG. 1, the rotation device 77 rotates the first and second winding shafts 74 and 75 and the cylindrical member 12. Is stopped and the traveling of the film 51 is stopped.
Referring to FIG. 2, power supply from power supply device 43 to discharge container 41 is stopped, and release of source gas from source gas source 42 is stopped.

(a−Si膜形成工程)
次いで、原料ガス源42から放出容器41内にa−Si層の原料ガスを導入させ、各放出孔44から均一に原料ガスを成膜空間23に放出させる。ここでは原料ガスにSiH4ガスとH2ガスの混合ガスを使用する。
(A-Si film formation process)
Next, the source gas of the a-Si layer is introduced from the source gas source 42 into the release container 41, and the source gas is uniformly released from the release holes 44 into the film formation space 23. Here, a mixed gas of SiH 4 gas and H 2 gas is used as the source gas.

電源装置43から放出容器41に高周波電圧を印加して、成膜空間23内の原料ガスを電離させ、原料ガスのプラズマを生成させる。
プラズマ中のイオンは、フィルム51表面のうちマスク板27の開口28から露出する部分に到達して、化学反応し、図3(c)を参照し、ゲート絶縁膜84の表面にa−Si膜85が形成される。a−Si膜85は非結晶Siの薄膜である。
A high frequency voltage is applied from the power supply device 43 to the discharge container 41 to ionize the source gas in the film formation space 23 and generate plasma of the source gas.
The ions in the plasma reach a portion of the surface of the film 51 that is exposed from the opening 28 of the mask plate 27 and chemically react. With reference to FIG. 3C, the a-Si film is formed on the surface of the gate insulating film 84. 85 is formed. The a-Si film 85 is an amorphous Si thin film.

図1を参照し、回転装置77により、第一、第二の巻き取り軸74、75と円筒部材12とを、上述のゲート絶縁膜形成工程での回転方向とは逆向きの同一方向に、同一速度で回転させ、フィルム51を第一の巻き取り軸74に巻き取らせる。   Referring to FIG. 1, the rotating device 77 causes the first and second winding shafts 74 and 75 and the cylindrical member 12 to be in the same direction opposite to the rotation direction in the gate insulating film forming step. The film 51 is wound around the first winding shaft 74 by rotating at the same speed.

円筒部材12の回転に伴って、フィルム51は各成膜部201〜204のマスク板27の開口28と上述のゲート絶縁膜形成工程とは逆の順序で対面しながら走行し、フィルム51の表面にはフィルム51の長手方向に亘って連続して薄膜が形成される。 As the cylindrical member 12 rotates, the film 51 travels while facing the openings 28 of the mask plates 27 of the film forming portions 20 1 to 20 4 in the reverse order to the gate insulating film forming step. A thin film is continuously formed on the surface of the film 51 along the longitudinal direction of the film 51.

フィルム51表面の所定の成膜領域全体にa−Si膜85を形成し終えた後、回転装置77による第一、第二の巻き取り軸74、75と円筒部材12の回転を停止させ、フィルム51の走行を停止させる。
図2を参照し、電源装置43から放出容器41への電力供給を停止し、原料ガス源42からの原料ガスの放出を停止する。
After the formation of the a-Si film 85 in the entire predetermined film formation region on the surface of the film 51, the rotation of the first and second winding shafts 74 and 75 and the cylindrical member 12 by the rotating device 77 is stopped, and the film 51 travel is stopped.
Referring to FIG. 2, power supply from power supply device 43 to discharge container 41 is stopped, and release of source gas from source gas source 42 is stopped.

(n+a−Si膜形成工程)
次いで、原料ガス源42から放出容器41内にn+a−Si膜の原料ガスを導入させ、各放出孔44から均一に原料ガスを成膜空間23に放出させる。ここでは原料ガスにSiH4ガスとH2ガスとPH3ガスの混合ガスを使用する。
(N + a-Si film formation process)
Next, the source gas of the n + a-Si film is introduced from the source gas source 42 into the release container 41, and the source gas is uniformly released into the film formation space 23 from each release hole 44. Here, a mixed gas of SiH 4 gas, H 2 gas, and PH 3 gas is used as the source gas.

