WO2014087053A1 - Procédé de fabrication de composite de nanocellulose - Google Patents

Procédé de fabrication de composite de nanocellulose Download PDF

Info

Publication number
WO2014087053A1
WO2014087053A1 PCT/FI2013/051139 FI2013051139W WO2014087053A1 WO 2014087053 A1 WO2014087053 A1 WO 2014087053A1 FI 2013051139 W FI2013051139 W FI 2013051139W WO 2014087053 A1 WO2014087053 A1 WO 2014087053A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocellulose
dispersion
cellulose
milling
resin
Prior art date
Application number
PCT/FI2013/051139
Other languages
English (en)
Inventor
Kalle NÄTTINEN
Original Assignee
Teknologian Tutkimuskeskus Vtt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teknologian Tutkimuskeskus Vtt filed Critical Teknologian Tutkimuskeskus Vtt
Priority to EP13859915.4A priority Critical patent/EP2928957A4/fr
Publication of WO2014087053A1 publication Critical patent/WO2014087053A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/10Crosslinking of cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/245Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using natural fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/12Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
    • D21B1/14Disintegrating in mills
    • D21B1/16Disintegrating in mills in the presence of chemical agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres

Definitions

  • the present invention concerns a method of manufacturing a nanocellulose composite according to the preamble of claim 1.
  • a nanocellulose feedstock is milled in liquid phase to produce a nanocellulose containing dispersion.
  • the nanocellulose is combined with a polymer component.
  • the present invention also concerns novel nanocellulose composites.
  • the current production method of nanocellulose is based on milling and fluidisation in water.
  • the energy consumption in the milling is high, 10-20 times higher (50,000 to 100,000 kwh/ton) than in the traditional pulping processes.
  • the process results in an aqueous dispersion of 0.5-2 w-% nanocellulose in water. Production of higher consistencies is not possible due to limitations of the processing, resulting from the hydrogen bonding network formed by the nanocellulose hydroxyl groups and water.
  • Evaporation of water is not, either, possible without agglomeration of the nanocellulose. If agglomerates are formed, re-dispersion effort equal to original milling is required.
  • JP 2009/292045 discloses a wet dispersing method which includes treating surface-modified cellulose fibres using 0.01-0.5-mm-average-diameter beads to give microfibrils with average fiber diameter from 2 nm to 1.0 ⁇ .
  • modifying cellulose fibers with acetic anhydride adding a dispersing agent of cellulose acetate propionate to a MeCCl 3 solution containing the cellulose acetate fibers, and dispersing the cellulose acetate fibers in a mill gave a dispersion showing fiber average diameter 900 nm.
  • JP 2009/102630 discloses manufacturing microfibrous cellulose, involves ozonizing cellulose fiber, dispersing the fiber in water to obtain water-based suspension liquid of cellulose fiber, and pulverizing the fiber to obtain microfibrous cellulose with maximum fiber width of 1000 nm or less.
  • WO 2009081881 discloses manufacture of fibre composites, involving disentangling fiber in pressure homogenizer which is made to eject 100 MPa or more pressure in pressure-reduced condition and/or ultrasonic wave with power density of 1 W/cm 2 or more in frequency of 15 KHz/1 MHz and conjugating the fiber to matrix material; and disentanglement method of cellulose fiber, which involves irradiating ultrasonic wave to the dispersion liquid of cellulose fiber in which the average of maximum length which is obtained from the plant-derived raw material is 10 ⁇ to 10 cm.
  • thermoplastics In thermoplastics, the differences in the polarity of the matrix (non-polar), fibre (highly polar) and water (highly polar) prevent dispersion and reinforcement or require expensive, inefficient surface modifications multiplying the price of the fibre material and resulting in a composition consisting essentially of the
  • thermosets some attempts in laboratory to disperse nanocellulose prepared by the standard aqueous milling have been published and protected. However, they require the drying off of the water (99% of composition) and result in agglomerates which need to be re-dispersed by expensive, slow and mostly inefficient methods such as ultrasound.
  • An example of such technology can be found in WO 93/10172.
  • Said publication discloses a process for preparing a composition containing a thermosetting resin and cellulose microfibrils wherein a cellulose source is subjected to a treatment comprising removing the non-crystalline material, dispersing the material to obtain microfibrils and suspending the microfibrils to prevent coagulation. The fibrils are then combined with a thermosetting resin to obtain the desired compound.
  • the invention is based on the idea of producing the composite structures by milling the raw- material of the nanocellulose material in the presence of a monomer of a reactive thermoset polymer. Subsequently, the nanocellulose dispersion so obtained is hardened to form a resin, which optionally can be still further cured. As a result, a nano-cellulosic composite is obtained wherein the nanocellulosic components are cross-bonded to the thermoset polymer components of the composite.
  • the present method is mainly characterized by what is stated in the characterizing part of claim 1.
  • the present composites are high performance composites with a biobased reinforcement, in particular a reinforcement based on a material obtained from a renewable source. These materials will provide a substitute or replacement of conventional, expensive, glass and carbon fibre composites which are based on non-renewable materials and which require labour intensive processing and
  • the present method provides for manufacturing of the reinforcement directly in the would-be composite. Expensive and energy intensive drying of any aqueous dispersion, as conventionally called for, is avoided. Agglomeration of the nanocellulose during such a drying process can also be avoided. There is no need for manual hand lay-up processing related to long- fibre composites by using the present technology of nano-scale reinforcement of the composites. There will be formed a strong cross- linking of the cellulosic fibres to the polymer matrix, based on covalent bonds between the components.
  • thermoset resins using pearl mills or basket mills.
  • a suitable raw-material such as macroscopic cellulose, for the target nanocellulose material, is combined at a
  • thermoset resin predetermined ratio with a component of or a mixture of components of a thermoset resin.
  • component(s) will also be referred to as "resin precursors”.
  • the feeds are milled together such as to achieve cross-linking at least essentially based on covalent bonds or similar chemical bonds. Some physical bonds may also be formed during the processing.
  • the conditions of the milling are non-aqueous.
  • essentially water- free processing is considered a highly preferred embodiment. Water- free conditions will assist in avoiding the problems relating to drying of the nano-cellulosic material.
  • the cellulose raw-material and the resin precursor(s), for example, monomer(s), are subjected to milling in, for example, a pearl mill or basket mill or a similar mill capable of exerting milling or grinding forces for diminishing the size of the raw-material into nano-size scale.
  • a pearl mill there are typically grinding pearls, typically ceramic beads, or sand particles which provide the grinding effect.
  • the average diameter of the pearls or beads is about 0.01-0.5-mm.
  • a hub with agitator pins there is atypically a hub with agitator pins. Said pins create a high-energy zone or a vortex within a basket, and when the material is fed into the basket it will pass through the vortex it will be subjected to the high-energy action.
  • the energy consumption of the milling is typically 10,000 to 100,000 kwh/ton.
  • the nanocellulose can be synthesised from various cellulosic materials, such as wood, agrofibres, such as annual plants, and food production side-streams.
  • the cellulose feedstock is preferably chemically pretreated and purified.
  • the raw-material of the nanocellulose comprises macroscopic cellulose, for example cellulosic fibres, in particular cellulosic fibres obtained by defibering of lignocellulosic raw-material, optionally bleached.
  • Vegetal (annual or perennial) fibres instead of wood are another interesting material source; for example nanofibers separated from a residue from carrot juice production, are highly homogeneus nanofibers with better mechanical properties than wood nanofibers.
  • the obtained nanocellulose is in the form of fibres with a diameter between 1.5-5 nm and length up to several micrometers.
  • nano-scale stands for a smallest size of the particles amounting to about 1 to 950 nm, in particular about 10 to 900 nm, for example about 20 to 500 nm, typically about 25 to 200 nm.
  • the raw-material is diminished such that at least 5 %, preferably at least 10 %, in particular at least 20 % of the particles exhibit a smallest dimension in the nano-scale range.
  • nanocellulose refers to any cellulose fibers with an average (smallest) diameter (by weight) of 10 micrometer or less, preferably 1 micrometer or less, and most preferably 200 nm or less.
  • the "cellulose fibers” can be any cellulosic entities having high aspect ratio (preferably 100 or more, in particular 1000 or more) and in the above-mentioned size category. These include, for example, products that are frequently called fine cellulose fibers, microfibrillated cellulose (MFC) fibers and cellulose nanofibers (NFC). Common to such cellulose fibers is that they have a high specific surface area, resulting in high contact area between fibers in the end product. As a result dispersed NFCs will form networks within polymer matrices.
  • MFC microfibrillated cellulose
  • NFC cellulose nanofibers
  • the aspect ratio of the nanocellulose is typically greater than 5.
  • milling is carried out in liquid phase, i.e. in the liquid phase formed by the component(s) of the thermoset resin.
  • the liquid phase resin precursor(s) - for example monomer(s) - of the thermoset are first added to the mixing space of the mill
  • a liquid dispersion is formed having a consistency (solid matter content based on the total weight of the dispersion) of at least about 0.01 %, preferably about 0.1 to 50 %, in particular about 0.2 to 25 %, for example about 0.3 to 20 %, typically about 0.5 to 15 %. Milling is continued until a sufficient reduction in dimension of the cellulose has been achieved.
  • the liquid dispersion can be heated to lower the viscosity and to enhance the process.
  • the heating can be carried out before addition of the raw-material, in practice the cellulose material, or during the addition or at intervals between additions of the raw-material.
  • temperatures in excess of room temperature can be used, for example at least 30 °C, in particular at least 35 °C, for example 40 to 100 °C, in particular about 45 to 90 °C, at ambient pressure.
  • the heating is preferably carried out at a temperature below the boiling point of the liquid precursor at the prevailing pressure.
  • milling is carried out in ambient pressure in an open vessel.
  • operation at increased pressures of, for example 1.1 to 15 bar(a) is also possible.
  • a second component of the thermoset along with further additive(s), if any, is added to the dispersion.
  • the second component is typically a hardener which achieves the cross-linking of the monomer and, thus, setting of the thermoset.
  • the addition of the second component of the thermoset along with further additive(s) is preferably carried out in a separate mixing step. This mixing can be carried out in the same equipment or in a separate mixing or blending unit. Mixing is continued to allow for the formation of a resin.
  • the resin can be transferred to a mold. It can be impregnated to a fibre structure. It can be applied as a coating on a substrate surface.
  • thermoset monomers used herein include for example polyols of polyester resins and epichorohydrin of epoxy resins.
  • the hardener is typically a polyfunctional curative. Basically, a molecule containing reactive hydrogen may react with the epoxide groups of the epoxy resin.
  • Hardeners for epoxy resins can be selected from the group consisting of amines, acids, acid anhydrides, phenols, alcohols and thiols.
  • a typical hardening temperature being higher than to 100 °C, in particular higher than 150 °C, for example up to a maximum of about 200 °C for most of the systems.
  • the polyol is typically a glycol, such as ethylene glycol, which is combined with an acid, such as phthalic acid or maleic acid. Hardening is achieved by creating free radicals at the unsaturated bonds of the material.
  • the free radicals can be induced by adding a compound that easily decomposes into free radicals, such as an organic peroxide, for example benzoyl peroxide or methyl ethyl peroxide.
  • the resin can be photocurable.
  • nanocellulose will be produced by pearl milling of chemically pretreated and purified cellulose in the pre-polymer using polyester and epoxy resins. Both the polyester and epoxy resins readily react with the cellulose fibre surface hydroxyl groups, resulting in a cross-linked composite structure where the reinforcement fibre is integrally bound and its full potential may be exploited - without surface modification.
  • the present composites are useful for high-performance composite applications.
  • a drawback of known composites has been their high price and difficult recycling. With the present technology, these problems can be overcome.

Abstract

L'invention porte sur des composites de nanocellulose et sur un procédé de fabrication de composites de nanocellulose, qui comprennent de la nanocellulose mélangée avec un polymère. Le procédé comprend les étapes consistant à broyer dans un broyeur continu à micro-éléments de verre une charge de départ de nanocellulose en phase liquide pour produire une dispersion contenant de la nanocellulose. La phase liquide de la dispersion est formée par un monomère composant d'une résine thermodurcissable. Par ajout d'un durcisseur, la dispersion est durcie pour réaliser la réticulation du polymère à la nanocellulose renforçante. Le composite peut être utilisé pour des applications de composite à haute performance.
PCT/FI2013/051139 2012-12-04 2013-12-04 Procédé de fabrication de composite de nanocellulose WO2014087053A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13859915.4A EP2928957A4 (fr) 2012-12-04 2013-12-04 Procédé de fabrication de composite de nanocellulose

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261732958P 2012-12-04 2012-12-04
FI20126269 2012-12-04
FI20126269A FI125900B (en) 2012-12-04 2012-12-04 A process for preparing a nanocellulose composite
US61/732,958 2012-12-04

Publications (1)

Publication Number Publication Date
WO2014087053A1 true WO2014087053A1 (fr) 2014-06-12

Family

ID=50882850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI2013/051139 WO2014087053A1 (fr) 2012-12-04 2013-12-04 Procédé de fabrication de composite de nanocellulose

Country Status (3)

Country Link
EP (1) EP2928957A4 (fr)
FI (1) FI125900B (fr)
WO (1) WO2014087053A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016071573A1 (fr) 2014-11-06 2016-05-12 Teknologian Tutkimuskeskus Vtt Oy Composites fonctionnels à base de cellulose, dispositifs de stockage d'énergie et leurs procédés de fabrication
CN106223089A (zh) * 2016-07-22 2016-12-14 扬州大学 一种从葎草茎中提取纤维素纳米纤维的方法
WO2017051030A1 (fr) 2015-09-25 2017-03-30 Sappi Netherlands Services B.V. Séchage par atomisation de cellulose en présence de co2 supercritique
WO2017158626A1 (fr) 2016-03-18 2017-09-21 Council Of Scientific & Industrial Research Nanocomposites hybrides de nio-nanocellulose à activités antibactériennes et antifongiques
WO2018146338A1 (fr) 2017-02-13 2018-08-16 Re-Turn As Procédé de dispersion de nanocellulose dans des précurseurs de polymère organique
WO2019058019A1 (fr) * 2017-09-19 2019-03-28 Stick Tech Oy Matériau dentaire contenant de la cellulose nanocristalline
CN113818272A (zh) * 2021-09-26 2021-12-21 上海爱普食品工业有限公司 一种生物质纳米纤维素的制备方法
CN115559147A (zh) * 2021-07-02 2023-01-03 中国制浆造纸研究院有限公司 一种提高纳米纤维素纳纤化效率的方法
RU2810201C1 (ru) * 2022-11-22 2023-12-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" Способ наноструктуризации волокон целлюлозы

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010172A1 (fr) * 1991-11-18 1993-05-27 Dsm N.V. Composition de matiere plastique thermodurcissable et de fibres cellulosiques
US20090298976A1 (en) * 2005-10-26 2009-12-03 Hiroyuki Yano Fiber-Reinforced Composition Resin Composition, Adhesive and Sealant
WO2012043558A1 (fr) * 2010-09-29 2012-04-05 Dic株式会社 Procédé de pulvérisation de cellulose, nanofibres de cellulose, mélange-maître et composition de résine
WO2013022025A1 (fr) * 2011-08-08 2013-02-14 王子ホールディングス株式会社 Procédé de fabrication de cellulose microfibreuse, procédé de fabrication d'un tissu non tissé, cellulose microfibreuse, bouillie contenant de la cellulose microfibreuse, tissu non tissé et composite

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374869B2 (ja) * 2007-12-25 2013-12-25 三菱化学株式会社 セルロース繊維複合体
EP2226171B1 (fr) * 2007-12-21 2019-04-10 Mitsubishi Chemical Corporation Composite à base de fibres
WO2011076979A1 (fr) * 2009-12-22 2011-06-30 Moilanen, Pasi Fabrication et application de nanocomposites polymère-matériau graphitique et matériaux hybrides
JP5712422B2 (ja) * 2010-04-01 2015-05-07 三菱化学株式会社 微細セルロース繊維分散液の製造方法
JP5836361B2 (ja) * 2011-03-04 2015-12-24 国立大学法人京都大学 透明樹脂複合材料
FI20115435A (fi) * 2011-05-06 2012-11-07 Upm Kymmene Corp Hydrofobinen päällyste ja menetelmä hydrofobisen päällysteen aikaansaamiseksi
TWI554554B (zh) * 2012-03-28 2016-10-21 迪愛生股份有限公司 纖維素奈米纖維之製造方法、纖維素奈米纖維、母料及樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010172A1 (fr) * 1991-11-18 1993-05-27 Dsm N.V. Composition de matiere plastique thermodurcissable et de fibres cellulosiques
US20090298976A1 (en) * 2005-10-26 2009-12-03 Hiroyuki Yano Fiber-Reinforced Composition Resin Composition, Adhesive and Sealant
WO2012043558A1 (fr) * 2010-09-29 2012-04-05 Dic株式会社 Procédé de pulvérisation de cellulose, nanofibres de cellulose, mélange-maître et composition de résine
EP2623545A1 (fr) * 2010-09-29 2013-08-07 DIC Corporation Procédé de pulvérisation de cellulose, nanofibres de cellulose, mélange-maître et composition de résine
WO2013022025A1 (fr) * 2011-08-08 2013-02-14 王子ホールディングス株式会社 Procédé de fabrication de cellulose microfibreuse, procédé de fabrication d'un tissu non tissé, cellulose microfibreuse, bouillie contenant de la cellulose microfibreuse, tissu non tissé et composite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2928957A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016071573A1 (fr) 2014-11-06 2016-05-12 Teknologian Tutkimuskeskus Vtt Oy Composites fonctionnels à base de cellulose, dispositifs de stockage d'énergie et leurs procédés de fabrication
WO2017051030A1 (fr) 2015-09-25 2017-03-30 Sappi Netherlands Services B.V. Séchage par atomisation de cellulose en présence de co2 supercritique
US10669384B2 (en) 2015-09-25 2020-06-02 Sappi Netherlands Services B.V. Supercritical CO2 cellulose spraydrying
WO2017158626A1 (fr) 2016-03-18 2017-09-21 Council Of Scientific & Industrial Research Nanocomposites hybrides de nio-nanocellulose à activités antibactériennes et antifongiques
CN106223089A (zh) * 2016-07-22 2016-12-14 扬州大学 一种从葎草茎中提取纤维素纳米纤维的方法
US11186689B2 (en) 2017-02-13 2021-11-30 Norske Skog Saugbrugs As Method to disperse nano-cellulose in organic polymer precursors
WO2018146338A1 (fr) 2017-02-13 2018-08-16 Re-Turn As Procédé de dispersion de nanocellulose dans des précurseurs de polymère organique
US11554082B2 (en) 2017-09-17 2023-01-17 Stick Tech Oy Nanocrystalline cellulose containing dental material
CN111107829A (zh) * 2017-09-19 2020-05-05 斯蒂克技术公司 含有纳米晶体纤维素的牙科材料
WO2019058019A1 (fr) * 2017-09-19 2019-03-28 Stick Tech Oy Matériau dentaire contenant de la cellulose nanocristalline
CN115559147A (zh) * 2021-07-02 2023-01-03 中国制浆造纸研究院有限公司 一种提高纳米纤维素纳纤化效率的方法
CN115559147B (zh) * 2021-07-02 2024-01-16 中国制浆造纸研究院有限公司 一种提高纳米纤维素纳纤化效率的方法
CN113818272A (zh) * 2021-09-26 2021-12-21 上海爱普食品工业有限公司 一种生物质纳米纤维素的制备方法
RU2810201C1 (ru) * 2022-11-22 2023-12-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" Способ наноструктуризации волокон целлюлозы

Also Published As

Publication number Publication date
EP2928957A1 (fr) 2015-10-14
FI125900B (en) 2016-03-31
FI20126269A (fi) 2014-06-05
EP2928957A4 (fr) 2016-07-06

Similar Documents

Publication Publication Date Title
FI125900B (en) A process for preparing a nanocellulose composite
Kargarzadeh et al. Recent developments on nanocellulose reinforced polymer nanocomposites: A review
Peng et al. Enhanced dispersion and properties of a two-component epoxy nanocomposite using surface modified cellulose nanocrystals
Wang et al. Bio-inspired cellulose nanofiber-reinforced soy protein resin adhesives with dopamine-induced codeposition of “water-resistant” interphases
JP5540176B2 (ja) ミクロフィブリル化植物繊維及びその製造方法、並びにそれを用いた成形材料、及び樹脂成形材料の製造方法
JP5712422B2 (ja) 微細セルロース繊維分散液の製造方法
JP6206529B2 (ja) セルロース繊維集合体およびセルロース繊維複合体
Igarashi et al. Manufacturing process centered on dry-pulp direct kneading method opens a door for commercialization of cellulose nanofiber reinforced composites
Vu et al. Effect of micro/nano white bamboo fibrils on physical characteristics of epoxy resin reinforced composites
JP5384405B2 (ja) ナノチューブの含有量が高い熱硬化性複合材料の製造方法
Zhao et al. Grafting of polyethylenimine onto cellulose nanofibers for interfacial enhancement in their epoxy nanocomposites
JP5978822B2 (ja) 微細セルロース繊維分散液の製造方法
WO2015019679A1 (fr) Matériau de renfort, résine matricielle renforcée, complexe de résine renforcée de fibres, et procédé de production de matériau de renfort
JP2009293167A (ja) ナノ繊維の製造方法、ナノ繊維、混合ナノ繊維、複合化方法、複合材料および成形品
CN103467920B (zh) 一种改善环氧树脂力学性能和耐热性的方法
CN111511980A (zh) 微细化疏水改性纤维素纤维的制造方法
Pech-Cohuo et al. Production and modification of cellulose nanocrystals from Agave tequilana weber waste and its effect on the melt rheology of PLA
HPS et al. Nanofibrillated cellulose reinforcement in thermoset polymer composites
JP2011016995A (ja) 修飾セルロース繊維分散液の製造方法及びセルロース複合材料の製造方法
Wolski et al. Surface hydrophobisation of lignocellulosic waste for the preparation of biothermoelastoplastic composites
Nechita et al. Improving the dispersibility of cellulose microfibrillated structures in polymer matrix by controlling drying conditions and chemical surface modifications
WO2013074259A1 (fr) Compositions d'ester de polycyanate contenant de la nanosilice
US20160108183A1 (en) Method for conversion of dry nanomaterials into liquid nano-agents for fabrication of polymer nanocomposites and fiber reinforced composites
JP2019119984A (ja) 微細化疎水変性セルロース繊維の製造方法
Rozyanty et al. Ultra-Violet Radiationcured Composites Based on Unsaturated Polyester Resin Filled with MMT and Kenaf Bast Fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859915

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013859915

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE