WO2014088098A1 - Ag alloy film, ag alloy conductive film, ag alloy reflective film, ag alloy semi-transmissive film, and sputtering target for forming ag alloy film - Google Patents

Ag alloy film, ag alloy conductive film, ag alloy reflective film, ag alloy semi-transmissive film, and sputtering target for forming ag alloy film Download PDF

Info

Publication number
WO2014088098A1
WO2014088098A1 PCT/JP2013/082837 JP2013082837W WO2014088098A1 WO 2014088098 A1 WO2014088098 A1 WO 2014088098A1 JP 2013082837 W JP2013082837 W JP 2013082837W WO 2014088098 A1 WO2014088098 A1 WO 2014088098A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
film
atomic
alloy film
resistance value
Prior art date
Application number
PCT/JP2013/082837
Other languages
French (fr)
Japanese (ja)
Inventor
悠人 歳森
野中 荘平
小見山 昌三
弘実 中澤
文武 菊池
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2014088098A1 publication Critical patent/WO2014088098A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Definitions

  • the present invention includes an Ag alloy film (Ag alloy conductive film, Ag alloy reflective film) used for wiring such as a touch panel, a reflective layer of an optical device (optical disc, organic EL, LED, etc.), an infrared cut film, a transparent conductive film, etc. Ag alloy semipermeable membrane) and a sputtering target for forming an Ag alloy film used when the above-described Ag alloy film is formed.
  • This application includes Japanese Patent Application No. 2012-268573 filed in Japan on December 7, 2012, Japanese Patent Application No. 2013-170730 filed in Japan on August 20, 2013, and Japanese Patent Application No. 2013-170730 on December 4, 2013. Priority is claimed based on Japanese Patent Application No. 2013-251329 filed in Japan, the contents of which are incorporated herein by reference.
  • ITO indium tin oxide
  • ATO antimony-doped tin oxide
  • a circuit obtained by patterning a transparent conductive film such as the above is formed.
  • Wiring for drawing out the signal from the above-described circuit to the outside is formed at the peripheral portion on the surface side of the display panel.
  • the above-described wiring is formed by printing Ag paste, and a frame portion is provided at the peripheral portion on the surface side of the display panel so that the wiring cannot be visually recognized.
  • a conductive film made of a metal thin film such as Ag is used as the above-described wiring.
  • an Ag film made of pure Ag has a very low specific resistance value, and is therefore particularly suitable as a conductive film constituting the above-described wiring.
  • Patent Documents 2 to 4 since the above-mentioned Ag film has a high reflectance, as disclosed in Patent Documents 2 to 4, for example, an organic EL reflective film, a reflective film for optical recording disks, a reflective mirror for optical equipment, and a solar cell It is also used for reflective films. Furthermore, as described in Patent Document 5, a thin Ag film is also used as a semi-permeable film. The translucent film made of Ag is also used as a transparent conductive film for display and an anode of bottom emission type organic EL.
  • the Ag film made of pure Ag has high reflectivity and transmittance, but has insufficient resistance to salt water, heat resistance, moisture resistance, and the like, so that the reflectivity, transmittance, etc. in the usage environment are insufficient. There is a risk that the optical properties of the glass will deteriorate. Therefore, for example, Patent Documents 6 to 9 propose a reflection film (Ag alloy film) made of an Ag alloy in which various resistances are improved by adding various elements.
  • the usage environment and manufacturing process conditions have become stricter than before, and further improvements in various resistances such as salt water resistance, heat resistance, moisture resistance, etc. Is required. That is, the Ag alloy film is required to have stable optical characteristics such as reflectance and transmittance even in a hot and humid environment.
  • the present invention has been made in view of the circumstances described above, and has a low specific resistance value and excellent optical characteristics, and is excellent in various resistances such as salt water resistance, heat resistance, and moisture resistance, under the use environment.
  • the present invention also provides an Ag alloy film with small variations in specific resistance and optical characteristics, an Ag alloy conductive film made of this Ag alloy film, an Ag alloy reflective film, an Ag alloy semi-transmissive film, and a sputtering target for forming an Ag alloy film. With the goal.
  • the Ag alloy film according to the first aspect of the present invention has a Pd of 0.10 atomic% or more and 1.00 atomic% or less, and Mg of 0.10 atomic% or more and 1.00 atoms. % Or less, and the balance has a composition substantially composed of Ag and inevitable impurities.
  • Pd is contained in an amount of 0.10 atomic% or more, so that moisture resistance and salt water resistance are improved, and discoloration and the like can be suppressed.
  • Mg is contained in an amount of 0.10 atomic% or more, grain growth in a hot and humid environment can be suppressed, and fluctuations in specific resistance value and optical characteristics (reflectance and transmittance) of the Ag alloy film can be suppressed. Can do.
  • the Pd content is regulated to 1.00 atomic% or less and the Mg content is regulated to 1.00 atomic% or less, the specific resistance value can be kept low, and the optical characteristics (reflectance and transmission) are controlled. Rate) can be improved.
  • Pd is 0.10 atomic% to 1.00 atomic%
  • Mg is 0.05 atomic% to 1.00 atomic%
  • Ca is 0%. .01 atomic% or more and 0.15 atomic% or less, with the balance being substantially composed of Ag and inevitable impurities.
  • the Ag alloy film according to the second aspect of the present invention having such a structure contains 0.01 atomic% or more of Ca, so that recrystallization of the Ag alloy film is suppressed, and the Ag alloy film Fluctuations in the specific resistance value and optical characteristics (reflectance and transmittance) can be suppressed. Further, since the Ca content is regulated to 0.15 atomic% or less, hardening of the alloy can be suppressed, and a sputtering target for forming this Ag alloy film can be stably manufactured. In addition, since Ca has the same effect as Mg, when adding Ca, content of Mg can be 0.05 atomic% or more and 1.00 atomic% or less.
  • At least one selected from Ni and Sn is further in the range of 0.05 atomic% to 0.50 atomic%. You may contain in.
  • the film aggregates in a hot and humid environment, and thus a protrusion is generated on the surface of the film, and the film may be discolored (white turbidity / spots) by the protrusion.
  • the grain growth of Ag is suppressed by a synergistic effect with Mg.
  • the heat resistance and moisture resistance of the Ag alloy film can be further improved. Further, since at least one selected from Ni and Sn is contained in an amount of 0.50 atomic% or less, the specific resistance value can be kept low, and the optical characteristics (reflectance and transmittance) are deteriorated. Can be suppressed.
  • the Ag alloy conductive film according to the third aspect of the present invention is characterized by comprising the above-described Ag alloy film. Since the Ag alloy conductive film having such a structure is composed of the Ag alloy film having the above-described composition, the specific resistance value is low and the specific resistance value fluctuates even in a use environment (in a hot and humid environment). In particular, the conductive film is excellent as a conductive film.
  • the Ag alloy reflective film according to the fourth aspect of the present invention is characterized by comprising the above-described Ag alloy film. Since the Ag alloy reflective film having such a structure is composed of the Ag alloy film having the above-described composition, the reflectivity is high and the reflectivity does not vary even in the use environment (in a hot and humid environment). It is stable and is particularly excellent as a reflective film.
  • An Ag alloy semipermeable membrane according to a fifth aspect of the present invention is characterized by comprising the above-described Ag alloy membrane. Since the Ag alloy semipermeable membrane having such a structure is composed of the Ag alloy membrane having the above-described composition, the transmittance is high and the transmittance does not fluctuate even in a use environment (thermal humidity environment). It is particularly excellent as a semipermeable membrane.
  • Pd is 0.10 atomic% to 1.00 atomic%
  • Mg is 0.10 atomic% to 1.00 atomic%
  • the balance is It is characterized by having a composition substantially composed of Ag and inevitable impurities.
  • Pd is 0.10 atomic% to 1.00 atomic%
  • Mg is 0.05 atomic% to 1.00 atomic%
  • it is characterized by having a composition of 0.01 atomic% or more and 0.15 atomic% or less of Ca, with the balance being substantially composed of Ag and inevitable impurities.
  • At least one selected from Ni and Sn is further 0.05 atomic% or more and 0.50 atomic%. You may contain within the following ranges.
  • the above-described Ag alloy film (Ag alloy conductive film, Ag alloy reflective film, Ag alloy semipermeable film) Can be formed.
  • the specific resistance value is low and the optical characteristics are excellent, and various resistances such as salt water resistance, heat resistance, and moisture resistance are excellent. It is possible to provide an Ag alloy film with small fluctuations in characteristics, an Ag alloy conductive film made of this Ag alloy film, an Ag alloy reflective film, an Ag alloy semipermeable film, and a sputtering target for forming an Ag alloy film.
  • FIG. 2 is a photograph showing an appearance observation result after a constant temperature and humidity test of a conventional example in Example 1.
  • FIG. 6 is a photograph showing an appearance observation result after a salt water test of Inventive Example 8 in Example 1.
  • FIG. It is a photograph which shows the optical microscope observation result after the salt water test of Example 8 of this invention in Example 1.
  • FIG. 6 is a photograph showing an appearance observation result after a salt water test of Invention Example 7 in Example 1.
  • FIG. 6 is a photograph showing an optical microscope observation result after a salt water test of Invention Example 7 in Example 1.
  • FIG. 2 is a photograph showing an appearance observation result after a salt water test of a conventional example in Example 1.
  • FIG. 2 is a photograph showing an optical microscope observation result after a salt water test of a conventional example in Example 1.
  • FIG. It is a projection observation result after the constant temperature and humidity test of the example 100 of this invention in Example 2.
  • FIG. It is a projection observation result after the constant temperature and humidity test of the example 102 of this invention in Example 2.
  • FIG. It is a projection observation result after the constant temperature and humidity test of the prior art example 101 in Example 2.
  • FIG. 6 is a photograph showing an appearance observation result after a salt water test of Invention Example 100 in Example 2.
  • FIG. 6 is a photograph showing an optical microscope observation result after a salt water test of Invention Example 100 in Example 2.
  • FIG. 6 is a photograph showing an appearance observation result after a salt water test of Inventive Example 102 in Example 2.
  • FIG. 6 is a photograph showing an optical microscope observation result after a salt water test of Inventive Example 102 in Example 2.
  • FIG. 6 is a photograph showing an appearance observation result after a salt water test of Conventional Example 101 in Example 2.
  • FIG. 4 is a photograph showing an optical microscope observation result after a salt water test of Conventional Example 101 in Example 2.
  • FIG. 6 is a photograph showing an optical microscope observation result after a salt water test of Conventional Example 101 in Example 2.
  • the Ag alloy film according to this embodiment constitutes a wiring formed on the peripheral portion of the panel surface of the touch panel. Further, the Ag alloy film according to the present embodiment is used as a translucent film applied to a reflection film of an optical device, an optical device, an infrared cut film, or a transparent conductive film. Moreover, the sputtering target for Ag alloy film formation which is this embodiment is used when forming the above-mentioned Ag alloy film.
  • the Ag alloy film and the sputtering target for forming an Ag alloy film according to the present embodiment contain Pd in a range of 0.10 atomic% to 1.00 atomic% and Mg in a range of 0.10 atomic% to 1.00 atomic%. And the balance is composed of Ag and inevitable impurities, or Pd is contained in an amount of 0.10 atomic percent to 1.00 atomic percent, Mg is contained in an amount of 0.05 atomic percent to 1.00 atomic percent, and Ca is further contained. It is contained in an amount of 0.01 atomic% or more and 0.15 atomic% or less, and the balance is composed of Ag and inevitable impurities.
  • At least one selected from Ni and Sn is further within a range of 0.05 atomic% to 0.50 atomic%. You may contain. Below, the reason which prescribed
  • Pd 0.10 atomic% or more and 1.00 atomic% or less
  • Pd content is set in the range of 0.10 atomic% to 1.00 atomic%. In order to ensure that the above-described effects are achieved, it is preferable that the Pd content is in the range of 0.15 atomic% or more and 0.40 atomic% or less.
  • Mg 0.10 atomic% or more and 1.00 atomic% or less, and when Ca is added, Mg: 0.05 atomic% or more and 1.00 atomic% or less
  • Mg is an element having an effect of suppressing the grain growth of Ag in a hot and humid environment. Moreover, it has the effect which salt water resistance improves by a synergistic effect with Pd.
  • the specific resistance value and optical characteristics (reflectance and transmittance) of the Ag alloy film are stabilized under the use environment.
  • the Mg content is less than 0.10 atomic%, the grain growth cannot be sufficiently suppressed, and the specific resistance value and optical characteristics (reflectance and transmittance) cannot be stabilized. There is a fear.
  • the Mg content exceeds 1.00 atomic%, an oxide is generated, the specific resistance value increases in a hot and humid environment, and the optical characteristics (reflectance and transmittance) are increased. There is a risk of deterioration.
  • the Mg content is set in the range of 0.10 atomic% to 1.00 atomic%.
  • the Mg content is preferably in the range of 0.25 atomic% to 0.80 atomic%.
  • the Mg content is preferably 0.05 atomic% to 1.00 atomic%.
  • Ca 0.01 atomic% or more and 0.15 atomic% or less
  • Ca has an effect of further stabilizing the specific resistance value and optical characteristics (reflectance and transmittance).
  • the Ca content is less than 0.01 atomic%, the recrystallization of the Ag alloy film cannot be sufficiently suppressed, and the specific resistance value and optical characteristics (reflectance and transmittance) are stabilized. May not be able to plan.
  • the Ca content is preferably set within a range of 0.01 atomic% or more and 0.15 atomic% or less. In order to ensure that the above-described effects can be achieved, it is more preferable that the Ca content is in the range of 0.03 atomic% or more and 0.13 atomic% or less.
  • the content of Mg is: It may be within the range of 0.05 atomic% or more and 1.00 atomic% or less.
  • Ni and Sn are elements having an effect of further suppressing the grain growth of Ag due to a synergistic effect with Mg. Therefore, by adding Ni and Sn, it is possible to suppress the generation of protrusions due to the aggregation of the film, and it is possible to suppress the occurrence of cloudiness and spots on the surface of the film.
  • the content of at least one or more selected from Ni and Sn is less than 0.05 atomic%, the above-described effects may not be sufficiently achieved.
  • the content of at least one selected from Ni and Sn exceeds 0.50 atomic%, the specific resistance value increases and the optical characteristics (reflectance and transmittance) deteriorate. There is a risk that.
  • the content of at least one selected from Ni and Sn is set within a range of 0.05 atomic% to 0.50 atomic%. It is preferable.
  • the Ag alloy film and the sputtering target for forming an Ag alloy film according to the present embodiment Al, Fe, Cu, Zn, Ga, Ge, In, Sb, Pb, and Bi are added as metal elements in a mass ratio. It may contain 500 ppm or less.
  • the surface roughness is preferably less than 3 ⁇ m and the particle size is less than 500 ⁇ m.
  • the wiring material has a sheet resistance of 0.50 ⁇ / ⁇ or less, preferably 0.40 ⁇ / ⁇ or less.
  • the film thickness of the conductive film is adjusted, but it is required to further reduce the film thickness.
  • the thickness of the Ag alloy film according to the present embodiment having the above-described composition is preferably 120 nm or less, and more preferably 100 nm or less.
  • the specific resistance value of the Ag alloy film is 5.00 ⁇ ⁇ cm or less, Preferably 4.00 microhm * cm or less is needed.
  • Pd is contained in the range of 0.10 atomic% to 1.00 atomic%.
  • the moisture resistance and salt water resistance are improved, the specific resistance value and optical characteristics (reflectance and transmittance) are stabilized, the specific resistance value is low, and the reflectance and transmittance can be maintained high.
  • Mg is contained in the range of 0.10 atomic% or more and 1.00 atomic% or less, grain growth in a hot and humid environment can be suppressed, and the specific resistance value and optical characteristics (reflectance and transmittance) are In addition to being stable, the specific resistance value can be kept low, and the reflectance and transmittance can be kept high.
  • Ca is contained within the range of 0.01 atomic% or more and 0.15 atomic% or less, recrystallization of the Ag alloy film can be suppressed, and fluctuations in specific resistance can be suppressed.
  • the sputtering target for forming an alloy film can be manufactured stably.
  • content of Mg can be made into the range of 0.05 atomic% or more and 1.00 atomic% or less.
  • the Ag alloy film according to the present embodiment has a thickness of 100 nm and a specific resistance value in the range of 4.00 ⁇ ⁇ cm or less, it can be suitably used as a touch panel wiring. Further, it can sufficiently cope with the narrowing and thinning of the wiring.
  • this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
  • the wiring on the peripheral portion of the panel surface of the touch panel has been described as being configured.
  • the present invention is not limited to this, and wiring for other uses, for example, flat panel displays such as liquid crystal and organic EL panels You may apply to a film
  • the specific resistance value, thickness, and width of the Ag alloy film are not limited to those exemplified in the present embodiment, and may be appropriately changed according to requirements.
  • Example 1 Below, the result of the evaluation test evaluated about the effect of the Ag alloy film (Ag alloy electrically conductive film) based on this invention and the sputtering target for Ag alloy film formation is demonstrated.
  • the obtained ingot was cold-rolled at a reduction rate of 70%, and then heat-treated at 600 ° C. for 2 hours in the air. Then, machining was performed to prepare sputtering targets having the composition of Invention Examples 1 to 17 and compositions of Comparative Examples 1 to 5 having a diameter of 152.4 mm and a thickness of 6 mm.
  • a sputtering target of pure Ag purity of 99.9% by mass or more was prepared.
  • ⁇ Ag alloy film (Ag alloy conductive film)> The sputtering targets of Invention Examples 1 to 17 and Comparative Examples 1 to 5 described above were mounted on a sputtering apparatus, and the distance to the glass substrate (Corning Eagle XG): 70 mm, power: DC 250 W, ultimate vacuum: 5 ⁇ Sputtering was performed under conditions of 10 ⁇ 5 Pa or less and Ar gas pressure: 0.5 Pa, and a sample in which an Ag alloy film (Ag alloy conductive film) having a thickness of 100 nm was formed on the surface of the glass substrate was produced. In addition, the sample which formed Ag conductive film with a thickness of 100 nm on the glass substrate on the same conditions using the sputtering target of the prior art example mentioned above was produced.
  • Example 8 of the present invention evaluated as “B” is shown in FIG. 1
  • the appearance observation result of the conventional example evaluated as “C” is shown in FIG.
  • the black shadow in FIGS. 1 and 2 is the shadow of the lens of the camera, and the large and small white circles in FIG. 2 indicate the cloudy point.
  • FIGS. 3A and 3B The appearance observation results and optical microscope observation results of Invention Example 8 evaluated as “A” are shown in FIGS. 3A and 3B, and the appearance observation results and optical microscope observation results of Invention Example 7 evaluated as “B” are shown in FIGS. 4A and 4B show the appearance observation results and the optical microscope observation results of the conventional example evaluated as “C” in FIGS. 5A and 5B.
  • Comparative Example 1 in which the content of Pd is less than the range of the present invention, corrosion was observed in the appearance observation after the constant temperature and humidity test and after the salt water test, and the heat resistance, moisture resistance and salt water resistance were insufficient. It was confirmed that there was.
  • Comparative Example 2 in which the content of Pd is larger than the range of the present invention, the specific resistance value after film formation was as high as 6.08 ⁇ ⁇ cm.
  • Comparative Example 3 in which the Mg content is less than the range of the present invention, the specific resistance value greatly changed before and after the constant temperature and humidity test. It is presumed that the grain growth could not be sufficiently suppressed.
  • Comparative Example 4 in which the Mg content was greater than the range of the present invention, the specific resistance value changed greatly before and after the constant temperature and humidity test.
  • Comparative Example 5 in which the Ca content was larger than the range of the present invention, rolling cracks occurred when the sputtering target was produced, and the sputtering target could not be produced.
  • the specific resistance value greatly changed before and after the constant temperature and humidity test.
  • corrosion was recognized by appearance observation after the salt water test, and the heat resistance, moisture resistance and salt water resistance were insufficient.
  • the specific resistance values after film formation are all less than 4.50 ⁇ ⁇ cm.
  • the change rate of the specific resistance value before and after the constant temperature and humidity test was also within ⁇ 10%.
  • no corrosion was observed in the appearance observation after the constant temperature and humidity test and after the salt water test.
  • the specific resistance value hardly changed before and after the constant temperature and humidity test, and it was confirmed that the specific resistance value was stable.
  • an Ag alloy film (Ag alloy conductive film) having a low specific resistance value and excellent in heat resistance, moisture resistance, and salt water resistance and a sputtering target for forming an Ag alloy film are provided. It was confirmed that it was possible.
  • Example 2 Next, the result of the evaluation test which evaluated the effect at the time of adding Ni and Sn with respect to the sputtering target for Ag alloy film (Ag alloy electrically conductive film) and Ag alloy film formation which concerns on this invention is demonstrated.
  • ⁇ Sputtering target for forming an Ag alloy film As dissolution raw materials, Ag having a purity of 99.9% by mass or more and Pd, Mg, Ca, Ni, Sn having a purity of 99.9% by mass or more were prepared and weighed to have a predetermined composition shown in Table 2. Next, Ag was melted in a high vacuum or an inert gas atmosphere, and Pd, Mg, Ca, Ni, Sn was added to the obtained molten Ag and dissolved in a vacuum or an inert gas atmosphere. Thereafter, the molten metal was poured into a mold to produce ingots having the compositions shown in Table 2. Here, Ag was dissolved in an atmosphere in which the atmosphere was once evacuated (5 ⁇ 10 ⁇ 2 Pa or less) and then replaced with Ar gas. The addition of Pd, Mg, Ca, Ni and Sn was performed in an Ar gas atmosphere.
  • the obtained ingot was cold-rolled at a reduction rate of 70%, and then heat-treated at 600 ° C. for 2 hours in the air. Then, by carrying out machining, a sputtering target having a composition of Invention Examples 100 to 108 and a composition of Comparative Examples 101 and 102 having a diameter of 152.4 mm and a thickness of 6 mm were prepared. Further, as Conventional Example 101, a sputtering target of pure Ag (purity of 99.9% by mass or more) was prepared.
  • ⁇ Ag alloy film (Ag alloy conductive film)> The sputtering targets of the inventive examples 100 to 108 and comparative examples 101 and 102 described above were mounted on a sputtering apparatus, and an Ag alloy film (Ag alloy conductive film) was formed under the following conditions.
  • the sputtering targets of Invention Examples 100 to 108 and Comparative Examples 101 and 102 described above were mounted on a sputtering apparatus, and the distance to the PET film with ITO (initial sheet resistance value: 300 ⁇ / ⁇ ): 70 mm, power: DC 250 W, reaching Sputtering was performed under the conditions of vacuum degree: 5 ⁇ 10 ⁇ 5 Pa or less and Ar gas pressure: 0.5 Pa, and an Ag alloy film (Ag alloy conductive film) having a thickness of 100 nm was formed on the surface of the glass substrate.
  • a sample was prepared.
  • a sample in which an Ag conductive film having a thickness of 100 nm was formed on a glass substrate under the same conditions was prepared using the sputtering target of Conventional Example 101 described above.
  • the sheet resistance value of the PET film with ITO on which the Ag alloy film (Ag alloy conductive film) and the Ag conductive film were formed as described above was measured by the four-probe method. Table 3 shows the obtained sheet resistance value after film formation.
  • the sheet resistance value measured here is not the resistance value of Ag alloy film (Ag alloy conductive film) and Ag conductive film itself, but the resistance value including ITO. It becomes.
  • the surface of the Ag alloy film (Ag alloy conductive film) and the Ag conductive film after the constant temperature and humidity test was observed with a microscope, and the number of protrusions causing cloudiness and spots on the film surface was measured.
  • the film surface was observed and photographed with a dark field image of an optical microscope having a 50 ⁇ objective and a 10 ⁇ eye. Since it is a dark field image, when a protrusion is generated on the surface, the protrusion is detected as a point that shines white.
  • the number of protrusions present in the range of 290 ⁇ m ⁇ 200 ⁇ m of the photographed image was measured using image processing software (Mitani Corporation: Winroof).
  • the projection observation results after the constant temperature and humidity test of Invention Example 100, Invention Example 102, and Conventional Example 101 are shown in FIGS. 6A to 6C.
  • FIGS. 8A and 8B show the appearance observation result and the optical microscope observation result of the inventive example 102.
  • 9A and 9B show the appearance observation result and the optical microscope observation result of the conventional example 101 evaluated as “C”.
  • the sheet resistance value of the PET film with ITO on which an Ag alloy film (Ag alloy conductive film) is formed Of 0.558 ⁇ / ⁇ and 0.630 ⁇ / ⁇ were relatively high.
  • the sheet resistance value greatly changed before and after the constant temperature and humidity test.
  • 1000 or more protrusions after the constant temperature and humidity test were observed, and white turbidity was observed on the film surface.
  • corrosion was observed in the appearance after the salt water test.
  • Example 100 of the present invention in which Ni and Sn were not added, the sheet resistance value after film formation (sheet resistance value of the PET film with ITO on which the Ag alloy film (Ag alloy conductive film) was formed) was 0.314 ⁇ / ⁇ .
  • the sheet resistance value is not significantly changed before and after the constant temperature and humidity test.
  • the number of protrusions after the constant temperature and humidity test was 634, which was relatively large.
  • inventive examples 101 to 108 containing at least one selected from Ni and Sn in the range of 0.05 atomic% to 0.5 atomic% the temperature after the constant temperature and humidity test It was confirmed that the number of protrusions was as small as 94 or less, and the heat resistance and moisture resistance were further improved.
  • the sheet resistance value after film formation (sheet resistance value of the PET film with ITO on which an Ag alloy film (Ag alloy conductive film) is formed) is relatively low, 0.492 ⁇ / ⁇ or less, and the sheet before and after the constant temperature and humidity test. The resistance value has not changed significantly.
  • At least one selected from Ni and Sn is further added at 0.05 atomic% or more. It was confirmed that the heat resistance and moisture resistance could be further improved by inclusion within the range of not more than 50 atomic%.
  • ⁇ Sputtering target for forming an Ag alloy film As a melting raw material, Ag having a purity of 99.9% by mass or more and Pd, Mg, Ca having a purity of 99.9% by mass or more were prepared, and a sputtering target having the composition shown in Table 4 was prepared by the method shown in Example 1. Manufactured. In addition, as a conventional example, a sputtering target of pure Ag (purity of 99.9% by mass or more) was prepared.
  • ⁇ Ag alloy film (Ag alloy reflective film)> The above sputtering target is mounted on a sputtering apparatus, and the distance from the glass substrate (Corning Eagle XG): 70 mm, power: DC 250 W, ultimate vacuum: 5 ⁇ 10 ⁇ 5 Pa or less, Ar gas pressure: 0.5 Pa Sputtering was performed under the conditions described above to prepare a sample in which an Ag alloy film (Ag alloy reflective film) having a thickness of 100 nm was formed on the surface of the glass substrate. In addition, the sample which formed Ag reflecting film of thickness: 100nm on the glass substrate on the same conditions was produced using the sputtering target of the conventional example mentioned above.
  • Comparative Example 21 in which the Pd content was less than the range of the present invention, the reflectance change rate before and after the constant temperature and humidity test was relatively large, and the reflectance was not stable.
  • Comparative Example 22 in which the Pd content was larger than the range of the present invention, the reflectivity after film formation was lower than that of the present invention example, and a sufficient reflectivity could not be obtained.
  • Comparative Example 23 in which the Mg content is less than the range of the present invention and Comparative Example 24 in which the Mg content is greater than the range of the present invention, the rate of change in reflectance before and after the constant temperature and humidity test is relatively large. The reflectance was not stable.
  • Comparative Example 25 in which the content of Ca was larger than the range of the present invention, rolling cracks occurred when the sputtering target was produced, and the sputtering target could not be produced.
  • the reflectance change rate before and after the constant temperature and humidity test was large, and the reflectance was not stable.
  • the reflectance after film formation is sufficiently high, and the reflectance before and after the constant temperature and humidity test.
  • the rate of change was small and stable. From the above, according to the example of the present invention, it is possible to provide an Ag alloy film (Ag alloy reflective film) and a sputtering target for forming an Ag alloy film having high reflectivity and excellent heat resistance and moisture resistance. Was confirmed.
  • Example 4 Next, the result of the evaluation test which evaluated the effect at the time of adding Ni and Sn with respect to Ag alloy film (Ag alloy reflective film) based on this invention is demonstrated.
  • ⁇ Sputtering target for forming an Ag alloy film As dissolution raw materials, Ag having a purity of 99.9% by mass or more and Pd, Mg, Ca, Ni, Sn having a purity of 99.9% by mass or more were prepared, and the compositions shown in Table 6 were obtained by the method shown in Example 2. A sputtering target was manufactured.
  • ⁇ Ag alloy film (Ag alloy reflective film)> The above sputtering target is mounted on a sputtering apparatus, and the distance from the glass substrate (Corning Eagle XG): 70 mm, power: DC 250 W, ultimate vacuum: 5 ⁇ 10 ⁇ 5 Pa or less, Ar gas pressure: 0.5 Pa Sputtering was carried out under the conditions described above to prepare a sample in which an Ag alloy film (Ag alloy reflective film) having a thickness of 100 nm was formed on the surface of the glass substrate.
  • ⁇ Sputtering target for forming an Ag alloy film As a melting raw material, Ag having a purity of 99.9% by mass or more and Pd, Mg, Ca having a purity of 99.9% by mass or more were prepared, and a sputtering target having the composition shown in Table 8 was prepared by the method shown in Example 1. Manufactured. In addition, as a conventional example, a sputtering target of pure Ag (purity of 99.9% by mass or more) was prepared.
  • ⁇ Ag alloy membrane (Ag alloy semipermeable membrane)> The above sputtering target is mounted on a sputtering apparatus, and the distance from the glass substrate (Corning Eagle XG): 70 mm, power: DC 250 W, ultimate vacuum: 5 ⁇ 10 ⁇ 5 Pa or less, Ar gas pressure: 0.5 Pa Sputtering was performed under the conditions described above to prepare a sample in which an Ag alloy film (Ag alloy semi-permeable film) having a thickness of 15 nm was formed on the surface of the glass substrate. In addition, the sample which formed Ag: 15 nm of thickness: 15nm on the glass substrate on the same conditions was produced using the sputtering target of the prior art example mentioned above.
  • the transmittance of the Ag alloy film (Ag alloy semi-permeable film) and the Ag semi-permeable film was measured in the wavelength range of 380 nm to 800 nm with a spectrophotometer (Ubest series manufactured by JASCO Corporation).
  • a spectrophotometer Ubest series manufactured by JASCO Corporation.
  • the measurement was first performed in a hollow state where the substrate was not set, and the spectrophotometer was calibrated. Subsequently, the transmittance Ts of the glass substrate on which the Ag alloy film (Ag alloy semipermeable membrane) and the Ag semipermeable membrane are not formed is measured, and then the transmittance of the glass substrate on which the semitransparent Ag alloy film is formed.
  • Tf Tt / Ts.
  • ⁇ Constant temperature and humidity test> The above-mentioned sample was left for 250 hours in a constant temperature and humidity chamber having a temperature of 85 ° C. and a humidity of 85%.
  • the specific resistance value and transmittance of the Ag alloy film (Ag alloy semipermeable membrane) and Ag semipermeable membrane after the constant temperature and humidity test were measured by the same method as described above. Table 9 shows the measurement results. And the specific resistance value before and behind a constant temperature and humidity test and the change rate of the transmittance
  • Comparative Example 41 in which the Pd content is less than the range of the present invention, the specific resistance value and the change rate of the transmittance before and after the constant temperature and humidity test were relatively large, and the specific resistance value and the transmittance were not stable. .
  • Comparative Example 42 in which the content of Pd was larger than the range of the present invention, the specific resistance value after film formation was high and the transmittance was low.
  • Comparative Example 43 in which the Mg content is less than the range of the present invention, the change rate of the transmittance before and after the constant temperature and humidity test was large, and the transmittance was not stable.
  • Comparative Example 44 in which the Mg content was greater than the range of the present invention, the rate of change in the specific resistance value before and after the constant temperature and humidity test was large, and the specific resistance value was not stable.
  • Comparative Example 45 in which the Ca content was greater than the range of the present invention, rolling cracks occurred when the sputtering target was produced, and the sputtering target could not be produced.
  • the specific resistance value and the change rate of the transmittance before and after the constant temperature and humidity test were large, and the specific resistance value and the transmittance were not stable.
  • ⁇ Sputtering target for forming an Ag alloy film As dissolution raw materials, Ag having a purity of 99.9% by mass or more and Pd, Mg, Ca, Ni, Sn having a purity of 99.9% by mass or more were prepared, and the compositions shown in Table 10 were obtained by the method shown in Example 2. A sputtering target was manufactured.
  • ⁇ Ag alloy membrane (Ag alloy semipermeable membrane)> The above sputtering target is mounted on a sputtering apparatus, and the distance from the glass substrate (Corning Eagle XG): 70 mm, power: DC 250 W, ultimate vacuum: 5 ⁇ 10 ⁇ 5 Pa or less, Ar gas pressure: 0.5 Pa Sputtering was performed under the conditions described above to prepare a sample in which an Ag alloy film (Ag alloy semi-permeable film) having a thickness of 15 nm was formed on the surface of the glass substrate.
  • the transmittance of the Ag alloy film was measured in the wavelength range of 380 nm to 800 nm with a spectrophotometer (Ubest series manufactured by JASCO Corporation).
  • a spectrophotometer Ubest series manufactured by JASCO Corporation.
  • the measurement was first performed in a hollow state where the substrate was not set, and the spectrophotometer was calibrated.
  • the transmittance Ts of the glass substrate on which the Ag alloy film (Ag alloy semipermeable film) is not formed is measured, and then the transmittance Tt of the glass substrate on which the semitransparent Ag alloy film is formed is measured.
  • inventive examples 51 to 58 containing at least one selected from Ni and Sn in the range of 0.05 atomic% to 0.5 atomic% the specific resistance after film formation The value was low, the transmittance was high, and the specific resistance value and the change rate of the transmittance before and after the constant temperature and humidity test were small and stable.
  • an Ag alloy film of the present invention it is possible to form an Ag alloy film, an Ag alloy conductive film, an Ag alloy reflective film, and an Ag alloy semi-transmissive film that are excellent in various resistances and have stable optical characteristics. As a result, the wiring can be narrowed in the touch panel or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

The present invention relates to an Ag alloy film, an Ag alloy conductive film, an Ag alloy reflective film, an Ag alloy semi-transmissive film and a sputtering target for forming an Ag alloy film. This Ag alloy film is characterized by having a composition that contains from 0.10% by atom to 1.00% by atom (inclusive) of Pd and from 0.10% by atom to 1.00% by atom (inclusive) of Mg, with the balance made up of Ag and unavoidable impurities. Alternatively, this Ag alloy film is characterized by having a composition that contains from 0.10% by atom to 1.00% by atom (inclusive) of Pd, from 0.05% by atom to 1.00% by atom (inclusive) of Mg, and additionally from 0.01% by atom to 0.15% by atom (inclusive) of Ca, with the balance made up of Ag and unavoidable impurities.

Description

Ag合金膜、Ag合金導電膜、Ag合金反射膜、Ag合金半透過膜およびAg合金膜形成用スパッタリングターゲットAg alloy film, Ag alloy conductive film, Ag alloy reflective film, Ag alloy semipermeable film, and sputtering target for forming an Ag alloy film
 本発明は、タッチパネル等の配線、光デバイス(光ディスク、有機EL、LED等)の反射層、赤外線カットフィルム、透明導電膜等に使用されるAg合金膜(Ag合金導電膜、Ag合金反射膜、Ag合金半透過膜)、および、上述のAg合金膜を成膜する際に用いられるAg合金膜形成用スパッタリングターゲットに関するものである。
 本願は、2012年12月7日に日本に出願された特願2012-268573号、2013年8月20日に日本に出願された特願2013-170730号、および2013年12月4日に日本に出願された特願2013-251329号に基づき優先権を主張し、その内容をここに援用する。
The present invention includes an Ag alloy film (Ag alloy conductive film, Ag alloy reflective film) used for wiring such as a touch panel, a reflective layer of an optical device (optical disc, organic EL, LED, etc.), an infrared cut film, a transparent conductive film, etc. Ag alloy semipermeable membrane) and a sputtering target for forming an Ag alloy film used when the above-described Ag alloy film is formed.
This application includes Japanese Patent Application No. 2012-268573 filed in Japan on December 7, 2012, Japanese Patent Application No. 2013-170730 filed in Japan on August 20, 2013, and Japanese Patent Application No. 2013-170730 on December 4, 2013. Priority is claimed based on Japanese Patent Application No. 2013-251329 filed in Japan, the contents of which are incorporated herein by reference.
 携帯情報端末、情報処理端末等において広く適用されているタッチパネルにおいて、例えば特許文献1に記載されているように、表示パネルの表面側にITO(インジウムスズ酸化物)、ATO(アンチモンドープ酸化スズ)等の透明導電膜をパターニングした回路が形成されている。表示パネルの表面側の周縁部には、前述の回路からの信号を外部へと引き出すための配線が形成されている。従来、上述の配線は、Agペーストの印刷によって形成されており、表示パネルの表面側の周縁部には、配線を視認できないように額縁部が設けられている。
 近年では、この額縁部の幅を狭くすること(狭額縁化)の要請から、配線の幅狭化が求められており、Agペーストの印刷では対応できなくなってきている。
 そこで、最近では、上述の配線として、Ag等の金属薄膜からなる導電膜が用いられている。特に、純AgからなるAg膜は、比抵抗値が非常に低いことから、上述の配線を構成する導電膜として特に適している。
In touch panels widely applied to portable information terminals, information processing terminals, etc., as described in Patent Document 1, for example, ITO (indium tin oxide) and ATO (antimony-doped tin oxide) are provided on the surface side of the display panel. A circuit obtained by patterning a transparent conductive film such as the above is formed. Wiring for drawing out the signal from the above-described circuit to the outside is formed at the peripheral portion on the surface side of the display panel. Conventionally, the above-described wiring is formed by printing Ag paste, and a frame portion is provided at the peripheral portion on the surface side of the display panel so that the wiring cannot be visually recognized.
In recent years, due to the demand for narrowing the width of the frame portion (narrowing the frame), it has been required to reduce the width of the wiring, and it has become impossible to cope with the printing of Ag paste.
Therefore, recently, a conductive film made of a metal thin film such as Ag is used as the above-described wiring. In particular, an Ag film made of pure Ag has a very low specific resistance value, and is therefore particularly suitable as a conductive film constituting the above-described wiring.
 一方、上述のAg膜は、反射率が高いことから、例えば特許文献2~4に開示されているように、有機EL反射膜、光記録ディスク用反射膜、光学機器用反射ミラー、太陽電池用反射膜等にも利用されている。さらに、特許文献5に記載されているように、膜厚の薄いAg膜は半透過膜としても用いられている。Agからなる半透明膜は、ディスプレイ用の透明導電膜やボトムエミッション方式の有機ELのアノードとしても使用される。
 ここで、純AgからなるAg膜は、反射率および透過率が高いものの、耐塩水性、耐熱性、耐湿性等の各種耐性が不十分であることから、使用環境下において反射率および透過率等の光学特性が低下するおそれがある。そこで、例えば特許文献6~9には、様々な元素を添加して各種耐性を向上させたAg合金からなる反射膜(Ag合金膜)が提案されている。
On the other hand, since the above-mentioned Ag film has a high reflectance, as disclosed in Patent Documents 2 to 4, for example, an organic EL reflective film, a reflective film for optical recording disks, a reflective mirror for optical equipment, and a solar cell It is also used for reflective films. Furthermore, as described in Patent Document 5, a thin Ag film is also used as a semi-permeable film. The translucent film made of Ag is also used as a transparent conductive film for display and an anode of bottom emission type organic EL.
Here, the Ag film made of pure Ag has high reflectivity and transmittance, but has insufficient resistance to salt water, heat resistance, moisture resistance, and the like, so that the reflectivity, transmittance, etc. in the usage environment are insufficient. There is a risk that the optical properties of the glass will deteriorate. Therefore, for example, Patent Documents 6 to 9 propose a reflection film (Ag alloy film) made of an Ag alloy in which various resistances are improved by adding various elements.
特開2009-031705号公報JP 2009-031705 A 特開2006-245230号公報JP 2006-245230 A 特開2012-059576号公報JP 2012-059576 A 特開2004-322556号公報JP 2004-322556 A 特許第4395844号公報Japanese Patent No. 4395844 特開2003-109775号公報JP 2003-109775 A 特開2003-293055号公報JP 2003-293055 A 特開2008-046149号公報JP 2008-046149 A 国際公開2006/132417号International Publication No. 2006/132417
 ところで、純AgからなるAg膜を配線として使用した場合には、熱湿環境下において粒成長が生じ、比抵抗値が変動してしまうといった問題があった。また、上述のように、純Agは、耐塩水性、耐熱性、耐湿性等の各種耐性が不十分なため、使用環境下や製造プロセスにおいて、Ag膜が変質してしまうおそれがあった。
 そこで、特許文献6~9に開示されているAg合金膜を、配線として使用することが考えられる。
By the way, when an Ag film made of pure Ag is used as a wiring, there is a problem that grain growth occurs in a hot and humid environment and the specific resistance value fluctuates. Further, as described above, pure Ag is insufficient in various resistances such as salt water resistance, heat resistance, moisture resistance and the like, and there is a possibility that the Ag film may be deteriorated in the use environment or in the manufacturing process.
Therefore, it is conceivable to use the Ag alloy film disclosed in Patent Documents 6 to 9 as wiring.
 しかしながら、最近では、上述のタッチパネルにおいて、マルチタッチ技術の採用による配線数の増加にともなって配線のさらなる微細化(幅狭化)が求められている。また、配線となる導電膜の成膜時間を短縮して生産効率を向上させる観点から、配線の薄膜化も求められている。
 この配線の微細化および薄膜化にともなって、さらに比抵抗値が低い導電膜が求められており、特許文献6~9に開示されたAg合金膜を適用することは困難であった。
 また、Ag合金膜を反射膜や半透過膜として使用する場合においても、従来よりも使用環境や製造プロセス条件が厳しくなってきており、さらなる耐塩水性、耐熱性、耐湿性等の各種耐性の向上が求められている。すなわち、Ag合金膜には、熱湿環境下においても反射率や透過率といった光学特性が安定していることが求められている。
However, recently, in the touch panel described above, further miniaturization (width narrowing) of the wiring has been demanded as the number of wirings is increased by adopting the multi-touch technology. In addition, from the viewpoint of improving the production efficiency by shortening the film formation time of the conductive film to be the wiring, it is also required to make the wiring thinner.
With the miniaturization and thinning of the wiring, a conductive film having a lower specific resistance value has been demanded, and it has been difficult to apply the Ag alloy film disclosed in Patent Documents 6 to 9.
In addition, even when using an Ag alloy film as a reflective film or a semi-transmissive film, the usage environment and manufacturing process conditions have become stricter than before, and further improvements in various resistances such as salt water resistance, heat resistance, moisture resistance, etc. Is required. That is, the Ag alloy film is required to have stable optical characteristics such as reflectance and transmittance even in a hot and humid environment.
 この発明は、前述した事情に鑑みてなされたものであって、比抵抗値が低く、かつ、光学特性に優れるとともに、耐塩水性、耐熱性、耐湿性等の各種耐性に優れ、使用環境下においても比抵抗値および光学特性の変動が小さなAg合金膜、このAg合金膜からなるAg合金導電膜、Ag合金反射膜、Ag合金半透過膜、および、Ag合金膜形成用スパッタリングターゲットを提供することを目的とする。 The present invention has been made in view of the circumstances described above, and has a low specific resistance value and excellent optical characteristics, and is excellent in various resistances such as salt water resistance, heat resistance, and moisture resistance, under the use environment. The present invention also provides an Ag alloy film with small variations in specific resistance and optical characteristics, an Ag alloy conductive film made of this Ag alloy film, an Ag alloy reflective film, an Ag alloy semi-transmissive film, and a sputtering target for forming an Ag alloy film. With the goal.
 上記の課題を解決するために、本発明の第一の態様であるAg合金膜は、Pdを0.10原子%以上1.00原子%以下、Mgを0.10原子%以上1.00原子%以下、残部が実質的にAgと不可避不純物とからなる組成を有することを特徴としている。 In order to solve the above problems, the Ag alloy film according to the first aspect of the present invention has a Pd of 0.10 atomic% or more and 1.00 atomic% or less, and Mg of 0.10 atomic% or more and 1.00 atoms. % Or less, and the balance has a composition substantially composed of Ag and inevitable impurities.
 このような構成とされた本発明の第一の態様であるAg合金膜においては、Pdを0.10原子%以上含有しているので、耐湿性、耐塩水性が向上し、変色等を抑制できる。
 また、Mgを0.10原子%以上含有しているので、熱湿環境下における粒成長を抑制でき、Ag合金膜の比抵抗値や光学特性(反射率および透過率)の変動を抑制することができる。
 さらに、Pdの含有量が1.00原子%以下、Mgの含有量が1.00原子%以下に規制されているので、比抵抗値を低く抑えることができるとともに、光学特性(反射率および透過率)を向上させることができる。
In the Ag alloy film according to the first aspect of the present invention having such a structure, Pd is contained in an amount of 0.10 atomic% or more, so that moisture resistance and salt water resistance are improved, and discoloration and the like can be suppressed. .
In addition, since Mg is contained in an amount of 0.10 atomic% or more, grain growth in a hot and humid environment can be suppressed, and fluctuations in specific resistance value and optical characteristics (reflectance and transmittance) of the Ag alloy film can be suppressed. Can do.
Furthermore, since the Pd content is regulated to 1.00 atomic% or less and the Mg content is regulated to 1.00 atomic% or less, the specific resistance value can be kept low, and the optical characteristics (reflectance and transmission) are controlled. Rate) can be improved.
 また、本発明の第二の態様であるAg合金膜は、Pdを0.10原子%以上1.00原子%以下、Mgを0.05原子%以上1.00原子%以下、さらにCaを0.01原子%以上0.15原子%以下、残部が実質的にAgと不可避不純物とからなる組成を有することを特徴としている。 In the Ag alloy film according to the second aspect of the present invention, Pd is 0.10 atomic% to 1.00 atomic%, Mg is 0.05 atomic% to 1.00 atomic%, and Ca is 0%. .01 atomic% or more and 0.15 atomic% or less, with the balance being substantially composed of Ag and inevitable impurities.
 このような構成とされた本発明の第二の態様であるAg合金膜においては、Caを0.01原子%以上含有しているので、Ag合金膜の再結晶化を抑制し、Ag合金膜の比抵抗値や光学特性(反射率および透過率)の変動を抑えることができる。
 また、Caの含有量が0.15原子%以下に規制されているので、合金の硬化を抑制でき、このAg合金膜を成膜するためのスパッタリングターゲットを安定して製造することができる。
 なお、Caは、Mgと同様の作用効果を奏することから、Caを添加する場合には、Mgの含有量は、0.05原子%以上1.00原子%以下とすることができる。
The Ag alloy film according to the second aspect of the present invention having such a structure contains 0.01 atomic% or more of Ca, so that recrystallization of the Ag alloy film is suppressed, and the Ag alloy film Fluctuations in the specific resistance value and optical characteristics (reflectance and transmittance) can be suppressed.
Further, since the Ca content is regulated to 0.15 atomic% or less, hardening of the alloy can be suppressed, and a sputtering target for forming this Ag alloy film can be stably manufactured.
In addition, since Ca has the same effect as Mg, when adding Ca, content of Mg can be 0.05 atomic% or more and 1.00 atomic% or less.
 ここで、上述した本発明の第一及び第二の態様のAg合金膜においては、さらに、Ni及びSnから選択される少なくとも1種以上を0.05原子%以上0.50原子%以下の範囲内で含有してもよい。
 Ag膜においては、熱湿環境下で膜が凝集することにより、膜の表面に突起物が発生し、この突起物により膜が変色(白濁・斑点)することがある。ここで、上述した本発明のAg合金膜において、Ni及びSnから選択される少なくとも1種以上を0.05原子%以上含有させた場合には、Mgとの相乗効果でAgの粒成長を抑制でき、熱湿環境下で膜の凝集によって膜が変色(白濁・斑点)することを抑制できる。すなわち、Ag合金膜の耐熱性および耐湿性をさらに向上させることができる。
 また、Ni及びSnから選択される少なくとも1種以上を0.50原子%以下含有しているので、比抵抗値を低く抑えることができるとともに、光学特性(反射率および透過率)が劣化することを抑制できる。
Here, in the above-described Ag alloy films of the first and second aspects of the present invention, at least one selected from Ni and Sn is further in the range of 0.05 atomic% to 0.50 atomic%. You may contain in.
In the Ag film, the film aggregates in a hot and humid environment, and thus a protrusion is generated on the surface of the film, and the film may be discolored (white turbidity / spots) by the protrusion. Here, in the above-described Ag alloy film of the present invention, when at least one selected from Ni and Sn is contained by 0.05 atomic% or more, the grain growth of Ag is suppressed by a synergistic effect with Mg. It is possible to suppress discoloration (white turbidity / spots) of the film due to aggregation of the film in a hot and humid environment. That is, the heat resistance and moisture resistance of the Ag alloy film can be further improved.
Further, since at least one selected from Ni and Sn is contained in an amount of 0.50 atomic% or less, the specific resistance value can be kept low, and the optical characteristics (reflectance and transmittance) are deteriorated. Can be suppressed.
 本発明の第三の態様であるAg合金導電膜は、上述のAg合金膜からなることを特徴とする。
 このような構成とされたAg合金導電膜は、上述の組成のAg合金膜からなることから、比抵抗値が低く、かつ、使用環境下(熱湿環境下)においても比抵抗値が変動せずに安定することになり、導電膜として特に優れている。
The Ag alloy conductive film according to the third aspect of the present invention is characterized by comprising the above-described Ag alloy film.
Since the Ag alloy conductive film having such a structure is composed of the Ag alloy film having the above-described composition, the specific resistance value is low and the specific resistance value fluctuates even in a use environment (in a hot and humid environment). In particular, the conductive film is excellent as a conductive film.
 本発明の第四の態様であるAg合金反射膜は、上述のAg合金膜からなることを特徴とする。
 このような構成とされたAg合金反射膜は、上述の組成のAg合金膜からなることから、反射率が高く、かつ、使用環境下(熱湿環境下)においても反射率が変動せずに安定することになり、反射膜として特に優れている。
The Ag alloy reflective film according to the fourth aspect of the present invention is characterized by comprising the above-described Ag alloy film.
Since the Ag alloy reflective film having such a structure is composed of the Ag alloy film having the above-described composition, the reflectivity is high and the reflectivity does not vary even in the use environment (in a hot and humid environment). It is stable and is particularly excellent as a reflective film.
 本発明の第五の態様であるAg合金半透過膜は、上述のAg合金膜からなることを特徴とする。
 このような構成とされたAg合金半透過膜は、上述の組成のAg合金膜からなることから、透過率が高く、かつ、使用環境下(熱湿環境下)においても透過率が変動せずに安定することになり、半透過膜として特に優れている。
An Ag alloy semipermeable membrane according to a fifth aspect of the present invention is characterized by comprising the above-described Ag alloy membrane.
Since the Ag alloy semipermeable membrane having such a structure is composed of the Ag alloy membrane having the above-described composition, the transmittance is high and the transmittance does not fluctuate even in a use environment (thermal humidity environment). It is particularly excellent as a semipermeable membrane.
 本発明の第六の態様であるAg合金膜形成用スパッタリングターゲットは、Pdを0.10原子%以上1.00原子%以下、Mgを0.10原子%以上1.00原子%以下、残部が実質的にAgと不可避不純物とからなる組成を有することを特徴としている。
 さらに、本発明の第七の態様であるAg合金膜形成用スパッタリングターゲットは、Pdを0.10原子%以上1.00原子%以下、Mgを0.05原子%以上1.00原子%以下、さらにCaを0.01原子%以上0.15原子%以下、残部が実質的にAgと不可避不純物とからなる組成を有することを特徴としている。
 また、上述した本発明の第六及び第七の態様のAg合金膜形成用スパッタリングターゲットにおいては、さらに、Ni及びSnから選択される少なくとも1種以上を0.05原子%以上0.50原子%以下の範囲内で含有してもよい。
 このような構成とされた本発明の第六及び第七の態様のAg合金膜形成用スパッタリングターゲットにおいては、上述したAg合金膜(Ag合金導電膜、Ag合金反射膜、Ag合金半透過膜)を成膜することができる。
In the sputtering target for forming an Ag alloy film according to the sixth aspect of the present invention, Pd is 0.10 atomic% to 1.00 atomic%, Mg is 0.10 atomic% to 1.00 atomic%, and the balance is It is characterized by having a composition substantially composed of Ag and inevitable impurities.
Further, in the sputtering target for forming an Ag alloy film according to the seventh aspect of the present invention, Pd is 0.10 atomic% to 1.00 atomic%, Mg is 0.05 atomic% to 1.00 atomic%, Further, it is characterized by having a composition of 0.01 atomic% or more and 0.15 atomic% or less of Ca, with the balance being substantially composed of Ag and inevitable impurities.
In the above-described sputtering target for forming an Ag alloy film according to the sixth and seventh aspects of the present invention, at least one selected from Ni and Sn is further 0.05 atomic% or more and 0.50 atomic%. You may contain within the following ranges.
In the sputtering target for forming an Ag alloy film according to the sixth and seventh aspects of the present invention having such a configuration, the above-described Ag alloy film (Ag alloy conductive film, Ag alloy reflective film, Ag alloy semipermeable film) Can be formed.
 以上のように、本発明によれば、比抵抗値が低く、かつ、光学特性に優れるとともに、耐塩水性、耐熱性、耐湿性等の各種耐性に優れ、使用環境下においても比抵抗値および光学特性の変動が小さなAg合金膜、このAg合金膜からなるAg合金導電膜、Ag合金反射膜、Ag合金半透過膜、および、Ag合金膜形成用スパッタリングターゲットを提供することができる。 As described above, according to the present invention, the specific resistance value is low and the optical characteristics are excellent, and various resistances such as salt water resistance, heat resistance, and moisture resistance are excellent. It is possible to provide an Ag alloy film with small fluctuations in characteristics, an Ag alloy conductive film made of this Ag alloy film, an Ag alloy reflective film, an Ag alloy semipermeable film, and a sputtering target for forming an Ag alloy film.
実施例1における本発明例8の恒温恒湿試験後の外観観察結果を示す写真である。It is a photograph which shows the external appearance observation result after the constant temperature and humidity test of the example 8 of this invention in Example 1. FIG. 実施例1における従来例の恒温恒湿試験後の外観観察結果を示す写真である。2 is a photograph showing an appearance observation result after a constant temperature and humidity test of a conventional example in Example 1. FIG. 実施例1における本発明例8の塩水試験後の外観観察結果を示す写真である。6 is a photograph showing an appearance observation result after a salt water test of Inventive Example 8 in Example 1. FIG. 実施例1における本発明例8の塩水試験後の光学顕微鏡観察結果を示す写真である。It is a photograph which shows the optical microscope observation result after the salt water test of Example 8 of this invention in Example 1. FIG. 実施例1における本発明例7の塩水試験後の外観観察結果を示す写真である。6 is a photograph showing an appearance observation result after a salt water test of Invention Example 7 in Example 1. FIG. 実施例1における本発明例7の塩水試験後の光学顕微鏡観察結果を示す写真である。6 is a photograph showing an optical microscope observation result after a salt water test of Invention Example 7 in Example 1. FIG. 実施例1における従来例の塩水試験後の外観観察結果を示す写真である。2 is a photograph showing an appearance observation result after a salt water test of a conventional example in Example 1. FIG. 実施例1における従来例の塩水試験後の光学顕微鏡観察結果を示す写真である。2 is a photograph showing an optical microscope observation result after a salt water test of a conventional example in Example 1. FIG. 実施例2における本発明例100の恒温恒湿試験後の突起物観察結果である。It is a projection observation result after the constant temperature and humidity test of the example 100 of this invention in Example 2. FIG. 実施例2における本発明例102の恒温恒湿試験後の突起物観察結果である。It is a projection observation result after the constant temperature and humidity test of the example 102 of this invention in Example 2. FIG. 実施例2における従来例101の恒温恒湿試験後の突起物観察結果である。It is a projection observation result after the constant temperature and humidity test of the prior art example 101 in Example 2. FIG. 実施例2における本発明例100の塩水試験後の外観観察結果を示す写真である。6 is a photograph showing an appearance observation result after a salt water test of Invention Example 100 in Example 2. FIG. 実施例2における本発明例100の塩水試験後の光学顕微鏡観察結果を示す写真である。6 is a photograph showing an optical microscope observation result after a salt water test of Invention Example 100 in Example 2. FIG. 実施例2における本発明例102の塩水試験後の外観観察結果を示す写真である。6 is a photograph showing an appearance observation result after a salt water test of Inventive Example 102 in Example 2. FIG. 実施例2における本発明例102の塩水試験後の光学顕微鏡観察結果を示す写真である。6 is a photograph showing an optical microscope observation result after a salt water test of Inventive Example 102 in Example 2. FIG. 実施例2における従来例101の塩水試験後の外観観察結果を示す写真である。6 is a photograph showing an appearance observation result after a salt water test of Conventional Example 101 in Example 2. FIG. 実施例2における従来例101の塩水試験後の光学顕微鏡観察結果を示す写真である。4 is a photograph showing an optical microscope observation result after a salt water test of Conventional Example 101 in Example 2. FIG.
 以下に、本発明の一実施形態であるAg合金膜、および、Ag合金膜形成用スパッタリングターゲットについて説明する。
 本実施形態であるAg合金膜は、タッチパネルのパネル面周縁部に形成される配線を構成するものである。また、本実施形態であるAg合金膜は、光デバイスの反射膜、光デバイスや赤外線カットフィルムや透明導電膜に適用される半透明膜として使用されるものである。
 また、本実施形態であるAg合金膜形成用スパッタリングターゲットは、上述のAg合金膜を成膜する際に用いられるものである。
Hereinafter, an Ag alloy film and an Ag alloy film forming sputtering target according to an embodiment of the present invention will be described.
The Ag alloy film according to this embodiment constitutes a wiring formed on the peripheral portion of the panel surface of the touch panel. Further, the Ag alloy film according to the present embodiment is used as a translucent film applied to a reflection film of an optical device, an optical device, an infrared cut film, or a transparent conductive film.
Moreover, the sputtering target for Ag alloy film formation which is this embodiment is used when forming the above-mentioned Ag alloy film.
 本実施形態であるAg合金膜、および、Ag合金膜形成用スパッタリングターゲットは、Pdを0.10原子%以上1.00原子%以下、Mgを0.10原子%以上1.00原子%以下含有し、残部がAgと不可避不純物とからなる組成、または、Pdを0.10原子%以上1.00原子%以下、Mgを0.05原子%以上1.00原子%以下含有し、さらにCaを0.01原子%以上0.15原子%以下含有し、残部がAgと不可避不純物とからなる組成を有している。本実施形態であるAg合金膜、および、Ag合金膜形成用スパッタリングターゲットにおいては、さらにNi及びSnから選択される少なくとも1種以上を0.05原子%以上0.50原子%以下の範囲内で含有していてもよい。
 以下に、本実施形態であるAg合金膜、および、Ag合金膜形成用スパッタリングターゲットの組成を上述のように規定した理由について説明する。
The Ag alloy film and the sputtering target for forming an Ag alloy film according to the present embodiment contain Pd in a range of 0.10 atomic% to 1.00 atomic% and Mg in a range of 0.10 atomic% to 1.00 atomic%. And the balance is composed of Ag and inevitable impurities, or Pd is contained in an amount of 0.10 atomic percent to 1.00 atomic percent, Mg is contained in an amount of 0.05 atomic percent to 1.00 atomic percent, and Ca is further contained. It is contained in an amount of 0.01 atomic% or more and 0.15 atomic% or less, and the balance is composed of Ag and inevitable impurities. In the Ag alloy film and the sputtering target for forming an Ag alloy film according to this embodiment, at least one selected from Ni and Sn is further within a range of 0.05 atomic% to 0.50 atomic%. You may contain.
Below, the reason which prescribed | regulated the composition of the Ag alloy film which is this embodiment, and the sputtering target for Ag alloy film formation as mentioned above is demonstrated.
(Pd:0.10原子%以上1.00原子%以下)
 Pdは、耐湿性、耐塩水性を向上させる作用効果を有する元素である。
 ここで、Pdの含有量が0.10原子%未満の場合には、耐湿性、耐塩水性が十分に向上せず、比抵抗値、光学特性(反射率および透過率)が不安定となる。
 一方、Pdの含有量が1.00原子%を超えた場合には、比抵抗値が上昇し、配線や電極としての特性が低下してしまうおそれがある。また、光学特性(反射率および透過率)が劣化してしまうおそれがある。
 このような理由から、Pdの含有量を、0.10原子%以上1.00原子%以下の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Pdの含有量を、0.15原子%以上、0.40原子%以下の範囲内とすることが好ましい。
(Pd: 0.10 atomic% or more and 1.00 atomic% or less)
Pd is an element having an effect of improving moisture resistance and salt water resistance.
Here, when the Pd content is less than 0.10 atomic%, the moisture resistance and salt water resistance are not sufficiently improved, and the specific resistance value and optical characteristics (reflectance and transmittance) become unstable.
On the other hand, when the content of Pd exceeds 1.00 atomic%, the specific resistance value increases, and the characteristics as a wiring or an electrode may be deteriorated. In addition, the optical characteristics (reflectance and transmittance) may be deteriorated.
For these reasons, the Pd content is set in the range of 0.10 atomic% to 1.00 atomic%. In order to ensure that the above-described effects are achieved, it is preferable that the Pd content is in the range of 0.15 atomic% or more and 0.40 atomic% or less.
(Mg:0.10原子%以上1.00原子%以下、Ca添加の場合は、Mg:0.05原子%以上1.00原子%以下)
 Mgは、熱湿環境下においてAgの粒成長を抑制する作用効果を有する元素である。また、Pdとの相乗効果によって耐塩水性が向上する作用効果も有する。Mgを適量添加することにより、使用環境下においてAg合金膜の比抵抗値、光学特性(反射率および透過率)が安定することになる。
 ここで、Mgの含有量が0.10原子%未満の場合には、粒成長を十分に抑制できず、比抵抗値、光学特性(反射率および透過率)の安定化を図ることができなくなるおそれがある。一方、Mgの含有量が1.00原子%を超えた場合には、酸化物が発生し、熱湿環境下において比抵抗値が上昇してしまうとともに、光学特性(反射率および透過率)が劣化してしまうおそれがある。
 このような理由から、Mgの含有量を、0.10原子%以上1.00原子%以下の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Mgの含有量を、0.25原子%以上0.80原子%以下の範囲内とすることが好ましい。
 また、Caを0.01原子%以上0.15原子%以下の範囲で添加する場合には、Mgの含有量は、0.05原子%以上1.00原子%以下とすることが好ましい。
(Mg: 0.10 atomic% or more and 1.00 atomic% or less, and when Ca is added, Mg: 0.05 atomic% or more and 1.00 atomic% or less)
Mg is an element having an effect of suppressing the grain growth of Ag in a hot and humid environment. Moreover, it has the effect which salt water resistance improves by a synergistic effect with Pd. By adding an appropriate amount of Mg, the specific resistance value and optical characteristics (reflectance and transmittance) of the Ag alloy film are stabilized under the use environment.
Here, when the Mg content is less than 0.10 atomic%, the grain growth cannot be sufficiently suppressed, and the specific resistance value and optical characteristics (reflectance and transmittance) cannot be stabilized. There is a fear. On the other hand, when the Mg content exceeds 1.00 atomic%, an oxide is generated, the specific resistance value increases in a hot and humid environment, and the optical characteristics (reflectance and transmittance) are increased. There is a risk of deterioration.
For these reasons, the Mg content is set in the range of 0.10 atomic% to 1.00 atomic%. In order to ensure that the above-described effects are achieved, the Mg content is preferably in the range of 0.25 atomic% to 0.80 atomic%.
When Ca is added in the range of 0.01 atomic% to 0.15 atomic%, the Mg content is preferably 0.05 atomic% to 1.00 atomic%.
(Ca:0.01原子%以上0.15原子%以下)
 Caは、Agにほとんど固溶せず、結晶粒界に析出することから、結晶粒同士の結合を阻害してAg合金膜の再結晶化を防止することが可能となる。よって、Caは、Mgと同様に、比抵抗値、光学特性(反射率および透過率)をさらに安定化させる作用効果を有する。
 ここで、Caの含有量が0.01原子%未満の場合には、Ag合金膜の再結晶化を十分に抑制できず、比抵抗値、光学特性(反射率および透過率)の安定化を図ることができないおそれがある。一方、Caの含有量が0.15原子%を超えた場合には、合金が著しく硬化し、Ag合金膜形成用スパッタリングターゲットの製造時に割れ等が発生してしまうおそれがある。
 このような理由から、Caを添加する場合には、Caの含有量を、0.01原子%以上0.15原子%以下の範囲内に設定することが好ましい。なお、上述の作用効果を確実に奏功せしめるためには、Caの含有量を、0.03原子%以上0.13原子%以下の範囲内とすることがさらに好ましい。
 なお、Caは、上述のように、Mgと同様の作用効果を有することから、Caを0.01原子%以上0.15原子%以下の範囲で添加する場合には、Mgの含有量は、0.05原子%以上1.00原子%以下の範囲内としてもよい。
(Ca: 0.01 atomic% or more and 0.15 atomic% or less)
Since Ca hardly dissolves in Ag and precipitates at the crystal grain boundaries, it is possible to inhibit the crystal grains from being recrystallized by inhibiting the bonding between the crystal grains. Therefore, Ca, like Mg, has an effect of further stabilizing the specific resistance value and optical characteristics (reflectance and transmittance).
Here, when the Ca content is less than 0.01 atomic%, the recrystallization of the Ag alloy film cannot be sufficiently suppressed, and the specific resistance value and optical characteristics (reflectance and transmittance) are stabilized. May not be able to plan. On the other hand, when the content of Ca exceeds 0.15 atomic%, the alloy is markedly cured, and there is a risk that cracks and the like may occur during the production of the sputtering target for forming an Ag alloy film.
For these reasons, when Ca is added, the Ca content is preferably set within a range of 0.01 atomic% or more and 0.15 atomic% or less. In order to ensure that the above-described effects can be achieved, it is more preferable that the Ca content is in the range of 0.03 atomic% or more and 0.13 atomic% or less.
Since Ca has the same effect as Mg as described above, when Ca is added in a range of 0.01 atomic% or more and 0.15 atomic% or less, the content of Mg is: It may be within the range of 0.05 atomic% or more and 1.00 atomic% or less.
(Ni及びSn:少なくとも1種以上を0.05原子%以上0.50原子%以下)
 Ni及びSnは、Mgとの相乗効果により、Agの粒成長をさらに抑制する作用効果を有する元素である。よって、Ni及びSnを添加することにより、膜の凝集による突起物の発生を抑制でき、膜の表面の白濁や斑点の発生を抑制可能となる。
 ここで、Ni及びSnから選択される少なくとも1種以上の含有量が0.05原子%未満の場合には、上述の作用効果を十分に奏功せしめることができなくなるおそれがある。一方、Ni及びSnから選択される少なくとも1種以上の含有量が0.50原子%を超える場合には、比抵抗値が上昇してしまうとともに、光学特性(反射率および透過率)が劣化してしまうおそれがある。
 このような理由から、Ni及びSnを添加する場合には、Ni及びSnから選択される少なくとも1種以上の含有量を、0.05原子%以上0.50原子%以下の範囲内に設定することが好ましい。
(Ni and Sn: at least one kind is 0.05 atomic% or more and 0.50 atomic% or less)
Ni and Sn are elements having an effect of further suppressing the grain growth of Ag due to a synergistic effect with Mg. Therefore, by adding Ni and Sn, it is possible to suppress the generation of protrusions due to the aggregation of the film, and it is possible to suppress the occurrence of cloudiness and spots on the surface of the film.
Here, when the content of at least one or more selected from Ni and Sn is less than 0.05 atomic%, the above-described effects may not be sufficiently achieved. On the other hand, when the content of at least one selected from Ni and Sn exceeds 0.50 atomic%, the specific resistance value increases and the optical characteristics (reflectance and transmittance) deteriorate. There is a risk that.
For these reasons, when adding Ni and Sn, the content of at least one selected from Ni and Sn is set within a range of 0.05 atomic% to 0.50 atomic%. It is preferable.
 なお、本実施形態であるAg合金膜、および、Ag合金膜形成用スパッタリングターゲットにおいては、金属元素として質量比でAl、Fe、Cu、Zn、Ga、Ge、In、Sb、Pb、Biを合計で500ppm以下含んでいてもよい。
 また、本実施形態であるAg合金ターゲットにおいては、表面粗さが3μm未満、粒径が500μm未満であることが好ましい。
In addition, in the Ag alloy film and the sputtering target for forming an Ag alloy film according to the present embodiment, Al, Fe, Cu, Zn, Ga, Ge, In, Sb, Pb, and Bi are added as metal elements in a mass ratio. It may contain 500 ppm or less.
In the Ag alloy target according to the present embodiment, the surface roughness is preferably less than 3 μm and the particle size is less than 500 μm.
 なお、本実施形態であるAg合金膜を配線材として使用する場合には、以下のように比抵抗値を設定することが好ましい。
 配線材としては一般に導電膜のシート抵抗が、0.50Ω/□以下、好ましくは0.40Ω/□以下の範囲にあることが好ましいとされている。これを実現するために、導電膜の膜厚を調整しているが、この膜厚を一層薄くすることが求められている。
 近年の薄膜化の要求を考慮すると、上述の組成からなる本実施形態であるAg合金膜の膜厚は120nm以下にできることが好ましく、100nm以下にできることが一層好ましい。ここで、100nmで0.50Ω/□以下、好ましくは0.40Ω/□以下のシート抵抗を実現するために、Ag合金膜(Ag合金導電膜)の比抵抗値は5.00μΩ・cm以下、好ましくは4.00μΩ・cm以下が必要となる。
In addition, when using Ag alloy film which is this embodiment as a wiring material, it is preferable to set a specific resistance value as follows.
In general, the wiring material has a sheet resistance of 0.50Ω / □ or less, preferably 0.40Ω / □ or less. In order to realize this, the film thickness of the conductive film is adjusted, but it is required to further reduce the film thickness.
Considering the recent demand for thinning, the thickness of the Ag alloy film according to the present embodiment having the above-described composition is preferably 120 nm or less, and more preferably 100 nm or less. Here, in order to realize a sheet resistance of 0.50Ω / □ or less, preferably 0.40Ω / □ or less at 100 nm, the specific resistance value of the Ag alloy film (Ag alloy conductive film) is 5.00 μΩ · cm or less, Preferably 4.00 microhm * cm or less is needed.
 以上のような構成とされた本実施形態であるAg合金膜およびAg合金膜形成用スパッタリングターゲットによれば、Pdを0.10原子%以上1.00原子%以下の範囲で含有しているので、耐湿性、耐塩水性が向上し、比抵抗値、光学特性(反射率および透過率)が安定するとともに、比抵抗値を低く、かつ、反射率および透過率を高く維持することができる。
 また、Mgを0.10原子%以上1.00原子%以下の範囲で含有しているので、熱湿環境下における粒成長を抑制でき、比抵抗値、光学特性(反射率および透過率)が安定するとともに、比抵抗値を低く、かつ、反射率および透過率を高く維持することができる。
According to the Ag alloy film and the Ag alloy film forming sputtering target of the present embodiment configured as described above, Pd is contained in the range of 0.10 atomic% to 1.00 atomic%. The moisture resistance and salt water resistance are improved, the specific resistance value and optical characteristics (reflectance and transmittance) are stabilized, the specific resistance value is low, and the reflectance and transmittance can be maintained high.
Moreover, since Mg is contained in the range of 0.10 atomic% or more and 1.00 atomic% or less, grain growth in a hot and humid environment can be suppressed, and the specific resistance value and optical characteristics (reflectance and transmittance) are In addition to being stable, the specific resistance value can be kept low, and the reflectance and transmittance can be kept high.
 さらに、Caを0.01原子%以上0.15原子%以下の範囲内で含有しているので、Ag合金膜の再結晶化を抑制し、比抵抗値の変動を抑えることができるとともに、Ag合金膜形成用スパッタリングターゲットを安定して製造することができる。
 なお、Caを添加する場合には、Mgと同様の作用効果を有することから、Mgの含有量を0.05原子%以上1.00原子%以下の範囲内とすることができる。
Furthermore, since Ca is contained within the range of 0.01 atomic% or more and 0.15 atomic% or less, recrystallization of the Ag alloy film can be suppressed, and fluctuations in specific resistance can be suppressed. The sputtering target for forming an alloy film can be manufactured stably.
In addition, when adding Ca, since it has the effect similar to Mg, content of Mg can be made into the range of 0.05 atomic% or more and 1.00 atomic% or less.
 また、本実施形態であるAg合金膜は、膜厚100nmで比抵抗値が4.00μΩ・cm以下の範囲内とされているので、タッチパネルの配線として好適に使用することができる。また、配線の幅狭化及び薄膜化に十分に対応することができる。 In addition, since the Ag alloy film according to the present embodiment has a thickness of 100 nm and a specific resistance value in the range of 4.00 μΩ · cm or less, it can be suitably used as a touch panel wiring. Further, it can sufficiently cope with the narrowing and thinning of the wiring.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、タッチパネルのパネル面周縁部の配線を構成するものとして説明したが、これに限定されることはなく、その他の用途、例えば液晶や有機ELパネルなどのフラットパネルディスプレイの配線膜、電極膜等に適用してもよい。また、反射膜や半透明膜等として用いてもよい。
 さらに、Ag合金膜の比抵抗値、厚さ、幅は、本実施形態で例示したものに限定されることはなく、要求に合わせて適宜変更してもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in the present embodiment, the wiring on the peripheral portion of the panel surface of the touch panel has been described as being configured. However, the present invention is not limited to this, and wiring for other uses, for example, flat panel displays such as liquid crystal and organic EL panels You may apply to a film | membrane, an electrode film, etc. Moreover, you may use as a reflecting film, a semi-transparent film, etc.
Furthermore, the specific resistance value, thickness, and width of the Ag alloy film are not limited to those exemplified in the present embodiment, and may be appropriately changed according to requirements.
(実施例1)
 以下に、本発明に係るAg合金膜(Ag合金導電膜)及びAg合金膜形成用スパッタリングターゲットの作用効果について評価した評価試験の結果について説明する。
(Example 1)
Below, the result of the evaluation test evaluated about the effect of the Ag alloy film (Ag alloy electrically conductive film) based on this invention and the sputtering target for Ag alloy film formation is demonstrated.
<Ag合金膜形成用スパッタリングターゲット>
 溶解原料として、純度99.9質量%以上のAgと、純度99.9質量%以上のPd,Mg,Caを準備し、表1に示す所定の組成となるように秤量した。
 次に、Agを高真空または不活性ガス雰囲気中で溶解し、得られたAg溶湯に、Pd,Mg,Caを添加し、真空または不活性ガス雰囲気中で溶解した。その後、鋳型へと注湯して、表1に示す組成の鋳塊を製造した。ここで、Agの溶解時には、雰囲気を一度真空(5×10-2Pa以下)にしたあとArガスで置換した雰囲気で行った。また、Pd,Mg,Caの添加は、Arガス雰囲気中で実施した。
<Sputtering target for forming an Ag alloy film>
As dissolution raw materials, Ag having a purity of 99.9% by mass or more and Pd, Mg, Ca having a purity of 99.9% by mass or more were prepared and weighed so as to have a predetermined composition shown in Table 1.
Next, Ag was dissolved in a high vacuum or an inert gas atmosphere, and Pd, Mg, Ca was added to the obtained molten Ag and dissolved in a vacuum or an inert gas atmosphere. Then, it poured into the casting_mold | template and manufactured the ingot of the composition shown in Table 1. Here, Ag was dissolved in an atmosphere in which the atmosphere was once evacuated (5 × 10 −2 Pa or less) and then replaced with Ar gas. The addition of Pd, Mg, and Ca was performed in an Ar gas atmosphere.
 次いで、得られた鋳塊に対して、圧下率70%で冷間圧延を行った後、大気中で600℃、2時間保持の熱処理を実施した。そして、機械加工を実施することにより、直径152.4mm、厚さ6mm寸法を有する本発明例1~17の組成のスパッタリングターゲット、及び、比較例1~5の組成のスパッタリングターゲットを作製した。
 また、従来例として、純Ag(純度99.9質量%以上)のスパッタリングターゲットを準備した。
Next, the obtained ingot was cold-rolled at a reduction rate of 70%, and then heat-treated at 600 ° C. for 2 hours in the air. Then, machining was performed to prepare sputtering targets having the composition of Invention Examples 1 to 17 and compositions of Comparative Examples 1 to 5 having a diameter of 152.4 mm and a thickness of 6 mm.
In addition, as a conventional example, a sputtering target of pure Ag (purity of 99.9% by mass or more) was prepared.
<Ag合金膜(Ag合金導電膜)>
 上述した本発明例1~17、比較例1~5のスパッタリングターゲットをスパッタ装置に装着し、ガラス基板(コーニング社製イーグルXG)との距離:70mm、電力:直流250W、到達真空度:5×10-5Pa以下、Arガス圧:0.5Paの条件でスパッタリングを実施し、ガラス基板の表面に、厚さ:100nmを有するAg合金膜(Ag合金導電膜)を形成した試料を作製した。
 なお、上述した従来例のスパッタリングターゲットを用いて、同様の条件でガラス基板上に厚さ:100nmのAg導電膜を形成した試料を作製した。
<Ag alloy film (Ag alloy conductive film)>
The sputtering targets of Invention Examples 1 to 17 and Comparative Examples 1 to 5 described above were mounted on a sputtering apparatus, and the distance to the glass substrate (Corning Eagle XG): 70 mm, power: DC 250 W, ultimate vacuum: 5 × Sputtering was performed under conditions of 10 −5 Pa or less and Ar gas pressure: 0.5 Pa, and a sample in which an Ag alloy film (Ag alloy conductive film) having a thickness of 100 nm was formed on the surface of the glass substrate was produced.
In addition, the sample which formed Ag conductive film with a thickness of 100 nm on the glass substrate on the same conditions using the sputtering target of the prior art example mentioned above was produced.
<成膜後の比抵抗値>
 上述のようにして得られたAg合金膜(Ag合金導電膜)およびAg導電膜のシート抵抗値を四探針法によって測定し、比抵抗値を算出した。得られた成膜後の比抵抗値を表1に示す。
<Specific resistance value after film formation>
The sheet resistance values of the Ag alloy film (Ag alloy conductive film) and the Ag conductive film obtained as described above were measured by the four-probe method, and the specific resistance value was calculated. Table 1 shows the specific resistance values after film formation.
<恒温恒湿試験>
 上述の試料を、温度85℃、湿度85%の恒温恒湿槽中に250時間放置した。
 この恒温恒湿試験後のAg合金膜(Ag合金導電膜)およびAg導電膜の比抵抗値を上述と同様の方法で算出した。そして、恒温恒湿試験前後の比抵抗率の変化率を求めた。恒温恒湿試験後の比抵抗値、及び、恒温恒湿試験前後の比抵抗率の変化率を表1に示す。
 さらに、恒温恒湿試験後の試料外観を目視し、恒温恒湿試験前後で外観に変化がないものを「B」、腐食による斑点や白濁が認められたものを「C」と評価した。評価結果を表1に示す。なお、「B」と評価された本発明例8の外観観察結果を図1に、「C」と評価された従来例の外観観察結果を図2に示す。ここで、図1,2の黒い影は、カメラのレンズの影であり、図2の大小の白い丸が白濁点を示している。
<Constant temperature and humidity test>
The above-mentioned sample was left for 250 hours in a constant temperature and humidity chamber having a temperature of 85 ° C. and a humidity of 85%.
The specific resistance values of the Ag alloy film (Ag alloy conductive film) and the Ag conductive film after the constant temperature and humidity test were calculated by the same method as described above. And the change rate of the specific resistivity before and after a constant temperature and humidity test was calculated | required. Table 1 shows the specific resistance value after the constant temperature and humidity test and the change rate of the specific resistance before and after the constant temperature and humidity test.
Further, the appearance of the sample after the constant temperature and humidity test was visually observed, and “B” was evaluated when the appearance did not change before and after the constant temperature and humidity test, and “C” was evaluated when spots and white turbidity due to corrosion were observed. The evaluation results are shown in Table 1. The appearance observation result of Example 8 of the present invention evaluated as “B” is shown in FIG. 1, and the appearance observation result of the conventional example evaluated as “C” is shown in FIG. Here, the black shadow in FIGS. 1 and 2 is the shadow of the lens of the camera, and the large and small white circles in FIG. 2 indicate the cloudy point.
<塩水試験>
 基板をITO膜(厚さ10nm)付のガラス基板として、上述した条件でAg合金膜(Ag合金導電膜)およびAg導電膜を成膜して、試料を作製した。
 この試料を、5%NaCl水溶液に12時間浸漬し、取り出した後の外観を目視および光学顕微鏡にて観察した。光学顕微鏡観察でも外観変化が認められないものを「A」、目視では光沢が失われていないが光学顕微鏡観察により黒い斑点が確認されたものを「B」、目視で腐食による白濁が確認されたものを「C」と評価した。評価結果を表1に示す。なお、「A」と評価された本発明例8の外観観察結果及び光学顕微鏡観察結果を図3A、Bに、「B」と評価された本発明例7の外観観察結果及び光学顕微鏡観察結果を図4A、Bに、「C」と評価された従来例の外観観察結果及び光学顕微鏡観察結果を図5A、Bに示す。
<Salt water test>
Using a glass substrate with an ITO film (thickness 10 nm) as a substrate, an Ag alloy film (Ag alloy conductive film) and an Ag conductive film were formed under the above-described conditions to prepare a sample.
This sample was immersed in a 5% NaCl aqueous solution for 12 hours, and the appearance after removal was observed visually and with an optical microscope. “A” indicates that no change in appearance is observed even when observed with an optical microscope, “B” indicates that black spots are confirmed by observation with an optical microscope, although gloss is not lost visually, and white turbidity due to corrosion is confirmed visually. The thing was evaluated as "C". The evaluation results are shown in Table 1. The appearance observation results and optical microscope observation results of Invention Example 8 evaluated as “A” are shown in FIGS. 3A and 3B, and the appearance observation results and optical microscope observation results of Invention Example 7 evaluated as “B” are shown in FIGS. 4A and 4B show the appearance observation results and the optical microscope observation results of the conventional example evaluated as “C” in FIGS. 5A and 5B.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 Pdの含有量が本発明の範囲よりも少ない比較例1においては、恒温恒湿試験後、塩水試験後の外観観察で腐食が認められており、耐熱性、耐湿性、耐塩水性が不十分であることが確認された。
 Pdの含有量が本発明の範囲よりも多い比較例2においては、成膜後の比抵抗値が6.08μΩ・cmと高くなっていた。
In Comparative Example 1 in which the content of Pd is less than the range of the present invention, corrosion was observed in the appearance observation after the constant temperature and humidity test and after the salt water test, and the heat resistance, moisture resistance and salt water resistance were insufficient. It was confirmed that there was.
In Comparative Example 2 in which the content of Pd is larger than the range of the present invention, the specific resistance value after film formation was as high as 6.08 μΩ · cm.
 Mgの含有量が本発明の範囲よりも少ない比較例3においては、恒温恒湿試験前後で比抵抗値が大きく変化した。粒成長を十分に抑制できなかったためと推測される。
 Mgの含有量が本発明の範囲よりも多い比較例4においては、恒温恒湿試験前後で比抵抗値が大きく変化した。
In Comparative Example 3 in which the Mg content is less than the range of the present invention, the specific resistance value greatly changed before and after the constant temperature and humidity test. It is presumed that the grain growth could not be sufficiently suppressed.
In Comparative Example 4 in which the Mg content was greater than the range of the present invention, the specific resistance value changed greatly before and after the constant temperature and humidity test.
 Caの含有量が本発明の範囲よりも多い比較例5においては、スパッタリングターゲットを製造する際に圧延割れが発生し、スパッタリングターゲットを作製できなかった。
 純Agからなる従来例においては、恒温恒湿試験前後で比抵抗値が大きく変化した。また、恒温恒湿試験後、塩水試験後の外観観察で腐食が認められており、耐熱性、耐湿性、耐塩水性が不十分であった。
In Comparative Example 5 in which the Ca content was larger than the range of the present invention, rolling cracks occurred when the sputtering target was produced, and the sputtering target could not be produced.
In the conventional example made of pure Ag, the specific resistance value greatly changed before and after the constant temperature and humidity test. Moreover, after the constant temperature and humidity test, corrosion was recognized by appearance observation after the salt water test, and the heat resistance, moisture resistance and salt water resistance were insufficient.
 これに対して、Pd,Mg,Caの含有量が本発明の範囲内とされた本発明例1~17においては、成膜後の比抵抗値がすべて4.50μΩ・cm未満となっており、恒温恒湿試験前後における比抵抗値の変化率も±10%以内であった。また、恒温恒湿試験後、塩水試験後の外観観察で腐食は認められなかった。
 特に、Caを適量添加した本発明例11~17においては、恒温恒湿試験前後における比抵抗値の変化がほとんどなく、比抵抗値が安定していることが確認された。
On the other hand, in the inventive examples 1 to 17 in which the contents of Pd, Mg and Ca are within the scope of the present invention, the specific resistance values after film formation are all less than 4.50 μΩ · cm. The change rate of the specific resistance value before and after the constant temperature and humidity test was also within ± 10%. In addition, no corrosion was observed in the appearance observation after the constant temperature and humidity test and after the salt water test.
In particular, in Examples 11 to 17 of the present invention in which an appropriate amount of Ca was added, the specific resistance value hardly changed before and after the constant temperature and humidity test, and it was confirmed that the specific resistance value was stable.
 以上のことから、本発明例によれば、比抵抗値が低く、かつ、耐熱性、耐湿性、耐塩水性に優れたAg合金膜(Ag合金導電膜)及びAg合金膜形成用スパッタリングターゲットを提供可能であることが確認された。 From the above, according to the present invention example, an Ag alloy film (Ag alloy conductive film) having a low specific resistance value and excellent in heat resistance, moisture resistance, and salt water resistance and a sputtering target for forming an Ag alloy film are provided. It was confirmed that it was possible.
(実施例2)
 次に、本発明に係るAg合金膜(Ag合金導電膜)及びAg合金膜形成用スパッタリングターゲットに対して、NiおよびSnを添加した場合の作用効果について評価した評価試験の結果について説明する。
(Example 2)
Next, the result of the evaluation test which evaluated the effect at the time of adding Ni and Sn with respect to the sputtering target for Ag alloy film (Ag alloy electrically conductive film) and Ag alloy film formation which concerns on this invention is demonstrated.
<Ag合金膜形成用スパッタリングターゲット>
 溶解原料として、純度99.9質量%以上のAgと、純度99.9質量%以上のPd,Mg,Ca,Ni,Snを準備し、表2に示す所定の組成となるように秤量した。
 次に、Agを高真空または不活性ガス雰囲気中で溶解し、得られたAg溶湯に、Pd,Mg,Ca,Ni,Snを添加し、真空または不活性ガス雰囲気中で溶解した。その後、鋳型へと注湯して、表2に示す組成の鋳塊を製造した。ここで、Agの溶解時には、雰囲気を一度真空(5×10-2Pa以下)にしたあとArガスで置換した雰囲気で行った。また、Pd,Mg,Ca,Ni,Snの添加は、Arガス雰囲気中で実施した。
<Sputtering target for forming an Ag alloy film>
As dissolution raw materials, Ag having a purity of 99.9% by mass or more and Pd, Mg, Ca, Ni, Sn having a purity of 99.9% by mass or more were prepared and weighed to have a predetermined composition shown in Table 2.
Next, Ag was melted in a high vacuum or an inert gas atmosphere, and Pd, Mg, Ca, Ni, Sn was added to the obtained molten Ag and dissolved in a vacuum or an inert gas atmosphere. Thereafter, the molten metal was poured into a mold to produce ingots having the compositions shown in Table 2. Here, Ag was dissolved in an atmosphere in which the atmosphere was once evacuated (5 × 10 −2 Pa or less) and then replaced with Ar gas. The addition of Pd, Mg, Ca, Ni and Sn was performed in an Ar gas atmosphere.
 次いで、得られた鋳塊に対して、圧下率70%で冷間圧延を行った後、大気中で600℃、2時間保持の熱処理を実施した。そして、機械加工を実施することにより、直径152.4mm、厚さ6mm寸法を有する本発明例100~108の組成のスパッタリングターゲット、及び、比較例101、102の組成のスパッタリングターゲットを作製した。
 また、従来例101として、純Ag(純度99.9質量%以上)のスパッタリングターゲットを準備した。
Next, the obtained ingot was cold-rolled at a reduction rate of 70%, and then heat-treated at 600 ° C. for 2 hours in the air. Then, by carrying out machining, a sputtering target having a composition of Invention Examples 100 to 108 and a composition of Comparative Examples 101 and 102 having a diameter of 152.4 mm and a thickness of 6 mm were prepared.
Further, as Conventional Example 101, a sputtering target of pure Ag (purity of 99.9% by mass or more) was prepared.
<Ag合金膜(Ag合金導電膜)>
 上述した本発明例100~108、比較例101、102のスパッタリングターゲットをスパッタ装置に装着し、以下の条件でAg合金膜(Ag合金導電膜)を成膜した。
 上述した本発明例100~108、比較例101、102のスパッタリングターゲットをスパッタ装置に装着し、ITO付きPETフィルム(初期シート抵抗値:300Ω/□)との距離:70mm、電力:直流250W、到達真空度:5×10-5Pa以下、Arガス圧:0.5Paの条件でスパッタリングを実施し、ガラス基板の表面に、厚さ:100nmを有するAg合金膜(Ag合金導電膜)を形成した試料を作製した。
 なお、上述した従来例101のスパッタリングターゲットを用いて、同様の条件でガラス基板上に厚さ:100nmのAg導電膜を形成した試料を作製した。
<Ag alloy film (Ag alloy conductive film)>
The sputtering targets of the inventive examples 100 to 108 and comparative examples 101 and 102 described above were mounted on a sputtering apparatus, and an Ag alloy film (Ag alloy conductive film) was formed under the following conditions.
The sputtering targets of Invention Examples 100 to 108 and Comparative Examples 101 and 102 described above were mounted on a sputtering apparatus, and the distance to the PET film with ITO (initial sheet resistance value: 300Ω / □): 70 mm, power: DC 250 W, reaching Sputtering was performed under the conditions of vacuum degree: 5 × 10 −5 Pa or less and Ar gas pressure: 0.5 Pa, and an Ag alloy film (Ag alloy conductive film) having a thickness of 100 nm was formed on the surface of the glass substrate. A sample was prepared.
A sample in which an Ag conductive film having a thickness of 100 nm was formed on a glass substrate under the same conditions was prepared using the sputtering target of Conventional Example 101 described above.
<成膜後の比抵抗値>
 上述のようにしてAg合金膜(Ag合金導電膜)およびAg導電膜を形成したITO付きPETフィルムのシート抵抗値を四探針法によって測定した。得られた成膜後のシート抵抗値を表3に示す。なお、ITOが導電性を有していることから、ここで測定されるシート抵抗値は、Ag合金膜(Ag合金導電膜)およびAg導電膜自体の抵抗値ではなく、ITOを含めた抵抗値となる。
<Specific resistance value after film formation>
The sheet resistance value of the PET film with ITO on which the Ag alloy film (Ag alloy conductive film) and the Ag conductive film were formed as described above was measured by the four-probe method. Table 3 shows the obtained sheet resistance value after film formation. In addition, since ITO has electroconductivity, the sheet resistance value measured here is not the resistance value of Ag alloy film (Ag alloy conductive film) and Ag conductive film itself, but the resistance value including ITO. It becomes.
<恒温恒湿試験>
 上述の試料を、温度85℃、湿度85%の恒温恒湿槽中に250時間放置した。
 この恒温恒湿試験後のAg合金膜(Ag合金導電膜)およびAg導電膜を形成したITO付きPETフィルムのシート抵抗値を上述と同様の方法で算出した。そして、恒温恒湿試験前後のシート抵抗値の変化率を求めた。恒温恒湿試験後のシート抵抗値、及び、恒温恒湿試験前後のシート抵抗値の変化率を表3に示す。
 さらに、恒温恒湿試験後のAg合金膜(Ag合金導電膜)およびAg導電膜の表面を顕微鏡観察し、膜表面の白濁や斑点の原因となる突起物の個数を測定した。膜表面を対物50倍、対眼10倍の光学顕微鏡の暗視野像にて観察、撮影した。暗視野像であるため、表面に突起物が生じている場合には、突起物が白く光る点として検出される。撮影した画像の290μm×200μmの範囲に存在する突起物の個数を画像処理ソフトウエア(三谷商事社製:Winroof)により計測した。
 なお、本発明例100、本発明例102、従来例101の恒温恒湿試験後の突起物観察結果を図6A~Cに示す。
<Constant temperature and humidity test>
The above-mentioned sample was left for 250 hours in a constant temperature and humidity chamber having a temperature of 85 ° C. and a humidity of 85%.
The sheet resistance values of the Ag alloy film (Ag alloy conductive film) after the constant temperature and humidity test and the PET film with ITO on which the Ag conductive film was formed were calculated by the same method as described above. And the change rate of the sheet resistance value before and after a constant temperature and humidity test was calculated | required. Table 3 shows the sheet resistance value after the constant temperature and humidity test and the rate of change in the sheet resistance value before and after the constant temperature and humidity test.
Furthermore, the surface of the Ag alloy film (Ag alloy conductive film) and the Ag conductive film after the constant temperature and humidity test was observed with a microscope, and the number of protrusions causing cloudiness and spots on the film surface was measured. The film surface was observed and photographed with a dark field image of an optical microscope having a 50 × objective and a 10 × eye. Since it is a dark field image, when a protrusion is generated on the surface, the protrusion is detected as a point that shines white. The number of protrusions present in the range of 290 μm × 200 μm of the photographed image was measured using image processing software (Mitani Corporation: Winroof).
The projection observation results after the constant temperature and humidity test of Invention Example 100, Invention Example 102, and Conventional Example 101 are shown in FIGS. 6A to 6C.
<塩水試験>
 基板をITO膜(厚さ10nm)付のガラス基板として、上述した条件でAg合金膜(Ag合金導電膜)およびAg導電膜を成膜して、試料を作製した。
 この試料を、5%NaCl水溶液に12時間浸漬し、取り出した後の外観を目視および光学顕微鏡にて観察した。光学顕微鏡観察でも外観変化が認められないものを「A」、目視では光沢が失われていないが光学顕微鏡観察により黒い斑点が確認されたものを「B」、目視で腐食による白濁が確認されたものを「C」と評価した。評価結果を表3に示す。
 なお、「A」と評価された本発明例100の外観観察結果及び光学顕微鏡観察結果を図7A、Bに、本発明例102の外観観察結果及び光学顕微鏡観察結果を図8A、Bに、「C」と評価された従来例101の外観観察結果及び光学顕微鏡観察結果を図9A、Bに示す。
<Salt water test>
Using a glass substrate with an ITO film (thickness 10 nm) as a substrate, an Ag alloy film (Ag alloy conductive film) and an Ag conductive film were formed under the above-described conditions to prepare a sample.
This sample was immersed in a 5% NaCl aqueous solution for 12 hours, and the appearance after removal was observed visually and with an optical microscope. “A” indicates that no change in appearance is observed even when observed with an optical microscope, “B” indicates that black spots are confirmed by observation with an optical microscope, although gloss is not lost visually, and white turbidity due to corrosion is confirmed visually. The thing was evaluated as "C". The evaluation results are shown in Table 3.
7A and 7B show the appearance observation result and the optical microscope observation result of the inventive example 100 evaluated as “A”, and FIGS. 8A and 8B show the appearance observation result and the optical microscope observation result of the inventive example 102. 9A and 9B show the appearance observation result and the optical microscope observation result of the conventional example 101 evaluated as “C”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 Ni及びSnから選択される少なくとも1種以上の含有量が本発明の範囲よりも多い比較例101,102においては、Ag合金膜(Ag合金導電膜)を形成したITO付きPETフィルムのシート抵抗値が0.558Ω/□、0.630Ω/□と、比較的高くなっていた。
 また、純Agからなる従来例101においては、恒温恒湿試験前後でシート抵抗値が大きく変化した。また、恒温恒湿試験後の突起物が1000個以上観察されており、膜表面に白濁が認められた。さらに、塩水試験後の外観観察で腐食が認められた。
In Comparative Examples 101 and 102 in which the content of at least one selected from Ni and Sn is larger than the range of the present invention, the sheet resistance value of the PET film with ITO on which an Ag alloy film (Ag alloy conductive film) is formed Of 0.558Ω / □ and 0.630Ω / □ were relatively high.
Further, in the conventional example 101 made of pure Ag, the sheet resistance value greatly changed before and after the constant temperature and humidity test. In addition, 1000 or more protrusions after the constant temperature and humidity test were observed, and white turbidity was observed on the film surface. Furthermore, corrosion was observed in the appearance after the salt water test.
 Ni及びSnを添加しなかった本発明例100においては、成膜後のシート抵抗値(Ag合金膜(Ag合金導電膜)を形成したITO付きPETフィルムのシート抵抗値)は0.314Ω/□と低く、恒温恒湿試験前後でシート抵抗値も大きく変化していない。なお、恒温恒湿試験後の突起物が634個と比較的多かった。
 これに対して、Ni及びSnから選択される少なくとも1種以上を0.05原子%以上0.5原子%以下の範囲内で含有する本発明例101~108においては、恒温恒湿試験後の突起物が94個以下と少なく、さらに耐熱性及び耐湿性が向上していることが確認された。また、成膜後のシート抵抗値(Ag合金膜(Ag合金導電膜)を形成したITO付きPETフィルムのシート抵抗値)は0.492Ω/□以下と比較的低く、恒温恒湿試験前後でシート抵抗値も大きく変化していない。
In Example 100 of the present invention in which Ni and Sn were not added, the sheet resistance value after film formation (sheet resistance value of the PET film with ITO on which the Ag alloy film (Ag alloy conductive film) was formed) was 0.314Ω / □. The sheet resistance value is not significantly changed before and after the constant temperature and humidity test. The number of protrusions after the constant temperature and humidity test was 634, which was relatively large.
On the other hand, in inventive examples 101 to 108 containing at least one selected from Ni and Sn in the range of 0.05 atomic% to 0.5 atomic%, the temperature after the constant temperature and humidity test It was confirmed that the number of protrusions was as small as 94 or less, and the heat resistance and moisture resistance were further improved. Moreover, the sheet resistance value after film formation (sheet resistance value of the PET film with ITO on which an Ag alloy film (Ag alloy conductive film) is formed) is relatively low, 0.492Ω / □ or less, and the sheet before and after the constant temperature and humidity test. The resistance value has not changed significantly.
 以上のことから、本発明のAg合金膜(Ag合金導電膜)及びAg合金膜形成用スパッタリングターゲットに対して、さらに、Ni及びSnから選択される少なくとも1種以上を0.05原子%以上0.50原子%以下の範囲内で含有させることによって、耐熱性及び耐湿性をさらに向上できることが確認された。 From the above, with respect to the Ag alloy film (Ag alloy conductive film) and the sputtering target for forming an Ag alloy film of the present invention, at least one selected from Ni and Sn is further added at 0.05 atomic% or more. It was confirmed that the heat resistance and moisture resistance could be further improved by inclusion within the range of not more than 50 atomic%.
(実施例3)
 次に、本発明に係るAg合金膜(Ag合金反射膜)の作用効果について評価した評価試験の結果について説明する。
(Example 3)
Next, the result of the evaluation test evaluated about the effect of Ag alloy film (Ag alloy reflective film) based on this invention is demonstrated.
<Ag合金膜形成用スパッタリングターゲット>
 溶解原料として、純度99.9質量%以上のAgと、純度99.9質量%以上のPd,Mg,Caを準備し、実施例1に示した方法により、表4に示す組成のスパッタリングターゲットを製造した。また、従来例として、純Ag(純度99.9質量%以上)のスパッタリングターゲットを準備した。
<Sputtering target for forming an Ag alloy film>
As a melting raw material, Ag having a purity of 99.9% by mass or more and Pd, Mg, Ca having a purity of 99.9% by mass or more were prepared, and a sputtering target having the composition shown in Table 4 was prepared by the method shown in Example 1. Manufactured. In addition, as a conventional example, a sputtering target of pure Ag (purity of 99.9% by mass or more) was prepared.
<Ag合金膜(Ag合金反射膜)>
 上述のスパッタリングターゲットをスパッタ装置に装着し、ガラス基板(コーニング社製イーグルXG)との距離:70mm、電力:直流250W、到達真空度:5×10-5Pa以下、Arガス圧:0.5Paの条件でスパッタリングを実施し、ガラス基板の表面に、厚さ:100nmを有するAg合金膜(Ag合金反射膜)を形成した試料を作製した。
 なお、上述した従来例のスパッタリングターゲットを用いて、同様の条件でガラス基板上に厚さ:100nmのAg反射膜を形成した試料を作製した。
<Ag alloy film (Ag alloy reflective film)>
The above sputtering target is mounted on a sputtering apparatus, and the distance from the glass substrate (Corning Eagle XG): 70 mm, power: DC 250 W, ultimate vacuum: 5 × 10 −5 Pa or less, Ar gas pressure: 0.5 Pa Sputtering was performed under the conditions described above to prepare a sample in which an Ag alloy film (Ag alloy reflective film) having a thickness of 100 nm was formed on the surface of the glass substrate.
In addition, the sample which formed Ag reflecting film of thickness: 100nm on the glass substrate on the same conditions was produced using the sputtering target of the conventional example mentioned above.
<反射率の測定>
 上述のようにして得られた成膜直後のAg合金膜(Ag合金反射膜)およびAg反射膜の反射率を、分光光度計(日本分光株式社製Ubestシリーズ)を用いて、波長800nmから400nmの範囲の光を用いて測定した。波長650nm、550nm、450nmの光の反射率を表5に示す。
<Measurement of reflectance>
The reflectivity of the Ag alloy film (Ag alloy reflective film) and Ag reflective film immediately after film formation obtained as described above was measured using a spectrophotometer (Ubest series manufactured by JASCO Corporation) at a wavelength of 800 nm to 400 nm. Measured using light in the range of. Table 5 shows the reflectance of light having wavelengths of 650 nm, 550 nm, and 450 nm.
<恒温恒湿試験>
 上述の試料を、温度85℃、湿度85%の恒温恒湿槽中に250時間放置した。
 この恒温恒湿試験後のAg合金膜(Ag合金反射膜)およびAg反射膜の反射率を、分光光度計(日本分光株式社製Ubestシリーズ)を用いて、波長800nmから400nmの範囲の光を用いて測定した。波長650nm、550nm、450nmの光の反射率を表5に示す。
 そして、恒温恒湿試験前後の反射率の変化率を求めた。恒温恒湿試験前後の反射の変化率を表5に示す。
<Constant temperature and humidity test>
The above-mentioned sample was left for 250 hours in a constant temperature and humidity chamber having a temperature of 85 ° C. and a humidity of 85%.
The reflectance of the Ag alloy film (Ag alloy reflective film) and the Ag reflective film after the constant temperature and humidity test is measured using a spectrophotometer (Ubest series manufactured by JASCO Corporation), and the light in the wavelength range of 800 nm to 400 nm. And measured. Table 5 shows the reflectance of light having wavelengths of 650 nm, 550 nm, and 450 nm.
And the change rate of the reflectance before and behind a constant temperature and humidity test was calculated | required. Table 5 shows the rate of change in reflection before and after the constant temperature and humidity test.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 Pdの含有量が本発明の範囲よりも少ない比較例21においては、恒温恒湿試験前後の反射率の変化率が比較的大きく、反射率が安定していなかった。
 Pdの含有量が本発明の範囲よりも多い比較例22においては、成膜後の反射率が本発明例に比べて低く、十分な反射率を得ることができなかった。
 Mgの含有量が本発明の範囲よりも少ない比較例23及びMgの含有量が本発明の範囲よりも多い比較例24においては、恒温恒湿試験前後の反射率の変化率が比較的大きく、反射率が安定していなかった。
 Caの含有量が本発明の範囲よりも多い比較例25においては、スパッタリングターゲットを製造する際に圧延割れが発生し、スパッタリングターゲットを作製できなかった。
 純Agからなる従来例においては、恒温恒湿試験前後の反射率の変化率が大きく、反射率が安定していなかった。
In Comparative Example 21 in which the Pd content was less than the range of the present invention, the reflectance change rate before and after the constant temperature and humidity test was relatively large, and the reflectance was not stable.
In Comparative Example 22 in which the Pd content was larger than the range of the present invention, the reflectivity after film formation was lower than that of the present invention example, and a sufficient reflectivity could not be obtained.
In Comparative Example 23 in which the Mg content is less than the range of the present invention and Comparative Example 24 in which the Mg content is greater than the range of the present invention, the rate of change in reflectance before and after the constant temperature and humidity test is relatively large. The reflectance was not stable.
In Comparative Example 25 in which the content of Ca was larger than the range of the present invention, rolling cracks occurred when the sputtering target was produced, and the sputtering target could not be produced.
In the conventional example made of pure Ag, the reflectance change rate before and after the constant temperature and humidity test was large, and the reflectance was not stable.
 これに対して、Pd,Mg,Caの含有量が本発明の範囲内とされた本発明例21~29においては、成膜後の反射率が十分に高く、恒温恒湿試験前後における反射率の変化率も小さく安定していた。
 以上のことから、本発明例によれば、反射率が高く、かつ、耐熱性、耐湿性に優れたAg合金膜(Ag合金反射膜)及びAg合金膜形成用スパッタリングターゲットを提供可能であることが確認された。
On the other hand, in the inventive examples 21 to 29 in which the contents of Pd, Mg, and Ca are within the scope of the present invention, the reflectance after film formation is sufficiently high, and the reflectance before and after the constant temperature and humidity test. The rate of change was small and stable.
From the above, according to the example of the present invention, it is possible to provide an Ag alloy film (Ag alloy reflective film) and a sputtering target for forming an Ag alloy film having high reflectivity and excellent heat resistance and moisture resistance. Was confirmed.
(実施例4)
 次に、本発明に係るAg合金膜(Ag合金反射膜)に対して、NiおよびSnを添加した場合の作用効果について評価した評価試験の結果について説明する。
Example 4
Next, the result of the evaluation test which evaluated the effect at the time of adding Ni and Sn with respect to Ag alloy film (Ag alloy reflective film) based on this invention is demonstrated.
<Ag合金膜形成用スパッタリングターゲット>
 溶解原料として、純度99.9質量%以上のAgと、純度99.9質量%以上のPd,Mg,Ca,Ni,Snを準備し、実施例2に示した方法により、表6に示す組成のスパッタリングターゲットを製造した。
<Sputtering target for forming an Ag alloy film>
As dissolution raw materials, Ag having a purity of 99.9% by mass or more and Pd, Mg, Ca, Ni, Sn having a purity of 99.9% by mass or more were prepared, and the compositions shown in Table 6 were obtained by the method shown in Example 2. A sputtering target was manufactured.
<Ag合金膜(Ag合金反射膜)>
 上述のスパッタリングターゲットをスパッタ装置に装着し、ガラス基板(コーニング社製イーグルXG)との距離:70mm、電力:直流250W、到達真空度:5×10-5Pa以下、Arガス圧:0.5Paの条件でスパッタリングを実施し、ガラス基板の表面に、厚さ:100nmのAg合金膜(Ag合金反射膜)を形成した試料を作製した。
<Ag alloy film (Ag alloy reflective film)>
The above sputtering target is mounted on a sputtering apparatus, and the distance from the glass substrate (Corning Eagle XG): 70 mm, power: DC 250 W, ultimate vacuum: 5 × 10 −5 Pa or less, Ar gas pressure: 0.5 Pa Sputtering was carried out under the conditions described above to prepare a sample in which an Ag alloy film (Ag alloy reflective film) having a thickness of 100 nm was formed on the surface of the glass substrate.
<反射率の測定>
 上述のようにして得られた成膜直後のAg合金膜(Ag合金反射膜)の反射率を、分光光度計(日本分光株式社製Ubestシリーズ)を用いて、波長800nmから400nmの範囲の光を用いて測定した。波長650nm、550nm、450nmの光の反射率を表7に示す。
<Measurement of reflectance>
Using a spectrophotometer (Ubest series manufactured by JASCO Corporation), the reflectance of the Ag alloy film (Ag alloy reflective film) immediately after film formation obtained as described above is used for light in the wavelength range of 800 nm to 400 nm. It measured using. Table 7 shows the reflectance of light having wavelengths of 650 nm, 550 nm, and 450 nm.
<恒温恒湿試験>
 上述の試料を、温度85℃、湿度85%の恒温恒湿槽中に250時間放置した。
 この恒温恒湿試験後のAg合金膜(Ag合金反射膜)の反射率を、分光光度計(日本分光株式社製Ubestシリーズ)を用いて、波長800nmから400nmの範囲の光を用いて測定した。波長650nm、550nm、450nmの光の反射率を表7に示す。
 そして、恒温恒湿試験前後の反射率の変化率を求めた。恒温恒湿試験前後の反射の変化率を表7に示す。
<Constant temperature and humidity test>
The above-mentioned sample was left for 250 hours in a constant temperature and humidity chamber having a temperature of 85 ° C. and a humidity of 85%.
The reflectance of the Ag alloy film (Ag alloy reflective film) after the constant temperature and humidity test was measured using a spectrophotometer (Ubest series manufactured by JASCO Corporation) using light in the wavelength range of 800 nm to 400 nm. . Table 7 shows the reflectance of light having wavelengths of 650 nm, 550 nm, and 450 nm.
And the change rate of the reflectance before and behind a constant temperature and humidity test was calculated | required. Table 7 shows the rate of change in reflection before and after the constant temperature and humidity test.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 Ni及びSnから選択される少なくとも1種以上の含有量が本発明の範囲よりも多い比較例31,32においては、Ag合金膜(Ag合金反射膜)の反射率が低く、不十分であった。
 これに対して、Ni及びSnから選択される少なくとも1種以上を0.05原子%以上0.5原子%以下の範囲内で含有する本発明例31~38においては、反射率が比較的高く、かつ、恒温恒湿試験後の反射率の変化率が小さく反射率が安定していることが確認された。
In Comparative Examples 31 and 32 in which the content of at least one selected from Ni and Sn is larger than the range of the present invention, the reflectance of the Ag alloy film (Ag alloy reflective film) was low and insufficient. .
On the other hand, the inventive examples 31 to 38 containing at least one selected from Ni and Sn in the range of 0.05 atomic% to 0.5 atomic% have a relatively high reflectance. Moreover, it was confirmed that the reflectance change rate after the constant temperature and humidity test was small and the reflectance was stable.
(実施例5)
 次に、本発明に係るAg合金膜(Ag合金半透過膜)の作用効果について評価した評価試験の結果について説明する。
(Example 5)
Next, the result of the evaluation test evaluated about the effect of Ag alloy film (Ag alloy semipermeable membrane) concerning the present invention is explained.
<Ag合金膜形成用スパッタリングターゲット>
 溶解原料として、純度99.9質量%以上のAgと、純度99.9質量%以上のPd,Mg,Caを準備し、実施例1に示した方法により、表8に示す組成のスパッタリングターゲットを製造した。また、従来例として、純Ag(純度99.9質量%以上)のスパッタリングターゲットを準備した。
<Sputtering target for forming an Ag alloy film>
As a melting raw material, Ag having a purity of 99.9% by mass or more and Pd, Mg, Ca having a purity of 99.9% by mass or more were prepared, and a sputtering target having the composition shown in Table 8 was prepared by the method shown in Example 1. Manufactured. In addition, as a conventional example, a sputtering target of pure Ag (purity of 99.9% by mass or more) was prepared.
<Ag合金膜(Ag合金半透過膜)>
 上述のスパッタリングターゲットをスパッタ装置に装着し、ガラス基板(コーニング社製イーグルXG)との距離:70mm、電力:直流250W、到達真空度:5×10-5Pa以下、Arガス圧:0.5Paの条件でスパッタリングを実施し、ガラス基板の表面に、厚さ:15nmのAg合金膜(Ag合金半透過膜)を形成した試料を作製した。
 なお、上述した従来例のスパッタリングターゲットを用いて、同様の条件でガラス基板上に厚さ:15nmのAg半透過膜を形成した試料を作製した。
<Ag alloy membrane (Ag alloy semipermeable membrane)>
The above sputtering target is mounted on a sputtering apparatus, and the distance from the glass substrate (Corning Eagle XG): 70 mm, power: DC 250 W, ultimate vacuum: 5 × 10 −5 Pa or less, Ar gas pressure: 0.5 Pa Sputtering was performed under the conditions described above to prepare a sample in which an Ag alloy film (Ag alloy semi-permeable film) having a thickness of 15 nm was formed on the surface of the glass substrate.
In addition, the sample which formed Ag: 15 nm of thickness: 15nm on the glass substrate on the same conditions was produced using the sputtering target of the prior art example mentioned above.
<成膜後の比抵抗値>
 上述のようにして得られたAg合金膜(Ag合金半透過膜)およびAg半透過膜のシート抵抗値を四探針法によって測定し、比抵抗値を算出した。得られた成膜後の比抵抗値を表9に示す。
<Specific resistance value after film formation>
The sheet resistance values of the Ag alloy film (Ag alloy semipermeable membrane) and the Ag semipermeable membrane obtained as described above were measured by a four-probe method, and the specific resistance value was calculated. Table 9 shows the specific resistance values after film formation.
<透過率測定>
 分光光度計(日本分光株式社製Ubestシリーズ)により波長380nm~800nmの範囲でAg合金膜(Ag合金半透過膜)およびAg半透過膜の透過率を測定した。透過率測定の際には、最初に基板をセットしない中空の状態で測定を行って、分光光度計のキャリブレーションを行った。続いてAg合金膜(Ag合金半透過膜)およびAg半透過膜が成膜されていないガラス基板の透過率Tsを測定し、その後、半透明Ag合金膜が成膜されたガラス基板の透過率Ttを測定し、半透明Ag合金膜の透過率Tfを Tf=Tt/Ts として計算した。
<恒温恒湿試験>
 上述の試料を、温度85℃、湿度85%の恒温恒湿槽中に250時間放置した。
 この恒温恒湿試験後のAg合金膜(Ag合金半透過膜)およびAg半透過膜の比抵抗値、透過率を、上述と同様の方法で測定した。測定結果を表9に示す。
 そして、恒温恒湿試験前後の比抵抗値および透過率の変化率を求めた。恒温恒湿試験前後の比抵抗値および透過率の変化率を表9に示す。
<Transmittance measurement>
The transmittance of the Ag alloy film (Ag alloy semi-permeable film) and the Ag semi-permeable film was measured in the wavelength range of 380 nm to 800 nm with a spectrophotometer (Ubest series manufactured by JASCO Corporation). When measuring the transmittance, the measurement was first performed in a hollow state where the substrate was not set, and the spectrophotometer was calibrated. Subsequently, the transmittance Ts of the glass substrate on which the Ag alloy film (Ag alloy semipermeable membrane) and the Ag semipermeable membrane are not formed is measured, and then the transmittance of the glass substrate on which the semitransparent Ag alloy film is formed. Tt was measured, and the transmissivity Tf of the translucent Ag alloy film was calculated as Tf = Tt / Ts.
<Constant temperature and humidity test>
The above-mentioned sample was left for 250 hours in a constant temperature and humidity chamber having a temperature of 85 ° C. and a humidity of 85%.
The specific resistance value and transmittance of the Ag alloy film (Ag alloy semipermeable membrane) and Ag semipermeable membrane after the constant temperature and humidity test were measured by the same method as described above. Table 9 shows the measurement results.
And the specific resistance value before and behind a constant temperature and humidity test and the change rate of the transmittance | permeability were calculated | required. Table 9 shows the specific resistance values and the rate of change in transmittance before and after the constant temperature and humidity test.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 Pdの含有量が本発明の範囲よりも少ない比較例41においては、恒温恒湿試験前後の比抵抗値および透過率の変化率が比較的大きく、比抵抗値および透過率が安定していなかった。
 Pdの含有量が本発明の範囲よりも多い比較例42においては、成膜後の比抵抗値が高く、かつ、透過率が低かった。
 Mgの含有量が本発明の範囲よりも少ない比較例43においては、恒温恒湿試験前後の透過率の変化率が大きく、透過率が安定していなかった。
 Mgの含有量が本発明の範囲よりも多い比較例44においては、恒温恒湿試験前後の比抵抗値の変化率が大きく、比抵抗値が安定していなかった。
 Caの含有量が本発明の範囲よりも多い比較例45においては、スパッタリングターゲットを製造する際に圧延割れが発生し、スパッタリングターゲットを作製できなかった。
 純Agからなる従来例においては、恒温恒湿試験前後の比抵抗値および透過率の変化率が大きく、比抵抗値および透過率が安定していなかった。
In Comparative Example 41 in which the Pd content is less than the range of the present invention, the specific resistance value and the change rate of the transmittance before and after the constant temperature and humidity test were relatively large, and the specific resistance value and the transmittance were not stable. .
In Comparative Example 42 in which the content of Pd was larger than the range of the present invention, the specific resistance value after film formation was high and the transmittance was low.
In Comparative Example 43 in which the Mg content is less than the range of the present invention, the change rate of the transmittance before and after the constant temperature and humidity test was large, and the transmittance was not stable.
In Comparative Example 44 in which the Mg content was greater than the range of the present invention, the rate of change in the specific resistance value before and after the constant temperature and humidity test was large, and the specific resistance value was not stable.
In Comparative Example 45 in which the Ca content was greater than the range of the present invention, rolling cracks occurred when the sputtering target was produced, and the sputtering target could not be produced.
In the conventional example made of pure Ag, the specific resistance value and the change rate of the transmittance before and after the constant temperature and humidity test were large, and the specific resistance value and the transmittance were not stable.
 これに対して、Pd,Mg,Caの含有量が本発明の範囲内とされた本発明例41~49においては、成膜後の比抵抗値が低く、かつ、透過率が高く、恒温恒湿試験前後における比抵抗値および透過率の変化率も小さく安定していた。
 以上のことから、本発明例によれば、比抵抗値が低く、かつ、透過率が高く、耐熱性、耐湿性に優れたAg合金膜(Ag合金半透過膜)及びAg合金膜形成用スパッタリングターゲットを提供可能であることが確認された。
In contrast, in Invention Examples 41 to 49 in which the contents of Pd, Mg, and Ca are within the scope of the present invention, the specific resistance value after film formation is low, the transmittance is high, and the constant temperature and constant. The specific resistance value and the change rate of the transmittance before and after the wet test were also small and stable.
From the above, according to the example of the present invention, Ag alloy film (Ag alloy semi-permeable film) and Ag alloy film forming sputtering with low specific resistance, high transmittance, and excellent heat resistance and moisture resistance. It was confirmed that the target could be provided.
(実施例6)
 次に、本発明に係るAg合金膜(Ag合金半透過膜)に対して、NiおよびSnを添加した場合の作用効果について評価した評価試験の結果について説明する。
(Example 6)
Next, the result of the evaluation test which evaluated the effect at the time of adding Ni and Sn with respect to Ag alloy film (Ag alloy semipermeable membrane) which concerns on this invention is demonstrated.
<Ag合金膜形成用スパッタリングターゲット>
 溶解原料として、純度99.9質量%以上のAgと、純度99.9質量%以上のPd,Mg,Ca,Ni,Snを準備し、実施例2に示した方法により、表10に示す組成のスパッタリングターゲットを製造した。
<Sputtering target for forming an Ag alloy film>
As dissolution raw materials, Ag having a purity of 99.9% by mass or more and Pd, Mg, Ca, Ni, Sn having a purity of 99.9% by mass or more were prepared, and the compositions shown in Table 10 were obtained by the method shown in Example 2. A sputtering target was manufactured.
<Ag合金膜(Ag合金半透過膜)>
 上述のスパッタリングターゲットをスパッタ装置に装着し、ガラス基板(コーニング社製イーグルXG)との距離:70mm、電力:直流250W、到達真空度:5×10-5Pa以下、Arガス圧:0.5Paの条件でスパッタリングを実施し、ガラス基板の表面に、厚さ:15nmのAg合金膜(Ag合金半透過膜)を形成した試料を作製した。
<Ag alloy membrane (Ag alloy semipermeable membrane)>
The above sputtering target is mounted on a sputtering apparatus, and the distance from the glass substrate (Corning Eagle XG): 70 mm, power: DC 250 W, ultimate vacuum: 5 × 10 −5 Pa or less, Ar gas pressure: 0.5 Pa Sputtering was performed under the conditions described above to prepare a sample in which an Ag alloy film (Ag alloy semi-permeable film) having a thickness of 15 nm was formed on the surface of the glass substrate.
<成膜後の比抵抗値>
 上述のようにして得られたAg合金膜(Ag合金半透過膜)のシート抵抗値を四探針法によって測定し、比抵抗値を算出した。得られた成膜後の比抵抗値を表11に示す。
<Specific resistance value after film formation>
The sheet resistance value of the Ag alloy film (Ag alloy semipermeable membrane) obtained as described above was measured by the four-probe method, and the specific resistance value was calculated. Table 11 shows the specific resistance values after film formation.
<透過率測定>
 分光光度計(日本分光株式社製Ubestシリーズ)により波長380nm~800nmの範囲でAg合金膜(Ag合金半透過膜)の透過率を測定した。透過率測定の際には、最初に基板をセットしない中空の状態で測定を行って、分光光度計のキャリブレーションを行った。続いてAg合金膜(Ag合金半透過膜)が成膜されていないガラス基板の透過率Tsを測定し、その後、半透明Ag合金膜が成膜されたガラス基板の透過率Ttを測定し、半透明Ag合金膜の透過率Tfを Tf=Tt/Ts として計算した。
<恒温恒湿試験>
 上述の試料を、温度85℃、湿度85%の恒温恒湿槽中に250時間放置した。
 この恒温恒湿試験後のAg合金膜(Ag合金半透過膜)の比抵抗値、透過率を、上述と同様の方法で測定した。測定結果を表11に示す。
 そして、恒温恒湿試験前後の比抵抗値および透過率の変化率を求めた。恒温恒湿試験前後の比抵抗値および透過率の変化率を表11に示す。
<Transmittance measurement>
The transmittance of the Ag alloy film (Ag alloy semi-transmissive film) was measured in the wavelength range of 380 nm to 800 nm with a spectrophotometer (Ubest series manufactured by JASCO Corporation). When measuring the transmittance, the measurement was first performed in a hollow state where the substrate was not set, and the spectrophotometer was calibrated. Subsequently, the transmittance Ts of the glass substrate on which the Ag alloy film (Ag alloy semipermeable film) is not formed is measured, and then the transmittance Tt of the glass substrate on which the semitransparent Ag alloy film is formed is measured. The transmittance Tf of the translucent Ag alloy film was calculated as Tf = Tt / Ts.
<Constant temperature and humidity test>
The above-mentioned sample was left for 250 hours in a constant temperature and humidity chamber having a temperature of 85 ° C. and a humidity of 85%.
The specific resistance value and transmittance of the Ag alloy film (Ag alloy semipermeable membrane) after this constant temperature and humidity test were measured by the same method as described above. Table 11 shows the measurement results.
And the specific resistance value before and behind a constant temperature and humidity test and the change rate of the transmittance | permeability were calculated | required. Table 11 shows the specific resistance value and the change rate of the transmittance before and after the constant temperature and humidity test.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 Ni及びSnから選択される少なくとも1種以上の含有量が本発明の範囲よりも多い比較例51,52においては、Ag合金膜(Ag合金半透過膜)の比抵抗値が高く、かつ、透過率が低かった。
 これに対して、Ni及びSnから選択される少なくとも1種以上を0.05原子%以上0.5原子%以下の範囲内で含有する本発明例51~58においては、成膜後の比抵抗値が低く、かつ、透過率が高く、恒温恒湿試験前後における比抵抗値および透過率の変化率も小さく安定していた。
In Comparative Examples 51 and 52 in which the content of at least one selected from Ni and Sn is larger than the range of the present invention, the specific resistance value of the Ag alloy film (Ag alloy semipermeable film) is high, and the transmission The rate was low.
On the other hand, in the inventive examples 51 to 58 containing at least one selected from Ni and Sn in the range of 0.05 atomic% to 0.5 atomic%, the specific resistance after film formation The value was low, the transmittance was high, and the specific resistance value and the change rate of the transmittance before and after the constant temperature and humidity test were small and stable.
 本発明のAg合金膜形成用スパッタリングターゲットによれば、各種耐性に優れ、光学特性の安定したAg合金膜、Ag合金導電膜、Ag合金反射膜およびAg合金半透過膜を形成することができ、その結果タッチパネル等において配線を幅狭化できる。 According to the sputtering target for forming an Ag alloy film of the present invention, it is possible to form an Ag alloy film, an Ag alloy conductive film, an Ag alloy reflective film, and an Ag alloy semi-transmissive film that are excellent in various resistances and have stable optical characteristics. As a result, the wiring can be narrowed in the touch panel or the like.

Claims (9)

  1.  Pdを0.10原子%以上1.00原子%以下、Mgを0.10原子%以上1.00原子%以下、残部が実質的にAgと不可避不純物とからなる組成を有することを特徴とするAg合金膜。 Pd is 0.10 atomic percent or more and 1.00 atomic percent or less, Mg is 0.10 atomic percent or more and 1.00 atomic percent or less, and the balance is substantially composed of Ag and inevitable impurities. Ag alloy film.
  2.  Pdを0.10原子%以上1.00原子%以下、Mgを0.05原子%以上1.00原子%以下、さらにCaを0.01原子%以上0.15原子%以下、残部が実質的にAgと不可避不純物とからなる組成を有することを特徴とするAg合金膜。 Pd is 0.10 atomic% to 1.00 atomic%, Mg is 0.05 atomic% to 1.00 atomic%, Ca is 0.01 atomic% to 0.15 atomic%, and the balance is substantially And an Ag alloy film having a composition comprising Ag and inevitable impurities.
  3.  さらに、Ni及びSnから選択される少なくとも1種以上を0.05原子%以上0.50原子%以下の範囲内で含有することを特徴とする請求項1又は請求項2に記載のAg合金膜。 The Ag alloy film according to claim 1, further comprising at least one selected from Ni and Sn within a range of 0.05 atomic% to 0.50 atomic%. .
  4.  請求項1から請求項3のいずれか一項に記載のAg合金膜からなることを特徴とするAg合金導電膜。 An Ag alloy conductive film comprising the Ag alloy film according to any one of claims 1 to 3.
  5.  請求項1から請求項3のいずれか一項に記載のAg合金膜からなることを特徴とするAg合金反射膜。 An Ag alloy reflective film comprising the Ag alloy film according to any one of claims 1 to 3.
  6.  請求項1から請求項3のいずれか一項に記載のAg合金膜からなることを特徴とするAg合金半透過膜。 An Ag alloy semipermeable membrane comprising the Ag alloy membrane according to any one of claims 1 to 3.
  7.  Pdを0.10原子%以上1.00原子%以下、Mgを0.10原子%以上1.00原子%以下、残部が実質的にAgと不可避不純物とからなる組成を有することを特徴とするAg合金膜形成用スパッタリングターゲット。 Pd is 0.10 atomic percent or more and 1.00 atomic percent or less, Mg is 0.10 atomic percent or more and 1.00 atomic percent or less, and the balance is substantially composed of Ag and inevitable impurities. A sputtering target for forming an Ag alloy film.
  8.  Pdを0.10原子%以上1.00原子%以下、Mgを0.05原子%以上1.00原子%以下、さらにCaを0.01原子%以上0.15原子%以下、残部が実質的にAgと不可避不純物とからなる組成を有することを特徴とするAg合金膜形成用スパッタリングターゲット。 Pd is 0.10 atomic% to 1.00 atomic%, Mg is 0.05 atomic% to 1.00 atomic%, Ca is 0.01 atomic% to 0.15 atomic%, and the balance is substantially A sputtering target for forming an Ag alloy film, which has a composition comprising Ag and inevitable impurities.
  9.  さらに、Ni及びSnから選択される少なくとも1種以上を0.05原子%以上0.50原子%以下の範囲内で含有することを特徴とする請求項7又は請求項8に記載のAg合金膜形成用スパッタリングターゲット。 The Ag alloy film according to claim 7 or 8, further comprising at least one selected from Ni and Sn within a range of 0.05 atomic% to 0.50 atomic%. Sputtering target for formation.
PCT/JP2013/082837 2012-12-07 2013-12-06 Ag alloy film, ag alloy conductive film, ag alloy reflective film, ag alloy semi-transmissive film, and sputtering target for forming ag alloy film WO2014088098A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012268573 2012-12-07
JP2012-268573 2012-12-07
JP2013-170730 2013-08-20
JP2013170730 2013-08-20
JP2013251329A JP6611114B2 (en) 2012-12-07 2013-12-04 Ag alloy film, Ag alloy conductive film, Ag alloy reflective film, Ag alloy semipermeable film, and sputtering target for forming an Ag alloy film
JP2013-251329 2013-12-04

Publications (1)

Publication Number Publication Date
WO2014088098A1 true WO2014088098A1 (en) 2014-06-12

Family

ID=50883510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082837 WO2014088098A1 (en) 2012-12-07 2013-12-06 Ag alloy film, ag alloy conductive film, ag alloy reflective film, ag alloy semi-transmissive film, and sputtering target for forming ag alloy film

Country Status (3)

Country Link
JP (1) JP6611114B2 (en)
TW (1) TW201435100A (en)
WO (1) WO2014088098A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162221A1 (en) * 2019-02-06 2020-08-13 三菱マテリアル株式会社 Ag ALLOY SPUTTERING TARGET, AND Ag ALLOY FILM

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444914A (en) * 2021-07-19 2021-09-28 福建阿石创新材料股份有限公司 Silver-based alloy and preparation method thereof, silver alloy composite film and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056851A1 (en) * 2003-12-10 2005-06-23 Tanaka Kikinzoku Kogyo K.K. Silver alloy excelling in performance of reflectance maintenance
WO2006132413A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy for electrode, wiring and electromagnetic shielding
WO2006132417A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy excellent in reflectance/transmittance maintaining characteristics
WO2007074895A1 (en) * 2005-12-29 2007-07-05 Mitsubishi Materials Corporation TRANSLUCENT REFLECTIVE FILM AND REFLECTIVE FILM FOR OPTICAL RECORDING MEDIUM, AND Ag ALLOY SPUTTERING TARGET FOR FORMING SUCH TRANSLUCENT REFLECTIVE FILM AND REFLECTIVE FILM

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3558301B2 (en) * 1993-04-22 2004-08-25 三菱マテリアル株式会社 High corrosion resistant Ag-Mg alloy thin film
JP2003293055A (en) * 2002-04-08 2003-10-15 Sumitomo Metal Mining Co Ltd Silver alloy thin film and silver alloy for forming thin film
JP4864538B2 (en) * 2006-05-19 2012-02-01 三菱マテリアル株式会社 Translucent reflective film for optical recording medium and Ag alloy sputtering target for forming the translucent reflective film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056851A1 (en) * 2003-12-10 2005-06-23 Tanaka Kikinzoku Kogyo K.K. Silver alloy excelling in performance of reflectance maintenance
WO2006132413A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy for electrode, wiring and electromagnetic shielding
WO2006132417A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy excellent in reflectance/transmittance maintaining characteristics
WO2007074895A1 (en) * 2005-12-29 2007-07-05 Mitsubishi Materials Corporation TRANSLUCENT REFLECTIVE FILM AND REFLECTIVE FILM FOR OPTICAL RECORDING MEDIUM, AND Ag ALLOY SPUTTERING TARGET FOR FORMING SUCH TRANSLUCENT REFLECTIVE FILM AND REFLECTIVE FILM

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162221A1 (en) * 2019-02-06 2020-08-13 三菱マテリアル株式会社 Ag ALLOY SPUTTERING TARGET, AND Ag ALLOY FILM
JP2020125533A (en) * 2019-02-06 2020-08-20 三菱マテリアル株式会社 Ag ALLOY SPUTTERING TARGET, AND Ag ALLOY FILM
CN113474481A (en) * 2019-02-06 2021-10-01 三菱综合材料株式会社 Silver alloy sputtering target and silver alloy film
US20220106678A1 (en) * 2019-02-06 2022-04-07 Mitsubishi Materials Corporation Ag ALLOY SPUTTERING TARGET, AND Ag ALLOY FILM
EP3922748A4 (en) * 2019-02-06 2022-10-26 Mitsubishi Materials Corporation Ag alloy sputtering target, and ag alloy film

Also Published As

Publication number Publication date
JP6611114B2 (en) 2019-11-27
JP2015061931A (en) 2015-04-02
TW201435100A (en) 2014-09-16

Similar Documents

Publication Publication Date Title
KR101745290B1 (en) Ag ALLOY FILM FOR REFLECTIVE ELECTRODES, AND REFLECTIVE ELECTRODE
JP2017031503A (en) Ag ALLOY FILM AND METHOD FOR PRODUCING SAME, Ag ALLOY SPUTTERING TARGET AND LAMINATED FILM
JP6278136B2 (en) Ag alloy sputtering target, method for producing Ag alloy sputtering target, and method for producing Ag alloy film
US20170330643A1 (en) Ag alloy film for reflecting electrode or wiring electrode, reflecting electrode or wiring electrode, and ag alloy sputtering target
TW202011420A (en) Laminated film and Ag alloy sputtering target
KR101840109B1 (en) Laminated wiring film for electronic components and sputtering target material for forming coating layer
JP6611114B2 (en) Ag alloy film, Ag alloy conductive film, Ag alloy reflective film, Ag alloy semipermeable film, and sputtering target for forming an Ag alloy film
TW201447004A (en) Copper-manganese alloy film and copper-manganese alloy sputtering target and film formation method of copper-manganese alloy film
JP5927744B2 (en) Ag alloy conductive film and sputtering target for film formation
JP5590258B2 (en) Ag alloy film forming sputtering target, Ag alloy film, Ag alloy reflective film, Ag alloy conductive film, Ag alloy semi-transmissive film
WO2016043183A1 (en) Ag ALLOY SPUTTERING TARGET, MANUFACTURING METHOD FOR Ag ALLOY SPUTTERING TARGET, Ag ALLOY FILM, AND MANUFACTURING METHOD FOR ALLOY FILM
JP6361957B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
JP6729344B2 (en) Ag alloy sputtering target and Ag alloy film
JP2014074225A (en) SPUTTERING TARGET FOR FORMING Ag ALLOY FILM
JP6850981B2 (en) Oxide sputtering target
JP6033493B1 (en) Copper-based alloy sputtering target
WO2015119242A1 (en) Silver alloy film, silver-alloy reflective film, silver-alloy conductive film, and silver-alloy semipermeable film
WO2017018310A1 (en) Ag ALLOY FILM AND METHOD FOR PRODUCING SAME, Ag ALLOY SPUTTERING TARGET AND LAMINATED FILM
JP6260321B2 (en) Sputtering target for Ag alloy film formation
JP2013127113A (en) Conductive membrane and method for manufacturing the same, and sputtering target for forming conductive membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860900

Country of ref document: EP

Kind code of ref document: A1