WO2014084246A1 - RNAi分子活性抑制用核酸の阻害剤 - Google Patents

RNAi分子活性抑制用核酸の阻害剤 Download PDF

Info

Publication number
WO2014084246A1
WO2014084246A1 PCT/JP2013/081879 JP2013081879W WO2014084246A1 WO 2014084246 A1 WO2014084246 A1 WO 2014084246A1 JP 2013081879 W JP2013081879 W JP 2013081879W WO 2014084246 A1 WO2014084246 A1 WO 2014084246A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
rnai molecule
activity
base sequence
inhibitor
Prior art date
Application number
PCT/JP2013/081879
Other languages
English (en)
French (fr)
Inventor
亮 立花
利住 田辺
Original Assignee
公立大学法人大阪市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪市立大学 filed Critical 公立大学法人大阪市立大学
Publication of WO2014084246A1 publication Critical patent/WO2014084246A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity

Definitions

  • the present invention relates to an RNAi molecule activity that has a specific structure and can inhibit the function of an RNAi molecule activity-suppressing nucleic acid that can specifically inhibit the activity of an RNAi molecule and restore the activity of the RNAi molecule.
  • the present invention relates to an inhibitor of nucleic acid for suppression.
  • Non-Patent Document 1 discloses that pre-B cell lymphoma is induced when miR-21, which is a kind of miRNA and called oncomir (onco-miRNA; cancer miRNA), is expressed in mice. Yes.
  • mir-21 is expressed in a large amount in many cancer cells, and inhibition of the expression of mir-21 is known to cause cell death in cancer cell lines such as HeLa cells and human glioma cells U87 (non-) Patent Documents 2 and 3).
  • Non-Patent Document 4 discloses a method of using a cross-linked nucleic acid (BNA / LNA: Bridged Nucleic Acid / Locked Nucleic Acid) that is an artificially constructed non-natural nucleic acid as an miRNA inhibitor.
  • Non-Patent Document 5 discloses a method of using a nucleic acid containing RNA chemically modified with 2'-OMe as an miRNA inhibitor.
  • BNA / LNA Bridged Nucleic Acid / Locked Nucleic Acid
  • Non-Patent Document 5 discloses a method of using a nucleic acid containing RNA chemically modified with 2'-OMe as an miRNA inhibitor.
  • non-natural nucleic acids and chemically modified nucleic acids have higher Tm values for RNA than DNA, and these methods utilize the high binding affinity for RNA to increase the activity of the target miRNA. Suppress.
  • non-natural nucleic acids and chemically modified nucleic acids require a cost several tens of times higher than that of unmodified DNA synthesis.
  • use of non-natural nucleic acids or chemically modified nucleic acids that are not degraded in vivo in pharmaceuticals remains a major problem in terms of safety such as side effects.
  • Non-Patent Document 6 discloses an RNA decoy having a structure in which MBS (miRNA-biding site) is sandwiched between stems as an miRNA inhibitor.
  • Non-Patent Document 7 also discloses miRNA sponge in which stems are bonded to both ends of a complementary sequence containing a bulge as an miRNA inhibitor.
  • these miRNA inhibitors are constituted by RNA generated by expression from a plasmid vector. Since RNA is susceptible to degradation by nucleolytic enzymes such as nucleases in vivo and is extremely unstable, there remains a problem in efficiently and continuously acting the pharmacological effects of nucleic acid pharmaceuticals.
  • Patent Document 1 Non-Patent Document 8 and Non-Patent Document 9 disclose miRNA inhibitors composed of RNA having a stem structure containing a miRNA target sequence and chemically modified with 2'-OMe. These miRNA inhibitors have improved degradation resistance of RNA to nuclease by 2'-OMe modification.
  • chemically modifying RNA there are still problems of cost and side effects required for synthesis, as with the above-mentioned chemically modified nucleic acids.
  • RNA When developing nucleic acid medicines, if cost and safety of the subject are issues, it is composed of natural nucleic acids that can be degraded in vivo rather than non-natural nucleic acids or chemically modified nucleic acids, that is, RNA or DNA It is preferable that RNA has high binding affinity with non-coding RNA such as miRNA, and therefore has high inhibitory activity, but it is very unstable in vivo, has low chemical synthesis efficiency, and has low synthesis cost. There is a problem that it is relatively high if not as much as natural nucleic acids and chemically modified nucleic acids.
  • DNA is relatively stable in vivo compared to RNA and can be synthesized at the lowest cost among nucleic acids, but has low binding affinity for non-coding RNA, especially miRNA etc. at low concentrations Even if it has a complementary base sequence, it could hardly be bound, and therefore there was a problem that the inhibitory activity was low.
  • An object of the present invention is to develop and provide a drug capable of controlling a nucleic acid for inhibiting RNAi molecule activity.
  • the present inventors have conducted extensive research and succeeded in developing a drug capable of specifically inhibiting the activity of a nucleic acid for suppressing RNAi molecule activity.
  • the present invention is based on the development results and provides the following.
  • a single-stranded nucleic acid portion comprising an unmodified DNA region consisting of a base sequence completely or sufficiently complementary to the base sequence of a functional strand having activity in the target RNAi molecule, and the single-stranded nucleic acid portion
  • a nucleic acid inhibitor for inhibiting RNAi molecule activity that inhibits the inhibitory activity of a nucleic acid for inhibiting RNAi molecule activity comprising a double-stranded nucleic acid moiety linked to at least one of the 5 'end and the 3' end.
  • a nucleic acid molecule comprising a base sequence that is completely or sufficiently complementary to the base sequence of the unmodified DNA region in the single-stranded nucleic acid portion constituting the nucleic acid for inhibiting RNAi molecule activity and is not composed of RNA alone
  • the inhibitor comprising:
  • the nucleic acid molecule further comprises a base sequence complementary to the whole or part of the base sequence of the double-stranded nucleic acid moiety constituting the nucleic acid for inhibiting RNAi molecule activity (1) or (2) Inhibitors.
  • the unmodified DNA region of the RNAi molecule activity-suppressing nucleic acid contains a mismatch site of 1 base or 2 to 10 bases continuous with respect to the base sequence of the functional strand having the target RNAi molecule activity, (1) to (4 )
  • the single-stranded nucleic acid portion of the RNAi molecule activity-suppressing nucleic acid comprises a linking region consisting of a nucleic acid having a length of 1 to 10 bases intervening the linking of the unmodified DNA region and the double-stranded nucleic acid portion, (1) to ( The inhibitor according to any one of 6).
  • the inhibitor according to any one of (1) to (8), wherein the double-stranded nucleic acid portion of the nucleic acid for suppressing RNAi molecule activity comprises a loop region comprising a nucleic acid having a length of 3 to 10 bases.
  • RNAi molecule is miRNA siRNA or shRNA.
  • a pharmaceutical composition comprising the inhibitor according to any one of (1) to (11) as an active ingredient.
  • the nucleic acid inhibitor for suppressing RNAi molecule activity of the present invention can specifically inhibit the activity suppressing action of the target RNAi molecule possessed by the nucleic acid for suppressing RNAi molecule activity. It also makes it possible to restore the activity of the target RNAi molecule.
  • FIG. 1 is a conceptual diagram showing a basic configuration of a nucleic acid for suppressing RNAi molecule activity that is a target of a nucleic acid inhibitor for suppressing RNAi molecule activity of the present invention.
  • This figure shows the minimum and essential constituent unit of the nucleic acid for inhibiting RNAi molecule activity.
  • A is a structure in which a double-stranded nucleic acid portion (102) is linked to the 3 ′ end of the single-stranded nucleic acid portion (101), and B is a double-stranded nucleic acid portion (101). This is a configuration in which the double-stranded nucleic acid moiety (102) is linked.
  • C is a structure in which the 5 'end and 3' end of the single-stranded nucleic acid moiety (101) are linked to the 3 'end and 5' end of the double-stranded nucleic acid moiety (102), respectively.
  • the single-stranded nucleic acid part (101) is composed of only a base sequence complementary to the target RNAi molecule (100), so the entire region of the single-stranded nucleic acid part (101) is an unmodified DNA region.
  • (103) corresponds to (103).
  • the molecular name of the nucleic acid molecule used in the examples, its structure and base sequence, and the sequence number are shown.
  • capital letters represent DNA and small letters represent RNA.
  • bold letters indicate single-stranded nucleic acid parts of sp-miR16-MBL and sp-miR302cd
  • thin letters indicate double-stranded nucleic acid parts
  • underlined parts indicate mismatch sites
  • double underlined parts indicate linking regions.
  • ⁇ sp-miR16-MBL and ⁇ sp-miR16-MBL-plus can base pair with a portion of sp-miR16-MBL.
  • FIG. 4 is a conceptual diagram showing the secondary structure of the miR16 activity suppressing nucleic acid sp-miR16-MBL shown in FIG. 3.
  • Bold letters indicate single-stranded nucleic acid parts, thin letters indicate double-stranded nucleic acid parts, and underlined parts indicate mismatch sites. It is the figure which showed the inhibitory action of the miR16 activity suppression effect of sp-miR-16-MBL by the nucleic acid inhibitor (alpha) sp-miR16-MBL or (alpha) sp-miR16-MBL-plus for RNAi molecule activity suppression in an Example.
  • a first embodiment of the present invention is a nucleic acid inhibitor for suppressing RNAi molecule activity.
  • the nucleic acid inhibitor for suppressing RNAi molecule activity of the present invention (hereinafter, abbreviated as “inhibitor of the present invention” in the present specification) is a target nucleic acid for suppressing RNAi molecule activity (hereinafter referred to as the present specification).
  • the activity of the RNAi molecule whose activity is suppressed by the nucleic acid for suppression can be recovered by inhibiting the activity of the nucleic acid for suppression (often abbreviated as “nucleic acid for suppression”).
  • RNAi molecule refers to inducing RNAi (RNA interference) in vivo, and suppressing (silencing) the expression of the gene through degradation of the target gene transcript.
  • An RNA molecule capable of producing (Fire A. et al., 1998, Nature, 391, 806-811).
  • target RNAi molecule refers to a target RNAi molecule that is a target of a nucleic acid for suppression and whose activity should be suppressed.
  • RNAi molecules include siRNA, miRNA, shRNA and the like.
  • RNA small interference RNA
  • Passenger strand a sense strand having a base sequence corresponding to a part of the target gene and its antisense strand (guide strand).
  • Stranded RNA Stranded RNA.
  • MiRNA is a single-stranded non-coding RNA having a length of 18 to 25 bases that exists in a living body and regulates the expression of a specific gene. This RNA is known to bind to the target gene mRNA and protein factors to form a complex, thereby inhibiting the translation of the target gene. miRNA is transcribed from the genome in a single-stranded precursor state called pri-miRNA, and then further processed into a single-stranded precursor state called pre-miRNA in the nucleus by an endonuclease called Drosha. In the process of endonuclease called Dicer, it becomes a mature double-stranded miRNA consisting of miRNA strand and miRNA star strand.
  • RNAi molecule activity refers to an activity of silencing the expression of a target gene possessed by an RNAi molecule (gene silencing activity).
  • “suppressing RNAi molecule activity” means inhibiting gene silencing activity of RNAi molecule completely or partially.
  • the RNAi molecule may be an endogenous RNAi molecule or an exogenous RNAi molecule.
  • natural nucleotides include deoxyribonucleotides having any base of adenine, guanine, cytosine and thymine and ribonucleotides having any base of adenine, guanine, cytosine and uracil.
  • Natural nucleic acid refers to DNA linked to deoxyribonucleotides and RNA linked to ribonucleotides.
  • non-natural nucleotide is a nucleotide that is artificially constructed and does not exist in nature. Artificial nucleotides having properties and / or structures similar to natural nucleotides, natural nucleosides that are constituents of natural nucleotides, or non-natural nucleosides or non-natural types having properties and / or structures similar to natural bases Applicable to artificial nucleotides containing bases. Specific examples of the non-natural nucleoside include abasic nucleoside, arabino nucleoside, 2'-deoxyuridine, ⁇ -deoxyribonucleoside, ⁇ -L-deoxyribonucleoside.
  • non-natural bases include 2-oxo (1H) -pyridin-3-yl group, 5-substituted-2-oxo (1H) -pyridin-3-yl group, 2-amino-6- (2-thiazolyl) purin-9-yl group, 2-amino-6- (2-thiazolyl) purin-9-yl group, 2-amino-6- (2-oxazolyl) purin-9-yl group, etc. It is done.
  • the nucleic acid may be modified unless otherwise specified.
  • modification means that a part or all of nucleotides that are constituent units of nucleic acids or nucleosides that are constituents thereof are replaced with other atomic groups, or functional groups or the like are added. . Specific examples include sugar modification, base modification, and phosphate modification.
  • Base modification is modification of the base part constituting the nucleoside.
  • substitution or addition of a functional group to the base moiety, or substitution of the base moiety to a base analog can be mentioned.
  • Such modified pyrimidines, 6-methyladenine substituted with a methyl group at the 6-position of adenine, 6-thioguanine substituted with a thio group Such
  • the nucleic acid of the present invention may have a phosphate group, sugar and / or base labeled with a nucleic acid labeling substance as necessary.
  • a nucleic acid labeling substance Any substance known in the art can be used as the nucleic acid labeling substance.
  • radioactive isotopes eg 32 P, 3 H, 14 C
  • DIG dimethyl methacrylate
  • biotin e.g., boronadine
  • fluorescent dyes eg FITC, Texas, Cy3, Cy5, Cy7, FAM, HEX, VIC, JOE, Rox, TET, Bodipy493 , NBD, TAMRA
  • a luminescent substance for example, acridinium ester.
  • the nucleic acid for suppression is composed of one single-stranded nucleic acid part (101, 201) and one double-stranded nucleic acid part (102, 202) linked to the ends as essential constituent units.
  • the structure which consists of is included.
  • the position at which the double-stranded nucleic acid moiety is linked can be at either the 3 ′ end (FIG. 1A) or the 5 ′ end (FIG. 1B) of the single-stranded nucleic acid moiety. In many cases, it is linked to the 3 ′ end.
  • Single-stranded nucleic acid portion is a nucleic acid portion consisting of a single strand in a nucleic acid for suppression, and an unmodified DNA region (103, 203) is contained therein. One to three, usually one to two. When the single-stranded nucleic acid part contains two or more unmodified DNA regions, the target RNAi molecule and / or the base sequence constituting each unmodified DNA region (for example, 203a and 203b) are the same or different. ing.
  • the single-stranded nucleic acid portion does not include a linking region and / or flanking region described later, and the single-stranded nucleic acid portion includes only one unmodified DNA region (103), The entire region (101) of the single-stranded nucleic acid moiety corresponds to the unmodified DNA region (103).
  • the nucleic acid for suppression can contain the connection area
  • (1-1) Unmodified DNA region The “unmodified DNA region” (103, 203) is the functional chain of the target RNAi molecule (100, 200). A nucleic acid region consisting of a base sequence that is completely or sufficiently complementary to the base sequence. The unmodified DNA region is composed only of DNA.
  • unmodified DNA refers to unmodified DNA.
  • the modification of the nucleic acid is as described above.
  • the “functional strand” is a nucleic acid strand having substantial activity of RNAi capable of inducing gene silencing in the target RNAi molecule and can be a true target of the nucleic acid for suppression Say chain.
  • RNAi molecule is siRNA or shRNA
  • an antisense strand called a guide strand is applicable
  • miRNA an antisense strand called a miRNA strand is applicable.
  • “complementary” refers to a relationship in which two bases can form a Watson-Crick base pairing with each other. Specifically, it refers to the relationship between adenine and thymine or uracil, and the relationship between cytosine and guanine.
  • nucleic acid for suppression when the unmodified DNA region of the single-stranded nucleic acid part consists of a base sequence that is completely complementary to the base sequence of the functional strand of the target RNAi molecule, the base of the unmodified DNA region It means that all bases of the sequence can form base pairs with all bases of the base sequence of the functional chain.
  • “sufficiently complementary” refers to a relationship in which all bases of at least one nucleic acid strand of two nucleic acid strands can base pair with all corresponding bases of the base sequence of the other nucleic acid strand. However, 50% or more and less than 100% of one base sequence, preferably 60% or more and less than 100%, more preferably 70% or more and less than 100%, and even more preferably 80% or more and less than 100% of the other base sequence. A relationship that can be base-paired with a base of a nucleic acid chain base sequence.
  • the base sequence of one nucleic acid strand is completely complementary to the base sequence of the other nucleic acid strand, but the other nucleic acid strand is complementary to the base sequence of one nucleic acid strand. In other words, it is not completely complementary, and only 50% or more and less than 100% are complementary. Specifically, the case where one or a plurality of bases is added to only one of the two nucleic acid strands having a completely complementary base sequence is applicable.
  • the base sequences of the two nucleic acid strands are not completely complementary to the counterpart nucleic acid strand, but 50% or more and less than 100% of the base sequence of each nucleic acid strand Is complementary to the base sequence of the counterpart nucleic acid strand.
  • the nucleotide residue at the deleted position cannot be paired. If this is the case.
  • a sufficiently complementary example includes a case where the unmodified DNA region contains a mismatch site (206).
  • mismatch site means that when two nucleic acid strands are base paired with each other, a base complementary to the base contained in the base sequence of one nucleic acid strand is the other nucleic acid. It refers to a site consisting of nucleotide residues that cannot form base pairing by not being present at the corresponding position in the base sequence of a chain.
  • the unmodified DNA region includes a mismatch site (also referred to as a “gap site”) consisting of one base (corresponding to one nucleotide residue, hereinafter the same shall be understood) that does not base pair with the functional strand in the base sequence. It may have at least one mismatch site (also referred to as “loop site”) of 2 to 10 bases, preferably 3 to 8 bases, more preferably 4 to 6 bases.
  • the insertion position is not particularly limited within the unmodified DNA region, but is often within the same region excluding the end of the unmodified DNA region. It is often between the nucleotide residues at the center of the region, specifically, the 9th to 14th or 10th to 13th nucleotides from the 5 ′ end.
  • the base length of the unmodified DNA region is not particularly limited, but has a base sequence that is completely or sufficiently complementary to the base sequence of the functional strand in the target RNAi molecule as described above. It has the above base length.
  • the functional strands of RNAi molecules are known to be 18-25 bases long (Kim DH, et al., 2005, Nat Biotechnol., 23 (2): 222-6), and unmodified DNA regions Is a base length of 18 to 35 bases, 18 to 33 bases or 18 to 31 bases.
  • the “ligation region” (204) refers to a nucleic acid region that mediates the linkage of the unmodified DNA region and a double-stranded nucleic acid moiety.
  • the linking region is located at the 5 ′ end and / or the 3 ′ end of the single-stranded nucleic acid moiety.
  • the linking region is composed of a single strand having a length of 1 to 10 bases. The length is usually 1 to 8 bases, preferably 2 to 6 bases.
  • at least one end of the unmodified DNA region contained in the single-stranded nucleic acid portion and the double-stranded nucleic acid portion can be directly linked.
  • the nucleic acid constituting the linking region can be any of the nucleic acids described above. It is usually a natural nucleic acid, and in many cases DNA. Further, the base sequence of the linking sequence is not limited as long as it does not form a higher order structure by intramolecular folding such as self-annealing. For example, there may be a sequence consisting of only T or only C.
  • carrier refers to, for example, a low molecular compound (for example, biotin, avidin, streptavidin or neutravidin), an amino acid or peptide, a polymeric polysaccharide support (for example, Sepharose, Sephadex, agarose), a resin ( Natural or synthetic resins including plastics), silica, glass, magnetic beads, metals (eg, gold, platinum, silver), ceramics, or combinations thereof.
  • a low molecular compound for example, biotin, avidin, streptavidin or neutravidin
  • amino acid or peptide for example, a polymeric polysaccharide support (for example, Sepharose, Sephadex, agarose), a resin ( Natural or synthetic resins including plastics), silica, glass, magnetic beads, metals (eg, gold, platinum, silver), ceramics, or combinations thereof.
  • Spacer region refers to two unmodified DNA regions between each non-modified DNA region when the single-stranded nucleic acid portion contains two or more unmodified DNA regions. Intervening nucleic acid region. When two or more unmodified DNA regions are included, they may be directly linked, but a spacer region is interposed to increase the degree of freedom of each unmodified DNA region within the single-stranded nucleic acid moiety. There may be.
  • the spacer region is usually composed of a single strand having a length of 1 to 10 bases.
  • the nucleic acid constituting the spacer region can be any of the nucleic acids described above. Usually, it is a natural nucleic acid, and in many cases, it is composed only of DNA.
  • the base sequence of the spacer sequence may be any sequence that does not form a higher order structure due to intramolecular folding such as self-annealing.
  • Double-stranded nucleic acid moiety (102, 202) is a nucleic acid moiety linked to at least one of the 5 ′ end part or the 3 ′ end part of the single stranded nucleic acid part.
  • the base length of each nucleic acid strand constituting the double-stranded nucleic acid portion is a length that can stably maintain the base pairing formed between the nucleic acid strands. Usually, it is in the range of 5-25 bases in length. Moreover, the base length of each nucleic acid strand which comprises a double stranded nucleic acid part may be the same, and may differ. Usually, they have the same base length.
  • the base length of each nucleic acid fragment is different, as shown in FIG. 2B, one or more side chain stem sites (208) and side chain loop sites (209) can be formed on the long chain side by intramolecular folding.
  • the stem site can also include one or more side chain mismatch / bulge sites (210) within it.
  • the double-stranded nucleic acid part usually two nucleic acid strands are completely complementary to each other.
  • the base length of each nucleic acid chain is 9 bases or less, it is often completely complementary.
  • the base length of each nucleic acid chain is 10 bases or more, it may be sufficiently complementary.
  • at least one nucleic acid strand of the double-stranded nucleic acid portion has at least one mismatching site (211) of one base that does not base pair with the other nucleic acid strand and / or two or more consecutive bases in the base sequence. The case where it has is mentioned.
  • the base length of the mismatch site is 2 to 6 bases, but one or more by intramolecular folding within the loop site as described above
  • the mismatch site may have a longer base length
  • the nucleic acid constituting the double-stranded nucleic acid moiety may be any of the nucleic acids described above as long as it can form a stable higher-order structure such as a secondary structure such as a double-stranded structure or a tertiary structure such as a G quartet. It is also possible. Usually it consists of DNA only.
  • the inhibitor of the present invention comprises a nucleic acid molecule containing a base sequence that is completely or sufficiently complementary to the base sequence of the unmodified DNA region in the single-stranded nucleic acid portion of the target nucleic acid for suppression.
  • the unmodified DNA region includes a mismatch site, it is preferable to include a base sequence complementary to the mismatch site.
  • the single-stranded nucleic acid portion of the target inhibitory nucleic acid includes a single-stranded nucleic acid portion other than the unmodified DNA region, for example, a ligation region or a flanking region
  • all or part of the base sequence is included.
  • a complementary base sequence can be included.
  • the base sequence of the nucleic acid constituting the inhibitor of the present invention is only relative to the base sequence of one of the unmodified DNA regions. Can be made complementary to each other, or can be made complementary to the base sequences of two or more unmodified DNA regions. In the latter case, the inhibitor of the present invention also contains a nucleotide sequence that is completely or sufficiently complementary to the spacer region located between the unmodified DNA regions.
  • the inhibitor of the present invention includes a base sequence that is completely or sufficiently complementary to the nucleic acid chain of the double-stranded nucleic acid moiety.
  • the inhibitor of the present invention provides the base sequence of the loop structure area and the stem structure area that is not directly linked to the single-stranded nucleic acid moiety.
  • a base sequence complementary to all or a part of can be included.
  • the inhibitor of the present invention can have a nucleic acid region consisting of a base sequence unrelated to the base sequence complementary to the nucleic acid for suppression at the 5 'end and / or 3' end.
  • the base length of such a nucleic acid region is not particularly limited, but is usually in the range of 1 to 30 bases or 1 to 25 bases.
  • the inhibitor of the present invention can be any method known in the art as long as it can prepare a nucleic acid molecule having the structure described in “1-3-2. Nucleic acid for suppressing RNAi molecule activity”. It can be manufactured by a method. Here, although a specific example is given and demonstrated, the manufacturing method of the nucleic acid for suppression is not restricted to the following method.
  • the method for producing a nucleic acid for suppression includes (1) a design process and (2) a synthesis process.
  • Design Process is a process for determining the base sequence constituting the inhibitor of the present invention.
  • a base sequence complementary to the base sequence is designed based on the base sequence of the unmodified DNA region in the single-stranded nucleic acid portion of the target suppression nucleic acid.
  • the unmodified DNA region contains a mismatch site
  • the single-stranded nucleic acid portion of the nucleic acid for suppression contains a region other than an unmodified DNA region such as a flanking region or a linking region
  • a base sequence complementary to the base sequence of that region should be included. You can also.
  • the base sequence is complementary to the base sequence of the nucleic acid strand directly linked to the single-stranded nucleic acid portion.
  • the nucleic acid constituting the double-stranded nucleic acid moiety may be a natural nucleic acid, an artificial nucleic acid, or a combination thereof. What is necessary is just to select and design a suitable nucleic acid suitably as needed. Usually, DNA is preferably used.
  • the “synthetic step” is a step for producing a nucleic acid molecule constituting the inhibitor of the present invention enzymatically or by chemical synthesis based on the base sequence designed in the design step.
  • the inhibitor of the present invention is composed of either a natural nucleic acid, an artificial nucleic acid, or a combination thereof, except that the nucleic acid portion consisting of a base sequence complementary to the unmodified DNA region of the nucleic acid for suppression is not composed of RNA alone.
  • a nucleic acid synthesis method may be a technique known in the art. For example, it can be chemically synthesized according to a solid phase synthesis method.
  • the chemical synthesis method described in Current Protocols in Nucleic Acid Chemistry, Volume 1, Section 3, Verma S. and Eckstein F., 1998, Annul Rev. Biochem., 67, 99-134 is used. do it.
  • many life science manufacturers for example, Takara Bio, Fasmac, Life Technology, Gene Design, Sigma Aldrich, etc.
  • the inhibitor of the present invention after chemical synthesis is preferably purified by a method known in the art before use.
  • the purification method include a gel purification method, an affinity column purification method, and an HPLC method.
  • the inhibitor of the present invention can suppress the activity of a nucleic acid for suppression present in the same living body by introducing it into a living body, that is, into a living cell, tissue, organ or individual. .
  • the method of introducing the inhibitor of the present invention into a living body includes injection of a solution containing a nucleic acid for suppression, bombardment using particles coated with the nucleic acid for suppression, or electroporation in the presence of the nucleic acid for suppression. And the like.
  • other methods known in the art for introducing nucleic acids into cells such as lipid mediated carrier transport, chemical mediated transport (eg, calcium phosphate method) can be used.
  • the living body is an animal individual, it can be introduced as a drug such as a pharmaceutical composition described later.
  • the cell, tissue, organ or individual into which the inhibitor of the present invention is to be introduced is not particularly limited. Any biological species including animals and plants may be used.
  • fishes more preferably fish species for fishery resources (eg, salmonids, perch, cod, herring, flounder, flatfish, horse mackerel, sandfish, Thai, and rockfish) .
  • fishery resources eg, salmonids, perch, cod, herring, flounder, flatfish, horse mackerel, sandfish, Thai, and rockfish
  • edible species for example, chickens, geese, ducks, ducks, ducks, turkeys, quails, ostriches, etc.
  • domestic animals pigs, cattle, sheep, goats, horses
  • laboratory animals rodents, rabbits, dogs, monkeys
  • competing horses pet animals (dogs, cats, rabbits, monkeys) Rodents) or humans.
  • a more preferred species is human.
  • a plant for fiber resources If it is a seed, for example, cotton, Asa, etc., and if it is a plant species for wood resources, it is a cedar, cypress, fir, Tsuga, pine, yew, cherry Maple, oak, oak, beech, elm, zelkova, walnut, boric, wig, teak, lauan, ebony, mahogany, poplar, eucalyptus and the like.
  • the inhibitor of the present invention it is possible to specifically inhibit the activity suppressing action of the suppressing nucleic acid on the target RNAi molecule. Thereby, the activity of the target RNAi molecule can be restored. That is, the activity of the target RNAi molecule in vivo can be controlled by appropriately using the inhibitor of the present invention and the target nucleic acid for suppression.
  • the inhibitor of the present invention can be constituted only by DNA, it can be provided simply, in large quantities and at low cost by chemical synthesis.
  • a second embodiment of the present invention is a pharmaceutical composition.
  • By administering the pharmaceutical composition of the present invention to a living body it is possible to specifically inhibit the activity of a specific nucleic acid for suppression present in the living body, thereby reducing the activity of the target RNAi molecule in the living body. It becomes possible to control.
  • compositions (1) Active ingredient
  • the pharmaceutical composition of this invention contains the inhibitor of this invention of the said 1st Embodiment as an active ingredient.
  • the pharmaceutical composition of the present invention may comprise two or more different inhibitors of the present invention that target the same or different inhibitory nucleic acids.
  • the content of the inhibitor of the present invention which is an active ingredient in the pharmaceutical composition may be a pharmaceutically effective amount.
  • the “pharmaceutically effective amount” means a dose necessary for the inhibitor of the present invention, which is an active ingredient, to exhibit its function, and whether there are almost no harmful side effects on the administered organism. Or say no dose at all. Specific doses include the type and amount of the target nucleic acid for suppression, the action effect and stability of the nucleic acid for suppression, the dosage form of the pharmaceutical composition used, the type of carrier used, the administration method, and information on the subject. And depending on the route of administration.
  • the pharmaceutical composition of the present invention can contain a medium of the inhibitor of the present invention which is an active ingredient.
  • the medium includes, for example, solvents such as water, ethanol, propylene glycol, ethoxylated isostearyl alcohol, polyoxylated isostearyl alcohol and polyoxyethylene sorbitan fatty acid esters.
  • solvents such as water, ethanol, propylene glycol, ethoxylated isostearyl alcohol, polyoxylated isostearyl alcohol and polyoxyethylene sorbitan fatty acid esters.
  • composition of this invention can contain a pharmaceutically acceptable carrier as needed.
  • “Pharmaceutically acceptable carrier” refers to an additive usually used in the field of pharmaceutical technology. For example, an excipient, a binder, a disintegrant, a filler, an emulsifier, a fluid addition regulator, a lubricant and the like can be mentioned.
  • Excipients include sugars such as monosaccharides, disaccharides, cyclodextrins and polysaccharides (more specifically, but not limited to glucose, sucrose, lactose, raffinose, mannitol, sorbitol, inositol, dextrin, malto Dextrin, starch and cellulose), metal salts (eg sodium chloride, sodium phosphate or calcium phosphate, calcium sulfate, magnesium sulfate, calcium carbonate), citric acid, tartaric acid, glycine, low, medium and high molecular weight polyethylene glycols ( PEG), pluronic, kaolin, silicic acid, or combinations thereof.
  • sugars such as monosaccharides, disaccharides, cyclodextrins and polysaccharides (more specifically, but not limited to glucose, sucrose, lactose, raffinose, mannitol, sorbitol, inos
  • binder examples include starch paste using corn, wheat, rice, or potato starch, simple syrup, glucose solution, gelatin, tragacanth, methylcellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, shellac and / or polyvinylpyrrolidone. As mentioned.
  • emulsifiers examples include sorbitan fatty acid esters, glycerin fatty acid esters, sucrose fatty acid esters, and propylene glycol fatty acid esters.
  • Examples of the flow addition regulator and lubricant include silicate, talc, stearate or polyethylene glycol.
  • Such a carrier is mainly used for facilitating the formation of the dosage form and maintaining the dosage form and the drug effect, and for making the inhibitory nucleic acid as an active ingredient difficult to be degraded by nucleolytic enzymes in vivo. And may be used as needed.
  • flavoring agents solubilizers, suspending agents, diluents, surfactants, stabilizers, absorption promoters, extenders, moisturizers, humectants, adsorbents, if necessary Disintegration inhibitors, coating agents, coloring agents, preservatives, antioxidants, fragrances, flavoring agents, sweetening agents, buffering agents and the like can also be included.
  • the pharmaceutical composition of the present invention may be a combined preparation containing other active ingredients as long as the pharmacological effect of the inhibitor of the present invention which is an active ingredient is not lost.
  • the other active ingredient may be a drug having a pharmacological action different from that of the nucleic acid for inhibition of the first embodiment.
  • antibody drugs and the like can be mentioned.
  • the dosage form of the pharmaceutical composition of the present embodiment is a form that does not inactivate the inhibitor of the present invention which is an active ingredient or other additional active ingredients, and exhibits its pharmacological effect in vivo after administration. If it is a form which can be exhibited, it will not specifically limit.
  • natural nucleic acids are easily affected by degrading enzymes such as nucleases in vivo, so that when the pharmaceutical composition of the present invention is administered, the inhibitor of the present invention, which is an active ingredient in vivo, is degraded. Difficult dosage forms are preferred. For example, any of liquid, solid, or semi-solid may be sufficient.
  • Specific dosage forms include, for example, parenteral dosage forms such as injections, suspensions, emulsions, eye drops, nasal drops, creams, ointments, plasters, shipping agents and suppositories, or liquids and powders.
  • Oral dosage forms such as granules, tablets, capsules, sublinguals, lozenges and the like.
  • a preferred dosage form is an injection.
  • the pharmaceutical composition of the present embodiment includes nanoparticles (for example, including the target nanoparticle delivery system described in Davis ME, et al., Nature, 2010, 464: 1067-1070), liposomes (eg, membrane-permeable peptides). (Including bound liposomes, SNALPs) and cholesterol conjugates.
  • nanoparticles for example, including the target nanoparticle delivery system described in Davis ME, et al., Nature, 2010, 464: 1067-1070
  • liposomes eg, membrane-permeable peptides
  • SNALPs bound liposomes
  • cholesterol conjugates e.g, cholesterol conjugates.
  • the RNAi transmission system described in Castanotto D. & Rossi JJ., Nature, 2009, 457, 426-433 can also be used.
  • the administration method of the pharmaceutical composition of the present invention may be either systemic administration or local administration. It can select suitably according to the location where the nucleic acid for suppression used as a target exists.
  • the nucleic acid for suppression is localized, local administration is preferred in which it is administered directly to the localization site and the vicinity thereof by injection or the like.
  • the nucleic acid for suppression is systemically administered by intravenous injection or the like, there is a possibility that the nucleic acid for suppression is spread throughout the body via the bloodstream, so the pharmaceutical composition of the present invention is also administered systemically by injection or the like. Is preferred.
  • the injection site is not particularly limited. Examples include intravenous, intraarterial, intrahepatic, intramuscular, intraarticular, intramedullary, intrathecal, intraventricular, percutaneous, subcutaneous, intradermal, intraperitoneal, intranasal, intestinal, or sublingual. . Intravenous injection such as intravenous injection or intraarterial injection is preferred.
  • the inhibitory effect on mir-16 activity-suppressing nucleic acid is increased by the suppression of mir-16 activity when mir-16 activity-suppressing nucleic acid is added to the system in which the translation of fluorescent protein is inhibited by mir-16 Whether or not the expression of the fluorescent protein was suppressed again by the addition of the nucleic acid inhibitor for miR-16 activity suppression was calculated from the luminescence intensity of the photoprotein.
  • a specific implementation method of the present embodiment will be described.
  • mir-16 activity-suppressing nucleic acid and miR-16 activity-suppressing nucleic acid inhibitor used in this example The sequence is shown in FIG. Nucleic acid chains comprising DNA constituting each nucleic acid for suppression were prepared by chemical synthesis outsourced to Fasmac. The nucleic acid is not modified. The synthesized DNA was dissolved in D-PBS ( ⁇ ) (0.2 g / L KCl, 8 g / L NaCl, 0.2 g / L KH 2 PO 4 , 1.15 g / L Na 2 HPO 4 ).
  • each nucleic acid for suppression composed of one nucleic acid chain, after the lysis, and for the nucleic acid for inhibiting mir-302cd activity as a control composed of two nucleic acid strands, After mixing and dissolving the nucleic acid strands in combination, each nucleic acid for suppression was prepared by heating to 90 ° C. and gradually lowering the temperature and annealing between or within the nucleic acid strands.
  • PTK-Gluc-OriP-3 (miR16) was prepared as follows. First, the OriP sequence of pEBMulti-Hyg (Wako) was amplified by PCR using a forward primer represented by SEQ ID NO: 7 and a reverse primer represented by SEQ ID NO: 8, and then the fragment obtained by digestion with BamHI was pTK-Gluc ( It was inserted into the BglII site corresponding to the 3′-untranslated region of New England Biolabs (NEB) (pTK-Gluc-OriP).
  • NEB New England Biolabs
  • a modified MCS in which XhoI / EcoRV / BmgI / SwaI / XbaI sites were arranged was inserted into the MCS XhoI / XbaI site of pTK-Gluc-OriP.
  • PTK-Gluc-OriP-3 (miR16) by incorporating a sequence (SEQ ID NO: 9) in which the miR-16 target sequence (miR-16t; miR-16-Target) is repeated three times into the EcoRV site in this modified MCS was prepared.
  • miR-16t is also expressed as part of the transcript along with the expression of the Gaucia-luciferase gene in cells into which pTK-Gluc-OriP-3 (miR16) has been introduced.
  • miR-16t becomes a target of RNAi by endogenous miR-16, translation of Gaucia-luciferase is also remarkably suppressed simultaneously by miR-16. As a result, Gaucia-luciferase can detect only very weak luminescence.
  • HEK293T-16t cells were seeded in a 96-well plate at 7,000 cells / well, and cultured at 37 ° C. under 5% CO 2 with DMEM (Wako). After culturing for 24 hours, the culture supernatant was collected and the miR-16-suppressing nucleic acid sp-miR16-MBL described in FIGS. 3 and 4 was transfected into cells at 25 nM using Lipofectamine TM LTX (life technologies) ( First transfection). A luciferase assay was performed on the collected culture supernatant.
  • BioLux TM Cypridina Luciferase Assay Kit (NEB) was used to measure the activity of Cypridina-luciferase.
  • the medium was changed with DMEM 6 hours after the first transfection, and then the culture supernatant was collected 18 hours later, and the inhibitor ⁇ sp-miR16 or ⁇ sp-miR16-plus of the present invention for miR-16 activity-suppressing nucleic acid was used.
  • the collected culture supernatant was again subjected to luciferase assay in the same manner as described above.
  • the medium was changed with DMEM medium 6 hours after the second transfection, and the culture supernatant was further recovered 18 hours later, and the luciferase assay was performed on the culture supernatant by the method described above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 特定のRNAi分子活性抑制用核酸を制御できる薬剤を提供することである。 標的となるRNAi分子活性抑制用核酸の一本鎖核酸部分、さらに二本鎖核酸部分の塩基配列に対して完全に又は十分に相補的な塩基配列を含み、少なくともDNAを包含する核酸分子からなるRNAi分子活性抑制用核酸阻害剤を提供する。

Description

RNAi分子活性抑制用核酸の阻害剤
 本発明は、特定の構造を有し、RNAi分子の活性を特異的に抑制することのできるRNAi分子活性抑制用核酸の機能を阻害し、そのRNAi分子の活性を回復させることのできるRNAi分子活性抑制用核酸の阻害剤に関する。
 近年、miRNA(マイクロRNA)やsiRNA(低分子干渉RNA)のようなタンパク質をコードしていない、いわゆるノンコーディングRNAが生理活性を有し、生体内で種々の機能を果たしていることが明らかになってきた。例えば、非特許文献1は、miRNAの1種でありoncomir(onco-miRNA;癌miRNA)と呼ばれるmiR-21をマウスで発現させた場合に、プレB細胞リンパ腫が誘導されることを開示している。一方で、多くの癌細胞ではmir-21が大量に発現されており、その発現を阻害するとHeLa細胞やヒトグリオーマ細胞U87等の癌細胞株では細胞死が引き起こされることが知られている(非特許文献2及び3)。miRNAをはじめとするノンコーディングRNAの活性を制御する薬剤を開発できれば、癌等の様々な疾患を治療するための医薬や診断薬の有効成分として利用することが可能となる。それ故、世界各国において、ノンコーディングRNAの活性を制御する薬剤を用いた核酸医薬品等の研究及び開発が盛んに進められており、これまでにも、miRNA阻害剤等をはじめとする様々な核酸医薬品が開発されてきた。
 例えば、非特許文献4は、人工的に構築された非天然型核酸である架橋化核酸(BNA/LNA:Bridged Nucleic Acid/Locked Nucleic Acid)をmiRNA阻害剤として使用する方法を開示している。また、非特許文献5は、2’-OMeで化学修飾されたRNAを含む核酸をmiRNA阻害剤として用いる方法を開示している。一般にDNAよりも非天然型核酸や化学修飾した核酸の方がRNAに対するTm値が高いことが知られており、これらの方法は、そのRNAに対する高い結合親和性を利用して標的miRNAの活性を抑制する。しかし、非天然型核酸や化学修飾した核酸の合成には、非修飾のDNA合成の数十倍のコストを要するため、安価かつ大量に生産することができないという問題があった。また、生体内で分解されない非天然型核酸や化学修飾核酸を医薬品に使用することは、副作用等の安全面においても大きな問題が残る。
 その他にも、特殊な構造を有する核酸分子からなるmiRNA阻害剤が知られている。例えば、非特許文献6は、miRNA阻害剤として、MBS(miRNA-biding site)がステムにはさまれた構造を有するRNAデコイを開示している。また、非特許文献7も、miRNA阻害剤として、バルジを含む相補的配列の両端にステムを結合させたmiRNA spongeを開示している。しかし、これらのmiRNA阻害剤は、プラスミドベクターからの発現によって生じるRNAによって構成されている。RNAは、生体内でヌクレアーゼ等の核酸分解酵素による分解を受けやすく、非常に不安定であることから、核酸医薬品の薬理効果を効率的に、かつ継続的に作用させる上で問題が残る。
 特許文献1、非特許文献8及び非特許文献9では、miRNAの標的配列を含むステム構造を有し、2’-OMeで化学修飾されたRNAから構成されるmiRNA阻害剤が開示されている。これらのmiRNA阻害剤は、2’-OMe修飾によってRNAのヌクレアーゼに対する分解耐性を向上させている。しかし、RNAを化学修飾させる点においては、前述の化学修飾した核酸と変わらず、合成に要するコスト面の問題や、副作用の問題が依然として残されている。
 核酸医薬品を開発する上で、コスト面や被検体に対する安全面を課題とした場合、非天然型核酸や化学修飾した核酸よりも生体内で分解可能な天然型核酸、すなわち、RNAやDNAで構成されていることが好ましい。RNAは、miRNAのようなノンコーディングRNAとの結合親和性が高く、それ故、阻害活性も高いが、生体内で非常に不安定である点や、化学合成効率が低く、合成コストも、非天然型核酸や化学修飾核酸ほどではないにしても、比較的高いという問題がある。一方、DNAは、RNAと比べて生体内での安定性が比較的高く、核酸の中では最も安価に合成できるが、ノンコーディングRNAに対する結合親和性が低く、特に、低濃度のときには、miRNA等に相補的な塩基配列を有していてもほとんど結合することができず、それ故、阻害活性が低いという問題があった。
 そこで、本出願人は、標的とするRNAi分子の活性を特異的に、かつ効率的に抑制することができ、さらに安全かつ低廉で大量に生産することが可能なmiRNA阻害剤として、RNAi分子活性抑制用核酸を開発した(特許文献2)。このRNAi分子活性抑制用核酸は、可能な限り天然型核酸で構成されており、核酸分解酵素に対する高い分解耐性能を有し、生体内で比較的安定に維持され、かつ標的RNAi分子の活性を効率的に抑制可能で、安価で提供できるというこれまでの問題を全て解決し得る効果を有していた。
 一方、RNAi分子活性抑制用核酸は、特有の構造を有し、生体内で比較的安定に維持され得るが故に一旦生体内に導入した場合、長期にわたって標的RNAi分子の活性を抑制し続ける可能性がある。しかし、例えば、RNAi分子の過剰発現に基づく疾患が治癒した後まで、その抑制効果が継続することは治療上好ましくない。
 したがって、RNAi分子活性抑制用核酸の活性を制御し得る薬剤の開発が同時に必要となっていた。
WO2007095387 WO2013073576
Medina P.P., et al., 2010, Nature, 467:86-90. Yao Q., et al., 2009, Biochem Biophys Res Commun., 388(3):539-42. Zhou X., et al., 2010, Oncol Rep., 24(1):195-201. Elmen J., et al., 2008, Nature., 452(7189):896-9. Hutvagner G., et al., 2004, PLoS Biol., 2(4):E98. Haraguchi T., et al., 2009, Nucleic Acid Res 2009, Vol.37, No.6, e43. Ebert M.S., et al., 2007, Nature Methods, 4:721-726. Vermeulen A., et al., 2007, RNA, 13:723-730. Robertson B., et al., 2010, Silence, 2010, 1:10.
 本発明の課題は、RNAi分子活性抑制用核酸を制御できる薬剤を開発し、提供することである。
 上記課題を解決するため本発明者らは、鋭意研究を重ね、RNAi分子活性抑制用核酸の活性を特異的に阻害することのできる薬剤の開発に成功した。本発明は、当該開発結果に基づくものであり、以下を提供する。
(1)標的RNAi分子において活性を有する機能鎖の塩基配列に対して完全に又は十分に相補的な塩基配列からなる非修飾DNA領域を含む一本鎖核酸部分、及び前記一本鎖核酸部分の5’末端及び3’末端の少なくとも一方に連結される二本鎖核酸部分を含んでなるRNAi分子の活性抑制用核酸に対して、その抑制活性を阻害するRNAi分子活性抑制用核酸の阻害剤であって、前記RNAi分子活性抑制用核酸を構成する一本鎖核酸部分における非修飾DNA領域の塩基配列に対して完全に又は十分に相補的な塩基配列を含み、かつRNAのみで構成されない核酸分子からなる前記阻害剤。
(2)前記核酸分子が一本鎖核酸部分における非修飾DNA領域以外の塩基配列の全部又は一部に対しても相補的な塩基配列を含む、(1)に記載の阻害剤。
(3)前記核酸分子がRNAi分子活性抑制用核酸を構成する二本鎖核酸部分の塩基配列の全部又は一部に対して相補的な塩基配列をさらに含む、(1)又は(2)に記載の阻害剤。
(4)前記核酸分子がDNAのみからなる、(1)~(3)のいずれかに記載の阻害剤。
(5)RNAi分子活性抑制用核酸の非修飾DNA領域が標的RNAi分子活性を有する機能鎖の塩基配列に対して1塩基又は連続する2~10塩基のミスマッチ部位を含む、(1)~(4)のいずれかに記載の阻害剤。
(6)RNAi分子活性抑制用核酸の非修飾DNA領域が18~35塩基長である、(1)~(5)のいずれかに記載の阻害剤。
(7)RNAi分子活性抑制用核酸の一本鎖核酸部分が非修飾DNA領域と二本鎖核酸部分の連結を介在する1~10塩基長の核酸からなる連結領域を含む、(1)~(6)のいずれかに記載の阻害剤。
(8)RNAi分子活性抑制用核酸の二本鎖核酸部分が5~25塩基長である、(1)~(7)のいずれかに記載の阻害剤。
(9)RNAi分子活性抑制用核酸の二本鎖核酸部分が3~10塩基長の核酸からなるループ領域を含む、(1)~(8)のいずれかに記載の阻害剤。
(10)RNAi分子活性抑制用核酸がDNAのみで構成される、(1)~(9)のいずれかに記載の阻害剤。
(11)RNAi分子がmiRNA siRNA、又はshRNAである、(1)~(10)のいずれかに記載の阻害剤。
(12)(1)~(11)のいずれかに記載の阻害剤を有効成分として含有する医薬組成物。
 本明細書は本願の優先権の基礎である日本国特許出願2012-259056号の明細書及び/又は図面に記載される内容を包含する。
 本発明のRNAi分子活性抑制用核酸阻害剤によれば、RNAi分子活性抑制用核酸が有する標的RNAi分子の活性抑制作用を特異的に阻害することができる。また、それによって、標的RNAi分子の活性を回復することが可能となる。
本発明のRNAi分子活性抑制用核酸阻害剤の標的となるRNAi分子活性抑制用核酸の基本構成を示す概念図である。この図は、RNAi分子活性抑制用核酸の最小かつ必須の構成単位を示している。Aは、一本鎖核酸部分(101)の3’末端に二本鎖核酸部分(102)が連結されている構成であり、Bは、一本鎖核酸部分(101)の5’末端に二本鎖核酸部分(102)が連結されている構成である。Cは、一本鎖核酸部分(101)の5’末端と3’末端が二本鎖核酸部分(102)の3’末端と5’末端にそれぞれ連結された構成である。Aでは、一本鎖核酸部分(101)が標的RNAi分子(100)に対して相補的な塩基配列のみで構成されていることから一本鎖核酸部分(101)の全領域が非修飾DNA領域(103)に相当する。なお、A~Cにおいて、縦線は二本鎖核酸部分(102)の核酸鎖間の塩基対合を、星印は、一本鎖核酸部分(101)と標的RNAi分子(100)間の塩基対合を表す(以下、同様とする)。 標的となるRNAi分子活性抑制用核酸における選択的構成要素である、一本鎖核酸部分(201)と二本鎖核酸部分(202)を連結する連結領域(204)、フランキング領域(205)、ミスマッチ部位(206)、二以上の非修飾DNA領域(203a及び203b)間のスペーサー領域(207)等を示す概念図である。 実施例で用いた核酸分子の分子名、その構造及び塩基配列、並びに配列番号を示す。図中、大文字はDNAを、小文字はRNAを表す。また、太字はsp-miR16-MBL及びsp-miR302cdの一本鎖核酸部分を、細字は二本鎖核酸部分を、下線部はミスマッチ部位を、二重下線部は連結領域を示す。αsp-miR16-MBL及びαsp-miR16-MBL-plusは、sp-miR16-MBLの一部と塩基対合を形成し得る。 図3に示したmiR16活性抑制用核酸sp-miR16-MBLの二次構造を示す概念図である。太字は一本鎖核酸部分を、細字は二本鎖核酸部分を、下線部はミスマッチ部位を示す。 実施例におけるRNAi分子活性抑制用核酸阻害剤αsp-miR16-MBL又はαsp-miR16-MBL-plusによるsp-miR-16-MBLのmiR16活性抑制効果の阻害作用を示した図である。
1.RNAi分子活性抑制用核酸阻害剤
1-1.概要
 本発明の第1の実施形態は、RNAi分子活性抑制用核酸阻害剤である。本発明のRNAi分子活性抑制用核酸阻害剤(以下、本明細書においては、しばしば「本発明の阻害剤」と略記する)は、標的となる特定のRNAi分子活性抑制用核酸(以下、本明細書においては、しばしば「抑制用核酸」と略記する)の活性を阻害することで、その抑制用核酸によって活性が抑制されていたRNAi分子の活性を回復させることができる。
1-2.定義
 本明細書において「RNAi分子」とは、生体内においてRNAi(RNA干渉:RNA inteference)を誘導し、標的とする遺伝子転写産物の分解を介してその遺伝子の発現を抑制(サイレンシング)することができるRNA分子をいう(Fire A. et al.,1998,Nature,391, 806-811)。また、本明細書において「標的RNAi分子」とは、抑制用核酸の標的であって、その活性を抑制すべき、対象となるRNAi分子をいう。RNAi分子の具体例としては、siRNA、miRNA、shRNA等が挙げられる。
 「siRNA」(低分子干渉RNA:small interference RNA)とは、標的遺伝子の一部に相当する塩基配列を有するセンス鎖(パッセンジャー鎖)、及びそのアンチセンス鎖(ガイド鎖)からなる小分子二本鎖RNAである。
 「miRNA」(micro RNA)とは、生体内に存在し、特定の遺伝子の発現を調節する長さ18~25塩基長の一本鎖ノンコーディングRNAである。このRNAは、標的遺伝子のmRNA及びタンパク質因子と結合して複合体を形成し、標的遺伝子の翻訳を阻害することが知られている。miRNAは、pri-miRNAと呼ばれる一本鎖の前駆体状態でゲノムから転写された後、核内でDroshaと呼ばれるエンドヌクレアーゼによりpre-miRNAと呼ばれる一本鎖前駆体状態にさらにプロセシングされ、核外でDicerと呼ばれるエンドヌクレアーゼの働きによってmiRNA鎖とmiRNAスター鎖からなる成熟型二本鎖miRNAとなる。そのうちmiRNA鎖がRISC(RNA-induced silencing complex)複合体に取り込まれて、成熟型一本鎖miRNAとなって、標的遺伝子発現を抑制する(David P. Bartel, Cell, Vol. 116, 281-297, January 23, 2004,)。
 「shRNA」(short hairpin RNA)とは、適当な配列を有する短いスペーサー配列によって前記siRNA又は成熟型二本鎖miRNAのセンス鎖及びアンチセンス鎖が連結された一本鎖RNAをいう。つまり、shRNAは、一分子内でセンス領域とアンチセンス領域が互いに塩基対合してステム構造を形成し、同時に前記スペーサー配列がループ構造を形成ことによって、分子全体としてヘアピン型のステム-ループ構造を形成している。
 本発明において「RNAi分子の活性」とは、RNAi分子が有する標的遺伝子の発現をサイレンシングする活性(遺伝子サイレンシング活性)をいう。また、本発明において「RNAi分子の活性を抑制する」とは、RNAi分子の遺伝子サイレンシング活性を完全に又は部分的に抑制することをいう。RNAi分子は、内在性のRNAi分子であってもよいし、外来性のRNAi分子であってもよい。生体内(細胞内、組織内、器官内及び個体内を含む)に存在するある特定のRNAi分子の活性を抑制した場合、その特定のRNAi分子が標的としていた遺伝子のサイレンシングは、相対的に完全に又は部分的に回避される。その結果、その標的遺伝子の生体内での発現量が増加することとなる。
 本発明において「核酸」とは、ヌクレオチドを構成単位とし、それらがホスホジエステル結合によって連結した生体高分子をいう。原則として自然界に存在する天然型ヌクレオチドが連結してなる天然型核酸を意味するが、本明細書における抑制用核酸及び/又は本発明の阻害剤は、天然型核酸若しくは人工核酸又はそれらの混合物を包含し得る。
 本明細書において「天然型ヌクレオチド」とは、アデニン、グアニン、シトシン及びチミンのいずれかの塩基を有するデオキシリボヌクレオチド及びアデニン、グアニン、シトシン及びウラシルのいずれかの塩基を有するリボヌクレオチドが該当する。「天然型核酸」とは、デオキシリボヌクレオチドが連結したDNA及びリボヌクレオチドが連結したRNAが該当する。
 本明細書において「人工核酸」とは、全部又は一部が非天然型ヌクレオチドで構成される核酸、又は非天然型核酸をいう。
 本明細書において「非天然型ヌクレオチド」とは、人工的に構築された自然界に存在しないヌクレオチドである。天然型ヌクレオチドに類似の性質及び/又は構造を有する人工ヌクレオチドや、天然型ヌクレオチドの構成要素である天然型ヌクレオシド若しくは天然型塩基に類似の性質及び/又は構造を有する非天然型ヌクレオシド若しくは非天然型塩基を含む人工ヌクレオチドが該当する。非天然型ヌクレオシドの具体例としては、脱塩基ヌクレオシド、アラビノヌクレオシド、2′-デオキシウリジン、α-デオキシリボヌクレオシド、β-L-デオキシリボヌクレオシドが挙げられる。また、非天然型塩基の具体例としては、2-オキソ(1H)-ピリジン-3-イル基、5位置換-2-オキソ(1H)-ピリジン-3-イル基、2-アミノ-6-(2-チアゾリル)プリン-9-イル基、2-アミノ-6-(2-チアゾリル)プリン-9-イル基、2-アミノ-6-(2-オキサゾリル)プリン-9-イル基等が挙げられる。
 本明細書において「非天然型核酸」とは、天然型核酸に類似の構造及び/又は性質を有する人工的に構築された核酸をいう。例えば、ペプチド核酸(PNA:Peptide Nucleic Acid)、ホスフェート基を有するペプチド核酸(PHONA)、架橋化核酸(BNA/LNA:Bridged Nucleic Acid/Locked Nucleic Acid)、モルホリノ核酸等が挙げられる。
 また、本発明において核酸は、特に断りのない限り、修飾されていてもよい。ここでいう「修飾」とは、核酸の構成単位であるヌクレオチド又はその構成要素であるヌクレオシドの一部又は全部が他の原子団と置換されること、又は官能基等が付加されることをいう。具体的には、例えば、糖修飾、塩基修飾、又はリン酸修飾が挙げられる。
 糖修飾とは、ヌクレオシドを構成するリボース部の修飾である。例えば、リボヌクレオシドを構成するリボース部の修飾であって、2′位のヒドロキシ基における置換若しくは付加が挙げられる。具体的には、例えば、ヒドロキシ基を、メトキシ基に置換した2′-O-メチルリボース、エトキシ基に置換した2′-O-エチルリボース、プロポキシ基に置換した2′-O-プロピルリボース、若しくはブトキシ基に置換した2′-O-ブチルリボース、ヒドロキシ基をフルオロ基に置換した2′-デオキシ-2′-フルオロリボース又はヒドロキシ基を2′-O-メトキシ-エチル基に置換した2′-O-メトキシエチルリボースが該当する。又は、ヌクレオシドの(デオキシ)リボース部の他糖への置換等が挙げられる。具体的には、例えば、リボース部のアラビノース、2′-フルオロ-β-D-アラビノース、リボースの2′ヒドロキシ基と4′位の炭素原子をメチレンで架橋したリボース誘導体、リボース環の4位の酸素を硫黄に置換したリボース誘導体への置換が該当する。又は、リボフラノース環上の酸素原子(リボースの4位の酸素原子)が硫黄に置換したものも含まれる。
 塩基修飾とは、ヌクレオシドを構成する塩基部の修飾である。例えば、塩基部への官能基の置換若しくは付加、又は塩基部の塩基類似体への置換が挙げられる。具体的には、例えば、シトシンの5位にメチル基が置換した5-メチルシトシン、シトシンの5位にヒドロキシ基が置換した5-ヒドロキシシトシン、ウラシルの5位にフルオロ基が置換した5-フルオロウラシル、ウラシルの4位の酸素原子がチオ基に置換した4-チオウラシル若しくはウラシルの5位にメチル基が置換した5-メチルウラシルやウラシルの2位の酸素原子がチオ基に置換した2-チオウラシルのような修飾ピリミジン、アデニンの6位にメチル基の置換した6-メチルアデニン、グアニンの6位にチオ基が置換した6-チオグアニンのような修飾プリン又は他の複素環塩基等が該当する。
 本発明の核酸は、特に断りのない限り、必要に応じてリン酸基、糖及び/又は塩基が核酸用標識物質で標識されていてもよい。核酸用標識物質は、当該分野で公知のあらゆる物質を利用することができる。例えば、放射性同位元素(例えば、32P、3H、14C)、DIG、ビオチン、蛍光色素(例えば、FITC、Texas、Cy3、Cy5、Cy7、FAM、HEX、VIC、JOE、Rox、TET、Bodipy493、NBD、TAMRA)、又は発光物質(例えば、アクリジニウムエスター)が挙げられる。
1-3.構成
1-3-1.RNAi分子活性抑制用核酸の構成
 本発明の阻害剤の標的となる抑制用核酸の構成について、以下で説明をする。この抑制用核酸は、標的RNAi分子の活性を特異的に抑制することができる。
 抑制用核酸の基本構成を図1及び図2に示す。これらの図が示すように、抑制用核酸は、必須の構成単位として、1つの一本鎖核酸部分(101、201)とその末端に連結された1つの二本鎖核酸部分(102、202)をからなる構造を包含する。二本鎖核酸部分が連結される位置は、一本鎖核酸部分の3’末端(図1A)又は5’末端(図1B)のいずれの場合も有り得るが、より高いRNAi分子の活性抑制効果を有することから3’末端に連結されることが多い。また、一本鎖核酸部分の両末端が1つの二本鎖核酸部分に連結されることで、二本鎖核酸部分と一本鎖核酸部分とがステム構造とループ構造を形成したような構造(図1C)も有り得る。
 以下、一本鎖核酸部分と二本鎖核酸部分について具体的に説明をする。
(1)一本鎖核酸部分
 「一本鎖核酸部分」(101、201)は、抑制用核酸において一本鎖からなる核酸部分であって、その内部に非修飾DNA領域(103、203)を1つ~3つ、通常1つ~2つ含む。一本鎖核酸部分が非修飾DNA領域を2つ以上含む場合、それぞれの非修飾DNA領域(例えば、203a及び203b)の標的RNAi分子及び/又は構成する塩基配列は、同一であるか、又は異なっている。
 なお、図1Aでは、一本鎖核酸部分が後述する連結領域及び/又はフランキング領域を含まず、かつ一本鎖核酸部分が非修飾DNA領域(103)を1つしか含まないことから、一本鎖核酸部分の全領域(101)が非修飾DNA領域(103)に相当する。
 また、抑制用核酸は、必要に応じて、図2に示す連結領域(204)、フランキング領域(205)及び/又はスペーサー領域(207)を含み得る。これらの領域は、抑制用核酸における選択的構成要素である
 (1-1)非修飾DNA領域
 「非修飾DNA領域」(103、203)とは、標的RNAi分子(100、200)における機能鎖の塩基配列に対して完全に又は十分に相補的な塩基配列からなる核酸領域をいう。非修飾DNA領域は、DNAのみで構成される。
 抑制用核酸において、「非修飾DNA」とは、修飾されていないDNAをいう。核酸の修飾については上述した通りである。
 抑制用核酸において、「機能鎖」とは、標的RNAi分子において、遺伝子サイレンシングを誘導することができるRNAiの実質的な活性を有する核酸鎖であって、抑制用核酸の真の標的となり得る核酸鎖をいう。例えば、RNAi分子がsiRNAやshRNAである場合には、ガイド鎖と呼ばれるアンチセンス鎖が該当し、またmiRNAである場合には、miRNA鎖と呼ばれるアンチセンス鎖が該当する。
 本明細書において、「相補的」とは、2つの塩基が互いにワトソン・クリック型の塩基対合を形成し得る関係をいう。具体的には、アデニンとチミン又はウラシルとの関係、及びシトシンとグアニンとの関係をいう。
 本明細書において、「完全に相補的」とは、2つの核酸鎖において一方の核酸鎖の塩基配列の全ての塩基が他方の核酸鎖の塩基配列の対応する全ての塩基と塩基対合し得る関係をいう。したがって、抑制用核酸において、一本鎖核酸部分の非修飾DNA領域が標的RNAi分子の機能鎖の塩基配列に対して完全に相補的な塩基配列からなるという場合には、非修飾DNA領域の塩基配列の全ての塩基が機能鎖の塩基配列の全ての塩基と塩基対合を形成できることを意味する。
 本明細書において、「十分に相補的」とは、2つの核酸鎖のうち少なくとも一方の核酸鎖の全ての塩基が他方の核酸鎖の塩基配列の対応する全ての塩基と塩基対合し得る関係ではないものの、その一方の塩基配列の50%以上100%未満、好ましくは60%以上100%未満、より好ましくは70%以上100%未満、さらに好ましくは80%以上100%未満の塩基が他方の核酸鎖の塩基配列の塩基と塩基対合し得る関係をいう。例えば、2つの核酸鎖において、一方の核酸鎖の塩基配列は、他方の核酸鎖の塩基配列に対して完全に相補的であるが、他方の核酸鎖は、一方の核酸鎖の塩基配列に対して完全に相補的ではなく、50%以上100%未満しか相補的ではない場合が挙げられる。具体的には、完全に相補的な塩基配列からなる2つの核酸鎖のうち一方の核酸鎖のみに1つ又は複数の塩基が付加された場合が該当する。あるいは、例えば、2つの核酸鎖において、2つの核酸鎖の塩基配列は、いずれも相手方の核酸鎖に対して完全に相補的ではないが、それぞれの核酸鎖の塩基配列の50%以上100%未満が相手方の核酸鎖の塩基配列と相補的である場合が挙げられる。具体的には、完全に相補的な塩基配列からなる2つの核酸鎖において互いに対応する位置にあるヌクレオチド残基の塩基の両方又はいずれか一方を他の塩基に置換した結果、その置換した位置におけるヌクレオチド残基が塩基対合できなくなった場合や、一方の核酸鎖からヌクレオチド残基が1つ若しくは2~4つ欠失した結果、その欠失した位置におけるヌクレオチド残基が塩基対合できなくなった場合、が該当する。抑制用核酸であれば、前記十分に相補的な例として、非修飾DNA領域がミスマッチ部位(206)を含む場合が挙げられる。
 抑制用核酸において「ミスマッチ部位」(206)とは、2つの核酸鎖を互いに塩基対合させたときに、一方の核酸鎖の塩基配列に含まれる塩基に対して相補的な塩基が他方の核酸鎖の塩基配列の対応する位置に存在しないことにより、塩基対合を形成できないヌクレオチド残基からなる部位をいう。
 非修飾DNA領域は、その塩基配列中に、機能鎖と塩基対合しない1塩基(1ヌクレオチド残基に相当する。以下同様に解する。)からなるミスマッチ部位(「ギャップ部位」ともいう)及び/又は連続する2~10塩基、好ましくは連続する3~8塩基、より好ましくは連続する4~6塩基のミスマッチ部位(「ループ部位」ともいう)を少なくとも1つ有することができる。非修飾DNA領域がミスマッチ部位を含む場合、その挿入位置は、非修飾DNA領域内において特に制限されないが、非修飾DNA領域の末端部を除いた同領域内部であることが多く、さらに非修飾DNA領域の中央部、具体的にはその5’末端から数えて9~14番目、又は10~13番目のヌクレオチド残基間である場合が多い。
 非修飾DNA領域の塩基長は、特に制限はされていないが、前述のように標的RNAi分子における機能鎖の塩基配列に対して完全に又は十分に相補的な塩基配列を有することから、機能鎖以上の塩基長を有する。一般に、RNAi分子の機能鎖は、18~25塩基長であることが知られており(Kim D.H., et al.,2005, Nat Biotechnol., 23(2):222-6)、非修飾DNA領域が後述するミスマッチ部位を含むことを鑑みれば、18~35塩基長、18~33塩基長又は18~31塩基長である。
 (1-2)連結領域
 「連結領域」(204)とは、前記非修飾DNA領域と二本鎖核酸部分の連結を介在する核酸領域をいう。連結領域は、一本鎖核酸部分の5’末端部及び/又は3’末端部に位置する。連結領域は、1~10塩基長の一本鎖で構成される。通常は1~8塩基長、好適には2~6塩基長である。なお、抑制用核酸において、一本鎖核酸部分に含まれる非修飾DNA領域の少なくとも一方の末端部と二本鎖核酸部分は、直接連結され得る。
 連結領域を構成する核酸は、上述した核酸のいずれの場合も有り得る。通常は天然型核酸であり、多くの場合はDNAである。また連結配列の塩基配列は、自己アニーリング等の分子内フォールディングによる高次構造を形成しない配列であれば、制限されていない。例えば、Tのみ、又はCのみからなる配列の場合も有り得る。
 (1-3)フランキング領域
 「フランキング領域」(205)とは、一本鎖核酸部分(201)において二本鎖核酸部分が連結しない側の5’末端又は3’末端に連結される一本鎖の核酸領域をいう。それ故、フランキング領域は、一本鎖核酸部分に含まれる非修飾DNA領域の一方の末端部と直接連結される。
 フランキング領域の塩基長は、特に限定はされないが、通常は1~30塩基長、又は1~25塩基長の範囲である。フランキング領域を構成する核酸は、上述した核酸のいずれの場合も有り得る。通常は天然型核酸であり、多くの場合はDNAのみで構成される。またフランキング領域の塩基配列は、自己アニーリング等の分子内フォールディングによる高次構造を形成しないあらゆる配列から構成されている。
 また、フランキング領域において、一本鎖核酸部分に連結されない他方の末端部は、遊離状態の一本鎖核酸末端の場合もあれば、担体に固定されている場合もある。ここでいう「担体」とは、例えば、低分子化合物(例えば、ビオチン、アビジン、ストレプトアビジン又はニュートラアビジン)、アミノ酸若しくはペプチド、高分子多糖支持体(例えば、セファロース、セファデックス、アガロース)、樹脂(天然又はプラスチックを含む合成樹脂)、シリカ、ガラス、磁気ビーズ、金属(例えば、金、白金、銀)、セラミックス、又はそれらの組み合わせが挙げられる。
 (1-4)スペーサー領域
 「スペーサー領域」(207)とは、一本鎖核酸部分が2つ以上の非修飾DNA領域を含むときに、各非修飾DNA領域間で2つの非修飾DNA領域を介在する核酸領域をいう。2つ以上の非修飾DNA領域が含まれる場合、それらが直接連結されている場合もあるが、一本鎖核酸部分内での各非修飾DNA領域の自由度を高めるためスペーサー領域が介在されている場合もある。
 スペーサー領域は、通常、1~10塩基長の一本鎖で構成される。
 スペーサー領域を構成する核酸は、上述した核酸のいずれの場合も有り得る。通常は天然型核酸であり、多くの場合はDNAのみで構成される。またスペーサー配列の塩基配列は、自己アニーリング等の分子内フォールディングによる高次構造を形成しないあらゆる配列が有り得る。
(2)二本鎖核酸部分
 「二本鎖核酸部分」(102、202)は、前記一本鎖核酸部分の5’末端部又は3’末端部の少なくとも一方に連結される核酸部分である。
 二本鎖核酸部分は、塩基対合を形成した互いに相補的な2本の核酸鎖から構成されている。ただし、核酸鎖が分子内フォールディングによって二本鎖を形成する場合、多重鎖構造を形成する場合、又は相補的な2本の核酸鎖の一方又は両方の核酸鎖にニック(切れ目)が存在する場合には、1本又は3本以上の核酸鎖からも構成され得る。このような特殊な構造も核酸鎖間又は核酸鎖内で塩基対合を介して高次構造を形成する点で2本の核酸鎖間の塩基対合によって形成される二本鎖核酸と同一又は類似する構造であることから、抑制用核酸においては二本鎖核酸部分に含まれる。
 二本鎖核酸部分を構成する各核酸鎖の塩基長は、核酸鎖間で形成された塩基対合を安定して維持できる長さである。通常は、5~25塩基長の範囲内にある。また、二本鎖核酸部分を構成する各核酸鎖の塩基長は、同一の場合もあれば、異なっている場合もある。通常は、同一塩基長である。各核酸断片の塩基長が異なる場合、図2Bで示すように、長鎖側が分子内フォールディングによって一以上の側鎖ステム部位(208)及び側鎖ループ部位(209)、を形成し得る。また、ステム部位は、その内部に一以上の側鎖ミスマッチ/バルジ部位(210)を含み得る。
 二本鎖核酸部分は、通常は2本の核酸鎖が互いに完全に相補的である。特に各核酸鎖の塩基長が9塩基長以下の場合には、完全に相補的であることが多い。一方、各核酸鎖の塩基長が10塩基長以上の場合には、十分に相補的な場合もある。例えば、二本鎖核酸部分の少なくとも一方の核酸鎖が、その塩基配列中に、他方の核酸鎖と塩基対合しない1塩基及び/又は連続する2塩基以上のミスマッチ部位(211)を少なくとも1つ有する場合が挙げられる。ミスマッチ部位が連続する2塩基以上からなるループ部位(212)を形成する場合、ミスマッチ部位の塩基長は、2~6塩基であるが、前述のようにそのループ部位内で分子内フォールディングによって一以上のループ構造及び一以上のステム構造を形成する場合には、ミスマッチ部位がより長い塩基長の場合も有り得る。
 二本鎖核酸部分を構成する核酸は、二本鎖構造等の二次構造やGカルテット等の三次構造のように、安定した高次構造を形成し得る核酸であれば、上述した核酸のいずれの場合も有り得る。通常はDNAのみで構成される。
1-3-2.RNAi分子活性抑制用核酸阻害剤の構成
 本発明の阻害剤の構成例を図3に示す。本発明の阻害剤は、標的とする抑制用核酸の一本鎖核酸部分における非修飾DNA領域の塩基配列に対して完全に又は十分に相補的な塩基配列を含む核酸分子からなる。非修飾DNA領域がミスマッチ部位を含む場合、そのミスマッチ部位に対しても相補する塩基配列を含むようにすることが好ましい。
 また、標的とする抑制用核酸の一本鎖核酸部分が非修飾DNA領域以外の一本鎖核酸部分、例えば、連結領域やフランキング領域を含む場合には、その塩基配列の全部又は一部に対しても相補的な塩基配列を含むことができる。
 抑制用核酸が一本鎖核酸部分に非修飾DNA領域を2以上有する場合には、本発明の阻害剤を構成する核酸の塩基配列は、いずれか一方の非修飾DNA領域の塩基配列のみに対して相補的な塩基配列とすることもできるし、2以上の非修飾DNA領域の塩基配列に対して相補的な塩基配列とすることもできる。後者の場合、本発明の阻害剤は、非修飾DNA領域間に配置されるスペーサー領域に対しても完全に又は十分に相補的な塩基配列も含む。
 本発明の阻害剤は、抑制用核酸を構成する二本鎖核酸部分の塩基配列の全部又は一部に対して相補的な塩基配列をさらに含んでいてもよい。二本鎖核酸部分が互いに相補的な2本の核酸鎖、又は多重鎖構造を有する核酸鎖から構成されている場合には、本発明の阻害剤は一本鎖核酸部分と直接連結している方の核酸鎖に対して完全に又は十分に相補的な塩基配列を含む。二本鎖核酸部分が1本の核酸鎖から構成されている場合には、本発明の阻害剤は、二本鎖核酸部分の核酸鎖に対して完全に又は十分に相補的な塩基配列を含む。二本鎖核酸部分が分子内フォールディングによって二本鎖を形成している場合には、本発明の阻害剤は、ループ構造領域及び一本鎖核酸部分と直接連結していないステム構造領域の塩基配列の全部又は一部に対して相補的な塩基配列を含むことができる。
 本発明の阻害剤は、その5’末端部及び/又は3’末端部に、抑制用核酸に対して相補的な塩基配列とは無関係の塩基配列からなる核酸領域を有することができる。このような核酸領域の塩基長は、特に限定はされないが、通常は1~30塩基長、又は1~25塩基長の範囲である。
 本発明の阻害剤は、非修飾DNA領域の塩基配列に対して相補的な塩基配列からなる核酸がRNAのみで構成されていなければ、天然型核酸、人工核酸又はそれらの組合せのいずれで構成されていてもよい。DNAのみで構成されている本発明の阻害剤は、特に好ましい。
1-4.RNAi分子活性抑制用核酸阻害剤の製造方法
 本発明の阻害剤の調製方法について説明をする。本発明の阻害剤は、上記「1-3-2.RNAi分子活性抑制用核酸の構成」で説明をした構成を有する核酸分子を調製することのできる方法であれば、当該分野で公知のあらゆる方法によって製造することができる。ここでは、一具体例を挙げて説明するが、抑制用核酸の製造方法は、以下の方法に限られない。
 抑制用核酸の製造方法は、(1)設計工程、及び(2)合成工程を含む。
(1)設計工程
 「設計工程」とは、本発明の阻害剤を構成する塩基配列を決定する工程である。
 本工程では、標的とする抑制用核酸の一本鎖核酸部分における非修飾DNA領域の塩基配列に基づいて、その塩基配列に相補的な塩基配列として設計する。非修飾DNA領域がミスマッチ部位を含む場合には、ミスマッチ部位に対しても相補的な塩基配列を含むように設計することが好ましい。抑制用核酸の一本鎖核酸部分がフランキング領域や連結領域のような非修飾DNA領域以外の領域を含む場合には、その領域の塩基配列に対して相補的な塩基配列を含むようにすることもできる。また、抑制用核酸の一本鎖核酸部分が異なるRNAi分子を標的とする非修飾DNA領域を2以上含む場合、本発明の阻害剤は、一方の非修飾DNA領域の塩基配列のみに相補的な塩基配列として設計してもよいし、2以上の非修飾DNA領域の塩基配列に対して相補的な塩基配列にしてもよい。後者の場合、非修飾DNA領域間に位置するスペーサー領域に対しても相補的な塩基配列を含むように設計しておく。さらに、本発明の阻害剤を設計する場合、必要に応じて二本鎖核酸部分の塩基配列に相補的な塩基配列を含むようにすることもできる。二本鎖核酸部分が2本の核酸鎖で構成される場合には、一本鎖核酸部分と直接連結している核酸鎖の塩基配列に相補的な塩基配列とする。二本鎖核酸部分を構成する核酸は、天然型核酸、人工核酸又はそれらの組合せのいずれであってもよい。必要に応じで適当な核酸を適宜選択し、設計すればよい。通常は、DNAが好ましく使用される。
(2)合成工程
 「合成工程」とは、前記設計工程で設計した塩基配列に基づいて、本発明の阻害剤を構成する核酸分子を酵素的に、又は化学合成によって製造する工程である。本発明の阻害剤は、抑制用核酸の非修飾DNA領域に相補的な塩基配列からなる核酸部分がRNAのみで構成されないことを除けば、天然型核酸、人工核酸又はそれらの組合せのいずれで構成することもできる。核酸の合成方法は、当該分野では公知の技術を用いればよい。例えば、固相合成法に従って化学合成することができる。具体的には、例えば、Current Protocols in Nucleic Acid Chemistry, Volume 1, Section 3、Verma S. and Eckstein F., 1998, Annul Rev. Biochem., 67, 99-134に記載された化学合成方法を利用すればよい。また、人工核酸や修飾核酸を含めた核酸の化学合成については、多くのライフサイエンス系メーカー(例えば、タカラバイオ社、ファスマック社、ライフテクノロジー社、ジーンデザイン社、シグマ アルドリッチ社等)が受託製造サービスを行っており、それらを利用することもできる。化学合成後の本発明の阻害剤は、使用前に当該分野で公知の方法によって精製することが好ましい。例えば、精製方法としては、例えば、ゲル精製法、アフィニティーカラム精製法、HPLC法等が挙げられる。
1-5.使用方法
 本発明の阻害剤は、生体内、すなわち、生きている細胞内、組織内、器官内又は個体内に導入することによって同じ生体内に存在する抑制用核酸の活性を抑制することができる。
 本発明の阻害剤を生体内に導入する方法は、抑制用核酸を含有する溶液の注入、抑制用核酸によって被覆された粒子を用いたボンバードメント、又は抑制用核酸の存在下でのエレクトロポレーション等による方法が挙げられる。さらに、脂質媒介担体輸送、化学媒介輸送(例えばリン酸カルシウム法)等の、核酸を細胞に導入するための当技術分野において公知の他の方法を用いることができる。また、生体が動物個体であれば、後述する医薬組成物のような薬剤として導入することも可能である。
 本発明の阻害剤を導入すべき細胞、組織、器官又は個体は、特に限定はしない。動物及び植物をはじめとするいずれの生物種であってもよい。
 動物であれば、好ましくは脊椎動物、より好ましくは魚類、鳥類又は哺乳動物である。魚類の中でさらに好ましくは水産資源用魚種(例えば、サケ科、スズキ科、タラ科、ニシン科、ヒラメ科、カレイ科、アジ科、イカナゴ科、タイ科及びメバル科の魚種)である。鳥類の中でさらに好ましくは食用種(例えば、ニワトリ、ガチョウ、アヒル、カモ、合鴨、七面鳥、ウズラ、ダチョウ等)である。哺乳動物の中でさらに好ましくは家畜(ブタ、ウシ、ヒツジ、ヤギ、ウマ)、実験用動物(げっ歯類、ウサギ、イヌ、サル)、競争馬、愛玩動物(イヌ、ネコ、ウサギ、サル、げっ歯類)又はヒトである。一層好ましい生物種は、ヒトである。
 一方、植物であれば、好ましくは種子植物、より好ましくは被子植物、さらに好ましくは食用植物種、繊維資源用植物種、又は木材資源用植物種である。例えば、食用植物種であれば、イネ科(例えば、イネ、コムギ、オオムギ、ライムギ、トウモロコシ、コーリャン、アワ)、マメ科(例えば、ダイズ、アズキ、グリーンピース)、ナス科(例えば、トマト、ナス、ジャガイモ、トウガラシ、ピーマン)、ヒルガオ科(例えば、サツマイモ)、バラ科(例えば、イチゴ、アーモンド、モモ、プラム、ウメ、バラ、サクラ)、アブラナ科(例えば、ダイコン、カブ、アブラナ)、アカザ科(例えば、ホウレンソウ、テンサイ)、セリ科、タデ科、ウリ科、キク科、ユリ科、サトイモ科、ブドウ科、ミカン科、ブナ科、ヤシ科等に属する食用の植物種が、繊維資源用植物種であれば、例えば、ワタ、アサ等が、また、木材資源用植物種であれば、スギ、ヒノキ、モミ、ツガ、マツ、イチイ、サクラ、カエデ、カシ、ナラ、ブナ、ニレ、ケヤキ、クルミ、ホウ、カツラ、チーク、ラワン、黒檀、マホガニー、ポプラ、ユーカリ等が挙げられる。
1-6.効果
 本発明の阻害剤によれば、抑制用核酸の標的RNAi分子に対する活性抑制作用を特異的に阻害することができる。それによって、標的RNAi分子の活性を回復することが可能となる。すなわち、本発明の阻害剤とその標的となる抑制用核酸とを適宜用いることにより、生体内における標的RNAi分子の活性を制御することができる。
 また、本発明の阻害剤は、DNAのみでも構成可能であることから、化学合成によって簡便に、大量に、かつ安価で提供することができる。
2.医薬組成物
2-1.概要
 本発明の第2の実施形態は、医薬組成物である。本発明の医薬組成物を生体に投与することによって、生体内に存在する特定の抑制用核酸の活性を特異的に阻害することができ、それによって、生体内の目的とするRNAi分子の活性を制御することが可能となる。
2-2.構成
 2-2-1.組成
 (1)有効成分
 本発明の医薬組成物は、有効成分として前記第1実施形態の本発明の阻害剤を含有する。本発明の医薬組成物は、同一の又は異なる抑制用核酸を標的とする異なる二以上の本発明の阻害剤を含むことができる。
 本発明の医薬組成物において、医薬組成物中の有効成分である本発明の阻害剤の含有量は、製薬上有効な量であればよい。本明細書において「製薬上有効な量」とは、有効成分である本発明の阻害剤がその機能を発揮する上で必要な用量で、かつ投与する生体に対して有害な副作用がほとんどないか又は全くない用量を言う。具体的な用量は、標的となる抑制用核酸の種類及び量、抑制用核酸の作用効果及び安定性、使用する医薬組成物の剤形、使用する担体の種類、及び投与方法、被検体の情報及び投与経路によって異なる。ヒトに投与する場合、製薬上有効な量の範囲及び好適な投与経路は、通常、細胞培養アッセイ及び動物実験から得られたデータに基づいて策定される。最終的な投与量は、個々の被検者に応じて医師の判断により決定され、調整される。その際に、勘案される被検者の情報には、病気の進行度若しくは重症度、全身の健康状態、年齢、体重、性別、食生活、薬剤感受性及び治療に対する耐性等が含まれる。
 (2)媒体
 本発明の医薬組成物は、有効成分である本発明の阻害剤の媒体を含むことができる。媒体には、例えば、水、エタノール、プロピレングリコール、エトキシ化イソステアレルアルコール、ポリオキシ化イソステアレルアルコール及びポリオキシエチレンソルビタン脂肪酸エステル類のような溶媒が挙げられる。このような媒体は、使用時に殺菌されていることが望ましく、必要に応じて血液と等張に調整されていることが好ましい。
 (3)製薬上許容可能な担体
 本発明の医薬組成物は、必要に応じて製薬上許容可能な担体を含むことができる。「製薬上許容可能な担体」とは、製剤技術分野において通常使用する添加剤をいう。例えば、賦形剤、結合剤、崩壊剤、充填剤、乳化剤、流動添加調節剤、滑沢剤等が挙げられる。
 賦形剤としては、単糖、二糖類、シクロデキストリン及び多糖類のような糖(より具体的には、限定はしないが、グルコース、スクロース、ラクトース、ラフィノース、マンニトール、ソルビトール、イノシトール、デキストリン、マルトデキストリン、デンプン及びセルロースを含む)、金属塩(例えば、塩化ナトリウム、リン酸ナトリウム若しくはリン酸カルシウム、硫酸カルシウム、硫酸マグネシウム、炭酸カルシウム)、クエン酸、酒石酸、グリシン、低、中、高分子量のポリエチレングリコール(PEG)、プルロニック、カオリン、ケイ酸、あるいはそれらの組み合わせが例として挙げられる。
 結合剤としては、トウモロコシ、コムギ、コメ、若しくはジャガイモのデンプンを用いたデンプン糊、単シロップ、グルコース液、ゼラチン、トラガカント、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースナトリウム、セラック及び/又はポリビニルピロリドン等が例として挙げられる。
 崩壊剤としては、前記デンプンや、乳糖、カルボキシメチルデンプン、架橋ポリビニルピロリドン、アガー、ラミナラン末、炭酸水素ナトリウム、炭酸カルシウム、アルギン酸若しくはアルギン酸ナトリウム、ポリオキシエチレンソルビタン脂肪酸エステル、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド又はそれらの塩が例として挙げられる。
 充填剤としては、前記糖及び/又はリン酸カルシウム(例えば、リン酸三カルシウム、若しくはリン酸水素カルシウム)が例として挙げられる。
 乳化剤としては、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、プロピレングリコール脂肪酸エステルが例として挙げられる。
 流動添加調節剤及び滑沢剤としては、ケイ酸塩、タルク、ステアリン酸塩又はポリエチレングリコールが例として挙げられる。
 このような担体は、主として剤形形成を容易にし、また剤形及び薬剤効果を維持する他、有効成分である抑制用核酸が生体内の核酸分解酵素による分解を受け難くするために用いられるものであり、必要に応じて適宜使用すればよい。上記の添加剤の他、必要であれば矯味矯臭剤、可溶化剤、懸濁剤、希釈剤、界面活性剤、安定剤、吸収促進剤、増量剤、付湿剤、保湿剤、吸着剤、崩壊抑制剤、コーティング剤、着色剤、保存剤、抗酸化剤、香料、風味剤、甘味剤、緩衝剤等を含むこともできる。
 (4)他の有効成分
 本発明の医薬組成物は、有効成分である本発明の阻害剤の薬理効果を失わない範囲において、他の有効成分を包含する複合製剤であってもよい。他の有効成分は、前記実施形態1の抑制用核酸とは異なる薬理作用を有する薬剤であってもよい。例えば、抗体医薬等が挙げられる。
 2-2-2.剤形
 本実施形態の医薬組成物の剤形は、有効成分である本発明の阻害剤又は他の付加的な有効成分を不活化させない形態であって、投与後、生体内でその薬理効果を発揮し得る形態であれば特に限定しない。一般に、天然型核酸は、生体内でヌクレアーゼなどの分解酵素による影響を受けやすいことから、本発明の医薬組成物を投与する場合には生体内で有効成分である本発明の阻害剤が分解され難い剤形が好ましい。例えば、液体、固体又は半固体のいずれであってもよい。具体的な剤形としては、例えば、注射剤、懸濁剤、乳剤、点眼剤、点鼻剤、クリーム剤、軟膏剤、硬膏剤、シップ剤及び座剤等の非経口剤形又は液剤、散剤、顆粒剤、錠剤、カプセル剤、舌下剤、トローチ剤等の経口剤形が挙げられる。好ましい剤形は、注射剤である。
 また、本実施形態の医薬組成物をナノ粒子(例えば、Davis ME, et al.,Nature, 2010, 464:1067-1070に記載の標的ナノ粒子伝達システムを含む)、リポソーム(例えば、膜透過ペプチド結合リポソーム、SNALPsを含む)、コレステロール結合体の形態に調製してもよい。Castanotto D. & Rossi JJ., Nature,2009, 457, 426-433に記載のRNAi伝達システムを利用することもできる。
2-3.医薬組成物の製造
 本発明の医薬組成物の製造方法については、当業者に公知の製剤化方法を応用すればよい。例えば、Remington's Pharmaceutical Sciences (Merck Publishing Co., Easton, Pa.)に記載された方法を参照することができる。
2-4.投与方法
 本実施形態の医薬組成物は、疾患の治療のために有効成分である第1実施形態の本発明の阻害剤を製薬上有効な量で生体に投与することができる。投与する対象となる生体は、原則としてその標的となる抑制用核酸を有する脊椎動物、好ましくは哺乳動物、より好ましくはヒトである。
 本発明の医薬組成物の投与方法は、全身投与又は局所的投与のいずれであってもよい。標的となる抑制用核酸の存在箇所に応じて適宜選択することができる。抑制用核酸が局在する場合には、注射などによりその局在箇所及びその周辺に直接投与する局所的投与が好適である。一方、抑制用核酸を静脈注射等により全身投与した場合には、血流を介して抑制用核酸が全身に行き渡っている可能性があることから、本発明の医薬組成物も注射等による全身投与が好ましい。
 本発明の医薬組成物の具体的な投与方法としては、有効成分である本発明の阻害剤が失活しないあらゆる方法で投与することができる。例えば、非経口(例えば、注射、エアロゾル、塗布、点眼、点鼻)又は経口が挙げられる。前述した理由や侵襲性が比較的低いことから、注射による投与は、特に好ましい。
 注射による投与の場合、注入部位は、特に限定しない。例えば、静脈内、動脈内、肝臓内、筋肉内、関節内、骨髄内、髄腔内、心室内、経皮、皮下、皮内、腹腔内、鼻腔内、腸内又は舌下等が挙げられる。好ましくは静脈内注射又は動脈内注射等の血管内への注射である。
 以下、実施例を用いて本発明をさらに具体的に説明する。ただし、本発明の技術的範囲はこれら実施例に限定されるものではない。
<本発明のmiR-16活性抑制用核酸阻害剤の調製とその活性阻害効果の検証>
(目的)
 HEK293T細胞(ヒト胎児腎細胞)の内在性miRNAであるmir-16を標的RNAi分子とするmir-16活性抑制用核酸に対して活性阻害効果を有するmiR-16活性抑制用核酸阻害剤について検証した。
(方法)
 mir-16活性抑制用核酸に対する阻害効果は、mir-16によって蛍光タンパク質の翻訳が阻害される系に対して、mir-16活性抑制用核酸を添加したときに、mir-16活性の抑制によって増加した蛍光タンパク質の発現が、miR-16活性抑制用核酸阻害剤の添加によって再び抑制されるか否かを発光タンパク質の発光強度によって算出した。以下、本実施例の具体的な実施方法について説明をする。
1.mir-16活性抑制用核酸及びmiR-16活性抑制用核酸阻害剤の調製
 本実施例で用いたmir-16活性抑制用核酸及びmir-16活性抑制用核酸阻害剤の分子名、その構造及び塩基配列を図4に示す。各抑制用核酸を構成するDNAからなる核酸鎖は、ファスマック社に委託して化学合成によって調製した。なお、核酸は修飾していない。合成後のDNAは、D-PBS(-)(0.2g/L KCl、8g/L NaCl、0.2g/L KH2PO4、1.15g/L Na2HPO4)に溶解した。1本の核酸鎖で構成される抑制用核酸については前記溶解後に、また2本の核酸鎖で構成されるコントロールとしてのmir-302cd活性抑制用核酸については、抑制用核酸の構成に必要な各核酸鎖を組み合わせて混合・溶解後に、それぞれ90℃に加熱して、徐々に温度を下げて核酸鎖間又は核酸鎖内でアニーリングさせ、各抑制用核酸を調製した。
2.活性抑制効果の測定系の調製
 本実施例で用いたHEK293T-16t株は、HEK293T細胞にpTK-Gluc-OriP-3(miR16)とpEB-Cluc-KXを同時に導入して作製したGaucia-luciferaseとCypridina-luciferaseの恒常発現株である。pTK-Gluc-OriP-3(miR16)はGaucia-luciferaseを恒常的に発現できる発現ベクターであり、pEB-Cluc-KXはCypridina-luciferaseを恒常的に発現できる発現ベクターである。
 pTK-Gluc-OriP-3(miR16)の調製は、以下の通りに行った。まず、pEBMulti-Hyg(Wako)のOriP配列を配列番号7で示すフォワードプライマーと配列番号8で示すリバースプライマーを用いてPCRによって増幅した後、BamHIで切断して得られた断片をpTK-Gluc(New England Biolabs;NEB)の3’-非翻訳領域に相当するBglIIサイトに挿入した(pTK-Gluc-OriP)。続いて、pTK-Gluc-OriPのMCSのXhoI/XbaIサイトに、XhoI/EcoRV/BmgI/SwaI/XbaIサイトが並ぶようにした改変MCSを挿入した。この改変MCS内のEcoRVサイトにmiR-16の標的配列(miR-16t;miR-16-Target)が3回繰り返された配列(配列番号9)を組み込んでpTK-Gluc-OriP-3(miR16)を調製した。したがって、pTK-Gluc-OriP-3(miR16)を導入した細胞内ではGaucia-luciferase遺伝子の発現と共にmiR-16tもその転写物の一部として発現する。ここで、miR-16tは、内在性のmiR-16によりRNAiの標的となるため、miR-16によって同時にGaucia-luciferaseも翻訳が著しく抑制されてしまう。その結果、Gaucia-luciferaseは極めて微弱な発光しか検出できなくなる。
 一方、pEB-Cluc-KXの調製は、以下の通りに行った。まず、pCMV-Cluc2(NEB)のCluc遺伝子を配列番号10で示すフォワードプライマーと配列番号11で示すリバースプライマーを用いてPCRによって増幅した後、KpnI/XhoIで切断して得られた断片を、pEBMulti-Hyg(Wako)のMCSのKpnI/XhoIサイトに導入して調製した。pEB-Cluc-KXには、miR-16の標的配列は挿入されていない。したがって、pEB-Cluc-KXを導入した細胞内ではCypridina-luciferaseはmiR-16の抑制を受けることなく発現する。また、Gaucia-luciferaseとCypridina-luciferaseは、いずれも分泌性のルシフェラーゼのため、培養上清を回収することでルシフェラーゼアッセイが可能となる。
3.核酸導入方法及び蛍光測定方法
 96ウェルプレートにHEK293T-16t細胞を7,000細胞/ウェルとなるように播種し、DMEM(Wako)を用いて5%CO2下で37℃にて培養した。24時間培養後、培養上清を回収すると共に、図3及び4に記載のmiR-16抑制用核酸sp-miR16-MBLを25nMでLipofectamineTMLTX(life technologies)を用いて細胞にトランスフェクションした(第1トランスフェクション)。回収した培養上清に対してルシフェラーゼアッセイを行った。ルシフェラーゼの発光強度は、Gaucia-luciferase (Gluc)とCypridina-luciferase(Cluc)のそれぞれの発光をプレートリーダーFluoroskanAscent(ThermoScientific)で測定し、Cypridina-luciferaseで標準化したGaucia-luciferaseの値(Gluc/Cluc)によって表した。ルシフェラーゼの蛍光測定にはいずれもNEBの測定キットを使用した。具体的には、Gaucia-luciferaseの活性測定には、BioLuxTMGaussia Luciferase Flex Assay Kit (NEB)を用いた。Cypridina-luciferaseの活性測定には、BioLuxTM Cypridina Luciferase Assay Kit(NEB)を用いた。第1トランスフェクションから6時間後にDMEMで培地交換を行い、その後、18時間後に培養上清を回収すると共に、miR-16活性抑制用核酸に対する本発明の阻害剤αsp-miR16又はαsp-miR16-plusを25nMでLipofectamineTM LTX life technologies)を用いてトランスフェクションした(第2トランスフェクション)。回収した培養上清に対して、上記と同様の方法で再びルシフェラーゼアッセイを行った。第2トランスフェクションから6時間後にDMEM培地で培地交換を行い、さらに、その18時間後に培養上清を回収し、その培養上清に対して上述の方法でルシフェラーゼアッセイを行った。
(結果)
 図5に結果を示す。この図が示すように、本発明の阻害剤の構成を有するαsp-miR16及びαsp-miR16-plusは、いずれも標的である抑制用核酸sp-miR16-MBLを阻害する効果を有することが立証された。また、抑制用核酸sp-miR16-MBLの阻害によってGaucia-luciferaseの発現を抑制していたmiR16の活性が回復することも明らかとなった。
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (12)

  1.  標的RNAi分子において活性を有する機能鎖の塩基配列に対して完全に又は十分に相補的な塩基配列からなる非修飾DNA領域を含む一本鎖核酸部分、及び
     前記一本鎖核酸部分の5’末端及び3’末端の少なくとも一方に連結される二本鎖核酸部分を含んでなるRNAi分子の活性抑制用核酸に対して、その抑制活性を阻害するRNAi分子活性抑制用核酸の阻害剤であって、
     前記RNAi分子活性抑制用核酸を構成する一本鎖核酸部分における非修飾DNA領域の塩基配列に対して完全に又は十分に相補的な塩基配列を含み、かつRNAのみで構成されない核酸分子からなる前記阻害剤。
  2.  前記核酸分子が一本鎖核酸部分における非修飾DNA領域以外の塩基配列の全部又は一部に対しても相補的な塩基配列を含む、請求項1に記載の阻害剤。
  3.  前記核酸分子がRNAi分子活性抑制用核酸を構成する二本鎖核酸部分の塩基配列の全部又は一部に対して相補的な塩基配列をさらに含む、請求項1又は2に記載の阻害剤。
  4.  前記核酸分子がDNAのみからなる、請求項1~3のいずれか一項に記載の阻害剤。
  5.  RNAi分子活性抑制用核酸の非修飾DNA領域が標的RNAi分子活性を有する機能鎖の塩基配列に対して1塩基又は連続する2~10塩基のミスマッチ部位を含む、請求項1~4のいずれか一項に記載の阻害剤。
  6.  RNAi分子活性抑制用核酸の非修飾DNA領域が18~35塩基長である、請求項1~5のいずれか一項に記載の阻害剤。
  7.  RNAi分子活性抑制用核酸の一本鎖核酸部分が非修飾DNA領域と二本鎖核酸部分の連結を介在する1~10塩基長の核酸からなる連結領域を含む、請求項1~6のいずれか一項に記載の阻害剤。
  8.  RNAi分子活性抑制用核酸の二本鎖核酸部分が5~25塩基長である、請求項1~7のいずれか一項に記載の阻害剤。
  9.  RNAi分子活性抑制用核酸の二本鎖核酸部分が3~10塩基長の核酸からなるループ領域を含む、請求項1~8のいずれか一項に記載の阻害剤。
  10.  RNAi分子活性抑制用核酸がDNAのみで構成される、請求項1~9のいずれか一項に記載の阻害剤。
  11.  RNAi分子がmiRNA siRNA、又はshRNAである、請求項1~10のいずれか一項に記載の阻害剤。
  12.  請求項1~11のいずれか一項に記載の阻害剤を有効成分として含有する医薬組成物。
PCT/JP2013/081879 2012-11-27 2013-11-27 RNAi分子活性抑制用核酸の阻害剤 WO2014084246A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-259056 2012-11-27
JP2012259056A JP6191980B2 (ja) 2012-11-27 2012-11-27 RNAi分子活性抑制用核酸の阻害剤

Publications (1)

Publication Number Publication Date
WO2014084246A1 true WO2014084246A1 (ja) 2014-06-05

Family

ID=50827878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081879 WO2014084246A1 (ja) 2012-11-27 2013-11-27 RNAi分子活性抑制用核酸の阻害剤

Country Status (2)

Country Link
JP (1) JP6191980B2 (ja)
WO (1) WO2014084246A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112513272A (zh) * 2018-05-31 2021-03-16 高丽大学校产学协力团 抑制微小rna的修饰核酸及其用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131748A1 (ja) * 2009-05-15 2010-11-18 地方独立行政法人神奈川県立病院機構 ペプチドを認識するアプタマー
WO2013073576A1 (ja) * 2011-11-16 2013-05-23 公立大学法人大阪市立大学 RNAi分子の活性を抑制するための核酸分子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131748A1 (ja) * 2009-05-15 2010-11-18 地方独立行政法人神奈川県立病院機構 ペプチドを認識するアプタマー
WO2013073576A1 (ja) * 2011-11-16 2013-05-23 公立大学法人大阪市立大学 RNAi分子の活性を抑制するための核酸分子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TACHIBANA A. ET AL.: "LidNA, a novel miRNA inhibitor constructed with unmodified DNA", FEBS LETTERS, vol. 586, no. 10, May 2012 (2012-05-01), pages 1529 - 1532 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112513272A (zh) * 2018-05-31 2021-03-16 高丽大学校产学协力团 抑制微小rna的修饰核酸及其用途

Also Published As

Publication number Publication date
JP2014105183A (ja) 2014-06-09
JP6191980B2 (ja) 2017-09-06

Similar Documents

Publication Publication Date Title
JP5996431B2 (ja) 優性変異遺伝子発現抑制剤
JP6311092B2 (ja) 機能性核酸の安定化法
JP7074345B2 (ja) 一本鎖rna編集オリゴヌクレオチド
CN102325534B (zh) 延长的dicer酶底物和特异性抑制基因表达的方法
Ho et al. Bioengineering of noncoding RNAs for research agents and therapeutics
CN110352244A (zh) 化学修饰的编辑rna的单链寡核苷酸
US20160222386A1 (en) Nucleic acid molecule for inhibiting activity of rnai molecule
JP6486836B2 (ja) 遺伝子発現制御のための人工ミミックmiRNAおよびその用途
JP5941842B2 (ja) 優性アレル発現抑制剤
JP6137484B2 (ja) 遺伝子発現抑制用二本鎖核酸分子
JP6191980B2 (ja) RNAi分子活性抑制用核酸の阻害剤
WO2013058306A1 (ja) 機能性核酸の特異的修飾による活性化
JP2016192918A (ja) pre−miRNA又はshRNAの活性を抑制するための核酸分子
JP7017193B2 (ja) Rna作用抑制剤及びその利用
WO2014119589A1 (ja) オリゴヌクレオチド構造体および遺伝子発現抑制方法
AU2022299514A1 (en) Products and compositions
CN103243120A (zh) 一种调控cyp基因表达水平的方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859114

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859114

Country of ref document: EP

Kind code of ref document: A1