WO2014087973A1 - 自然動物の運動を表現するためのリンク機構及び人工動物 - Google Patents

自然動物の運動を表現するためのリンク機構及び人工動物 Download PDF

Info

Publication number
WO2014087973A1
WO2014087973A1 PCT/JP2013/082383 JP2013082383W WO2014087973A1 WO 2014087973 A1 WO2014087973 A1 WO 2014087973A1 JP 2013082383 W JP2013082383 W JP 2013082383W WO 2014087973 A1 WO2014087973 A1 WO 2014087973A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
shows
fulcrum
frame
diagram
Prior art date
Application number
PCT/JP2013/082383
Other languages
English (en)
French (fr)
Inventor
豊 澤井
Original Assignee
Sawai Yutaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013028645A external-priority patent/JP5543627B1/ja
Priority claimed from JP2013230699A external-priority patent/JP5578635B1/ja
Application filed by Sawai Yutaka filed Critical Sawai Yutaka
Publication of WO2014087973A1 publication Critical patent/WO2014087973A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H13/00Toy figures with self-moving parts, with or without movement of the toy as a whole
    • A63H13/02Toy figures with self-moving parts, with or without movement of the toy as a whole imitating natural actions, e.g. catching a mouse by a cat, the kicking of an animal
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H11/00Self-movable toy figures
    • A63H11/18Figure toys which perform a realistic walking motion

Definitions

  • the present invention relates to a link mechanism and an artificial animal for expressing the movement of a natural animal.
  • Non-Patent Document 1 to Non-Patent Document 8 describe many past research contents of mechanical mechanisms related to the principle of voluntary movement of animals.
  • Non-Patent Document 1 LE MONDE DES AUTOMATES Chapitre XIX Les Animaux Mecaniques p.144-149)
  • Non-Patent Document 2 to Non-Patent Document 6 describe the following. 1867 W.C. F. Walking horse android which is the invention patent of GOODWIN. W. 1868 F. Android of the pedestrian who is the invention patent of GOODWIN. 1878 A.C. J. et al. The walking horse android which is the invention patent of DAVIS. L. 1893 A. RIGG's invention patent walking horse android.
  • Patent Document 1 describes an invention relating to a four-legged vehicle.
  • a part that has been realized with wheels is realized with two bars.
  • Patent Document 2 describes an invention in which another joint limb is added to a hip joint that connects a pelvis and a thigh joint.
  • the idea itself is used in the Boston Dynamics biped robot and is now a common technology.
  • This Patent Document 2 touches on the classic Chebyshev link mechanism for explanation of movement.
  • the Chebyshev link mechanism cannot increase the number of joints because the driven link has only one point of action in addition to the fulcrum. This alone cannot represent the limbs of animals, consisting of multiple joints such as upper arms, forearms, and hands.
  • Patent Document 3 is an invention related to a suspension design. When a leg is attached to the ground, a shock is eased by attaching a suspension to a hip joint and a knee portion. There are no new considerations about movement, only mentioning it moves electrically and magnetically.
  • JP-A-9-132119 Japanese Patent Laid-Open No. 2005-144583 JP 2002-103253 A JP 2005-144581 A
  • the present invention elucidates the basic principle of a compact mechanical structure that directly expresses a natural phenomenon, and based on that mechanism, a link mechanism for expressing the movement of a natural animal, and The purpose is to provide artificial animals.
  • the link mechanism of the present invention is characterized in that it is arranged based on the constraint conditions for expressing the movement of a natural animal. Using this link mechanism, an artificial animal that realizes the movement of a natural animal can be created.
  • the structure of the body, arms, and legs of natural animals is common to all animals, and all of them are assembled with the basic arrangement conditions described above as constraints.
  • the starting angle of the right forelimb in an individual animal individual is many times, the number of left forelimbs is many times, etc., and there are various variations in relation to the survival conditions for each individual, and this point is not related to the present invention. is there.
  • This mechanism employs basic arrangement conditions such as diamonds, diamonds, match boxes, etc. that allow various expressions to be expressed by the viewer. Under this arrangement condition, a natural balance can be realized by the correlation between the fulcrum of the driven link and the position of the fulcrum of the drive link.
  • the upper limb of the animal's limbs is formed from the upper arm, forearm, and hand.
  • the lower limb is formed from the upper leg, the front leg, and the foot.
  • the animal's torso is formed by the tail through the head, chest, and ribs. In the sea and in the air, the torso and limbs form behind the object when the object moves in a natural fluid by forming a zigzag wave shape during movement (voluntary movement) Propulsion is obtained by capturing the Karman vortex street of turbulent flow like a step.
  • the present invention elucidates the basic principle of a compact mechanical mechanism that directly expresses this natural phenomenon, and provides an example of expressing the movement of a natural animal based on the basic mechanism obtained thereby.
  • the mechanism is rearranged based on the basic principle while being aware of the symmetry and the center, and as a result, the arrangement of the mechanism is optimized.
  • the arm and leg joints of animals vary from 0 degrees (bent and folded) to 180 degrees (open and extended).
  • the vortex opens (changes) from 0 degrees to 360 degrees.
  • the present inventor has conceived that the joint of an animal can be bent in the reverse direction by extending and contracting the connecting link that interferes with a telescopic suspension or the like, and can be changed from 0 degrees to 360 degrees.
  • the link mechanism according to the present invention can convert a simple rotational motion into various natural motions (voluntary motions) of animals based on natural phenomena.
  • the above figure shows a counterclockwise view of the first-order linkage mechanism that adapts to the Karman vortex street, which is basically generated by a large flow of turbulent flow, in contrast to the Karman vortex street image (of 12 frames) 1st frame).
  • the following figure is a clockwise view (1 of 12 frames) when the link mechanism of the first mode adapted to the Karman vortex street, which is basically generated by a large flow of turbulent flow, is compared with the Karman vortex street image. Frame).
  • the upper diagram shows the second frame of the upper diagram of FIG. 1, and the lower diagram shows the second frame of the lower diagram of FIG.
  • the upper diagram shows the third frame of the upper diagram of FIG. 1, and the lower diagram shows the third frame of the lower diagram of FIG.
  • the upper diagram shows the fourth frame of the upper diagram of FIG. 1, and the lower diagram shows the fourth frame of the lower diagram of FIG.
  • the upper diagram shows the fifth frame in the upper diagram of FIG. 1, and the lower diagram shows the fifth frame in the lower diagram of FIG.
  • the upper diagram shows the sixth frame of the upper diagram of FIG. 1, and the lower diagram shows the sixth frame of the lower diagram of FIG.
  • the upper diagram shows the seventh frame in the upper diagram of FIG. 1, and the lower diagram shows the seventh frame in the lower diagram of FIG.
  • the upper diagram shows the eighth frame of the upper diagram of FIG. 1, and the lower diagram shows the eighth frame of the lower diagram of FIG.
  • the upper diagram shows the ninth frame of the upper diagram of FIG. 1, and the lower diagram shows the ninth frame of the lower diagram of FIG.
  • the upper diagram shows the tenth frame of the upper diagram of FIG. 1, and the lower diagram shows the tenth frame of the lower diagram of FIG.
  • the upper diagram shows the eleventh frame of the upper diagram of FIG. 1, and the lower diagram shows the eleventh frame of the lower diagram of FIG.
  • the upper diagram shows the twelfth frame of the upper diagram of FIG. 1, and the lower diagram shows the twelfth frame of the lower diagram of FIG.
  • the above figure shows a counterclockwise view of the linking mechanism of the second mode adapting to the twin vortex, which is basically generated by a small flow of the turbulent phenomenon, in contrast to the twin vortex image (1 of 12 frames). Frame).
  • the following figure is a clockwise view of the linkage mechanism of the second mode adapting to the twin vortex, which is basically generated by a small flow of turbulence phenomenon, compared with the twin vortex image (first frame out of 12 frames).
  • the upper diagram shows the second frame in the upper diagram of FIG. 13, and the lower diagram shows the second frame in the lower diagram of FIG.
  • the upper diagram shows the third frame in the upper diagram of FIG. 13, and the lower diagram shows the third frame in the lower diagram of FIG.
  • the upper diagram shows the fourth frame of the upper diagram of FIG. 13, and the lower diagram shows the fourth frame of the lower diagram of FIG.
  • the upper diagram shows the fifth frame of the upper diagram of FIG. 13, and the lower diagram shows the fifth frame of the lower diagram of FIG.
  • the upper diagram shows the sixth frame of the upper diagram of FIG. 13, and the lower diagram shows the sixth frame of the lower diagram of FIG.
  • the upper diagram shows the seventh frame in the upper diagram of FIG. 13, and the lower diagram shows the seventh frame in the lower diagram of FIG.
  • the upper diagram shows the eighth frame of the upper diagram of FIG. 13, and the lower diagram shows the eighth frame of the lower diagram of FIG.
  • the upper diagram shows the ninth frame in the upper diagram of FIG. 13, and the lower diagram shows the ninth frame in the lower diagram of FIG.
  • the upper diagram shows the tenth frame of the upper diagram of FIG. 13, and the lower diagram shows the tenth frame of the lower diagram of FIG.
  • the upper diagram shows the eleventh frame in the upper diagram of FIG. 13, and the lower diagram shows the eleventh frame in the lower diagram of FIG.
  • the upper diagram shows the 12th frame of the upper diagram of FIG. 13, and the lower diagram shows the 12th frame of the lower diagram of FIG.
  • the lower left figure shows an external perspective view (first frame out of 12 frames) in a swimming state when the second mode is applied to the body and fin of a fish (Aji).
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the second frame of the lower left figure.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the third frame of the lower left figure in FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the fourth frame in the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the fifth frame in the lower left figure of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the sixth frame of the lower left figure in FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the seventh frame in the lower left figure of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the eighth frame of the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the ninth frame of the lower left figure in FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the tenth frame of the lower left figure in FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left diagram shows the eleventh frame of the lower left diagram in FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the 12th frame in the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure is a side view (appearance perspective view of arms and legs) in the walking state when the first aspect is applied to the body of a bipedal animal (person) and the second aspect is applied to the arms and legs. ) Shows the first frame of the 12 frames.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the second frame of the lower left figure.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the third frame of the lower left figure of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the fourth frame in the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the fifth frame in the lower left figure of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the sixth frame of the lower left figure in FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the seventh frame in the lower left figure of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the eighth frame of the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the ninth frame of the lower left figure in FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the tenth frame of the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the eleventh frame of the lower left figure in FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the 12th frame of the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure is a side view (appearance perspective view of arms and legs) in a running state when the first mode is applied to the trunk of a biped animal (person) and the second mode is applied to the arms and legs. ) Shows the first frame of the 12 frames.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the second frame of the lower left figure.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the third frame of the lower left figure in FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the fourth frame in the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the fifth frame in the lower left figure of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the sixth frame of the lower left figure in FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the seventh frame in the lower left figure of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the eighth frame of the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the ninth frame of the lower left figure in FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the tenth frame of the lower left figure in FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left diagram shows the eleventh frame of the lower left diagram in FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the 12th frame in the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure is a side view (external perspective of the torso and legs) in a running state when the first aspect is applied to the torso of a quadruped animal (horse) and the second aspect is applied to the front and rear legs.
  • the lower right figure shows a side view (external perspective of the torso and legs) in the running state when the first mode is applied to the body of a quadruped animal ( ⁇ ) and the second mode is applied to the front and rear legs.
  • the first frame of the 12 frames in FIG. The upper left figure shows the second frame of the lower left figure.
  • the upper right figure shows the second frame in the lower right figure.
  • the lower left figure shows the third frame of the lower left figure of FIG.
  • the lower right diagram shows the third frame of the lower right diagram in FIG.
  • the upper left figure shows the fourth frame of the lower left figure of FIG.
  • the upper right diagram shows the fourth frame in the lower right diagram in FIG.
  • the lower left figure shows the fifth frame of the lower left figure of FIG.
  • the lower right diagram shows the fifth frame of the lower right diagram in FIG.
  • the upper left figure shows the sixth frame of the lower left figure of FIG.
  • the upper right diagram shows the sixth frame of the lower right diagram in FIG.
  • the lower left figure shows the seventh frame in the lower left figure of FIG.
  • the lower right diagram shows the seventh frame of the lower right diagram in FIG.
  • the upper left figure shows the eighth frame of the lower left figure of FIG.
  • the upper right figure shows the eighth frame of the lower right figure of FIG.
  • the lower left figure shows the ninth frame of the lower left figure in FIG.
  • the lower right diagram shows the ninth frame of the lower right diagram in FIG.
  • the upper left figure shows the tenth frame of the lower left figure of FIG.
  • the upper right diagram shows the tenth frame of the lower right diagram in FIG.
  • the lower left figure shows the eleventh frame of the lower left figure in FIG.
  • the lower right diagram shows the eleventh frame of the lower right diagram in FIG.
  • the upper left figure shows the 12th frame in the lower left figure of FIG.
  • the upper right figure shows the 12th frame of the lower right figure of FIG.
  • the lower left figure is a side view in the state of flapping when the first mode is applied to the body of a bird (eagle) and the second mode is applied to the wings and legs (the state of flapping operation).
  • the first frame of the 12 frames of the body, wings, and legs is shown.
  • the lower right figure is a front view in the state of flapping when the first mode is applied to the body of a bird (cage) and the second mode is applied to the wing and the leg (the state where the flapping motion is performed).
  • the first frame of the 12 frames of the body, wings, and legs is shown.
  • the upper left figure shows the second frame of the lower left figure.
  • the upper right figure shows the second frame in the lower right figure.
  • the lower left figure shows the third frame of the lower left figure of FIG.
  • the lower right diagram shows the third frame of the lower right diagram in FIG.
  • the upper left figure shows the fourth frame in the lower left figure of FIG.
  • the upper right figure shows the fourth frame in the lower right figure of FIG.
  • the lower left figure shows the fifth frame in the lower left figure of FIG.
  • the lower right diagram shows the fifth frame in the lower right diagram of FIG.
  • the upper left figure shows the sixth frame of the lower left figure of FIG.
  • the upper right figure shows the sixth frame of the lower right figure in FIG.
  • the lower left figure shows the seventh frame of the lower left figure of FIG.
  • the lower right diagram shows the seventh frame of the lower right diagram in FIG.
  • the upper left figure shows the eighth frame of the lower left figure of FIG.
  • the upper right figure shows the eighth frame of the lower right figure of FIG.
  • the lower left figure shows the ninth frame of the lower left figure in FIG.
  • the lower right diagram shows the ninth frame in the lower right diagram of FIG.
  • the upper left figure shows the tenth frame of the lower left figure of FIG.
  • the upper right figure shows the tenth frame of the lower right figure of FIG.
  • the lower left diagram shows the eleventh frame of the lower left diagram in FIG.
  • the lower right diagram shows the eleventh frame of the lower right diagram in FIG.
  • the upper left figure shows the 12th frame in the lower left figure of FIG.
  • the upper right figure shows the 12th frame in the lower right figure of FIG.
  • the upper figure shows a counterclockwise view of the link mechanism of the third mode that adapts to the Karman vortex street, which is basically generated by a large flow of turbulent flow, in contrast to the Karman vortex street image (of 12 frames) 1st frame).
  • the following figure is a clockwise view (1 out of 12 frames) when the linkage mechanism of the third mode adapted to the Karman vortex street, which is basically generated by a large flow of turbulent flow phenomenon, is compared with the Karman vortex street image. Frame).
  • the upper diagram shows the second frame in the upper diagram of FIG. 55, and the lower diagram shows the second frame in the lower diagram of FIG.
  • the upper diagram shows the third frame of the upper diagram of FIG. 55, and the lower diagram shows the third frame of the lower diagram of FIG.
  • the upper diagram shows the fourth frame in the upper diagram of FIG. 55, and the lower diagram shows the fourth frame in the lower diagram of FIG.
  • the upper diagram shows the fifth frame of the upper diagram of FIG. 55, and the lower diagram shows the fifth frame of the lower diagram of FIG.
  • the upper diagram shows the sixth frame of the upper diagram of FIG. 55, and the lower diagram shows the sixth frame of the lower diagram of FIG.
  • the upper diagram shows the seventh frame in the upper diagram of FIG. 55, and the lower diagram shows the seventh frame in the lower diagram of FIG.
  • the upper diagram shows the eighth frame in the upper diagram of FIG. 55, and the lower diagram shows the eighth frame in the lower diagram of FIG.
  • the upper diagram shows the ninth frame of the upper diagram of FIG. 55, and the lower diagram shows the ninth frame of the lower diagram of FIG.
  • the upper diagram shows the tenth frame of the upper diagram of FIG. 55, and the lower diagram shows the tenth frame of the lower diagram of FIG.
  • the upper diagram shows the eleventh frame of the upper diagram of FIG. 55, and the lower diagram shows the eleventh frame of the lower diagram of FIG.
  • the upper diagram shows the 12th frame in the upper diagram of FIG. 55, and the lower diagram shows the 12th frame in the lower diagram of FIG.
  • the upper figure is a counterclockwise view of the linking mechanism of the fourth mode that adapts to the twin vortex, which is basically generated by a small flow of the turbulent flow phenomenon, in contrast to the twin vortex image (1 of 12 frames). Frame).
  • the figure below is a clockwise view of the fourth mode of the linkage mechanism that adapts to the twin vortex, which is basically generated by a small flow of turbulence, compared to the twin vortex image (first frame out of 12 frames). ).
  • the upper diagram shows the second frame in the upper diagram of FIG. 67, and the lower diagram shows the second frame in the lower diagram of FIG.
  • the upper diagram shows the third frame in the upper diagram of FIG. 67, and the lower diagram shows the third frame in the lower diagram of FIG.
  • the upper diagram shows the fourth frame of the upper diagram of FIG. 67, and the lower diagram shows the fourth frame of the lower diagram of FIG.
  • the upper diagram shows the fifth frame in the upper diagram of FIG. 67, and the lower diagram shows the fifth frame in the lower diagram of FIG.
  • the upper diagram shows the sixth frame in the upper diagram of FIG. 67, and the lower diagram shows the sixth frame in the lower diagram of FIG.
  • the upper diagram shows the seventh frame in the upper diagram of FIG. 67, and the lower diagram shows the seventh frame in the lower diagram of FIG.
  • the upper diagram shows the eighth frame of the upper diagram of FIG. 67, and the lower diagram shows the eighth frame of the lower diagram of FIG.
  • the upper diagram shows the ninth frame in the upper diagram of FIG. 67, and the lower diagram shows the ninth frame in the lower diagram of FIG.
  • the upper diagram shows the tenth frame of the upper diagram of FIG. 67
  • the lower diagram shows the tenth frame of the lower diagram of FIG.
  • the upper diagram shows the eleventh frame of the upper diagram of FIG. 67
  • the lower diagram shows the eleventh frame of the lower diagram of FIG.
  • the upper diagram shows the 12th frame of the upper diagram of FIG. 67
  • the lower diagram shows the 12th frame of the lower diagram of FIG.
  • the lower left figure shows an external perspective view (first frame out of 12 frames) in a swimming state when the fourth mode is applied to the body and fin of a fish (Aji).
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the second frame of the lower left figure.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left diagram shows the third frame of the lower left diagram in FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the fourth frame in the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the fifth frame in the lower left figure of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the sixth frame of the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the seventh frame of the lower left figure of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the eighth frame of the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left diagram shows the ninth frame in the lower left diagram of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the tenth frame of the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left diagram shows the eleventh frame of the lower left diagram in FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the 12th frame in the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure is a side view (appearance perspective view of arms and legs) in the walking state when the third aspect is applied to the trunk of a bipedal animal (person) and the fourth aspect is applied to the arms and legs.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the second frame of the lower left figure.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left diagram shows the third frame of the lower left diagram in FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left diagram shows the fourth frame of the lower left diagram in FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the fifth frame in the lower left figure of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the sixth frame of the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left diagram shows the seventh frame of the lower left diagram in FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the eighth frame of the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the ninth frame in the lower left figure of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left diagram shows the tenth frame of the lower left diagram in FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left diagram shows the eleventh frame of the lower left diagram in FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the 12th frame in the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure is a side view (appearance perspective view of arms and legs) in a running state when the third aspect is applied to the body of a biped animal (person) and the fourth aspect is applied to the arms and legs. ) Shows the first frame of the 12 frames.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the second frame of the lower left figure.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the third frame of the lower left figure of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the fourth frame in the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the fifth frame in the lower left figure of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the sixth frame of the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the seventh frame of the lower left figure of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the eighth frame of the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure shows the ninth frame in the lower left figure of FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the tenth frame of the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left diagram shows the eleventh frame of the lower left diagram in FIG.
  • the lower right figure shows the operating state of the link mechanism of the lower left figure.
  • the upper left figure shows the 12th frame of the lower left figure of FIG.
  • the upper right figure shows the operating state of the link mechanism of the upper left figure.
  • the lower left figure is a side view (external perspective of the torso and legs) in the running state when the third aspect is applied to the torso of a quadruped animal (horse) and the fourth aspect is applied to the front and rear legs.
  • the lower right figure shows a side view (external perspective of the torso and legs) in the running state when the third aspect is applied to the trunk of a quadruped animal ( ⁇ ⁇ ) and the fourth aspect is applied to the front and rear legs.
  • the upper left figure shows the second frame of the lower left figure.
  • the upper right figure shows the second frame in the lower right figure.
  • the lower left figure shows the third frame in the lower left figure of FIG.
  • the lower right diagram shows the third frame of the lower right diagram in FIG.
  • the upper left figure shows the fourth frame in the lower left figure of FIG.
  • the upper right diagram shows the fourth frame in the lower right diagram in FIG.
  • the lower left figure shows the fifth frame in the lower left figure of FIG.
  • the lower right diagram shows the fifth frame of the lower right diagram in FIG.
  • the upper left figure shows the sixth frame of the lower left figure of FIG.
  • the upper right figure shows the sixth frame of the lower right figure in FIG.
  • the lower left figure shows the seventh frame of the lower left figure of FIG.
  • the lower right diagram shows the seventh frame of the lower right diagram in FIG.
  • the upper left figure shows the eighth frame of the lower left figure of FIG.
  • the upper right figure shows the eighth frame of the lower right figure in FIG.
  • the lower left figure shows the ninth frame of the lower left figure in FIG.
  • the lower right diagram shows the ninth frame in the lower right diagram of FIG.
  • the upper left figure shows the tenth frame of the lower left figure in FIG.
  • the upper right diagram shows the tenth frame of the lower right diagram in FIG.
  • the lower left figure shows the eleventh frame of the lower left figure in FIG.
  • the lower right diagram shows the eleventh frame of the lower right diagram in FIG.
  • the upper left figure shows the 12th frame in the lower left figure of FIG.
  • the upper right figure shows the 12th frame in the lower right figure of FIG.
  • the lower left figure shows the ninth frame in the lower right diagram of FIG.
  • the upper left figure shows the tenth frame of the lower left figure in FIG.
  • the upper right diagram shows the tenth frame of the lower right diagram in FIG.
  • the lower left figure shows the eleventh frame of the lower left figure in FIG.
  • the upper left figure shows the 12th frame in the lower left figure of FIG.
  • the upper right figure shows the 12th frame in the lower right figure of FIG.
  • the lower right diagram shows the third frame in the lower right diagram of FIG.
  • the upper left figure shows the fourth frame in the lower left figure of FIG.
  • the upper right diagram shows the fourth frame of the lower right diagram in FIG.
  • the lower left figure shows the fifth frame in the lower left figure of FIG.
  • the lower right diagram shows the fifth frame in the lower right diagram of FIG.
  • the upper left figure shows the sixth frame of the lower left figure of FIG.
  • the upper right diagram shows the sixth frame in the lower right diagram of FIG.
  • the lower left figure shows the seventh frame in the lower left figure of FIG.
  • the lower right diagram shows the seventh frame of the lower right diagram in FIG. 103.
  • the upper left figure shows the eighth frame of the lower left figure of FIG.
  • the upper right diagram shows the eighth frame in the lower right diagram of FIG.
  • the lower left figure shows the ninth frame in the lower left figure of FIG.
  • the lower right diagram shows the ninth frame in the lower right diagram of FIG.
  • the upper left figure shows the tenth frame of the lower left figure of FIG.
  • the upper right diagram shows the tenth frame of the lower right diagram in FIG.
  • the lower left diagram shows the eleventh frame of the lower left diagram in FIG. 103.
  • the lower right diagram shows the eleventh frame of the lower right diagram in FIG. 103.
  • the upper left figure shows the 12th frame of the lower left figure of FIG.
  • the upper right diagram shows the 12th frame of the lower right diagram in FIG.
  • the link mechanism of the embodiment is a mechanical mechanism constituted by a link structure as shown in FIGS. 1 to 24 and FIGS. 55 to 78.
  • the mechanical mechanism shown in FIGS. 1 to 12 is a first mode which is an example of a basic mechanism.
  • the mechanical mechanism shown in FIGS. 55 to 66 is a second mode that is an example of a basic mechanism.
  • the second is a mechanism that winds inward, simulating the natural vortex phenomenon of FIGS. 13 to 24 and FIGS. 67 to 78.
  • FIGS. 13 to 24 is the third mode as an example of the basic mechanism.
  • the mechanical mechanism shown in FIGS. 67 to 78 is a fourth mode that is an example of a basic mechanism.
  • FIGS. 1 to 12 and FIGS. 55 to 66 show counterclockwise views in the first mode and the third mode, respectively, in contrast to the Karman vortex street image.
  • FIGS. 1 to 12 and FIGS. 55 to 66 show clockwise views in the first mode and the third mode, respectively, in a mode contrasting with the Karman vortex street image.
  • FIGS. 13 to 24 and FIGS. 67 to 78 show counterclockwise views in the second mode and the fourth mode, respectively, in contrast to the twin vortex images in which the left and right sizes are constant. Yes.
  • the link mechanism means a mechanical mechanism configured by combining a plurality of links.
  • the plurality of links are connected by a joint that functions as a joint.
  • the joint ⁇ 1 that is the action point of the drive link and the joint ⁇ 1 that is the action point of the driven link are placed at arbitrary points, and the fulcrum ⁇ 1 of the drive link is an imaginary straight line ( ⁇ 1- ⁇ 1) that connects the joint ⁇ 1 and the joint ⁇ 1. Place it anywhere above.
  • a virtual straight line ( ⁇ 1- ⁇ 2) that connects the joint ⁇ 1 of the driving link and the fulcrum ⁇ 2 of the driven link connects the joint ⁇ 1 that is the operating point of the driven link and the joint ⁇ 1 that is the operating point of the driven link.
  • the fulcrum ⁇ 2 and the joint ⁇ 1 are placed at arbitrary points so as to intersect the virtual straight line ( ⁇ 1- ⁇ 1). The above is the basic arrangement condition of this mechanism.
  • link elements and connecting links are connected to complete the link mechanism.
  • the arrangement in which the virtual straight line ( ⁇ 1- ⁇ 2) passes through the intermediate point on the virtual straight line ( ⁇ 1- ⁇ 1) is the most accurate. Shows high and stable operation.
  • the width of the drive link ( ⁇ 1- ⁇ 1) appears as the amplitude of the joint limb ( ⁇ 1- ⁇ 2- ⁇ 3- ⁇ 4... ⁇ n).
  • a link ( ⁇ n ⁇ n) indicates a link connecting the nth joint ⁇ and the nth joint ⁇ .
  • the link element ( ⁇ 1- ⁇ 2) refers to a connecting link that connects the first joint ⁇ and the second joint ⁇ .
  • the link element ( ⁇ 1- ⁇ 1- ⁇ 2- ⁇ 2) includes the first joint ⁇ and the first joint ⁇ , the first joint ⁇ and the second joint ⁇ , and the second joint ⁇ and the second joint ⁇ .
  • a link element connecting the joint ⁇ is shown.
  • the virtual straight line ( ⁇ 1- ⁇ 1) refers to a virtual straight line passing through the first joint ⁇ and the first joint ⁇ .
  • it demonstrates according to this.
  • n is an integer of 1 or more.
  • the operation of the link mechanism arranged as described above will be described.
  • the rotational movement of the drive link ( ⁇ 1- ⁇ 1) about the fulcrum ⁇ 1 is transmitted to the link element ( ⁇ 1- ⁇ 1- ⁇ 2- ⁇ 2), and the driven link ( ⁇ 1- ⁇ 1) supported by the fulcrum ⁇ 2 is moved.
  • the link I ( ⁇ 1- ⁇ 2) connected to the driven link is linked to the link element II ( ⁇ 2- ⁇ 2-) connected to the link I ( ⁇ 1- ⁇ 2) and the link element ( ⁇ 1- ⁇ 1- ⁇ 2- ⁇ 2). Move ⁇ 3- ⁇ 3).
  • ( ⁇ n ⁇ ( ⁇ n + 1)) and link element ( ⁇ n ⁇ n ⁇ ( ⁇ n + 1) ⁇ ( ⁇ n + 1)) are paired, and the connecting link and link element are connected in a chain shape, so that the joint limb ( ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4... ⁇ n).
  • FIGS. 13 to 24 which are the orbits of the second aspect
  • FIGS. 67 to 78 which are the orbits of the fourth aspect
  • the connecting links III, V, VII are like small vortices wound inwardly on the left. IX... ⁇ n ⁇ ( ⁇ n + 1) is too long and interferes with the rotational movement of the drive link. This is dealt with by extending or contracting the connecting link that interferes with a telescopic suspension or the like. In animal form, basically these second or fourth aspects only add to the animal's limbs and tail, and this problem does not occur.
  • the link mechanism of all the embodiments provides, for example, a constraint condition for expressing the movement of the natural animal, and the artificial animal can be configured by expressing the movement of the natural animal using the link mechanism.
  • the link mechanism of all modes is a joint ⁇ n (an integer greater than or equal to 1) and a joint ⁇ n (an integer greater than or equal to 1). ), Joint ⁇ n (an integer greater than or equal to 1) and joint ⁇ n (an integer greater than or equal to 1), and joint ⁇ n (an integer greater than or equal to 1) and joint ⁇ n + 1 (an integer greater than or equal to 1) are connected.
  • a plurality of link elements. In this case, the plurality of link elements are connected to a connection link ( ⁇ n ⁇ n + 1) connecting a joint ⁇ n (an integer greater than or equal to 1) and a joint ⁇ n + 1 (an integer greater than or equal to 1).
  • N an integer equal to or greater than 1 link elements that are held in a quadrilateral shape that does not have one side.
  • the joint ⁇ 1 is arranged with its mutual positional relationship with the fulcrum ⁇ 1 kept constant. Is connected to the joint ⁇ 1 via the fulcrum ⁇ 2.
  • the fulcrum ⁇ 2 is a central support point that is arranged while maintaining a constant positional relationship with the fulcrum ⁇ 1.
  • the joint ⁇ 1 and the joint ⁇ 1 are arranged so as to be able to circulate on the orbit around the fulcrum ⁇ 2 while maintaining the mutual positional relationship constant.
  • the joint ⁇ 1 is arranged so as to be able to circulate on a circular track centered on the fulcrum ⁇ 1.
  • ⁇ 1 is the center support point of the joint ⁇ 1.
  • the joint ⁇ 1 and the joint ⁇ 1 at both ends of the link ( ⁇ 1- ⁇ 1) are arranged so as to be able to circulate on a circular track centered on the fulcrum ⁇ 2.
  • the joint ⁇ 1 is arranged so that the mutual positional relationship with the fulcrum ⁇ 1 can be changed. It is connected to the joint ⁇ 1 via the fulcrum ⁇ 2.
  • the fulcrum ⁇ 2 is a movable fulcrum arranged so that the mutual positional relationship with the fulcrum ⁇ 1 can be changed.
  • the joint ⁇ 1 and the joint ⁇ 1 are arranged so as to be able to circulate on the orbit around the fulcrum ⁇ 2 while maintaining the mutual positional relationship constant.
  • the joint ⁇ 1 is arranged so as to be able to circulate on a circular track centered on the fulcrum ⁇ 1. Further, the joint ⁇ 1 and the joint ⁇ 1 at both ends of the link ( ⁇ 1- ⁇ 1) are arranged so as to be able to circulate on a circular track centered on the fulcrum ⁇ 2.
  • the virtual line connecting the joint ⁇ 1 and the fulcrum ⁇ 2 intersects the virtual line connecting the joint ⁇ 1 and the joint ⁇ 1.
  • the virtual line that connects the joint ⁇ 1 and the fulcrum ⁇ 2 intersects the virtual straight line that connects the joint ⁇ 1 and the joint ⁇ 1. May be.
  • the arrangement of the parts forming the drive part of the link mechanism of the present invention is a square or a rhombus. This form produces the largest amplitude motion that is balanced left and right.
  • joint ⁇ 1 and the joint ⁇ 1 are arranged so as to be able to reciprocate partially on the same orbit around the fulcrum ⁇ 2.
  • link mechanism shown in FIGS. 1 to 12 first mode
  • link mechanism shown in FIGS. 13 to 24 second mode
  • the link mechanism shown in FIGS. 13 to 24 are used in combination to perform natural operations on various artificial animals. Can be made. The same applies to the link mechanism (third aspect) shown in FIGS. 55 to 66 and the link mechanism shown in FIGS. 67 to 78 (fourth aspect).
  • the joint ⁇ 1 connected to the joint ⁇ 1 circulates on the orbit around the fulcrum ⁇ 1, so that the joint ⁇ 1 and the joint ⁇ 1 are on the orbit around the fulcrum ⁇ 2.
  • the joints ⁇ 1, 2, 3,... N that are reciprocally moved along with this and the joints ⁇ 1, 2, 3,.
  • a variety of artificial animals can be caused to perform natural movements by a method of expressing the movement of the natural animal that displaces n and joints ⁇ 1, 2, 3,.
  • 1, 2, 3,..., N in the joints ⁇ 1, 2, 3,... N form an equidistant sequence having an initial term of 1 and a tolerance of 1.
  • n means the nth integer.
  • the expression “joint ⁇ 2, 3,... N” means that there are up to the nth joint ⁇ , but the case where n is 1 is also included.
  • the joint ⁇ n, the joint ⁇ n + 1, and the joint ⁇ n + 1 are in a triangular relationship by connecting the respective joints (points) to form sides.
  • the interval between the joint ⁇ n + 1 and the joint ⁇ n + 1 is unchanged.
  • the distance of the virtual straight line connecting the joint ⁇ n and the joint ⁇ n + 1 is variable, and the distance between the joint ⁇ n and the joint ⁇ n + 1 is also variable.
  • the sum of the distance between the joint ⁇ n and the joint ⁇ n + 1 and the distance between the joint ⁇ n + 1 and the joint ⁇ n + 1 is more than the distance between the joint ⁇ n and the joint ⁇ n + 1.
  • the distance between the joint ⁇ n and the joint ⁇ n + 1 is long.
  • the distance between the joint ⁇ n and the joint ⁇ n + 1 becomes the longest distance.
  • the distance between the joint ⁇ n and the joint ⁇ n + 1 becomes longer than this, the distance between the joint ⁇ n and the joint ⁇ n + 1 also increases. That is, the sum of the distance between the joint ⁇ n and the joint ⁇ n + 1 and the sum of the distance between the joint ⁇ n + 1 and the joint ⁇ n + 1 is more than the distance between the joint ⁇ n and the joint ⁇ n + 1. As described above, the sum of the distance between the joint ⁇ n and the joint ⁇ n and the distance between the joint ⁇ n and the joint ⁇ n + 1 also has a relationship greater than the distance between the joint ⁇ n and the joint ⁇ n + 1.
  • the joint ⁇ n serves as an axis and the opposite side to the joint ⁇ n + 1.
  • the joint ⁇ n rotates, it may be vortexed on the left side and wound inside.
  • the distance between the joint ⁇ n and the joint ⁇ n + 1 is variable.
  • the shortest distance of the imaginary straight line connecting the joint ⁇ n and the joint ⁇ n + 1 is gradually shortened as n is increased when the vortex is wound inwardly.
  • the joint ⁇ n keeps the distance between the two points by rotating the joint ⁇ n + 1 that is the joint target (the other party) around the joint ⁇ n + 1.
  • the triangle formed by the three points (joint ⁇ n, joint ⁇ n + 1, and joint ⁇ n + 1) is aligned.
  • the joint ⁇ n + 1 is located on the virtual line connecting the joint ⁇ n and the joint ⁇ n + 1, and the distance between the joint ⁇ n and the virtual line connecting the joint ⁇ n + 1 is the shortest.
  • the distance between the joint ⁇ n and the joint ⁇ n + 1 is already the shortest distance, the distance between the joint ⁇ n and the joint ⁇ n + 1 is reduced thereafter.
  • the sum of the distance between the joint ⁇ n and the joint ⁇ n + 1 (hereinafter referred to as the distance A) and the distance between the joint ⁇ n + 1 and the joint ⁇ n + 1 (hereinafter referred to as the distance B) is the joint ⁇ n and the joint ⁇ n + 1.
  • Longer distance hereinafter referred to as distance C).
  • the distance A gradually decreases, and as a result, the sum of the distance A and the distance B becomes equal to the distance C.
  • the distance between the joint ⁇ n and the joint ⁇ n + 1 becomes shorter. In other words, the sum of the distance A and the distance B is never shorter than the distance C.
  • the link mechanism of this embodiment can be applied to the trunk, arm (front leg, wing, gill), and leg of the animal object to be expressed (see FIGS. 25 to 54 and FIGS. 79 to 108).
  • the link mechanism of this aspect is placed at a position above the groove, and the joint limb is formed from the upper part to the head and from the lower part to the tail.
  • the link mechanism of this aspect is placed at the shoulder position on the wing, arm, or front leg that hits the upper limb, and the base of the neck of the trunk, the fulcrum of the drive link of the upper limb, and the fulcrum of the driven link (FIGS. 1 to 24 and 55)
  • the link mechanism of this aspect is placed at the position of the hip joint on the leg or rear leg that hits the lower limb, and the base of the tail of the trunk is connected to the fulcrum of the drive link and the follower link of the lower limb.
  • the joint limbs exist only at the lower part and form up to the toes.
  • the form of this mechanism and the joint limbs conforms to the arrangement condition on which this mechanism is based, and the rotation direction is counterclockwise or clockwise depending on the motion state.
  • the joint limb is deformed according to the movement form, and the two forms (the first aspect and the second aspect, or the third aspect and the fourth aspect) that form the basis of the link mechanism of this aspect are mixed. Realize (in combination).
  • FIGS. 25 to 30 show the swimming state when the second aspect of the present invention is applied to the body and fin of a fish (Aji).
  • the lower left figure to 30 lower left figure and the upper left figure to 30 upper left figure in FIG. 25 are external perspective views as seen from the upper side, the lower right figure to 30 lower right figure and the upper right figure to 30 upper right figure in FIG.
  • the operating state of is shown.
  • 79 to 84 show the swimming state when the fourth aspect of the present invention is applied to the trunk and fin of a fish (Aji).
  • 79 is a perspective view of the external appearance seen from the upper side
  • FIG. 79 upper right view to 84 upper right view is a corresponding link mechanism.
  • the operating state of is shown.
  • FIGS. 31 to 36 show the running state when the first aspect of the present invention is applied to the trunk of a bipedal animal (person) and the second aspect is applied to the arms and legs.
  • the lower left figure in FIG. 31 to the lower left figure in FIG. 31 and the upper left figure in FIG. 31 to the upper left figure in FIG. 31 are perspective views seen from the side, and the lower right figure in FIG.
  • the operating state of the mechanism is shown.
  • 85 to 90 show a running state in the case where the third aspect of the present invention is applied to the trunk of a biped animal (person) and the fourth aspect is applied to the arms and legs.
  • the lower left diagram in FIG. 85 to the lower left diagram in FIG. 85 and the upper left diagram in FIG. 85 to the upper left diagram in FIG. 85 are external perspective views, and the lower right diagram in FIG. 85 to the lower right diagram in FIG.
  • the operating state of the mechanism is shown.
  • FIGS. 37 to 42 show running states when the first aspect of the present invention is applied to the trunk of a biped animal (person) and the second aspect is applied to the arms and legs.
  • the lower left view of FIG. 37 to the lower left view of FIG. 37 and the upper left view of FIG. 37 to the upper left view of FIG. 37 are external perspective views
  • the figure shows the operating state of the corresponding link mechanism.
  • the first aspect of the present invention to a bipedal animal (person) and slightly changing the setting (operating condition), for example, running state, walking state, skipping state, etc.
  • the action expression can be changed in a variety of ways, such as the state of going up and down stairs.
  • FIGS. 91 to 96 show the running state when the third aspect of the present invention is applied to the trunk of a biped animal (person) and the fourth aspect is applied to the arms and legs. 91-96, the lower left view of FIG. 91 to the lower left view of FIG. 91 and the upper left view of FIG. 91 to the upper left view of FIG. 91 are perspective views seen from the side, and the lower right view of FIG. The figure shows the operating state of the corresponding link mechanism.
  • the third aspect of the present invention to a biped animal (person) and changing the setting (operation condition) slightly, for example, running state, walking state, skipping state, etc.
  • the action expression can be changed in a variety of ways, such as the state of going up and down stairs.
  • FIGS. 43 to 48 show a running state when the first aspect of the present invention is applied to the trunk of a quadruped walking animal (horse, rod) and the second aspect is applied to the front legs and the rear legs.
  • 43-48 the lower left view of FIG. 43 to the lower left view of FIG. 43 and the upper left view of FIG. 43 to the upper left view of FIG. 43 are perspective views of the horse seen from the side, FIG. 43 lower right view to FIG.
  • the upper right figure 48 shows an external perspective view of the bag as viewed from the side.
  • 97 to 102 show a running state in the case where the third aspect of the present invention is applied to the trunk of a quadruped walking animal (horse, rod), and the fourth aspect is applied to the front legs and the rear legs.
  • 97-102, the lower left diagram of FIG. 97 to the lower left diagram of FIG. 97 and the upper left diagram of FIG. 97 to the upper left diagram of FIG. 97 are perspective views of the horse as viewed from the side, and the lower right diagram of FIG.
  • the upper right view of 102 shows an external perspective view of the bag viewed from the side.
  • FIGS. 49 to 54 show the state of flapping when the first mode of the present invention is applied to the body of a bird (rooster) and the second mode is applied to the wing and the leg (the operation of the bird flapping). If present).
  • 49 to 54 the lower left figure to 54 lower left figure and the upper left figure to 54 upper left figure in FIG. 49 are perspective views seen from the side, the lower right figure to 54 lower right figure and the upper right figure to upper right figure to 54 The figure shows an external perspective view seen from above.
  • FIGS. 103 to 108 show the state of flapping when the third aspect of the present invention is applied to the body of a bird (rooster) and the fourth aspect is applied to the wing and the leg (the operation of the bird flapping). If present).
  • the lower left figure to 108 lower left figure, the upper left figure to 108 upper left figure are perspective views seen from the side, the lower right figure to 108 lower right figure, the upper right figure to upper right figure to 108 The figure shows an external perspective view seen from above.

Abstract

 自然動物の運動を表現するためのリンク機構は、ジョイントγnとジョイント(βn)、ジョイント(γn)とジョイント(δn)、及び、ジョイント(δn)とジョイント(βn+1)を、連結したN個のリンク要素を有し、複数のリンク要素は、ジョイント(γn)とジョイント(γn+1)とで連結され、ジョイント(β1)は、支点(α1)に連結されて、支(点α1)を中心とする周回軌道上を周回可能に配置され、ジョイント(δ1)は、支点(α1)との相互の位置関係を一定に保持して配置される支点(α2)、又は、支点(α1)との相互の位置関係を変動可能に配置される支点(α2)を介して、ジョイント(γ1)に連結され、ジョイント(δ1)とジョイント(γ1)とは、支点(α2)を中心とする周回軌道上を相互の位置関係を一定に保持して周回可能に配置される。ここで、上記(n)は、1以上の整数である。

Description

自然動物の運動を表現するためのリンク機構及び人工動物
 本発明は、自然動物の運動を表現するためのリンク機構及び人工動物に関する。
 非特許文献1~非特許文献8に、動物の随意運動の原理に関する機械機構の、過去の幾多の研究内容が記載されている。
 18世紀に開発された動物の運動機構
 1733年のMaillardによるオートマタ
・車椅子を牽引する人工馬
・ヴェルサイユ宮殿の水路でゴンドラを牽引する人工海馬
・人工の泳ぐ白鳥とその改良
Von Hamelによる馬オートマタ
1772年のCoxの時計展覧会での歩く象のメカニズム
(以上は非特許文献1:LE MONDE DES AUTOMATES Chapitre XIX Les Animaux Mecaniques p.144-149)
 19世紀、世界中で大勢のオートマタ製作者達の手によって機械機構による自然動物の運動表現が研究開発された。出来上がった成果は次の世代へと受け継がれ改良されていった。
 19世紀に開発された機械歩行メカニズム:
 1830年頃、ロンドンでジュネーヴのCh.BRUGUIERによって制作された歩く魔女のアンドロイド。
 1862年にロンドンのAlfred NEWTONによる発明特許の歩く若い娘のアンドロイド。その原理を元にした改良版レプリカ。
 1891-1893年にアメリカのGeorge MOORE教授の発明した蒸気人オートマタ。
(以上は非特許文献1:LE MONDE DES AUTOMATES Chapitre XXIII Les Automates et Androides Marchants p.220-224)
 また非特許文献2~非特許文献6には以下が記載されている。1867年のW.F.GOODWINの発明特許である歩く馬のアンドロイド。
 1868年のW.F.GOODWINの発明特許である歩く人のアンドロイド。
 1878年のA.J.DAVISの発明特許である歩く馬のアンドロイド。
 1893年のL.A.RIGGの発明特許の歩く馬のアンドロイド。
 21世紀:2006、2007年のサント・クロワのフランソワ・ジュノーと、レガネス自治体によるスペイン・プロジェクトとで制作したアンドロイド(老婆、サッカーボールで遊ぶ少年と少女、馬)
 また、特許文献1には、四本足の乗り物に関する発明が記載されている。この乗り物は、従来、車輪で実現していた部分を二本の棒で実現するというものである。しかし、このままでは、動物に例えると膝の部分までしか動きを実現できず、さまざまな随意運動を表現するのは難しい。
 さらに、特許文献2には、骨盤と太ももの関節をつなぐ股関節に、もう一つの関節肢を追加するという発明が記載されている。このアイデア自体は、ボストン・ダイナミックスの二足歩行ロボでも使われており、現在はありふれた技術である。この特許文献2では動きの説明に関して、古典的なチェビシェフのリンク機構について触れている。チェビシェフのリンク機構は、従動リンクには支点の他に作用点が一点しか無いので、関節数を増やすことができない。これだけでは、上腕・前腕・手といった、複数の関節で構成される、動物の四肢の表現はできない。
 さらに、特許文献3は、サスペンションのデザインに関する発明で、地面に脚がついた時に、股関節と膝の部分にサスペンションを取り付けることでショックを和らげるというものである。動きについての新しい考察は特に無く、電気的、磁気的に動かすという言及にとどまっている。
 特許文献4と、これより前にテオ・ヤンセンが世界で発表したリンク機構も、共に、前後の脚(上肢と下肢)の構造がシンメトリになっているが、自然界にこのような四肢形態の動物はいない。
 従動リンクの作用点が二点あると、複数の関節肢を持つことが可能である。これに該当する、この特許文献4にあるリンク機構は、従動リンクの支点と二点の作用点が直線上に並んでいる。しかし、この形態は、1867 年に W.F.Goodwin に、歩行する馬のオートマタの脚で既に発明されている。1868年にW.F.Goodwinは、この直線上にあった従動リンク三点をV型に配置することで、人の歩行を表現する機構を発明した。フランソワ・ジュノーは、2006 年のスペイン・プロジェクトで、歩く馬のオートマタの後脚を開発する上で、W.F.Goodwin のモデルを踏襲しつつ、上記のV型の従動リンクの支点を駆動リンクで動かし、更に別の従動リンク一点を追加して全体を動かすことに成功した。神技的に高度な技法を示した。
 レオナルド・ダ・ビンチは1485年に鳥の羽ばたきを研究しメカニズムを図面に描き残した。科学都市産業博物館(シテ・デ・シオンス)で公開された、ダ・ビンチの図面を元に実際に動くように補完して製作された羽ばたき機では、直線上に並んだ二点の作用点を持つ従動リンクを複数の可変ジョイントを経て駆動リンクに繋がっている。簡単には説明ができない複雑なリンクである。
特開平9-132119号公報 特開2005-144583号公報 特開2002-103253号公報 特開2005-144581号公報
アルフレッド・シャピュイ、エドワール・ジュリ(Alfred CHAPUIS、 Edouard GELIS)共著 「オートマタの世界 歴史と技術の研究(LE MONDE DES AUTOMATES ETUDE HISTORIQUE ET TECHNIQUE) エドモン・アロクール序文 二巻(PREFACE de M. Edmond HARAUCOURT TOME SECOND)」 スラトキン・ジュネーヴ(Slatkine GENEVE)出版 1984年 Paris出版 1928年の再版 W.F.Goodwin Automatic Toy、 Patented Aug. 25、 1868. No. 81、491. W.F.Goodwin Automatic Toy、 Patented Jan. 22、 1867. No. 61、416. A.J.DAVIS. Automatic Toy、 Patented Oct.29、 1878. No. 209、468. L.A.RYGG. MECHANICAL HORSE. Patented Feb. 14、 1893. No. 491、927 Prof. George Moore. Steam Man. 1891-1893 (Canadian/American) アブラアン=ルイ・ブレゲ(Abraham-Louis Breguet) - 動物の能力と随意運動の原理についてのエッセイ(Essai sur la force animale et sur le principe du mouvement volentaire) - パリにて(A Paris)、 フィルマン・ディドの印刷(de l’imprimerie de firmin didot)、 1811年 Leonardo da Vinci、 Ornithopter、 1485年
 以上の過去に開発されたさまざまな歩行機構の研究は、その後、走行や飛行、水泳といった自然動物全体の運動(随意運動)を表現する発展には至らなかった。
 例えば、特許文献4で示されたものを代表とするこれまでに開発された各機構全てを総括すると、一般的にこれらの構造に置いて、従動リンクと駆動リンクの位置との相関関係が悪く、振幅が小さく、振りの左右のバランスの悪い歩行しか表現できない。
 進歩を改善するために、これまでの開発アプローチを変える必要性がある。全体の運動を汎用的に司るような、根本的な自然現象を表現する機械機構を見つけ出せれば、それを元にして自然に忠実な動物の運動を表現することができる。
 本発明は、以上の従来技術における問題に鑑み、自然現象を直截的に表現するコンパクトな機械構造の基本原理を解明し、その機構を元に、自然動物の運動を表現するためのリンク機構及び人工動物を提供することを目的とする。
 すなわち、本発明のリンク機構は、自然動物の運動を表現するための拘束条件を元にして配置することを特徴とする。このリンク機構を用いて、自然動物の運動を実現する人工動物を作成することができる。
 自然動物の胴体、腕、脚の構造は全ての動物で共通しており、それら全ては、前述した基本的な配置条件を拘束条件として組み立てられている。個別の動物個体における右前脚の開始角度は何度で、左前足は何度で等は個体毎の生存条件との関係で多様なばらつきがあり、その点に関しては本発明とは関係の無いところである。
 本機構は、ダイヤモンド、菱型、マッチ箱等、見た人によって口々に色んな表現が為される基本的な配置条件を拘束条件として採用する。
 この配置条件では従動リンクの支点と、駆動リンクの支点の位置の相関関係によって自然なバランスを実現することができる。
 本発明によって、ある一定の配置条件を指定することによって、左右のバランスが取れ、振幅を大きくすることが可能になり、走行を始めとした森羅万象の動きを表現することが可能になった。
 自然が動物の動作に与える2つの賜物は、乱流と渦と呼ばれる流体現象である。カンブリア紀に海中で誕生した最古の脊索動物であるハイコウイクチスは、この自然現象から推進力を得るために自らの姿を最適化した。この自然の恩恵と、動物の運動(随意運動)のこの自然現象へのマッチムーブにより、動物は流れの方向に対して莫大な推進力を生み出すことができるようになった。例えば、魚類のニジマスは川の急流の中を、重力に抗して、流体中をさかのぼって登ることができる。
 この流体中を運動する場合に、物体の後ろに発生する乱流現象において、流れの速さが大きくなり、流体の中を移動する物体への抵抗が増すに連れて、物体の後ろの流体の形状は変化する。この乱流現象は、双子渦からカルマン渦列となり乱流となって消滅し、カルマン渦列が再発生するというようにその形状は変化していく。この流体中を運動する物体が受ける抗力を表した数値をレイノルズ数と称している。このレイノルズ数は物体の大きさ、物体の粘性と流れの速さで決まる。
 海中に住んでいた動物は、その後、長い年月を経て陸地に上がった後、骨格や関節肢に四肢を形成するに至った。動物の四肢のうち上肢は、上腕、前腕、手から形成される。下肢は、上脚、前脚、足から形成される。動物の胴体は、頭部、胸部、肋骨を経て尾によって形成される。海中、大気中共に、胴体と四肢は、運動(随意運動)中に、形態をジグザグの波の形を形成することで、物体が自然の流体中を運動する場合に、物体の後ろに発生する乱流現象のカルマン渦列を踏み台のように捉えることで推進力を得る。
 本発明は、この自然現象を直截的に表現するコンパクトな機械機構の基本原理を解明し、これによって得られる基本機構を元に自然動物の運動を表現する例を提供する。
 本発明では、過去に考案された歩行機構の機械要素を元に、基本原理に基づきシンメトリと中心とを意識しながら機構を再配置した結果、機構の配置の最適化が成し遂げられた。
 一般に、動物の腕や脚の関節は、0度(曲げてたたんだ状態)から180度(開いて伸ばした状態)まで変化する。一方、渦は、0度から360度まで開く(変化する)。本発明者は、テレスコピック・サスペンション等で干渉する連結リンクを伸縮させることで、動物の関節を逆に曲げることも可能であり、0度から360度まで変化させることができることに想到した。
 本発明に係るリンク機構によって、単純な回転運動を、自然現象に基づいた動物の多様で自然な運動(随意運動)に変換することができる。
上図は、乱流現象の、大きな流れによって基本発生する、カルマン渦列に適応する第1の態様のリンク機構を、カルマン渦列画像と対比した場合の反時計回りの図(12コマのうちの1コマ目)を示す。下図は、乱流現象の、大きな流れによって基本発生する、カルマン渦列に適応する第1の態様のリンク機構を、カルマン渦列画像と対比した場合の時計回りの図(12コマのうちの1コマ目)を示す。 上図は図1の上図の2コマ目、下図は図1の下図の2コマ目を示す。 上図は図1の上図の3コマ目、下図は図1の下図の3コマ目を示す。 上図は図1の上図の4コマ目、下図は図1の下図の4コマ目を示す。 上図は図1の上図の5コマ目、下図は図1の下図の5コマ目を示す。 上図は図1の上図の6コマ目、下図は図1の下図の6コマ目を示す。 上図は図1の上図の7コマ目、下図は図1の下図の7コマ目を示す。 上図は図1の上図の8コマ目、下図は図1の下図の8コマ目を示す。 上図は図1の上図の9コマ目、下図は図1の下図の9コマ目を示す。 上図は図1の上図の10コマ目、下図は図1の下図の10コマ目を示す。 上図は図1の上図の11コマ目、下図は図1の下図の11コマ目を示す。 上図は図1の上図の12コマ目、下図は図1の下図の12コマ目を示す。 上図は、乱流現象の、小さな流れによって基本発生する、双子渦に適応する第2の態様のリンク機構を、双子渦画像と対比した場合の反時計回りの図(12コマのうちの1コマ目)を示す。下図は、乱流現象の、小さな流れによって基本発生する、双子渦に適応する第2の態様のリンク機構を、双子渦画像と対比した場合の時計回りの図(12コマのうちの1コマ目)を示す。 上図は図13の上図の2コマ目、下図は図13の下図の2コマ目を示す。 上図は図13の上図の3コマ目、下図は図13の下図の3コマ目を示す。 上図は図13の上図の4コマ目、下図は図13の下図の4コマ目を示す。 上図は図13の上図の5コマ目、下図は図13の下図の5コマ目を示す。 上図は図13の上図の6コマ目、下図は図13の下図の6コマ目を示す。 上図は図13の上図の7コマ目、下図は図13の下図の7コマ目を示す。 上図は図13の上図の8コマ目、下図は図13の下図の8コマ目を示す。 上図は図13の上図の9コマ目、下図は図13の下図の9コマ目を示す。 上図は図13の上図の10コマ目、下図は図13の下図の10コマ目を示す。 上図は図13の上図の11コマ目、下図は図13の下図の11コマ目を示す。 上図は図13の上図の12コマ目、下図は図13の下図の12コマ目を示す。 左下図は、魚(アジ)の胴体とヒレとに第2の態様を適用した場合の水泳状態の外観透視図(12コマのうちの1コマ目)を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、左下図の2コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図25の左下図の3コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図25の左下図の4コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図25の左下図の5コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図25の左下図の6コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図25の左下図の7コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図25の左下図の8コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図25の左下図の9コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図25の左下図の10コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図25の左下図の11コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図25の左下図の12コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、二足歩行動物(人)の胴体に第1の態様を適用し、腕と脚とに第2の態様を適用した場合の歩行状態における、側面図(腕、脚の外観透視図)の12コマのうちの1コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、左下図の2コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図31の左下図の3コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図31の左下図の4コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図31の左下図の5コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図31の左下図の6コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図31の左下図の7コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図31の左下図の8コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図31の左下図の9コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図31の左下図の10コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図31の左下図の11コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図31の左下図の12コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、二足歩行動物(人)の胴体に第1の態様を適用し、腕と脚とに第2の態様を適用した場合の走行状態における、側面図(腕、脚の外観透視図)の12コマのうちの1コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、左下図の2コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図37の左下図の3コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図37の左下図の4コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図37の左下図の5コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図37の左下図の6コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図37の左下図の7コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図37の左下図の8コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図37の左下図の9コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図37の左下図の10コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図37の左下図の11コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図37の左下図の12コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、四足歩行動物(馬)の胴体に第1の態様を適用し、前脚と後脚とに第2の態様を適用した場合の走行状態における、側面図(胴体及び脚の外観透視図)の12コマのうちの1コマ目を示す。右下図は、四足歩行動物(豹)の胴体に第1の態様を適用し、前脚と後脚とに第2の態様を適用した場合の走行状態における、側面図(胴体及び脚の外観透視図)の12コマのうちの1コマ目を示す。左上図は、左下図の2コマ目を示す。右上図は、右下図の2コマ目を示す。 左下図は、図43の左下図の3コマ目を示す。右下図は、図43の右下図の3コマ目を示す。左上図は、図43の左下図の4コマ目を示す。右上図は、図43の右下図の4コマ目を示す。 左下図は、図43の左下図の5コマ目を示す。右下図は、図43の右下図の5コマ目を示す。左上図は、図43の左下図の6コマ目を示す。右上図は、図43の右下図の6コマ目を示す。 左下図は、図43の左下図の7コマ目を示す。右下図は、図43の右下図の7コマ目を示す。左上図は、図43の左下図の8コマ目を示す。右上図は、図43の右下図の8コマ目を示す。 左下図は、図43の左下図の9コマ目を示す。右下図は、図43の右下図の9コマ目を示す。左上図は、図43の左下図の10コマ目を示す。右上図は、図43の右下図の10コマ目を示す。 左下図は、図43の左下図の11コマ目を示す。右下図は、図43の右下図の11コマ目を示す。左上図は、図43の左下図の12コマ目を示す。右上図は、図43の右下図の12コマ目を示す。 左下図は、鳥(隼)の胴体に第1の態様を適用し、翼と脚とに第2の態様を適用した場合の羽ばたきの状態(羽ばたき動作をしている状態)における、側面図(胴体、翼及び脚の外観透視図)の12コマのうちの1コマ目を示す。右下図は、鳥(隼)の胴体に第1の態様を適用し、翼と脚とに第2の態様を適用した場合の羽ばたきの状態(羽ばたき動作をしている状態)における、正面図(胴体、翼及び脚の外観透視図)の12コマのうちの1コマ目を示す。左上図は、左下図の2コマ目を示す。右上図は、右下図の2コマ目を示す。 左下図は、図49の左下図の3コマ目を示す。右下図は、図49の右下図の3コマ目を示す。左上図は、図49の左下図の4コマ目を示す。右上図は、図49の右下図の4コマ目を示す。 左下図は、図49の左下図の5コマ目を示す。右下図は、図49の右下図の5コマ目を示す。左上図は、図49の左下図の6コマ目を示す。右上図は、図49の右下図の6コマ目を示す。 左下図は、図49の左下図の7コマ目を示す。右下図は、図49の右下図の7コマ目を示す。左上図は、図49の左下図の8コマ目を示す。右上図は、図49の右下図の8コマ目を示す。 左下図は、図49の左下図の9コマ目を示す。右下図は、図49の右下図の9コマ目を示す。左上図は、図49の左下図の10コマ目を示す。右上図は、図49の右下図の10コマ目を示す。 左下図は、図49の左下図の11コマ目を示す。右下図は、図49の右下図の11コマ目を示す。左上図は、図49の左下図の12コマ目を示す。右上図は、図49の右下図の12コマ目を示す。 上図は、乱流現象の、大きな流れによって基本発生する、カルマン渦列に適応する第3の態様のリンク機構を、カルマン渦列画像と対比した場合の反時計回りの図(12コマのうちの1コマ目)を示す。下図は、乱流現象の、大きな流れによって基本発生する、カルマン渦列に適応する第3の態様のリンク機構を、カルマン渦列画像と対比した場合の時計回りの図(12コマのうちの1コマ目)を示す。 上図は図55の上図の2コマ目、下図は図55の下図の2コマ目を示す。 上図は図55の上図の3コマ目、下図は図55の下図の3コマ目を示す。 上図は図55の上図の4コマ目、下図は図55の下図の4コマ目を示す。 上図は図55の上図の5コマ目、下図は図55の下図の5コマ目を示す。 上図は図55の上図の6コマ目、下図は図55の下図の6コマ目を示す。 上図は図55の上図の7コマ目、下図は図55の下図の7コマ目を示す。 上図は図55の上図の8コマ目、下図は図55の下図の8コマ目を示す。 上図は図55の上図の9コマ目、下図は図55の下図の9コマ目を示す。 上図は図55の上図の10コマ目、下図は図55の下図の10コマ目を示す。 上図は図55の上図の11コマ目、下図は図55の下図の11コマ目を示す。 上図は図55の上図の12コマ目、下図は図55の下図の12コマ目を示す。 上図は、乱流現象の、小さな流れによって基本発生する、双子渦に適応する第4の態様のリンク機構を、双子渦画像と対比した場合の反時計回りの図(12コマのうちの1コマ目)を示す。下図は、乱流現象の、小さな流れによって基本発生する、双子渦に適応する第4の態様のリンク機構を、双子渦画像と対比した場合の時計回りの図(12コマのうちの1コマ目)を示す。 上図は図67の上図の2コマ目、下図は図67の下図の2コマ目を示す。 上図は図67の上図の3コマ目、下図は図67の下図の3コマ目を示す。 上図は図67の上図の4コマ目、下図は図67の下図の4コマ目を示す。 上図は図67の上図の5コマ目、下図は図67の下図の5コマ目を示す。 上図は図67の上図の6コマ目、下図は図67の下図の6コマ目を示す。 上図は図67の上図の7コマ目、下図は図67の下図の7コマ目を示す。 上図は図67の上図の8コマ目、下図は図67の下図の8コマ目を示す。 上図は図67の上図の9コマ目、下図は図67の下図の9コマ目を示す。 上図は図67の上図の10コマ目、下図は図67の下図の10コマ目を示す。 上図は図67の上図の11コマ目、下図は図67の下図の11コマ目を示す。 上図は図67の上図の12コマ目、下図は図67の下図の12コマ目を示す。 左下図は、魚(アジ)の胴体とヒレとに第4の態様を適用した場合の水泳状態の外観透視図(12コマのうちの1コマ目)を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、左下図の2コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図79の左下図の3コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図79の左下図の4コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図79の左下図の5コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図79の左下図の6コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図79の左下図の7コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図79の左下図の8コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図79の左下図の9コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図79の左下図の10コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図79の左下図の11コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図79の左下図の12コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、二足歩行動物(人)の胴体に第3の態様を適用し、腕と脚とに第4の態様を適用した場合の歩行状態における、側面図(腕、脚の外観透視図)の12コマのうちの1コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、左下図の2コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図85の左下図の3コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図85の左下図の4コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図85の左下図の5コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図85の左下図の6コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図85の左下図の7コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図85の左下図の8コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図85の左下図の9コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図85の左下図の10コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図85の左下図の11コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図85の左下図の12コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、二足歩行動物(人)の胴体に第3の態様を適用し、腕と脚とに第4の態様を適用した場合の走行状態における、側面図(腕、脚の外観透視図)の12コマのうちの1コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、左下図の2コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図91の左下図の3コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図91の左下図の4コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図91の左下図の5コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図91の左下図の6コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図91の左下図の7コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図91の左下図の8コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図91の左下図の9コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図91の左下図の10コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、図91の左下図の11コマ目を示す。右下図は、左下図のリンク機構の作動状態を示す。左上図は、図91の左下図の12コマ目を示す。右上図は、左上図のリンク機構の作動状態を示す。 左下図は、四足歩行動物(馬)の胴体に第3の態様を適用し、前脚と後脚とに第4の態様を適用した場合の走行状態における、側面図(胴体及び脚の外観透視図)の12コマのうちの1コマ目を示す。右下図は、四足歩行動物(豹)の胴体に第3の態様を適用し、前脚と後脚とに第4の態様を適用した場合の走行状態における、側面図(胴体及び脚の外観透視図)の12コマのうちの1コマ目を示す。左上図は、左下図の2コマ目を示す。右上図は、右下図の2コマ目を示す。 左下図は、図97の左下図の3コマ目を示す。右下図は、図97の右下図の3コマ目を示す。左上図は、図97の左下図の4コマ目を示す。右上図は、図97の右下図の4コマ目を示す。 左下図は、図97の左下図の5コマ目を示す。右下図は、図97の右下図の5コマ目を示す。左上図は、図97の左下図の6コマ目を示す。右上図は、図97の右下図の6コマ目を示す。 左下図は、図97の左下図の7コマ目を示す。右下図は、図97の右下図の7コマ目を示す。左上図は、図97の左下図の8コマ目を示す。右上図は、図97の右下図の8コマ目を示す。 左下図は、図97の左下図の9コマ目を示す。右下図は、図97の右下図の9コマ目を示す。左上図は、図97の左下図の10コマ目を示す。右上図は、図97の右下図の10コマ目を示す。 左下図は、図97の左下図の11コマ目を示す。右下図は、図97の右下図の11コマ目を示す。左上図は、図97の左下図の12コマ目を示す。右上図は、図97の右下図の12コマ目を示す。 左下図は。鳥(隼)の胴体に第3の態様を適用し、翼と脚とに第4の態様を適用した場合の羽ばたきの状態(羽ばたき動作をしている状態)における、側面図(胴体、翼及び脚の外観透視図)の12コマのうちの1コマ目を示す。右下図は。鳥(隼)の胴体に第3の態様を適用し、翼と脚とに第4の態様を適用した場合の羽ばたきの状態(羽ばたき動作をしている状態)における、正面図(胴体、翼及び脚の外観透視図)の12コマのうちの1コマ目を示す。左上図は、左下図の2コマ目を示す。右上図は、右下図の2コマ目を示す。 左下図は、図103の左下図の3コマ目を示す。右下図は、図103の右下図の3コマ目を示す。左上図は、図103の左下図の4コマ目を示す。右上図は、図103の右下図の4コマ目を示す。 左下図は、図103の左下図の5コマ目を示す。右下図は、図103の右下図の5コマ目を示す。左上図は、図103の左下図の6コマ目を示す。右上図は、図103の右下図の6コマ目を示す。 左下図は、図103の左下図の7コマ目を示す。右下図は、図103の右下図の7コマ目を示す。左上図は、図103の左下図の8コマ目を示す。右上図は、図103の右下図の8コマ目を示す。 左下図は、図103の左下図の9コマ目を示す。右下図は、図103の右下図の9コマ目を示す。左上図は、図103の左下図の10コマ目を示す。右上図は、図103の右下図の10コマ目を示す。 左下図は、図103の左下図の11コマ目を示す。右下図は、図103の右下図の11コマ目を示す。左上図は、図103の左下図の12コマ目を示す。右上図は、図103の右下図の12コマ目を示す。
 実施形態のリンク機構は、図1~24及び図55~78に示されるように、リンク構造によって構成される機械機構である。基本の型(態様)は二つあり、一つ目は、図1~12及び図55~66の自然の乱流現象を象る、外に向かって波打つ機構である。このうち、図1~12に示される機械機構は、基本機構の一例である第1の態様とされている。また、図55~66に示される機械機構は、基本機構の一例である第2の態様とされている。二つ目は、図13~24及び図67~78の自然の渦現象を象る、内に向かって巻きつく機構である。このうち、図13~24に示される機械機構は、基本機構の一例である第3の態様とされている。また、図67~78に示される機械機構は、基本機構の一例である第4の態様とされている。なお、図1~12及び図55~66では、カルマン渦列画像と対比する態様で、それぞれ第1の態様及び第3の態様における反時計回りの図を示している。図1~12及び図55~66では、カルマン渦列画像と対比する態様で、それぞれ第1の態様及び第3の態様における時計回りの図を示している。また、図13~24及び図67~78では、左右の大きさを一定にした双子渦の画像と対比する態様で、それぞれ第2の態様及び第4の態様における反時計回りの図を示している。図13~24及び図67~78では、左右の大きさを一定にした双子渦の画像と対比する態様で、それぞれ第2の態様及び第4の態様における時計回りの図を示している。なお、以下の説明において、リンク機構とは、複数のリンクを組み合わせて構成した機械機構を意味する。そして、複数のリンクは、関節として機能するジョイントにより接続されている。
 次に、すべての態様のリンク機構の配置関係について、図1~24及び図55~78を参照しつつ説明する。先ず、駆動リンクの作用点であるジョイントβ1と従動リンクの作用点であるジョイントδ1を任意の地点に置き、駆動リンクの支点α1を、ジョイントδ1とジョイントβ1とを結ぶ仮想直線(δ1-β1)上の任意の地点に置く。そして、駆動リンクの作用点のジョイントβ1と従動リンクの支点α2とを結ぶ仮想直線(β1-α2)が、従動リンクの作用点であるジョイントδ1と従動リンクの作用点であるジョイントγ1とを結ぶ仮想直線(δ1-γ1)上を交差するように、支点α2とジョイントγ1とを任意の地点に置く。以上が、本機構の基本となる配置条件である。
 これを起点に、リンク要素と連結リンクを接続し、リンク機構を完成する。この機構は、支点α1が、仮想直線(δ1-β1)上にある場合に、仮想直線(β1-α2)が、仮想直線(δ1-γ1)上の中間点を通過する配置が、最も精度の高い安定した動作を現す。そして、この駆動リンク(α1-β1)の幅が、関節肢(γ1-γ2-γ3-γ4・・・γn)の振幅の大きさになって現れる。なお、上記において、例えば、リンク(βn-γn)とは、n番目のジョイントβとn番目のジョイントγとを結んだリンクを示している。具体的には、リンク要素(γ1-γ2)は、1番目のジョイントγと2番目のジョイントγとを結んだ連結リンクのことをいう。また、リンク要素(β1-γ1-γ2-δ2)は、1番目のジョイントβと1番目のジョイントγ、1番目のジョイントγと2番目のジョイントγ、及び、2番目のジョイントγと2番目のジョイントδとを結んだリンク要素を示している。また、仮想直線(δ1-β1)は、1番目のジョイントδと1番目のジョイントβとを通る仮想的な直線のことをいう。なお、以下の説明では、これに準じて説明する。また、以下の説明において、例えば、ジョイントβnと記載する場合、n番目のジョイントβであることを意味する。ここで、nは、1以上の整数である。
 以上のようにして配置してなるリンク機構の作動を説明する。支点α1を回転中心とする駆動リンク(α1-β1)の回転運動が、リンク要素(β1-γ1-γ2-δ2)に伝わり、支点α2で支持された従動リンク(δ1-γ1)を動かす。そして、従動リンクに連結された連結リンクI(δ1-β2)が、連結リンクI(δ1-β2)とリンク要素(β1-γ1-γ2-δ2)に連結されたリンク要素II(β2-γ2-γ3-δ3)を動かす。
 以下、連結リンクIII(δ2-β3)及びリンク要素IV(β3-γ3-γ4-δ4)、連結リンクV(δ3-β4)及びリンク要素VI(β4-γ4-γ5-δ5)・・・連結リンク(δn-(βn+1))及びリンク要素(βn-γn-(γn+1)-(δn+1))がペアになり、鎖状に連結リンク及びリンク要素が接続することにより、関節肢(γ1-γ2-γ3-γ4・・・γn)を形成する。
 なお、第2の態様の軌道である図13~24及び第4の態様の軌道である図67~78において、左の内に向かって巻き付く小さな渦のように、連結リンクIII、V、VII、IX・・・δn-(βn+1)の長さが、長すぎるために、駆動リンクの回転運動に干渉してしまうケースがある。これには、テレスコピック・サスペンション等で干渉する連結リンクを伸縮させることで対応する。動物の形態では、基本的にこれらの第2の態様又は第4の態様が加わるのは、動物の手足首と尻尾のみで、この問題は発生しない。
 すべての態様のリンク機構について、更に詳細に説明する。すべての実施形態のリンク機構は、例えば、自然動物の運動を表現するための拘束条件を提供し、係るリンク機構を用いて自然動物の運動を表現することによって人工動物を構成することができる。
 すべての態様のリンク機構は、別の観点から見ると、図1~24及び図55~78に示されるように、ジョイントγn(n=1以上の整数)とジョイントβn(n=1以上の整数)、ジョイントγn(n=1以上の整数)とジョイントδn(n=1以上の整数)、及び、ジョイントδn(n=1以上の整数)とジョイントβn+1(n=1以上の整数)を、連結した複数のリンク要素を有する。この場合、これらの複数のリンク要素は、ジョイントγn(n=1以上の整数)とジョイントγn+1(n=1以上の整数)とを結んだ連結リンク(γn-γn+1)に連結されている。
 また、第1の態様及び第3の態様のリンク機構は、個別に見ると、図1~12及び図55~66に示されるように、ジョイントβn(n=1以上の整数)とジョイントγn(n=1以上の整数)、ジョイントγn(n=1以上の整数)とジョイントγn+1(n=1以上の整数)、及び、ジョイントγn+1(n=1以上の整数)とジョイントδn+1(n=1以上の整数)、を連結して、一辺を有しない四辺形状の定形に保持されるN個(N=1以上の整数)のリンク要素を有するといえる。この場合、N個のリンク要素は、ジョイントδn(n=1以上の整数)とジョイントβn+1(n=1以上の整数)とを結んだ連結リンク(βn-βn+1)に連結されている。
 また、第2の態様及び第4の態様のリンク機構は、個別に見ると、図13~24及び図67~78に示されるように、ジョイントβn(n=1以上の整数)とジョイントγn(n=1以上の整数)、ジョイントγn(n=1以上の整数)とジョイントγn+1(n=1以上の整数)、及び、ジョイントγn+1(n=1以上の整数)とジョイントδn+1(n=1以上の整数)、を連結して、ジョイントγn(n=1以上の整数)とジョイントγn+1(n=1以上の整数)とを連結する軸線を介して、ジョイントβn(n=1以上の整数)とジョイントδn(n=1以上の整数)とが相互に逆側に位置する定形に保持されるN個(N=1以上の整数)のリンク要素を有するといえる。この場合、N個のリンク要素は、ジョイントδn(n=1以上の整数)とジョイントβn+1(n=1以上の整数)とで結ばれる連結リンク(δn-βn+1)に連結されている。
 また、第1の態様及び第2の態様のリンク機構では、図1~12及び図55~66に示されるように、ジョイントδ1は、支点α1との相互の位置関係を一定に保持して配置される支点α2を介して、ジョイントγ1に連結される。換言すれば、支点α2は、支点α1との相互の位置関係を一定に保持して配置される中心支持点とされる。ジョイントδ1とジョイントγ1とは、支点α2を中心とする周回軌道上を相互の位置関係を一定に保持して周回可能に配置される。ジョイントβ1は、支点α1を中心とする周回軌道上を周回可能に配置される。換言すれば、α1は、ジョイントβ1の中心支持点とされている。また、リンク(δ1-γ1)の両端のジョイントδ1及びジョイントγ1は、支点α2を中心とする周回軌道上を周回可能に配置される。
 また、第3の態様及び第4の態様のリンク機構では、図13~24及び図67~78に示されるように、ジョイントδ1は、支点α1との相互の位置関係を変動可能に配置される支点α2を介して、ジョイントγ1に連結される。換言すれば、支点α2は、支点α1との相互の位置関係を変動可能に配置される可動支点とされる。ジョイントδ1とジョイントγ1とは、支点α2を中心とする周回軌道上を相互の位置関係を一定に保持して周回可能に配置される。ジョイントβ1は、支点α1を中心とする周回軌道上を周回可能に配置される。また、リンク(δ1-γ1)の両端のジョイントδ1及びジョイントγ1は、支点α2を中心とする周回軌道上を周回可能に配置される。
 すべての態様において、ジョイントβ1とジョイントδ1を結ぶ仮想線上に、支点α1がある条件下で、ジョイントβ1と支点α2とを結ぶ仮想直線が、ジョイントδ1とジョイントγ1とを結ぶ仮想直線と交差するようにすることができる。
 また、ジョイントβ1、ジョイントδ1及び支点α1が一の仮想直線上に整列する条件下で、ジョイントβ1と支点α2とを結ぶ仮想線が、ジョイントδ1とジョイントγ1とを結ぶ仮想直線と交差するようにしてもよい。
 さらに、以上の場合に、ジョイントβ1とジョイントδ1とが最大間隔となる配置を形成することができる。
 すなわち、その配置(位置)から、ジョイントβ1が支点α1を軸に回転すると、ジョイントβ1とジョイントδ1の二点間の距離が必ず縮まるようにすることができる。そして、一直線上に三点(ジョイントβ1、ジョイントδ1、支点α1)が整列するタイミングは、ジョイントβ1が支点α1を軸に180度回転した場合にも再度現れる。
 そのタイミングでは、支点α1とジョイントδ1とを結ぶ仮想直線上に、ジョイントβ1がある状況は、換言すれば、ジョイントβ1とジョイントδ1との最短距離となる状況である。
 ジョイントβ1とジョイントδ1とが最大間隔となる配置を形成する場合、ジョイントβ1と支点α2を結ぶ仮想直線が、ジョイントδ1とジョイントγ1とを結ぶ仮想直線のほぼ中間点を交差する配置を設定することによって、本発明のリンク機構の駆動部分を形成する各部の配置関係の形態は、正方形やひし形の形状になる。そして、この形態が、左右にバランスのとれた最も大きな振幅運動を生み出す。
 また、ジョイントδ1とジョイントγ1とが、支点α2を中心とする同一の周回軌道上のそれぞれ一部を往復動可能に配置される。
 また、図1~12に示されるリンク機構(第1の態様)及び図13~24(第2の態様)に示されるリンク機構とを組み合わせて使用して多様な人工動物に自然な動作を行わせることができる。図55~66に示されるリンク機構(第3の態様)及び図67~78(第4の態様)に示されるリンク機構についても同様である。
 また、図1~12に示されるリンク機構(第1の態様)及び図13~24に示されるリンク機構(第2の態様)の一方又は両方を使用し、リンク機構の一部にひねりを加えることによって多様な人工動物に自然な動作を行わせることができる。図55~66に示されるリンク機構(第3の態様)及び図67~78に示されるリンク機構(第4の態様)についても同様である。
 以上の態様のリンク機構を用い、ジョイントγ1に連結されるジョイントβ1を、支点α1を中心とする周回軌道上を周回させることによって、ジョイントδ1及びジョイントγ1を支点α2を中心とする周回軌道上を往復動させ、これに伴い順次連結されるジョイントγ1、2、3、・・・nと、ジョイントγ1、2、3、・・・nの各々に連結されるジョイントβ1、2、3、・・・n及びジョイントδ1、2、3、・・・nを変位させる自然動物の運動の表現方法によって、多様な人工動物に自然な動作を行わせることができる。ここで、ジョイントγ1、2、3、・・・nにおける1、2、3、・・・nとは、初項が1、公差が1の等差数列をなしている。なお、nとは、n番目の整数を意味する。ジョイントγ2、3、・・・nとする表現は、ジョイントγがn番目まであることを意味するが、nが1の場合も含まれる。
 以上において、ジョイントδn、ジョイントγn+1及びジョイントβn+1は、それぞれのジョイント(点)が結びつき、辺を構成して三角形の関係にある。一方、ジョイントγn+1とジョイントβn+1の間隔は不変である。また、ジョイントδnとジョイントγn+1を結ぶ仮想直線の距離は可変であり、ジョイントδnとジョイントβn+1との距離も可変である。
 したがって、図13~24に示されるリンク機構(第2の態様)及び図67~78に示されるリンク機構(第4の態様)では、ジョイントδnとジョイントγn+1との距離が短くなる場合、最終的に、直線(δn-βn+1)上にジョイントγn+1があれば、ジョイントδnとジョイントγn+1との距離が最短距離になる。
 そして、これ以上、ジョイントδnとジョイントγn+1との距離が短くなると、ジョイントδnとジョイントβn+1の距離も縮まる。つまり、ジョイントδnとジョイントγn+1との距離、及び、ジョイントγn+1とジョイントβn+1との距離の和は、ジョイントδnとジョイントβn+1との距離以上の関係が成立する。
 これに対して、図1~12に示されるリンク機構(第1の態様)及び図55~66に示されるリンク機構(第3の態様)では、ジョイントδnとジョイントγn+1との距離が長くなる場合、最終的に、直線(δn-γn+1)上にジョイントβn+1があれば、ジョイントδnとジョイントγn+1との距離が最長距離になる。
 そして、これ以上、ジョイントδnとジョイントγn+1との距離が長くなると、ジョイントδnとジョイントβn+1の距離も伸びる。つまり、ジョイントδnとジョイントβn+1との距離、及び、ジョイントβn+1とジョイントγn+1との距離の和は、ジョイントδnとジョイントγn+1との距離以上の関係が成立する。
 以上のとおり、ジョイントγnとジョイントδnとの距離、及び、ジョイントδnとジョイントβn+1との距離の和は、ジョイントγnとジョイントβn+1との距離以上の関係も成立する。
 また、図13~24に示されるリンク機構(第2の態様)及び図67~78に示されるリンク機構(第4の態様)では、ジョイントγnを軸にして、ジョイントβn+1に対して反対側に配置されているジョイントδnが回転することで、左側に渦となって内側に巻き付く場合がある。この場合、ジョイントδnとジョイントβn+1との距離が可変になるところがある。具体的には、双子渦の左側の渦を観察すると、小さく内向きに巻き付く場合に、ジョイントδnとジョイントγn+1とを結ぶ仮想直線の最短距離は、nが大きくなるに従い徐々に短くなる。
 ジョイントγn+1とジョイントβn+1との距離は不変なので、ジョイントδnはそのジョイント対象(相手)であるジョイントβn+1をジョイントγn+1を軸にして回転することで、二点の距離を保つ。この結果、三点(ジョイントδn、ジョイントγn+1及びジョイントβn+1)により構成されていた三角形は一直線に並ぶ。そして、ジョイントγn+1は、ジョイントδnとジョイントβn+1とを結ぶ仮想直線上に位置し、ジョイントδnとジョイントγn+1とを結ぶ仮想直線との距離は、最短となる。
 上記のとおり、ジョイントδnとジョイントγn+1との距離は既に最短距離にあるので、その後は、ジョイントδnとジョイントβn+1との距離が縮まる。最初は、ジョイントδnとジョイントγn+1との距離(以下、距離Aとする。)、及び、ジョイントγn+1とジョイントβn+1との距離(以下、距離Bとする。)の和は、ジョイントδnとジョイントβn+1との距離(以下、距離Cとする。)よりも長い関係にある。その後次第に、距離Aは徐々に短くなり、その結果、距離A及び距離Bの和は、距離Cに等しくなる。さらにこの後も、距離Aは短くなるので、ジョイントδnとジョイントβn+1との距離が短くなる。すなわち、距離Aと距離Bとの和は、距離Cよりも短くなることはない。
 次に、本態様のリンク機構の基本形態から、自然動物の運動(随意運動)の任意の形態に適用する方法について述べる。古くは、仏教の尼僧であった五枚師太は闘争する鶴の首の動きを観察して、それを元にして、徒手武術を創案したと今に伝えられている。このように、四肢と胴体の運動フォームは基本的に同じである。
 この理由から、本態様のリンク機構は、表現する動物オブジェクトの胴体、腕(前脚、翼、エラ)、脚に適用できる(図25~54及び図79~108参照)。胴体部には、みぞおちの上の位置に本態様のリンク機構を置き、関節肢は、上部は頭まで、下部は尾まで形成する。上肢に当たる、翼、腕又は前脚部には、肩の位置に本態様のリンク機構を置き、胴体の首の付け根と、上肢の駆動リンクの支点及び従動リンクの支点(図1~24及び図55~78に示される支点α1と支点α2)と、を連結する。
 下肢に当たる、脚又は後脚部には、股関節の位置に本態様のリンク機構を置き、胴体の尾の付け根と、下肢の駆動リンクの支点及び従動リンクの支点と、を連結する。四肢は、関節肢は下部のみ存在し、つま先まで形成する。本機構及び関節肢の形態は、本機構が基本となる配置条件に沿うこととし、回転方向が、運動状況により、反時計回り又は時計回りになる。関節肢は運動フォームに合わせて変形し、本態様のリンク機構の基本になる二つの形態(第1の態様及び第2の態様、又は、第3の態様及び第4の態様)をミックスして(組み合わせて)実現する。
 図25~30は、魚(アジ)の胴体とヒレとに本発明の第2の態様を適用した場合の水泳状態を示す。また、図25左下図~30左下図及び図25左上図~30左上図は上側から見た外観透視図、図25右下図~30右下図及び図25右上図~30右上図は対応するリンク機構の作動状態を示す。
 図79~84は、魚(アジ)の胴体とヒレとに本発明の第4の態様を適用した場合の水泳状態を示す。また、図79左下図~84左下図及び図79左上図~84左上図は上側から見た外観透視図、図79右下図~84右下図及び図79右上図~84右上図は対応するリンク機構の作動状態を示す。
 図31~36は、二足歩行動物(人)の胴体に本発明の第1の態様を適用し、腕と脚とに第2の態様を適用した場合の走行状態を示す。また、図31左下図~36左下図及び図31左上図~36左上図は横側から見た外観透視図、図31右下図~36右下図及び図31右上図~36右上図は対応するリンク機構の作動状態を示す。
 図85~90は、二足歩行動物(人)の胴体に本発明の第3の態様を適用し、腕と脚とに第4の態様を適用した場合の走行状態を示す。また、図85左下図~90左下図及び図85左上図~90左上図は横側から見た外観透視図、図85右下図~90右下図及び図85右上図~90右上図は対応するリンク機構の作動状態を示す。
 図37~42は、二足歩行動物(人)の胴体に本発明の第1の態様を適用し、腕と脚とに第2の態様を適用した場合の走行状態を示す。図37~42のうち、図37左下図~42左下図及び図37左上図~42左上図は横側から見た外観透視図、図37右下図~42右下図及び図37右上図~42右上図は対応するリンク機構の作動状態を示す。これらの図に示される如く、二足歩行動物(人)に本発明の第1の態様を適用して、設定(動作条件)を少し変えることにより、例えば、走行状態、歩行状態、スキップする状態、階段を昇降する状態のように、動作表現を多彩に変化させることができる。
 図91~96は、二足歩行動物(人)の胴体に本発明の第3の態様を適用し、腕と脚とに第4の態様を適用した場合の走行状態を示す。図91~96のうち、図91左下図~96左下図及び図91左上図~96左上図は横側から見た外観透視図、図91右下図~96右下図及び図91右上図~96右上図は対応するリンク機構の作動状態を示す。これらの図に示される如く、二足歩行動物(人)に本発明の第3の態様を適用して、設定(動作条件)を少し変えることにより、例えば、走行状態、歩行状態、スキップする状態、階段を昇降する状態のように、動作表現を多彩に変化させることができる。
 図43~48は、四足歩行動物(馬、豹)の胴体に本発明の第1の態様を適用し、前脚と後脚とに第2の態様を適用した場合の走行状態を示す。図43~48のうち、図43左下図~48左下図及び図43左上図~48左上図は馬を横側から見た外観透視図、図43右下図~48右下図及び図43右上図~48右上図は豹を横側から見た外観透視図を示す。
 図97~102は、四足歩行動物(馬、豹)の胴体に本発明の第3の態様を適用し、前脚と後脚とに第4の態様を適用した場合の走行状態を示す。図97~102のうち、図97左下図~102左下図及び図97左上図~102左上図は馬を横側から見た外観透視図、図97右下図~102右下図及び図97右上図~102右上図は豹を横側から見た外観透視図を示す。
 図49~54は、鳥(隼)の胴体に本発明の第1の態様を適用し、翼と脚とに第2の態様を適用した場合の羽ばたきの状態(鳥が羽ばたきの動作をしている場合)を示す。図49~54のうち、図49左下図~54左下図及び図49左上図~54左上図は横側から見た外観透視図、図49右下図~54右下図及び図49右上図~54右上図は上側から見た外観透視図を示す。
 図103~108は、鳥(隼)の胴体に本発明の第3の態様を適用し、翼と脚とに第4の態様を適用した場合の羽ばたきの状態(鳥が羽ばたきの動作をしている場合)を示す。図103~108のうち、図103左下図~108左下図、図103左上図~108左上図は横側から見た外観透視図、図103右下図~108右下図、図103右上図~108右上図は上側から見た外観透視図を示す。

Claims (10)

  1.  ジョイントγn(n=1以上の整数)とジョイントβn(n=1以上の整数)、前記ジョイントγn(n=1以上の整数)とジョイントδn(n=1以上の整数)、及び、前記ジョイントδn(n=1以上の整数)とジョイントβn+1(n=1以上の整数)を、連結したN個(N=1以上の整数)のリンク要素を有し、
     前記複数のリンク要素は、前記ジョイントγn(n=1以上の整数)とジョイントγn+1(n=1以上の整数)とで連結され、
     前記ジョイントβ1は、支点α1に連結されて、前記支点α1を中心とする周回軌道上を周回可能に配置され、
     前記ジョイントδ1は、前記支点α1との相互の位置関係を一定に保持して配置される支点α2、又は、前記支点α1との相互の位置関係を変動可能に配置される支点α2を介して、前記ジョイントγ1に連結され、
     前記ジョイントδ1と前記ジョイントγ1とは、前記支点α2を中心とする周回軌道上を相互の位置関係を一定に保持して周回可能に配置される、
     自然動物の運動を表現するためのリンク機構。
  2.  ジョイントβn(n=1以上の整数)とジョイントγn(n=1以上の整数)、前記ジョイントγn(n=1以上の整数)とジョイントγn+1(n=1以上の整数)、及び、前記ジョイントγn+1(n=1以上の整数)とジョイントδn+1(n=1以上の整数)、を連結して、一辺を有しない四辺形状の定形に保持されるN個(N=1以上の整数)のリンク要素を有し、
     ジョイントδn(n=1以上の整数)とジョイントβn+1(n=1以上の整数)とは、連結され、
     前記ジョイントβ1は、支点α1に連結されて、前記支点α1を中心とする周回軌道上を周回可能に配置され、
     前記ジョイントδ1は、前記支点α1との相互の位置関係を一定に保持して配置される支点α2、又は、前記支点α1との相互の位置関係を変動可能に配置される支点α2を介して、前記ジョイントγ1に連結され、
     前記ジョイントδ1と前記ジョイントγ1とは、前記支点α2を中心とする周回軌道上を相互の位置関係を一定に保持して周回可能に配置される、
     自然動物の運動を表現するためのリンク機構。
  3.  ジョイントβn(n=1以上の整数)とジョイントγn(n=1以上の整数)、前記ジョイントγn(n=1以上の整数)とジョイントγn+1(n=1以上の整数)、及び、前記ジョイントγn+1(n=1以上の整数)とジョイントδn+1(n=1以上の整数)、を連結して、前記ジョイントγn(n=1以上の整数)とジョイントγn+1(n=1以上の整数)とを連結する軸線を介して、前記ジョイントβn(n=1以上の整数)とジョイントδn(n=1以上の整数)とが相互に逆側に位置する定形に保持されるN個(N=1以上の整数)のリンク要素を有し、
     ジョイントδn(n=1以上の整数)とジョイントβn+1(n=1以上の整数)とは、連結され、
     前記ジョイントβ1は、支点α1に連結されて、前記支点α1を中心とする周回軌道上を周回可能に配置され、
     前記ジョイントδ1は、前記支点α1との相互の位置関係を一定に保持して配置される支点α2、又は、前記支点α1との相互の位置関係を変動可能に配置される支点α2を介して、前記ジョイントγ1に連結され、
     前記ジョイントδ1と前記ジョイントγ1とは、前記支点α2を中心とする周回軌道上を相互の位置関係を一定に保持して周回可能に配置される、
     自然動物の運動を表現するためのリンク機構。
  4.  前記支点α2は、前記支点α1との相互の位置関係を変動可能に配置され、
     前記支点α2は、前記支点α1との相互の位置関係を一定に保持して配置される支点α3に連結され、前記支点α3を中心とする周回軌道上を周回可能に配置される、
     請求項1~3いずれか1項記載のリンク機構。
  5.  前記ジョイントβ1と前記ジョイントδ1とを結ぶ仮想線上に前記支点α1がある条件下で、前記ジョイントβ1と前記支点α2とを結ぶ仮想線が、前記ジョイントδ1と前記ジョイントγ1とを結ぶ仮想線と交差する、
     請求項1~請求項4のいずれか1項記載のリンク機構。
  6.  前記ジョイントβ1、前記ジョイントδ1及び前記支点α1が一の仮想直線上に整列する条件下で、前記ジョイントβ1と前記支点α2とを結ぶ仮想線が、前記ジョイントδ1と前記ジョイントγ1とを結ぶ仮想線と交差する、
     請求項1~請求項4のいずれか1項記載のリンク機構。
  7.  前記ジョイントβ1と前記支点α2を結ぶ仮想線が、前記ジョイントδ1と前記ジョイントγ1を結ぶ仮想線のほぼ中間点と交差する、
     請求項5又は請求項6のリンク機構。
  8.  前記ジョイントβ1を前記支点α1を中心とする周回軌道上を周回させることにより、前記ジョイントδ1と前記ジョイントγ1とが、前記可動支点α2を中心とする同一の周回軌道上のそれぞれ一部を往復動するように配置される、
     請求項1~請求項7のいずれか1項記載のリンク機構。
  9.  請求項1~8に係るリンク機構を使用してなる、
     人工動物。
  10.  請求項1~8に係るリンク機構のうち、少なくとも2つ以上リンク機構を組み合わせて使用してなる、
     人工動物。
PCT/JP2013/082383 2012-12-03 2013-12-02 自然動物の運動を表現するためのリンク機構及び人工動物 WO2014087973A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012-264293 2012-12-03
JP2012264293 2012-12-03
JP2013-028648 2013-02-18
JP2013028645A JP5543627B1 (ja) 2012-12-03 2013-02-18 自然動物の運動を表現するためのリンク機構及び人工動物
JP2013-028645 2013-02-18
JP2013028648 2013-02-18
JP2013230699A JP5578635B1 (ja) 2012-12-03 2013-11-06 自然動物の運動を表現するためのリンク機構及び人工動物
JP2013-230699 2013-11-06

Publications (1)

Publication Number Publication Date
WO2014087973A1 true WO2014087973A1 (ja) 2014-06-12

Family

ID=50883390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082383 WO2014087973A1 (ja) 2012-12-03 2013-12-02 自然動物の運動を表現するためのリンク機構及び人工動物

Country Status (1)

Country Link
WO (1) WO2014087973A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519627B2 (ja) * 1977-03-31 1980-05-27
JPH0363393B2 (ja) * 1984-11-24 1991-09-30 Tomii Kk
JP2005144582A (ja) * 2003-11-13 2005-06-09 Avice:Kk 4足走行マシン
JP2005144583A (ja) * 2003-11-13 2005-06-09 Avice:Kk 4足走行マシン
JP2005144581A (ja) * 2003-11-13 2005-06-09 Avice:Kk 4足走行マシン
JP2005246565A (ja) * 2004-03-05 2005-09-15 Sanyo Electric Co Ltd ロボット装置の脚部機構

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519627B2 (ja) * 1977-03-31 1980-05-27
JPH0363393B2 (ja) * 1984-11-24 1991-09-30 Tomii Kk
JP2005144582A (ja) * 2003-11-13 2005-06-09 Avice:Kk 4足走行マシン
JP2005144583A (ja) * 2003-11-13 2005-06-09 Avice:Kk 4足走行マシン
JP2005144581A (ja) * 2003-11-13 2005-06-09 Avice:Kk 4足走行マシン
JP2005246565A (ja) * 2004-03-05 2005-09-15 Sanyo Electric Co Ltd ロボット装置の脚部機構

Similar Documents

Publication Publication Date Title
CN105965514B (zh) 仿生液压四足机器恐龙结构
Wilkinson Restless creatures: The story of life in ten movements
US8956198B1 (en) Walking toy
JP5578635B1 (ja) 自然動物の運動を表現するためのリンク機構及び人工動物
WO2014087973A1 (ja) 自然動物の運動を表現するためのリンク機構及び人工動物
JP5543627B1 (ja) 自然動物の運動を表現するためのリンク機構及び人工動物
CN205796510U (zh) 一种飞马玩具
CN201175573Y (zh) 鸟、禽类动物玩具
CN105709420A (zh) 一种飞马玩具
CN201855566U (zh) 一种可在三种状态间变形的虎玩具
CN207307181U (zh) 仿真动物玩具
CN201658833U (zh) 在人物和动物造型之间变形的玩具
McLaughlin et al. The morphology of digital creatures.
CN207307177U (zh) 仿真动物玩具
Shimizu et al. Swimming frog cyborg which generates efficient hydrodynamic propulsion with webbed foot
CN206103316U (zh) 玩具公仔
CN201333314Y (zh) 一种扭身蹬腿动作类玩具
CN201625417U (zh) 一种形态变形玩具
Tang et al. Design and analysis of a novel swimming mechanism inspired from frogs
US1285047A (en) Figure toy.
CN213823441U (zh) 一种四足奔跑动物仿真玩具
CN114872070B (zh) 机械仿生鸡
KR200285464Y1 (ko) 관절이 움직이는 종이모형완구
CN219501967U (zh) 一种模拟动物行走的玩具车
WO2018135039A1 (ja) フィギュアおよび動作体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861112

Country of ref document: EP

Kind code of ref document: A1