JP2004146184A - Apparatus for manufacturing organic el element - Google Patents

Apparatus for manufacturing organic el element Download PDF

Info

Publication number
JP2004146184A
JP2004146184A JP2002309480A JP2002309480A JP2004146184A JP 2004146184 A JP2004146184 A JP 2004146184A JP 2002309480 A JP2002309480 A JP 2002309480A JP 2002309480 A JP2002309480 A JP 2002309480A JP 2004146184 A JP2004146184 A JP 2004146184A
Authority
JP
Japan
Prior art keywords
substrate
cleaning
plasma
organic
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002309480A
Other languages
Japanese (ja)
Inventor
Kazuo Genda
源田 和男
Yoshiyuki Suzurisato
硯里 善幸
Taketoshi Yamada
山田 岳俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2002309480A priority Critical patent/JP2004146184A/en
Publication of JP2004146184A publication Critical patent/JP2004146184A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing an organic EL element eliminating the necessity of a pressure reduction device (an evacuation device) for plasma cleaning under pressure reduction to reduce a cost, reducing time and effort for removing contamination of a substrate caused by impurities on the inner wall in a vacuum bath or impurities on the inner wall, shortening tact time by continuous production, enhancing productivity in production, and enhancing quality. <P>SOLUTION: The apparatus for manufacturing the organic EL element is equipped with a cleaning device of the substrate in which an ITO film is formed on a base material made of glass or a resin material and a film forming device for forming at least an organic compound thin film on the ITO film. The cleaning device is a plasma cleaning device for cleaning the substrate with plasma generated near the atmospheric pressure. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、大気圧プラズマによる基板の洗浄装置を備えた有機EL(エレクトロ・ルミネッセンス)素子の製造装置に関する。
【0002】
【従来の技術】
近年、有機物層を含む有機EL素子が注目されており、ディスプレイ等への利用に向けて研究が進められている。有機EL素子は、一般に、基板上に陽極、発光層等の有機物層、および陰極を積層した構造を備え、これらの各層は、真空蒸着法やスパッタ法等によって基板上に成膜されている。
【0003】
有機EL素子に用いられる基板は、表面にITO膜(錫をドープした酸化インジウムよりなる導電膜)等の透明電極を成膜した状態で供給されることが多く、有機EL素子の製造にあたっては、この成膜された基板を有機溶媒中で超音波洗浄し、続いて、UVオゾン洗浄装置或いは真空中でプラズマ洗浄装置等により基板を洗浄した後、この洗浄装置から成膜装置に搬送し、この成膜装置内で電極上に有機物層や陰極を蒸着していた。
【0004】
具体的な方法として▲1▼真空槽内で基板をプラズマ表面処理した後、同じ真空槽内で成膜を行う方法(特開平7−142168号公報)、▲2▼基板を基板洗浄室においてプラズマ表面処理した後、大気中に晒すことなく成膜室へ搬送し、この成膜室において成膜を行う方法(特開平8−222368号公報)、が開示されている。
【0005】
【特許文献1】
特開平7−142168号公報(段落0011、0012)
【0006】
【特許文献2】
特開平8−222368号公報(段落0029、0041、図2)
図1は従来の有機EL素子製造装置の概念図である。
【0007】
ここで、発明をわかりやすくするため従来の有機EL素子の製造装置の概念を図1を参照して説明する。
【0008】
まず大気圧下で超音波洗浄装置2の溶剤槽21の溶剤22中にITO膜(錫をドープした酸化インジウムよりなる導電膜)からなる透明電極を成膜した有機EL素子の基板(以下基板と記すこともある)11を浸し、超音波振動子23の振動により基板11を洗浄する。
【0009】
次いで図示しない搬送手段により基板11をプラズマ洗浄装置3に移送し、減圧装置(真空排気装置)71により減圧した真空槽32に、ガス供給装置34により所定のガスを供給し、高周波電源装置33により高周波電圧をプラズマ洗浄手段31の電極に印加し、プラズマ洗浄手段31が発生するプラズマにより基板11を洗浄する。
【0010】
次いで図示しない搬送手段により基板11を減圧装置72により減圧した有機化合物膜層の蒸着装置4に移送し、有機化合物膜層の蒸着手段41により基板上に発光層等を蒸着する。
【0011】
次いで図示しない搬送手段により、発光層等を蒸着済みの基板101を減圧装置73により減圧した金属膜層の蒸着装置5に移送し、金属膜層の蒸着手段51により基板上に陰極層を蒸着する。
【0012】
次いで図示しない搬送手段により陰極層を蒸着済みの基板102を封止装置6に移送し、陰極層を蒸着済みの基板102を封止管61で封止し、缶に封止済みの基板103を得る。
【0013】
81〜88は基板等が前述した各装置間を移送されるときに各装置の真空(減圧)度を保つためのシャッタで、基板の出入りに応じ開閉する。
【0014】
プラズマ洗浄装置3について詳細に説明すると、従来はプラズマが減圧状態でないと発生できなかったためプラズマ洗浄手段31を真空槽32内に収納し、真空槽32のシャッタ81、82を基板11の出入りにあわせ開閉し密封状態とし、内部の空気やガスを減圧装置71を作動させ排気し真空槽32を真空状態にした後、ガス供給装置34で所定のガスを供給し、高周波電源33を作動させプラズマ洗浄手段31の電極間にプラズマを発生させ、電極間のプラズマ雰囲気内に基板11を通過させることにより、基板表面の有機物等を分解・灰化し基板の洗浄を行なっていた。
【0015】
【発明が解決しようとする課題】
しかし▲1▼、▲2▼等上述した従来の方法では、基板の洗浄をプラズマが発生した真空槽の内部で密封状態で行うため、洗浄に高価な真空槽や減圧装置を必要とするうえ、プラズマが内壁に及ぶため内壁を構成する材料から不純物が生成し、或いは基板の汚れが分解・灰化された不純物質が内部に堆積し、これらの不純物が基板に付着して基板が汚染される、という欠点があった。
【0016】
とくに、有機EL素子の連続製造を行う場合には不純物が連続的に生成されることになるので、真空槽等の内部が徐々に汚染されて基板の洗浄効果が次第に低下するうえに、真空槽内全体を頻繁に洗浄しなければならないため手間がかかるという欠点があった。
【0017】
また、▲1▼の方法では、同一の真空槽内で基板の洗浄および成膜を行うため、真空槽における工程(洗浄および成膜)の所要時間が長くなることから、連続生産におけるタクトタイムの短縮を図れなかった。
【0018】
以上の問題点に鑑み、減圧下のプラズマ洗浄の為の減圧装置(真空排気装置)を不要としコストダウンを図ると共に、真空槽内壁の不純物質による基板汚染や内壁の不純物質除去の手間を軽減し、連続生産によりタクトタイムを短縮し、生産時の生産性を上げ、更に高品質な有機EL素子の製造装置を提供することを目的とする。
【0019】
【課題を解決するための手段】
上記目的は下記の手段により達成される。すなわち、
(1)ガラス又は樹脂材料よりなる基材上にITO膜を成膜された基板の洗浄装置と、前記ITO膜上に少なくとも有機化合物膜層を成膜する成膜装置と、を備えた有機EL素子の製造装置において、前記洗浄装置は大気圧近傍で発生させたプラズマで前記基板を洗浄するプラズマ洗浄装置であることを特徴とする有機EL素子の製造装置。
【0020】
(2)基板の洗浄装置と成膜装置とを備えた有機EL素子の製造装置において、ガラス又は樹脂材料よりなる基材上にITO膜を成膜された基板を大気圧近傍で発生させたプラズマにより洗浄するプラズマ洗浄手段を有するプラズマ洗浄装置と、洗浄した基板のITO膜上に真空蒸着方式により有機化合物膜層を成膜する有機化合物膜層蒸着装置と、成膜した有機化合物膜層上に真空蒸着方式により金属膜層を成膜する金属膜層蒸着装置と、金属膜層を成膜した基板を不活性ガス雰囲気下で封止する封止装置とを、この順番で備えることを特徴とする有機EL素子の製造装置。
【0021】
(3)基板の洗浄装置と成膜装置とを備えた有機EL素子の製造装置において、ガラス又は樹脂材料よりなる基材上にITO膜を成膜された基板を大気圧近傍で発生させたプラズマにより洗浄するプラズマ洗浄手段を有するプラズマ洗浄装置と、洗浄した基板のITO膜上にインクジェット方式により有機化合物膜層を成膜する有機化合物膜層パタニング装置と、成膜した有機化合物膜層上に真空蒸着方式により金属膜層を成膜する金属膜層蒸着装置と、金属膜層を成膜した基板を不活性ガス雰囲気下で封止する封止装置とを、この順番で備えることを特徴とする有機EL素子の製造装置。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。なお、本欄の記載は請求項の技術的範囲や用語の意義を限定するものではない。
【0023】
図2は有機EL素子の層構成の概略図である。
図2を参照して本発明の有機EL素子の製造装置により製造される有機EL素子の層構成についてその一例の概要を説明する。
【0024】
この有機EL素子10は、基板11と、有機化合物膜層12と、金属物膜層である電極13(陰極)をこの順に備えている。
【0025】
そして基板11は基材111とこの基材111上に成膜されたITO膜(錫をドープした酸化インジウムよりなる導電膜)からなる透明電極112(陽極)とから構成され、有機化合物膜層12は透明電極112上に成膜された正孔注入層121と、この正孔注入層121上に成膜された発光層122と、この発光層122上に成膜された電子注入層123とから構成され、電極13(陰極)はこの電子注入層123上に成膜された金属物膜層で構成されている。
【0026】
そして、本発明における有機EL素子10とは透明電極112と電極13(陰極)に電源(図示なし)を接続し、供給された電流により、有機化合物膜層12の少なくとも1層以上の有機化合物膜層が発光層となり発光する素子である。
【0027】
ここで、有機EL素子10の発光は蛍光に由来する発光でも燐光に由来する発光でも良い。
【0028】
なお、有機EL素子10は、例えば正孔注入層と発光層との間に正孔輸送層が挿入された構成のもの等上述した構成以外に、基材と、この基材上に成膜されたITO膜からなる透明電極112(陽極)を有する基板11上に発光層を含む有機化合物膜層を有し、更にその上に金属物膜層を有する構成を備えたものであれば良い。
【0029】
以下図2に示したような有機EL素子を製造する製造装置を例に取り説明する。
【0030】
図3は本発明の実施形態の一つである有機EL素子の製造装置の概念図である。
【0031】
以下、大気圧近傍でプラズマを発生させ有機EL素子の基板を洗浄する洗浄装置を備えた、有機EL素子を製造する製造装置の一実施形態を図3を参照して説明する。
【0032】
ここで、大気圧近傍とは20KPa〜110KPaの圧力(気圧)を指すが、本発明の効果を好ましく得るためには93KPa〜104KPaが好ましい。
【0033】
図2に示したような有機EL素子10は、図3に示すような製造装置1を用いて製造される。
【0034】
本実施形態の有機EL素子の製造装置1は、図2に示す基材111の表面に透明電極(ITO膜)112を形成した基板11に対して、洗浄及び成膜を行う装置であり、透明電極形成装置は含まない。
【0035】