電源装置43から放出容器41に高周波電圧を印加して、成膜空間23内の原料ガスを電離させ、原料ガスのプラズマを生成させる。
プラズマ中のイオンは、フィルム51表面のうちマスク板27の開口28から露出する部分に到達して、化学反応し、図3(d)を参照し、a−Si膜85の表面にn+a−Si膜86が形成される。n+a−Si膜86はリン(P)を含有する非結晶Siの薄膜である。
A high frequency voltage is applied from the power supply device 43 to the discharge container 41 to ionize the source gas in the film formation space 23 and generate plasma of the source gas.
The ions in the plasma reach a portion of the surface of the film 51 exposed from the opening 28 of the mask plate 27, and chemically react, thereby referring to FIG. 3D, and n + a on the surface of the a-Si film 85. A -Si film 86 is formed. The n + a-Si film 86 is an amorphous Si thin film containing phosphorus (P).

図1を参照し、回転装置77により、第一、第二の巻き取り軸74、75と円筒部材12とを、上述のゲート絶縁膜形成工程での回転方向と同じ同一方向に、同一速度で回転させ、フィルム51を第二の巻き取り軸75に巻き取らせる。   Referring to FIG. 1, the rotating device 77 moves the first and second winding shafts 74 and 75 and the cylindrical member 12 in the same direction as the rotation direction in the above-described gate insulating film forming step at the same speed. The film 51 is rotated and the film 51 is wound around the second winding shaft 75.

円筒部材12の回転に伴って、フィルム51は各成膜部201〜204のマスク板27の開口28と上述のゲート絶縁膜形成工程と同じ順序で対面しながら走行し、フィルム51の表面にはフィルム51の長手方向に亘って連続して薄膜が形成される。 As the cylindrical member 12 rotates, the film 51 travels while facing the openings 28 of the mask plates 27 of the film forming portions 20 1 to 20 4 in the same order as the above-described gate insulating film forming step. A thin film is continuously formed over the longitudinal direction of the film 51.

フィルム51表面の所定の成膜領域全体にn+a−Si膜86を形成し終えた後、回転装置77による第一、第二の巻き取り軸74、75と円筒部材12の回転を停止させ、フィルム51の走行を停止させる。 After the formation of the n + a-Si film 86 over the entire predetermined film formation region on the surface of the film 51, the rotation of the first and second winding shafts 74 and 75 and the cylindrical member 12 by the rotating device 77 is stopped. Then, the traveling of the film 51 is stopped.

図2を参照し、電源装置43から放出容器41への電力供給を停止し、原料ガス源42からの原料ガスの放出を停止する。
図1を参照し、第二の巻き取り軸75に巻き取られたフィルム51からなるロールを、第二の巻き取り軸75から取り外し、第二の巻き取り室72から搬出して後工程に回す。
Referring to FIG. 2, power supply from power supply device 43 to discharge container 41 is stopped, and release of source gas from source gas source 42 is stopped.
Referring to FIG. 1, the roll made of the film 51 wound around the second winding shaft 75 is removed from the second winding shaft 75, carried out from the second winding chamber 72, and rotated to the subsequent process. .

図3(a)〜(c)を参照し、ゲート絶縁膜84と、a−Si膜85と、n+a−Si膜86とを、途中で大気に曝さずに真空雰囲気中で一貫して形成できるため、各薄膜84〜85に不純物が混入せず、歩留まりが向上する。 3A to 3C, the gate insulating film 84, the a-Si film 85, and the n + a-Si film 86 are consistently formed in a vacuum atmosphere without being exposed to the air on the way. Since it can be formed, impurities are not mixed in the thin films 84 to 85, and the yield is improved.

また、ゲート絶縁膜84と、a−Si膜85と、n+a−Si膜86とを同一の成膜装置10で形成できるため、成膜装置10に要するコストを低減できる。
+a−Si膜形成工程の後、後工程では、図3(e)を参照し、フィルム表面に、ソース電極87aとドレイン電極87bと、保護膜88と、透明電極89とを順に形成して、TFT80を製造する。
In addition, since the gate insulating film 84, the a-Si film 85, and the n + a-Si film 86 can be formed by the same film forming apparatus 10, the cost required for the film forming apparatus 10 can be reduced.
After the n + a-Si film forming step, in the subsequent step, referring to FIG. 3E, a source electrode 87a, a drain electrode 87b, a protective film 88, and a transparent electrode 89 are sequentially formed on the film surface. Thus, the TFT 80 is manufactured.

<第二例の成膜部の構造>
図4は第二例の成膜部201’の拡大内部構成図である。
第二例の成膜部201’のうち、上述の成膜部201(以下、第一例の成膜部と呼ぶ)と同じ構造の部分には、同じ符号を付して説明を省略する。
<Structure of film forming part of second example>
FIG. 4 is an enlarged internal configuration diagram of the film forming unit 20 1 ′ of the second example.
Of the film forming unit 20 1 ′ of the second example, parts having the same structure as the above-described film forming unit 20 1 (hereinafter referred to as the film forming unit of the first example) are denoted by the same reference numerals and description thereof is omitted. To do.

第二例の成膜部201’では、第一例の成膜部201のマスク板27の排気口32の代わりに、マスク板27の遮蔽部29のうち円筒部材12と対面する部分に設けられた噴出口37を有している。 In the film forming unit 20 1 ′ of the second example, instead of the exhaust port 32 of the mask plate 27 of the film forming unit 20 1 of the first example, a portion of the shielding unit 29 of the mask plate 27 facing the cylindrical member 12 is used. It has a spout 37 provided.

副ガス放出部31は噴出口37に接続され、マスク板27の遮蔽部29と円筒部材12との間に噴出口37から気体を噴出できるようになっている。
噴出口37からマスク板27の遮蔽部29と円筒部材12との間の隙間52に副ガスを噴出させ、マスク板27の遮蔽部29と円筒部材12との間の圧力を成膜空間23の圧力より高くすると、副ガスにより成膜空間23のラジカルが押しやられ、隙間52に侵入することを防止できる。
The auxiliary gas discharge portion 31 is connected to the jet port 37 so that gas can be jetted from the jet port 37 between the shielding portion 29 of the mask plate 27 and the cylindrical member 12.
The auxiliary gas is jetted from the jet port 37 into the gap 52 between the shielding part 29 of the mask plate 27 and the cylindrical member 12, and the pressure between the shielding part 29 of the mask plate 27 and the cylindrical member 12 is changed in the film formation space 23. When the pressure is higher than the pressure, it is possible to prevent radicals in the film formation space 23 from being pushed by the secondary gas and enter the gap 52.

また、第二例の成膜部201’では、第一例の成膜部201とは異なり、真空排気装置46に接続された副排気管62が成膜空間23の外側に接続されている。本実施例では真空槽11の壁面のうち第一、第二の仕切板21、22の外側部分に設けられた副排気口38に接続されている。 Further, in the film forming unit 20 1 ′ of the second example, unlike the film forming unit 20 1 of the first example, the auxiliary exhaust pipe 62 connected to the vacuum exhaust device 46 is connected to the outside of the film forming space 23. Yes. In the present embodiment, the wall of the vacuum chamber 11 is connected to a sub exhaust port 38 provided in the outer portion of the first and second partition plates 21 and 22.

マスク板27の遮蔽部29と円筒部材12との間の隙間52に噴出口37から噴出された副ガスは、成膜空間23の外側から副排気管62を通って真空排気装置46により真空排気され、副ガスは開口28から成膜空間23に混入しないようになっている。
なお、副排気管62が成膜空間23の外側に接続されていない構成も本発明に含まれる。この構成では、噴出口37から隙間52に吹き出された副ガスは、マスク板27の開口28を通って主排気口45から排気される。開口28の端部のラジカルが副ガスに押しやられるので、開口28端部の膜質が改善する。この構成では、副ガスに原料ガス以外のガスを用いると、成膜空間のガス雰囲気が希釈されるため、副ガスには原料ガスを用いるのが好ましい。
The secondary gas ejected from the ejection port 37 into the gap 52 between the shielding portion 29 of the mask plate 27 and the cylindrical member 12 passes through the secondary exhaust pipe 62 from the outside of the film formation space 23 and is evacuated by the vacuum exhaust device 46. Thus, the auxiliary gas is prevented from entering the film formation space 23 from the opening 28.
A configuration in which the auxiliary exhaust pipe 62 is not connected to the outside of the film formation space 23 is also included in the present invention. In this configuration, the secondary gas blown out from the ejection port 37 into the gap 52 is exhausted from the main exhaust port 45 through the opening 28 of the mask plate 27. Since the radicals at the end of the opening 28 are pushed by the secondary gas, the film quality at the end of the opening 28 is improved. In this configuration, when a gas other than the source gas is used as the auxiliary gas, the gas atmosphere in the film formation space is diluted. Therefore, it is preferable to use the source gas as the auxiliary gas.

10……成膜装置
11……真空槽
12……円筒部材
201〜204……成膜部
21、22……仕切板
24……真空排気部
25……原料ガス放出部
26……プラズマ生成部
27……マスク板
28……開口
31……副ガス放出部
32……排気口
51……フィルム
10 ...... deposition apparatus 11 ...... vacuum tank 12 ...... cylindrical member 20 1 to 20 4 ...... deposition section 21, 22 ...... partition plate 24 ...... evacuator 25 ...... material gas discharge unit 26 ...... plasma Generation section 27 …… Mask plate 28 …… Opening 31 …… Sub-gas release section 32 …… Exhaust port 51 …… Film

Claims (4)

真空槽と、
前記真空槽内に配置され、中心軸線を中心に回転できる円筒部材と、
前記円筒部材の外側に、前記円筒部材の外周に沿って配置された複数の成膜部と、
を有し、
各前記成膜部は、
前記真空槽内に、前記円筒部材の外周に沿って互いに離間して配置された第一、第二の仕切板と、
前記第一、第二の仕切板の間の成膜空間を真空排気する真空排気部と、
前記成膜空間に原料ガスを放出する原料ガス放出部と、
前記成膜空間内の原料ガスをプラズマ化するプラズマ生成部と、
前記第一、第二の仕切板に架設され、表面が前記円筒部材の外周側面と対向され、前記表面には開口が設けられたマスク板と、
をそれぞれ有し、
前記円筒部材の外周側面に裏面が密着し、前記円筒部材の回転に伴って、各前記マスク板の前記開口と対面しながら走行するフィルムの表面に薄膜を形成する成膜装置であって、
各前記成膜空間の外側に副ガスを放出する副ガス放出部を有し、
各前記マスク板の前記円筒部材と対面する部分には排気口が形成され、前記マスク板と前記円筒部材との間の気体を前記排気口から排気する成膜装置。
A vacuum chamber;
A cylindrical member disposed in the vacuum chamber and rotatable about a central axis;
A plurality of film forming units arranged on the outer side of the cylindrical member along the outer periphery of the cylindrical member;
Have
Each of the film forming units
In the vacuum chamber, the first and second partition plates arranged spaced apart from each other along the outer periphery of the cylindrical member,
An evacuation unit for evacuating a film formation space between the first and second partition plates;
A source gas discharge part for releasing source gas into the film formation space;
A plasma generation unit that converts the source gas in the film formation space into plasma;
A mask plate that is constructed on the first and second partition plates, the surface is opposed to the outer peripheral side surface of the cylindrical member, and the surface is provided with an opening;
Each with
The back surface is in close contact with the outer peripheral side surface of the cylindrical member, and is a film forming apparatus that forms a thin film on the surface of the film that runs while facing the opening of each mask plate as the cylindrical member rotates,
Having a secondary gas discharge part for discharging secondary gas outside each of the film formation spaces;
A film forming apparatus in which an exhaust port is formed in a portion of each of the mask plates facing the cylindrical member, and gas between the mask plate and the cylindrical member is exhausted from the exhaust port.
前記排気口は、前記マスク板の前記開口の外側を取り囲んで環状に離間して複数個配置された請求項1記載の成膜装置。   The film forming apparatus according to claim 1, wherein a plurality of the exhaust ports are arranged in a ring shape so as to surround an outside of the opening of the mask plate. 前記排気口は、前記マスク板の前記開口の外側を取り囲む環形状に形成された請求項1記載の成膜装置。   The film forming apparatus according to claim 1, wherein the exhaust port is formed in a ring shape surrounding the outside of the opening of the mask plate. 前記排気口は、前記マスク板の前記表面のうち、前記マスク板の外周より前記開口の内周に近い位置に形成された請求項1乃至請求項3のいずれか1項記載の成膜装置。   4. The film forming apparatus according to claim 1, wherein the exhaust port is formed at a position closer to an inner periphery of the opening than an outer periphery of the mask plate in the surface of the mask plate. 5.
JP2011085846A 2011-04-07 2011-04-07 Deposition equipment Active JP5634317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011085846A JP5634317B2 (en) 2011-04-07 2011-04-07 Deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011085846A JP5634317B2 (en) 2011-04-07 2011-04-07 Deposition equipment

Publications (2)

Publication Number Publication Date
JP2012222121A JP2012222121A (en) 2012-11-12
JP5634317B2 true JP5634317B2 (en) 2014-12-03

Family

ID=47273322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011085846A Active JP5634317B2 (en) 2011-04-07 2011-04-07 Deposition equipment

Country Status (1)

Country Link
JP (1) JP5634317B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044015A (en) * 2011-08-24 2013-03-04 Fujifilm Corp Film deposition apparatus
JP6959210B2 (en) * 2018-10-10 2021-11-02 株式会社ヒラノK&E Film deposition equipment

Also Published As

Publication number Publication date
JP2012222121A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
TWI475127B (en) Plasma CVD device
US8592004B2 (en) Film deposition method
JP4747658B2 (en) Film forming apparatus and film forming method
TWI362426B (en) Sputtering device and method for manufacturing film
WO2011043047A1 (en) Plasma cvd device
KR20090107057A (en) Continuous film forming apparatus
JP6175721B2 (en) Ozone generator and ozone generation method
US20110041765A1 (en) Film deposition device
EP3193566B1 (en) Radical gas generation system
US20090291233A1 (en) Process for producing gas barrier films
JP5634317B2 (en) Deposition equipment
JP2006316299A (en) Film deposition apparatus, and film deposition method
JP2008031521A (en) Roll-to-roll type plasma vacuum treatment apparatus
WO2011152481A1 (en) Sputter film forming device
JP4597756B2 (en) Film forming apparatus and film forming method
WO2020003591A1 (en) Shower head and processing device
JP2004146184A (en) Apparatus for manufacturing organic el element
JP2006049544A (en) Substrate processing apparatus and substrate processing method using same
JP5968740B2 (en) Target device, sputtering device, and method of manufacturing target device
JP2008075164A (en) Coiling type vacuum vapor deposition method and system
JP2008231525A (en) Winding type composite vacuum surface treatment device, and surface treatment method for film
JP2011122193A (en) Gas introducing apparatus, sputtering apparatus and sputtering method
JP5931091B2 (en) Deposition equipment
WO2014088302A1 (en) Plasma chemical vapour deposition device
JP4396578B2 (en) Winding-type composite vacuum surface treatment apparatus and film surface treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R150 Certificate of patent or registration of utility model

Ref document number: 5634317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250