WO2014087921A1 - 1,4-ブタンジオールの製造方法、微生物及び遺伝子 - Google Patents

1,4-ブタンジオールの製造方法、微生物及び遺伝子 Download PDF

Info

Publication number
WO2014087921A1
WO2014087921A1 PCT/JP2013/082068 JP2013082068W WO2014087921A1 WO 2014087921 A1 WO2014087921 A1 WO 2014087921A1 JP 2013082068 W JP2013082068 W JP 2013082068W WO 2014087921 A1 WO2014087921 A1 WO 2014087921A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
base sequence
seq
coa
butanediol
Prior art date
Application number
PCT/JP2013/082068
Other languages
English (en)
French (fr)
Inventor
青木 裕史
謙 小木戸
陽子 橋本
米田 正
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to EP13859911.3A priority Critical patent/EP2930239A4/en
Priority to JP2014551065A priority patent/JP6208146B2/ja
Priority to CN201380062813.7A priority patent/CN104822831A/zh
Priority to US14/440,116 priority patent/US9677096B2/en
Publication of WO2014087921A1 publication Critical patent/WO2014087921A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/010353-Hydroxyacyl-CoA dehydrogenase (1.1.1.35)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01036Acetoacetyl-CoA reductase (1.1.1.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/011573-Hydroxybutyryl-CoA dehydrogenase (1.1.1.157)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01009Acetyl-CoA C-acetyltransferase (2.3.1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01017Enoyl-CoA hydratase (4.2.1.17), i.e. crotonase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/010553-Hydroxybutyryl-CoA dehydratase (4.2.1.55)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01119Enoyl-CoA hydratase 2 (4.2.1.119)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01124-Hydroxybutanoyl-CoA dehydratase (4.2.1.120)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/03Intramolecular oxidoreductases (5.3) transposing C=C bonds (5.3.3)
    • C12Y503/03003Vinylacetyl-CoA DELTA-isomerase (5.3.3.3)

Definitions

  • the present invention relates to a method for producing 1,4-butanediol, a microorganism and a gene.
  • 1,4-Butanediol is an example of a compound that is expected to convert biomass raw materials.
  • 1,4-Butanediol is widely used as a raw material for synthesis of fine organic chemicals, monomer units of polyester and engineering plastics, and the market scale is large. For this reason, there is an increasing demand for a method for efficiently producing 1,4-butanediol by a biochemical process using renewable resources such as biomass as a raw material.
  • Examples of the method for producing 1,4-butanediol using a biochemical process include the methods described in Patent Documents 1 to 2 and Non-Patent Document 1.
  • Patent Documents 1 to 2 and Non-Patent Document 1 have complicated processes.
  • the present invention includes the following.
  • a gene encoding an enzyme that catalyzes the step (4) (A) a gene having the base sequence of SEQ ID NO: 1, (B) a gene having a base sequence in which one or more bases are deleted, substituted or added in the base sequence of SEQ ID NO: 1, and having 90% or more identity to the base sequence of SEQ ID NO: 1 A gene having a base sequence, (C) a gene having
  • a gene encoding an enzyme that catalyzes the step (4) (A) a gene having the base sequence of SEQ ID NO: 1, (B) a gene having a base sequence in which one or more bases are deleted, substituted or added in the base sequence of SEQ ID NO: 1, and having 90% or more identity to the base sequence of SEQ ID NO: 1 A gene having a base sequence, (C) a gene that hybridizes under stringent conditions with a gene having
  • FIG. 1 shows an example of an enzyme system of the method for producing 1,4-butanediol according to this embodiment.
  • CoA means “Coenzyme A”.
  • % Means “mass%” unless otherwise specified.
  • Ppm is based on mass.
  • the method for producing 1,4-butanediol includes an enzyme using a microorganism or a culture thereof via acetyl CoA, acetoacetyl CoA, 3-hydroxybutyryl CoA, crotonyl CoA, 4-hydroxybutyryl CoA. This is a method for producing 1,4-butanediol by reaction.
  • Each enzyme reaction is specifically (1) converting acetyl CoA to acetoacetyl CoA; (2) converting acetoacetyl CoA to 3-hydroxybutyryl CoA; (3) converting 3-hydroxybutyryl CoA to crotonyl CoA; (4) converting crotonyl CoA to 4-hydroxybutyryl CoA; and (5) converting 4-hydroxybutyryl CoA to 1,4-butanediol. including.
  • 1,4-butanediol As a result of various studies to improve the productivity of 1,4-butanediol, the present inventors have used a specific gene or a homologue thereof in a gene encoding an enzyme that catalyzes each reaction in the above-described steps. Thus, it was found that 1,4-butanediol can be obtained with high productivity.
  • the specific gene specifically, as a gene encoding an enzyme that catalyzes a reaction in the step of (4) converting crotonyl CoA to 4-hydroxybutyryl CoA, (A) a gene having the base sequence of SEQ ID NO: 1, (B) a gene having a base sequence in which one or more bases are deleted, substituted or added in the base sequence of SEQ ID NO: 1, and having 90% or more identity to the base sequence of SEQ ID NO: 1 A gene having a base sequence, (C) a gene that hybridizes under stringent conditions with a gene having a base sequence complementary to the gene having the base sequence set forth in SEQ ID NO: 1, Any of these genes is preferably used.
  • any of these genes is preferably used.
  • the specific gene includes a gene having a base sequence specifically shown in the sequence listing and its homolog as described above.
  • Homologs include orthologs and paralogs.
  • the ortholog refers to a gene corresponding to a species generated by speciation from a common ancestral gene and a set of enzymes obtained from the gene.
  • Paralog refers to a gene corresponding to a species generated by gene duplication rather than speciation in the same species and an enzyme obtained from the gene.
  • a homolog refers to a gene having sequence identity regardless of an ortholog or paralog and an enzyme obtained from the gene.
  • the homologue (gene) of the gene described above is a gene having a base sequence having 90% or more identity, preferably 95% or more identity to the gene, more preferably the gene. Or a gene in which one or several of its bases are deleted, substituted or added.
  • the homologous gene includes a gene that hybridizes under stringent conditions with a gene having a base sequence complementary to the target gene.
  • a homology search program for a known database for example, BLAST, FASTA
  • a probe consisting of at least a part of an identified gene base sequence complementary to DNA consisting of the base sequence of the gene
  • PCR polymerase chain reaction
  • the conditions for the vibridization are 6 ⁇ SSC (composition of 1 ⁇ SSC: 0.15M sodium chloride, 0.015M sodium citrate, pH: 7.0), 0.5% SDS, 5 X Conditions for hybridization with a Denhart solution and a solution containing 100 mg / mL herring sperm DNA at a constant temperature at 65 ° C. for 8 to 16 hours together with the probe.
  • an enzyme or a series of enzymes encoded by each gene selected as described above is expressed (co-expression) in a microorganism obtained by transforming a host microorganism described below by genetic recombination.
  • the reaction can be advanced.
  • the characteristics of the microorganism, the method for producing the microorganism, the method for using the microorganism (that is, the method for producing 1,4-butanediol), the method for obtaining the produced 1,4-butanediol, and the like used in this embodiment Will be described.
  • the host microorganism used in this embodiment is a host microorganism into which various genes described later can be introduced. For example, genetic recombination techniques can be applied to the host microorganism.
  • examples of host microorganisms into which the above-described genes can be introduced are not particularly limited as long as they can apply genetic recombination techniques.
  • specific examples include Escherichia coli, yeast, coryneform bacteria, and Clostridium bacteria.
  • yeast include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kriveromyces lactis, Kriveromyces marxianus and the like.
  • Coryneform bacteria include Corynebacterium glutamicum, Corynebacterium efficiens, Brevibacterium divaricatam, Brevibacterium saccharolyticum, Brevibacterium immariofilm, Brevibacterium lactofermentum, Brevi Bacterium Roseum, Brevibacterium flavum, Brevibacterium thiogenitalis, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium carnae, Corynebacterium lilium, Corynebacterium Examples include melase cola, microbacteria and ammonia film.
  • Clostridium kriveli Clostridium acetobutylicum, Clostridium aminobutyricum, Clostridium begerinky, Clostridium saccharoperbutylacetonicum and the like.
  • Escherichia coli Saccharomyces cerevisiae, Schizosaccharomyces pombe, Corynebacterium glutamicum because it is easy to transform, and it is more preferable to use Escherichia coli.
  • the transformed microorganism in the present embodiment may be used in the form of cultured microorganisms themselves or in various forms of the culture.
  • the culture of microorganisms in this embodiment is a suspension of microorganism cultured cells in a medium such as a medium or a buffer, a cell-free extract from the microorganism cultured cells, and further from the cell-free extract. Includes processed products such as those obtained by concentrating, purifying and extracting components that catalyze the reaction
  • the culture of microorganisms in this embodiment further includes a product obtained by immobilizing the processed microorganism product on a poorly soluble carrier.
  • immobilization carriers examples include polyacrylamide, polyvinyl alcohol, poly-N-vinylformamide, polyallylamine, polyethyleneimine, methylcellulose, glucomannan, alginate, carrageenan, and the like, as well as copolymers and cross-linked products thereof.
  • the compound which forms the poorly water-soluble solid content which encapsulated the microbial cell of this or its processed material is mentioned. These may be used alone or in combination of two or more.
  • microorganisms or their extract liquid / extraction components retained on a solid object such as activated carbon, porous ceramics, glass fiber, porous polymer molded body, nitrocellulose membrane, etc. It can also be used as a product.
  • the host microorganism used in this embodiment is a host microorganism into which various genes described later can be introduced. For example, genetic recombination techniques can be applied to the host microorganism. Specifically, the enzyme system originally possessed by the host microorganism is further subjected to 1,4-butanediol via acetyl CoA, acetoacetyl CoA, 3-hydroxybutyryl CoA, crotonyl CoA, 4-hydroxybutyryl CoA.
  • acetyl CoA acetoacetyl CoA
  • 3-hydroxybutyryl CoA crotonyl CoA
  • 4-hydroxybutyryl CoA 4-hydroxybutyryl CoA.
  • FIG. 1 shows an example of an enzyme system of the method for producing 1,4-butanediol according to this embodiment.
  • 1,4-butanediol can be obtained using a culture in which a series of genes described below is expressed in a microorganism by transformation or the like.
  • a gene is inserted in arbitrary vectors individually or as a series of clusters, and a host microorganism is transformed.
  • Each gene is expressed by culturing the obtained transformant in a medium using an appropriate carbon source, for example, glucose as a carbon source.
  • the gene is expressed by culturing the transformant in a medium.
  • each encoded gene when each gene is configured under the control of a regulator placed on the vector, each encoded gene is expressed by adding an induction substrate and moving to an inductive environment.
  • the culture in this embodiment includes all the usual culture conditions for microorganism culture, and in this embodiment, the culture is a time and condition sufficient for the microorganism to produce 1,4-butanediol. It means culturing.
  • a gene that catalyzes the reaction of converting acetyl-CoA to acetoacetyl-CoA [A gene that catalyzes the reaction of converting acetyl-CoA to acetoacetyl-CoA]
  • the gene encoding an enzyme that catalyzes the reaction of converting acetyl CoA to acetoacetyl CoA is provided by the inventors.
  • A a gene having the base sequence of SEQ ID NO: 2
  • B a gene having a base sequence in which one or a plurality of bases are deleted, substituted or added in the base sequence of SEQ ID NO: 2 and having 90% or more identity to the base sequence of SEQ ID NO: 2
  • a gene having a base sequence (C) a gene that hybridizes under stringent conditions with a gene having a base sequence complementary to the gene having the base sequence set forth in SEQ ID NO: 2; Are preferably used.
  • the gene encoding an enzyme that catalyzes a reaction for converting acetyl CoA to acetoacetyl CoA is provided by the inventors.
  • A a gene having the base sequence of SEQ ID NO: 3
  • B a gene having a base sequence in which one or more bases are deleted, substituted or added in the base sequence of SEQ ID NO: 3, and having 90% or more identity to the base sequence of SEQ ID NO: 3
  • C a gene that hybridizes under stringent conditions with a gene having a base sequence complementary to the gene having the base sequence set forth in SEQ ID NO: 3; are preferably used.
  • a gene that catalyzes the reaction of converting acetoacetyl-CoA to 3-hydroxybutyryl-CoA In this embodiment, a gene encoding an enzyme that catalyzes a reaction for converting acetoacetyl CoA to 3-hydroxybutyryl CoA is provided by the inventors.
  • A a gene having the base sequence of SEQ ID NO: 4
  • B a gene having a base sequence in which one or more bases have been deleted, substituted or added in the base sequence of SEQ ID NO: 4, and having 90% or more identity to the base sequence of SEQ ID NO: 4
  • a gene having a base sequence (C) a gene that hybridizes under stringent conditions with a gene having a base sequence complementary to the gene having the base sequence set forth in SEQ ID NO: 4; Are preferably used.
  • the gene encoding an enzyme that catalyzes a reaction for converting acetoacetyl CoA to 3-hydroxybutyryl CoA is provided by the inventors.
  • A a gene having the base sequence of SEQ ID NO: 5
  • B a gene having a base sequence in which one or more bases are deleted, substituted or added in the base sequence of SEQ ID NO: 5 and having 90% or more identity to the base sequence of SEQ ID NO: 5
  • a gene having a base sequence A gene having a base sequence
  • C a gene that hybridizes under stringent conditions with a gene having a base sequence complementary to the gene having the base sequence set forth in SEQ ID NO: 5; Are preferably used.
  • a gene encoding an enzyme that catalyzes a reaction for converting 3-hydroxybutyryl-CoA to crotonyl-CoA In this embodiment, a gene encoding an enzyme that catalyzes a reaction for converting 3-hydroxybutyryl CoA to crotonyl CoA is provided by the inventors.
  • A a gene having the base sequence of SEQ ID NO: 6,
  • B a gene having a base sequence in which one or more bases are deleted, substituted or added in the base sequence of SEQ ID NO: 6, and having 90% or more identity to the base sequence of SEQ ID NO: 6
  • a gene having a base sequence (C) a gene that hybridizes under stringent conditions with a gene having a base sequence complementary to the gene having the base sequence set forth in SEQ ID NO: 6; Are preferably used.
  • the gene encoding an enzyme that catalyzes a reaction for converting 3-hydroxybutyryl CoA to crotonyl CoA is provided by the inventors.
  • A a gene having the base sequence of SEQ ID NO: 7,
  • B a gene having a base sequence in which one or more bases are deleted, substituted or added in the base sequence of SEQ ID NO: 7, and having 90% or more identity to the base sequence of SEQ ID NO: 7
  • a gene having a base sequence A gene having a base sequence
  • C a gene that hybridizes under stringent conditions with a gene having a base sequence complementary to the gene having the base sequence set forth in SEQ ID NO: 7; Are preferably used.
  • a gene encoding an enzyme that catalyzes the reaction of converting crotonyl CoA to 4-hydroxybutyryl CoA In this embodiment, a gene encoding an enzyme that catalyzes a reaction for converting crotonyl CoA to 4-hydroxybutyryl CoA is provided by the inventors.
  • A a gene having the base sequence of SEQ ID NO: 1
  • B a gene having a base sequence in which one or more bases are deleted, substituted or added in the base sequence of SEQ ID NO: 1, and having 90% or more identity to the base sequence of SEQ ID NO: 1
  • a gene having a base sequence (C) a gene that hybridizes under stringent conditions with a gene having a base sequence complementary to the gene having the base sequence set forth in SEQ ID NO: 1, Are preferably used.
  • a gene encoding an enzyme that catalyzes a reaction for converting 4-hydroxybutyryl-CoA to 1,4-butanediol is provided by the inventors.
  • A a gene having the base sequence of SEQ ID NO: 8
  • B a gene having a base sequence in which one or more bases are deleted, substituted or added in the base sequence of SEQ ID NO: 8, and having 90% or more identity to the base sequence of SEQ ID NO: 8
  • a gene having a base sequence (C) a gene that hybridizes under stringent conditions with a gene having a base sequence complementary to the gene having the base sequence set forth in SEQ ID NO: 8; Are preferably used.
  • the gene encoding an enzyme that catalyzes a reaction for converting 4-hydroxybutyryl CoA to 1,4-butanediol is provided by the inventors.
  • A a gene having the base sequence of SEQ ID NO: 9
  • B a gene having a base sequence in which one or more bases are deleted, substituted or added in the base sequence of SEQ ID NO: 9, and having 90% or more identity to the base sequence of SEQ ID NO: 9
  • C a gene that hybridizes under stringent conditions with a gene having a base sequence complementary to the gene having the base sequence set forth in SEQ ID NO: 9; are preferably used.
  • the enzyme encoded by the above-described gene catalyzes the reaction of converting 4-hydroxybutyryl CoA to 4-hydroxybutanal, and the obtained 4-hydroxybutanal is an alcohol usually contained in the aforementioned host microorganism.
  • the reductase leads to 1,4-butanediol substantially immediately.
  • the method for supplying acetyl CoA serving as a substrate for the method for producing 1,4-butanediol of this embodiment is not particularly limited, and various known methods can be used. For example, it can be obtained from a carbohydrate such as glucose by the action of the glycolysis system of the host microorganism. Acetyl CoA can also be obtained in the process of lipid ⁇ -oxidation. Furthermore, acetyl CoA may be supplied by translocating CoA to acetic acid by coupling with an appropriate CoA substance using a CoA rearrangement enzyme.
  • the gene or a part thereof can be ligated to an appropriate vector by appropriately combining various known methods such as restriction enzyme / ligation-based methods, In-Fusion cloning methods, etc.
  • the recombinant vector thus obtained can be introduced into a host so that the target gene can be expressed.
  • Part refers to a part of each gene capable of expressing the protein encoded by each gene when introduced into a host.
  • the gene includes DNA and RNA, preferably DNA.
  • the vector for ligating the gene is not particularly limited as long as it can be replicated in the host, and examples thereof include plasmids, phages and cosmids used for introducing foreign genes in E. coli.
  • the plasmid include pHSG398, pUC18, pBR322, pSC101, pUC19, pUC118, pUC119, pACYC117, pBluescript II SK (+), pET17b, pETDuet-1, pACYCDuet-1, pCDFDuDet, pCDFDuDet, et
  • the phage include ⁇ gt10, Charon 4A, EMBL-, M13mp18, M13mp19, and the like. Some of these are commercially available, and commercially available products (kits) can be used as they are or after being appropriately modified.
  • an appropriate expression promoter may be connected upstream of the inserted gene in order to ensure that the inserted gene is expressed.
  • the expression promoter to be used is not particularly limited and can be appropriately selected by those skilled in the art depending on the host.
  • the promoter region of the Frd gene that is a nitrate reductase gene can also be used.
  • a method for gene disruption a known method used for gene disruption in E. coli can be used. Specifically, a method of destroying the gene using a vector (targeting vector) that causes homologous recombination at an arbitrary position of the target gene (gene targeting method), or a trap vector (promoter at an arbitrary position of the target gene).
  • a method used when producing knockout cells or the like in this technical field such as a method of destroying the gene by inserting a reporter gene that does not have it and losing its function (gene trap method), a method of combining them, etc. I can do it.
  • the position at which homologous substitution occurs or the position at which the trap vector is inserted is not particularly limited as long as it causes a mutation that eliminates the expression of the target gene to be disrupted, but is preferably a transcriptional regulatory region.
  • the method for introducing the vector into the host is not particularly limited, and examples thereof include a method using calcium ions, a protoplast method, and an electroporation method that are generally used for vector introduction into E. coli. Can do.
  • the target gene is inserted into a sequence homologous to the sequence on the genome together with a promoter, and this nucleic acid fragment is introduced into the cell by electroporation. Can be carried out by causing homologous recombination.
  • a strain in which homologous recombination has occurred can be easily selected by using a nucleic acid fragment in which a target gene and a drug resistance gene are linked.
  • a gene linked to a drug resistance gene and a gene that becomes lethal under specific conditions is inserted into the genome by homologous recombination by the above method, and then becomes lethal under specific conditions with the drug resistance gene.
  • the target gene can also be introduced by homologous recombination in the form of replacing the gene.
  • a method for selecting a recombinant microorganism into which a target gene is introduced is not particularly limited, but a method by which only a recombinant microorganism into which a target gene has been introduced can be easily selected is preferable.
  • the reaction of the present invention is most conveniently performed by, for example, cultivating a transformant in a nutrient medium such as LB medium at a temperature of 15 ° C. to 40 ° C., preferably 18 ° C. to 37 ° C. for about 24 hours.
  • a nutrient medium such as LB medium
  • 0.01 to 50%, preferably 0.1 to 30% glucose is transferred to a medium containing carbon as a carbon source, followed by culturing at the same temperature for about 1 hour to 200 hours.
  • the carbon source may be added continuously or intermittently according to the consumption of the carbon source due to the growth and reaction of the bacteria. In this case, the concentration of the carbon source in the reaction solution is not limited to the above.
  • sugars such as glucose, sucrose and fructose, polyols such as glycerol, organic substances such as ethanol, acetic acid, citric acid, succinic acid, lactic acid, benzoic acid and fatty acids, or alkalis thereof Metal salts, aliphatic hydrocarbons such as n-paraffins, aromatic hydrocarbons, or natural organic substances such as peptone, meat extract, fish extract, soy flour, bran, etc., alone or in combination, usually 0 It can be used at a concentration of about 0.01% to 30%, preferably about 0.1% to 20%.
  • inorganic nitrogen compounds such as ammonium sulfate, ammonium phosphate, sodium nitrate and potassium nitrate, nitrogen-containing organic substances such as urea and uric acid, peptone, meat extract, fish extract, soybean powder, etc.
  • nitrogen-containing organic substances such as urea and uric acid, peptone, meat extract, fish extract, soybean powder, etc.
  • fungi with metal salts such as phosphates such as potassium dihydrogen phosphate, magnesium sulfate, ferrous sulfate, calcium acetate, manganese chloride, copper sulfate, zinc sulfate, cobalt sulfate, nickel sulfate Can be added to improve enzyme activity.
  • the addition concentration varies depending on the culture conditions, but is usually about 0.01% to 5% for phosphate, 10 ppm to 1% for magnesium salt, and about 0.1 ppm to 1,000 ppm for other compounds.
  • yeast extract, casamino acid, and yeast nucleic acid can be added as a source of vitamins, amino acids, nucleic acids and the like to improve bacterial growth and enzyme activity.
  • the pH of the medium should be adjusted to 4.5-9, preferably 5-8.
  • microbial cells previously cultured in the medium as described above are collected from the culture solution by a method such as centrifugation or membrane filtration, and water containing the reaction raw material, physiological saline, or a pH equivalent to the culture pH. Suspending and reacting again in a buffer solution consisting of these salts with phosphoric acid, acetic acid, boric acid, tris (hydroxymethyl) aminomethane, etc. adjusted to reduce the impurities in the reaction solution. It is useful to simplify the fractionation of the product.
  • the pH during the reaction can usually be maintained when a buffer solution having a sufficient concentration is used, but when the pH deviates from the above due to the progress of the reaction, sodium hydroxide, ammonia or the like is used so that the same pH is obtained. It is desirable to adjust accordingly.
  • reaction rate decreases due to accumulation of 1,4-butanediol in the reaction solution
  • water, physiological saline, reaction buffer, etc. are added to the reaction solution according to the product concentration.
  • the method of diluting to a suitable value is preferred.
  • the bacteria are collected, the supernatant is recovered as a product solution, and the collected bacteria are returned to the solution or suspension containing the reaction raw material again to restore the reaction rate.
  • This operation can be carried out continuously or batchwise using a centrifuge, a separation membrane or the like.
  • the separation, recovery and purification of 1,4-butanediol produced in the reaction solution is carried out by removing the cells from the reaction solution by centrifugation when the production amount of 1,4-butanediol reaches a substantial amount. Or in the reaction solution as it is, by using means for separation and recovery of general organic compounds and purification. For example, extraction is performed using a suitable organic solvent from a filtrate obtained by removing bacterial cells and the like from the culture solution. In addition to distilling off this extract as it is, high-purity 1,4-butanediol can be obtained by re-extraction with an appropriate solvent, purification using silica gel or other chromatography, or multistage distillation. can get.
  • Table 1 shows a summary of the assumed reaction steps in Examples 1 to 3 and Comparative Example 1, enzymes that catalyze each reaction step, and genes encoding the enzymes.
  • the sequence number in the gene corresponds to the sequence number in the sequence listing.
  • a plasmid pETBD12 containing the sequence 12 was obtained by inserting the gene sequence represented by SEQ ID NO: 12 with the NdeI site of pET17b as a target.
  • the EcoRI site derived from the pET17b multicloning site located downstream of the stop codon of sequence 10 of pETBD10 was cleaved by restriction enzyme treatment to prepare an open ring fragment of pETBD10.
  • the obtained two fragments were ligated with In-Fusion HD Cloning Kit to obtain plasmid pETBD10-12 containing sequences 10 and 12.
  • SEQ ID NOS: 14, 16, and 17 were sequentially added with the downstream sequence of the sequence 12 of pETBD10-12 as a target to obtain a plasmid pETBD10-12-14-16-17.
  • opening of the inserted plasmid is performed by cleavage with an appropriate restriction enzyme site on the vector that does not cleave the inserted sequence, and when there is no such site. This was performed by inverse PCR from the target insertion site (hereinafter the same).
  • Escherichia coli JM109 (DE3) was transformed with pETBD10-12-14-16-17 to obtain Escherichia coli pETBD10-12-14-16-17 / JM109 (DE3).
  • each gene of SEQ ID NOs: 10, 12, 14, 16, and 17 on the plasmid pETBD10-12-14-16-17 encodes an enzyme corresponding to the enzyme that catalyzes each step.
  • a transformant of JM109 (DE3) transformed with a plasmid partially substituted with the genes of SEQ ID NOs: 2, 4, 6, 1, 8 was obtained.
  • Table 2 summarizes the assumed reaction steps in Examples 1 to 3 and Comparative Example 1, the enzymes that catalyze each reaction step, and the genes that encode the enzymes.
  • the sequence number in the gene corresponds to the sequence number in the sequence listing.
  • Comparative Example 2 In the same manner as in Examples 1 to 3 and Comparative Example 1, first, a plasmid pETBD11-13-15-16-18 containing the gene sequence represented by SEQ ID NO: 11, 13, 15, 16, 18 was prepared. E. coli pETBD11-13-15-16-18 / JM109 (DE3) was obtained by transforming the JM109 (DE3) strain.
  • each gene of SEQ ID NO: 11, 13, 15, 16, 18 on plasmid pETBD11-13-15-16-18 encodes an enzyme corresponding to an enzyme catalyzing each step, SEQ ID NO: 3, 5, A JM109 (DE3) transformant transformed with a plasmid partially substituted with the 7, 1, and 9 genes was obtained.
  • Each transformant obtained in each Example and Comparative Example was cultured in 5 mL of LB medium containing 100 mg / L of ampicillin at 37 ° C. for 12 hours under aerobic conditions.
  • the culture solution (0.1 mL) was transplanted to 5 mL of LB medium containing 1% glucose, ampicillin 100 mg / L, and IPTG 0.2 mM, and cultured under aerobic conditions at 30 ° C. for 48 hours.
  • the culture supernatant was subjected to high performance liquid chromatography (HPLC: column; Shodex SH-1011 (manufactured by Showa Denko)), column temperature: 60 ° C., eluent: 25 mM sulfuric acid aqueous solution, flow rate 0.6 mL / min, detection: differential refraction detection Was used for the test.
  • Tables 3 and 4 show the relationship between the gene constituting the plasmid of the transformant used and the amount of 1,4-butanediol produced in the culture solution.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 微生物及び/又はその培養物を用いて、アセチルCoA、アセトアセチルCoA、3-ヒドロキシブチリルCoA、クロトニルCoA、4-ヒドロキシブチリルCoAを経由して、1,4-ブタンジオールを製造する方法であって、前記微生物は、(a)配列番号1の塩基配列を有する遺伝子、(b)配列番号1の塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号1の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、(c)配列番号1に記載の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、のいずれかの遺伝子を含み、かつ、(d)配列番号2乃至9の塩基配列を有する遺伝子、(e)配列番号2乃至9の塩基配列において、1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、元の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、(f)配列番号2乃至9の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、のいずれか一つ以上の遺伝子を含む、1,4-ブタンジオールの製造方法。

Description

1,4-ブタンジオールの製造方法、微生物及び遺伝子
 本発明は1,4-ブタンジオールの製造方法、微生物及び遺伝子に関する。
 近年、化石資源の枯渇や地球温暖化対策などの観点から、再生可能資源を原料とした化合物製造プロセスが注目されている。特に、バイオマスを原料として、生物化学的プロセスで種々のポリマー原料化合物や化学品原料化合物を製造する、所謂バイオリファイナリーが広く検討されている。
 バイオマスの原料転換が期待されている化合物として、1,4-ブタンジオールが挙げられる。1,4-ブタンジオールは、精密有機化学品の合成原料、ポリエステル及びエンジニアリングプラスチックのモノマー単位などで広く使用されており、その市場規模は大きい。そのため、バイオマスなどの再生可能資源を原料とした生物化学的プロセスで、効率良く1,4-ブタンジオールを製造する方法に対する要求が大きくなっている。
 生物化学的プロセスを用いた1,4-ブタンジオールの製造方法としては、例えば、特許文献1乃至2及び非特許文献1に記載された方法が挙げられる。
特許第4380704号明細書 国際公開2008/115840号公報
Harry Yim et al.,  Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol, Nature Chemical Biology, 7, 445-452 (2011).
 しかしながら、特許文献1乃至2及び非特許文献1に記載された方法は、プロセスが複雑である。
 上記課題に対して、経済的に1,4-ブタンジオールを得ることができる、新規な1,4-ブタンジオールの製造方法を提供する。
 本発明は以下のものを含む。
[1]微生物及び/又はその培養物を用いて、以下の工程を経て、1,4-ブタンジオールを製造する方法であって、
 (1)アセチルCoAをアセトアセチルCoAに変換する工程
 (2)アセトアセチルCoAを3-ヒドロキシブチリルCoAに変換する工程
 (3)3-ヒドロキシブチリルCoAをクロトニルCoAに変換する工程
 (4)クロトニルCoAを4-ヒドロキシブチリルCoAに変換する工程
 (5)4-ヒドロキシブチリルCoAを1,4-ブタンジオールに変換する工程
 前記微生物は、
前記(4)の工程を触媒する酵素をコードする遺伝子として、
 (a)配列番号1の塩基配列を有する遺伝子、
 (b)配列番号1の塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号1の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
 (c)配列番号1に記載の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
 のいずれかの遺伝子を含み、かつ、
前記(1)~(3)、(5)の工程のいずれかを触媒する酵素をコードする遺伝子として、
 (d)配列番号2乃至9のいずれかの塩基配列を有する遺伝子、
 (e)配列番号2乃至9のいずれかの塩基配列において、1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、元の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
 (f)配列番号2乃至9のいずれかの塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
 のいずれか一つ以上の遺伝子を含む、1,4-ブタンジオールの製造方法。
[2]以下の工程を経て、1,4-ブタンジオールを製造する能力を有する微生物であって、
 (1)アセチルCoAをアセトアセチルCoAに変換する工程
 (2)アセトアセチルCoAを3-ヒドロキシブチリルCoAに変換する工程
 (3)3-ヒドロキシブチリルCoAをクロトニルCoAに変換する工程
 (4)クロトニルCoAを4-ヒドロキシブチリルCoAに変換する工程
 (5)4-ヒドロキシブチリルCoAを1,4-ブタンジオールに変換する工程
前記(4)の工程を触媒する酵素をコードする遺伝子として、
 (a)配列番号1の塩基配列を有する遺伝子、
 (b)配列番号1の塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号1の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
 (c)配列番号1に記載の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
 のいずれかの遺伝子を含み、かつ、
前記(1)~(3)、(5)の工程のいずれかを触媒する酵素をコードする遺伝子として、
 (d)配列番号2乃至9のいずれかの塩基配列を有する遺伝子、
 (e)配列番号2乃至9のいずれかの塩基配列において、1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、元の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
 (f)配列番号2乃至9のいずれかの塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
 のいずれか一つ以上の遺伝子を含む、微生物。
[3][1]に記載の1,4-ブタンジオールの製造方法に用いられる遺伝子であって、下記(a)~(c)のいずれかに記載の遺伝子。
 (a)配列番号1乃至9のいずれかの塩基配列を有する遺伝子
 (b)配列番号1乃至9のいずれかの塩基配列において、1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、元の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子
 (c)配列番号1乃至9のいずれかの塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子
 経済的に1,4-ブタンジオールを得ることができる、新規な1,4-ブタンジオールの製造方法を提供できる。
図1は、本実施形態の1,4-ブタンジオールの製造方法の酵素系の一例である。
 以下、本発明を詳細に説明する。なお、本明細書において、「CoA」とは、「コエンザイムA」を意味する。また、「%」は、特に記載のない限り、「質量%」を意味する。「ppm」は質量基準である。
 実施形態の1,4-ブタンジオールの製造方法は、アセチルCoA、アセトアセチルCoA、3-ヒドロキシブチリルCoA、クロトニルCoA、4-ヒドロキシブチリルCoAを経由する、微生物又はその培養物を用いた酵素反応による1,4-ブタンジオールの製造方法である。各々の酵素反応は、具体的には、
 (1)アセチルCoAをアセトアセチルCoAに変換する工程、
 (2)アセトアセチルCoAを3-ヒドロキシブチリルCoAに変換する工程、
 (3)3-ヒドロキシブチリルCoAをクロトニルCoAに変換する工程、
 (4)クロトニルCoAを4-ヒドロキシブチリルCoAに変換する工程及び
 (5)4-ヒドロキシブチリルCoAを1,4-ブタンジオールに変換する工程、
 を含む。
 本発明者らは、1,4-ブタンジオールの生産性を向上させるべく種々検討した結果、上述の工程における各反応を触媒する酵素をコードする遺伝子において、特定の遺伝子又はそのホモログを使用することにより、1,4-ブタンジオールを高い生産性で得ることができることを見出した。
 前記特定の遺伝子としては、具体的には、(4)クロトニルCoAを4-ヒドロキシブチリルCoAに変換する工程における反応を触媒する酵素をコードする遺伝子として、
 (a)配列番号1の塩基配列を有する遺伝子、
 (b)配列番号1の塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号1の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
 (c)配列番号1に記載の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
 のいずれかの遺伝子を好適に使用する。
 また、他の工程(1)、(2)、(3)、(5)のいずれか1つ以上の工程において、対応する変換反応を触媒する酵素をコードする遺伝子として、
 (a)配列番号2乃至9のいずれかの塩基配列を有する遺伝子、
 (b)配列番号2乃至9のいずれかの塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号1の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
 (c)配列番号2乃至9に記載のいずれかの塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
 のいずれかの遺伝子を好適に使用する。
 本実施形態において、特定の遺伝子は、上述の通り、配列表で具体的に示した塩基配列を有する遺伝子及びそのホモログを含む。ホモログは、オーソログ及びパラログを含む。オーソログとは、共通祖先の遺伝子から種分化により生じた種間で対応する遺伝子及びその遺伝子より得られる酵素の組を指す。パラログとは、同種内において、種分化でなく遺伝子重複によって生じた種間で対応する遺伝子及びその遺伝子より得られる酵素を指す。ホモログとは、オーソログ、パラログに関係なく配列に同一性を有する遺伝子及びその遺伝子より得られる酵素を指す。
 より具体的には、上述した遺伝子のホモログ(遺伝子)は、当該遺伝子に対して90%以上の同一性、好ましくは95%以上の同一性のある塩基配列を有する遺伝子、より好ましくは、その遺伝子と全く同一又はその塩基の1個若しくは数個が欠失、置換又は付加された遺伝子を指す。
 また、ホモログ遺伝子は、対象の遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子を含む。具体的には、公知のデータベースに対するホモロジー検索プログラム(例えば、BLAST、FASTA)を適用して、又は、同定遺伝子の少なくとも一部から成るプローブ(当該遺伝子の塩基配列からなるDNAと相補的な塩基配列からなるDNA)を用いたストリンジェントな条件でのハイブリダイゼーション若しくはポリメラーゼ連鎖反応(PCR)などの常法に基づいて、遺伝子又はその遺伝子による形質転換で得られる酵素として取得することができる。また、当業者であれば、塩基配列を置換等することによって、自ら設計することが可能である。なお、ここで言うストリンジェントな条件としては、例えば、Molecular Cloning -A LABORATORY MANUAL THIRD EDITION(Joseph Sambrook, David W. Russell., Cold Spring Harbor Laboratory Press)の非特許文献に記載されたハイブリダイズさせる条件が挙げられる。バイブリダイズさせる条件とは、より具体的には、6×SSC(1×SSCの組成:0.15M 塩化ナトリウム、0.015M クエン酸ナトリウムで、pH:7.0)、0.5% SDS、5×デンハート溶液及び100mg/mLニシン精子DNAを含む溶液に、プローブとともに65℃で8~16時間恒温保持し、ハイブリダイズさせる条件である。
 本発明は、例えば、上記のようにして選ばれる、各遺伝子にコードされる酵素又は一連の酵素群を、以下説明する宿主微生物を遺伝子組み換えにより形質転換させた微生物体内で発現(共発現であっても良い)させることで、反応を進行させる。
 以下、本実施形態で使用される、微生物の特徴、微生物の作製方法、微生物の使用方法(即ち、1,4-ブタンジオールの製造方法)及び製造された1,4-ブタンジオールの取得方法などについて、説明する。
 (宿主微生物)
 本実施形態で使用される宿主微生物は、後述する種々の遺伝子を導入することができる宿主微生物であり、例えば宿主微生物に遺伝子組み換え技術を適用することができる。
 本実施形態において、上述した遺伝子を導入することができる宿主微生物の例としては、遺伝子組み換え技術を適用することができる微生物であれば、特に限定されない。産業上の利用の観点から、具体例としては、大腸菌、酵母、コリネ型細菌、クロストリジウム属細菌が挙げられる。酵母としては、サッカロマイセス・セレビシエ、シゾサッカロマイセス・ポンベ、クリベロマイセス・ラクティス、クリベロマイセス・マルキシアヌス等が挙げられる。コリネ型細菌としては、コリネバクテリウム・グルタミカム、コリネバクテリウム・エフィシエンス、ブレビバクテリウム・ディバリカタム、ブレビバクテリウム・サッカロリティカム、ブレビバクテリウム・インマリオフィルム、ブレビバクテリウム・ラクトファーメンタム、ブレビバクテリウム・ロゼウム、ブレビバクテリウム・フラバム、ブレビバクテリウム・チオゲニタリス、コリネバクテリウム・アセトアシドフィラム、コリネバクテリウム・アセトグルタミカム、コリネバクテリウム・カルナエ、コリネバクテリウム・リリウム、コリネバクテリウム・メラセコーラ、ミクロバクテリウム・アンモニアフィラム等が挙げられる。クロストリジウム属細菌としては、クロストリジウム・クリベリ、クロストリジウム・アセトブチリカム、クロストリジウム・アミノブチリカム、クロストリジウム・ベイジェリンキー、クロストリジウム・サッカロパーブチルアセトニカムなどが挙げられる。これらの中でも、大腸菌、サッカロマイセス・セレビシエ、シゾサッカロマイセス・ポンベ、コリネバクテリウム・グルタミカムを使用することが、形質転換が容易であるため、好ましく、大腸菌を使用することが、より好ましい。
 また、本実施形態における形質転換微生物は、微生物培養菌体そのもの又はその培養物の各種形態で使用されても良い。本実施形態における微生物の培養物は、具体的には、微生物培養菌体の培地・緩衝液等媒体による懸濁物、微生物培養菌体からの無細胞抽出液、さらにこの無細胞抽出液から当該反応を触媒する成分を濃縮・精製・抽出したもの等の処理物を含む。本実施形態における微生物の培養物は更に、前記の微生物の処理物を難溶性の担体に固定化したものを含む。このような固定化担体としては、ポリアクリルアミド、ポリビニルアルコール、ポリ-N-ビニルホルムアミド、ポリアリルアミン、ポリエチレンイミン、メチルセルロース、グルコマンナン、アルギン酸塩、カラギーナン等、更にこれらの共重合、架橋化物など、前述の微生物菌体もしくはその処理物を包合した水難溶性の固形分を形成するような化合物が挙げられる。これらは1種類を単独で使用しても良く、2種類以上を混合して使用しても良い。また、活性炭、多孔質セラミックス、グラスファイバー、多孔質ポリマー成形体、ニトロセルロース膜など、予め固形物として形成された物体上に微生物もしくはその抽出液・抽出成分を保持させたものも、微生物の培養物として用いることもできる。
 (形質転換微生物)
 本実施形態で使用される宿主微生物は、後述する種々の遺伝子を導入することができる宿主微生物であり、例えば宿主微生物に遺伝子組み換え技術を適用することができる。具体的には、その宿主微生物が本来有する酵素系に、更にアセチルCoA、アセトアセチルCoA、3-ヒドロキシブチリルCoA、クロトニルCoA、4-ヒドロキシブチリルCoAを経由して、1,4-ブタンジオールを生産することができる酵素反応系の各々の酵素系を有する。以下、本実施形態の1,4-ブタンジオールの製造方法の酵素系と、各々の酵素系をコードする遺伝子について説明する。
 図1に、本実施形態の1,4-ブタンジオールの製造方法の酵素系の一例を示す。本実施形態において、1,4-ブタンジオールは、後述する一連の遺伝子を形質転換などにより微生物体内で発現させた培養物を用いて得ることができる。なお、遺伝子は、個別に又は一連のクラスターとして、任意のベクターに挿入して、宿主微生物を形質転換する。得られた形質転換体を、適当な炭素源、例えばグルコースを炭素源として培地中で培養することで、各遺伝子を発現させる。宿主で構成発現し得る遺伝子の場合には、培地中で形質転換体を培養することで、遺伝子が発現する。一方、各遺伝子をベクター上に配されたレギュレーターの制御下で構成した場合には、誘導基質を添加し、誘導的環境へ移行することにより、各々のコードする遺伝子が発現する。なお、本実施形態における培養とは、通常の微生物培養の培養条件を全て含み、また、本実施形態において培養とは、微生物が1,4-ブタンジオールを製造するための十分な時間及び条件で培養することを意味する。
  [アセチルCoAをアセトアセチルCoAに変換する反応を触媒する遺伝子]
 本実施形態において、アセチルCoAをアセトアセチルCoAに変換する反応を触媒する酵素をコードする遺伝子としては、発明者らにより提供される、
 (a)配列番号2の塩基配列を有する遺伝子、
 (b)配列番号2の塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号2の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
 (c)配列番号2に記載の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
 が好適に用いられる。
 また、本実施形態において、アセチルCoAをアセトアセチルCoAに変換する反応を触媒する酵素をコードする遺伝子としては、発明者らにより提供される、
 (a)配列番号3の塩基配列を有する遺伝子、
 (b)配列番号3の塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号3の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
 (c)配列番号3に記載の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
 が好適に用いられる。
  [アセトアセチルCoAを3-ヒドロキシブチリルCoAに変換する反応を触媒する遺伝子]
 本実施形態において、アセトアセチルCoAを3-ヒドロキシブチリルCoAに変換する反応を触媒する酵素をコードする遺伝子としては、発明者らにより提供される、
 (a)配列番号4の塩基配列を有する遺伝子、
 (b)配列番号4の塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号4の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
 (c)配列番号4に記載の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
 が好適に用いられる。
 また、本実施形態において、アセトアセチルCoAを3-ヒドロキシブチリルCoAに変換する反応を触媒する酵素をコードする遺伝子としては、発明者らにより提供される、
 (a)配列番号5の塩基配列を有する遺伝子、
 (b)配列番号5の塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号5の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
 (c)配列番号5に記載の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
 が好適に用いられる。
  [3-ヒドロキシブチリルCoAをクロトニルCoAに変換する反応を触媒する酵素をコードする遺伝子]
 本実施形態において、3-ヒドロキシブチリルCoAをクロトニルCoAに変換する反応を触媒する酵素をコードする遺伝子としては、発明者らにより提供される、
 (a)配列番号6の塩基配列を有する遺伝子、
 (b)配列番号6の塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号6の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
 (c)配列番号6に記載の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
 が好適に用いられる。
 また、本実施形態において、3-ヒドロキシブチリルCoAをクロトニルCoAに変換する反応を触媒する酵素をコードする遺伝子としては、発明者らにより提供される、
 (a)配列番号7の塩基配列を有する遺伝子、
 (b)配列番号7の塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号7の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
 (c)配列番号7に記載の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
 が好適に用いられる。
  [クロトニルCoAを4-ヒドロキシブチリルCoAに変換する反応を触媒する酵素をコードする遺伝子]
 本実施形態において、クロトニルCoAを4-ヒドロキシブチリルCoAに変換する反応を触媒する酵素をコードする遺伝子としては、発明者らにより提供される、
 (a)配列番号1の塩基配列を有する遺伝子、
 (b)配列番号1の塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号1の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
 (c)配列番号1に記載の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
 が好適に用いられる。
  [4-ヒドロキシブチリルCoAを1,4-ブタンジオールに変換する反応を触媒する酵素をコードする遺伝子]
 本実施形態において、4-ヒドロキシブチリルCoAを1,4-ブタンジオールに変換する反応を触媒する酵素をコードする遺伝子としては、発明者らにより提供される、
 (a)配列番号8の塩基配列を有する遺伝子、
 (b)配列番号8の塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号8の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
 (c)配列番号8に記載の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
 が好適に用いられる。
 また、本実施形態において、4-ヒドロキシブチリルCoAを1,4-ブタンジオールに変換する反応を触媒する酵素をコードする遺伝子としては、発明者らにより提供される、
 (a)配列番号9の塩基配列を有する遺伝子、
 (b)配列番号9の塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号9の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
 (c)配列番号9に記載の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
 が好適に用いられる。
 なお、上述した遺伝子がコードする酵素は、4-ヒドロキシブチリルCoAを4-ヒドロキシブタナールに変換する反応を触媒するが、得られた4-ヒドロキシブタナールは、前述した宿主微生物が通常有するアルコール還元酵素により、実質的に直ちに1,4-ブタンジオールへと導かれる。
  [アセチルCoAの供給]
 本実施形態の1,4-ブタンジオールの製造方法の基質となるアセチルCoAの供給方法としては、特に制限はなく、既知の様々な方法が用いられる。例えば、宿主微生物の解糖系の作用により、グルコースなどの糖質から得ることができる。また、脂質のβ-酸化の過程でも、アセチルCoAを得ることができる。さらに、CoA転位酵素を用いて、適当なCoA物質とのカップリングにより、酢酸にCoAを転位することによって、アセチルCoAを供給しても良い。
 (微生物の作製方法)
 宿主微生物への遺伝子の導入は種々の知られた方法、例えば制限酵素/ライゲーションに基づく方法、In-Fusionクローニング方法などを適宜組み合わせて用いることで、上記遺伝子又はその一部を適当なベクターに連結し、得られた組換えベクターを目的の遺伝子が発現し得るように宿主中に導入することにより可能である。又は相同組換えによってゲノム上の任意の位置に目的の遺伝子又はその一部を挿入することにより可能である。「一部」とは、宿主中に導入された場合に各遺伝子がコードするタンパク質を発現することができる各遺伝子の一部分を指す。本発明において遺伝子には、DNA及びRNAが包含され、好ましくはDNAである。
 前記遺伝子を連結するベクターとしては、宿主で複製可能なものであれば特に限定されず、例えば大腸菌において外来遺伝子導入に利用されているプラスミド、ファージ及びコスミド等が挙げられる。プラスミドとしては、例えば、pHSG398、pUC18、pBR322、pSC101、pUC19、pUC118、pUC119、pACYC117、pBluescript II SK(+)、pET17b、pETDuet-1、pACYCDuet-1、pCDFDuet-1、pRSFDuet-1、pCOLADuet-1等が挙げられ、ファージとしては、例えばλgt10、Charon 4A、EMBL-、M13mp18、M13mp19等が挙げられる。これらのいくつかは市販されており、市販品(キット)をその手順書に従いそのまま、又は適宜改変して使用することができる。
 上記ベクターにおいては、挿入した遺伝子が確実に発現されるようにするため、該遺伝子の上流に適当な発現プロモーターを接続してもよい。使用する発現プロモーターは、特に制限されず、宿主に応じて当業者が適宜選択可能である。例えば大腸菌において外来遺伝子発現に利用されているT7プロモーター、lacプロモーター、trpプロモーター、trcプロモーター、λ-PLプロモーター、又は大腸菌由来の硝酸呼吸に関与する硝酸還元遺伝子narGHJIオペロンのNarプロモーター領域や、大腸菌の硝酸還元酵素遺伝子であるFrd遺伝子のプロモーター領域を利用することもできる。
 また場合により宿主微生物の本来の遺伝子を破壊してその遺伝子を発現させないようにすることも好ましい。遺伝子破壊の方法については、大腸菌における遺伝子破壊に利用されている公知の方法を使用できる。具体的には、標的遺伝子の任意の位置で相同組換えを起こすベクター(ターゲティングベクター)を用いて当該遺伝子を破壊する方法(ジーンターゲティング法)や、標的遺伝子の任意の位置にトラップベクター(プロモーターを持たないレポーター遺伝子)を挿入して当該遺伝子を破壊しその機能を失わせる方法(遺伝子トラップ法)、それらを組み合わせた方法等の当技術分野でノックアウト細胞等を作製する際に用いられる方法を用いることが出来る。
 相同置換を起こす位置又はトラップベクターを挿入する位置は、破壊したい標的遺伝子の発現を消失させる変異を生じる位置であれば特に限定されないが、好ましくは転写調節領域である。
 さらに、前記ベクターの宿主への導入方法としては、特に制限されないが、例えば、大腸菌へのベクター導入に一般的に利用されているカルシウムイオンを用いる方法、プロトプラスト法、エレクトロポレーション法等を挙げることができる。
 相同組換えによってゲノム上の任意の位置に目的の遺伝子を挿入する方法は、ゲノム上の配列と相同な配列に目的遺伝子をプロモーターとともに挿入し、この核酸断片をエレクトロポレーションによって細胞内に導入して相同組換えを起こさせることにより実施できる。ゲノムへの導入の際には目的遺伝子と薬剤耐性遺伝子を連結した核酸断片を用いると容易に相同組換えが起こった株を選抜することができる。また、薬剤耐性遺伝子と特定の条件下で致死的になる遺伝子を連結した遺伝子をゲノム上に上記の方法で相同組換えによって挿入し、その後、薬剤耐性遺伝子と特定の条件下で致死的になる遺伝子を置き換える形で目的遺伝子を相同組換えにより導入することもできる。
 さらに目的とする遺伝子が導入された組換え微生物を選択する方法は、特に制限されないが、目的とする遺伝子が導入された組換え微生物のみを、容易に選択できる手法によるものが好ましい。
 (培養方法及び得られた1-4ブタンジオールの取得方法)
 本発明の反応は、もっとも簡便には、例えば形質転換体をLB培地などの栄養培地で15℃~40℃、望ましくは18℃~37℃の温度で24時間程度培養したのち、通常の炭素源、例えば0.01~50%、望ましくは0.1~30%のグルコースを炭素源とする培地に移殖し、引き続き同様の温度で1時間~200時間程度培養し、その過程で培養液中に1,4-ブタンジオールを蓄積させることにより達せられる。また菌の増殖・反応の進行による炭素源の消費に応じて、連続的あるいは間欠的に炭素源を添加してもよく、この場合の炭素源の反応液中濃度は前記の限りではない。
 微生物を培養するための培地炭素源としては、グルコースやシュークロース、フルクトース等の糖類、グリセロール等のポリオール、エタノールや酢酸、クエン酸、コハク酸、乳酸、安息香酸、脂肪酸などの有機物またはこれらのアルカリ金属塩、n-パラフィンなどの脂肪族炭化水素類、芳香族炭化水素類、または例えばペプトン、肉エキス、魚エキス、大豆粉、ふすま等の天然有機物を、単独、あるいはこれらの組み合わせにより、通常0.01%~30%、望ましくは0.1%~20%程度の濃度で用いることができる。
 微生物を培養するための培地窒素源としては、例えば硫酸アンモニウム、リン酸アンモニウム、硝酸ナトリウム、硝酸カリウムなどの無機窒素化合物、また尿素、尿酸などの含窒素有機物、ペプトン、肉エキス、魚エキス、大豆粉等の天然有機物を単独、あるいはこれらの組み合わせにより、通常0.01%~20%、望ましくは0.1%~10%程度の濃度で用いることができる。
 さらに必要に応じて、リン酸2水素カリウム等のリン酸塩、硫酸マグネシウム、硫酸第一鉄、酢酸カルシウム、塩化マンガン、硫酸銅、硫酸亜鉛、硫酸コバルト、硫酸ニッケルなどの金属塩を菌の生育、酵素活性の改善のために添加することができる。添加濃度は培養条件により異なるが、通常、リン酸塩に関しては0.01%~5%、マグネシウム塩においては10ppm~1%、他の化合物では0.1ppm~1,000ppm程度である。また選択する培地により、ビタミン類、アミノ酸、核酸などの供給源として例えば酵母エキス、カザミノ酸、酵母核酸を1ppm~100ppm程度、菌の生育、酵素活性を改善のために添加することができる。
 培地のpHは、4.5~9、望ましくは5~8に調整することが望ましい。また前記のような培地であらかじめ培養された微生物菌体を、遠心分離、膜ろ過などの方法により培養液から分取し、反応原料を含む水、生理食塩水、または培養のpHと同等のpHに調整されたリン酸、酢酸、ホウ酸、トリス(ヒドロキシメチル)アミノメタンなどとこれらの塩よりなる緩衝液などに再度懸濁し、反応させることは、反応液中の夾雑物を低減し、後の生成物の分取を簡便にするために有用である。反応中のpHは、充分な濃度の緩衝液を用いる場合においては通常維持されうるが、反応の進行により上記pHを逸脱する場合においては、同様のpHとなるよう水酸化ナトリウム、アンモニアなどを用いて適宜調整することが望ましい。
 反応液中に1,4-ブタンジオールが蓄積することにより、反応速度が低下する場合、生成物の濃度に応じて反応液中に、水、生理食塩水、反応緩衝液等を追加し連続的に希釈してゆく方法は好適である。また反応速度が低下した時点で菌を分取し、上清を生産物溶液として回収し、分取した菌は再度反応原料を含む溶液あるいは懸濁液に戻すことにより、反応速度を回復することができる。この操作は、遠心分離器や分離膜等を用いて連続的に、あるいは回分的にも実施することができる。
 反応液中に生成した1,4-ブタンジオールの分離回収および精製は、1,4-ブタンジオールの生成量が実質的な量に達した時点で、反応液から菌体を遠心分離により除去してから、あるいはそのままの反応液に、一般の有機化合物の分離回収および精製の手段を用いることで行うことができる。例えば、培養液から菌体その他を除去したろ液より、適当な有機溶媒を用いて抽出する。この抽出物をそのまま留去するほか、更に適当な溶媒で再抽出する、あるいはシリカゲル等のクロマトグラフィーを用いて精製する、もしくは多段蒸留等に供することにより、高純度の1,4-ブタンジオールが得られる。
 (実施例及び比較例)
 次に、実施例を説明することにより、本発明をより詳細に説明する。
 表1に、実施例1乃至3及び比較例1における、想定する反応工程と、各々の反応工程を触媒する酵素と、該酵素をコードする遺伝子についてまとめたものを示す。なお、遺伝子における配列番号は、配列表における配列番号に対応している。
Figure JPOXMLDOC01-appb-T000001
 (比較例1)
 配列番号10で示される遺伝子配列の上下流に、発現ベクターpET17b(ノバジェン社製)のマルチクローニングサイト中、NdeIサイトの上流側CAT、下流側ATGをそれぞれ含む上流側、下流側15塩基対分に対応する配列をそれぞれ5'末端側、3'末端側に付加した平滑末端断片を常法により調製した。この断片と、pET17b(ノバジェン社製)をNdeI処理した断片とをIn-Fusion HD Cloning Kit(タカラバイオ社製)によりライゲーションし、プラスミドpETBD10を得た。
 pETBD10と同様の方法により、配列番号12で示される遺伝子配列をpET17bのNdeIサイトをターゲットとして挿入した、配列12を含むプラスミドpETBD12を得た。
 pETBD10の配列10の終止コドン下流に位置する、pET17bマルチクローニングサイト由来のEcoRIサイトを制限酵素処理により切断し、pETBD10の開環断片を調製した。次にpETBD12の配列12の領域と上流のpET17b由来T7プロモーターを含む領域の上下流に、前記pETBD10のEcoRIサイトを含む上流側15bp分、下流側15bp分に対応する配列を付加した断片を、PCRにより調製した。得られた2つの断片を、In-Fusion HD Cloning Kitによりライゲーションし、配列10及び12を含むプラスミドpETBD10-12を得た。
 以下同様にして、さらにpETBD10-12の配列12の下流の配列をターゲットとして、順次、配列番号14、16、17を追加し、プラスミドpETBD10-12-14-16-17を得た。なお、配列の追加に際して、被挿入側プラスミドの開環は、挿入済配列を切断しない適切な制限酵素サイトがベクター上にある場合はその制限酵素による切断で、またそのようなサイトがない場合は目的挿入部位からのインバースPCRにより行った(以後同様)。pETBD10-12-14-16-17により大腸菌JM109(DE3)株を形質転換し、大腸菌pETBD10-12-14-16-17/JM109(DE3)を得た。
 (実施例1乃至3)
 比較例1と同様の方法により、プラスミドpETBD10-12-14-16-17上の配列番号10、12、14、16、17の各遺伝子を、各工程を触媒する酵素に対応する酵素をコードする、配列番号2、4、6、1、8の遺伝子で部分的に置換したプラスミドで形質転換したJM109(DE3)の形質転換体を得た。
 表2に、実施例1乃至3及び比較例1における、想定する反応工程と、各々の反応工程を触媒する酵素と、該酵素をコードする遺伝子についてまとめたものを示す。なお、遺伝子における配列番号は、配列表における配列番号に対応している。
Figure JPOXMLDOC01-appb-T000002
 (比較例2)
 実施例1~3および比較例1と同様にして、まず配列番号11、13、15、16、18で示される遺伝子配列を含むプラスミドpETBD11-13-15-16-18を調製し、これにより大腸菌JM109(DE3)株を形質転換した、大腸菌pETBD11-13-15-16-18/JM109(DE3)を得た。
 (実施例4乃至6)
 更に、プラスミドpETBD11-13-15-16-18上の配列番号11、13、15、16、18の各遺伝子を、各工程を触媒する酵素に対応する酵素をコードする、配列番号3、5、7、1、9の遺伝子で部分的に置換したプラスミドで形質転換したJM109(DE3)形質転換体を得た。
 各実施例及び比較例で得られた各形質転換体を、アンピシリン100mg/Lを含むLB培地5mLで37℃、12時間、好気下で培養した。培養液0.1mLを、グルコース1%、アンピシリン100mg/L、IPTG0.2mMを含むLB培地5mLに移植し、30℃、48時間、好気下で培養した。培養液上清を、高速液体クロマトグラフィー(HPLC:カラム;Shodex SH-1011(昭和電工製)、カラム温度:60℃、溶離液:25mM硫酸水溶液、流速0.6mL/min、検出:示差屈折検出器)に供試した。用いた形質転換体のプラスミドを構成する遺伝子と、培養液中に生成した1,4-ブタンジオール量の関係を、表3及び表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3及び表4より、
 (1)アセチルCoAをアセトアセチルCoAに変換する工程、
 (2)アセトアセチルCoAを3-ヒドロキシブチリルCoAに変換する工程、
 (3)3-ヒドロキシブチリルCoAをクロトニルCoAに変換する工程、
 (4)クロトニルCoAを4-ヒドロキシブチリルCoAに変換する工程及び
 (5)4-ヒドロキシブチリルCoAを1,4-ブタンジオールに変換する工程、
 を含む、微生物又はその培養物を用いた、酵素反応を利用した1,4-ブタンジオールの製造方法において、
 特定の遺伝子又はそのホモログを使用することにより、1,4-ブタンジオールを高い生産性で得ることができる。
 本出願は、2012年12月5日に日本国特許庁に出願された特願2012-266501号に基づく優先権を主張するものであり、特願2012-266501号の全内容を本出願に援用する。

Claims (3)

  1.  微生物及び/又はその培養物を用いて、以下の工程を経て、1,4-ブタンジオールを製造する方法であって、
     (1)アセチルCoAをアセトアセチルCoAに変換する工程
     (2)アセトアセチルCoAを3-ヒドロキシブチリルCoAに変換する工程
     (3)3-ヒドロキシブチリルCoAをクロトニルCoAに変換する工程
     (4)クロトニルCoAを4-ヒドロキシブチリルCoAに変換する工程
     (5)4-ヒドロキシブチリルCoAを1,4-ブタンジオールに変換する工程
     前記微生物は、
    前記(4)の工程を触媒する酵素をコードする遺伝子として、
     (a)配列番号1の塩基配列を有する遺伝子、
     (b)配列番号1の塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号1の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
     (c)配列番号1に記載の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
     のいずれかの遺伝子を含み、かつ、
    前記(1)~(3)、(5)の工程のいずれかを触媒する酵素をコードする遺伝子として、
     (d)配列番号2乃至9のいずれかの塩基配列を有する遺伝子、
     (e)配列番号2乃至9のいずれかの塩基配列において、1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、元の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
     (f)配列番号2乃至9のいずれかの塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
     のいずれか一つ以上の遺伝子を含む、1,4-ブタンジオールの製造方法。
  2.  以下の工程を経て、1,4-ブタンジオールを製造する能力を有する微生物であって、
     (1)アセチルCoAをアセトアセチルCoAに変換する工程
     (2)アセトアセチルCoAを3-ヒドロキシブチリルCoAに変換する工程
     (3)3-ヒドロキシブチリルCoAをクロトニルCoAに変換する工程
     (4)クロトニルCoAを4-ヒドロキシブチリルCoAに変換する工程
     (5)4-ヒドロキシブチリルCoAを1,4-ブタンジオールに変換する工程
    前記(4)の工程を触媒する酵素をコードする遺伝子として、
     (a)配列番号1の塩基配列を有する遺伝子、
     (b)配列番号1の塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、配列番号1の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
     (c)配列番号1に記載の塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
     のいずれかの遺伝子を含み、かつ、
    前記(1)~(3)、(5)の工程のいずれかを触媒する酵素をコードする遺伝子として、
     (d)配列番号2乃至9のいずれかの塩基配列を有する遺伝子、
     (e)配列番号2乃至9のいずれかの塩基配列において、1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、元の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子、
     (f)配列番号2乃至9のいずれかの塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子、
     のいずれか一つ以上の遺伝子を含む、微生物。
  3.  請求項1に記載の1,4-ブタンジオールの製造方法に用いられる遺伝子であって、下記(a)~(c)のいずれかに記載の遺伝子。
     (a)配列番号1乃至9のいずれかの塩基配列を有する遺伝子
     (b)配列番号1乃至9のいずれかの塩基配列において、1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列を有する遺伝子であって、元の塩基配列に対して90%以上の同一性の塩基配列を有する遺伝子
     (c)配列番号1乃至9のいずれかの塩基配列を有する遺伝子と相補的な塩基配列を有する遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子
PCT/JP2013/082068 2012-12-05 2013-11-28 1,4-ブタンジオールの製造方法、微生物及び遺伝子 WO2014087921A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13859911.3A EP2930239A4 (en) 2012-12-05 2013-11-28 PROCESS FOR THE PRODUCTION OF 1,4-BUTANEDIOL, MICROORGANISM AND GENE
JP2014551065A JP6208146B2 (ja) 2012-12-05 2013-11-28 1,4−ブタンジオールの製造方法、微生物及び遺伝子
CN201380062813.7A CN104822831A (zh) 2012-12-05 2013-11-28 1,4丁二醇的制造方法、微生物以及基因
US14/440,116 US9677096B2 (en) 2012-12-05 2013-11-28 Manufacturing method for 1,4-butanediol, microbe, and gene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-266501 2012-12-05
JP2012266501 2012-12-05

Publications (1)

Publication Number Publication Date
WO2014087921A1 true WO2014087921A1 (ja) 2014-06-12

Family

ID=50883339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082068 WO2014087921A1 (ja) 2012-12-05 2013-11-28 1,4-ブタンジオールの製造方法、微生物及び遺伝子

Country Status (5)

Country Link
US (1) US9677096B2 (ja)
EP (1) EP2930239A4 (ja)
JP (1) JP6208146B2 (ja)
CN (1) CN104822831A (ja)
WO (1) WO2014087921A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104781409A (zh) * 2012-11-26 2015-07-15 昭和电工株式会社 1,4-丁二醇的制造方法及微生物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108682A (ja) * 1996-08-14 1998-04-28 Rikagaku Kenkyusho ポリエステル重合酵素遺伝子及びポリエステルの製造方法
US20070259411A1 (en) * 2006-05-05 2007-11-08 Bramucci Michael G Solvent tolerant microorganisms and methods of isolation
JP2008115840A (ja) 2006-11-08 2008-05-22 Hayashida Kogyo Kk エンジン試運転用スタータ取付治具
JP2008245633A (ja) * 2006-05-19 2008-10-16 Agri Bioindustry:Kk 組換えコリネ型細菌および生分解性ポリエステルの製造方法
JP4380704B2 (ja) 2005-04-22 2009-12-09 三菱化学株式会社 バイオマス資源由来ポリエステル及びその製造方法
WO2011047101A1 (en) * 2009-10-13 2011-04-21 Genomatica, Inc. Microorganisms for the production of 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-coa, putrescine and related compounds, and methods related thereto
JP2012501678A (ja) * 2008-09-10 2012-01-26 ゲノマチカ, インク. 1,4−ブタンジオールの生成のための微生物体
JP2012529267A (ja) * 2009-06-04 2012-11-22 ゲノマチカ, インク. 1,4−ブタンジオールの生成のための微生物体及び関連する方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070269872A1 (en) 2006-05-19 2007-11-22 Agribioindustry Inc. Recombinant coryneform bacterium and method for producing diodegradable polyester
EP2137315B1 (en) 2007-03-16 2014-09-03 Genomatica, Inc. Compositions and methods for the biosynthesis of 1,4-butanediol and its precursors
EP2245137B1 (en) 2008-01-22 2017-08-16 Genomatica, Inc. Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol
EP2313491A4 (en) 2008-07-08 2011-12-07 Opx Biotechnologies Inc METHODS, COMPOSITIONS AND SYSTEMS FOR BIOSYNTHETIC BIOPRODUCTION OF 1,4-BUTANEDIOL
CN102307986A (zh) 2008-12-16 2012-01-04 基因组股份公司 用于将合成气和其他碳源转化成有用产品的微生物和方法
EP2424975B1 (en) 2009-04-30 2016-07-06 Genomatica, Inc. Organisms for the production of 1,3-butanediol
JP4760951B2 (ja) 2009-05-08 2011-08-31 トヨタ自動車株式会社 ブタノール生産能を有する組換え微生物及びブタノールの製造方法
JP5787360B2 (ja) 2009-10-30 2015-09-30 株式会社ダイセル 1,3−ブタンジオール生産機能を付与された遺伝子組換え微生物及びその利用
WO2011071682A1 (en) 2009-12-10 2011-06-16 Genomatica, Inc. Methods and organisms for converting synthesis gas or other gaseous carbon sources and methanol to 1,3-butanediol
EP2580341A4 (en) * 2010-06-11 2014-04-23 Univ California SYNTHETIC STRIPS FOR BIOFUEL SYNTHESIS
EP2511377A1 (en) * 2011-04-14 2012-10-17 B.R.A.I.N. Biotechnology Research And Information Network AG Means and methods for producing crotonic acid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108682A (ja) * 1996-08-14 1998-04-28 Rikagaku Kenkyusho ポリエステル重合酵素遺伝子及びポリエステルの製造方法
JP4380704B2 (ja) 2005-04-22 2009-12-09 三菱化学株式会社 バイオマス資源由来ポリエステル及びその製造方法
US20070259411A1 (en) * 2006-05-05 2007-11-08 Bramucci Michael G Solvent tolerant microorganisms and methods of isolation
JP2008245633A (ja) * 2006-05-19 2008-10-16 Agri Bioindustry:Kk 組換えコリネ型細菌および生分解性ポリエステルの製造方法
JP2008115840A (ja) 2006-11-08 2008-05-22 Hayashida Kogyo Kk エンジン試運転用スタータ取付治具
JP2012501678A (ja) * 2008-09-10 2012-01-26 ゲノマチカ, インク. 1,4−ブタンジオールの生成のための微生物体
JP2012529267A (ja) * 2009-06-04 2012-11-22 ゲノマチカ, インク. 1,4−ブタンジオールの生成のための微生物体及び関連する方法
WO2011047101A1 (en) * 2009-10-13 2011-04-21 Genomatica, Inc. Microorganisms for the production of 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-coa, putrescine and related compounds, and methods related thereto

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HARRY YIM ET AL.: "Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol", NATURE CHEMICAL BIOLOGY, vol. 7, 2011, pages 445 - 452
JOSEPH SAMBROOK; DAVID W. RUSSELL.: "Molecular Cloning - A LABORATORY MANUAL THIRD EDITION", COLD SPRING HARBOR LABORATORY PRESS
See also references of EP2930239A4 *

Also Published As

Publication number Publication date
EP2930239A4 (en) 2016-06-29
US9677096B2 (en) 2017-06-13
CN104822831A (zh) 2015-08-05
JP6208146B2 (ja) 2017-10-04
JPWO2014087921A1 (ja) 2017-01-05
US20150376657A1 (en) 2015-12-31
EP2930239A1 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
KR102400332B1 (ko) 정제 화학약품의 개선된 생산을 위한 재조합 미생물
CN105899664B (zh) 用于精细化学品的改进生产的重组微生物
CN107532185B (zh) 羟基-l-哌可酸的制造方法
AU2012214255A1 (en) Cells and methods for producing isobutyric acid
RU2699516C2 (ru) Новая лизиндекарбоксилаза и способ получения кадаверина с ее использованием
WO2014045781A1 (ja) ブタンジオール類の製造方法
WO2014080687A1 (ja) 1,4-ブタンジオールの製造方法及び微生物
JP6208146B2 (ja) 1,4−ブタンジオールの製造方法、微生物及び遺伝子
EP2357222B1 (en) Scyllo-inositol-producing cell and scyllo-inositol production method using said cells
WO2014080683A1 (ja) 1,4-ブタンジオールの製造方法及び微生物
WO2014091991A1 (ja) ブタンジオール類の製造方法、ブタンジオール類製造用微生物の作製方法及び微生物
JP6243851B2 (ja) 1,4−ブタンジオールの製造方法及び微生物
WO2014046178A1 (ja) 遺伝子、微生物、変換方法及び製造方法
JP6778870B2 (ja) 藍藻変異株及びそれを用いたコハク酸及びd−乳酸産生方法
JP2004041107A (ja) L−アミノ酸の製造方法
Tani by Methylotrophs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551065

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14440116

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013859911

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE