WO2014086070A1 - 变流器冷却管路和冷却装置 - Google Patents

变流器冷却管路和冷却装置 Download PDF

Info

Publication number
WO2014086070A1
WO2014086070A1 PCT/CN2012/087624 CN2012087624W WO2014086070A1 WO 2014086070 A1 WO2014086070 A1 WO 2014086070A1 CN 2012087624 W CN2012087624 W CN 2012087624W WO 2014086070 A1 WO2014086070 A1 WO 2014086070A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water inlet
water outlet
pipe
main pipe
Prior art date
Application number
PCT/CN2012/087624
Other languages
English (en)
French (fr)
Inventor
姬慧刚
王彬
刘佳
姜新生
Original Assignee
永济新时速电机电器有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永济新时速电机电器有限责任公司 filed Critical 永济新时速电机电器有限责任公司
Publication of WO2014086070A1 publication Critical patent/WO2014086070A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change

Definitions

  • the present invention relates to high power converter technology, and more particularly to a converter cooling circuit and a cooling device. Background technique
  • High-power converters are one of the important components of electric locomotive AC drive systems.
  • the power device of the high-power converter realizes the turning-on and turn-off of the circuit, and the power device may be a semiconductor device such as an insulated gate bipolar transistor (IGBT) device or a diode, and the power
  • IGBT insulated gate bipolar transistor
  • the power device may be a semiconductor device such as an insulated gate bipolar transistor (IGBT) device or a diode, and the power
  • IGBT insulated gate bipolar transistor
  • the power device of the high-power converter is usually cooled by a water circulation cooling method, that is, a mixture of water and ethylene glycol is used as a cooling medium to cool the power device, and then the cooling medium is passed through a cooling device. Secondary cooling, cooling of the power device is achieved by providing a cooling line.
  • Figure 1 is a schematic view of a conventional cooling device.
  • the existing converter cooling device includes a plurality of water inlet pipes 1, a plurality of water outlet pipes 2, a water pump 3, and a cooling fan 4.
  • the heat exchanger 5 and the power module 6, the power module 6 includes a power device 61 and a water-cooled substrate 62.
  • the power device 61 is disposed on the water-cooled substrate 62.
  • the water-cooled substrate 62 has a circulating cooling water channel inside, and the water inlet pipe 1 has one end and the water pump 3.
  • the water outlet is connected, the other end of the water inlet pipe 1 is connected to the water inlet of the water-cooled substrate 62, the outlet 2 is connected to the water outlet of the water-cooled substrate 62, and the other end of the water outlet 2 is connected to the water inlet of the heat exchanger 5.
  • the water outlet of the heat exchanger 5 communicates with the water inlet of the water pump 3 to form a cooling circuit, and the coolant in the cooling circuit flows through the water-cooled substrate 62, and the water-cooled substrate 62 carries away the heat generated when the power device 61 operates.
  • the air outlet of the cooling fan 4 faces the heat exchanger 5, and the coolant flowing out of the water-cooled substrate 62 exchanges heat with the outside in the heat exchanger 5, and then exchanges heat into the water-cooled substrate 62 to realize the pair. Work Rate the heat dissipation of module 6.
  • each power module 6 is connected with a separate water inlet pipe 1 and a water outlet pipe 2, so that the arrangement of the plurality of water inlet pipe 1 and the water outlet pipe 2 is complicated and occupied. Large installation space.
  • the number of the power modules 6 is large, the lengths of the plurality of water inlet pipes 1 and the water outlet pipes 2 are also different, so that the flow distribution of the water inlet pipe 1 and the water outlet pipe 2 is uneven, resulting in each power module 6 The heat dissipation effect is different.
  • the present invention provides a converter cooling circuit and a cooling device for solving the problem that the structure of the converter cooling circuit in the prior art is complicated, occupying a large space, and when applied to more than one power module, the flow distribution is not Uniform technical defects.
  • the present invention provides a converter cooling circuit including an inlet pipe and a water outlet pipe; the inlet pipe includes an inlet main pipe and a plurality of inlet water pipes; and the inlet main pipe is used for communicating with the water pump.
  • One end of the plurality of inlet water pipes is in communication with the water inlet main pipe, and the other end of the plurality of water inlet pipes is configured to communicate with the water outlet of the water-cooled substrate of the converter power module;
  • the water outlet pipe includes a water discharge main pipe and a plurality of water outlet pipes; the water discharge main pipe is configured to communicate with the heat exchanger, one end of the plurality of water outlet pipes is connected to the water discharge main pipe, and the other end of the plurality of water outlet pipes is used It is connected to the water outlet of the water-cooled substrate of the converter power module.
  • the water inlet pipe further comprises a water inlet manifold; one end of the inlet manifold is connected to the inlet main, and the other end of the inlet manifold is Connected to the water outlet of the pump;
  • the water outlet pipe further includes a water outlet manifold; one end of the water outlet manifold is connected to the water outlet main pipe, and the other end of the water outlet manifold is used to communicate with the water inlet of the heat exchanger.