製造装置1は、ガラス又は樹脂材料よりなる基材111上にITO膜112を成膜された基板11を溶剤22で洗浄する超音波洗浄装置2と、超音波洗浄された基板11を大気圧近傍で発生させたプラズマにより洗浄する基板の洗浄装置であるところのプラズマ洗浄装置3と、プラズマ洗浄された基板11のITO膜上に真空蒸着方式により有機化合物層膜を成膜する成膜装置であるところの有機化合物膜層(図2の正孔注入層121、発光層122、電子注入層123)の蒸着装置4(以下蒸着装置4と記す)と、成膜した有機化合物膜層上に真空蒸着方式により金属膜層(図2の電極13)を成膜する金属膜層蒸着装置5(以下蒸着装置5と記す)と、金属膜層を成膜した基板を不活性ガス雰囲気下で封止する封止装置6と、超音波洗浄装置2、プラズマ洗浄装置3、蒸着装置4、蒸着装置5、封止装置6を互いに連通する基板の移送路91〜93と、各装置の気密性を維持すると共に基板の搬入口、搬出口としてのシャッタ81〜89と、基板等を搬送する搬送手段9とを備えている。
【0036】
超音波洗浄装置2は溶剤槽21の溶剤22中に基板11を浸し、超音波振動子23の振動により基板11を洗浄する。
【0037】
プラズマ洗浄装置3は、ガス供給装置341、342を備え、これらのガス供給装置341、342から供給されるアルゴンおよび酸素ガスを混合し、図示しない流量制御装置により所定の流量で洗浄室35内に混合ガスを矢印方向に導入し後述する1対の電極間に導くことができるようになっている。
【0038】
アルゴンガスは混合ガス(不活性ガスと反応性ガスの混合ガス)100体積%に対し90体積%以上、好ましくは95体積%以上含有するように図示しない流量制御装置によりそれぞれの流量を制御する。
【0039】
またプラズマ洗浄装置3は、洗浄室35内に設置されたプラズマ洗浄手段31を備え、このプラズマ洗浄手段31のプラズマ発生部311の内部にプラズマを発生させて基板11を洗浄できるようになっている。
【0040】
このプラズマ洗浄手段31は、所定距離離間して配設された一対の誘電体(図4の333、334)が被覆された電極331、332を有し、電極の一方332が100KHz〜150MHzの周波数の高周波電源装置33に接続され、他方331が接地され、高周波電圧をその電極間に印加できるようになっている。
【0041】
そしてこのプラズマ洗浄手段31は、電極331と332との間のプラズマ発生部311にガス供給装置341、342から供給されるアルゴンと酸素の混合ガスを存在させる(矢印方向に通過させる)ことにより高周波電界によるグロー放電を発生させ、アルゴンおよび酸素分子を励起させることでプラズマ発生部311で混合ガスを大気圧近傍でプラズマ化している。
【0042】
ITO膜面を上側に向けて搬送手段9によりプラズマ発生部311の下側を搬送される基板11は、プラズマ化した混合ガスをITO膜面に吹き付けられ表面の有機物等が分解・灰化されると同時に表面が僅か削られる事により洗浄される。
【0043】
有機物の分解・灰化された不純物を含む排ガスは図示しない排気口から排ガス処理装置を介し大気に放出される。
【0044】
ここで、透明電極にITO膜を採用した場合を例に取り説明しているためアルゴンおよび酸素の混合ガスを用いてプラズマを発生させたが、具体的なガスの種類は基板に設けた電極の種類に応じて適宜選択すればよく、例えば、アルゴンのみであってもよく、或いは酸素のみであってもよい。
【0045】
また、プラズマ洗浄手段31は閉鎖された洗浄室35内に設置するのではなく、浮遊チリ数等が所定のクリーニング度に管理されている環境であれば開放された状態で設置しても良く、この場合はプラズマ洗浄装置3内の不純物の等の堆積は更になくなる。
【0046】
洗浄済みの基板101は搬送手段9により移送路91を通過して有機化合物膜層の蒸着装置4に搬送される。
【0047】
移送路91〜93はプラズマ洗浄装置3から封止装置6までの各装置間に配設された基板等の移送路で、内部に後述する基板の搬送手段9を備え、また移送路の両端部と各装置との連結部に後述するシャッタ81〜89を備えている。
【0048】
そして移送路91の内部には、基板11の表裏を裏返しに反転する図示しない基板反転手段を備えている。
【0049】
また、移送路91、93は、図示しない減圧装置、或いはそれぞれ減圧装置72、73を連結し、移送路91、93内を予め減圧しておき蒸着装置4の入り口側のシャッタ83、又は蒸着装置5の出口側のシャッタ86を開いた時、蒸着装置4、5内の真空圧が下がらないようにしても良い。
【0050】
ここでシャッタ81〜89は開閉自在で、開時には各製造段階の基板(11、101、102、103、104)が通過できる開口寸法としてあり、閉時には各装置を密封状態にする。
【0051】
そして移送路91の基板搬送方向入り口側シャッタ82と出口側シャッタ83、移送路92の入り口側シャッタ84と出口側シャッタ85、移送路93の入り口側シャッタ86と出口側シャッタ87、とは基板の通過時以外は全て閉状態とし、基板が通過する時に一方が開状態の場合は他方が必ず閉状態となるようにする。
【0052】
これにより移送路を挟む前後工程相互の気体や不純物が流入・流出したり圧力が変化してしまったり、大気に開放してしまうことを防止する。
【0053】
またシャッタ81は基板11をプラズマ洗浄装置3に供給する時のみ開き、シャッタ88は封止された基板104を回収する時のみ開き、ゴミ等の進入を防止する。
【0054】
以上のような移送路、シャッタを設けることにより、基板の移動による洗浄室35の外部からの大気や装置相互のガスの流入・流出が防止でき、圧力も略一定に保たれる。
【0055】
図4はプラズマ洗浄手段を説明する概念図である。
プラズマ洗浄手段31において、ガス供給装置341、342から供給される酸素とアルゴンガスの混合気体は矢印の方向に噴射され電極331、332間でプラズマ化され電極の下を搬送手段9により搬送される基板11に吹き付けられ、基板表面を洗浄される。
【0056】
電極331、332はチタン、銀、白金、ステンレス、アルミニウム、鉄等の金属や、鉄とセラミックスの複合材料またはアルミニウムとセラミックスの複合材料等が用いることができ、中でもステンレスが加工性が良く好ましい。そして、その周面に誘電体333、334が被覆されており、電極内部に図示しない冷却水による冷却手段を有し、少なくとも放電中は冷却されている。
【0057】
誘電体333、334はセラミックスを溶射後、無機化合物の封孔材料を用いて封孔処理した厚さが0.2〜3mm好ましくは0.5〜1.5mmのセラミックス被覆処理誘電体であり、セラミックス材としては、アルミナ・窒化珪素等を用いることができ、中でもアルミナが加工性が良く好ましい。
【0058】
また、ライニングにより無機材料を設けたライニング処理誘電体であっても良く、ケイ酸塩系ガラス、ホウ酸塩系ガラス、リン酸塩系ガラス、ゲルマン酸塩系ガラス、亜テルル酸塩系ガラス、アルミン酸塩系ガラス、バナジン酸塩系ガラス等を用いることができ、中でもホウ酸塩系ガラスが加工性が良く好ましい。
【0059】
そして、前述したように一方の電極331は接地され、他方の電極332は高周波電源装置33に接続されている。
【0060】
高周波電源装置33としては、電圧が10V〜10KVで周波数が100KHz〜150MHzのもので、パール工業製高周波電源(200KHz)、パール工業製高周波電源(800KHz)、パール工業製高周波電源(150MHz)、日本電子製高周波電源(13.56MHz)等が使用でき、発信パタンとしては、連続サイン波状の連続発信でもON/OFFを断続的に行う発信でも良いが、良好な洗浄をするためにはON/OFFを断続的に行う発信が好ましい。
【0061】
そして両電極間の間隙dは均一な安定した放電をするために0.5〜20mm、好ましくは0.5〜1.5mmに設定してある。
【0062】
プラズマ洗浄装置の他の実施形態について説明する。
図5は基板を電極間に通過させ、洗浄する洗浄装置の概念図で、図6はウエブ状の基板を洗浄する洗浄装置の概念図である。
【0063】
まず、基板を電極間に通過させ洗浄する別の実施形態のプラズマ洗浄装置について図5を参照して説明する。
【0064】
ガス供給装置341、342から供給される酸素とアルゴンガスの混合気体はプラズマ発生部339に供給され、電極331、332間でプラズマ化され電極の間を搬送される基板11を洗浄する構成となっている。
【0065】
そして電極331、332、及び誘電体333、334、及び高周波電源装置33は、上述した図4の説明で記載したものと同じものが使用できる。
【0066】
両電極間の間隙dは均一な安定した放電をさせ、基板を搬送するために10〜20mmに設定してある。
【0067】
このプラズマ洗浄装置を利用して、有機EL素子の製造装置を構成する場合は、例えば図3で説明したものと同じ超音波洗浄装置と、有機化合物膜層の蒸着装置と、金属膜層の蒸着装置と、封止装置と、移送路と、シャッタと、搬送手段とが利用できる。
【0068】
次に、ウエブ状の基板を洗浄する別の実施形態のプラズマ洗浄装置について図6を参照して説明する。
【0069】
7はウエブ状の基板を洗浄するプラズマ洗浄装置で、樹脂よりなるウエブ状の基材上にパタニングしたITO膜を成膜されたウエブ状基板113が洗浄室35内のガイドローラ337に案内され、図示しない駆動手段により矢印方向に回転する接地されたロール電極335に巻回されながら搬送される。
【0070】
高周波電源装置33に接続された複数の固定電極336は、金属の円筒又は角柱から構成され、ロール電極335周面と所定の間隙dで対向して設置されている。
【0071】
そしてロール電極335と固定電極336とは各電極の表面に誘電体を被覆してあり、ロール電極と固定電極とその誘電体の材質は図4の説明で記載した電極331、332と誘電体333、334と同様であり、ロール電極335と固定電極336との間隙dは均一な安定した放電をさせるため0.5〜20mm、好ましくは0.5〜1.5mmに設定してある。
【0072】
そして、ガス供給装置341、342でアルゴン、酸素の混合ガスを洗浄室35内に供給し、高周波電源装置33で高周波電圧を固定電極336に印加することにより、プラズマ発生部339の混合ガスをプラズマ化し、ローラ電極335に巻回されたウエブ状基板113表面を洗浄する。
【0073】
洗浄後の不純物を含んだガスは排気口338から排気される。
このプラズマ洗浄装置7を利用して、有機EL素子の製造装置を構成する場合は、例えば図3で説明したものと同じ超音波洗浄装置と、有機化合物膜層の蒸着装置と、金属膜層蒸着装置と、封止材を成膜する成膜装置と、移送路と、シャッタと、ウエブ状の基材を搬送する各種の搬送ローラやニップローラで構成されるウエブ搬送手段とが利用できる。
【0074】
また、プラズマ洗浄装置7に接続する図3で説明した有機化合物蒸着膜材料や金属膜材料を蒸着させる蒸着装置4、5は、インクジェット方式による成膜装置、或いはグラビア方式による成膜装置に置き換えることもでき、これらの場合は連続して洗浄・成膜が可能となると共に成膜を行うための減圧装置を必要とせず、タクトタイムが短縮できる効果があり、特に図6に示したようなウエブ状基板113を洗浄するプラズマ洗浄装置に接続する場合は顕著な効果が得られる。
【0075】
インクジェット方式による成膜装置を備えた有機EL素子の製造装置は、図3の蒸着装置4をインクジェット方式による有機化合物の成膜としたものである。
【0076】
図7はインクジェット成膜装置の概念図である。
基本的な製造工程は図3で説明した蒸着によるものと同じであるため、異なる部分について図7を参照して説明する。
【0077】
この場合は、洗浄室35内で大気圧プラズマによる基板の洗浄を行った後、成膜室36内部に有機化合物膜層パタニング装置であるところの通常用いられるインクジェットプリント装置42を設け、インクヘッド421がインクを透明電極面に吐出できるように設け、インクジェットプリント装置により所定の色を発色する発光材料をパタニング塗布し、発光層を形成する。
【0078】
又、フルカラーとする場合は例えば赤色発色材料にはシアノポリフェニレンビニレン前駆体、緑色発光材料にはポリフェニレンビニレン前駆体が使用でき、ポリマー前駆体はインクジェット吐出後、加熱手段422により加熱することにより高分子化され、発光層とすることができ、次に図示しない蒸着層内でアルミニウムキノリノール錯体を真空蒸着することで電荷輸送型の青色発光層が形成できる。
【0079】
次いで、成膜室37で電極(陰極)を蒸着後、封止装置で電極蒸着済み基板を封止する。
【0080】
また、図4、5に示した電極331、332の形状は平面の板状として説明したが、本発明の電極は平面の板状に限定されず、例えば、複数の円筒を並べたものでも、複数の多角形断面の筒を並べたものでも良い。そして、それらの電極を並べる向きは基板11の搬送方向に平行でも、垂直でも良い。
【0081】
再び全体の説明に戻り、図3において、洗浄室35に隣接する蒸着装置4の成膜室36は、成膜室36内を真空にするための減圧装置(真空排気装置)72と、洗浄された基板101の透明電極上に発光層等を真空蒸着する有機化合物膜層の蒸着手段41(以下蒸着手段41と記す)とを有し、蒸着手段41により基板の透明電極(図2の112)上に発光層等(図2の121、122、123)が蒸着される。
【0082】
発光層等を蒸着された基板102は、搬送手段9により移送路92を経て減圧装置73により減圧した蒸着装置5の成膜室37に搬送され、電極を真空蒸着する金属膜層の蒸着手段51(以下蒸着手段51と記す)により蒸着された発光層等の上に電極(陰極)(図2の13)が蒸着される。
【0083】
蒸着手段41は、基板101の搬送位置より下側に図2の正孔注入層121、発光層122、電子注入層123の各蒸着材料を入れた複数のるつぼ411を備え、各るつぼ411はそれぞれ図示しない加熱用電源に接続され、蒸着材料が溶融し蒸発する温度に制御されている。
【0084】
洗浄された基板101は透明電極面を下に向けた状態で、搬送手段9により上述した各るつぼ411に対向する位置に順次搬送される。そして、各るつぼにより透明電極上に図2の正孔注入層121、発光層122、電子注入層123の各蒸着材料が順次蒸着され成膜される。
【0085】
なお、図示しないがるつぼを1式備えた成膜室をシャッタ、移送路を介し複数設置し、各成膜室のるつぼで正孔注入層121、発光層122、電子注入層123を順次蒸着して成膜するようにしても良い。
【0086】
蒸着手段51は、発光層等を蒸着された基板102の搬送位置より下側に、金属膜層の蒸着材料を入れたるつぼ511を備え、るつぼ511は図示しない加熱用電源に接続され、蒸着材料が溶融し蒸発する温度に制御されている。
【0087】
そして、発光層等が蒸着された基板102は透明電極面を下に向けた状態で、搬送手段9によりるつぼ511に対向する位置に搬送される。そして、電子注入層上に金属膜層(電極13(図2))が蒸着される。
【0088】
封止装置6は電極が蒸着された基板103に、封止缶供給装置63から供給される封止缶61で基板を封止する缶封止手段62と、缶封止手段62内に不活性ガスである窒素ガスを供給する図示しない窒素ガス供給装置とにより構成されている。
【0089】
基板は搬送手段9に配設された基板の位置決め手段901により搬送手段に位置決めされた状態で保持され、プラズマ洗浄装置3のプラズマ吹きつけ位置、蒸着装置4の複数の蒸着位置、蒸着装置5の蒸着位置、封止装置6の封止位置、に順次搬送され、各装置により所定の処理が行われる。
【0090】
ここで、搬送手段9は基板の位置決め手段901以外の部分は開口し、蒸発した蒸着材料が基板に蒸着できるようにしてある。
【0091】
そして搬送手段9は、ベルト又はチェーンでも、基板を保持し移載するようなロボットのようなもので構成しても良く、また、プラズマ洗浄装置3、蒸着装置4、蒸着装置5、封止装置6、及び各移送路91〜93にそれぞれ個別に設けたものでも、或いは上記装置を貫通するように設けたものでも良い。
【0092】
次に、本実施形態の製造装置1を用いて有機EL素子10を製造する方法について図3を参照して説明する。
【0093】
本実施形態では、透明電極が成膜された基板11に洗浄室35および成膜室36、37でそれぞれ洗浄および成膜を行うことにより有機EL素子10を連続的に製造する。
【0094】
すなわち、予め、オペレータは図2に示す基材111上に透明電極112を成膜した基板11を用意し、この基板11を有機溶剤22中にセットする。
【0095】
次いで、製造装置1の図示しない制御手段(以下制御手段と記す)はオペレータの起動操作により制御を開始し、超音波振動子23を作動させ基板11を超音波洗浄させる。
【0096】
そして、制御手段は洗浄室35のシャッタ81を開き、図示しないロボットハンド等を駆動させて超音波洗浄した基板11を洗浄室35内に移送させて搬送手段9の基板の位置決め手段901に装着させ、シャッタ81を閉めさせる。
【0097】
このとき、基板11は、図2の透明電極112側がプラズマに晒される向き(図2の透明電極112が上方向になる向き)に装着される。なお、基板11の移送時には、洗浄室35への不純物の流入を防止するために、洗浄室35内の圧力が大気圧よりも若干高く設定される。
【0098】
制御手段は、シャッタ81を閉めさせてから、ガス供給装置341、342によりそれぞれアルゴンおよび酸素ガスを洗浄室35内の電極331と332との間(プラズマ発生部311)に噴射させる。
【0099】
これらのガスの流入量はプラズマを安定して発生させるため、それぞれ流量を制御してアルゴンガスを混合ガス(アルゴンガスと酸素ガスの混合ガス)100体積%に対し、90体積%、好ましくは95体積%以上含有されるように設定される。
【0100】
次に、制御手段は、高周波電源装置33を作動させ、電極332に高周波電圧を印加してプラズマ発生部311内を通過する混合ガスをプラズマ化させ、プラズマ発生部311の下方に透明電極面を上側にして搬送される基板11にこのプラズマ化したガスを吹き付け、基板表面を洗浄させる。
【0101】
ここで、基板11の表面はプラズマによって清浄化され、とくに、酸素のプラズマによって有機物からなる不純物が効率よく分解・灰化される。通常、図2に示すITO膜からなる透明電極112のプラズマ洗浄にアルゴンを用いると、透明電極112表面の酸素分子が還元されて有機EL素子10に悪影響を及ぼすが、本実施形態では酸素ガスを混合するので透明電極112の還元が抑制される。
【0102】
なお、プラズマ洗浄のタクトタイムを短縮するために、プラズマ洗浄時間を10秒間〜30秒間とするように制御する。
【0103】
このプラズマ洗浄装置3では、従来の真空槽の中でプラズマを閉じこめた状態で洗浄するのではなく、大気圧近傍で洗浄しながら、洗浄後の不純物を含んだプラズマ化したガスを排気するので生成した不純物が洗浄室35内に堆積するようなことがほとんどない。
【0104】
以上のように大気圧近傍で基板の洗浄を行うため、連続的に有機EL素子を製造しても洗浄効果は下がらず、洗浄室や電極に不純物が堆積することもほとんどなく、頻繁に電極を清掃或いは交換したり、頻繁に室内を清掃する必要もなくなる。
【0105】
制御手段は、洗浄が完了するとシャッタ82を開き洗浄済みの基板101を移送路91に搬送手段9で搬送させる。そしてシャッタ82を閉じ、図示しない減圧手段又は減圧手段72により移送路91内を成膜室36の気圧より若干低い気圧まで減圧させると共に、図示しない基板反転手段により基板101を裏返しに反転させる。
【0106】
オペレータは成膜室36の蒸着手段41に正孔注入層121等の蒸着材料を入れた複数のるつぼ411、及び成膜室37の蒸着手段51に金属膜層の蒸着材料を入れたるつぼ511を予め装着しておく。
【0107】
制御手段は、減圧装置(真空排気装置)72により成膜室36内の圧力が所定の圧力になるまで排気させる。次いで、シャッタ83を開けて搬送手段9により基板101を成膜室36に搬送させ、シャッタ83を閉じる。
【0108】
これにより、洗浄室35、成膜室36相互のガスや不純物が相手室に流入することなく、また室内の圧力(気圧)を大幅に乱すことなく安定した状態で基板の移送が可能となる。
【0109】
続いて、制御手段は、正孔注入層121、発光層122、電子注入層123の各蒸着材料を入れた複数のるつぼ411を図示しない加熱手段で順次加熱させて蒸発させると共に、搬送手段9を制御して加熱しているるつぼと対向する位置に基板を搬送させ、基板11の透明電極112上に正孔注入層121、発光層122、電子注入層123を順次蒸着し成膜させる。
【0110】
次いで制御手段は、シャッタと搬送手段を制御して、成膜室37の蒸着位置に発光層等が蒸着された基板102を搬送し、成膜室37のるつぼ511を加熱して図2の電極(陰極)13を成膜させる。
【0111】
次いで同様にして、制御手段は、搬送手段9により電極が蒸着された基板103を成膜室37から移送路93を経て封止装置6に搬送させる。
【0112】
そして制御手段は、封止缶供給装置63で封止缶61を缶封止手段62に供給させ、図示しない窒素ガス供給装置により供給された窒素ガスが、略大気圧に満たされた缶封止手段62内で、基板103を封止缶61で封止させる。
【0113】
これにより、金属膜層が成膜された基板103は窒素ガス内に封止される。
制御手段は、封止缶61で封止された基板104を搬送手段9によりシャッタ88を経て排出させ、有機EL素子として回収させる。
【0114】
【発明の効果】
有機EL素子の製造装置において減圧下のプラズマ洗浄を導入することにより、従来の洗浄工程の減圧装置(真空排気装置)と真空槽とを不要にしてコストダウンを図ると共に、電極や真空槽内壁の不純物質の堆積による基板汚染や洗浄効果の低下を防止し、更に電極や内壁の不純物質除去の手間を軽減することができる。また連続生産工程を構成することによりタクトタイムを短縮し、生産性が高い、高品質な有機EL素子の製造装置を提供することができる。
【図面の簡単な説明】
【図1】従来の有機EL素子製造装置の概念図である。
【図2】有機EL素子の層構成の概略図である。
【図3】本発明の実施形態の一つである有機EL素子の製造装置の概念図である。
【図4】プラズマ洗浄手段を示す概念図である。
【図5】基板を電極間に通過させ洗浄する洗浄装置の概念図である。
【図6】ウエブ状の基板を洗浄する洗浄装置の概念図である。
【図7】インクジェット成膜装置の概念図である。
【符号の説明】
1 製造装置
2 超音波洗浄装置
3、7 プラズマ洗浄装置
4、5 蒸着装置
6 封止装置
9 搬送手段
11 基板
31 プラズマ洗浄手段
33 高周波電源装置
81〜89 シャッタ
91〜93 移送路
331、332 電極
333、334 誘電体
341、342 ガス供給装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for manufacturing an organic EL (electroluminescence) element provided with an apparatus for cleaning a substrate by atmospheric pressure plasma.
[0002]
[Prior art]
In recent years, attention has been paid to an organic EL element including an organic material layer, and research is proceeding toward use for a display or the like. An organic EL element generally has a structure in which an organic material layer such as an anode, a light-emitting layer, and a cathode are stacked on a substrate, and these layers are formed on the substrate by a vacuum evaporation method, a sputtering method, or the like.
[0003]
A substrate used for an organic EL device is often supplied in a state where a transparent electrode such as an ITO film (a conductive film made of indium oxide doped with tin) is formed on the surface thereof. The substrate on which the film has been formed is ultrasonically cleaned in an organic solvent, and subsequently, the substrate is cleaned by a UV ozone cleaning device or a plasma cleaning device in a vacuum, and then transferred from the cleaning device to a film forming device. An organic layer and a cathode were deposited on the electrodes in the film forming apparatus.
[0004]
As a specific method, (1) a method in which a substrate is subjected to plasma surface treatment in a vacuum chamber and then a film is formed in the same vacuum chamber (Japanese Patent Laid-Open No. 7-142168); A method is disclosed in which, after a surface treatment is performed, the film is conveyed to a film forming chamber without being exposed to the atmosphere, and a film is formed in the film forming chamber (Japanese Patent Application Laid-Open No. 8-222368).
[0005]
[Patent Document 1]
JP-A-7-142168 (paragraphs 0011 and 0012)
[0006]
[Patent Document 2]
JP-A-8-222368 (paragraphs 0029 and 0041, FIG. 2)
FIG. 1 is a conceptual diagram of a conventional organic EL element manufacturing apparatus.
[0007]
Here, in order to make the invention easy to understand, a concept of a conventional organic EL element manufacturing apparatus will be described with reference to FIG.
[0008]
First, a substrate (hereinafter referred to as a substrate) of an organic EL element in which a transparent electrode made of an ITO film (a conductive film made of indium oxide doped with tin) is formed in a solvent 22 of a solvent tank 21 of the ultrasonic cleaning apparatus 2 under atmospheric pressure. The substrate 11 is cleaned by the vibration of the ultrasonic vibrator 23.
[0009]
Next, the substrate 11 is transferred to the plasma cleaning device 3 by a transfer means (not shown), a predetermined gas is supplied by the gas supply device 34 to the vacuum chamber 32, which has been depressurized by the decompression device (vacuum exhaust device) 71, and A high frequency voltage is applied to the electrodes of the plasma cleaning means 31, and the substrate 11 is cleaned by the plasma generated by the plasma cleaning means 31.
[0010]
Next, the substrate 11 is transferred to the organic compound film layer vapor deposition device 4 in which the pressure is reduced by the pressure reducing device 72 by a transport means (not shown), and the light emitting layer and the like are vapor-deposited on the substrate by the organic compound film layer vapor deposition device 41.
[0011]
Next, the substrate 101 on which the light emitting layer and the like have been deposited is transferred to the metal film layer deposition device 5 decompressed by the decompression device 73 by a transport means (not shown), and the cathode layer is deposited on the substrate by the metal film layer deposition means 51. .
[0012]
Next, the substrate 102 on which the cathode layer has been deposited is transferred to the sealing device 6 by a transport means (not shown), the substrate 102 on which the cathode layer has been deposited is sealed with a sealing tube 61, and the substrate 103 sealed in a can is removed. obtain.
[0013]
Reference numerals 81 to 88 denote shutters for maintaining the degree of vacuum (reduced pressure) of each device when the substrate or the like is transferred between the above-described devices.
[0014]
The plasma cleaning apparatus 3 will be described in detail. Conventionally, plasma could not be generated unless the plasma was in a reduced pressure state. Therefore, the plasma cleaning means 31 was housed in a vacuum chamber 32, and the shutters 81 and 82 of the vacuum chamber 32 were moved in and out of the substrate 11. It is opened and closed to form a sealed state, and the inside air and gas are exhausted by operating the pressure reducing device 71 to evacuate the vacuum chamber 32. Then, a predetermined gas is supplied by the gas supply device 34, and the high frequency power supply 33 is operated to perform plasma cleaning. By generating plasma between the electrodes of the means 31 and passing the substrate 11 into the plasma atmosphere between the electrodes, organic substances and the like on the substrate surface are decomposed and ashed, and the substrate is washed.
[0015]
[Problems to be solved by the invention]
However, in the conventional methods described above such as (1) and (2), since the substrate is cleaned in a sealed state inside the vacuum chamber in which the plasma is generated, an expensive vacuum chamber and a decompression device are required for cleaning, and Since the plasma reaches the inner wall, impurities are generated from the material forming the inner wall, or impurities obtained by decomposing and ashing the substrate are deposited inside the substrate, and these impurities adhere to the substrate and contaminate the substrate. There was a disadvantage that.
[0016]
Particularly, when the organic EL element is manufactured continuously, impurities are continuously generated. Therefore, the inside of a vacuum chamber or the like is gradually contaminated, and the cleaning effect of the substrate is gradually reduced. There is a drawback in that the entire interior must be frequently cleaned, which is troublesome.
[0017]
In the method (1), since the substrate is cleaned and formed in the same vacuum chamber, the time required for the steps (cleaning and film formation) in the vacuum chamber becomes long. I couldn't shorten it.
[0018]
In view of the above problems, a decompression device (vacuum evacuation device) for plasma cleaning under reduced pressure is not required, and cost is reduced, and substrate contamination due to impurities on the inner wall of the vacuum chamber and labor for removing impurities on the inner wall are reduced. It is another object of the present invention to provide an apparatus for manufacturing an organic EL device having a shorter cycle time, a higher productivity at the time of production, and a higher quality organic EL element.
[0019]
[Means for Solving the Problems]
The above object is achieved by the following means. That is,
(1) An organic EL device comprising: a device for cleaning a substrate having an ITO film formed on a substrate made of glass or a resin material; and a film forming device for forming at least an organic compound film layer on the ITO film. An apparatus for manufacturing an organic EL element, wherein the cleaning apparatus is a plasma cleaning apparatus for cleaning the substrate with plasma generated near the atmospheric pressure.
[0020]
(2) In an organic EL device manufacturing apparatus including a substrate cleaning apparatus and a film forming apparatus, a plasma in which an ITO film is formed on a substrate made of glass or a resin material at a pressure close to atmospheric pressure. A plasma cleaning apparatus having a plasma cleaning means for cleaning with an organic compound film layer, an organic compound film layer vapor deposition apparatus for forming an organic compound film layer on the cleaned ITO film by a vacuum vapor deposition method, and It is characterized by comprising, in this order, a metal film layer deposition device for forming a metal film layer by a vacuum deposition method, and a sealing device for sealing a substrate on which the metal film layer is formed under an inert gas atmosphere. For manufacturing organic EL elements.
[0021]
(3) In an apparatus for manufacturing an organic EL device including a substrate cleaning device and a film forming device, a plasma in which an ITO film is formed on a substrate made of glass or a resin material at a pressure close to atmospheric pressure. Plasma cleaning device having a plasma cleaning means for cleaning the substrate, an organic compound film layer patterning device for forming an organic compound film layer on the cleaned ITO film by an inkjet method, and a vacuum on the formed organic compound film layer. A metal film layer vapor deposition device for forming a metal film layer by a vapor deposition method, and a sealing device for sealing a substrate on which the metal film layer is formed under an inert gas atmosphere are provided in this order. Organic EL element manufacturing equipment.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. Note that the description in this column does not limit the technical scope of the claims and the meaning of terms.
[0023]
FIG. 2 is a schematic diagram of a layer configuration of the organic EL element.
An outline of an example of the layer configuration of the organic EL device manufactured by the organic EL device manufacturing apparatus of the present invention will be described with reference to FIG.
[0024]
The organic EL element 10 includes a substrate 11, an organic compound film layer 12, and an electrode 13 (cathode) which is a metal film layer in this order.
[0025]
The substrate 11 includes a base material 111 and a transparent electrode 112 (anode) formed of an ITO film (a conductive film made of indium oxide doped with tin) formed on the base material 111. Is composed of a hole injection layer 121 formed on the transparent electrode 112, a light emitting layer 122 formed on the hole injection layer 121, and an electron injection layer 123 formed on the light emitting layer 122. The electrode 13 (cathode) is constituted by a metal film layer formed on the electron injection layer 123.
[0026]
The organic EL element 10 according to the present invention is configured such that a power supply (not shown) is connected to the transparent electrode 112 and the electrode 13 (cathode), and at least one organic compound film of the organic compound film layer 12 is supplied by the supplied current. An element in which the layer becomes a light emitting layer and emits light.
[0027]
Here, the light emission of the organic EL element 10 may be light emission derived from fluorescence or light emission derived from phosphorescence.
[0028]
The organic EL element 10 may be a substrate and a film formed on the substrate other than the above-described configuration such as a configuration in which a hole transport layer is inserted between a hole injection layer and a light emitting layer. Any structure may be used as long as it has an organic compound film layer including a light emitting layer on the substrate 11 having the transparent electrode 112 (anode) made of an ITO film, and further has a metal film layer thereon.
[0029]
Hereinafter, a manufacturing apparatus for manufacturing an organic EL device as shown in FIG. 2 will be described as an example.
[0030]
FIG. 3 is a conceptual diagram of an apparatus for manufacturing an organic EL element according to one embodiment of the present invention.
[0031]
Hereinafter, an embodiment of a manufacturing apparatus for manufacturing an organic EL element, which includes a cleaning apparatus for generating a plasma near the atmospheric pressure and cleaning a substrate of the organic EL element, will be described with reference to FIG.
[0032]
Here, the vicinity of the atmospheric pressure refers to a pressure (atmospheric pressure) of 20 KPa to 110 KPa, and is preferably 93 KPa to 104 KPa in order to obtain the effect of the present invention.
[0033]
The organic EL element 10 as shown in FIG. 2 is manufactured using a manufacturing apparatus 1 as shown in FIG.
[0034]
The organic EL element manufacturing apparatus 1 of the present embodiment is an apparatus for cleaning and forming a film on a substrate 11 having a transparent electrode (ITO film) 112 formed on a surface of a base material 111 shown in FIG. It does not include an electrode forming device.
[0035]
The manufacturing apparatus 1 includes an ultrasonic cleaning apparatus 2 for cleaning a substrate 11 having an ITO film 112 formed on a base material 111 made of glass or a resin material with a solvent 22 and an ultrasonic cleaning apparatus 11 for cleaning the substrate 11 subjected to ultrasonic cleaning near atmospheric pressure. A plasma cleaning device 3 that is a device for cleaning a substrate to be cleaned by the plasma generated in step 1; and a film forming device that forms an organic compound layer film on the ITO film of the substrate 11 that has been plasma cleaned by a vacuum deposition method. The organic compound film layer (the hole injection layer 121, the light emitting layer 122, and the electron injection layer 123 in FIG. 2) has a vapor deposition device 4 (hereinafter, referred to as a vapor deposition device 4), and vacuum deposition is performed on the formed organic compound film layer. A metal film layer vapor deposition device 5 (hereinafter, referred to as a vapor deposition device 5) for forming a metal film layer (electrode 13 in FIG. 2) by a method and a substrate on which the metal film layer is formed are sealed in an inert gas atmosphere. Sealing device 6 and ultrasonic cleaning The transfer paths 91-93 for the substrate 2, the plasma cleaning device 3, the vapor deposition device 4, the vapor deposition device 5, and the sealing device 6, which communicate with each other, maintain the airtightness of each device, and serve as the substrate entrance and exit. And transport means 9 for transporting substrates and the like.
[0036]
The ultrasonic cleaning device 2 immerses the substrate 11 in the solvent 22 of the solvent tank 21 and cleans the substrate 11 by the vibration of the ultrasonic vibrator 23.
[0037]
The plasma cleaning device 3 includes gas supply devices 341 and 342, mixes argon and oxygen gas supplied from the gas supply devices 341 and 342, and enters the cleaning chamber 35 at a predetermined flow rate by a flow control device (not shown). The mixed gas can be introduced in the direction of the arrow and guided between a pair of electrodes described later.
[0038]
The flow rate of each argon gas is controlled by a flow rate control device (not shown) so as to contain 90% by volume or more, preferably 95% by volume or more with respect to 100% by volume of the mixed gas (mixed gas of inert gas and reactive gas).
[0039]
Further, the plasma cleaning apparatus 3 includes a plasma cleaning unit 31 installed in a cleaning chamber 35, and is capable of cleaning the substrate 11 by generating plasma inside the plasma generating unit 311 of the plasma cleaning unit 31. .
[0040]
This plasma cleaning means 31 has electrodes 331 and 332 covered with a pair of dielectrics (333 and 334 in FIG. 4) disposed at a predetermined distance from each other, and one of the electrodes 332 has a frequency of 100 KHz to 150 MHz. And the other 331 is grounded so that a high-frequency voltage can be applied between its electrodes.
[0041]
Then, the plasma cleaning unit 31 causes the plasma generation unit 311 between the electrodes 331 and 332 to contain a mixed gas of argon and oxygen supplied from the gas supply devices 341 and 342 (to allow the mixed gas to pass in the direction of the arrow) so that the high frequency is generated. A glow discharge is generated by an electric field to excite argon and oxygen molecules, so that the mixed gas is turned into plasma near the atmospheric pressure in the plasma generation unit 311.
[0042]
The substrate 11, which is transported below the plasma generating unit 311 by the transport means 9 with the ITO film surface facing upward, is sprayed with the plasma-mixed gas onto the ITO film surface, and organic substances and the like on the surface are decomposed and ashed. At the same time, the surface is cleaned by a slight shaving.
[0043]
Exhaust gas containing impurities decomposed and incinerated by organic substances is discharged to the atmosphere from an exhaust port (not shown) through an exhaust gas treatment device.
[0044]
Here, plasma is generated using a mixed gas of argon and oxygen because an example is described in which an ITO film is used for the transparent electrode. However, the specific type of gas is the type of the electrode provided on the substrate. What is necessary is just to select suitably according to a kind, for example, may be only argon, or may be only oxygen.
[0045]
Further, the plasma cleaning means 31 may not be installed in the closed cleaning chamber 35 but may be installed in an open state in an environment where the number of floating dust is controlled at a predetermined cleaning degree. In this case, deposition of impurities and the like in the plasma cleaning device 3 is further eliminated.
[0046]
The cleaned substrate 101 is transferred by the transfer means 9 through the transfer path 91 to the organic compound film layer deposition apparatus 4.
[0047]
The transfer paths 91 to 93 are transfer paths for substrates and the like disposed between the respective devices from the plasma cleaning device 3 to the sealing device 6, and are provided with a substrate transfer means 9 described later therein. The shutters 81 to 89, which will be described later, are provided at the connection between the camera and each device.
[0048]
Further, inside the transfer path 91, a substrate inverting means (not shown) for inverting the substrate 11 upside down is provided.
[0049]
The transfer paths 91 and 93 are connected to a decompression device (not shown) or decompression devices 72 and 73, respectively, and the insides of the transfer paths 91 and 93 are preliminarily depressurized, and the shutter 83 on the entrance side of the vapor deposition device 4 or the vapor deposition device When the shutter 86 on the outlet side of 5 is opened, the vacuum pressure in the vapor deposition devices 4 and 5 may not be reduced.
[0050]
The shutters 81 to 89 are openable and closable. When opened, the shutters 81 to 89 have an opening size that allows the substrates (11, 101, 102, 103, 104) at the respective manufacturing stages to pass, and when closed, each device is sealed.
[0051]
The entrance-side shutter 82 and exit-side shutter 83 of the transfer path 91 in the substrate transport direction, the entrance-side shutter 84 and exit-side shutter 85 of the transfer path 92, and the entrance-side shutter 86 and exit-side shutter 87 of the transfer path 93 All are closed except when passing, and when one is open when the substrate passes, the other is always closed.
[0052]
As a result, it is possible to prevent gas and impurities from flowing in and out of the process before and after the transfer path from entering and exiting, changing the pressure, and releasing the gas and impurities to the atmosphere.
[0053]
The shutter 81 is opened only when the substrate 11 is supplied to the plasma cleaning apparatus 3, and the shutter 88 is opened only when the sealed substrate 104 is collected, thereby preventing entry of dust and the like.
[0054]
By providing the transfer path and the shutter as described above, the inflow and outflow of the atmosphere and the gas between the apparatuses from the outside of the cleaning chamber 35 due to the movement of the substrate can be prevented, and the pressure is kept substantially constant.
[0055]
FIG. 4 is a conceptual diagram illustrating the plasma cleaning means.
In the plasma cleaning unit 31, a mixed gas of oxygen and argon gas supplied from the gas supply units 341 and 342 is injected in the direction of the arrow, turned into plasma between the electrodes 331 and 332, and transferred by the transfer unit 9 below the electrodes. It is sprayed on the substrate 11 to clean the surface of the substrate.
[0056]
The electrodes 331 and 332 can be made of a metal such as titanium, silver, platinum, stainless steel, aluminum or iron, a composite material of iron and ceramics, or a composite material of aluminum and ceramics. Among them, stainless steel is preferable because of its good workability. The dielectrics 333 and 334 are coated on the peripheral surface of the electrode, and a cooling unit using cooling water (not shown) is provided inside the electrode, and is cooled at least during discharge.
[0057]
The dielectrics 333 and 334 are ceramics-coated dielectrics having a thickness of 0.2 to 3 mm, preferably 0.5 to 1.5 mm, obtained by thermally spraying ceramics and sealing with an inorganic compound sealing material, As the ceramic material, alumina, silicon nitride, or the like can be used, and among them, alumina is preferable because it has good workability.
[0058]
Further, a lining treated dielectric material provided with an inorganic material by lining may be used, and silicate glass, borate glass, phosphate glass, germanate glass, tellurite glass, Aluminate-based glass, vanadate-based glass, and the like can be used, and among them, borate-based glass is preferable because of good workability.
[0059]
Then, as described above, one electrode 331 is grounded, and the other electrode 332 is connected to the high frequency power supply device 33.
[0060]
The high-frequency power supply device 33 has a voltage of 10 V to 10 KV and a frequency of 100 KHz to 150 MHz. An electronic high-frequency power supply (13.56 MHz) or the like can be used, and the transmission pattern may be continuous transmission in the form of a continuous sine wave or transmission in which ON / OFF is performed intermittently. However, for good cleaning, ON / OFF is required. Is preferably intermittently transmitted.
[0061]
The gap d between the two electrodes is set to 0.5 to 20 mm, preferably 0.5 to 1.5 mm in order to perform a uniform and stable discharge.
[0062]
Another embodiment of the plasma cleaning apparatus will be described.
FIG. 5 is a conceptual diagram of a cleaning device for cleaning by passing a substrate between electrodes, and FIG. 6 is a conceptual diagram of a cleaning device for cleaning a web-shaped substrate.
[0063]
First, a plasma cleaning apparatus of another embodiment for cleaning by passing a substrate between electrodes will be described with reference to FIG.
[0064]
A mixed gas of oxygen and argon gas supplied from the gas supply devices 341 and 342 is supplied to the plasma generation unit 339, and is formed into plasma between the electrodes 331 and 332 to clean the substrate 11 transported between the electrodes. ing.
[0065]
The electrodes 331 and 332, the dielectrics 333 and 334, and the high-frequency power supply 33 can be the same as those described in the description of FIG.
[0066]
The gap d between the two electrodes is set to 10 to 20 mm in order to allow a uniform and stable discharge and transport the substrate.
[0067]
When an apparatus for manufacturing an organic EL element is configured using this plasma cleaning apparatus, for example, the same ultrasonic cleaning apparatus as described with reference to FIG. 3, an organic compound film layer deposition apparatus, and a metal film layer deposition The device, the sealing device, the transfer path, the shutter, and the transport means can be used.
[0068]
Next, another embodiment of a plasma cleaning apparatus for cleaning a web-shaped substrate will be described with reference to FIG.
[0069]
Reference numeral 7 denotes a plasma cleaning apparatus for cleaning a web-like substrate. A web-like substrate 113 on which a patterned ITO film is formed on a web-like base material made of resin is guided by guide rollers 337 in a cleaning chamber 35. The sheet is conveyed while being wound around a grounded roll electrode 335 rotating in the direction of the arrow by a driving unit (not shown).
[0070]
The plurality of fixed electrodes 336 connected to the high-frequency power supply device 33 are formed of metal cylinders or prisms, and are installed facing the peripheral surface of the roll electrode 335 with a predetermined gap d.
[0071]
The roll electrode 335 and the fixed electrode 336 each have a surface covered with a dielectric material, and the materials of the roll electrode, the fixed electrode and the dielectric material are the electrodes 331 and 332 and the dielectric material 333 described in FIG. 334, and the gap d between the roll electrode 335 and the fixed electrode 336 is set to 0.5 to 20 mm, preferably 0.5 to 1.5 mm in order to cause uniform and stable discharge.
[0072]
Then, a mixed gas of argon and oxygen is supplied into the cleaning chamber 35 by the gas supply devices 341 and 342, and a high frequency voltage is applied to the fixed electrode 336 by the high frequency power supply device 33, so that the mixed gas of the plasma generating section 339 is converted into plasma. The surface of the web-like substrate 113 wound around the roller electrode 335 is cleaned.
[0073]
The gas containing impurities after the cleaning is exhausted from the exhaust port 338.
When an apparatus for manufacturing an organic EL element is configured using the plasma cleaning device 7, for example, the same ultrasonic cleaning device as that described with reference to FIG. 3, an organic compound film layer deposition device, and a metal film layer deposition An apparatus, a film forming apparatus for forming a sealing material, a transfer path, a shutter, and a web transport unit including various transport rollers or nip rollers for transporting a web-shaped substrate can be used.
[0074]
In addition, the vapor deposition devices 4 and 5 connected to the plasma cleaning device 7 for depositing the organic compound vapor deposition film material and the metal film material described in FIG. 3 may be replaced with a film deposition device using an inkjet method or a film deposition device using a gravure method. In these cases, it is possible to continuously perform cleaning and film formation, and there is no need for a decompression device for performing film formation, which has the effect of shortening the tact time. In particular, the web as shown in FIG. When connected to a plasma cleaning apparatus for cleaning the substrate 113, a remarkable effect can be obtained.
[0075]
An apparatus for manufacturing an organic EL device provided with a film forming apparatus using an ink jet system is a device in which the vapor deposition apparatus 4 in FIG.
[0076]
FIG. 7 is a conceptual diagram of an inkjet film forming apparatus.
Since the basic manufacturing process is the same as that by the vapor deposition described in FIG. 3, different portions will be described with reference to FIG.
[0077]
In this case, after cleaning the substrate by atmospheric pressure plasma in the cleaning chamber 35, an ink jet printing apparatus 42 which is a commonly used organic compound film layer patterning apparatus is provided in the film forming chamber 36, and an ink head 421 is provided. Are provided so that ink can be ejected onto the transparent electrode surface, and a light emitting material that emits a predetermined color is applied by patterning using an ink jet printing apparatus to form a light emitting layer.
[0078]
In the case of full color, for example, a cyanopolyphenylene vinylene precursor can be used for a red color developing material, and a polyphenylene vinylene precursor can be used for a green light emitting material. Then, an aluminum quinolinol complex is vacuum-deposited in a deposition layer (not shown) to form a charge-transport-type blue light-emitting layer.
[0079]
Next, after depositing an electrode (cathode) in the film forming chamber 37, the substrate on which the electrode has been deposited is sealed with a sealing device.
[0080]
Although the shape of the electrodes 331 and 332 shown in FIGS. 4 and 5 has been described as a flat plate shape, the electrode of the present invention is not limited to a flat plate shape. For example, even if a plurality of cylinders are arranged, A plurality of cylinders having a polygonal cross section may be arranged. The direction in which the electrodes are arranged may be parallel to or perpendicular to the transport direction of the substrate 11.
[0081]
Referring back to the entire description, in FIG. 3, the film forming chamber 36 of the vapor deposition apparatus 4 adjacent to the cleaning chamber 35 is cleaned with a decompression device (vacuum exhaust device) 72 for evacuating the film forming chamber 36. An organic compound film layer vapor deposition means 41 (hereinafter referred to as vapor deposition means 41) for vacuum-depositing a light emitting layer or the like on the transparent electrode of the substrate 101, and the transparent electrode (112 in FIG. 2) of the substrate is deposited by the vapor deposition means 41. A light emitting layer or the like (121, 122, 123 in FIG. 2) is deposited thereon.
[0082]
The substrate 102 on which the light emitting layer and the like are deposited is transported by the transporting means 9 through the transfer path 92 to the film forming chamber 37 of the vapor deposition device 5 where the pressure is reduced by the pressure reducing device 73, and the metal film layer deposition means 51 for vacuum-depositing the electrode. An electrode (cathode) (13 in FIG. 2) is deposited on the light-emitting layer and the like deposited by a deposition means (hereinafter referred to as deposition means 51).
[0083]
The vapor deposition means 41 includes a plurality of crucibles 411 containing the vapor deposition materials of the hole injection layer 121, the light emitting layer 122, and the electron injection layer 123 of FIG. 2 below the transfer position of the substrate 101. It is connected to a heating power supply (not shown) and is controlled to a temperature at which the deposition material melts and evaporates.
[0084]
The washed substrate 101 is sequentially transported by the transporting means 9 to a position facing each of the crucibles 411 described above, with the transparent electrode face down. Then, the respective vapor deposition materials of the hole injection layer 121, the light emitting layer 122, and the electron injection layer 123 of FIG. 2 are sequentially deposited on the transparent electrode by each crucible to form a film.
[0085]
Although not shown, a plurality of film forming chambers each including a set of crucibles are provided via a shutter and a transfer path, and the hole injection layer 121, the light emitting layer 122, and the electron injection layer 123 are sequentially deposited in the crucibles of the respective film formation chambers. Alternatively, the film may be formed.
[0086]
The vapor deposition means 51 includes a crucible 511 containing a vapor deposition material for a metal film layer below the transfer position of the substrate 102 on which the light emitting layer and the like are vapor-deposited. The crucible 511 is connected to a heating power supply (not shown). Is controlled to a temperature at which the metal melts and evaporates.
[0087]
Then, the substrate 102 on which the light emitting layer and the like are deposited is transported by the transporting means 9 to a position facing the crucible 511 with the transparent electrode surface facing down. Then, a metal film layer (electrode 13 (FIG. 2)) is deposited on the electron injection layer.
[0088]
The sealing device 6 includes a substrate 103 on which electrodes are deposited, a can sealing means 62 for sealing the substrate with a sealing can 61 supplied from a sealing can supply device 63, and an inert gas in the can sealing means 62. A nitrogen gas supply device (not shown) for supplying nitrogen gas, which is a gas, is provided.
[0089]
The substrate is held in a state where it is positioned on the transfer means by the substrate positioning means 901 provided on the transfer means 9, and the plasma spraying position of the plasma cleaning device 3, the plurality of deposition positions of the deposition device 4, and the deposition position of the deposition device 5 The wafers are sequentially transported to the deposition position and the sealing position of the sealing device 6, and each device performs a predetermined process.
[0090]
Here, the transporting means 9 is open at portions other than the substrate positioning means 901 so that the evaporated deposition material can be deposited on the substrate.
[0091]
The transport means 9 may be a belt or a chain, or may be a robot or the like for holding and transferring a substrate. Further, the plasma cleaning device 3, the vapor deposition device 4, the vapor deposition device 5, the sealing device 6 and each of the transfer paths 91 to 93 may be individually provided, or may be provided so as to penetrate the above-described device.
[0092]
Next, a method for manufacturing the organic EL element 10 using the manufacturing apparatus 1 of the present embodiment will be described with reference to FIG.
[0093]
In this embodiment, the organic EL element 10 is continuously manufactured by performing cleaning and film formation on the substrate 11 on which the transparent electrode is formed in the cleaning chamber 35 and the film forming chambers 36 and 37, respectively.
[0094]
That is, the operator prepares the substrate 11 on which the transparent electrode 112 is formed on the base material 111 shown in FIG. 2 in advance, and sets the substrate 11 in the organic solvent 22.
[0095]
Next, control means (hereinafter, referred to as control means) of the manufacturing apparatus 1 starts control by a starting operation of an operator, and activates the ultrasonic vibrator 23 to ultrasonically clean the substrate 11.
[0096]
Then, the control means opens the shutter 81 of the cleaning chamber 35, drives a robot hand (not shown) or the like to transfer the ultrasonically cleaned substrate 11 into the cleaning chamber 35, and mounts the substrate 11 on the substrate positioning means 901 of the transport means 9. Then, the shutter 81 is closed.
[0097]
At this time, the substrate 11 is mounted in a direction in which the transparent electrode 112 in FIG. 2 is exposed to plasma (a direction in which the transparent electrode 112 in FIG. 2 is directed upward). When the substrate 11 is transferred, the pressure in the cleaning chamber 35 is set slightly higher than the atmospheric pressure in order to prevent impurities from flowing into the cleaning chamber 35.
[0098]
After closing the shutter 81, the control means causes the gas supply devices 341 and 342 to inject argon and oxygen gas between the electrodes 331 and 332 in the cleaning chamber 35 (the plasma generation unit 311).
[0099]
In order to stably generate plasma, the flow rate of these gases is controlled at a flow rate of 90% by volume, preferably 95% by volume with respect to 100% by volume of a mixed gas (mixed gas of argon gas and oxygen gas). It is set so as to be contained by volume% or more.
[0100]
Next, the control unit operates the high-frequency power supply device 33 to apply a high-frequency voltage to the electrode 332 to turn the mixed gas passing through the plasma generation unit 311 into plasma, and to place the transparent electrode surface below the plasma generation unit 311. The plasma-converted gas is blown onto the substrate 11 conveyed on the upper side to clean the substrate surface.
[0101]
Here, the surface of the substrate 11 is cleaned by plasma, and in particular, impurities made of organic substances are efficiently decomposed and incinerated by oxygen plasma. Normally, when argon is used for plasma cleaning of the transparent electrode 112 made of the ITO film shown in FIG. 2, oxygen molecules on the surface of the transparent electrode 112 are reduced to adversely affect the organic EL element 10, but in this embodiment, oxygen gas is used. Since the mixing is performed, the reduction of the transparent electrode 112 is suppressed.
[0102]
In addition, in order to shorten the tact time of the plasma cleaning, the plasma cleaning time is controlled to be 10 seconds to 30 seconds.
[0103]
In this plasma cleaning apparatus 3, instead of cleaning in a state in which plasma is confined in a conventional vacuum chamber, plasma generated gas containing impurities after cleaning is exhausted while cleaning at near atmospheric pressure. Almost no impurity is deposited in the cleaning chamber 35.
[0104]
As described above, since the substrate is cleaned in the vicinity of the atmospheric pressure, the cleaning effect does not decrease even when the organic EL element is manufactured continuously, impurities are hardly deposited in the cleaning chamber or the electrode, and the electrode is frequently cleaned. There is no need to clean or replace or frequently clean the room.
[0105]
When the cleaning is completed, the control unit opens the shutter 82 and causes the transport unit 9 to transport the cleaned substrate 101 to the transfer path 91. Then, the shutter 82 is closed, the pressure in the transfer path 91 is reduced to a pressure slightly lower than the pressure in the film forming chamber 36 by a pressure reducing means or a pressure reducing means 72 (not shown), and the substrate 101 is turned upside down by a substrate reversing means (not shown).
[0106]
The operator puts a plurality of crucibles 411 in which the evaporation material such as the hole injection layer 121 is put in the evaporation means 41 of the film formation chamber 36 and a crucible 511 in which the evaporation material of the metal film layer is put in the evaporation means 51 of the film formation chamber 37. Install it in advance.
[0107]
The control means causes the pressure in the film forming chamber 36 to be exhausted by the pressure reducing device (vacuum exhaust device) 72 until the pressure in the film forming chamber 36 reaches a predetermined pressure. Next, the shutter 83 is opened, and the substrate 101 is transported to the film forming chamber 36 by the transport unit 9, and the shutter 83 is closed.
[0108]
This makes it possible to transfer the substrate in a stable state without gas and impurities between the cleaning chamber 35 and the film forming chamber 36 flowing into the other chamber and without significantly disturbing the pressure (atmospheric pressure) in the chamber.
[0109]
Subsequently, the control unit sequentially heats and evaporates the plurality of crucibles 411 containing the respective evaporation materials of the hole injection layer 121, the light emitting layer 122, and the electron injection layer 123 by a heating unit (not shown), and controls the transporting unit 9 to evaporate. The substrate is transported to a position facing the crucible being controlled and heated, and a hole injection layer 121, a light emitting layer 122, and an electron injection layer 123 are sequentially deposited and formed on the transparent electrode 112 of the substrate 11.
[0110]
Next, the control means controls the shutter and the transfer means to transfer the substrate 102 on which the light-emitting layer or the like is deposited to the deposition position of the film formation chamber 37 and heat the crucible 511 of the film formation chamber 37 to form the electrode shown in FIG. (Cathode) 13 is formed into a film.
[0111]
Next, in the same manner, the control means transfers the substrate 103 on which the electrodes are deposited by the transfer means 9 from the film forming chamber 37 to the sealing device 6 via the transfer path 93.
[0112]
Then, the control means causes the sealing can supply device 63 to supply the sealing can 61 to the can sealing means 62, and the nitrogen sealing gas supplied by a nitrogen gas supply device (not shown) is filled to approximately atmospheric pressure. In the means 62, the substrate 103 is sealed with the sealing can 61.
[0113]
Thereby, the substrate 103 on which the metal film layer is formed is sealed in the nitrogen gas.
The control unit discharges the substrate 104 sealed by the sealing can 61 through the shutter 88 by the transfer unit 9 and collects the substrate 104 as an organic EL element.
[0114]
【The invention's effect】
By introducing plasma cleaning under reduced pressure in an organic EL device manufacturing apparatus, the pressure reduction device (vacuum exhaust device) and vacuum chamber in the conventional cleaning process are not required, and cost reduction is achieved. It is possible to prevent contamination of the substrate and a decrease in the cleaning effect due to the deposition of impurities, and to further reduce the trouble of removing impurities from the electrodes and the inner wall. In addition, by configuring a continuous production process, the tact time can be shortened, and a high-productivity, high-quality organic EL element manufacturing apparatus can be provided.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a conventional organic EL element manufacturing apparatus.
FIG. 2 is a schematic diagram of a layer configuration of an organic EL element.
FIG. 3 is a conceptual diagram of an apparatus for manufacturing an organic EL element according to an embodiment of the present invention.
FIG. 4 is a conceptual diagram showing a plasma cleaning unit.
FIG. 5 is a conceptual diagram of a cleaning apparatus for cleaning by passing a substrate between electrodes.
FIG. 6 is a conceptual diagram of a cleaning apparatus for cleaning a web-shaped substrate.
FIG. 7 is a conceptual diagram of an inkjet film forming apparatus.
[Explanation of symbols]
1 Manufacturing equipment
2 Ultrasonic cleaning equipment
3,7 Plasma cleaning device
4,5 evaporation equipment
6 Sealing device
9 Transport means
11 Substrate
31 Plasma cleaning means
33 High frequency power supply
81-89 shutter
91-93 Transfer route
331, 332 electrode
333, 334 Dielectric
341, 342 gas supply device

Claims (6)

ガラス又は樹脂材料よりなる基材上にITO膜を成膜された基板の洗浄装置と、前記ITO膜上に少なくとも有機化合物膜層を成膜する成膜装置と、を備えた有機EL素子の製造装置において、
前記洗浄装置は大気圧近傍で発生させたプラズマで前記基板を洗浄するプラズマ洗浄装置であることを特徴とする有機EL素子の製造装置。
Manufacture of an organic EL element comprising: a device for cleaning a substrate having an ITO film formed on a substrate made of glass or a resin material; and a film forming device for forming at least an organic compound film layer on the ITO film. In the device,
The apparatus for manufacturing an organic EL element, wherein the cleaning apparatus is a plasma cleaning apparatus for cleaning the substrate with plasma generated near atmospheric pressure.
前記洗浄装置は、所定距離離間して配設された1対の誘電体が被覆された電極を有し、該電極間にアルゴン及び酸素の混合ガス、又はそのいずれかのガスを存在させ、100KHz〜150MHzの周波数の高周波電圧を印加して前記ガスをプラズマ化させ、該プラズマ化されたガスにより前記基板を洗浄するものであることを特徴とする請求項1記載の有機EL素子の製造装置。The cleaning apparatus has a pair of dielectric coated electrodes disposed at a predetermined distance from each other, and a gas mixture of argon and oxygen, or a gas of any of them, is provided between the electrodes. 2. The apparatus for manufacturing an organic EL device according to claim 1, wherein a high-frequency voltage having a frequency of about 150 MHz is applied to convert the gas into plasma, and the substrate is cleaned with the plasma-converted gas. 前記電極はアルミニウム、ステンレス、鉄等の金属よりなり、前記誘電体は厚さが0.2〜3mmのアルミナ等のセラミックス被覆処理誘電体で、前記電極の間隙が0.5〜20mmであることを特徴とする請求項2記載の有機EL素子の製造装置。The electrode is made of a metal such as aluminum, stainless steel, or iron, and the dielectric is a ceramic-coated dielectric such as alumina having a thickness of 0.2 to 3 mm, and the gap between the electrodes is 0.5 to 20 mm. 3. The apparatus for manufacturing an organic EL device according to claim 2, wherein: 基板の洗浄装置と成膜装置とを備えた有機EL素子の製造装置において、
ガラス又は樹脂材料よりなる基材上にITO膜を成膜された基板を大気圧近傍で発生させたプラズマにより洗浄するプラズマ洗浄手段を有するプラズマ洗浄装置と、洗浄した基板のITO膜上に真空蒸着方式により有機化合物膜層を成膜する有機化合物膜層蒸着装置と、成膜した有機化合物膜層上に真空蒸着方式により金属膜層を成膜する金属膜層蒸着装置と、金属膜層を成膜した基板を不活性ガス雰囲気下で封止する封止装置とを、この順番で備えることを特徴とする有機EL素子の製造装置。
In an organic EL element manufacturing apparatus including a substrate cleaning apparatus and a film forming apparatus,
A plasma cleaning apparatus having plasma cleaning means for cleaning a substrate having an ITO film formed on a substrate made of glass or a resin material using plasma generated at about atmospheric pressure, and vacuum deposition on the ITO film of the cleaned substrate An organic compound film layer deposition apparatus for forming an organic compound film layer by a method, a metal film layer deposition apparatus for forming a metal film layer by a vacuum deposition method on the formed organic compound film layer, and a metal film layer. And a sealing device for sealing the filmed substrate in an inert gas atmosphere in this order.
前記洗浄手段は、所定距離離間して配設された1対の誘電体が被覆された電極を有し、該電極間にアルゴン及び酸素の混合ガス、又はそのいずれかのガスを存在させ、100KHz〜150MHzの周波数の高周波電圧を印加して前記ガスをプラズマ化させ、該プラズマ化されたガスにより、ガラス又は樹脂材料よりなる基材上にITO膜を成膜された基板を洗浄するもので、前記電極はアルミニウム、ステンレス、鉄等の金属、前記誘電体は厚さが0.2〜3mmのアルミナ等のセラミックス被覆処理誘電体で、前記電極間の間隙が0.5〜20mmであることを特徴とする請求項4記載の有機EL素子の製造装置。The cleaning means includes a pair of dielectric-coated electrodes disposed at a predetermined distance from each other, and a gas mixture of argon and oxygen, or a gas of any of them, is provided between the electrodes, Applying a high-frequency voltage of a frequency of ~ 150 MHz to convert the gas into a plasma, and cleaning the substrate on which an ITO film is formed on a substrate made of glass or a resin material by the plasma-converted gas, The electrode is a metal such as aluminum, stainless steel or iron, the dielectric is a ceramic-coated dielectric such as alumina having a thickness of 0.2 to 3 mm, and the gap between the electrodes is 0.5 to 20 mm. An apparatus for manufacturing an organic EL device according to claim 4, wherein: 基板の洗浄装置と成膜装置とを備えた有機EL素子の製造装置において、
ガラス又は樹脂材料よりなる基材上にITO膜を成膜された基板を大気圧近傍で発生させたプラズマにより洗浄するプラズマ洗浄手段を有するプラズマ洗浄装置と、洗浄した基板のITO膜上にインクジェット方式により有機化合物膜層を成膜する有機化合物膜層パタニング装置と、成膜した有機化合物膜層上に真空蒸着方式により金属膜層を成膜する金属膜層蒸着装置と、金属膜層を成膜した基板を不活性ガス雰囲気下で封止する封止装置とを、この順番で備えることを特徴とする有機EL素子の製造装置。
In an organic EL element manufacturing apparatus including a substrate cleaning apparatus and a film forming apparatus,
A plasma cleaning apparatus having plasma cleaning means for cleaning a substrate having an ITO film formed on a substrate made of glass or a resin material using plasma generated at about atmospheric pressure, and an inkjet method on the ITO film of the cleaned substrate An organic compound film layer patterning apparatus for forming an organic compound film layer by using the method, a metal film layer deposition apparatus for forming a metal film layer on the formed organic compound film layer by a vacuum evaporation method, and a metal film layer And a sealing device for sealing the substrate in an inert gas atmosphere in this order.
JP2002309480A 2002-10-24 2002-10-24 Apparatus for manufacturing organic el element Pending JP2004146184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002309480A JP2004146184A (en) 2002-10-24 2002-10-24 Apparatus for manufacturing organic el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309480A JP2004146184A (en) 2002-10-24 2002-10-24 Apparatus for manufacturing organic el element

Publications (1)

Publication Number Publication Date
JP2004146184A true JP2004146184A (en) 2004-05-20

Family

ID=32455278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309480A Pending JP2004146184A (en) 2002-10-24 2002-10-24 Apparatus for manufacturing organic el element

Country Status (1)

Country Link
JP (1) JP2004146184A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134826A (en) * 2004-11-09 2006-05-25 Tokki Corp Manufacturing device of organic el element
JP2007042315A (en) * 2005-08-01 2007-02-15 Konica Minolta Holdings Inc Manufacturing method of organic electroluminescent element, and organic electroluminescent element
JP2007149482A (en) * 2005-11-28 2007-06-14 Konica Minolta Holdings Inc Manufacturing method of organic el element
JP2007335200A (en) * 2006-06-14 2007-12-27 Tokki Corp Sealing membrane forming device, and sealing membrane forming method
WO2010090223A1 (en) * 2009-02-05 2010-08-12 株式会社日立プラントテクノロジー Substrate surface sealing device and organic el panel fabrication method
JP2013065446A (en) * 2011-09-16 2013-04-11 V Technology Co Ltd Thin film pattern forming method
WO2013146661A1 (en) * 2012-03-30 2013-10-03 株式会社ブイ・テクノロジー Method for forming thin film pattern
CN109457215A (en) * 2019-01-08 2019-03-12 苏州凯瑞纳米科技有限公司 A kind of cleaning coating machine and cleaning film plating process
JP2019516856A (en) * 2017-04-28 2019-06-20 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method for cleaning a vacuum system used for manufacturing OLED devices, method for vacuum deposition on a substrate for manufacturing OLED devices, and vacuum on a substrate for manufacturing OLED devices Equipment for deposition

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134826A (en) * 2004-11-09 2006-05-25 Tokki Corp Manufacturing device of organic el element
JP2007042315A (en) * 2005-08-01 2007-02-15 Konica Minolta Holdings Inc Manufacturing method of organic electroluminescent element, and organic electroluminescent element
JP2007149482A (en) * 2005-11-28 2007-06-14 Konica Minolta Holdings Inc Manufacturing method of organic el element
JP2007335200A (en) * 2006-06-14 2007-12-27 Tokki Corp Sealing membrane forming device, and sealing membrane forming method
TWI421985B (en) * 2009-02-05 2014-01-01 Sharp Kk A sealing device for a substrate surface, and a method for manufacturing the organic electroluminescent panel
JP2010182530A (en) * 2009-02-05 2010-08-19 Hitachi Plant Technologies Ltd Sealing device of substrate surface and manufacturing method of organic el panel
WO2010090223A1 (en) * 2009-02-05 2010-08-12 株式会社日立プラントテクノロジー Substrate surface sealing device and organic el panel fabrication method
JP2013065446A (en) * 2011-09-16 2013-04-11 V Technology Co Ltd Thin film pattern forming method
WO2013146661A1 (en) * 2012-03-30 2013-10-03 株式会社ブイ・テクノロジー Method for forming thin film pattern
JP2013229287A (en) * 2012-03-30 2013-11-07 V Technology Co Ltd Method for forming thin-film pattern
KR20150002654A (en) * 2012-03-30 2015-01-07 브이 테크놀로지 씨오. 엘티디 Method for forming thin film pattern
KR102011452B1 (en) * 2012-03-30 2019-08-19 브이 테크놀로지 씨오. 엘티디 Method for forming thin film pattern
JP2019516856A (en) * 2017-04-28 2019-06-20 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method for cleaning a vacuum system used for manufacturing OLED devices, method for vacuum deposition on a substrate for manufacturing OLED devices, and vacuum on a substrate for manufacturing OLED devices Equipment for deposition
US11673170B2 (en) 2017-04-28 2023-06-13 Applied Materials, Inc. Method for cleaning a vacuum system used in the manufacture of OLED devices, method for vacuum deposition on a substrate to manufacture OLED devices, and apparatus for vacuum deposition on a substrate to manufacture OLED devices
CN109457215A (en) * 2019-01-08 2019-03-12 苏州凯瑞纳米科技有限公司 A kind of cleaning coating machine and cleaning film plating process

Similar Documents

Publication Publication Date Title
JP4543617B2 (en) Active matrix substrate manufacturing method, electro-optical device manufacturing method, electronic device manufacturing method, active matrix substrate manufacturing device, electro-optical device manufacturing device, and electric device manufacturing device
KR101415131B1 (en) Method of forming a resist pattern and method of manufacturing a semiconductor device
TWI473893B (en) Film formation method and method for manufacturing light-emitting device
US7896968B2 (en) Winding type plasma CVD apparatus
JP4677644B2 (en) Equipment for depositing multilayer coatings on individual sheets
JP2888026B2 (en) Plasma CVD equipment
US4995341A (en) Microwave plasma CVD apparatus for the formation of a large-area functional deposited film
JP5043394B2 (en) Vapor deposition apparatus and operation method thereof
JP2006330684A (en) Mask cleaning apparatus, mask cleaning method, method of forming vapor-deposited film, device for manufacturing el display device, and method of manufacturing el display device
JP4669017B2 (en) Film forming apparatus, gas barrier film, and gas barrier film manufacturing method
JP2003174012A5 (en)
JP2004146184A (en) Apparatus for manufacturing organic el element
JP2011065967A (en) Heating and drying device for organic el
JP2849458B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
JP2004079528A (en) Manufacturing apparatus
JP2001035694A (en) Plasma treatment device and plasma treatment method
KR100685144B1 (en) Apparatus for depositing organic material and method thereof
KR100428337B1 (en) El display processor for cleansing a shadow mask
JP2006310681A (en) Substrate processing method and apparatus thereof
JP2004014311A (en) Forming method of organic thin film
US20030047133A1 (en) Apparatus and method for photo-induced process
JP2004091913A (en) Film deposition system and film deposition method
JPH10255972A (en) Manufacture of organic electroluminescent element, and its manufacturing device
JP2012222121A (en) Deposition device
JP2004294878A (en) Method of manufacturing microstructure, device, optical element, integrated circuit, and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021