WO2014086008A1 - 一种数据处理的方法及装置 - Google Patents

一种数据处理的方法及装置 Download PDF

Info

Publication number
WO2014086008A1
WO2014086008A1 PCT/CN2012/085966 CN2012085966W WO2014086008A1 WO 2014086008 A1 WO2014086008 A1 WO 2014086008A1 CN 2012085966 W CN2012085966 W CN 2012085966W WO 2014086008 A1 WO2014086008 A1 WO 2014086008A1
Authority
WO
WIPO (PCT)
Prior art keywords
data stream
data
symbol
module
symbol rate
Prior art date
Application number
PCT/CN2012/085966
Other languages
English (en)
French (fr)
Inventor
李海
石华平
庞彦钊
玛祖科·克里斯提安
亚昂齐·瑟吉奥
李先锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/085966 priority Critical patent/WO2014086008A1/zh
Priority to CN201280002127.6A priority patent/CN103222243B/zh
Priority to EP12878639.9A priority patent/EP2765746B1/en
Priority to US14/186,960 priority patent/US9178825B2/en
Publication of WO2014086008A1 publication Critical patent/WO2014086008A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data processing method and apparatus. Background technique
  • the modulated signal has different amplitudes in the time domain.
  • the nonlinear distortion is different after the PA (Power Ampl if i er ), and the digital pre-distortion is obtained according to the distortion (Digi ta l Pre- Di s tor t ion, DPD ) nonlinear distortion compensation coefficient, which increases the DPD nonlinear distortion compensation coefficient in the data stream after passing through the PA device.
  • This data stream is cancelled by power amplification and cancels the nonlinear characteristics of the PA device to complete the PA.
  • the nonlinear distortion cancellation of the device makes the gain curve of the PA device closer to the ideal curve.
  • the receiving device receives the data stream of different signal distortions generated after passing through the PA device, and determines the data stream according to the position of each constellation point on the constellation diagram corresponding to the modulation mode by the hard-sent module.
  • the actual position in the constellation diagram of each symbol corresponding to each data that is, the actual constellation point.
  • the DPD is obtained, and the pre-distortion parameter is obtained by the DPD according to the difference between the ideal constellation point and the actual constellation point, so as to cancel the nonlinear distortion of the PA device according to the pre-distortion parameter.
  • Embodiments of the present invention provide a data processing method and apparatus, which can obtain a DPD nonlinear distortion compensation coefficient in a QPSK mode.
  • the present invention provides a data processing method, including:
  • the first data stream is subjected to frame synchronization adjustment, equalization processing, data extraction processing, and constellation by using a quadrature phase shift keying QPSK modulated signal with a 2 ⁇ symbol rate. After the position of the figure is judged, the data stream of the symbol rate of 1 times is obtained;
  • the third data stream is a data stream of 2 times the symbol rate obtained after the QPSK modulated signal of 2 times the symbol rate is subjected to frame synchronization adjustment and equalization processing.
  • the interpolating the first data stream to obtain the second data stream includes:
  • the first data stream of 1 symbol rate is subjected to interpolation processing to obtain the second data stream of 2 times the symbol rate.
  • the interpolating the first data stream to obtain the second data stream includes:
  • the method further includes:
  • the distortion compensation of the data distortion in the equalization processing in the third data stream is eliminated to obtain true data distortion.
  • the method further includes: Calculating a delay difference between the third data stream and the second data stream;
  • the calculating a data stream signal quality difference of the third data stream and the second data stream includes:
  • the present invention provides an apparatus for data processing, including:
  • An interpolation filtering module configured to receive a first data stream, and interpolate the first data stream to obtain a second data stream;
  • a calculation module configured to receive a third data stream, and calculate a data stream signal quality difference between the third data stream and the second data stream;
  • an obtaining module configured to acquire a DPD nonlinear distortion compensation coefficient according to the data stream signal quality difference and the third data stream or the second data stream.
  • the first data stream is subjected to frame synchronization adjustment, equalization processing, data extraction processing, and the quadrature phase shift keying QPSK modulated signal with a 2 ⁇ symbol rate. After the constellation position is judged, the obtained data stream of 1 symbol rate is obtained;
  • the third data stream is a data stream of 2 times the symbol rate obtained after the QPSK modulated signal of 2 times the symbol rate is subjected to frame synchronization adjustment and equalization processing.
  • the interpolation filtering module is specifically configured to: perform interpolation processing on the first data stream with a symbol rate of 1 times to obtain 2 The second data stream of the multiple symbol rate.
  • the interpolation filtering module includes:
  • An interpolation unit configured to insert a preset value between every two data symbols in the first data stream of a 1 ⁇ symbol rate
  • a filtering unit configured to perform anti-aliasing filtering on the data stream inserted into the preset value, and obtain 2 times The second data stream of the symbol rate.
  • the device further includes: And an equalizer, configured to eliminate distortion compensation performed by the equalization processing on the data distortion in the third data stream to obtain true data distortion.
  • the second aspect or the first possible embodiment or the second possible embodiment or the third possible embodiment or the fourth possible embodiment of the second aspect further includes:
  • the calculating module is further configured to calculate a delay difference between the third data stream and the second data stream; the device further includes: a processing module, configured to: perform the third data according to the delay difference The stream and the second data stream are time aligned.
  • the calculating module includes:
  • a determining unit configured to determine an actual symbol point corresponding to the third data stream after delay alignment and an ideal symbol point corresponding to the second data stream;
  • a calculating unit configured to calculate a data stream signal quality difference between the actual symbol point and the ideal symbol point.
  • the present invention provides a receiving device, the receiving device comprising at least a frame synchronization module, an equalizer, an extraction module, a hard decision module, and the data processing device according to any one of the second aspects:
  • the frame synchronization module is configured to perform symbol clock recovery and frame header alignment on the received data stream;
  • the equalizer is configured to perform distortion compensation on the data stream processed by the frame synchronization module;
  • the hard-segment module is configured to perform a judgment of a constellation point on a symbol corresponding to the data stream processed by the extraction module, to obtain a first data stream.
  • the present invention provides a data processing system, the system comprising at least the transmitting device and the receiving device of any one of the third aspects:
  • the transmitting device is configured to receive a DPD nonlinear distortion compensation coefficient sent by the receiving device, convert the DPD nonlinear distortion compensation coefficient into a data stream that implements predistortion compensation, and perform power amplification on the data stream, and The amplified data stream is output.
  • An embodiment of the present invention provides a data processing method and apparatus, by receiving a first data stream, interpolating the first data stream to obtain a second data stream, receiving a third data stream, and calculating the third data stream and Determining a data stream signal quality difference of the second data stream; acquiring a DPD nonlinear distortion compensation coefficient according to the data stream signal quality difference and the third data stream or the second data stream.
  • the embodiment of the present invention passes The first data stream is interpolated to obtain a second data stream, so that when the modulation mode is QPSK, the amplitudes of the modulated signals in the time domain are different, so that DPD non-acquisition can be obtained through the second data stream and the third data stream in the QPSK mode.
  • Linear distortion compensation factor BRIEF DESCRIPTION OF THE DRAWINGS
  • the accompanying drawings, which are to be regarded as Other drawings may also be obtained from these drawings without the inventive labor.
  • FIG. 1 is a flowchart of a data processing method according to Embodiment 1 of the present invention.
  • FIG. 2 (1) is a schematic diagram showing the position of a symbol corresponding to QPSK in a constellation diagram according to Embodiment 1 of the present invention
  • FIG. 2( 2 ) is a schematic diagram of a time domain diagram corresponding to a QPSK modulated signal provided by Embodiment 1 of the present invention
  • FIG. 3 ( 1 ) is a position of another QPSK corresponding symbol provided in the constellation diagram according to Embodiment 1 of the present invention
  • FIG. 3 (2) is a schematic diagram of a time domain diagram corresponding to another QPSK modulated signal according to Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart of another data processing method according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of a data processing system according to Embodiment 1 of the present invention
  • 6 is a schematic diagram of another data processing system according to Embodiment 1 of the present invention
  • FIG. 7 is a structural block diagram of an apparatus for data processing according to Embodiment 2 of the present invention
  • FIG. 8 is another schematic diagram of Embodiment 2 of the present invention.
  • FIG. 9 is a structural block diagram of another apparatus for data processing according to Embodiment 2 of the present invention
  • FIG. 10 is a structural block diagram of a receiving apparatus according to Embodiment 2 of the present invention;
  • FIG. 11 is a structural block diagram of another receiving device according to Embodiment 2 of the present invention. detailed description
  • An embodiment of the present invention provides a data processing method. As shown in FIG. 1, the method includes the following steps:
  • Step 101 Receive a first data stream, and interpolate the first data stream to obtain a second data stream.
  • the first data stream is a Quadrature Phase Shift Keying (QPSK) modulated signal that has a symbol rate of 2 times.
  • QPSK Quadrature Phase Shift Keying
  • a data stream of 1 symbol rate is obtained.
  • the first data stream is a data stream with a symbol rate of 2 times when subjected to frame synchronization adjustment and equalizer processing.
  • the data stream of 2 times the symbol rate is extracted into a data stream of 1 symbol rate. Since the constellation position determination is performed in the hard-segment processing, the hard-segment processing needs to work at the symbol rate of 1 time. Therefore, it is necessary to extract the data stream of the symbol rate of 2 times as the data stream of the symbol rate of 1 time.
  • the first data stream is interpolated to obtain a second data stream, that is, the first data stream of 1 symbol rate is interpolated into the second data stream of 2 times the symbol rate.
  • QPSK is a digital modulation method.
  • QPSK is a commonly used satellite digital signal modulation method, which has high spectrum utilization and strong anti-interference.
  • Fig. 2 (1) in Fig. 2 shows the position of the symbol corresponding to QPSK in the constellation diagram, in Fig. 2 (2) The time domain map corresponding to the QPSK modulated signal is shown. It can be seen that there is no difference in the amplitude of the QPSK modulated signal in the time domain, so that the power amplification response under different input amplitudes cannot be judged, and thus the nonlinear distortion compensation coefficient cannot be calculated.
  • Step 102 Receive a third data stream, and calculate a data stream signal quality difference between the third data stream and the second data stream.
  • the third data stream is a data stream of 2 times the symbol rate obtained by subjecting the QPSK modulated signal of 2 times the symbol rate to frame synchronization adjustment and equalization processing.
  • a second data stream with a symbol rate of 2 times is obtained, and the third data stream is a data stream with a symbol rate of 2 times, so that the second data stream and the third data stream both work twice. Under the symbol rate, it is convenient to further process the data stream.
  • the third data stream is a data stream obtained after frame synchronization adjustment and equalization processing. Since this data stream is not further processed, there is a large distortion.
  • the second data stream is a database obtained after frame synchronization adjustment, equalization processing, data extraction processing, and constellation position determination, and the data stream has less distortion. Therefore, the data stream signal quality difference between the two data streams and the second data stream can be calculated according to different degrees of distortion.
  • Step 103 Obtain a DPD nonlinear distortion compensation coefficient according to the data stream signal quality difference and the third data stream or the second data stream.
  • the second data stream is used as the base data or the third data stream is used as the base data, and the data stream signal quality of the third data stream and the second data stream is poor, and the DPD nonlinearity can be calculated.
  • Distortion compensation coefficient It should be noted that the second data stream and the third data stream are only different in data performance, and therefore can be used as the calculation of the DPD nonlinear distortion compensation coefficient. Foundation.
  • An embodiment of the present invention provides a data processing method, in which a second data stream is obtained by interpolating a first data stream, so that when the modulation mode is QPSK, the amplitude of the modulated signal in the time domain is different, so that the QPSK mode can be implemented.
  • the DPD nonlinear distortion compensation coefficient is obtained by the second data stream and the third data stream.
  • An embodiment of the present invention provides another method for data processing. As shown in FIG. 4, the method includes: Step 401: Receive a first data stream.