  • the water inlet manifold comprises an inlet pipe joint and a water inlet bellows, and one end of the inlet pipe joint communicates with the inlet main pipe, and the inlet pipe joint is further One end is in communication with one end of the inlet bellows, and the other end of the inlet bellows is for communicating with a water pump;
  • the water outlet manifold comprises an outlet pipe joint and a water outlet bellows, one end of the outlet pipe joint is in communication with the outlet main pipe, the other end of the outlet pipe joint is connected with one end of the outlet bellows, and the other end of the outlet bellows Used to communicate with the water inlet of the heat exchanger.
  • the water inlet pipe joint communicates with the middle portion of the water inlet main pipe
  • the water outlet pipe joint communicates with the middle portion of the water discharge main pipe.
  • the converter cooling circuit as described above preferably, the water inlet main pipe and the water discharge main pipe are arranged in parallel at intervals;
  • the number of the moisture inlet pipes is the same as the number of the water outlet pipes, and the position of the water inlet pipe on the water inlet pipe corresponds to the position of the water outlet pipe at the water outlet pipe.
  • the water inlet main pipe and the water discharge main pipe are provided with a plurality of fixing columns, and the plurality of fixing columns are used for the fixed connection with the converter.
  • the present invention also provides a converter cooling device comprising a water pump, a water-cooled substrate, a cooling fan and a heat exchanger, the converter cooling device further comprising a converter cooling circuit provided by the above summary;
  • the water outlet of the water pump communicates with the water inlet main pipe, the water inlet pipe communicates with the water inlet of the water-cooled substrate, and the water outlet pipe communicates with the water outlet of the water-cooled substrate, the water discharge main pipe and the water discharge pipe a water inlet of the heat exchanger is connected, and a water outlet of the heat exchanger is connected to a water inlet of the water pump;
  • the air outlet of the cooling fan faces the heat exchanger.
  • the present invention provides a converter cooling circuit and a cooling device.
  • the inlet pipe and the outlet pipe are designed as a main pipe and a pipe joint structure, which can reduce the number of cooling pipes in the cooling device for the converter and reduce the complexity of the pipe.
  • the installation space occupied by the pipeline can be reduced, and the overall pipeline design can ensure the flow balance of the liquid flowing into the water inlet pipe and the water outlet pipe, thereby improving the heat dissipation balance and cooling effect of each converter power module.
  • FIG. 1 is a schematic view of a conventional converter cooling device
  • FIG. 2 is a schematic diagram of a converter cooling circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic view of the water inlet pipe of Figure 2;
  • FIG 4 is a schematic view of the water outlet pipe of Figure 2. Reference mark:
  • FIG. 2 is a schematic diagram of a converter cooling circuit according to an embodiment of the present invention
  • FIG. 3 is a schematic view of the water inlet pipe of FIG. It is a schematic diagram of the water outlet pipe in Fig. 2.
  • the converter cooling circuit provided in this embodiment includes a water inlet pipe 1 and a water outlet pipe 2.
  • the water inlet pipe 1 includes an inlet water main pipe 1 1 and a plurality of water inlet pipes 12; the water inlet pipe main pipe 11 is connected to the water outlet of the water pump 3, and the plurality of water inlet pipes 12 end are connected with the water inlet pipe 1 1 , and a plurality of The other end of the moisture inlet pipe 12 is for communicating with the water inlet of the water-cooled substrate 62 of the power module.
  • the water outlet pipe 2 includes a water discharge main pipe 21 and a plurality of water outlet pipes 22; the water discharge main pipe 21 is connected to the water inlet of the heat exchanger, and the plurality of water outlet pipes 22 end are communicated with the water discharge main pipe 21, and the other ends of the plurality of water outlet pipes 22 It is used to communicate with the water outlet of the water-cooled substrate 62 of the converter power device.
  • the diameter of the inlet main pipe 11 is larger than the diameter of the inlet water pipe 12, the inlet main pipe 11 may be a straight pipe structure, and the inlet water pipe 12 may be a bent pipe structure.
  • the diameter of the outlet main 21 is larger than the diameter of the outlet pipe 22, the outlet main 21 can be a straight pipe structure, and the outlet pipe 22 can be a bent pipe structure.
  • the inlet pipe 1 and the outlet pipe 2 can be designed in the same structural form.
  • the water inlet main pipe 11 and the water discharge main pipe 21 are arranged in parallel; the number of the water inlet pipe 12 is the same as the number of the water outlet pipe 12, and the position of the water inlet pipe 12 on the water inlet pipe 11 and the water outlet pipe 22 are at the water discharge pipe 21 Corresponding to the position, it facilitates the docking installation of the moisture inlet pipe 12 and the water outlet pipe 22 and the water-cooled substrate 62.
  • the number of inlet and outlet tubes 12, 22, can be determined by the number of cooling power modules required for the converter, and can be applied to the cooling of multiple power modules.
  • the water inlet pipe 1 further includes an inlet water collecting pipe 13; the inlet water collecting pipe 13-end is in communication with the water inlet main pipe 11, and the other end of the inlet water collecting pipe 13 is used to communicate with the water outlet of the water pump 3, and the inflow confluence is set.
  • the tube 13 facilitates the communication of the water pump 3 and the water inlet main pipe 11.
  • the water outlet pipe 2 further includes a water outlet manifold 23; a water outlet manifold 23 end and a water outlet main 21 Connected, the other end of the water outlet manifold 23 is used to communicate with the water inlet of the heat exchanger, and the water outlet manifold 23 is provided to facilitate the communication of the heat exchanger and the water discharge main pipe 21.
  • the other end of the water outlet manifold 23 can be connected with the external pipeline. Connected, and then connected to the water inlet of the heat exchanger through an external pipeline.
  • the water inlet manifold 13 includes an inlet pipe joint 131 and a water inlet bellows 132.
  • the inlet pipe joint 131 is connected to the inlet main pipe 1 1 , and the other end of the inlet pipe joint 131 is connected to the inlet bellows 132 end.
  • the other end of the inlet bellows 132 is for communicating with the water outlet of the water pump 3.
  • the water outlet manifold 23 includes an outlet pipe joint 231 and a water outlet bellows 232.
  • One end of the outlet pipe joint 231 is in communication with the outlet main 21, the other end of the outlet pipe joint 231 is connected to one end of the outlet bellows 232, and the other end of the outlet bellows 232 is used for heat.
  • the water inlet of the exchanger is connected.
  • the other end of the water outlet bellows 232 can communicate with the external pipeline, and then communicate with the water inlet of the heat exchanger through the external pipeline.
  • the inlet pipe joint 131 and the outlet pipe joint 231 can be made of a stainless steel pipe, and the inlet bellows 132 and the outlet bellows 132 are flexible pipes for easy installation.
  • the inlet pipe joint 131 communicates with the central portion of the water inlet main pipe 11
  • the water outlet pipe joint 231 communicates with the central portion of the water discharge main pipe 21
  • the water inlet pipe joint 131 and the water outlet pipe structure 231 are respectively disposed at the middle of the water inlet main pipe 11 and the water discharge main pipe 21, The uniformity of the flow distribution of the coolant into the moisture pipe 12 and the moisture pipe 22 can be improved.
  • the water inlet pipe 1 and the water outlet pipe 2 are designed as a main pipe and a pipe joint structure, which can reduce the number of pipes and reduce the complexity of the pipeline, and can reduce the occupation of the pipeline. Installation space. Further, the water inlet main pipe 11 and the water discharge main pipe 21 can ensure the flow of the liquid flowing into the moisture inlet pipe 12 and the outlet water pipe 22 to be equalized, thereby improving the heat dissipation balance and the cooling effect of the power modules of the respective converters.
  • the water inlet main pipe 11 and the water discharge main pipe 21 are respectively provided with a plurality of fixing columns 10, and the plurality of fixing columns 10 are used for fixed connection with the converter, for example, a type 0 card can be used.
  • the water inlet main pipe 11 and the water discharge main pipe 21 are fixed on the converter rejecting body, and one end of the 0 type card is clamped on the water inlet main pipe 11 or the water discharge main pipe 21, and the other end is clamped on the converter rejecting plate, and the other end is used.
  • the above installation method can improve the installation stability of the water inlet pipe 1 and the water outlet pipe 2.
  • the embodiment of the invention further provides a converter cooling device, which comprises a water pump, a water-cooled substrate, a cooling fan and a heat exchanger, and the converter cooling device further comprises a converter cooling circuit provided by the above embodiment.
  • the water outlet of the water pump communicates with the water inlet main pipe 11, the water inlet pipe 12 communicates with the water inlet of the water-cooled substrate 62, the water outlet pipe 22 communicates with the water outlet of the water-cooled substrate 62, and the water discharge main pipe 21 communicates with the water inlet of the heat exchanger, and the heat exchange is performed.
  • the water outlet of the device is connected to the water inlet of the water pump; the air outlet of the cooling fan faces the heat exchanger.
  • the water inlet pipe 1 and the water outlet pipe 2 are designed as a main pipe and a pipe joint structure, which can reduce the number of pipes and reduce the complexity of the pipeline, and can reduce the installation of the pipeline. space. Further, the water inlet main pipe 11 and the water discharge main pipe 21 can ensure the flow of the liquid flowing into the moisture inlet pipe 12 and the outlet water pipe 22 to be equalized, thereby improving the heat dissipation balance and the cooling effect of the power modules of the respective converters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种变流器冷却管路和冷却装置。该冷却管路包括进水管路(1)和出水管路(2)。进水管路包括进水主管(11)和多个进水分管(12)。进水主管用于与水泵(3)连通。多个进水分管一端与进水主管连通,另一端与变流器功率模块的水冷基板(62)的进水口连通。出水管路包括出水主管(21)和多个出水分管(22)。出水主管用于与热交换器连通。多个出水分管一端与出水主管连通,另一端与变流器功率模块的水冷基板的出水口连通。通过将进水管路和出水管路设计为主管和分管配合的结构,可以减少管路数量并且降低管路的复杂性,同时可以减小管路占用的安装空间。

Description

变流器冷却管路和冷却装置
技术领域
本发明涉及大功率变流器技术, 尤其涉及一种变流器冷却管路和冷却 装置。 背景技术
大功率变流器是电力机车交流电传动系统的重要部件之一。 电力机车 正常运行时, 大功率变流器的功率器件实现电路的导通和关断, 功率器件 可以为绝缘栅双极型晶体管( Insulated Gate Bipolar Transistor, 简称 IGBT ) 器件或二极管等半导体器件, 功率器件工作时产生的能量损耗以热形式出 现, 若不能及时有效地散发功率器件产生的热量, 会影响大功率变流器的 工作效率, 甚至会造成大功率变流器无法工作。 因此, 必须釆用合适的冷 却方式将功率器件所产生的热量带走。
现有技术中, 通常釆用水循环冷却方式对大功率变流器的功率器件进 行冷却, 即釆用水和乙二醇的混合液作为冷却介质冷却功率器件, 然后再 通过冷却装置对该冷却介质进行二次冷却, 通过设置冷却管路实现对功率 器件的冷却。
参考图 1 , 图 1为现有的冷却装置的示意图; 如图 1所示, 现有的变 流器冷却装置包括多个进水管路 1、 多个出水管路 2、 水泵 3、冷却风机 4、 热交换器 5和功率模块 6, 功率模块 6包括功率器件 61和水冷基板 62, 功率器件 61设置在水冷基板 62上, 水冷基板 62内部具有循环冷却水道, 进水管路 1一端与水泵 3的出水口连通,进水管路 1另一端与水冷基板 62 的进水口连通, 出水管路 2—端与水冷基板 62的出水口连通, 出水管路 2 的另一端与热交换器 5的进水口连通, 热交换器 5的出水口与水泵 3的进 水口连通, 进行形成冷却循环回路, 冷却循环回路中的冷却液流过水冷基 板 62, 水冷基板 62对功率器件 61 工作时产生的热量带走, 冷却风机 4 的出风口朝向热交换器 5 ,从水冷基板 62流出的冷却液在热交换器 5中与 外界进行热量交换, 然后在进入水冷基板 62 中进行热量交换, 实现对功 率模块 6的散热。
现有的变流器冷却装置中,每个功率模块 6都连接有独立的进水管路 1和出水管路 2 , 使得多个进水管路 1和出水管路 2的布置很复杂, 并且 占用较大的安装空间。 此外, 若功率模块 6数量较多时, 多个进水管路 1 和出水管路 2的长度也各不相同, 因而导致进水管路 1和出水管路 2的流 量分配不均匀, 导致各个功率模块 6的散热效果不同。 发明内容 本发明提供一种变流器冷却管路和冷却装置, 用于解决现有技术中变 流器冷却管路结构复杂, 占用空间大, 且应用于较多个功率模块时, 流量 分配不均匀的技术缺陷。
本发明提供的一种变流器冷却管路, 包括进水管路和出水管路; 所述进水管路包括进水主管和多个进水分管; 所述进水主管用于与水 泵连通, 所述多个进水分管一端与所述进水主管连通, 所述多个进水分管 的另一端用于与变流器功率模块的水冷基板的出水口连通;
所述出水管路包括出水主管和多个出水分管; 所述出水主管用于与热 交换器连通, 所述多个出水分管一端与所述出水主管连通, 所述多个出水 分管的另一端用于与变流器功率模块的水冷基板的出水口连通。
如上所述的变流器冷却管路, 优选地, 所述进水管路还包括进水汇流 管; 所述进水汇流管一端与所述进水主管连通, 所述进水汇流管另一端用 于与水泵的出水口连通;
所述出水管路还包括出水汇流管; 所述出水汇流管一端与所述出水主 管连通, 所述出水汇流管另一端用于与热交换器的进水口连通。
如上所述的变流器冷却管路, 优选地, 所述进水汇流管包括进水管接 头和进水波纹管, 所述进水管接头一端与所述进水主管连通, 所述进水管 接头另一端与所述进水波纹管一端连通, 所述进水波纹管的另一端用于与 水泵连通;
所述出水汇流管包括出水管接头和出水波纹管, 所述出水管接头一端 与所述出水主管连通, 所述出水管接头另一端与所述出水波纹管一端连 通, 所述出水波纹管另一端用于与热交换器的进水口连通。 如上所述的变流器冷却管路, 优选地, 所述进水管接头与所述进水主 管中部连通, 所述出水管接头与所述出水主管中部连通。
如上所述的变流器冷却管路, 优选地, 所述进水主管和出水主管平行 间隔设置;
所述进水分管的数量与所述出水分管的数量相同, 且所述进水分管在 所述进水主管上的位置与所述出水分管在所述出水主管的位置对应。
如上所述的变流器冷却管路, 优选地, 所述进水主管和出水主管上均 设置有多个固定柱, 所述多个固定柱用于与所述变流器拒体固定连接。
本发明还提供一种变流器冷却装置, 包括水泵、 水冷基板、 冷却风机 和热交换器, 所述变流器冷却装置还包括上述发明内容提供的变流器冷却 管路;
所述水泵的出水口与所述进水主管连通, 所述进水分管与所述水冷基 板的进水口连通, 所述出水分管与所述水冷基板的出水口连通, 所述出水 主管与所述热交换器的进水口连通, 所述热交换器的出水口与所述水泵的 进水口连通;
所述冷却风机的出风口朝向所述热交换器。
本发明提供的变流器冷却管路和冷却装置, 进水管路和出水管路设计 为主管和分管配合结构, 可以减少变流器用冷却装置中的冷却管路数量且 降低管路的复杂性, 同时可以减小管路占用的安装空间, 并且总体管路的 设计能够保证流入进水分管和出水分管中的液体流量均衡, 因而可以提高 各个变流器功率模块的散热均衡性和冷却效果。 附图说明 图 1为现有的变流器冷却装置的示意图;
图 2为本发明实施例提供的变流器冷却管路的示意图;
图 3为图 2中的进水管路的示意图;
图 4为图 2中的出水管路的示意图。 附图标记:
1-进水管路; 2-出水管路; 3-水泵; 4-冷却风机; 5-热交换器; 6-功率模块; 11-进水主管 12-进水分管 13-进水汇流管;
21-出水主管 22-出水分管 23-出水汇流管;
61-功率器件 62-水冷基板 具体实施方式 参考图 2〜4 , 图 2为本发明实施例提供的变流器冷却管路的示意图; 图 3为图 2中的进水管路的示意图; 图 4为图 2中的出水管路的示意图。
如图 2〜4所示, 本实施例提供的变流器冷却管路包括进水管路 1和出 水管路 2。
进水管路 1包括进水主管 1 1和多个进水分管 12;进水主管 11用于与 水泵 3的出水口连通, 多个进水分管 12—端与进水主管 1 1连通, 多个进 水分管 12的另一端用于与功率模块的水冷基板 62的进水口连通。
出水管路 2包括出水主管 21和多个出水分管 22;出水主管 21用于与 热交换器的进水口连通, 多个出水分管 22—端与出水主管 21连通, 多个 出水分管 22的另一端用于与变流器功率器件的水冷基板 62的出水口连 通。
具体地, 进水主管 11的直径大于进水分管 12的直径, 进水主管 11 可以为直管结构, 进水分管 12可以为弯管结构。 出水主管 21的直径大于 出水分管 22的直径, 出水主管 21可以为直管结构, 出水分管 22可以为 弯管结构。进水管路 1和出水管路 2可以设计为相同的结构形式。优选地, 进水主管 11和出水主管 21平行间隔设置; 进水分管 12的数量与出水分 管 12的数量相同, 且进水分管 12在进水主管 11上的位置与出水分管 22 在出水主管 21的位置对应, 便于进水分管 12和出水分管 22与水冷基板 62的对接安装。进水分管 12和出水分管 22的数量可以根据变流器需要冷 却功率模块的数量来确定, 能够适用于多个功率模块的冷却。
进一步地, 进水管路 1还包括进水汇流管 13 ; 进水汇流管 13—端与 进水主管 11连通, 进水汇流管 13另一端用于与水泵 3的出水口连通, 设 置进水汇流管 13 , 便于连通水泵 3和进水主管 11。
出水管路 2还包括出水汇流管 23 ; 出水汇流管 23 —端与出水主管 21 连通, 出水汇流管 23另一端用于与热交换器的进水口连通, 设置出水汇 流管 23 , 便于连通热交换器和出水主管 21 , 实际应用中, 出水汇流管 23 另一端可以与外部管路连通, 再通过外部管路与热交换器的进水口连通。
具体地, 进水汇流管 13包括进水管接头 131和进水波纹管 132 , 进水 管接头 131—端与进水主管 1 1连通, 进水管接头 131另一端与进水波纹 管 132—端连通, 进水波纹管 132的另一端用于与水泵 3的出水口连通。
出水汇流管 23包括出水管接头 231和出水波纹管 232, 出水管接头 231一端与出水主管 21连通, 出水管接头 231另一端与出水波纹管 232 一端连通, 出水波纹管 232另一端用于与热交换器的进水口连通, 实际应 用中, 出水波纹管 232另一端可以与外部管路连通, 再通过外部管路与热 交换器的进水口连通。
进水管接头 131和出水管接头 231可以釆用不锈钢管,进水波纹管 132 和出水波纹管 132是可弯曲管路, 便于安装。
ύ ^地, 进水管接头 131与进水主管 11中部连通, 出水管接头 231与 出水主管 21中部连通, 进水管接头 131和出水管结构 231分别设置在进 水主管 11和出水主管 21的中部, 能够提高进水分管 12和出水分管 22的 冷却液流量分配的均匀性。
本实施例提供的变流器冷却管路, 进水管路 1和出水管路 2设计为主 管和分管配合结构, 可以减少管路数量且降低管路的复杂性, 同时可以减 小管路占用的安装空间。 并且, 进水主管 11和出水主管 21能够保证流入 进水分管 12和出水分管 22中的液体流量均衡, 因而可以提高各个变流器 功率模块的散热均衡性和冷却效果。
在上述实施例的基础上, 进水主管 11和出水主管 21上均设置有多个 固定柱 10, 多个固定柱 10用于与变流器拒体固定连接, 具体可以釆用 0 型卡将进水主管 11和出水主管 21固定在变流器拒体上, 0型卡一端卡设 在进水主管 11或出水主管 21上, 另一端卡设在变流器拒体固定板上, 釆 用上述安装方式, 可以提高进水管路 1和出水管路 2的安装稳定性。
本发明实施例还提供一种变流器冷却装置, 包括水泵、 水冷基板、 冷 却风机和热交换器, 该变流器冷却装置还包括上述实施例提供的变流器冷 却管路。 水泵的出水口与进水主管 11连通, 进水分管 12与水冷基板 62的进 水口连通, 出水分管 22与水冷基板 62的出水口连通, 出水主管 21与热 交换器的进水口连通, 热交换器的出水口与水泵的进水口连通; 冷却风机 的出风口朝向热交换器。
本实施例提供的变流器冷却装置, 进水管路 1和出水管路 2设计为主 管和分管配合结构, 可以减少管路数量且降低管路的复杂性, 同时可以减 小管路占用的安装空间。 并且, 进水主管 11和出水主管 21能够保证流入 进水分管 12和出水分管 22中的液体流量均衡, 因而可以提高各个变流器 功率模块的散热均衡性和冷却效果。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要 求 书
1、 一种变流器冷却管路, 其特征在于, 包括进水管路和出水管路; 所述进水管路包括进水主管和多个进水分管; 所述进水主管用于与水 泵连通, 所述多个进水分管一端与所述进水主管连通, 所述多个进水分管 的另一端用于与变流器功率模块的水冷基板的进水口连通;
所述出水管路包括出水主管和多个出水分管; 所述出水主管用于与热 交换器连通, 所述多个出水分管一端与所述出水主管连通, 所述多个出水 分管的另一端用于与变流器功率模块的水冷基板的出水口连通。
2、 根据权利要求 1所述的变流器冷却管路, 其特征在于, 所述进水 管路还包括进水汇流管; 所述进水汇流管一端与所述进水主管连通, 所述 进水汇流管另一端用于与水泵的出水口连通;
所述出水管路还包括出水汇流管; 所述出水汇流管一端与所述出水主 管连通, 所述出水汇流管另一端用于与热交换器的进水口连通。
3、 根据权利要求 2所述的变流器冷却管路, 其特征在于, 所述进水 汇流管包括进水管接头和进水波纹管, 所述进水管接头一端与所述进水主 管连通, 所述进水管接头另一端与所述进水波纹管一端连通, 所述进水波 纹管的另一端用于与水泵连通;
所述出水汇流管包括出水管接头和出水波纹管, 所述出水管接头一端 与所述出水主管连通, 所述出水管接头另一端与所述出水波纹管一端连 通, 所述出水波纹管另一端用于与热交换器的进水口连通。
4、 根据权利要求 3所述的变流器冷却管路, 其特征在于, 所述进水管 接头与所述进水主管中部连通, 所述出水管接头与所述出水主管中部连 通。
5、 根据权利要求 1〜4任一项所述的变流器冷却管路, 其特征在于, 所述进水主管和出水主管平行间隔设置;
所述进水分管的数量与所述出水分管的数量相同, 且所述进水分管在 所述进水主管上的位置与所述出水分管在所述出水主管的位置对应。
6、 根据权利要求 1〜4任一项所述的变流器冷却管路, 其特征在于, 所述进水主管和出水主管上均设置有多个固定柱, 所述多个固定柱用于与 所述变流器拒体固定连接。
7、 一种变流器冷却装置, 包括水泵、 水冷基板、 冷却风机和热交换 器, 其特征在于, 所述变流器冷却装置还包括权利要求 1〜6任一项所述的 变流器冷却管路;
所述水泵的出水口与所述进水主管连通, 所述进水分管与所述水冷基 板的进水口连通, 所述出水分管与所述水冷基板的出水口连通, 所述出水 主管与所述热交换器的进水口连通, 所述热交换器的出水口与所述水泵的 进水口连通;
所述冷却风机的出风口朝向所述热交换器。
PCT/CN2012/087624 2012-12-03 2012-12-27 变流器冷却管路和冷却装置 WO2014086070A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210512274.X 2012-12-03
CN201210512274.XA CN103855916B (zh) 2012-12-03 2012-12-03 变流器冷却管路和冷却装置

Publications (1)

Publication Number Publication Date
WO2014086070A1 true WO2014086070A1 (zh) 2014-06-12

Family

ID=50863223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087624 WO2014086070A1 (zh) 2012-12-03 2012-12-27 变流器冷却管路和冷却装置

Country Status (2)

Country Link
CN (1) CN103855916B (zh)
WO (1) WO2014086070A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105828582A (zh) * 2016-05-20 2016-08-03 四川汇英光电科技有限公司 一种搭载有Ku波段固态功放模块的装置
CN105897187A (zh) * 2016-05-20 2016-08-24 四川汇英光电科技有限公司 一种用于雷达制导系统的改进型固态功率放大器
CN105958949A (zh) * 2016-05-20 2016-09-21 四川汇英光电科技有限公司 一种x波段固态功率放大器的改进结构
CN105958950A (zh) * 2016-05-20 2016-09-21 四川汇英光电科技有限公司 一种强散热式固态功率放大器
CN106026931A (zh) * 2016-05-20 2016-10-12 四川汇英光电科技有限公司 一种搭载有第三代半导体材料功放模块的装置
CN109842275A (zh) * 2019-02-01 2019-06-04 广东美的暖通设备有限公司 用于变频器的散热结构和变频器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103855917A (zh) * 2012-12-05 2014-06-11 永济新时速电机电器有限责任公司 变流器用冷却管路及铁路机车
CN104386266B (zh) * 2014-09-18 2016-06-08 北京卫星环境工程研究所 卫星地面用有效载荷散热装置
CN105703604A (zh) * 2014-11-28 2016-06-22 中车大连电力牵引研发中心有限公司 内燃机车牵引变流器和内燃机车
CN105828583B (zh) * 2016-05-20 2018-07-27 四川汇英光电科技有限公司 一种卫星通信系统中的功放模块搭载装置
CN109121360B (zh) * 2018-07-03 2019-12-20 安徽好润环保科技有限公司 一种改善水冷管冷却效率的电子产品冷却装置
CN109121359B (zh) * 2018-07-03 2019-12-20 安徽好润环保科技有限公司 一种提高冷却水冷却效率的电子产品冷却设备
CN109041510B (zh) * 2018-07-03 2020-04-21 安徽好润环保科技有限公司 一种提高电子产品冷却装置冷却效果的装置
CN108966608A (zh) * 2018-09-07 2018-12-07 兖州东方机电有限公司 一种用于爆炸性气体环境中防爆设备的复合散热系统
CN111200920B (zh) * 2018-11-19 2021-02-26 中车永济电机有限公司 冷却装置及系统
CN114071945A (zh) 2020-08-06 2022-02-18 台达电子工业股份有限公司 液冷导管
TWI757821B (zh) * 2020-08-06 2022-03-11 台達電子工業股份有限公司 液冷導管
CN115111429B (zh) * 2022-06-15 2024-04-16 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种水冷复杂管路的安装工艺方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420168A (zh) * 2008-11-29 2009-04-29 永济新时速电机电器有限责任公司 用于变流器功率模块的水冷却装置
CN201937444U (zh) * 2010-12-16 2011-08-17 许继集团有限公司 一种晶闸管换流阀阀模块
CN202050353U (zh) * 2011-03-29 2011-11-23 株洲南车时代电气股份有限公司 一种变流器功率模块冷却装置
CN102791113A (zh) * 2012-08-16 2012-11-21 广州高澜节能技术股份有限公司 一种多兆瓦变流器柜内冷却管路系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005117829A (ja) * 2003-10-09 2005-04-28 Toshiba Corp 液冷式電力変換装置
CN101431289B (zh) * 2008-12-06 2010-12-29 永济新时速电机电器有限责任公司 牵引辅助供电一体式变流装置
CN202309479U (zh) * 2011-10-13 2012-07-04 广东明阳龙源电力电子有限公司 一种风电变流器水冷装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420168A (zh) * 2008-11-29 2009-04-29 永济新时速电机电器有限责任公司 用于变流器功率模块的水冷却装置
CN201937444U (zh) * 2010-12-16 2011-08-17 许继集团有限公司 一种晶闸管换流阀阀模块
CN202050353U (zh) * 2011-03-29 2011-11-23 株洲南车时代电气股份有限公司 一种变流器功率模块冷却装置
CN102791113A (zh) * 2012-08-16 2012-11-21 广州高澜节能技术股份有限公司 一种多兆瓦变流器柜内冷却管路系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105828582A (zh) * 2016-05-20 2016-08-03 四川汇英光电科技有限公司 一种搭载有Ku波段固态功放模块的装置
CN105897187A (zh) * 2016-05-20 2016-08-24 四川汇英光电科技有限公司 一种用于雷达制导系统的改进型固态功率放大器
CN105958949A (zh) * 2016-05-20 2016-09-21 四川汇英光电科技有限公司 一种x波段固态功率放大器的改进结构
CN105958950A (zh) * 2016-05-20 2016-09-21 四川汇英光电科技有限公司 一种强散热式固态功率放大器
CN106026931A (zh) * 2016-05-20 2016-10-12 四川汇英光电科技有限公司 一种搭载有第三代半导体材料功放模块的装置
CN105828582B (zh) * 2016-05-20 2018-07-27 四川汇英光电科技有限公司 一种搭载有Ku波段固态功放模块的装置
CN105897187B (zh) * 2016-05-20 2018-09-11 四川汇英光电科技有限公司 一种用于雷达制导系统的改进型固态功率放大器
CN105958949B (zh) * 2016-05-20 2018-09-11 四川汇英光电科技有限公司 一种x波段固态功率放大器的改进结构
CN105958950B (zh) * 2016-05-20 2018-09-11 四川汇英光电科技有限公司 一种强散热式固态功率放大器
CN106026931B (zh) * 2016-05-20 2018-09-11 四川汇英光电科技有限公司 一种搭载有第三代半导体材料功放模块的装置
CN109842275A (zh) * 2019-02-01 2019-06-04 广东美的暖通设备有限公司 用于变频器的散热结构和变频器

Also Published As

Publication number Publication date
CN103855916A (zh) 2014-06-11
CN103855916B (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2014086070A1 (zh) 变流器冷却管路和冷却装置
US10260781B2 (en) Liquid cooling device having diversion mechanism
CN205211737U (zh) 一种igbt模块水冷散热器
CN102159058B (zh) 液冷式散热结构
WO2013139144A1 (zh) 电子设备及其散热系统和散热方法
CN206379442U (zh) 一种动力电池液冷的管路总成结构
CN103138536B (zh) 变流器冷却装置
CN105704989A (zh) 带有液冷系统的服务器机柜
KR20140061398A (ko) 혼합 매니폴드 및 방법
CN204676198U (zh) 双冷却式纤维丝冷却装置
WO2016127633A1 (zh) 冷却板、冷却装置及通讯设备
CN104767398A (zh) 一种高集成变流装置
CN205490100U (zh) 一种变频器的水冷换热装置
CN104022623A (zh) 一种三电平变频器水冷散热系统
CN205093032U (zh) 等离子电弧切割系统
CN103138602A (zh) 水冷式逆变功率模块
WO2016026469A1 (zh) 一种换流阀组件冷却系统
JP2013235920A (ja) 電力変換装置
CN104734465B (zh) 功率柜及变流器
CN202074852U (zh) 一种水冷散热器
CN202354002U (zh) 一种热场均匀的水冷散热器
CN102570778A (zh) 一种高频电源冷却装置
CN206672923U (zh) 一种t型水冷散热器
WO2014032365A1 (zh) Igbt水冷式散热器
CN203340505U (zh) 一种机柜温控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889676

Country of ref document: EP

Kind code of ref document: A1