  • the first data stream is a data symbol of 1 time symbol obtained after the frame phase synchronization adjustment, the equalization processing, the data extraction processing, and the constellation position determination of the quadrature phase shift keying QPSK modulated signal with a 2 ⁇ symbol rate. flow.
  • the bi t data stream is transmitted through a plurality of b i t mapping into one symbol to form a data stream of the transmission symbol, and the speed of the data stream of the transmission symbol is the symbol rate.
  • the data rate of the 2x symbol rate is adjusted by the frame synchronization.
  • the frame synchronization adjustment includes functions such as symbol clock recovery and frame header alignment.
  • the data stream received before the frame synchronization adjustment is a data stream of 2 times the symbol rate, and the output data stream is also a data stream of 2 times the symbol rate.
  • the data stream after the frame synchronization adjustment is equalized, and the equalization processing is used to perform distortion compensation on the data stream.
  • the distortion is mainly linear distortion such as channel flatness, group delay fluctuation, selective fading caused by channel multipath, and the above distortion is compensated by equalization processing.
  • This equalization process cannot compensate for the nonlinear distortion of the power amplifier.
  • equalization processing can be achieved by an adaptive digital filter.
  • the equalization process works at a 2x symbol rate, that is, the data stream after the equalization process is a data stream of 2 times the symbol rate.
  • the data stream after the equalization processing is subjected to data extraction processing, and when the data is extracted, the data stream of the symbol rate of 2 times is extracted and converted into a data stream of 1 symbol rate. Since the constellation position determination is performed in the hard-segment processing, the hard-segment processing needs to work at the symbol rate of 1 time. Therefore, it is necessary to extract the data stream of the symbol rate of 2 times as the data stream of the symbol rate of 1 time. Optional, the number of 2 times the symbol rate
  • the data stream extracted by the stream as a symbol rate of 1 is implemented by discarding the data stream every time, leaving only odd data or only even numbers.
  • each data is acquired twice, and although the data acquired twice is different, the data stream clock is synchronized with the data stream data during the frame synchronization processing, so the extraction is performed.
  • the data is the transition point data and has no effect on data recovery.
  • a hard decision of the constellation point is performed on the symbol corresponding to the data stream of the 1x symbol rate after the data extraction process.
  • the received data stream is determined according to the position of each constellation point on the corresponding constellation diagram, and the position of the constellation diagram of the symbol corresponding to the modulation mode is determined, and the signal to noise ratio of the signal is obtained according to the position of the actual constellation point and the position difference of the ideal constellation point.
  • S i gna l No i s Ra t io , SNR 0
  • the receiving system can obtain a relatively high SNR after the frame synchronization adjustment, the equalization processing, and the hard decision.
  • a high signal-to-noise ratio means that the point on the constellation of this data stream is close to the ideal point.
  • the actual constellation point is the constellation point corresponding to the symbol corresponding to the data stream in the constellation diagram
  • the ideal constellation point is the constellation point corresponding to the symbol corresponding to a certain modulation module in the constellation diagram, which can be understood as a standard constellation point.
  • the data stream of 1x symbol rate obtained after hard-segment processing is the first data stream in this embodiment.
  • Step 402 Interpolate the first data stream to obtain a second data stream.
  • QPSK is a digital modulation method.
  • QPSK is a commonly used satellite digital signal modulation method, which has high spectrum utilization and strong anti-interference.
  • (1) in FIG. 2 indicates the position of the symbol corresponding to QPSK in the constellation diagram
  • (2) in FIG. 2 indicates the time domain map corresponding to the QPSK modulated signal, and it can be seen that the QPSK modulated signal is in the time domain.
  • the first data stream needs to be processed such that the amplitudes of the symbols corresponding to the data stream after processing differ in the time domain.
  • the first data stream is subjected to interpolation processing, that is, the first data stream of the symbol rate of 1 is subjected to interpolation processing, and the second data stream of the symbol rate of 2 times is obtained, so that the data stream after the interpolation process corresponds to There is a difference in the magnitude of the symbols in the time domain.
  • a preset value is inserted between every two data symbols in the first data stream of the 1x symbol rate, wherein the preset value may be 0.
  • the data stream inserted with the preset value is subjected to anti-aliasing filtering. Filter bandwidth and symbol The rate is equal, and the interference signal in the data stream after the interpolation is completed is filtered out.
  • the data stream is a data stream with a high SNR after hard-segment processing.
  • the data stream at this time has not only symbol points but also transition points, and the transition points are different from the symbol points.
  • the magnitude of the data is also based on the calculation of the DPD distortion compensation factor.
  • the symbol point is represented by a circle, and the transition point is represented by a triangle.
  • Step 403 Receive a third data stream.
  • the third data stream is a data stream of 2 times the symbol rate obtained by subjecting the QPSK modulated signal of 2 times the symbol rate to frame synchronization adjustment and equalization processing.
  • the specific description of the frame synchronization adjustment and the equalization processing in step 401 is not performed in this step - a detailed description.
  • step 401 and step 403 is not fixed. Step 401 and step 402 may be performed first, then step 403 may be performed, or step 403 may be performed first, and then step 401 and step 402 are performed. Generally, based on the time, the step 403 is performed first, and the step 401 is performed. However, for convenience of description, in the embodiment, the first data stream is first received, and then the third data stream is received.
  • Step 404 Eliminate distortion compensation performed by the equalization processing on the data distortion in the third data stream, to obtain true data distortion;
  • this step is an optional step.
  • the third data stream is inversely equalized, so that the data stream obtained after the inverse equalization process can reflect the true distortion of the data, and a better DPD distortion coefficient extraction capability can be obtained.
  • the inverse equalization process removes the compensation for data distortion during the equalization process. Specifically, the frequency response of the inverse equalization process is completely opposite to the frequency response of the equalization process.
  • Step 405 Perform delay alignment on the third data stream and the second data stream.
  • step 405 may be directly executed, or After step 403 is performed, step 404 is performed, and step 405 is performed.
  • calculating a delay difference between the third data stream and the second data stream delaying alignment of the third data stream and the second data stream according to the delay time.
  • the third data stream and the second data stream need to be time-aligned. Specifically, the delay difference between the two data streams is calculated, and then the delay compensation is performed to complete the delay alignment of the two data streams.
  • Step 406 Calculate a data stream signal quality difference value of the third data stream and the second data stream.
  • the third data stream after the equalization processing has large distortion
  • the second data stream after the hard-interpolation filtering module has a relatively good relative SNR
  • the data distortion is small, and the signals of the two data streams are utilized.
  • the difference in quality, the error between the two data streams is extracted, and the error between the actual symbol point corresponding to the third data stream and the ideal point corresponding to the second data stream can be extracted.
  • the second data stream is used as the basic data, or the third data stream is used as the basic data, corresponding to the error of the symbol point (the symbol point or the transition point of different amplitude can correspond to the error information of the point), and the correct extraction can be correctly performed.
  • the error caused by the nonlinear distortion of the power amplifier that is, the data stream signal quality difference in this embodiment. It should be noted that the second data stream and the third data stream are only different in data performance, and therefore can be used as a basis for calculating the DPD nonlinear distortion compensation coefficient.
  • Step 407 Acquire a DPD nonlinear distortion compensation coefficient according to the data stream signal quality difference value and the third data stream or the second data stream.
  • the DPD nonlinear distortion compensation coefficient can be calculated according to c: ⁇ — ⁇ / * ⁇ ;
  • This formula is an iterative addition formula, (“ is the compensation coefficient of the DPD nonlinear distortion for the current calculation period, which is the previous calculation.
  • the compensation coefficient of the DPD nonlinear distortion calculated by the period, e is the data stream signal quality difference, which can be a complex number, which means that the complex value is taken as a conjugate value, and is a data stream.
  • the DPD nonlinear distortion compensation coefficient is sent to the transmitting device, and the transmitting device writes the acquired DPD nonlinear distortion compensation coefficient to the DPD unit in the transmitting device, and the DPD unit will nonlinearize the DPD.
  • the distortion compensation coefficient is converted into a data stream that realizes pre-distortion compensation. When the data stream is sent to the power amplifier in the transmitting device, it can cancel out the nonlinear distortion of the power amplifier, thereby completing the DPD compensation function of the nonlinear distortion of the power amplifier.
  • An embodiment of the present invention provides a data processing method, which obtains a second data stream by interpolating a first data stream, so that when the modulation mode is QPSK, the amplitude of the modulated signal in the time domain is different, and then according to the received
  • the three data streams calculate the DPD nonlinear distortion compensation coefficient, so that the DPD nonlinear distortion compensation coefficient can be obtained through the second data stream and the third data stream in the QPSK mode.
  • An embodiment of the present invention provides a data processing apparatus, as shown in FIG. 7, the apparatus includes: an interpolation filtering module 701, a receiving module 702, a computing module 703, and an obtaining module 704;
  • An interpolation filtering module 701 configured to receive a first data stream, and interpolate the first data stream to obtain a second data stream;
  • the first data stream is a 1 ⁇ symbol rate obtained by performing frame synchronization adjustment, equalization processing, data extraction processing, and constellation position determination on a quadrature phase shift keying (QPSK) modulated signal with a 2 ⁇ symbol rate.
  • QPSK quadrature phase shift keying
  • the receiving module 702 is configured to receive a third data stream.
  • the third data stream is a data stream of 2 times the symbol rate obtained by subjecting the QPSK modulated signal of 2 times the symbol rate to frame synchronization adjustment and equalization processing.
  • the calculating module 703 is configured to calculate a data stream signal quality difference between the third data stream and the second data stream;
  • the obtaining module 704 is configured to obtain a DPD nonlinear distortion compensation coefficient according to the data stream signal quality difference value and the third data stream or the second data stream.
  • the second data stream is used as the base data or the third data stream is used as the base data, and the data stream corresponding to the third data stream and the second data stream is of poor quality, Calculate the DPD nonlinear distortion compensation coefficient.
  • the second data stream and the third data stream are only different in data performance, and therefore can be used as a basis for calculating the DPD nonlinear distortion compensation coefficient.
  • QPSK is a digital modulation method.
  • QPSK is a commonly used satellite digital signal modulation method, which has high spectrum utilization and strong anti-interference.
  • (1) in FIG. 2 indicates the position of the symbol corresponding to QPSK in the constellation diagram
  • (2) in FIG. 2 indicates the time domain map corresponding to the QPSK modulated signal, and it can be seen that the QPSK modulated signal is in the time domain.
  • There is no difference in the amplitude so that the power amplification response at different input amplitudes cannot be judged, so that the DPD nonlinear distortion compensation coefficient cannot be calculated.
  • the interpolation filtering module 701 is configured to: perform interpolation processing on the first data stream with a symbol rate of 1 times to obtain the second data stream with a symbol rate of 2 times.
  • the interpolation filtering module 701 includes: an interpolation unit 7011, and a filtering unit 7012;
  • the interpolation unit 7011 is configured to insert a preset value between every two data symbols in the first data stream of a 1 ⁇ symbol rate; wherein, the preset value may be 0.
  • the filtering unit 7012 is configured to perform anti-aliasing filtering on the data stream inserted into the preset value to obtain the second data stream with a symbol rate of 2 times.
  • the apparatus may further include: an inverse equalizer 705;
  • the calculating module 703 calculates the data stream signal quality difference between the third data stream and the second data stream, and the inverse equalizer 705 is configured to cancel the third Equalization in the data stream compensates for distortion in data distortion to achieve true data distortion.
  • the third data stream is processed by the inverse equalizer 705, so that the data stream processed by the inverse equalizer 705 can reflect the true distortion of the data, and a better DPD distortion coefficient extraction capability can be obtained.
  • the function of the inverse equalizer 705 is to remove the compensation for data distortion during the equalization processing. Specifically, the frequency response of the inverse equalizer and the frequency response of the device used in the equalization processing are completed. All the opposite.
  • the device further includes: a processing module 706;
  • the calculating module 703 is further configured to calculate the third data stream and the second data stream, before the calculating module 703 calculates the data stream signal quality difference of the third data stream and the second data stream.
  • the processing module 706 is configured to perform delay alignment on the third data stream and the second data stream according to the delay difference.
  • the calculation module 703 includes: a determining unit 7031, a calculating unit 7032;
  • a determining unit 7031 configured to determine an actual symbol point corresponding to the third data stream after the delay alignment and an ideal symbol point corresponding to the second data stream;
  • the calculating unit 7032 is configured to calculate a data stream signal quality difference between the actual symbol point and the ideal symbol point.
  • the third data stream sent from the equalizer has a large distortion
  • the second data stream after the hard-interpolation filtering module has a relatively good relative SNR
  • the data distortion is small, and the two data streams are utilized.
  • the difference in signal quality, the error between the two data streams is extracted, and the error between the actual symbol point corresponding to the third data stream and the ideal point corresponding to the second data stream can be extracted.
  • An embodiment of the present invention provides a data processing apparatus, where an interpolation filtering module is configured to receive a first data stream, and the first data stream is interpolated to obtain a second data stream; and a calculating module, configured to receive the third data stream, Calculating a data stream signal quality difference value of the third data stream and the second data stream; an obtaining module, configured to perform, according to the data stream signal quality difference value, the third data stream or the second data stream Obtaining a DPD nonlinear distortion compensation coefficient, so that the first data stream is interpolated to obtain a second data stream, so that when the modulation mode is QPSK, the amplitude of the modulated signal in the time domain is different, and then according to the received third data stream Calculating the DPD nonlinear distortion compensation coefficient, so that the DPD nonlinear distortion compensation system can be obtained through the second data stream and the third data stream in the QPSK mode. Number.
  • the embodiment of the present invention further provides a device for data processing.
  • the device includes: a receiver 901, a memory 902, a processor 903, and a transmitter 904.
  • a receiver 901 configured to receive a first data stream, and receive a third data stream
  • the first data stream is a data symbol of 1 time symbol obtained after the frame phase synchronization adjustment, the equalization processing, the data extraction processing, and the constellation position determination of the quadrature phase shift keying QPSK modulated signal with a 2 ⁇ symbol rate.
  • the third data stream is a data stream of 2 times the symbol rate obtained after the QPSK modulated signal of 2 times the symbol rate is subjected to frame synchronization adjustment and equalization processing.
  • a memory 902 configured to store information including a program routine
  • the processor 903 coupled to the memory, the receiver, and the transmitter, is configured to control execution of the program routine, specifically:: interpolating the first data stream to obtain a second data stream; calculating the third data stream and a data stream signal quality difference of the second data stream; obtaining a digital pre-distortion DPD nonlinear distortion compensation coefficient according to the data stream signal quality difference and the third data stream or the second data stream.
  • the interpolating the first data stream to obtain the second data stream comprises: performing interpolation processing on the first data stream with a symbol rate of 1 times to obtain the second data stream with a symbol rate of 2 times .
  • a preset value is inserted between every two data symbols in the first data stream of the 1x symbol rate, where the preset value may be 0; and the data stream inserted into the preset value is resisted Aliasing filtering, obtaining the second data stream of 2 times the symbol rate.
  • the processor 903 is further configured to: after receiving the third data stream, before calculating the data stream signal quality difference between the third data stream and the second data stream, canceling the equalization processing in the third data stream Distortion compensation for data distortion to achieve true data distortion.
  • the processor 903 is further configured to: after receiving the third data stream, calculate the data stream signal quality difference between the third data stream and the second data stream, and calculate the third data stream and the Determining a delay difference of the second data stream; and performing delay alignment on the third data stream and the second data stream according to the delay difference.
  • the processor 903 calculates a data stream of the third data stream and the second data stream.
  • the number difference value includes: determining an actual symbol point corresponding to the third data stream after the delay alignment and an ideal symbol point corresponding to the second data stream; and calculating the actual symbol point and the ideal symbol point The difference in data stream signal quality between.
  • the transmitter 904 is configured to send the DPD nonlinear distortion compensation coefficient obtained by the processor 903.
  • An embodiment of the present invention provides a data processing apparatus, where a first data stream is interpolated by a processor to obtain a second data stream, so that when the modulation mode is QPSK, the amplitude of the modulated signal in the time domain is different, and then received according to the received
  • the third data stream calculates the DPD nonlinear distortion compensation coefficient, so that the DPD nonlinear distortion compensation coefficient can be obtained through the second data stream and the third data stream in the QPSK mode.
  • the embodiment of the present invention provides a receiving device, as shown in FIG. 10 or 11, the receiving device includes at least a frame synchronization module 1001, an equalizer 1002, an extraction module 1 003, a hard decision module 1004, and a data processing device 1 005;
  • the frame synchronization module 1001 is configured to receive the digitized data stream, where the data stream is a QPSK modulated signal with a symbol rate of 2 times, and perform symbol clock recovery and frame header alignment on the received data stream.
  • the data stream is transmitted by mapping a plurality of b i t into a symbol to form a data stream of a transmission symbol, and the speed of the data stream of the transmission symbol is a symbol rate.
  • the data input by the frame synchronization module is a data stream of 2 times the symbol rate, and the output data is also a data stream of 2 times the symbol rate.
  • the data stream adjusted by the frame synchronization module 1001 enters the equalizer 1002, and the data stream is subjected to distortion compensation in the equalizer 1 002.
  • the distortion is mainly linear distortion such as channel flatness, group delay fluctuation, selective fading caused by channel multipath, and the above distortion is compensated by the equalizer 1002.
  • the equalizer 1002 is not capable of compensating for nonlinear distortion of the power amplifier.
  • Equalizer 1002 can be derived from Adapted to the digital filter implementation, the module operates at a 2x symbol rate, that is, the data stream processed by the equalizer 1002 is a data stream of 2 times the symbol rate.
  • the data stream processed by the equalizer 1002 enters the decimation module 1003, and the data stream is extracted in the decimation module 1 003, so that the data stream of 2 times the symbol rate is converted into the data stream of 1 symbol rate. Since the hard decision module 1004 needs to operate at a 1x symbol rate when the hard decision module 1004 performs the constellation position determination, the extraction module 1003 is required to extract the data stream of the 2x symbol rate into a data rate of 1 symbol rate. Optionally, the data stream with the symbol rate of 2 times is extracted as a data stream with a symbol rate of 1 times. The data stream is discarded every interval of data, and only odd data or only even numbers are reserved.
  • each data is acquired twice, and although the data acquired twice is different, the data stream clock is synchronized with the data stream data in the frame synchronization module 1001, so the extraction is performed.
  • the data extracted by module 1003 is the data of the transition point and has no effect on data recovery.
  • the hard decision module 1004 After the data extraction by the extraction module 1 003, the data stream of the symbol rate of 1 times enters the hard decision module 1 004, and the hard decision module 1004 performs hard decision of the constellation point on the symbol corresponding to the data stream.
  • the hard decision module 1004 determines the received data stream according to the position of each constellation point on the corresponding constellation diagram, determines the position of the constellation in which the symbol corresponding to the modulation mode is located, and acquires the signal according to the position of the actual constellation point and the position difference of the ideal constellation point.
  • the signal-to-noise ratio (S i gna l No i s Ra io , SNR ) 0 can obtain a relatively high SNR after receiving the system through frame synchronization, equalization, and hard decision.
  • a high signal-to-noise ratio means that the point on the constellation of this data stream is close to the ideal point.
  • the actual constellation point is the constellation point corresponding to the symbol corresponding to the data stream in the constellation diagram
  • the ideal constellation point is the constellation point corresponding to the symbol corresponding to a certain modulation module in the constellation diagram, which can be understood as a standard constellation point.
  • the data stream of 1x symbol rate obtained after the hard-sentence module processing is the first data stream in this embodiment.
  • the data processing device 1005 is configured to receive the first data stream, interpolate the first data stream to obtain a second data stream, receive a third data stream, and calculate the third data stream and the second data stream. a data stream signal quality difference; obtaining a DPD nonlinear distortion compensation coefficient according to the data stream signal quality difference and the third data stream or the second data stream.
  • the interpolation filtering module 1 007 in the data processing device may be located in the data processing device as a module of the data processing device, as shown in FIG. 10, or the interpolation filtering module 1007 may be a separate module, for example.
  • Figure 11 shows.
  • the inverse equalizer 1006 can be located within the data processing apparatus as a module of the data processing apparatus, as shown in FIG. 10, or the inverse equalizer 1006 can be a separate module, such as shown in FIG.
  • the data processing device 1005 may be the device described in FIG. 7, FIG. 8, or FIG. 9, and may be specifically described with reference to FIG. 7, FIG. 8, or FIG. 9, which are not described herein.
  • An embodiment of the present invention provides a receiving device, which obtains a first data stream after performing frame synchronization adjustment, equalization processing, data extraction processing, and constellation position determination, and interpolates the first data stream to obtain a second data stream, and passes through the frame.
  • Obtaining a third data stream after the synchronization adjustment and equalization processing calculating a data stream signal quality difference value of the third data stream and the second data stream, and according to the data stream signal quality difference value and the third data
  • the stream or the second data stream acquires a DPD nonlinear distortion compensation coefficient, so that the DPD nonlinear distortion compensation coefficient can be obtained in the QPSK mode.
  • An embodiment of the present invention provides a data processing system. As shown in FIG. 5 or as shown in FIG. 6, the system includes at least a sending device and a receiving device:
  • the receiving device may be the receiving device shown in FIG. 10 or FIG. 11, and the receiving device described in FIG. 10 or FIG. 11 may be specifically referred to herein.
  • the transmitting device is configured to receive a DPD nonlinear distortion compensation coefficient sent by the receiving device, convert the DPD nonlinear distortion compensation coefficient into a data stream that implements predistortion compensation, and perform power amplification and output on the data stream.
  • the enlarged data stream Specifically, the DPD unit in the transmitting device converts the received DPD nonlinear distortion compensation coefficient into a data stream that implements predistortion compensation, and sends the data stream to the power amplifier; when the data stream is sent to the power amplifier, Compensates with the nonlinear distortion of the power amplifier to complete the DPD compensation function of the nonlinear distortion of the power amplifier.
  • Embodiments of the present invention provide a data processing system, in which a DPD nonlinear distortion compensation coefficient in a QPSK mode can be obtained by a receiving device, and a DPD nonlinear distortion compensation coefficient is sent to a transmission device.
  • the DPD compensation function enables the nonlinear distortion of the power amplifier.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as the cells may or may not be physical. Units can be located in one place, or they can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, dedicated hardware, dedicated CPU, dedicated memory, dedicated memory, Special components are used to achieve this, but in many cases the former is a better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Acces s Memory), disk or optical disk, etc., including a number of instructions to make a computer device (can It is a personal computer, a server, or a network device, etc.) that performs the methods described in various embodiments of the present invention.
  • a computer device can It is a personal computer, a server, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开一种数据处理的方法及装置,涉及通信技术领域,可以实现在QPSK模式下获得DPD非线性失真补偿系数。本发明实施例通过接收第一数据流,将所述第一数据流插值获得第二数据流;接收第三数据流,计算所述第三数据流和所述第二数据流的数据流信号质量差值;根据所述数据流信号质量差值以及所述第三数据流或者所述第二数据流,获取DPD非线性失真补偿系数。本发明实施例适于在QPSK模式下获得DPD非线性失真补偿系数时采用。

Description

一种数据处理的方法及装置 技术领域
本发明涉及通信技术领域, 尤其涉及一种数据处理的方法及装置。 背景技术
在微波系统中, 调制信号在时域上存在不同的幅度, 通过 PA ( Power Ampl if i er , 功率放大)器件之后非线性失真情况不同, 根据此失真情况获取 数字预失真(Digi ta l Pre- Di s tor t ion, DPD )非线性失真补偿系数, 在通过 PA器件之后的数据流中增加 DPD非线性失真补偿系数, 此数据流经过功率放 大之后与 PA器件的非线性特性相抵消, 完成 PA器件的非线性失真抵消, 使 得 PA器件的增益曲线更接近理想曲线。
采用现有技术时, 接收设备接收到经过 PA器件之后产生的不同信号失真 的数据流, 通过硬判模块将数据流按照其调制模式对应的星座图上各个星座 点的位置, 确定该数据流中各个数据对应的各个符号所在星座图中实际位置, 即实际星座点。 经过硬判模块进行处理之后进入到 DPD, 在 DPD根据理想星座 点和实际星座点的差异获取预失真参数, 以便根据此预失真参数对 PA器件的 非线性失真进行抵消。
然而, 当调制模式为 QPSK ( Quadra ture Phase Shif t Keying, 正交相移 键控) 时, 调制信号在时域上的幅度没有差异, 导致采用现有技术不能获得 在 QPSK模式下的 DPD非线性失真补偿系数。 发明内容
本发明的实施例提供一种数据处理的方法及装置, 可以实现在 QPSK模式 下获得 DPD非线性失真补偿系数。
第一方面, 本发明提供一种数据处理的方法, 包括:
接收第一数据流, 将所述第一数据流插值获得第二数据流;
接收第三数据流, 计算所述第三数据流和所述第二数据流的数据流信号 质量差值;
根据所述数据流信号质量差值以及所述第三数据流或者所述第二数据 流, 获取 DPD非线性失真补偿系数。
在第一种可能的实施例中, 结合第一方面, 所述第一数据流为将 2倍符 号率的正交相移键控 QPSK调制信号经过帧同步调整、 均衡处理、 数据抽取处 理以及星座图位置判断之后, 获得的 1倍符号率的数据流;
所述第三数据流为将 2倍符号率的 QPSK调制信号经过帧同步调整、 均衡 处理之后, 获得的 2倍符号率的数据流。
在第二种可能的实施例中, 结合第一方面中第一种可能的实施例, 所述 将所述第一数据流插值获得第二数据流包括:
将 1倍符号率的所述第一数据流进行插值处理, 获得 2倍符号率的所述 第二数据流。
在第三种可能的实施例中, 结合第一方面中第二种可能的实施例, 所述 将所述第一数据流插值获得第二数据流包括:
将 1倍符号率的所述第一数据流中每两个数据符号之间插入预设值; 将插入所述预设值的数据流进行抗混叠滤波, 获得 2倍符号率的所述第 二数据流。
在第四种可能的实施例中, 结合第一方面或者第一方面中第一种可能的 实施例或者第二种可能的实施例或者第三种可能的实施例, 在所述接收第三 数据流之后, 所述计算所述第三数据流和所述第二数据流的数据流信号质量 差值之前, 还包括:
消除所述第三数据流中均衡处理对数据失真所作的失真补偿, 以获得真 实的数据失真。
在第五种可能的实施例中, 结合第一方面或者第一方面中第一种可能的 实施例或者第二种可能的实施例或者第三种可能的实施例或者第四种可能的 实施例, 在所述接收第三数据流之后, 所述计算所述第三数据流和所述第二 数据流的数据流信号质量差值之前, 还包括: 计算所述第三数据流和所述第二数据流的延时差;
根据所述延时差对所述第三数据流和所述第二数据流进行延时对齐。 在第六种可能的实施例中, 结合第一方面中第五种可能的实施例, 所述 计算所述第三数据流和所述第二数据流的数据流信号质量差值包括:
确定延时对齐之后的所述第三数据流对应的实际符号点和所述第二数据 流对应的理想符号点;
计算所述实际符号点和所述理想符号点之间的数据流信号质量差值。 第二方面, 本发明提供一种数据处理的装置, 包括:
插值滤波模块, 用于接收第一数据流, 将所述第一数据流插值获得第二 数据流;
计算模块, 用于接收第三数据流, 计算所述第三数据流和所述第二数据 流的数据流信号质量差值;
获取模块, 用于根据所述数据流信号质量差值以及所述第三数据流或者 所述第二数据流, 获取 DPD非线性失真补偿系数。
在第一种可能的实施例中, 结合第二方面, 所所述第一数据流为将 2倍 符号率的正交相移键控 QPSK调制信号经过帧同步调整、 均衡处理、 数据抽取 处理以及星座图位置判断之后, 获得的 1倍符号率的数据流;
所述第三数据流为将 2倍符号率的 QPSK调制信号经过帧同步调整、 均衡 处理之后, 获得的 2倍符号率的数据流。
在第二种可能的实施例中, 结合第二方面中第一种可能的实施例, 所述 插值滤波模块具体用于: 将 1 倍符号率的所述第一数据流进行插值处理, 获 得 2倍符号率的所述第二数据流。
在第三种可能的实施例中, 结合第二方面中第二种可能的实施例, 所述 插值滤波模块包括:
插值单元, 用于将 1 倍符号率的所述第一数据流中每两个数据符号之间 插入预设值;
滤波单元, 用于将插入所述预设值的数据流进行抗混叠滤波, 获得 2倍 符号率的所述第二数据流。
在第四种可能的实施例中, 结合第二方面或者第二方面中第一种可能的 实施例或者第二种可能的实施例或者第三种可能的实施例, 所述装置还包括: 逆均衡器, 用于消除所述第三数据流中均衡处理对数据失真所作的失真 补偿, 以获得真实的数据失真。
在第五种可能的实施例中, 结合第二方面或者第二方面中第一种可能的 实施例或者第二种可能的实施例或者第三种可能的实施例或者第四种可能的 实施例, 所述装置还包括:
所述计算模块, 还用于计算所述第三数据流和所述第二数据流的延时差; 所述装置还包括: 处理模块, 用于根据所述延时差对所述第三数据流和 所述第二数据流进行延时对齐。
在第六种可能的实施例中, 结合第二方面中第五种可能的实施例, 所述 计算模块包括:
确定单元, 用于确定延时对齐之后的所述第三数据流对应的实际符号点 和所述第二数据流对应的理想符号点;
计算单元, 用于计算所述实际符号点和所述理想符号点之间的数据流信 号质量差值。
第三方面, 本发明提供一种接收设备, 所述接收设备至少包括帧同步模 块、 均衡器、 抽取模块、 硬判模块和第二方面提供的任一项所述的数据处理 装置:
所述帧同步模块, 用于对接收的数据流进行符号时钟恢复和帧头对齐; 所述均衡器, 用于对经过所述帧同步模块处理的数据流进行失真补偿; 所述抽取模块, 用于对经过所述均衡器处理的数据流进行数据抽取; 所述硬判模块, 用于将经过所述抽取模块处理的数据流对应的符号进行 星座点的判断, 获得第一数据流。
第四方面, 本发明提供一种数据处理系统, 所述系统至少包括发送设备 和第三方面中提供的任一种所述的接收设备: 所述发送设备, 用于接收所述接收设备发送的 DPD非线性失真补偿系数, 将所述 DPD非线性失真补偿系数转化为实现预失真补偿的数据流; 将所述数 据流进行功率放大, 并将放大后的数据流输出。
本发明实施例提供一种数据处理的方法及装置, 通过接收第一数据流, 将所述第一数据流插值获得第二数据流; 接收第三数据流, 计算所述第三数 据流和所述第二数据流的数据流信号质量差值; 根据所述数据流信号质量差 值以及所述第三数据流或者所述第二数据流, 获取 DPD非线性失真补偿系数。 与采用现有技术当调制模式为 QPSK时, 调制信号在时域上的幅度没有差异, 导致采用现有技术不能获得在 QPSK模式下的 DPD非线性失真补偿系数相比, 本发明实施例通过将第一数据流插值获得第二数据流, 使得当调制模式为 QPSK时,调制信号在时域上的幅度存在差异,使得可以实现在 QPSK模式下通 过第二数据流和第三数据流获得 DPD非线性失真补偿系数。 附图说明 施例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例 1提供的一种数据处理的方法的流程图;
图 2 ( 1 )为本发明实施例 1提供的 QPSK对应的符号在星座图中的位置的 示意图;
图 2 ( 2 )为本发明实施例 1提供的 QPSK调制信号对应的时域图的示意图; 图 3 ( 1 )为本发明实施例 1提供的另一种 QPSK对应的符号在星座图中的 位置的示意图;
图 3 ( 2 )为本发明实施例 1提供的另一种 QPSK调制信号对应的时域图的 示意图;
图 4为本发明实施例 1提供的另一种数据处理的方法的流程图; 图 5为本发明实施例 1提供的一种数据处理系统的示意图; 图 6为本发明实施例 1提供的另一种数据处理系统的示意图; 图 7为本发明实施例 2提供的一种数据处理的装置的结构框图; 图 8为本发明实施例 2提供的另一种数据处理的装置的结构框图; 图 9为本发明实施例 2提供的另一种数据处理的装置的结构框图; 图 10为本发明实施例 2提供的一种接收设备的结构框图;
图 11为本发明实施例 2提供的另一种接收设备的结构框图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
实施例 1
本发明实施例提供一种数据处理的方法, 如图 1 所示, 该方法包括以下 步骤:
步骤 101 , 接收第一数据流, 将第一数据流插值获得第二数据流; 第一数据流为将 2倍符号率的正交相移键控 ( Quadra ture Phase Shi f t Keying , QPSK )调制信号经过帧同步调整、 均衡处理、 数据抽取处理以及星 座图位置判断之后, 获得的 1 倍符号率的数据流。 其中, 第一数据流经过帧 同步调整以及均衡器处理时, 均为 2倍符号率的数据流, 在数据抽取处理时, 将 2倍符号率的数据流抽取为 1倍符号率的数据流。 由于在硬判处理即进行 星座图位置判断时, 硬判处理时需要工作在 1倍符号率下, 因此需要将 2倍 符号率的数据流抽取为 1倍符号率的数据流。
在本步骤中, 将第一数据流插值获得第二数据流, 即将 1 倍符号率的第 一数据流插值为 2倍符号率的第二数据流。
QPSK为一种数字调制方式。 在数字信号的调制方式中, QPSK是常用的一 种卫星数字信号调制方式, 它具有较高的频谱利用率、 较强的抗干扰性。 如 图 2所示, 图 2中(1 )表示 QPSK对应的符号在星座图中的位置, 图 2中(2 ) 表示 QPSK调制信号对应的时域图, 可以看出 QPSK调制信号在时域上的幅度 没有差异, 从而不能判断不同输入幅度下的功率放大响应, 从而不能计算非 线性失真补偿系数。 在插值操作之前, 第一数据流中存在符号点, 即从符号 点上可以将真实信号信息提取出来的点; 在完成插值操作之后, 第二数据流 中存在过渡点, 即由于插值而产生的点, 过渡点在时域图中位于两个相邻符 号点之间的中间位置, 如图 3所示, 图 3中 ( 1 )表示 QPSK对应的符号在星 座图中的位置, 图 3中 (2 ) 中表示 QPSK调制信号对应的时域图, 其中符号 点由圓圏表示, 过渡点由三角形表示。 这样在 QPSK调制信号对应的时域图上 的幅度存在差异, 从而存在了计算 DPD非线性失真补偿系数的基础。
步骤 102 ,接收第三数据流, 计算第三数据流和第二数据流的数据流信号 质量差值;
第三数据流为将 2倍符号率的 QPSK调制信号经过帧同步调整、 均衡处理 之后, 获得的 2倍符号率的数据流。
在步骤 101 中将第一数据流插值后获得 2倍符号率的第二数据流, 第三 数据流为 2倍符号率的数据流, 这样第二数据流和第三数据流都工作在 2倍 符号率下, 方便后续对数据流的进一步处理。
第三数据流为经过帧同步调整、 均衡处理之后获得的数据流, 由于此数 据流没有经过进一步处理, 因此存在较大的失真。 第二数据流为经过帧同步 调整、 均衡处理、 数据抽取处理以及星座图位置判断之后获得的数据库, 此 数据流存在较小的失真。 因此可以根据第三数据流和第二数据流的失真程度 不同, 计算两者的数据流信号质量差值。
步骤 103 , 根据数据流信号质量差值以及第三数据流或者第二数据流, 获 取 DPD非线性失真补偿系数。
可选的, 按照 LMS 算法原理, 以第二数据流为基础数据或者以第三数据 流为基础数据, 对应第三数据流和第二数据流的数据流信号质量差, 可以计 算获得 DPD非线性失真补偿系数。 需要说明的是, 第二数据流与第三数据流 仅仅是数据性能存在差异, 因此都可以作为计算 DPD非线性失真补偿系数的 基础。
本发明实施例提供一种数据处理的方法, 通过将第一数据流插值获得第 二数据流, 使得当调制模式为 QPSK时, 调制信号在时域上的幅度存在差异, 使得可以实现在 QPSK模式下通过第二数据流和第三数据流获得 DPD非线性失 真补偿系数。
本发明实施例提供另一种数据处理的方法, 如图 4所示, 该方法包括: 步骤 401 , 接收第一数据流;
可选的, 第一数据流为将 2倍符号率的正交相移键控 QPSK调制信号经过 帧同步调整、 均衡处理、 数据抽取处理以及星座图位置判断之后, 获得的 1 倍符号率的数据流。
在某一种调制方式中, 将 bi t数据流通过多个 b i t映射成一个符号的方 式进行传输, 成为一个传输符号的数据流, 这个传输符号的数据流的速度就 是符号率。 QPSK调制模式就是将 2个 b i t映射成一个符号。 假如 bi t数据流 的速率是 10幌 bi t/s , 调制模式是 QPSK, 符号率为 100/2=5幌 symbol/s。
2倍符号率的数据流经过帧同步调整, 具体的, 帧同步调整包括符号时钟 恢复和帧头对齐等功能。 帧同步调整之前接收的数据流是 2倍符号率的数据 流, 输出的数据流也是 2倍符号率的数据流。
对经过帧同步调整之后的数据流进行均衡处理, 均衡处理用于对数据流 进行失真补偿。 其中, 失真主要是信道的平坦度、 群延时波动、 信道多径导 致的选择性衰落等线性失真, 通过均衡处理补偿上述失真。 该均衡处理不能 够对功率放大器非线性失真做补偿。 实际应用中, 可以由自适应数字滤波器 实现均衡处理。 均衡处理工作在 2倍符号率下, 即经过均衡处理之后的数据 流为 2倍符号率的数据流。
对经过均衡处理之后的数据流进行数据抽取处理, 在数据抽取时将 2倍 符号率的数据流抽取之后转换为 1 倍符号率的数据流。 由于在硬判处理即进 行星座图位置判断时, 硬判处理时需要工作在 1 倍符号率下, 因此需要将 2 倍符号率的数据流抽取为 1倍符号率的数据流。 可选的, 将 2倍符号率的数 据流抽取为 1倍符号率的数据流的实现方式为将数据流每间隔一个数据丟弃, 只保留奇数的数据或者只保留偶数即可。
需要说明的是, 由于在获取数据流的时候, 一般每个数据获取两次, 两 次获取的数据虽然不一样, 在帧同步处理时已经实现了数据流时钟对数据流 数据的同步, 所以抽取的数据是过渡点的数据, 对数据恢复没有影响。
对经过数据抽取处理之后的 1 倍符号率的数据流对应的符号进行星座点 的硬判。 将接收数据流按照对应星座图上各个星座点的位置进行判断, 确定 调制模式对应的符号所在星座图的位置, 同时根据实际星座点的位置和理想 星座点的位置差异, 获取信号的信噪比 (S i gna l No i se Ra t io , SNR )0 在通 过帧同步调整、 均衡处理、 硬判之后接收系统可以得到比较高 SNR。 信噪比较 高意味着此数据流在星座图上的点接近理想点。 其中实际星座点为数据流对 应的符号在星座图中对应的星座点, 理想星座点为某一调制模块对应的符号 在星座图中对应的星座点, 可以理解为标准星座点。 经过硬判处理之后获得 的 1倍符号率的数据流即为本实施例中的第一数据流。
步骤 402 , 将第一数据流插值获得第二数据流;
QPSK为一种数字调制方式。 在数字信号的调制方式中, QPSK是常用的一 种卫星数字信号调制方式, 它具有较高的频谱利用率、 较强的抗干扰性。 如 图 2所示, 图 2中(1 )表示 QPSK对应的符号在星座图中的位置, 图 2中(2 ) 表示 QPSK调制信号对应的时域图, 可以看出 QPSK调制信号在时域上的幅度 没有差异,从而不能判断不同输入幅度下的功率放大响应,从而不能计算 DPD 非线性失真补偿系数。 因此需要对第一数据流进行处理, 使得处理之后的数 据流对应的符号在时域上的幅度存在差异。
具体的, 对第一数据流进行插值处理, 即将 1 倍符号率的所述第一数据 流进行插值处理, 获得 2倍符号率的所述第二数据流, 使得插值处理之后的 数据流对应的符号在时域上的幅度存在差异。 例如, 将 1 倍符号率的所述第 一数据流中每两个数据符号之间插入预设值, 其中, 预设值可以为 0。
进一步的, 将插入预设值的数据流进行一次抗混叠滤波。 滤波带宽与符 号率相等, 将完成内插之后的数据流中的干扰信号滤除。
此时的数据流是经过硬判处理之后 SNR较高的数据流, 同时由于增加插 值滤波处理, 此时的数据流不仅有了符号点, 也有过渡点, 而且过渡点有了 与符号点不一样的幅度, 也就有了计算 DPD 失真补偿系数的基础。 需要说明 的是, 在插值操作之前, 第一数据流中存在符号点, 即从符号点上可以将真 实信号信息提取出来的点; 在完成插值操作之后, 第二数据流中存在过渡点, 即由于插值而产生的点, 过渡点在时域图中位于两个相邻符号点之间的中间 位置, 如图 3所示, 符号点由圓圏表示, 过渡点由三角形表示。 这样在 QPSK 调制信号对应的时域图上的幅度存在差异, 从而存在了计算 DPD非线性失真 补偿系数的基础。
步骤 403 , 接收第三数据流;
第三数据流为将 2倍符号率的 QPSK调制信号经过帧同步调整、 均衡处理 之后, 获得的 2倍符号率的数据流。 步骤 401 中对经过帧同步调整以及均衡 处理的具体描述, 在本步骤中不进行——赘述。
需要说明的是, 步骤 401 以及步骤 403的顺序不是固定的, 可以先执行 步骤 401和步骤 402 ,再执行步骤 403 , 或者先执行步骤 403 ,再执行步骤 401 和步骤 402。 一般以时间为依据, 步骤 403先执行, 步骤 401后执行, 但为了 描述方便, 在本实施例中先描述接收第一数据流, 后描述接收第三数据流。
步骤 404 , 消除第三数据流中均衡处理对数据失真所作的失真补偿, 以获 得真实的数据失真;
需要说明的是, 本步骤为可选步骤。 可选的, 对第三数据流进行逆均衡 处理, 以便经过逆均衡处理之后获得的数据流能够体现数据真实的失真情况, 可以获得更好的 DPD失真系数的提取能力。 逆均衡处理的作用为去掉均衡处 理时对数据失真的补偿, 具体的, 让逆均衡处理的频率响应与均衡处理的频 率响应完全相反。
步骤 405 , 对所述第三数据流和所述第二数据流进行延时对齐;
需要说明的是, 在执行完步骤 403之后, 可以直接执行步骤 405 , 或者再 执行完步骤 403之后, 执行步骤 404 , 再执行步骤 405。
可选的, 计算所述第三数据流和所述第二数据流的延时差; 根据所述延 时差对所述第三数据流和所述第二数据流进行延时对齐。
在计算 DPD非线性失真的补偿系数之前, 需要将第三数据流和第二数据 流进行延时对齐。 具体的, 计算出两个数据流的延时差异, 然后进行延时补 偿, 完成两个数据流的延时对齐。
步骤 406 , 计算所述第三数据流和所述第二数据流的数据流信号质量差 值;
可选的, 确定延时对齐之后的所述第三数据流对应的实际符号点和所述 第二数据流对应的理想符号点; 计算所述实际符号点和所述理想符号点之间 的数据流信号质量差值。
由于经过均衡处理之后的第三数据流存在较大的失真, 而经过硬判-内插 滤波模块之后的第二数据流相对 SNR较好, 因此数据失真较小, 利用这两个 数据流的信号质量的差异, 将两个数据流之间的误差进行提取, 可以提取出 第三数据流对应的实际符号点与第二数据流对应的理想点的误差。
以第二数据流作为基础数据, 或者以第三数据流作为基础数据, 对应上 本符号点的误差 (不同幅度的符号点或者过渡点可以对应到这个点的误差信 息), 就可以正确提取出功率放大器非线性失真导致的误差, 即本实施例中的 数据流信号质量差值。 需要说明的是, 第二数据流与第三数据流仅仅是数据 性能存在差异, 因此都可以作为计算 DPD非线性失真补偿系数的基础。
步骤 407 ,根据所述数据流信号质量差值以及所述第三数据流或者第二数 据流, 获取 DPD非线性失真补偿系数。
可选的, 可以根据 c : ^—^ / * ^计算 DPD非线性失真补偿系数; 此公 式为一个迭代相加的公式, („为当前计算周期 DPD非线性失真的补偿系数, 为上一个计算周期计算出来的 DPD非线性失真的补偿系数, e为数据流信 号质量差值, 可以为一个复数, 的意思是将这个复数取共轭值, ^.为一个数 据流, 本实施例中, 取第二数据流或者第三数据流。 在获得 DPD非线性失真补偿系数之后, 将此 DPD非线性失真补偿系数发 送给发送设备, 发送设备将获取的 DPD非线性失真补偿系数写入到发送设备 中的 DPD单元, DPD单元将 DPD非线性失真补偿系数转化为实现预失真补偿的 数据流, 当该数据流发送到发送设备中的功率放大器时就可以与功率放大器 的非线性失真进行抵消, 从而完成功率放大器非线性失真的 DPD补偿功能。
本发明实施例提供一种数据处理的方法, 通过将第一数据流插值获得第 二数据流, 使得当调制模式为 QPSK时, 调制信号在时域上的幅度存在差异, 然后根据接收到的第三数据流, 计算 DPD非线性失真补偿系数, 使得可以实 现在 QPSK模式下通过第二数据流和第三数据流获得 DPD 非线性失真补偿系 数。
实施例 2
本发明实施例提供一种数据处理的装置, 如图 7 所示, 该装置包括: 插 值滤波模块 701 , 接收模块 702 , 计算模块 703 , 获取模块 704;
插值滤波模块 701 , 用于接收第一数据流, 将所述第一数据流插值获得第 二数据流;
可选的, 第一数据流为将 2倍符号率的正交相移键控 (QPSK )调制信号 经过帧同步调整、 均衡处理、 数据抽取处理以及星座图位置判断之后, 获得 的 1倍符号率的数据流。
接收模块 702 , 用于接收第三数据流;
第三数据流为将 2倍符号率的 QPSK调制信号经过帧同步调整、 均衡处理 之后, 获得的 2倍符号率的数据流。
计算模块 703 ,用于计算所述第三数据流和所述第二数据流的数据流信号 质量差值;
获取模块 704 ,用于根据所述数据流信号质量差值以及所述第三数据流或 者所述第二数据流, 获取 DPD非线性失真补偿系数。
可选的, 按照 LMS 算法原理, 以第二数据流为基础数据或者以第三数据 流为基础数据, 对应第三数据流和第二数据流的数据流信号质量差, 可以计 算获得 DPD非线性失真补偿系数。 需要说明的是, 第二数据流与第三数据流 仅仅是数据性能存在差异, 因此都可以作为计算 DPD非线性失真补偿系数的 基础。
QPSK为一种数字调制方式。 在数字信号的调制方式中, QPSK是常用的一 种卫星数字信号调制方式, 它具有较高的频谱利用率、 较强的抗干扰性。 如 图 2所示, 图 2中(1 )表示 QPSK对应的符号在星座图中的位置, 图 2中(2 ) 表示 QPSK调制信号对应的时域图, 可以看出 QPSK调制信号在时域上的幅度 没有差异,从而不能判断不同输入幅度下的功率放大响应,从而不能计算 DPD 非线性失真补偿系数。 因此需要对第一数据流进行处理, 使得处理之后的数 据流对应的符号在时域上的幅度存在差异。 进一步可选的, 如图 8 所示, 所 述插值滤波模块 701用于: 将 1倍符号率的所述第一数据流进行插值处理, 获得 2倍符号率的所述第二数据流。
进一步可选的,如图 8所示,所述插值滤波模块 701包括:插值单元 7011 , 滤波单元 7012;
插值单元 7011 , 用于将 1倍符号率的所述第一数据流中每两个数据符号 之间插入预设值; 其中, 预设值可以为 0。
滤波单元 7012 , 用于将插入所述预设值的数据流进行抗混叠滤波, 获得 2倍符号率的所述第二数据流。
进一步可选的, 如图 8所示, 该装置还可以包括: 逆均衡器 705 ;
在接收模块 702接收到第三数据流之后, 计算模块 703计算所述第三数 据流和所述第二数据流的数据流信号质量差值之前, 逆均衡器 705 , 用于消除 所述第三数据流中均衡处理对数据失真所作的失真补偿, 以获得真实的数据 失真。
可选的, 采用逆均衡器 705 对第三数据流进行处理, 以便经过逆均衡器 705处理之后的数据流能够体现数据真实的失真情况,可以获得更好的 DPD失 真系数的提取能力。 逆均衡器 705 的作用为去掉均衡处理时对数据失真的补 偿, 具体的, 让逆均衡器的频率响应与均衡处理时采用的设备的频率响应完 全相反。
进一步可选的, 如图 8所示, 所述装置还包括: 处理模块 706;
在计算模块 703计算所述第三数据流和所述第二数据流的数据流信号质 量差值之前, 所述计算模块 703 ,还用于计算所述第三数据流和所述第二数据 流的延时差; 所述处理模块 706 用于根据所述延时差对所述第三数据流和所 述第二数据流进行延时对齐。
进一步可选的, 如图 8所示, 所述计算模块 703包括: 确定单元 7031 , 计算单元 7032 ;
确定单元 7031 , 用于确定延时对齐之后的所述第三数据流对应的实际符 号点和所述第二数据流对应的理想符号点;
计算单元 7032 , 用于计算所述实际符号点和所述理想符号点之间的数据 流信号质量差值。
由于从均衡器发送过来的第三数据流存在较大的失真, 而经过硬判-内插 滤波模块之后的第二数据流相对 SNR较好, 因此数据失真较小, 利用这两个 数据流的信号质量的差异, 将两个数据流之间的误差进行提取, 可以提取出 第三数据流对应的实际符号点与第二数据流对应的理想点的误差。
需要说明的是, 附图 7或 8所示装置中, 其各个模块的具体实施过程以 及各个模块之间的信息交互等内容, 由于与本发明方法实施例基于同一发明 构思, 可以参见方法实施例, 在此不——赘述。
本发明实施例提供一种数据处理的装置, 通过插值滤波模块, 用于接收 第一数据流, 将所述第一数据流插值获得第二数据流; 计算模块, 用于接收 第三数据流, 计算所述第三数据流和所述第二数据流的数据流信号质量差值; 获取模块, 用于根据所述数据流信号质量差值以及所述第三数据流或者所述 第二数据流, 获取 DPD非线性失真补偿系数, 使得将第一数据流插值获得第 二数据流, 使得当调制模式为 QPSK时, 调制信号在时域上的幅度存在差异, 然后根据接收到的第三数据流, 计算 DPD非线性失真补偿系数, 使得可以实 现在 QPSK模式下通过第二数据流和第三数据流获得 DPD 非线性失真补偿系 数。
本发明实施例还提供一种数据处理的装置, 如图 9 所示, 该装置包括: 接收器 901 , 存储器 902 , 处理器 903 , 发送器 904 ;
接收器 901 , 用于接收第一数据流; 接收第三数据流;
可选的, 第一数据流为将 2倍符号率的正交相移键控 QPSK调制信号经过 帧同步调整、 均衡处理、 数据抽取处理以及星座图位置判断之后, 获得的 1 倍符号率的数据流; 第三数据流为将 2倍符号率的 QPSK调制信号经过帧同步 调整、 均衡处理之后, 获得的 2倍符号率的数据流。
存储器 902 , 用于存储包括程序例程的信息;
处理器 903 , 与存储器、 接收器和发送器耦合, 用于控制所述程序例程的 执行, 具体包括: 将所述第一数据流插值获得第二数据流; 计算所述第三数 据流和所述第二数据流的数据流信号质量差值; 根据所述数据流信号质量差 值以及所述第三数据流或者所述第二数据流, 获取数字预失真 DPD非线性失 真补偿系数。
进一步可选的, 所述将所述第一数据流插值获得第二数据流包括: 将 1 倍符号率的所述第一数据流进行插值处理, 获得 2倍符号率的所述第二数据 流。 具体的, 将 1 倍符号率的所述第一数据流中每两个数据符号之间插入预 设值, 其中, 预设值可以为 0; 以及将插入所述预设值的数据流进行抗混叠滤 波, 获得 2倍符号率的所述第二数据流。
进一步可选的, 所述处理器 903还用于: 接收第三数据流之后, 计算第 三数据流和第二数据流的数据流信号质量差值之前, 消除所述第三数据流中 均衡处理对数据失真所作的失真补偿, 以获得真实的数据失真。
进一步可选的, 所述处理器 903还用于: 在接收第三数据流之后, 计算 第三数据流和第二数据流的数据流信号质量差值之前, 计算所述第三数据流 和所述第二数据流的延时差; 以及根据所述延时差对所述第三数据流和所述 第二数据流进行延时对齐。
具体的, 处理器 903计算所述第三数据流和所述第二数据流的数据流信 号质量差值包括: 确定延时对齐之后的所述第三数据流对应的实际符号点和 所述第二数据流对应的理想符号点; 以及计算所述实际符号点和所述理想符 号点之间的数据流信号质量差值。
发送器 904 , 用于发送处理器 903获得的 DPD非线性失真补偿系数。
需要说明的是, 附图 9 所示装置中, 其各个模块的具体实施过程以及各 个模块之间的信息交互等内容, 由于与本发明方法实施例基于同一发明构思, 可以参见方法实施例, 在此不——赘述。
本发明实施例提供一种数据处理的装置, 通过处理器将第一数据流插值 获得第二数据流, 使得当调制模式为 QPSK时, 调制信号在时域上的幅度存在 差异, 然后根据接收到的第三数据流, 计算 DPD非线性失真补偿系数, 使得 可以实现在 QPSK模式下通过第二数据流和第三数据流获得 DPD非线性失真补 偿系数。
本发明实施例提供一种接收设备, 如图 10或 11所示, 该接收设备至少 包括帧同步模块 1001、 均衡器 1002、 抽取模块 1 003、 硬判模块 1004和数据 处理装置 1 005;
所述帧同步模块 1001 , 用于接收数字化后的数据流, 此数据流为 2倍符 号率的 QPSK调制信号, 对接收到的数据流进行符号时钟恢复和帧头对齐。
其中, 在某一种调制方式中, 将 b i t数据流通过多个 b i t映射成一个符 号的方式进行传输, 成为一个传输符号的数据流, 这个传输符号的数据流的 速度就是符号率。 QPSK调制模式就是将 2个 b i t映射成一个符号。 假如 b i t 数据流的速率是 10幌 b i t / s ,调制模式是 QPSK ,符号率为 100/ 2=5 OMs ymbo 1 / s。
帧同步模块输入的数据是 2倍符号率的数据流, 输出的数据也是 2倍符 号率的数据流。
经过帧同步模块 1001调整之后的数据流进入均衡器 1002 ,在均衡器 1 002 中对数据流进行失真补偿。 其中, 失真主要是信道的平坦度、 群延时波动、 信道多径导致的选择性衰落等线性失真, 通过均衡器 1002补偿上述失真。 该 均衡器 1002不能够对功率放大器非线性失真做补偿。 均衡器 1002可以由自 适应数字滤波器实现, 该模块工作在 2倍符号率下, 即经过均衡器 1002处理 之后的数据流为 2倍符号率的数据流。
经过均衡器 1002处理之后的数据流进入抽取模块 1003 ,在抽取模块 1 003 中对数据流进行抽取, 使得 2倍符号率的数据流转换为 1倍符号率的数据流。 由于在硬判模块 1004进行星座图位置判断时, 硬判模块 1004需要工作在 1 倍符号率下, 因此需要抽取模块 1003将 2倍符号率的数据流抽取为 1倍符号 率的数据流。 可选的, 将 2倍符号率的数据流抽取为 1倍符号率的数据流的 实现方式为将数据流每间隔一个数据丟弃, 只保留奇数的数据或者只保留偶 数即可。
需要说明的是, 由于在获取数据流的时候, 一般每个数据获取两次, 两 次获取的数据虽然不一样, 在帧同步模块 1001已经实现了数据流时钟对数据 流数据的同步, 所以抽取模块 1003抽取的数据是过渡点的数据, 对数据恢复 没有影响。
经过抽取模块 1 003进行数据抽取之后的 1倍符号率的数据流进入硬判模 块 1 004 , 在硬判模块 1004对数据流对应的符号进行星座点的硬判。硬判模块 1004将接收数据流按照对应星座图上各个星座点的位置进行判断, 确定调制 模式对应的符号所在星座图的位置, 同时根据实际星座点的位置和理想星座 点的位置差异, 获取信号的信噪比 (S i gna l No i se Ra t io , SNR )0 在通过帧 同步、 均衡、 硬判之后接收系统可以得到比较高 SNR。 信噪比较高意味着此数 据流在星座图上的点接近理想点。 其中实际星座点为数据流对应的符号在星 座图中对应的星座点, 理想星座点为某一调制模块对应的符号在星座图中对 应的星座点, 可以理解为标准星座点。 经过硬判模块处理之后获得的 1 倍符 号率的数据流即为本实施例中的第一数据流。
数据处理装置 1005 , 用于接收所述第一数据流, 将所述第一数据流插值 获得第二数据流; 接收第三数据流, 计算所述第三数据流和所述第二数据流 的数据流信号质量差值; 根据所述数据流信号质量差值以及所述第三数据流 或者所述第二数据流, 获取 DPD非线性失真补偿系数。 需要说明的是, 数据处理装置中的插值滤波模块 1 007可以位于数据处理 装置内,作为数据处理装置的一个模块,如图 1 0所示,或者插值滤波模块 1007 可以为一个单独的模块, 例如图 1 1所示。 逆均衡器 1006 可以位于数据处理 装置内, 作为数据处理装置的一个模块, 如图 10 所示, 或者逆均衡器 1006 可以为一个单独的模块, 例如图 11所示。
数据处理装置 1005可以为附图 7、 附图 8或者附图 9中所描述的装置, 具体可参看附图 7、 附图 8或者附图 9中的具体描述, 在此不——赘述。
本发明实施例提供一种接收设备, 通过将经过帧同步调整、 均衡处理、 数据抽取处理以及星座图位置判断之后, 获得第一数据流, 将第一数据流插 值获得第二数据流, 经过帧同步调整、 均衡处理之后获得第三数据流, 计算 所述第三数据流和所述第二数据流的数据流信号质量差值, 并根据所述数据 流信号质量差值以及所述第三数据流或者所述第二数据流, 获取 DPD非线性 失真补偿系数, 使得可以实现在 QPSK模式下获得 DPD非线性失真补偿系数。
本发明实施例提供一种数据处理系统, 如图 5或者如图 6所示, 该系统 至少包括发送设备和接收设备:
接收设备可以为附图 10或者附图 11所示的接收设备, 具体可参看附图 10或者附图 11所描述的接收设备, 在此不——赘述。 通过接收设备获得 DPD 非线性失真补偿系数, 并将 DPD非线性失真补偿系数发送给发送设备;
所述发送设备, 用于接收所述接收设备发送的 DPD非线性失真补偿系数, 将所述 DPD非线性失真补偿系数转化为实现预失真补偿的数据流; 将所述数 据流进行功率放大, 输出放大后的数据流。 具体的, 发送设备中的 DPD单元 将接收到的 DPD非线性失真补偿系数转化为实现预失真补偿的数据流, 并将 此数据流发送给功率放大器; 当该数据流发送到功率放大器时就可以与功率 放大器的非线性失真进行抵消, 从而完成功率放大器非线性失真的 DPD补偿 功能。
本发明实施例提供一种数据处理系统, 通过接收设备可以获得在 QPSK模 式下的 DPD非线性失真补偿系数, 将 DPD非线性失真补偿系数发送给发送设 备, 使得可以完成功率放大器非线性失真的 DPD补偿功能。
需说明的是, 以上所描述的装置实施例仅仅是示意性的, 其中所述作为 分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元显示的 部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分 布到多个网络单元上。 可以根据实际的需要选择其中的部分或者全部模块来 实现本实施例方案的目的。 本领域普通技术人员在不付出创造性劳动的情况 下, 即可以理解并实施。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过专用硬件 包括专用集成电路、 专用 CPU、 专用存储器、 专用元器件等来实现, 但很多情 况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本质上或 者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该计算机 软件产品存储在可读取的存储介质中, 如计算机的软盘, U盘、 移动硬盘、 只 读存储器(ROM, Read-Only Memory ), 随机存取存储器( RAM, Random Acces s Memory ), 磁碟或者光盘等, 包括若干指令用以使得一台计算机设备(可以是 个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述的方法。
本说明书中的各个实施例均采用递进的方式描述, 各个实施例之间相同 相似的部分互相参见即可, 每个实施例重点说明的都是与其他实施例的不同 之处。 尤其, 对于装置和系统实施例而言, 由于其基本相似于方法实施例, 所以描述得比较筒单, 相关之处参见方法实施例的部分说明即可。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利要求 书
1、 一种数据处理的方法, 其特征在于, 包括:
接收第一数据流, 将所述第一数据流插值获得第二数据流;
接收第三数据流, 计算所述第三数据流和所述第二数据流的数据流信号质 量差值;
根据所述数据流信号质量差值以及所述第三数据流或者所述第二数据流, 获取数字预失真 DPD非线性失真补偿系数。
2、 根据权利要求 1所述的方法, 其特征在于, 所述第一数据流为将 2倍符 号率的正交相移键控 QPSK调制信号经过帧同步调整、 均衡处理、 数据抽取处理 以及星座图位置判断之后, 获得的 1倍符号率的数据流;
所述第三数据流为将 2倍符号率的 QPSK调制信号经过帧同步调整、 均衡处 理之后, 获得的 2倍符号率的数据流。
3、 根据权利要求 2所述的方法, 其特征在于, 所述将所述第一数据流插值 获得第二数据流包括:
将 1倍符号率的所述第一数据流进行插值处理, 获得 2倍符号率的所述第 二数据流。
4、 根据权利要求 3所述的方法, 其特征在于, 所述将所述第一数据流插值 获得第二数据流包括:
将 1倍符号率的所述第一数据流中每两个数据符号之间插入预设值; 将插入所述预设值的数据流进行抗混叠滤波, 获得 2倍符号率的所述第二 数据流。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于, 在所述接收第三数 据流之后, 所述计算所述第三数据流和所述第二数据流的数据流信号质量差值 之前, 还包括:
消除所述第三数据流中均衡处理对数据失真所作的失真补偿, 以获得真实 的数据失真。
6、 根据权利要求 1-5任一项所述的方法, 其特征在于, 在所述接收第三数 据流之后, 所述计算所述第三数据流和所述第二数据流的数据流信号质量差值 之前, 还包括:
计算所述第三数据流和所述第二数据流的延时差;
根据所述延时差对所述第三数据流和所述第二数据流进行延时对齐。
7、 根据权利要求 6所述的方法, 其特征在于, 所述计算所述第三数据流和 所述第二数据流的数据流信号质量差值包括:
确定延时对齐之后的所述第三数据流对应的实际符号点和所述第二数据流 对应的理想符号点;
计算所述实际符号点和所述理想符号点之间的数据流信号质量差值。
8、 一种数据处理的装置, 其特征在于, 包括:
插值滤波模块, 用于接收第一数据流, 将所述第一数据流插值获得第二数 据流;
接收模块, 用于接收第三数据流;
计算模块, 用于计算所述第三数据流和所述第二数据流的数据流信号质量 差值;
获取模块, 用于根据所述数据流信号质量差值以及所述第三数据流或者所 述第二数据流, 获取 DPD非线性失真补偿系数。
9、 根据权利要求 8所述的装置, 其特征在于, 所述第一数据流为将 2倍符 号率的正交相移键控 QPSK调制信号经过帧同步调整、 均衡处理、 数据抽取处理 以及星座图位置判断之后, 获得的 1倍符号率的数据流;
所述第三数据流为将 2倍符号率的 QPSK调制信号经过帧同步调整、 均衡处 理之后, 获得的 2倍符号率的数据流。
1 0、 根据权利要求 9所述的装置, 其特征在于,
所述插值滤波模块具体用于: 将 1 倍符号率的所述第一数据流进行插值处 理, 获得 2倍符号率的所述第二数据流。
1 1、 根据权利要求 1 0所述的装置, 其特征在于, 所述插值滤波模块包括: 插值单元, 用于将 1 倍符号率的所述第一数据流中每两个数据符号之间插 入预设值;
滤波单元, 用于将插入所述预设值的数据流进行抗混叠滤波, 获得 2倍符 号率的所述第二数据流。
12、 根据权利要求 8-11中任一项所述的装置, 其特征在于, 所述装置还包 括:
逆均衡器, 用于消除所述第三数据流中均衡处理对数据失真所作的失真补 偿, 以获得真实的数据失真。
1 3、 根据权利要求 8-12中任一项所述的方法, 其特征在于, 所述装置还包 括:
所述计算模块, 还用于计算所述第三数据流和所述第二数据流的延时差; 所述装置还包括: 处理模块, 用于根据所述延时差对所述第三数据流和所 述第二数据流进行延时对齐。
14、 根据权利要求 1 3所述的装置, 其特征在于, 所述计算模块包括: 确定单元, 用于确定延时对齐之后的所述第三数据流对应的实际符号点和 所述第二数据流对应的理想符号点;
计算单元, 用于计算所述实际符号点和所述理想符号点之间的数据流信号 质量差值。
15、 一种接收设备, 其特征在于, 所述接收设备至少包括帧同步模块、 均 衡器、 抽取模块、 硬判模块和权利要求 8-14任一项所述的数据处理装置: 所述帧同步模块, 用于对接收的数据流进行符号时钟恢复和帧头对齐; 所述均衡器, 用于对经过所述帧同步模块处理的数据流进行失真补偿; 所述抽取模块, 用于对经过所述均衡器处理的数据流进行数据抽取; 所述硬判模块, 用于将经过所述抽取模块处理的数据流对应的符号进行星 座点的判断, 获得第一数据流。
16、 一种数据处理系统, 其特征在于, 所述系统至少包括发送设备和权利 要求 15所述的接收设备:
所述发送设备, 用于接收所述接收设备发送的 DPD非线性失真补偿系数, 将所述 DPD非线性失真补偿系数转化为实现预失真补偿的数据流; 将所述数据 流进行功率放大, 并将放大后的数据流输出。
PCT/CN2012/085966 2012-12-05 2012-12-05 一种数据处理的方法及装置 WO2014086008A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2012/085966 WO2014086008A1 (zh) 2012-12-05 2012-12-05 一种数据处理的方法及装置
CN201280002127.6A CN103222243B (zh) 2012-12-05 2012-12-05 一种数据处理的方法及装置
EP12878639.9A EP2765746B1 (en) 2012-12-05 2012-12-05 Method and apparatus for processing data
US14/186,960 US9178825B2 (en) 2012-12-05 2014-02-21 Data processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085966 WO2014086008A1 (zh) 2012-12-05 2012-12-05 一种数据处理的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/186,960 Continuation US9178825B2 (en) 2012-12-05 2014-02-21 Data processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2014086008A1 true WO2014086008A1 (zh) 2014-06-12

Family

ID=48818203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085966 WO2014086008A1 (zh) 2012-12-05 2012-12-05 一种数据处理的方法及装置

Country Status (4)

Country Link
US (1) US9178825B2 (zh)
EP (1) EP2765746B1 (zh)
CN (1) CN103222243B (zh)
WO (1) WO2014086008A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9660675B2 (en) * 2015-10-13 2017-05-23 Analog Devices Global Digital predistortion and uptilt and cable communication
CN113076981A (zh) 2017-06-30 2021-07-06 华为技术有限公司 数据处理方法及装置
CN110858811B (zh) * 2018-08-24 2022-01-18 华为技术有限公司 测量时延的方法和网络设备
CN111142936B (zh) * 2018-11-02 2021-12-31 深圳云天励飞技术股份有限公司 数据流操作方法、处理器和计算机存储介质
CN111143407A (zh) * 2019-11-08 2020-05-12 深圳市元征科技股份有限公司 一种数据流排序方法、装置、电子设备和存储介质
CN111970078B (zh) * 2020-08-14 2022-08-16 西华大学 一种非线性失真场景的帧同步方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355536A (zh) * 2007-07-24 2009-01-28 鼎桥通信技术有限公司 对基带信号进行数字预失真处理的装置及方法
CN102075469A (zh) * 2010-12-06 2011-05-25 北京邮电大学 用于数字预失真系统的信号延迟时间的估计方法
CN102148783A (zh) * 2010-02-05 2011-08-10 富士通株式会社 基带数字预失真方法、预失真装置以及功率放大装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4326673B2 (ja) * 2000-06-06 2009-09-09 富士通株式会社 非線形歪補償装置を有する通信装置の起動方法
US6885241B2 (en) * 2002-03-26 2005-04-26 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry Type-based baseband predistorter function estimation technique for non-linear circuits
US7924956B2 (en) * 2005-03-31 2011-04-12 Intel Corporation System and method for compensation of non-linear transmitter distortion
CN101479956B (zh) * 2006-04-28 2013-07-31 大力系统有限公司 用于无线通信的高效率线性化功率放大器
JP5104623B2 (ja) 2008-07-29 2012-12-19 富士通株式会社 遅延量推定装置および信号送信装置
JP5121691B2 (ja) * 2008-12-22 2013-01-16 株式会社東芝 歪補償器、送信機、歪補償方法
US20100279617A1 (en) * 2009-04-30 2010-11-04 Matsushita Electric Industrial Co., Ltd. Methods and Apparatus for Reducing Receive Band Noise in Communications Transceivers
CN102075496B (zh) 2009-11-19 2014-05-07 中兴通讯股份有限公司 一种多媒体子系统彩铃自服务转人工台的方法和系统
CN102045277B (zh) * 2010-12-02 2013-10-16 中国电子科技集团公司第五十四研究所 基于mimo的单载波频域均衡装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355536A (zh) * 2007-07-24 2009-01-28 鼎桥通信技术有限公司 对基带信号进行数字预失真处理的装置及方法
CN102148783A (zh) * 2010-02-05 2011-08-10 富士通株式会社 基带数字预失真方法、预失真装置以及功率放大装置
CN102075469A (zh) * 2010-12-06 2011-05-25 北京邮电大学 用于数字预失真系统的信号延迟时间的估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2765746A4 *

Also Published As

Publication number Publication date
EP2765746A1 (en) 2014-08-13
CN103222243B (zh) 2016-05-25
EP2765746B1 (en) 2016-11-23
CN103222243A (zh) 2013-07-24
EP2765746A4 (en) 2014-12-17
US20140173143A1 (en) 2014-06-19
US9178825B2 (en) 2015-11-03

Similar Documents

Publication Publication Date Title
US9071313B2 (en) Method and apparatus for demodulation of a desired signal in the presence of nonlinear-distorted interference
WO2014086008A1 (zh) 一种数据处理的方法及装置
JP4614829B2 (ja) 通信装置及び通信方法
JP2005538578A (ja) 適応事前等化方法及び装置
JP3652247B2 (ja) 無線通信システムにおけるチャネル推定のための装置及び方法
WO2015103816A1 (zh) 一种时钟恢复方法、装置、系统及计算机存储介质
WO2014194940A1 (en) Coherent optical receiver
KR20070077014A (ko) 복조 회로 및 복조 방법
US8885738B2 (en) Unified single and multiple carrier receiver architecture
JP6746030B2 (ja) 受信装置、受信信号処理方法、制御回路および記憶媒体
JP4362141B2 (ja) 等化器
JP4780161B2 (ja) 受信装置、受信方法、およびプログラム
JP2010050834A (ja) Ofdmデジタル信号等化装置、等化方法及び中継装置
JP2007201729A (ja) 適応等化器および受信装置
US9270304B2 (en) Method and apparatus for nonlinear-channel identification and estimation of nonlinear-distorted signals
JPH0578225B2 (zh)
JP5331583B2 (ja) マルチパス等化器
JP7324102B2 (ja) Sc-fde方式の受信装置
JP5812827B2 (ja) 受信装置
JP4459507B2 (ja) 非線形歪等化回路、非線形歪等化方法
JP3593307B2 (ja) 直交周波数分割多重信号受信装置、直交周波数分割多重信号補正器及び信号補正方法
CN111106925B (zh) 一种降低稳态误差的定时同步方法
JP2010050790A (ja) 受信装置、無線信号の受信方法および無線通信システムならびにプログラム
JP2007235407A (ja) 適応等化器および通信装置
JP6156603B1 (ja) 復調装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2012878639

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012878639

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE