WO2014084213A1 - Hydraulic drive device of electric hydraulic machinery - Google Patents

Hydraulic drive device of electric hydraulic machinery Download PDF

Info

Publication number
WO2014084213A1
WO2014084213A1 PCT/JP2013/081795 JP2013081795W WO2014084213A1 WO 2014084213 A1 WO2014084213 A1 WO 2014084213A1 JP 2013081795 W JP2013081795 W JP 2013081795W WO 2014084213 A1 WO2014084213 A1 WO 2014084213A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydraulic
hydraulic pump
control
main pump
Prior art date
Application number
PCT/JP2013/081795
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 究
夏樹 中村
圭文 竹林
和繁 森
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN201380046824.6A priority Critical patent/CN104619996B/en
Priority to JP2014550200A priority patent/JP6005176B2/en
Publication of WO2014084213A1 publication Critical patent/WO2014084213A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • E02F3/325Backhoes of the miniature type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2095Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • F15B2211/251High pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6653Pressure control

Definitions

  • the present invention relates to a hydraulic drive device of an electric hydraulic work machine such as a hydraulic excavator that drives a hydraulic pump by an electric motor to drive an actuator, and in particular, a discharge pressure of the hydraulic pump is more constant than a maximum load pressure.
  • the present invention relates to a so-called load-sensing hydraulic drive device that controls the discharge flow rate of a hydraulic pump so as to increase only the pressure.
  • Patent Documents 1 and 2 describe an electric hydraulic working machine such as a hydraulic excavator that performs various operations by driving a hydraulic pump by an electric motor to drive an actuator.
  • the electric hydraulic work machine of Patent Document 1 includes a fixed displacement hydraulic pump driven by an electric motor, and the electric motor is configured so that the differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of a plurality of hydraulic actuators is constant.
  • the load sensing control is performed by controlling the number of rotations.
  • the electric hydraulic working machine described in Patent Document 2 includes a variable displacement hydraulic pump driven by an electric motor (variable speed motor), and controls the rotational speed of the electric motor and the cutoff control of the regulator of the hydraulic pump (hydraulic pump).
  • variable speed motor variable speed motor
  • cutoff control of the regulator of the hydraulic pump hydroaulic pump
  • JP 2008-256037 A Japanese Patent Laid-Open No. 2003-172302
  • load sensing control can be performed by controlling the number of revolutions of the motor without using a variable displacement pump that performs complicated flow rate control.
  • Load sensing system can be installed.
  • a relief valve connected to the pressure oil supply oil path from the hydraulic pump functions to cause the pressure oil supply oil path to Pressure oil is discharged into the tank, and the discharge pressure of the hydraulic pump is maintained at the set pressure (relief pressure) of the relief valve.
  • the hydraulic drive device of Patent Document 1 is configured to perform only load sensing control by controlling the rotational speed of the electric motor, for example, when an actuator such as a boom cylinder reaches the stroke end as described above, the hydraulic pump The pressure difference between the discharge pressure and the maximum load pressure becomes almost zero, and the rotational speed of the motor is controlled so that the differential pressure becomes equal to the target differential pressure.
  • the discharge flow rate of the hydraulic pump increases to the maximum, and the flow rate that flows out from the relief valve to the tank also increases to the maximum. Therefore, the above-mentioned problem (operation of the work machine due to an increase in the battery discharge amount due to the occurrence of unnecessary power consumption)
  • the reduction in time and the increase in hydraulic oil cooling system capacity are particularly significant.
  • An object of the present invention is to reduce wasteful power consumption due to relief valve operation in an electric hydraulic working machine that drives a hydraulic pump by an electric motor to drive an actuator and performs load sensing control by controlling the rotational speed of the electric motor, and
  • An object of the present invention is to provide a hydraulic drive device for an electric hydraulic working machine that can suppress a sudden increase in the number of revolutions of the electric motor and can ensure comfort with higher efficiency.
  • the present invention includes an electric motor, a hydraulic pump driven by the electric motor, a plurality of actuators driven by pressure oil discharged from the hydraulic pump, and the hydraulic pump.
  • a plurality of flow rate control valves for controlling the flow rate of pressure oil supplied to the plurality of actuators, and a pressure oil supply oil passage for supplying discharge oil of the hydraulic pump to the plurality of flow rate control valves;
  • Hydraulic drive of an electric hydraulic work machine having a relief valve that opens when the discharge pressure exceeds a set pressure and returns the pressure oil in the pressure oil supply oil passage to the tank, and a power storage device that supplies electric power to the electric motor
  • Load sensing control for controlling the rotational speed of the hydraulic pump so that a discharge pressure of the hydraulic pump is higher than a maximum load pressure of the plurality of actuators by a target differential pressure in the apparatus Cut-off control for controlling the number of revolutions of the hydraulic pump so as to reduce the discharge flow rate of the hydraulic pump when the discharge pressure of the hydraulic pump rises to a first predetermined pressure
  • the hydraulic speed control device is configured to reduce the hydraulic pump discharge flow rate when the discharge pressure of the hydraulic pump rises above the first predetermined pressure near the set pressure of the relief valve.
  • a plurality of actuators include a hydraulic cylinder, and when this hydraulic cylinder reaches the stroke end, the flow rate discharged from the hydraulic pump can be suppressed. Therefore, it is possible to suppress the power that is wasted from the relief valve.
  • the power consumption of the electric motor is reduced, the power storage device that is the electric power source of the electric motor can be prolonged, and the operating time of the electric hydraulic working machine can be extended. Furthermore, since the heat generation during the operation of the relief valve is reduced, the hydraulic oil cooling system can be downsized.
  • the motor rotation speed control device includes a first pressure sensor that detects a discharge pressure of the hydraulic pump, a second pressure sensor that detects the maximum load pressure, and the electric motor.
  • a load sensing control calculation unit that calculates a virtual capacity of the hydraulic pump that increases or decreases according to the positive or negative of the differential pressure difference between the pressure difference between the discharge pressure of the hydraulic pump and the maximum load pressure and the target LS differential pressure; Based on the discharge pressure of the hydraulic pump detected by the first pressure sensor, when the discharge pressure of the hydraulic pump rises above the first predetermined pressure, the virtual capacity of the cut-off control suddenly decreases.
  • a capacity limit control calculation unit that calculates a limit value, and selects a virtual capacity calculated by the load sensing control calculation unit and a smaller limit value of the virtual capacity to obtain a new virtual capacity, and the controller Calculates a target flow rate of the hydraulic pump by multiplying the new virtual capacity by the reference rotational speed, and a control command for controlling the rotational speed of the electric motor so that the discharge flow rate of the hydraulic pump becomes the target flow rate Is output to the inverter.
  • the concept of the virtual capacity of the hydraulic pump is introduced into the load sensing control calculation unit, the target flow rate of the load sensing control is obtained, and the rotation speed of the motor is controlled to perform load sensing control by controlling the rotation speed of the motor. be able to.
  • the virtual capacity limit value of the cutoff control is calculated in the capacity limit control calculation unit, and the virtual capacity calculated in the load sensing control calculation unit and the smaller one of the virtual capacity limit values are selected to obtain a new virtual capacity. In other words, by controlling the rotation speed of the electric motor, it is possible to easily realize cut-off control by controlling the rotation speed of the electric motor.
  • the discharge pressure of the hydraulic pump when the discharge pressure of the hydraulic pump is in a pressure range not less than a second predetermined pressure and not more than the first predetermined pressure, the discharge pressure of the hydraulic pump increases as the discharge pressure increases.
  • a torque control device is further provided for controlling the absorption torque of the hydraulic pump so as not to exceed a preset maximum torque by reducing the discharge flow rate of the hydraulic pump.
  • a torque control device is provided, and the discharge pressure of the hydraulic pump is in the pressure range from the second predetermined pressure to the first predetermined pressure.
  • the hydraulic pump is a variable displacement hydraulic pump, and is provided in the hydraulic pump.
  • the discharge pressure of the hydraulic pump rises, the discharge flow rate of the hydraulic pump is increased.
  • a torque control device is further provided for controlling the absorption torque of the hydraulic pump so that the absorption torque does not exceed a preset maximum torque.
  • the hydraulic pump is a fixed displacement hydraulic pump, and is incorporated as a function of the controller, and when the discharge pressure of the hydraulic pump rises, the discharge of the hydraulic pump
  • a torque control device is further provided for controlling the absorption torque of the hydraulic pump so as not to exceed a preset maximum torque by reducing the flow rate.
  • the hydraulic pump is a fixed displacement hydraulic pump
  • the capacity restriction control calculation unit is based on a discharge pressure of the hydraulic pump detected by the first pressure sensor.
  • the discharge pressure of the hydraulic pump is in a pressure range that is greater than or equal to a second predetermined pressure and less than or equal to the first predetermined pressure
  • the limit value of the virtual capacity of torque limit control that decreases as the discharge pressure of the hydraulic pump increases
  • the virtual capacity limit value of the cutoff control that suddenly decreases from the virtual capacity limit value of the torque limit control is calculated, and the load sensing control
  • the virtual capacity calculated by the calculation unit and the smaller one of the limit values of the virtual capacity are selected to obtain a new virtual capacity.
  • an operation device for instructing the reference rotation speed is further provided, and the controller sets the reference rotation speed based on an instruction signal of the operation device, and the reference rotation Based on the number, the target LS differential pressure and the target flow rate corresponding to the magnitude of the reference rotational speed are calculated.
  • an electric hydraulic work machine that drives a hydraulic pump by an electric motor to drive an actuator and performs load sensing control by controlling the rotational speed of the electric motor
  • wasteful power consumption due to the relief valve operation is suppressed, and the electric motor rotational speed is rapidly increased.
  • the rise can be suppressed, and comfort can be ensured with higher efficiency.
  • the electric power consumption of the electric motor is reduced, the power storage device that is the electric power source of the electric motor can be prolonged, and the operating time of the electric hydraulic working machine can be extended.
  • the hydraulic oil cooling system can be downsized.
  • Pq characteristic pump discharge pressure-pump capacity characteristic
  • FIG. 1 is a diagram showing a configuration of a hydraulic drive device for an electric hydraulic work machine according to a first embodiment of the present invention.
  • the present invention is applied to a hydraulic drive device of a front swing type hydraulic excavator.
  • a hydraulic drive apparatus includes an electric motor 1, a variable displacement hydraulic pump (hereinafter referred to as a main pump) 2 as a main pump driven by the electric motor 1, and a fixed displacement pilot pump. 30, a plurality of actuators 3 a, 3 b, 3 c... Driven by pressure oil discharged from the main pump 2, and a control valve 4 positioned between the main pump 2 and the plurality of actuators 3 a, 3 b, 3 c.
  • a main pump variable displacement hydraulic pump
  • a pilot hydraulic power source 38 that is connected to the pilot pump 30 via a pilot oil passage 31 and generates a pilot primary pressure based on the oil discharged from the pilot pump 30; and a downstream side of the pilot hydraulic power source 38, and a gate lock lever And a gate lock valve 100 as a safety valve operated by the control unit 24.
  • the control valve 4 includes a second pressure oil supply oil passage 4a (internal passage) connected to a first pressure oil supply oil passage 2a (piping) to which discharge oil of the main pump 2 is supplied, and a second pressure oil supply oil.
  • a plurality of closed center type flow rate controls connected to the oil passages 8a, 8b, 8c... Branching from the passage 4a and controlling the flow rate and direction of the pressure oil supplied from the main pump 2 to the actuators 3a, 3b, 3c.
  • the flow control valves 6a, 6b, 6c... Have load ports 26a, 26b, 26c..., Respectively, and these load ports 26a, 26b, 26c... Are when the flow control valves 6a, 6b, 6c. Communicates with the tank T and outputs a tank pressure as a load pressure.
  • the respective actuators 3a, 3b, 3c are switched from the neutral position to the left and right operation positions in the figure, the respective actuators 3a, 3b, 3c. To output the load pressure of the actuators 3a, 3b, 3c.
  • the shuttle valves 9a, 9b, 9c... are connected in a tournament form, and constitute the maximum load pressure detection circuit together with the load ports 26a, 26b, 26c. That is, the shuttle valve 9a selects and outputs the high pressure side of the pressure of the load port 26a of the flow control valve 6a and the pressure of the load port 26b of the flow control valve 6b, and the shuttle valve 9b outputs the output pressure of the shuttle valve 9b. And the pressure of the load port 26c of the flow control valve 6c are selected and output, and the shuttle valve 9c outputs the high pressure side of the output pressure of the shuttle valve 9b and the output pressure of another similar shuttle valve (not shown). Select and output.
  • the shuttle valve 9c is the last stage shuttle valve, and its output pressure is output to the signal oil passage 27 as the maximum load pressure, and the maximum load pressure output to the signal oil passage 27 passes through the signal oil passages 27a, 27b, 27c. Through the pressure compensation valves 7a, 7b, 7c... And the unload valve 15.
  • the pressure compensating valves 7a, 7b, 7c,... Are pressure-receiving portions 21a, 21b, 21c, etc., which are operated in the closing direction, in which the highest load pressure is guided from the shuttle valve 9c via the signal oil passages 27, 27a, 27b, 27c,. It has pressure-receiving parts 22a, 22b, 22c ... of the opening direction operation to which the downstream pressure of the meter-in throttle part of the control valves 6a, 6b, 6c ... is guided, and the downstream pressure of the meter-in throttle part of the flow control valves 6a, 6b, 6c ... Is controlled to be equal to the maximum load pressure.
  • the differential pressure across the meter-in throttle portion of the flow control valves 6a, 6b, 6c... Is controlled to be equal to the differential pressure between the discharge pressure of the main pump 2 and the maximum load pressure.
  • the unload valve 15 is operated in the open direction in which the closing direction spring 15a that sets the cracking pressure Pun0 of the unload valve 15 and the pressure in the second pressure oil supply oil passage 4a (the discharge pressure of the main pump 2) is guided.
  • the pressure of the pressure oil supply oil passage 4a is set to the maximum load pressure and the set pressure Pun0 ( When the pressure becomes higher than the cracking pressure, the pressure oil in the pressure oil supply oil passage 4a is returned to the tank T and the pressure in the pressure oil supply oil passage 4a (the discharge pressure of the main pump 2) is set to the maximum load pressure.
  • the pressure is controlled by adding the set pressure of the spring 15a and the pressure generated by the override characteristic of the unload valve 15.
  • the override characteristic of the unload valve is a characteristic in which the inlet pressure of the unload valve, that is, the pressure of the pressure oil supply oil passage 4a increases as the flow rate of the pressure oil that returns to the tank via the unload valve increases.
  • a pressure obtained by adding the set pressure of the spring 15a and the pressure generated by the override characteristic of the unload valve 15 to the maximum load pressure is referred to as an unload pressure.
  • Actuators 3a, 3b, and 3c are, for example, boom cylinders, arm cylinders, and swing motors of hydraulic excavators, and flow control valves 6a, 6b, and 6c are, for example, flow control valves for booms, arms, and swings.
  • flow control valves 6a, 6b, and 6c are, for example, flow control valves for booms, arms, and swings.
  • illustration of other actuators such as bucket cylinders, swing cylinders, travel motors, and flow control valves related to these actuators is omitted.
  • the pilot hydraulic power source 38 is connected to the pilot oil passage 31 and has a pilot relief valve 32 that keeps the pressure of the pilot oil passage 31 constant.
  • the gate lock valve 100 can be switched between a position where the pilot oil passage 31 a is connected to the pilot oil passage 31 and a position where the pilot oil passage 31 a is connected to the tank T by operating the gate lock lever 24.
  • the hydraulic drive device includes a battery 70 (power storage device) serving as a power source for the electric motor 1, a chopper 61 that boosts DC power of the battery 70, and DC power boosted by the chopper 61.
  • An inverter 60 that converts AC power and supplies it to the electric motor 1, a reference rotational speed instruction dial 51 (operating device) that is operated by an operator and indicates the reference rotational speed of the electric motor 1, and a pressure oil supply oil passage 4 a of the control valve 4.
  • a pressure sensor 40 that detects the discharge pressure of the main pump 2
  • a pressure sensor 41 that is connected to the signal oil passage 27 and detects the maximum load pressure
  • an indication signal of the reference rotation speed indication dial 51 and the pressure sensor 40.
  • 41, and a controller 50 for controlling the inverter 60
  • FIG. 2 is a functional block diagram showing the processing contents of the controller 50.
  • the controller 50 has the functions of the calculation units 50a to 50m.
  • the calculation units 50a and 50b receive the detection signals V PS and V PLmax of the pressure sensors 40 and 41, respectively, and convert these values into the discharge pressure P PS and the maximum load pressure P PLmax of the main pump 2, respectively.
  • the calculation unit 50d has an instruction signal V EC reference rotation speed instruction dial 51 is converted to the reference rotation speed N 0, the arithmetic unit 50e converts the reference rotational speed N 0 in the target LS differential pressure P GR.
  • Calculation unit 50f calculates the difference pressure deviation ⁇ P of the target LS differential pressure P GR and the actual load sensing differential pressure P LS.
  • the calculation unit 50g calculates an increase / decrease value ⁇ q of the virtual capacity q * of the main pump 2 from the differential pressure deviation ⁇ P.
  • the calculation unit 50g is configured such that the virtual capacity change amount ⁇ q increases as ⁇ P increases.
  • the increase / decrease value ⁇ q is calculated so as to be a positive value when ⁇ P is positive and to be a negative value when ⁇ P is negative.
  • the calculation unit 50h calculates the current virtual capacity q * by adding the increase / decrease value ⁇ q to the virtual capacity q * one calculation cycle before.
  • the virtual capacity q * of the main pump 2 is the capacity of the main pump 2 for controlling the actual load sensing differential pressure P LS to match the target LS differential pressure P GR by controlling the rotational speed of the electric motor 1. Calculated value.
  • the calculation unit 50r has a table in which characteristics (hereinafter simply referred to as cut-off control characteristics) for simulating cut-off control of the discharge pressure of the main pump 2 are set, and the main pump 2 converted by the calculation unit 50a is included in the calculation unit 50r.
  • the discharge pressure P PS is input, and the calculation unit 50r calculates the limit value (maximum virtual capacity) q * limit of the virtual capacity q * of the cutoff control with reference to the discharge pressure P PS of the main pump 2 in the table. .
  • FIG. 3 is a diagram illustrating characteristics (cut-off control characteristics) simulating cut-off control set in the calculation unit 50r.
  • the cut-off control characteristic set in the calculation unit 50r is a characteristic corresponding to the maximum capacity characteristic line TP0 (see FIG. 4) of the main pump 2 when the discharge pressure of the main pump 2 is lower than the preset set value P pso . It consists of TP0r1 and a cutoff control characteristic TP3 when the discharge pressure of the main pump 2 exceeds the set value P pso .
  • the limit value q * limit in the characteristic TP0r1 is constant at the maximum capacity q max of the main pump 2.
  • the cut-off control characteristic TP3 is set so that the limit value q * limit is steeply and linearly reduced from q max to the minimum value q * limit 0 from the set value P pso to the maximum discharge pressure P max .
  • the maximum discharge pressure P max of the main pump 2 is a set pressure (relief pressure) of the main relief valve 14.
  • the set value P pso is higher than the start pressure P 0 (described later) of the constant absorption torque control and is a pressure close to the maximum discharge pressure P max .
  • the minimum value q * limit0 is a small volume close to the minimum capacity q min of the main pump 2.
  • the minimum value q * limit0 may be the same as the minimum capacity q min of the main pump 2.
  • the calculation unit 50s selects a smaller one of the load sensing control virtual capacity q * calculated by the calculation unit 50h and the limit value q * limit of the virtual capacity q * obtained by the calculation unit 50r, and creates a new virtual capacity q *. Output as *.
  • the virtual capacity q * of the load sensing control and the limit value q * limit of the virtual capacity are the same value, one of them, for example, the virtual capacity q * of the load sensing control is selected in advance as a rule. Is established.
  • the calculation unit 50i allows the obtained new virtual capacity q ** to fall within the range of the minimum capacity q min and the maximum capacity q max of the main pump 2 (not less than the minimum capacity q min and more than the maximum capacity q max Process to limit so that it does not become.
  • Calculation unit 50j multiplies the reference rotational speed N 0 in the virtual capacity q ** obtained, to calculate a target flow rate Q d of the main pump 2.
  • Calculating unit 50k is divided by the target flow rate Q d at maximum capacity q max of the main pump 2, to calculate a target rotational speed N d of the main pump 2.
  • the calculation unit 50m converts the target rotational speed Nd into a command signal (voltage command) V INV that is a control command for the inverter 60, and outputs the command signal V INV to the inverter 60.
  • the above-described function of the controller 50, the inverter 60, and the pressure sensors 40 and 41 rotate the main pump 2 so that the discharge pressure of the main pump 2 is higher by the target differential pressure than the maximum load pressure of the plurality of actuators 3a, 3b, 3c.
  • the discharge pressure of the main pump 2 and the discharge pressure of the main pump 2 rise above the first predetermined pressure P pso near the set pressure P max of the main relief valve 14, the discharge flow rate of the main pump 2 is decreased.
  • An electric motor rotation speed control device 200 that performs cut-off control for controlling the rotation speed of the main pump 2 is configured.
  • the calculation units 50a to 50c and 50f to 50h of the controller 50 are based on the discharge pressure P PS and the maximum load pressure P PLmax of the main pump 2 and the target LS differential pressure P GR detected by the pressure sensors 40 and 41, respectively.
  • the calculation unit 201 is configured.
  • the calculation units 50r and 50s of the controller 50 Based on the discharge pressure of the main pump 2 detected by the pressure sensor 40, the calculation units 50r and 50s of the controller 50 have a first predetermined pressure P pso that the discharge pressure of the main pump 2 is close to the set pressure P max of the main relief valve 14. Calculate the virtual capacity limit value q * limit of the cutoff control that suddenly decreases when it rises above, and select the smaller one of the virtual capacity q * and virtual capacity limit value q * limit calculated by the load sensing control calculation unit A capacity limit control calculation unit 202 for obtaining the virtual capacity q ** is configured.
  • the hydraulic drive device of the present embodiment is provided in the main pump 2, and the capacity of the main pump 2 is reduced as the discharge pressure of the main pump 2 increases, and the absorption torque of the main pump 2 is set in advance.
  • the torque control device 17 for controlling the maximum torque so as not to exceed the maximum torque is provided.
  • the torque control device 17 is a regulator provided in the main pump 2, and has a torque control tilt piston 17a and springs 17b1 and 17b2 to which the discharge pressure of the main pump 2 is guided through an oil passage 17c.
  • FIG. 4 shows pump torque characteristics (Pq characteristics: pump discharge pressure-pump capacity characteristics) of the torque control device 17).
  • the horizontal axis indicates the discharge pressure of the main pump 2, and the vertical axis indicates the capacity of the main pump 2.
  • TP0 the maximum capacity characteristic line of the main pump 2
  • TP1 and TP2 are characteristic of the torque control that is set by the spring 17b1,17b2
  • P 0 is the second predetermined pressure (absorption torque determined by the spring 17B1,17b2 Constant control starting pressure).
  • Torque control tilting piston 17a of the torque control device 17 is not operated when the discharge pressure of the main pump 2 is below a second predetermined pressure P 0, the maximum capacity q max on the capacity of the main pump 2 is characteristic lines TP0 It is in.
  • the torque control tilt piston 17a of the torque control device 17 operates, and the discharge pressure of the main pump 2 changes from the second predetermined pressure P 0 to the main pressure.
  • the pump 2 reaches the maximum discharge pressure P max (set pressure of the main relief valve 14), the capacity of the main pump 2 decreases from q max to qlimit-min along the characteristic lines TP1 and TP2.
  • the absorption torque (product of pump discharge pressure and capacity) of the main pump 2 is controlled to a substantially constant value so as not to exceed the maximum torque (limit torque) TM in contact with the characteristic lines TP1 and TP2.
  • This control is referred to as torque limit control in this specification, and control in terms of characteristics in which the displacement of the hydraulic pump is replaced with discharge flow rate is referred to as horsepower control.
  • the magnitude of the maximum torque TM can be freely set in advance by selecting the strength of the springs 17b1 and 17b2.
  • the main pump 2 is controlled so that the absorption torque of the main pump 2 does not exceed a preset maximum torque by decreasing the discharge flow rate of the main pump 2 as the discharge pressure of the main pump 2 increases.
  • FIG. 5 is a diagram showing an external appearance of a hydraulic excavator on which the hydraulic drive device according to the present embodiment is mounted.
  • a hydraulic excavator well known as a work machine includes an upper swing body 300, a lower traveling body 301, and a swing-type front work machine 302.
  • the front work machine 302 includes a boom 306, an arm 307, The bucket 308 is configured.
  • the upper turning body 300 can turn the lower traveling body 301 by the rotation of the turning motor 3c shown in FIG.
  • a swing post 303 is attached to the front portion of the upper swing body 300, and a front work machine 302 is attached to the swing post 303 so as to move up and down.
  • the swing post 303 can be rotated in the horizontal direction with respect to the upper swing body 300 by expansion and contraction of a swing cylinder (not shown).
  • the boom 306, the arm 307, and the bucket 308 of the front work machine 302 are the boom cylinder 3a, the arm cylinder 3b, and the bucket.
  • the cylinder 12 can be turned up and down by expansion and contraction.
  • a blade 305 that moves up and down by the expansion and contraction of a blade cylinder 304 is attached to the lower frame 301 in the center frame.
  • the lower traveling body 301 travels by driving the left and right crawler belts 310 and 311 by the rotation of the traveling motors 6 and 8.
  • FIG. 1 only the boom cylinder 3a, the arm cylinder 3b, and the turning motor 3c are shown, and the bucket cylinder 3d, the left and right traveling motors 3f and 3g, the blade cylinder 3h, and their circuit elements are omitted.
  • a cabin (driver's cab) 313 is installed in the upper swing body 300, and in the cabin 313, there is a driver seat 121, front / turning operation lever devices 122 and 123 (only the right side is shown in FIG. 5), and driving operation.
  • a lever device 124 and a gate lock lever 24 are provided.
  • the main pump 2 is driven by the electric motor 1, and the pressure oil is supplied to the pressure oil supply oil passages 2a and 4a.
  • the flow rate control valves 6a, 6b, 6c,..., The main relief valve 14, and the unload valve 15 are connected to the pressure oil supply oil passage 4a.
  • the flow rate control valves 6a, 6b, 6c,... are closed, so that the discharge pressure of the main pump 2 is a pressure obtained by adding the override characteristic pressure to the set pressure of the spring 15a of the unload valve 15. To rise.
  • the set pressure of the unload valve 15 is set to be constant by the spring 15a, and the set pressure is the target LS differential pressure P GR calculated by the calculation unit 50e when the reference rotational speed N 0 is maximum. It is set higher than.
  • the target LS differential pressure PGR is 2 MPa
  • the set pressure of the spring 15a is about 2.5 MPa
  • the discharge pressure (unload pressure) of the main pump 2 is also approximately 2.5 MPa.
  • the pressure sensor 40 connected to the pressure oil supply oil passage 4a detects the discharge pressure of the main pump 2.
  • the discharge pressure of the main pump 2 at this time is represented by Pmin .
  • the detection signal of the pressure sensor 40 is V PS and the detection signal of the pressure sensor 41 is V PLmax .
  • the controller 50 calculates the virtual capacity q * of the main pump 2 based on the detection signals V PS and V PLmax of the pressure sensors 40 and 41 and the instruction signal V EC of the reference rotation speed instruction dial 51 in the arithmetic units 50a to 50h. .
  • the discharge pressure P PS of the main pump 2 at this time is P min as described above, and in the calculation unit 50r, P PS ⁇ P pso , the virtual capacity of the cutoff control characteristic shown in FIG. Q max is calculated as the limit value q * limit.
  • the calculation point at this time is indicated by point A.
  • the calculation unit 50s selects the virtual capacity q * of the load sensing control calculated by the calculation unit 50h, and outputs this as a new virtual capacity q **.
  • the calculating unit 50j, and calculates a target flow rate Q d is multiplied by the reference rotational speed N 0 in the virtual capacity q **.
  • the calculating unit 50k by dividing the target flow rate Q d at maximum capacity q max of the main pump 2, and calculates the target rotational speed N d of the main pump 2, the calculating unit 50m, an inverter 60 the target speed N d
  • the command signal V INV is converted to the command signal V INV and the command signal V INV is output to the inverter 60.
  • the target flow rate Q d is decreased to a minimum value, and the target rotation speed N d of the main pump 2 and the command signal V INV of the inverter 60 are respectively decreased to a minimum value.
  • the rotation speed of the electric motor 1 is held at the minimum value.
  • the discharge pressure of the main pump 2 at this time is P min as described above, and since P min ⁇ P 0 , the torque control tilt piston 17a of the torque control device 17 does not operate, and the capacity of the main pump 2 is It is at the maximum q max .
  • the operating point at this time is indicated by point A.
  • the capacity of the main pump 2 is maintained at the maximum capacity q max , but the virtual capacity q ** is reduced to the minimum capacity q min by the limiting process of the arithmetic unit 50i by the load sensing control by the rotation speed control of the electric motor 1.
  • the rotation speed of the electric motor 1 is held at the minimum value, the flow rate discharged by the main pump 2 is also held at the minimum value.
  • the load pressure of the boom cylinder 3a is guided from the signal oil passage 27 to the pressure receiving portion 15c of the unload valve 15 via the load port 26a of the flow control valve 6a and the shuttle valves 9a, 9b, 9c.
  • the cracking pressure of the unload valve 15 is set to the load pressure + the set pressure of the spring 15a
  • the discharge pressure of the main pump 2 is the load pressure.
  • the pressure rises to the pressure + the set pressure of the spring 15a + the pressure of the override characteristic.
  • the pressure sensors 40 and 41 detect the discharge pressure and the maximum load pressure of the main pump 2 at this time.
  • the controller 50 calculates the virtual capacity q * of the main pump 2 based on the detection signals V PS and V PLmax of the pressure sensors 40 and 41 and the instruction signal V EC of the reference rotation speed instruction dial 51 in the arithmetic units 50a to 50h. .
  • the boom-up when starting, the discharge pressure of the main pump 2, by the action of the unloading valve 15 described above, is set slightly higher than the target LS differential pressure P GR.
  • the calculation unit 50g is configured such that the virtual capacity change amount ⁇ q increases as ⁇ P increases.
  • ⁇ q is also> 0.
  • the computing unit 50h calculates the load sensing control virtual capacity q * by adding ⁇ q to the virtual capacity q * one cycle before. Since ⁇ q> 0, the virtual capacity q * increases.
  • the discharge pressure P PS of the main pump 2 is also led to the calculation unit 50r.
  • the calculation unit 50r holds the virtual capacity limit value q * limit for cut-off control at qmax.
  • B point an example of the calculation point at this time is indicated by B point.
  • Discharge pressure of the main pump 2 is P b.
  • the arithmetic unit 50 s, and outputs a smaller virtual volume q * and q max as a new virtual volume q **.
  • Virtual capacity q * is smaller than q max outputs the virtual capacity q * as it is, the virtual capacity q * is greater than q max, and outputs the q max.
  • the new virtual capacity q ** is restricted so as not to be less than the minimum capacity q min and not more than the maximum capacity qmax.
  • the virtual capacity q ** increases from the minimum capacity q min when the control lever is neutral to the maximum capacity q max .
  • Controller 50 the virtual capacity q ** obtained in this manner, to calculate a target flow rate Q d is multiplied by the reference rotational speed N 0 in the calculating unit 50j. Further, the calculating unit 50k, by dividing the target flow rate Q d at maximum capacity q max of the main pump 2, and calculates the target rotational speed N d of the main pump 2, the calculating unit 50m, an inverter 60 the target speed N d The command signal V INV is converted to the command signal V INV and the command signal V INV is output to the inverter 60.
  • the motor 1 is controlled so as to perform load sensing control using the electric motor 1.
  • the maximum rotation speed of the electric motor 1 is the rotation speed when the virtual capacity q ** is at q max , and the maximum rotation speed is N max .
  • C point an example of the calculation point at this time is indicated by C point.
  • the discharge pressure of the main pump 2 is Pc .
  • the calculation units 50s and 50i perform the same processing as in the case of the “boom raising single operation (light load)”, and in the calculation units 50j to 50m, the command signal V INV of the inverter 60 is obtained from the virtual capacity q **. Calculated and output to the inverter 60. Therefore, the virtual capacity q * of load sensing control increases or decreases according to the operation amount (required flow rate) of the operation lever and changes from the minimum to the maximum, as in the case of “Boom raising single operation (light load)”. Similarly, the rotational speed of the electric motor 1 (the rotational speed of the main pump 2) also changes from the minimum to the maximum according to the operation amount (required flow rate) of the operation lever.
  • the characteristic lines of TP1 and TP2 in FIG. 4 are set by the springs 17b1 and 17b2, and the absorption torque of the main pump 2 (product of pump discharge pressure and capacity) —therefore, the drive torque of the electric motor 1 -Is controlled so as not to exceed the maximum torque (limit torque) TM in contact with the characteristic lines TP1 and TP2.
  • q min ⁇ q ** ⁇ q max N min ⁇ N ⁇ N max (N min ⁇ N ⁇ N 0 ) become that way.
  • Load pressure of the boom cylinder 3a is further increased, if the discharge pressure of the main pump 2 becomes a pressure set value P pso more example P e, the controller 50, the arithmetic unit 50r, from the cut-off control characteristics TP3, calculating a cut-off control of the limit value q * limit the value of for example the point E between the point M and point N in FIG. 3 q * limits (values between q max and q * limit0).
  • the computing unit 50s outputs the smaller of the virtual capacity q * and q * limit as a new virtual capacity q **.
  • the calculation unit 50i limits the new virtual capacity q **, and the calculation units 50j to 50m calculate the command signal V INV of the inverter 60 from the virtual capacity q **. Is output.
  • the virtual capacity q ** is limited, so that the rotational speed of the electric motor 1 is low. It can be suppressed.
  • the main pump 2A operates at point E1 in FIG. 4, and the pump capacity (actual capacity) is qe.
  • the controller 50 is supplied with a pressure detection signal V PS for the pressure of the second pressure oil supply oil passage 4a by the pressure sensor 40 and a pressure detection signal V PLmax for the pressure of the signal oil passage 27 by the pressure sensor 41.
  • the pressures are equal and are the same as the relief pressure set by the relief valve 14.
  • the controller 50 increases or decreases the virtual capacity q * of the main pump 2 so that the pressure in the second pressure oil supply oil passage 4a is higher than the pressure in the signal oil passage 27 by the target LS differential pressure PGR.
  • the calculation unit 50r determines the cutoff control from the cutoff control characteristic TP3.
  • the virtual capacity limit value q * limit the value at the N point in FIG. 3, that is, the minimum value q * limit0 is calculated.
  • the computing unit 50s outputs the smaller of the virtual capacity q * and q * limit as a new virtual capacity q **.
  • the virtual capacity q ** is held at q * limit0.
  • the calculation unit 50i limits the new virtual capacity q **, and the calculation units 50j to 50m calculate the command signal V INV of the inverter 60 from the virtual capacity q **. Is output. Since the virtual volume q ** is q * limit0, target flow rate Q d calculated in the calculation unit 50j is also Qsmall close to Q min, the target rotational speed of the main pump 2 calculated in the calculation unit 50k N d is also Nsmall close to the N min. Thereby, the rotation speed of the electric motor 1 is suppressed to an extremely small value corresponding to Nsmall.
  • the hydraulic oil cooling system can be downsized.
  • the main pump 2 in addition to performing load sensing control and cut-off control by the motor speed control of the controller 50, the main pump 2 is provided with a torque control device 17, and the discharge pressure of the main pump 2 is maintained at the main pressure.
  • the pressure of the relief valve 14 is within the pressure range below the set value P pso near the set pressure P max (within the range of P 0 to P pso )
  • the discharge flow rate of the main pump 2 decreases as the discharge pressure of the main pump 2 increases.
  • the torque control for limiting the absorption torque of the main pump 2 is performed.
  • the horsepower consumed by the main pump 2 is suppressed by the torque control that limits the absorption torque of the main pump 2 even before the cutoff control by the motor rotation speed control starts. Since the power consumption of the electric motor 1 is reduced, the battery 70 that is the electric power source of the electric motor 1 can be further extended, and the operating time of the electric hydraulic working machine can be further extended. Moreover, since the power consumption of the electric motor 1 decreases, the electric motor 1 can be reduced in size.
  • FIG. 6A is a diagram showing the horsepower characteristics of a conventional hydraulic drive device that performs load sensing control by controlling the rotation speed of a fixed displacement hydraulic pump that does not include a torque control device
  • FIG. It is a figure which shows the horsepower characteristic of a hydraulic drive device. It is assumed that the capacity (constant) of the fixed displacement hydraulic pump in the conventional hydraulic drive device is the same q max as the maximum capacity of the main pump 2 in the present embodiment shown in FIG.
  • the displacement of the hydraulic pump remains constant at the maximum q max when the discharge pressure of the hydraulic pump reaches the maximum P max .
  • the discharge flow rate of the hydraulic pump becomes the maximum Q max
  • the consumed horsepower of the hydraulic pump is expressed by the product of the maximum discharge pressure P max and the maximum discharge flow rate Q max. It increases to the value (the area of the shaded area in FIG. 6A).
  • the output horsepower of the electric motor is increased to HM * corresponding to the consumed horsepower of the hydraulic pump.
  • the power consumption of the electric motor increases.
  • power consumption for cooling the motor also increases. Therefore, there is a problem in that the amount of discharge of a battery (power storage device) that is a power source of the electric motor increases, the battery is rapidly depleted, and the operation time of the work machine is shortened.
  • the torque control device 17 is provided with the main pump 2 as a variable displacement type, and “boom raising single operation (heavy load)” and As described in the operation example of “Boom raising single operation (at the time of relief)”, the absorption torque of the main pump is controlled so as not to exceed the maximum torque TM when the discharge pressure of the main pump 2 rises.
  • the torque limit control of the main pump 2 in this way, when the discharge pressure of the main pump 2 increases, the absorption torque of the main pump 2 is controlled to be equal to or less than the maximum torque TM, and the consumed horsepower of the main pump 2 is maximum.
  • Control is performed so as not to exceed the maximum horsepower HM obtained by multiplying the torque TM by the number of rotations of the main pump 2 at that time.
  • the horsepower consumed by the main pump 2 is suppressed, the output horsepower of the motor 1 is reduced to HM, and the power consumption of the motor 1 is reduced as compared with the case where load sensing control is performed by conventional motor speed control.
  • the battery 70 can last longer and the operating time of the electric hydraulic working machine can be extended.
  • the electric motor 1 can be reduced in size because the output horsepower of the electric motor 1 decreases.
  • ⁇ Effect 3> obtains a target flow rate Q d of the load sensing control by introducing the concept of virtual capacity q * of the hydraulic pump load sensing control arithmetic unit 50a ⁇ 50c of the controller 50, to 50f ⁇ 50h, the motor 1 Since the load sensing control is performed by controlling the rotational speed of the electric motor 1 by controlling the rotational speed of the motor 1, it is easy to incorporate other functions into the load sensing control.
  • the virtual capacity limit value q * limit of the cutoff control is calculated by the calculation unit 50r, and the virtual capacity calculated by the load sensing control calculation units 50a to 50c and 50f to 50h is calculated by the calculation unit 50s.
  • the controller 50 sets the reference rotation speed N 0 on the basis of an instruction signal V EC reference rotation speed instruction dial 51, and in accordance with the magnitude of the reference rotation speed N 0 on the basis of the reference rotational speed N 0 A target LS differential pressure PGR and a target flow rate Qd are calculated.
  • FIG. 7 is a diagram showing a configuration of a hydraulic drive device for an electric hydraulic work machine according to the second embodiment of the present invention. This embodiment is also a case where the present invention is applied to a hydraulic drive device of a front swing type hydraulic excavator.
  • the hydraulic drive apparatus is different from the first embodiment shown in FIG. 1 in that the main pump 2A is a fixed displacement type, and the main pump 2A is a torque control device 17 for controlling horsepower. Not equipped.
  • the controller 50A has a control function (function of a torque control device) for simulating horsepower control of the main pump 2A in addition to a control function for simulating cut-off control of the main pump 2A.
  • FIG. 8 is a functional block diagram showing the processing contents of the controller 50A.
  • the controller 50A includes a calculation unit 50Ar instead of the calculation unit 50r in the functional block diagram shown in FIG.
  • the calculation unit 50Ar has a table in which characteristics are set in which characteristics (torque control characteristics) that simulate torque control and characteristics (cutoff control characteristics) that simulate cutoff control are combined.
  • the discharge pressure P PS of the main pump 2A converted by the calculation unit 50a is input to the calculation unit 50Ar, and the calculation unit 50Ar refers to the discharge pressure P PS of the main pump 2A in the table and the corresponding virtual capacity limit value ( Maximum virtual capacity) q * limit is calculated.
  • FIG. 9 is a diagram showing characteristics obtained by combining characteristics (torque control characteristics) simulating torque control set in the arithmetic unit 50Ar and characteristics (cut-off control characteristics) simulating cut-off control.
  • FIG. 10 is a diagram showing the torque characteristics of the main pump 2A.
  • the capacity of the main pump 2A is constant over the entire range of the discharge pressure of the main pump 2A and is at the maximum capacity q max on the characteristic line TP0. Further, when the discharge pressure of the main pump 2A increases, the consumption torque of the main pump 2A increases linearly over the entire range of the discharge pressure.
  • Torque control characteristics set to the arithmetic unit 50Ar is a characteristic TP0r2 the discharge pressure of the main pump 2A corresponds to the characteristic line TP0 maximum capacity of the main pump 2A when less than P 0, the discharge pressure of the main pump 2A P
  • This is composed of a constant torque curve TP4 when it becomes 0 or more and a cutoff control characteristic TP5 when the discharge pressure of the main pump 2A exceeds the set value P pso .
  • the cutoff control characteristic TP5 indicates that the limit value q * limit is steep and linear from q * limit1 to the minimum value q * limit2 when the discharge pressure of the main pump 2A increases from the set value P pso to the maximum discharge pressure P max. It is set to be smaller.
  • the set value P pso is higher than the starting pressure P 0 (described later) of the constant absorption torque control, and is close to the maximum discharge pressure P max .
  • the limit value q * limit1 is a value on the constant torque curve TP4 when the discharge pressure of the main pump 2A is at the set value P pso .
  • the minimum value q * limit2 is a small volume close to the minimum capacity q min of the main pump 2A, for example, a minimum capacity q min.
  • the calculation unit 50s selects a smaller one of the virtual capacity q * of the load sensing control calculated by the calculation unit 50h and the limit value q * limit of the virtual capacity obtained by the calculation unit 50r as a new virtual capacity q **. Output.
  • the above-described function of the controller 50A, the inverter 60, and the pressure sensors 40 and 41 are similar to the first embodiment in that the discharge pressure of the main pump 2A is higher than the maximum load pressure of the actuators 3a, 3b, 3c.
  • Load sensing control for controlling the rotational speed of the main pump 2A so as to increase only when the discharge pressure of the main pump 2A rises above the first predetermined pressure P pso near the set pressure P max of the main relief valve 14
  • An electric motor rotation speed control device 200A that performs cut-off control for controlling the rotation speed of the main pump 2A so as to reduce the discharge flow rate of the pump 2A is configured.
  • the calculation units 50a to 50c and 50f to 50h of the controller 50A are based on the discharge pressure P PS and the maximum load pressure P PLmax of the main pump 2A detected by the pressure sensors 40 and 41, and the target LS differential pressure P GR .
  • the calculation unit 201 is configured.
  • the calculation units 50Ar and 50s of the controller 50A are configured to have a first predetermined pressure P pso that the discharge pressure of the main pump 2A is close to the set pressure P max of the main relief valve 14.
  • P pso the first predetermined pressure
  • a capacity limit control calculation unit 202A for obtaining the virtual capacity q ** is configured.
  • calculation units 50Ar and 50s of the controller 50A are incorporated in the controller 50A as a function of the controller 50A, and when the discharge pressure of the main pump 2A increases, the discharge flow rate of the main pump 2A is decreased to reduce the main pump 2A.
  • a torque control device is configured to control the absorption torque so as not to exceed a preset maximum torque.
  • the arithmetic unit 50aR, 50s based on the discharge pressure of the main pump 2A, the pressure sensor 40 detects the discharge pressure of the main pump 2A is at a second predetermined pressure P 0 or more, the set pressure P of the main relief valve 14 A virtual capacity limit value q * for torque limit control that decreases as the discharge pressure of the main pump 2A increases when the pressure is in a pressure range (in the range of P 0 to P pso ) that is less than the first predetermined pressure P pso near max .
  • the calculation units 50Ar, 50s calculate a virtual capacity limit value q * limit that decreases as the discharge pressure of the main pump 2A increases, and the load Torque limit control for selecting a smaller virtual capacity q * and virtual capacity limit value q * limit calculated by the sensing control calculation units (calculation units 50a to 50c, 50f to 50h) to obtain a new virtual capacity q ** It can also be said that it is a calculation part.
  • the calculation unit 50s selects the virtual capacity q * of the load sensing control calculated by the calculation unit 50h, and outputs this as a new virtual capacity q **.
  • the virtual capacity q ** is reduced to the minimum capacity q min by the limiting process of the calculation unit 50i, and the target flow rate Q d , the target rotation speed N d of the main pump 2A, and the command signal V INV of the inverter 60 are minimum. Value. Thereby, the rotation speed of the electric motor 1 is held at the minimum value, and the discharge flow rate of the main pump 2A is also held at the minimum value.
  • the main pump 2A operates at point A1 in FIG. 10, and the pump capacity (actual capacity) is q max (fixed).
  • the calculation unit 50s selects the virtual capacity q * of the load sensing control calculated by the calculation unit 50h, and outputs this as a new virtual capacity q **. .
  • the virtual capacity q ** increases or decreases in accordance with the operation amount (required flow rate) of the operation lever, and changes from the minimum to the maximum by the restriction process of the calculation unit 50i.
  • the rotational speed of the electric motor 1 (the rotational speed of the main pump 2A) similarly changes from the minimum to the maximum according to the operation amount (required flow rate) of the operation lever.
  • the main pump 2A operates at point B1 in FIG. 10, and the pump capacity (actual capacity) is q max (fixed).
  • the smaller one of the virtual capacity q * and the virtual capacity limit value q * limit is selected and output as a new virtual capacity q **. That is, when q * ⁇ q * limit, q * is selected, and when q *> q * limit, q * limit is selected, and these are output as new virtual capacity q **.
  • the virtual capacity q ** is limited to q * limit
  • the target flow rate Q d the target rotational speed N d of the main pump 2A, and the command signal V INV of the inverter 60 are similarly limited, and the electric motor 1 The rotation speed is limited.
  • the controller 50 has a control function having the same function as the torque control device 17 in the first embodiment, and is controlled so that the absorption torque of the main pump 2A does not exceed the maximum torque (limit torque) TM.
  • the main pump 2A operates at a point C3 in FIG. 10, and the pump capacity (actual capacity) is q max (fixed).
  • Load pressure of the boom cylinder 3a is further increased, if the discharge pressure of the main pump 2A becomes the pressure set value P pso more example P f, the controller 50, the computing section 50aR, from the cut-off control characteristic TP5, The value q * limitf at the point F between the points P and Q in FIG. 9 is calculated as the limit value q * limit for the cutoff control. Subsequently, the computing unit 50s outputs the smaller of the virtual capacity q * and q * limit as a new virtual capacity q **. Subsequently, the calculation unit 50i limits the new virtual capacity q **, and the calculation units 50j to 50m calculate the command signal V INV of the inverter 60 from the virtual capacity q **. Is output.
  • the target flow rate Q d the target rotational speed N d of the main pump 2A, and the command signal V INV of the inverter 60 are similarly minimum values.
  • the number of rotations of the electric motor 1 is limited to the minimum N min .
  • the discharge pressure of the main pump 2A increases, the consumed horsepower of the main pump 2A is suppressed by the torque control based on the motor rotational speed control even before the cutoff control based on the motor rotational speed control is started. Since power consumption is reduced, the battery 70 that is the power source of the electric motor 1 can be further extended, and the operating time of the electric hydraulic work machine can be further extended. Moreover, since the power consumption of the electric motor 1 decreases, the electric motor 1 can be reduced in size.
  • the pressure compensating valves 7a, 7b, 7c,... are arranged on the downstream side of the meter-in restricting portions of the flow control valves 6a, 6b, 6c, and all the flow control valves 6a, 6b, 6c,.
  • the downstream pressure of the flow control valves 6a, 6b, 6c... Is controlled to the same differential pressure by controlling the downstream pressure to the same maximum load pressure, but the flow control valves 6a, 6b, 6c. It may be a front-end type that is arranged upstream of the meter-in throttle and controls the differential pressure across the meter-in throttle to a set value.
  • a construction machine other than a hydraulic excavator for example, a hydraulic crane
  • a construction machine other than a hydraulic excavator for example, a hydraulic crane
  • it is a work machine that drives a plurality of actuators based on oil discharged from the main pump.
  • a similar effect can be obtained by applying the present invention to a wheel excavator or the like.

Abstract

In addition to performing load-sensing control of a main pump (2) by rotational frequency control of an electric motor (1) using a controller (50), cutoff control for controlling the rotational frequency of the main pump (2) is performed so as to reduce the discharge flow rate of the main pump (2) when the discharge pressure of the main pump (2) rises above a first specified pressure (Ppso) near the set pressure (Pmax) of a main relief valve (14). As a result, in the electric hydraulic machinery, which drives the hydraulic pump using the electric motor to drive an actuator and performs load-sensing control by rotational frequency control of the electric motor, wasted power consumption by the operation of the relief value is limited, sudden elevations in electric motor rotational frequency are limited, and higher efficiency and comfort can be secured.

Description

電動式油圧作業機械の油圧駆動装置Hydraulic drive device for electric hydraulic work machine
 本発明は、電動機により油圧ポンプを駆動してアクチュエータを駆動し、各種作業を行う油圧ショベル等の電動式油圧作業機械の油圧駆動装置に係わり、特に、油圧ポンプの吐出圧が最高負荷圧より一定の圧力だけ高くなるよう、油圧ポンプの吐出流量を制御する、いわゆるロードセンシング式の油圧駆動装置に関する。 The present invention relates to a hydraulic drive device of an electric hydraulic work machine such as a hydraulic excavator that drives a hydraulic pump by an electric motor to drive an actuator, and in particular, a discharge pressure of the hydraulic pump is more constant than a maximum load pressure. The present invention relates to a so-called load-sensing hydraulic drive device that controls the discharge flow rate of a hydraulic pump so as to increase only the pressure.
 電動機により油圧ポンプを駆動してアクチュエータを駆動し、各種作業を行う油圧ショベル等の電動式油圧作業機械が特許文献1及び2に記載されている。特許文献1の電動式油圧作業機械は、電動機により駆動される固定容量式の油圧ポンプを備え、この油圧ポンプの吐出圧と複数の油圧アクチュエータの最大負荷圧との差圧が一定となるよう電動機の回転数を制御することでロードセンシング制御を行う構成となっている。 Patent Documents 1 and 2 describe an electric hydraulic working machine such as a hydraulic excavator that performs various operations by driving a hydraulic pump by an electric motor to drive an actuator. The electric hydraulic work machine of Patent Document 1 includes a fixed displacement hydraulic pump driven by an electric motor, and the electric motor is configured so that the differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of a plurality of hydraulic actuators is constant. The load sensing control is performed by controlling the number of rotations.
 特許文献2に記載の電動式油圧作業機械は、電動機(可変速モータ)により駆動される可変容量式の油圧ポンプを備え、電動機の回転数制御と,油圧ポンプのレギュレータのカットオフ制御(油圧ポンプの吐出圧がある圧力以上になると、油圧ポンプの容量をほぼ0までカットする制御)の組み合わせにより、油圧ポンプを電動機で駆動させて吐出圧力及び吐出流量を制御する際に、無駄な電力消費を低減できるようになっている。 The electric hydraulic working machine described in Patent Document 2 includes a variable displacement hydraulic pump driven by an electric motor (variable speed motor), and controls the rotational speed of the electric motor and the cutoff control of the regulator of the hydraulic pump (hydraulic pump). When the discharge pressure exceeds a certain pressure, wasteful power consumption is lost when controlling the discharge pressure and discharge flow rate by driving the hydraulic pump with an electric motor by the combination of control that cuts the capacity of the hydraulic pump to almost zero. It can be reduced.
特開2008-256037号公報JP 2008-256037 A 特開2003-172302号公報Japanese Patent Laid-Open No. 2003-172302
 特許文献1に記載の油圧駆動装置においては、複雑な流量制御を行う可変容量ポンプを用いることなく、電動機の回転数制御によりロードセンシング制御を行うことができるので、小型の油圧ショベルなどに容易にロードセンシングシステムを搭載できる。 In the hydraulic drive device described in Patent Document 1, load sensing control can be performed by controlling the number of revolutions of the motor without using a variable displacement pump that performs complicated flow rate control. Load sensing system can be installed.
 しかし、特許文献1に記載の油圧駆動装置では次のような問題があった。 However, the hydraulic drive device described in Patent Document 1 has the following problems.
 特許文献1に記載の油圧駆動装置では、例えばブームシリンダなどのアクチュエータがストロークエンドに達すると、油圧ポンプからの圧油供給油路に接続されたリリーフ弁の働きによって、この圧油供給油路の圧油がタンクに排出され、油圧ポンプの吐出圧力はリリーフ弁の設定圧(リリーフ圧)に保たれる。 In the hydraulic drive device described in Patent Document 1, for example, when an actuator such as a boom cylinder reaches the stroke end, a relief valve connected to the pressure oil supply oil path from the hydraulic pump functions to cause the pressure oil supply oil path to Pressure oil is discharged into the tank, and the discharge pressure of the hydraulic pump is maintained at the set pressure (relief pressure) of the relief valve.
 しかし、リリーフ弁から排出される圧油は仕事をしないので、リリーフ弁によって保たれる圧油供給油路の圧力をP、圧油供給油路からタンクに流出する流量をQとすると、P[MPa]×Q[L/min]/60で表される動力が無駄に熱や音に変換され消費されてしまっていた。このとき、電動機冷却用の消費電力が増大するため、電動機の電力源であるバッテリ(蓄電装置)の放電量が増大し、バッテリの減りが早く、作業機械の稼動時間が短くなってしまうという問題があった。また、無駄に消費された動力が熱に変わり、作動油の冷却システムの容量が小さくできないという問題があった。 However, since the pressure oil discharged from the relief valve does not work, if the pressure of the pressure oil supply oil passage maintained by the relief valve is P and the flow rate flowing out of the pressure oil supply oil passage to the tank is Q, P [ The power represented by [MPa] × Q [L / min] / 60 has been unnecessarily converted into heat and sound and consumed. At this time, since the power consumption for cooling the motor increases, the amount of discharge of the battery (power storage device) that is the power source of the motor increases, the battery is quickly depleted, and the operation time of the work machine is shortened. was there. In addition, there is a problem that the power consumed in vain changes to heat, and the capacity of the hydraulic oil cooling system cannot be reduced.
 また、特許文献1の油圧駆動装置では、電動機の回転数制御によりロードセンシング制御のみを行うように構成しているので、例えば上記のようにブームシリンダなどのアクチュエータがストロークエンドに達すると、油圧ポンプの吐出圧と最高負荷圧の差圧が殆ど0になってしまい、電動機の回転数は、その差圧を目標差圧と等しくなるように制御されるので、最大回転数まで急激に上昇する。その結果、油圧ポンプの吐出流量も最大まで増え、リリーフ弁からタンクに流出する流量も最大まで増加するため、前述した問題(無駄な動力消費の発生に起因するバッテリ放電量増大による作業機械の稼動時間の短縮、作動油冷却システム容量の増大)が特に顕著となる。 Further, since the hydraulic drive device of Patent Document 1 is configured to perform only load sensing control by controlling the rotational speed of the electric motor, for example, when an actuator such as a boom cylinder reaches the stroke end as described above, the hydraulic pump The pressure difference between the discharge pressure and the maximum load pressure becomes almost zero, and the rotational speed of the motor is controlled so that the differential pressure becomes equal to the target differential pressure. As a result, the discharge flow rate of the hydraulic pump increases to the maximum, and the flow rate that flows out from the relief valve to the tank also increases to the maximum. Therefore, the above-mentioned problem (operation of the work machine due to an increase in the battery discharge amount due to the occurrence of unnecessary power consumption) The reduction in time and the increase in hydraulic oil cooling system capacity) are particularly significant.
 しかも、ブームシリンダなどのアクチュエータがストロークエンドに達する度に、電動機回転数が最大回転数まで急上昇してしまうので、電動機回転数の急上昇に伴う不快な騒音・振動によりオペレータの快適性が損なわれるという問題があった。 Moreover, every time an actuator such as a boom cylinder reaches the stroke end, the motor speed rapidly increases up to the maximum speed, and uncomfortable noise and vibration accompanying the sudden increase in motor speed impairs operator comfort. There was a problem.
 一方、特許文献2に記載の油圧ユニットでは、油圧ポンプの吐出流量は、最終的に油圧ユニットからの漏れ量を補う程度の流量まで小さくなるので、非常に高効率なシステムを構築することができる。しかし、流量制御として油圧ポンプの吐出圧と各アクチュエータの最高負荷圧との差圧を一定に制御するロードセンシング制御を想定しておらず、仮にロードセンシング制御を行う場合には、特許文献1の実施例1と同様に、例えば油圧シリンダがストロークエンドに達する度に、電動機回転数が最高回転数まで急激に上昇してしまい、電動機回転数の急上昇に伴う不快な騒音・振動によりオペレータの快適性が損なわれるという問題があった。 On the other hand, in the hydraulic unit described in Patent Document 2, since the discharge flow rate of the hydraulic pump is finally reduced to a flow rate that compensates for the leakage amount from the hydraulic unit, an extremely efficient system can be constructed. . However, load sensing control for controlling the differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of each actuator to be constant is not assumed as the flow rate control. Similar to the first embodiment, for example, every time the hydraulic cylinder reaches the stroke end, the motor rotation speed rapidly increases to the maximum rotation speed, and the operator's comfort due to unpleasant noise and vibration accompanying the rapid increase in the motor rotation speed. There was a problem that was damaged.
 本発明の目的は、電動機により油圧ポンプを駆動してアクチュエータを駆動するとともに、電動機の回転数制御によりロードセンシング制御を行う電動式油圧作業機械において、リリーフ弁作動による無駄な動力消費を抑え、かつ電動機回転数の急激な上昇を抑え、より高効率で快適性を確保できる電動式油圧作業機械の油圧駆動装置を提供することである。 An object of the present invention is to reduce wasteful power consumption due to relief valve operation in an electric hydraulic working machine that drives a hydraulic pump by an electric motor to drive an actuator and performs load sensing control by controlling the rotational speed of the electric motor, and An object of the present invention is to provide a hydraulic drive device for an electric hydraulic working machine that can suppress a sudden increase in the number of revolutions of the electric motor and can ensure comfort with higher efficiency.
 (1)上記目的を達成するために、本発明は、電動機と、この電動機により駆動される油圧ポンプと、この油圧ポンプから吐出された圧油により駆動される複数のアクチュエータと、前記油圧ポンプから複数のアクチュエータへ供給される圧油の流量を制御する複数の流量制御弁と、前記油圧ポンプの吐出油を前記複数の流量制御弁に供給する圧油供給油路に接続され、前記油圧ポンプの吐出圧が設定圧力以上になると開状態となって前記圧油供給油路の圧油をタンクに戻すリリーフ弁と、前記電動機に電力を与える蓄電装置とを備えた電動式油圧作業機械の油圧駆動装置において、前記油圧ポンプの吐出圧が前記複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるよう前記油圧ポンプの回転数を制御するロードセンシング制御と、前記油圧ポンプの吐出圧が前記リリーフ弁の設定圧力近くの第1所定圧力以上に上昇したときに、前記油圧ポンプの吐出流量を減少させるよう前記油圧ポンプの回転数を制御するカットオフ制御とを行う電動機回転数制御装置とを備えるものとする。 (1) In order to achieve the above object, the present invention includes an electric motor, a hydraulic pump driven by the electric motor, a plurality of actuators driven by pressure oil discharged from the hydraulic pump, and the hydraulic pump. A plurality of flow rate control valves for controlling the flow rate of pressure oil supplied to the plurality of actuators, and a pressure oil supply oil passage for supplying discharge oil of the hydraulic pump to the plurality of flow rate control valves; Hydraulic drive of an electric hydraulic work machine having a relief valve that opens when the discharge pressure exceeds a set pressure and returns the pressure oil in the pressure oil supply oil passage to the tank, and a power storage device that supplies electric power to the electric motor Load sensing control for controlling the rotational speed of the hydraulic pump so that a discharge pressure of the hydraulic pump is higher than a maximum load pressure of the plurality of actuators by a target differential pressure in the apparatus Cut-off control for controlling the number of revolutions of the hydraulic pump so as to reduce the discharge flow rate of the hydraulic pump when the discharge pressure of the hydraulic pump rises to a first predetermined pressure or more near a set pressure of the relief valve; And an electric motor rotation speed control device for performing the above.
 このように電動機回転数制御装置にロードセンシング制御だけでなく、油圧ポンプの吐出圧がリリーフ弁の設定圧力近くの第1所定圧力以上に上昇したときに、油圧ポンプの吐出流量を減少させるよう油圧ポンプの回転数を制御するカットオフ制御を行わせることで、複数のアクチュエータが油圧シリンダを含み、この油圧シリンダがストロークエンドに達したときなどに、油圧ポンプから吐出される流量を抑えることができるため、リリーフ弁から無駄に消費される動力を抑えることができる。その結果、電動機の消費電力が減るため、電動機の電力源である蓄電装置を長持ちさせることができ、電動式油圧作業機械の稼動時間を延長することができる。更に、リリーフ弁作動時の発熱も減るため、作動油の冷却システムの小型化が可能となる。 In this way, not only the load sensing control but also the hydraulic speed control device is configured to reduce the hydraulic pump discharge flow rate when the discharge pressure of the hydraulic pump rises above the first predetermined pressure near the set pressure of the relief valve. By performing cut-off control for controlling the number of revolutions of the pump, a plurality of actuators include a hydraulic cylinder, and when this hydraulic cylinder reaches the stroke end, the flow rate discharged from the hydraulic pump can be suppressed. Therefore, it is possible to suppress the power that is wasted from the relief valve. As a result, since the power consumption of the electric motor is reduced, the power storage device that is the electric power source of the electric motor can be prolonged, and the operating time of the electric hydraulic working machine can be extended. Furthermore, since the heat generation during the operation of the relief valve is reduced, the hydraulic oil cooling system can be downsized.
 また、同じく油圧シリンダがストロークエンドに達したときなどに、電動機の回転数が増加することを抑えることができるので、電動機回転数上昇に伴う騒音・振動の増加を抑え、オペレータの快適性が損なわれることを防ぐことができる。 In addition, when the hydraulic cylinder reaches the stroke end, it is possible to suppress an increase in the rotation speed of the motor, thereby suppressing an increase in noise and vibration accompanying an increase in the rotation speed of the motor and impairing operator comfort. Can be prevented.
 (2)上記(1)において、好ましくは、前記電動機回転数制御装置は、前記油圧ポンプの吐出圧を検出する第1圧力センサと、前記最大負荷圧を検出する第2圧力センサと、前記電動機の回転数を制御するインバータと、コントローラとを備え、前記コントローラは、前記第1及び第2圧力センサが検出した前記油圧ポンプの吐出圧及び前記最高負荷圧と目標LS差圧とに基づいて、前記油圧ポンプの吐出圧と前記最高負荷圧との差圧と前記目標LS差圧との差圧偏差の正負に応じて増減する前記油圧ポンプの仮想容量を演算するロードセンシング制御演算部と、前記第1圧力センサが検出した前記油圧ポンプの吐出圧に基づいて、前記油圧ポンプの吐出圧が前記第1所定圧力以上に上昇すると急減するカットオフ制御の前記仮想容量の制限値を演算し、前記ロードセンシング制御演算部で演算した前記仮想容量と前記仮想容量の制限値の小さい方を選択して新たな仮想容量を求める容量制限制御演算部とを有し、前記コントローラは、前記新たな仮想容量に前記基準回転数を乗じて前記油圧ポンプの目標流量を演算し、前記油圧ポンプの吐出流量が前記目標流量となるよう前記電動機の回転数を制御するための制御指令を前記インバータに出力する。 (2) In the above (1), preferably, the motor rotation speed control device includes a first pressure sensor that detects a discharge pressure of the hydraulic pump, a second pressure sensor that detects the maximum load pressure, and the electric motor. An inverter for controlling the rotation speed of the hydraulic pump, and a controller, the controller based on the discharge pressure of the hydraulic pump detected by the first and second pressure sensors, the maximum load pressure, and the target LS differential pressure, A load sensing control calculation unit that calculates a virtual capacity of the hydraulic pump that increases or decreases according to the positive or negative of the differential pressure difference between the pressure difference between the discharge pressure of the hydraulic pump and the maximum load pressure and the target LS differential pressure; Based on the discharge pressure of the hydraulic pump detected by the first pressure sensor, when the discharge pressure of the hydraulic pump rises above the first predetermined pressure, the virtual capacity of the cut-off control suddenly decreases. A capacity limit control calculation unit that calculates a limit value, and selects a virtual capacity calculated by the load sensing control calculation unit and a smaller limit value of the virtual capacity to obtain a new virtual capacity, and the controller Calculates a target flow rate of the hydraulic pump by multiplying the new virtual capacity by the reference rotational speed, and a control command for controlling the rotational speed of the electric motor so that the discharge flow rate of the hydraulic pump becomes the target flow rate Is output to the inverter.
 このようにロードセンシング制御演算部に油圧ポンプの仮想容量という概念を導入してロードセンシング制御の目標流量を求め、電動機の回転数を制御することで、電動機の回転数制御によるロードセンシング制御を行うことができる。また、容量制限制御演算部においてカットオフ制御の仮想容量の制限値を演算し、ロードセンシング制御演算部で演算した仮想容量とその仮想容量の制限値の小さい方を選択して新たな仮想容量を求め、電動機の回転数を制御することで、電動機の回転数制御によるカットオフ制御を容易に実現することができる。 In this way, the concept of the virtual capacity of the hydraulic pump is introduced into the load sensing control calculation unit, the target flow rate of the load sensing control is obtained, and the rotation speed of the motor is controlled to perform load sensing control by controlling the rotation speed of the motor. be able to. In addition, the virtual capacity limit value of the cutoff control is calculated in the capacity limit control calculation unit, and the virtual capacity calculated in the load sensing control calculation unit and the smaller one of the virtual capacity limit values are selected to obtain a new virtual capacity. In other words, by controlling the rotation speed of the electric motor, it is possible to easily realize cut-off control by controlling the rotation speed of the electric motor.
 (3)上記(1)において、好ましくは、前記油圧ポンプの吐出圧が第2所定圧力以上で前記第1所定圧力以下の圧力範囲にあるとき、前記油圧ポンプの吐出圧が上昇するにしたがって前記油圧ポンプの吐出流量を減少させることで前記油圧ポンプの吸収トルクが予め設定した最大トルクを超えないように制御するトルク制御装置を更に備える。 (3) In the above (1), preferably, when the discharge pressure of the hydraulic pump is in a pressure range not less than a second predetermined pressure and not more than the first predetermined pressure, the discharge pressure of the hydraulic pump increases as the discharge pressure increases. A torque control device is further provided for controlling the absorption torque of the hydraulic pump so as not to exceed a preset maximum torque by reducing the discharge flow rate of the hydraulic pump.
 このように電動機回転数制御装置によりロードセンシング制御とカットオフ制御を行うことに加えて、トルク制御装置を設け、油圧ポンプの吐出圧が第2所定圧力以上第1所定圧力以下の圧力範囲にあるとき、油圧ポンプの吐出圧が上昇するにしたがって油圧ポンプの吐出流量を減少させ油圧ポンプの吸収トルクを制限するトルク制御を行うことにより、油圧ポンプの吐出圧が上昇したとき、電動機回転数制御装置によるカットオフ制御が始まる前の間においても、油圧ポンプの吸収トルクを制限するトルク制御により油圧ポンプの消費馬力が抑えられる。これにより電動機の消費電力が減るため、電動機の電力源である蓄電装置を更に長持ちさせることができ、電動式油圧作業機械の稼動時間を更に延長することができる。また、電動機の消費電力が減るため、電動機を小型化することができる。 Thus, in addition to performing load sensing control and cut-off control by the motor rotation speed control device, a torque control device is provided, and the discharge pressure of the hydraulic pump is in the pressure range from the second predetermined pressure to the first predetermined pressure. When the discharge pressure of the hydraulic pump rises by performing torque control to reduce the discharge flow rate of the hydraulic pump and limit the absorption torque of the hydraulic pump as the discharge pressure of the hydraulic pump rises, Even before the cut-off control by is started, the horsepower consumed by the hydraulic pump can be suppressed by the torque control that limits the absorption torque of the hydraulic pump. As a result, the power consumption of the electric motor is reduced, so that the power storage device that is the electric power source of the electric motor can be further extended, and the operating time of the electric hydraulic working machine can be further extended. In addition, since the power consumption of the electric motor is reduced, the electric motor can be reduced in size.
 (4)上記(2)において、好ましくは、前記油圧ポンプは可変容量型の油圧ポンプであり、前記油圧ポンプに設けられ、前記油圧ポンプの吐出圧が上昇したときに前記油圧ポンプの吐出流量を減少させることで前記油圧ポンプの吸収トルクが予め設定した最大トルクを超えないように制御するトルク制御装置を更に備える。 (4) In the above (2), preferably, the hydraulic pump is a variable displacement hydraulic pump, and is provided in the hydraulic pump. When the discharge pressure of the hydraulic pump rises, the discharge flow rate of the hydraulic pump is increased. A torque control device is further provided for controlling the absorption torque of the hydraulic pump so that the absorption torque does not exceed a preset maximum torque.
 これによりトルク制御機能のある通常の油圧ポンプを用いて、電動機の回転数制御を行うことにより、ロードセンシング制御とカットオフ制御とトルク制御を容易に実現することができる。 This makes it possible to easily realize load sensing control, cut-off control, and torque control by controlling the rotational speed of the motor using a normal hydraulic pump having a torque control function.
 (5)上記(2)において、好ましくは、前記油圧ポンプは固定容量型の油圧ポンプであり、前記コントローラの一機能として組み込まれ、前記油圧ポンプの吐出圧が上昇したときに前記油圧ポンプの吐出流量を減少させることで前記油圧ポンプの吸収トルクが予め設定した最大トルクを超えないように制御するトルク制御装置を更に備える。 (5) In the above (2), preferably, the hydraulic pump is a fixed displacement hydraulic pump, and is incorporated as a function of the controller, and when the discharge pressure of the hydraulic pump rises, the discharge of the hydraulic pump A torque control device is further provided for controlling the absorption torque of the hydraulic pump so as not to exceed a preset maximum torque by reducing the flow rate.
 これによりロードセンシング制御とカットオフ制御とトルク制御を実現できるとともに、油圧ポンプが固定容量型であるので、油圧ポンプのサイズを小さく抑え、省スペースを実現することができる。 This enables load sensing control, cut-off control, and torque control, and the hydraulic pump is a fixed displacement type, so the size of the hydraulic pump can be kept small and space can be saved.
 (6)上記(2)において、好ましくは、前記油圧ポンプは固定容量型の油圧ポンプであり、前記容量制限制御演算部は、前記第1圧力センサが検出した前記油圧ポンプの吐出圧に基づいて、前記油圧ポンプの吐出圧が第2所定圧力以上で前記第1所定圧力以下の圧力範囲にあるときは、前記油圧ポンプの吐出圧が高くなるにしたがって減少するトルク制限制御の仮想容量の制限値を演算し、前記油圧ポンプの吐出圧が前記第1所定圧力以上に上昇すると前記トルク制限制御の仮想容量の制限値から急減するカットオフ制御の仮想容量の制限値を演算し、前記ロードセンシング制御演算部で演算した前記仮想容量と前記仮想容量の制限値の小さい方を選択して新たな仮想容量を求める。 (6) In the above (2), preferably, the hydraulic pump is a fixed displacement hydraulic pump, and the capacity restriction control calculation unit is based on a discharge pressure of the hydraulic pump detected by the first pressure sensor. When the discharge pressure of the hydraulic pump is in a pressure range that is greater than or equal to a second predetermined pressure and less than or equal to the first predetermined pressure, the limit value of the virtual capacity of torque limit control that decreases as the discharge pressure of the hydraulic pump increases When the discharge pressure of the hydraulic pump rises above the first predetermined pressure, the virtual capacity limit value of the cutoff control that suddenly decreases from the virtual capacity limit value of the torque limit control is calculated, and the load sensing control The virtual capacity calculated by the calculation unit and the smaller one of the limit values of the virtual capacity are selected to obtain a new virtual capacity.
 これにより電動機回転数制御によるロードセンシング制御とカットオフ制御とトルク制御の3つの制御を実現できるとともに、油圧ポンプが固定容量型であるので、油圧ポンプのサイズを小さく抑え、省スペースを実現することができる。 As a result, load sensing control, cut-off control, and torque control by motor rotation speed control can be realized, and the hydraulic pump is a fixed displacement type, so the size of the hydraulic pump can be kept small and space can be saved. Can do.
 (7)上記(2)において、好ましくは、前記基準回転数を指示する操作装置を更に備え、前記コントローラは、前記操作装置の指示信号に基づいて前記基準回転数を設定し、かつこの基準回転数に基づいて前記基準回転数の大きさに応じた前記目標LS差圧と前記目標流量を演算する。 (7) In the above (2), preferably, an operation device for instructing the reference rotation speed is further provided, and the controller sets the reference rotation speed based on an instruction signal of the operation device, and the reference rotation Based on the number, the target LS differential pressure and the target flow rate corresponding to the magnitude of the reference rotational speed are calculated.
 これによりオペレータが操作装置を操作して基準回転数を小さくすることで、目標LS差圧と目標流量が小さくなるため、電動機の回転数変化と回転数が小さくなり、良好な微操作性を得ることができる。 As a result, when the operator operates the operating device to reduce the reference rotational speed, the target LS differential pressure and the target flow rate are reduced, so that the change in the rotational speed of the motor and the rotational speed are reduced, and good fine operability is obtained. be able to.
 電動機により油圧ポンプを駆動してアクチュエータを駆動するとともに、電動機の回転数制御によりロードセンシング制御を行う電動式油圧作業機械において、リリーフ弁作動による無駄な動力消費を抑え、かつ電動機回転数の急激な上昇を抑え、より高効率で快適性を確保することができる。また、電動機の消費電力が減るため、電動機の電力源である蓄電装置を長持ちさせることができ、電動式油圧作業機械の稼動時間を延長することができる。更に、リリーフ弁作動時の発熱も減るため、作動油の冷却システムの小型化が可能となる。 In an electric hydraulic work machine that drives a hydraulic pump by an electric motor to drive an actuator and performs load sensing control by controlling the rotational speed of the electric motor, wasteful power consumption due to the relief valve operation is suppressed, and the electric motor rotational speed is rapidly increased. The rise can be suppressed, and comfort can be ensured with higher efficiency. In addition, since the electric power consumption of the electric motor is reduced, the power storage device that is the electric power source of the electric motor can be prolonged, and the operating time of the electric hydraulic working machine can be extended. Furthermore, since the heat generation during the operation of the relief valve is reduced, the hydraulic oil cooling system can be downsized.
本発明の第1の実施の形態における電動式油圧作業機械の油圧駆動装置の構成を示す図である。It is a figure which shows the structure of the hydraulic drive device of the electrically driven hydraulic working machine in the 1st Embodiment of this invention. コントローラの処理内容を示す機能ブロック図である。It is a functional block diagram which shows the processing content of a controller. 演算部に設定されるカットオフ制御を模擬した特性(カットオフ制御特性)を示す図である。It is a figure which shows the characteristic (cut-off control characteristic) which simulated the cut-off control set to a calculating part. トルク制御装置のポンプトルク特性(Pq特性:ポンプ吐出圧-ポンプ容量特性)を示す図特性)である。2 is a pump torque characteristic (Pq characteristic: pump discharge pressure-pump capacity characteristic) of the torque control device). 本実施の形態における油圧駆動装置が搭載される油圧ショベルの外観を示す図である。It is a figure which shows the external appearance of the hydraulic excavator by which the hydraulic drive device in this Embodiment is mounted. 従来の電動機回転数制御によりロードセンシング制御を行う油圧駆動装置の馬力特性を示す図である。It is a figure which shows the horsepower characteristic of the hydraulic drive device which performs load sensing control by the conventional motor rotation speed control. 本実施の形態の油圧駆動装置の馬力特性を示す図である。It is a figure which shows the horsepower characteristic of the hydraulic drive device of this Embodiment. 本発明の第2の実施の形態における電動式油圧作業機械の油圧駆動装置の構成を示す図である。It is a figure which shows the structure of the hydraulic drive device of the electrically driven hydraulic working machine in the 2nd Embodiment of this invention. コントローラの処理内容を示す機能ブロック図である。It is a functional block diagram which shows the processing content of a controller. 演算部に設定されるトルク制御を模擬する特性(トルク制御特性)とカットオフ制御を模擬した特性(カットオフ制御特性)を組み合わせた特性を示す図である。It is a figure which shows the characteristic which combined the characteristic (torque control characteristic) which simulates the torque control set to a calculating part, and the characteristic (cutoff control characteristic) which simulated cutoff control. メインポンプのトルク特性を示す図である。It is a figure which shows the torque characteristic of a main pump.
 以下、本発明の実施の形態を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 ~構成~
 図1は、本発明の第1の実施の形態における電動式油圧作業機械の油圧駆動装置の構成を示す図である。本実施の形態は、本発明をフロントスイング式の油圧ショベルの油圧駆動装置に適用した場合のものである。
~ Configuration ~
FIG. 1 is a diagram showing a configuration of a hydraulic drive device for an electric hydraulic work machine according to a first embodiment of the present invention. In the present embodiment, the present invention is applied to a hydraulic drive device of a front swing type hydraulic excavator.
 図1において、本実施の形態に係わる油圧駆動装置は、電動機1と、この電動機1により駆動されるメインポンプとしての可変容量型の油圧ポンプ(以下メインポンプという)2及び固定容量型のパイロットポンプ30と、メインポンプ2から吐出された圧油により駆動される複数のアクチュエータ3a,3b,3c…と、メインポンプ2と複数のアクチュエータ3a,3b,3c…との間に位置するコントロールバルブ4と、パイロットポンプ30にパイロット油路31を介して接続され、パイロットポンプ30の吐出油に基づいてパイロット一次圧を生成するパイロット油圧源38と、パイロット油圧源38の下流側に位置し、ゲートロックレバー24によって操作される安全弁としてのゲートロック弁100とを備えている。 In FIG. 1, a hydraulic drive apparatus according to the present embodiment includes an electric motor 1, a variable displacement hydraulic pump (hereinafter referred to as a main pump) 2 as a main pump driven by the electric motor 1, and a fixed displacement pilot pump. 30, a plurality of actuators 3 a, 3 b, 3 c... Driven by pressure oil discharged from the main pump 2, and a control valve 4 positioned between the main pump 2 and the plurality of actuators 3 a, 3 b, 3 c. A pilot hydraulic power source 38 that is connected to the pilot pump 30 via a pilot oil passage 31 and generates a pilot primary pressure based on the oil discharged from the pilot pump 30; and a downstream side of the pilot hydraulic power source 38, and a gate lock lever And a gate lock valve 100 as a safety valve operated by the control unit 24.
 コントロールバルブ4は、メインポンプ2の吐出油が供給される第1圧油供給油路2a(配管)に接続された第2圧油供給油路4a(内部通路)と、第2圧油供給油路4aから分岐する油路8a,8b,8c…に接続され、メインポンプ2からアクチュエータ3a,3b,3c…に供給される圧油の流量と方向をそれぞれ制御するクローズドセンタ型の複数の流量制御弁6a,6b,6c…と、流量制御弁6a,6b,6c…のメータイン絞り部と方向切換部とを接続する油路25a,25b,25c…に接続され、流量制御弁6a,6b,6c…のメータイン絞り部の下流圧力が最高負荷圧(後述)と等しくなるように制御する圧力補償弁7a,7b,7c…と、アクチュエータ3a,3b,3c…の負荷圧のうちの最高圧力(最高負荷圧)を選択して信号油路27に出力するシャトル弁9a,9b,9c…と、第2圧油供給油路4aに接続され、第2圧油供給油路4aの圧力(メインポンプ2の吐出圧)が設定圧力以上になると開状態となって前記圧油供給油路の圧油をタンクに戻し、第2圧油供給油路4aの圧力(メインポンプ2の吐出圧)が設定圧力以上にならないように制限するメインリリーフ弁14と、メインポンプ2の吐出油が導かれる油路である第2圧油供給油路4aに接続され、メインポンプ2の吐出圧が最高負荷圧にクラッキング圧(バネ15aのセット圧)を加算した圧力よりも高くなると開状態になってメインポンプ2の吐出油をタンクTに戻し、メインポンプ2の吐出圧の上昇を制限するアンロード弁15とを有している。 The control valve 4 includes a second pressure oil supply oil passage 4a (internal passage) connected to a first pressure oil supply oil passage 2a (piping) to which discharge oil of the main pump 2 is supplied, and a second pressure oil supply oil. A plurality of closed center type flow rate controls connected to the oil passages 8a, 8b, 8c... Branching from the passage 4a and controlling the flow rate and direction of the pressure oil supplied from the main pump 2 to the actuators 3a, 3b, 3c. Are connected to the oil passages 25a, 25b, 25c,... That connect the valves 6a, 6b, 6c,... And the meter-in throttle portions of the flow control valves 6a, 6b, 6c,. The pressure compensation valves 7a, 7b, 7c,... For controlling the downstream pressure of the meter-in throttle section to be equal to the maximum load pressure (described later), and the maximum pressure (maximum) among the load pressures of the actuators 3a, 3b, 3c,. load ) Are selected and output to the signal oil passage 27, and connected to the second pressure oil supply oil passage 4a and the pressure of the second pressure oil supply oil passage 4a (discharge of the main pump 2) When the pressure (pressure) exceeds a set pressure, the pressure oil in the pressure oil supply oil passage is opened and the pressure oil in the second pressure oil supply oil passage 4a (discharge pressure of the main pump 2) exceeds the set pressure. It is connected to a main relief valve 14 that restricts so that it does not become, and a second pressure oil supply oil passage 4a that is an oil passage through which the discharge oil of the main pump 2 is guided, and the discharge pressure of the main pump 2 is increased to the maximum load pressure and the cracking pressure ( An unloading valve 15 that opens when the pressure higher than the set pressure of the spring 15a) returns to the tank T and restricts the increase in the discharge pressure of the main pump 2. ing.
 流量制御弁6a,6b,6c…はそれぞれ負荷ポート26a,26b,26c…を有し、これらの負荷ポート26a,26b,26c…は、流量制御弁6a,6b,6c…が中立位置にあるときはタンクTに連通し、負荷圧としてタンク圧を出力し、流量制御弁6a,6b,6c…が中立位置から図示左右の操作位置に切り換えられたときは、それぞれのアクチュエータ3a,3b,3c…に連通し、アクチュエータ3a,3b,3c…の負荷圧を出力する。 The flow control valves 6a, 6b, 6c... Have load ports 26a, 26b, 26c..., Respectively, and these load ports 26a, 26b, 26c... Are when the flow control valves 6a, 6b, 6c. Communicates with the tank T and outputs a tank pressure as a load pressure. When the flow control valves 6a, 6b, 6c... Are switched from the neutral position to the left and right operation positions in the figure, the respective actuators 3a, 3b, 3c. To output the load pressure of the actuators 3a, 3b, 3c.
 シャトル弁9a,9b,9c…はトーナメント形式に接続され、負荷ポート26a,26b,26c…及び信号油路27とともに最高負荷圧検出回路を構成する。すなわち、シャトル弁9aは、流量制御弁6aの負荷ポート26aの圧力と流量制御弁6bの負荷ポート26bの圧力との高圧側を選択して出力し、シャトル弁9bは、シャトル弁9bの出力圧と流量制御弁6cの負荷ポート26cの圧力との高圧側を選択して出力し、シャトル弁9cは、シャトル弁9bの出力圧と図示しない他の同様なシャトル弁の出力圧との高圧側を選択して出力する。シャトル弁9cは最後段のシャトル弁であり、その出力圧は最高負荷圧として信号油路27に出力され、信号油路27に出力された最高負荷圧は信号油路27a,27b,27c…を介して圧力補償弁7a,7b,7c…とアンロード弁15に導かれる。 The shuttle valves 9a, 9b, 9c... Are connected in a tournament form, and constitute the maximum load pressure detection circuit together with the load ports 26a, 26b, 26c. That is, the shuttle valve 9a selects and outputs the high pressure side of the pressure of the load port 26a of the flow control valve 6a and the pressure of the load port 26b of the flow control valve 6b, and the shuttle valve 9b outputs the output pressure of the shuttle valve 9b. And the pressure of the load port 26c of the flow control valve 6c are selected and output, and the shuttle valve 9c outputs the high pressure side of the output pressure of the shuttle valve 9b and the output pressure of another similar shuttle valve (not shown). Select and output. The shuttle valve 9c is the last stage shuttle valve, and its output pressure is output to the signal oil passage 27 as the maximum load pressure, and the maximum load pressure output to the signal oil passage 27 passes through the signal oil passages 27a, 27b, 27c. Through the pressure compensation valves 7a, 7b, 7c... And the unload valve 15.
 圧力補償弁7a,7b,7c…は、シャトル弁9cから信号油路27,27a,27b,27c…を介して最高負荷圧が導かれる閉方向作動の受圧部21a,21b,21c…と、流量制御弁6a,6b,6c…のメータイン絞り部の下流圧力が導かれる開方向作動の受圧部22a,22b,22c…を有し、流量制御弁6a,6b,6c…のメータイン絞り部の下流圧力が最高負荷圧に等しくなるように制御する。その結果、流量制御弁6a,6b,6c…のメータイン絞り部の前後差圧はメインポンプ2の吐出圧と最高負荷圧との差圧に等しくなるよう制御される。 The pressure compensating valves 7a, 7b, 7c,... Are pressure-receiving portions 21a, 21b, 21c, etc., which are operated in the closing direction, in which the highest load pressure is guided from the shuttle valve 9c via the signal oil passages 27, 27a, 27b, 27c,. It has pressure-receiving parts 22a, 22b, 22c ... of the opening direction operation to which the downstream pressure of the meter-in throttle part of the control valves 6a, 6b, 6c ... is guided, and the downstream pressure of the meter-in throttle part of the flow control valves 6a, 6b, 6c ... Is controlled to be equal to the maximum load pressure. As a result, the differential pressure across the meter-in throttle portion of the flow control valves 6a, 6b, 6c... Is controlled to be equal to the differential pressure between the discharge pressure of the main pump 2 and the maximum load pressure.
 アンロード弁15は、アンロード弁15のクラッキング圧Pun0を設定する閉方向作動のバネ15aと、第2圧油供給油路4aの圧力(メインポンプ2の吐出圧)が導かれる開方向作動の受圧部15bと、最高負荷圧が信号油路27を介して導かれる閉方向作動の受圧部15cとを有し、圧油供給油路4aの圧力が最高負荷圧にバネ15aのセット圧Pun0(クラッキング圧)よりも高くなると、開状態になって圧油供給油路4aの圧油をタンクTに戻し、圧油供給油路4aの圧力(メインポンプ2の吐出圧)を、最高負荷圧にバネ15aのセット圧とアンロード弁15のオーバライド特性により生じる圧力を加算した圧力に制御する。アンロード弁のオーバライド特性とは、アンロード弁を経由してタンクに戻る圧油の流量が増加するにしたがってアンロード弁の入口圧力、すなわち圧油供給油路4aの圧力が上昇する特性である。本明細書中では、最高負荷圧にバネ15aのセット圧とアンロード弁15のオーバライド特性により生じる圧力を加算した圧力をアンロード圧力という。 The unload valve 15 is operated in the open direction in which the closing direction spring 15a that sets the cracking pressure Pun0 of the unload valve 15 and the pressure in the second pressure oil supply oil passage 4a (the discharge pressure of the main pump 2) is guided. A pressure receiving portion 15b and a pressure receiving portion 15c that operates in the closing direction in which the maximum load pressure is guided through the signal oil passage 27. The pressure of the pressure oil supply oil passage 4a is set to the maximum load pressure and the set pressure Pun0 ( When the pressure becomes higher than the cracking pressure, the pressure oil in the pressure oil supply oil passage 4a is returned to the tank T and the pressure in the pressure oil supply oil passage 4a (the discharge pressure of the main pump 2) is set to the maximum load pressure. The pressure is controlled by adding the set pressure of the spring 15a and the pressure generated by the override characteristic of the unload valve 15. The override characteristic of the unload valve is a characteristic in which the inlet pressure of the unload valve, that is, the pressure of the pressure oil supply oil passage 4a increases as the flow rate of the pressure oil that returns to the tank via the unload valve increases. . In the present specification, a pressure obtained by adding the set pressure of the spring 15a and the pressure generated by the override characteristic of the unload valve 15 to the maximum load pressure is referred to as an unload pressure.
 アクチュエータ3a,3b,3cは例えば油圧ショベルのブームシリンダ、アームシリンダ、旋回モータであり、流量制御弁6a,6b,6cはそれぞれ例えばブーム用、アーム用、旋回用の流量制御弁である。図示の都合上、バケットシリンダ、スイングシリンダ、走行モータ等のその他のアクチュエータ及びこれらアクチュエータに係わる流量制御弁の図示は省略している。 Actuators 3a, 3b, and 3c are, for example, boom cylinders, arm cylinders, and swing motors of hydraulic excavators, and flow control valves 6a, 6b, and 6c are, for example, flow control valves for booms, arms, and swings. For the convenience of illustration, illustration of other actuators such as bucket cylinders, swing cylinders, travel motors, and flow control valves related to these actuators is omitted.
 パイロット油圧源38はパイロット油路31に接続され、パイロット油路31の圧力を一定に保つパイロットリリーフ弁32を有している。ゲートロック弁100は、ゲートロックレバー24を操作することによりパイロット油路31aをパイロット油路31に接続する位置と、パイロット油路31aをタンクTに接続する位置とに切り換え可能である。 The pilot hydraulic power source 38 is connected to the pilot oil passage 31 and has a pilot relief valve 32 that keeps the pressure of the pilot oil passage 31 constant. The gate lock valve 100 can be switched between a position where the pilot oil passage 31 a is connected to the pilot oil passage 31 and a position where the pilot oil passage 31 a is connected to the tank T by operating the gate lock lever 24.
 パイロット油路31aには、流量制御弁6a,6b,6c…を操作して対応するアクチュエータ3a,3b,3c…を動作させるための指令パイロット圧(指令信号)を生成する操作レバー装置122,123,124(図5参照)が接続されている。この操作レバー装置122,123,124は、ゲートロックレバー24がパイロット油路31aをパイロット油路31に接続する位置に切り換えられているとき、それぞれの操作レバーの操作量に応じてパイロット油圧源38の油圧を一次圧として指令パイロット圧(指令信号)を生成する。一方、ゲートロック弁100がパイロット油路31aをタンクTに接続する位置に切り換えられると、操作レバー装置122,123,124は、操作レバーを操作しても指令パイロット圧を生成不能な状態となる。 In the pilot oil passage 31a, operating lever devices 122 and 123 for generating command pilot pressures (command signals) for operating the corresponding actuators 3a, 3b, 3c... By operating the flow control valves 6a, 6b, 6c. , 124 (see FIG. 5) are connected. When the gate lock lever 24 is switched to a position where the pilot oil passage 31 a is connected to the pilot oil passage 31, the operation lever devices 122, 123, and 124 are operated according to the operation amount of each operation lever. The command pilot pressure (command signal) is generated using the hydraulic pressure of the engine as the primary pressure. On the other hand, when the gate lock valve 100 is switched to a position where the pilot oil passage 31a is connected to the tank T, the operating lever devices 122, 123, and 124 are incapable of generating command pilot pressure even if the operating lever is operated. .
 本実施の形態の油圧駆動装置は、上述した構成に加え、電動機1の電源となるバッテリ70(蓄電装置)と、バッテリ70の直流電力を昇圧するチョッパ61と、チョッパ61によって昇圧した直流電力を交流電力に変換し電動機1に供給するインバータ60と、オペレータによって操作され、電動機1の基準回転数を指示する基準回転数指示ダイヤル51(操作装置)と、コントロールバルブ4の圧油供給油路4aに接続され、メインポンプ2の吐出圧を検出する圧力センサ40と、信号油路27に接続され、最高負荷圧力を検出する圧力センサ41と、基準回転数指示ダイヤル51の指示信号と圧力センサ40,41の検出信号を入力し、インバータ60を制御するコントローラ50とを備えている。 In addition to the above-described configuration, the hydraulic drive device according to the present embodiment includes a battery 70 (power storage device) serving as a power source for the electric motor 1, a chopper 61 that boosts DC power of the battery 70, and DC power boosted by the chopper 61. An inverter 60 that converts AC power and supplies it to the electric motor 1, a reference rotational speed instruction dial 51 (operating device) that is operated by an operator and indicates the reference rotational speed of the electric motor 1, and a pressure oil supply oil passage 4 a of the control valve 4. , A pressure sensor 40 that detects the discharge pressure of the main pump 2, a pressure sensor 41 that is connected to the signal oil passage 27 and detects the maximum load pressure, an indication signal of the reference rotation speed indication dial 51, and the pressure sensor 40. , 41, and a controller 50 for controlling the inverter 60.
 図2は、コントローラ50の処理内容を示す機能ブロック図である。 FIG. 2 is a functional block diagram showing the processing contents of the controller 50.
 コントローラ50は、演算部50a~50mの各機能を有している。 The controller 50 has the functions of the calculation units 50a to 50m.
 演算部50a,50bは,それぞれ、圧力センサ40,41の検出信号VPS,VPLmaxを入力し、これらの値をそれぞれメインポンプ2の吐出圧PPS及び最高負荷圧PPLmaxに変換する。次に、演算部50cはその圧力PPSと圧力PPLmaxの差を取り、実ロードセンシング差圧PLS(=PPS-PPLmax)を算出する。続いて、演算部50dは、基準回転数指示ダイヤル51の指示信号VECを基準回転数N0に変換し、演算部50eは、基準回転数N0を目標LS差圧PGRに変換する。 The calculation units 50a and 50b receive the detection signals V PS and V PLmax of the pressure sensors 40 and 41, respectively, and convert these values into the discharge pressure P PS and the maximum load pressure P PLmax of the main pump 2, respectively. Next, the computing unit 50c calculates the actual load sensing differential pressure P LS (= P PS −P PLmax ) by taking the difference between the pressure P PS and the pressure P PLmax . Subsequently, the calculation unit 50d has an instruction signal V EC reference rotation speed instruction dial 51 is converted to the reference rotation speed N 0, the arithmetic unit 50e converts the reference rotational speed N 0 in the target LS differential pressure P GR.
 演算部50fは、目標LS差圧PGRと実ロードセンシング差圧PLSの差圧偏差ΔPを算出する。演算部50gは、差圧偏差ΔPからメインポンプ2の仮想容量q*の増減値Δqを算出する。演算部50gはΔPが高くなる程、仮想容量変化量Δqも大きくなるように構成されている。また、増減値Δqは、ΔPが正の場合に正の値に、ΔPが負の場合に負の値になるように演算される。演算部50hは、増減値Δqを1演算サイクル前の仮想容量q*に足すことで、今回の仮想容量q*を算出する。 Calculation unit 50f calculates the difference pressure deviation ΔP of the target LS differential pressure P GR and the actual load sensing differential pressure P LS. The calculation unit 50g calculates an increase / decrease value Δq of the virtual capacity q * of the main pump 2 from the differential pressure deviation ΔP. The calculation unit 50g is configured such that the virtual capacity change amount Δq increases as ΔP increases. The increase / decrease value Δq is calculated so as to be a positive value when ΔP is positive and to be a negative value when ΔP is negative. The calculation unit 50h calculates the current virtual capacity q * by adding the increase / decrease value Δq to the virtual capacity q * one calculation cycle before.
 ここで、メインポンプ2の仮想容量q*とは、電動機1の回転数制御により実ロードセンシング差圧PLSを目標LS差圧PGRに一致させるように制御するためのメインポンプ2の容量の演算値である。 Here, the virtual capacity q * of the main pump 2 is the capacity of the main pump 2 for controlling the actual load sensing differential pressure P LS to match the target LS differential pressure P GR by controlling the rotational speed of the electric motor 1. Calculated value.
 演算部50rは、メインポンプ2の吐出圧のカットオフ制御を模擬する特性(以下単にカットオフ制御特性という)を設定したテーブルを有し、演算部50rには演算部50aで変換したメインポンプ2の吐出圧PPSが入力され、演算部50rはそのメインポンプ2の吐出圧PPSをテーブルに参照してカットオフ制御の仮想容量q*の制限値(最大仮想容量)q*limitを算出する。 The calculation unit 50r has a table in which characteristics (hereinafter simply referred to as cut-off control characteristics) for simulating cut-off control of the discharge pressure of the main pump 2 are set, and the main pump 2 converted by the calculation unit 50a is included in the calculation unit 50r. The discharge pressure P PS is input, and the calculation unit 50r calculates the limit value (maximum virtual capacity) q * limit of the virtual capacity q * of the cutoff control with reference to the discharge pressure P PS of the main pump 2 in the table. .
 図3は、演算部50rに設定されるカットオフ制御を模擬した特性(カットオフ制御特性)を示す図である。 FIG. 3 is a diagram illustrating characteristics (cut-off control characteristics) simulating cut-off control set in the calculation unit 50r.
 演算部50rに設定されるカットオフ制御特性は、メインポンプ2の吐出圧が予め設定した設定値Ppsoより低いときのメインポンプ2の最大容量の特性線TP0(図4参照)に対応する特性TP0r1と、メインポンプ2の吐出圧が設定値Ppsoを超えたときのカットオフ制御特性TP3から構成されている。特性TP0r1における制限値q*limitはメインポンプ2の最大容量qmaxで一定である。カットオフ制御特性TP3は、設定値Ppsoから最大吐出圧Pmaxまで、制限値q*limitがqmaxから最小値q*limit0まで急峻かつ線形的に小さくなるように設定されている。メインポンプ2の最大吐出圧Pmaxはメインリリーフ弁14の設定圧力(リリーフ圧)である。設定値Ppsoは吸収トルク一定制御の開始圧力P(後述)よりも高く、最大吐出圧Pmaxに近い圧力である。また、最小値q*limit0はメインポンプ2の最小容量qminに近い小さな容量である。最小値q*limit0はメインポンプ2の最小容量qminと同じであってもよい。 The cut-off control characteristic set in the calculation unit 50r is a characteristic corresponding to the maximum capacity characteristic line TP0 (see FIG. 4) of the main pump 2 when the discharge pressure of the main pump 2 is lower than the preset set value P pso . It consists of TP0r1 and a cutoff control characteristic TP3 when the discharge pressure of the main pump 2 exceeds the set value P pso . The limit value q * limit in the characteristic TP0r1 is constant at the maximum capacity q max of the main pump 2. The cut-off control characteristic TP3 is set so that the limit value q * limit is steeply and linearly reduced from q max to the minimum value q * limit 0 from the set value P pso to the maximum discharge pressure P max . The maximum discharge pressure P max of the main pump 2 is a set pressure (relief pressure) of the main relief valve 14. The set value P pso is higher than the start pressure P 0 (described later) of the constant absorption torque control and is a pressure close to the maximum discharge pressure P max . The minimum value q * limit0 is a small volume close to the minimum capacity q min of the main pump 2. The minimum value q * limit0 may be the same as the minimum capacity q min of the main pump 2.
 演算部50sは、演算部50hで演算されたロードセンシング制御の仮想容量q*と演算部50rで求めた仮想容量q*の制限値q*limitの小さい方を選択して新たな仮想容量q**として出力する。ここで、ロードセンシング制御の仮想容量q*と仮想容量の制限値q*limitが同じ値であるときは、そのいずれか一方、例えばロードセンシング制御の仮想容量q*を選択するというように予めルールを定めておく。 The calculation unit 50s selects a smaller one of the load sensing control virtual capacity q * calculated by the calculation unit 50h and the limit value q * limit of the virtual capacity q * obtained by the calculation unit 50r, and creates a new virtual capacity q *. Output as *. Here, when the virtual capacity q * of the load sensing control and the limit value q * limit of the virtual capacity are the same value, one of them, for example, the virtual capacity q * of the load sensing control is selected in advance as a rule. Is established.
 演算部50iは、得られた新たな仮想容量q**がメインポンプ2の最小容量qminと最大容量qmaxの範囲内に収まる(最小容量qmin以下とならず、かつ最大容量qmax以上にならない)ように制限をかける処理を行う。 The calculation unit 50i allows the obtained new virtual capacity q ** to fall within the range of the minimum capacity q min and the maximum capacity q max of the main pump 2 (not less than the minimum capacity q min and more than the maximum capacity q max Process to limit so that it does not become.
 演算部50jは、得られた仮想容量q**に基準回転数N0を掛けて、メインポンプ2の目標流量Qdを算出する。演算部50kは、目標流量Qdをメインポンプ2の最大容量qmaxで割って、メインポンプ2の目標回転数Ndを算出する。演算部50mは、目標回転数Ndをインバータ60の制御指令である指令信号(電圧指令)VINVに換算し、この指令信号VINVをインバータ60に出力する。 Calculation unit 50j multiplies the reference rotational speed N 0 in the virtual capacity q ** obtained, to calculate a target flow rate Q d of the main pump 2. Calculating unit 50k is divided by the target flow rate Q d at maximum capacity q max of the main pump 2, to calculate a target rotational speed N d of the main pump 2. The calculation unit 50m converts the target rotational speed Nd into a command signal (voltage command) V INV that is a control command for the inverter 60, and outputs the command signal V INV to the inverter 60.
 コントローラ50の上述した機能とインバータ60および圧力センサ40,41は、メインポンプ2の吐出圧が複数のアクチュエータ3a,3b,3c…の最高負荷圧より目標差圧だけ高くなるようメインポンプ2の回転数を制御するロードセンシング制御と、メインポンプ2の吐出圧がメインリリーフ弁14の設定圧力Pmax近くの第1所定圧力Ppso以上に上昇したときに、メインポンプ2の吐出流量を減少させるようメインポンプ2の回転数を制御するカットオフ制御とを行う電動機回転数制御装置200を構成する。 The above-described function of the controller 50, the inverter 60, and the pressure sensors 40 and 41 rotate the main pump 2 so that the discharge pressure of the main pump 2 is higher by the target differential pressure than the maximum load pressure of the plurality of actuators 3a, 3b, 3c. When the discharge pressure of the main pump 2 and the discharge pressure of the main pump 2 rise above the first predetermined pressure P pso near the set pressure P max of the main relief valve 14, the discharge flow rate of the main pump 2 is decreased. An electric motor rotation speed control device 200 that performs cut-off control for controlling the rotation speed of the main pump 2 is configured.
 また、コントローラ50の演算部50a~50c,50f~50hは、圧力センサ40,41が検出したメインポンプ2の吐出圧PPS及び最高負荷圧PPLmaxと目標LS差圧PGRとに基づいて、メインポンプ2の吐出圧と最高負荷圧との差圧PLSと目標LS差圧PGRとの差圧偏差ΔPの正負に応じて増減するメインポンプ2の仮想容量q*を演算するロードセンシング制御演算部201を構成する。 The calculation units 50a to 50c and 50f to 50h of the controller 50 are based on the discharge pressure P PS and the maximum load pressure P PLmax of the main pump 2 and the target LS differential pressure P GR detected by the pressure sensors 40 and 41, respectively. Load sensing control for calculating the virtual capacity q * of the main pump 2 that increases or decreases according to the positive or negative of the differential pressure deviation ΔP between the differential pressure P LS between the discharge pressure of the main pump 2 and the maximum load pressure and the target LS differential pressure P GR The calculation unit 201 is configured.
 コントローラ50の演算部50r,50sは、圧力センサ40が検出したメインポンプ2の吐出圧に基づいて、メインポンプ2の吐出圧がメインリリーフ弁14の設定圧力Pmax近くの第1所定圧力Ppso以上に上昇すると急減するカットオフ制御の仮想容量制限値q*limitを演算し、ロードセンシング制御演算部で演算した仮想容量q*と仮想容量制限値q*limitの小さい方を選択して新たな仮想容量q**を求める容量制限制御演算部202を構成する。 Based on the discharge pressure of the main pump 2 detected by the pressure sensor 40, the calculation units 50r and 50s of the controller 50 have a first predetermined pressure P pso that the discharge pressure of the main pump 2 is close to the set pressure P max of the main relief valve 14. Calculate the virtual capacity limit value q * limit of the cutoff control that suddenly decreases when it rises above, and select the smaller one of the virtual capacity q * and virtual capacity limit value q * limit calculated by the load sensing control calculation unit A capacity limit control calculation unit 202 for obtaining the virtual capacity q ** is configured.
 図1に戻り、本実施の形態の油圧駆動装置は、メインポンプ2に設けられ、メインポンプ2の吐出圧が高くなるにしたがってメインポンプ2の容量を減らし、メインポンプ2の吸収トルクが予め設定した最大トルクを超えないように制御するトルク制御装置17を備えている。トルク制御装置17は、メインポンプ2に設けられたレギュレータであり、メインポンプ2の吐出圧が油路17cを介して導かれるトルク制御傾転ピストン17aとバネ17b1,17b2を有している。 Returning to FIG. 1, the hydraulic drive device of the present embodiment is provided in the main pump 2, and the capacity of the main pump 2 is reduced as the discharge pressure of the main pump 2 increases, and the absorption torque of the main pump 2 is set in advance. The torque control device 17 for controlling the maximum torque so as not to exceed the maximum torque is provided. The torque control device 17 is a regulator provided in the main pump 2, and has a torque control tilt piston 17a and springs 17b1 and 17b2 to which the discharge pressure of the main pump 2 is guided through an oil passage 17c.
 図4は、トルク制御装置17のポンプトルク特性(Pq特性:ポンプ吐出圧-ポンプ容量特性)を示す図特性)である。横軸はメインポンプ2の吐出圧を示し、縦軸はメインポンプ2の容量を示している。また、TP0はメインポンプ2の最大容量の特性線、TP1及びTP2はバネ17b1,17b2により設定されるトルク制御の特性線であり、Pはバネ17b1,17b2により決まる第2所定圧力(吸収トルク一定制御の開始圧力)である。 FIG. 4 shows pump torque characteristics (Pq characteristics: pump discharge pressure-pump capacity characteristics) of the torque control device 17). The horizontal axis indicates the discharge pressure of the main pump 2, and the vertical axis indicates the capacity of the main pump 2. Further, TP0 the maximum capacity characteristic line of the main pump 2, TP1 and TP2 are characteristic of the torque control that is set by the spring 17b1,17b2, P 0 is the second predetermined pressure (absorption torque determined by the spring 17B1,17b2 Constant control starting pressure).
 トルク制御装置17のトルク制御傾転ピストン17aは、メインポンプ2の吐出圧が第2所定圧力P以下にあるときは動作せず、メインポンプ2の容量は特性線TP0上の最大容量qmaxにある。メインポンプ2の吐出圧が上昇し、第2所定圧力Pを超えると、トルク制御装置17のトルク制御傾転ピストン17aが動作し、メインポンプ2の吐出圧が第2所定圧力Pからメインポンプ2の最大吐出圧Pmax(メインリリーフ弁14の設定圧力)までにある間、メインポンプ2の容量は特性線TP1,TP2に沿ってqmaxからqlimit-minへと減少する。その結果、メインポンプ2の吸収トルク(ポンプ吐出圧と容量の積)は特性線TP1,TP2に接する最大トルク(制限トルク)TMを超えないよう、概略一定の値に制御される。この制御を本明細書中ではトルク制限制御と呼び、油圧ポンプの容量を吐出流量に置き換えた特性で見た制御を馬力制御と呼ぶ。最大トルクTMの大きさは、バネ17b1,17b2の強さを選定することによって予め自由に設定することができる。 Torque control tilting piston 17a of the torque control device 17 is not operated when the discharge pressure of the main pump 2 is below a second predetermined pressure P 0, the maximum capacity q max on the capacity of the main pump 2 is characteristic lines TP0 It is in. When the discharge pressure of the main pump 2 rises and exceeds the second predetermined pressure P 0 , the torque control tilt piston 17a of the torque control device 17 operates, and the discharge pressure of the main pump 2 changes from the second predetermined pressure P 0 to the main pressure. While the pump 2 reaches the maximum discharge pressure P max (set pressure of the main relief valve 14), the capacity of the main pump 2 decreases from q max to qlimit-min along the characteristic lines TP1 and TP2. As a result, the absorption torque (product of pump discharge pressure and capacity) of the main pump 2 is controlled to a substantially constant value so as not to exceed the maximum torque (limit torque) TM in contact with the characteristic lines TP1 and TP2. This control is referred to as torque limit control in this specification, and control in terms of characteristics in which the displacement of the hydraulic pump is replaced with discharge flow rate is referred to as horsepower control. The magnitude of the maximum torque TM can be freely set in advance by selecting the strength of the springs 17b1 and 17b2.
 すなわち、トルク制御装置17は、メインポンプ2の吐出圧が図4に示す第2所定圧力P以上で、第1所定圧力Ppso以下の圧力範囲(P~Ppso範囲内)にあるときに、メインポンプ2の吐出圧が上昇するにしたがってメインポンプ2の吐出流量を減少させることでメインポンプ2の吸収トルクが予め設定した最大トルクを超えないように制御する。 That is, when the discharge pressure of the main pump 2 is within the pressure range (within the range P 0 to P pso ) of the second predetermined pressure P 0 or more and the first predetermined pressure P pso or less shown in FIG. In addition, the main pump 2 is controlled so that the absorption torque of the main pump 2 does not exceed a preset maximum torque by decreasing the discharge flow rate of the main pump 2 as the discharge pressure of the main pump 2 increases.
 図5は、本実施の形態における油圧駆動装置が搭載される油圧ショベルの外観を示す図である。 FIG. 5 is a diagram showing an external appearance of a hydraulic excavator on which the hydraulic drive device according to the present embodiment is mounted.
 図5において、作業機械としてよく知られている油圧ショベルは、上部旋回体300と、下部走行体301と、スイング式のフロント作業機302を備え、フロント作業機302は、ブーム306、アーム307、バケット308から構成されている。上部旋回体300は下部走行体301を図1に示す旋回モータ3cの回転によって旋回可能である。上部旋回体300の前部にはスイングポスト303が取り付けられ、このスイングポスト303にフロント作業機302が上下動可能に取り付けられている。スイングポスト303は図示しないスイングシリンダの伸縮により上部旋回体300に対して水平方向に回動可能であり、フロント作業機302のブーム306、アーム307、バケット308はブームシリンダ3a,アームシリンダ3b,バケットシリンダ12の伸縮により上下方向に回動可能である。下部走行体301は中央フレームには、ブレードシリンダ304の伸縮により上下動作を行うブレード305が取り付けられている。下部走行体301は、走行モータ6,8の回転により左右の履帯310,311を駆動することによって走行を行う。図1ではブームシリンダ3a、アームシリンダ3b、旋回モータ3cのみを示し、バケットシリンダ3d、左右の走行モータ3f,3g、ブレードシリンダ3hやそれらの回路要素を省略している。 In FIG. 5, a hydraulic excavator well known as a work machine includes an upper swing body 300, a lower traveling body 301, and a swing-type front work machine 302. The front work machine 302 includes a boom 306, an arm 307, The bucket 308 is configured. The upper turning body 300 can turn the lower traveling body 301 by the rotation of the turning motor 3c shown in FIG. A swing post 303 is attached to the front portion of the upper swing body 300, and a front work machine 302 is attached to the swing post 303 so as to move up and down. The swing post 303 can be rotated in the horizontal direction with respect to the upper swing body 300 by expansion and contraction of a swing cylinder (not shown). The boom 306, the arm 307, and the bucket 308 of the front work machine 302 are the boom cylinder 3a, the arm cylinder 3b, and the bucket. The cylinder 12 can be turned up and down by expansion and contraction. A blade 305 that moves up and down by the expansion and contraction of a blade cylinder 304 is attached to the lower frame 301 in the center frame. The lower traveling body 301 travels by driving the left and right crawler belts 310 and 311 by the rotation of the traveling motors 6 and 8. In FIG. 1, only the boom cylinder 3a, the arm cylinder 3b, and the turning motor 3c are shown, and the bucket cylinder 3d, the left and right traveling motors 3f and 3g, the blade cylinder 3h, and their circuit elements are omitted.
 上部旋回体300にはキャビン(運転室)313が設置され、キャビン313内には、運転席121、フロント/旋回用の操作レバー装置122,123(図5では右側のみ図示)、走行用の操作レバー装置124、ゲートロックレバー24が設けられている。 A cabin (driver's cab) 313 is installed in the upper swing body 300, and in the cabin 313, there is a driver seat 121, front / turning operation lever devices 122 and 123 (only the right side is shown in FIG. 5), and driving operation. A lever device 124 and a gate lock lever 24 are provided.
 ~動作~
 次に本実施の形態の動作を説明する。
~ Operation ~
Next, the operation of the present embodiment will be described.
 <操作レバー中立時>
 操作レバー装置122,123,124の操作レバーを含む全ての操作装置が中立にあるときは、流量制御弁6a,6b,6c…も全て中立位置にある。このためアクチュエータ3a,3b,3c…の負荷ポート26a,26b,26c…は、それぞれタンクに接続され、シャトル弁9a,9b,9c…によって検出されるアクチュエータ3a,3b,3c…の最高負荷圧もタンク圧と等しくなる。圧力センサ41は、このタンク圧を検出する。
<When the control lever is neutral>
When all the operation devices including the operation levers of the operation lever devices 122, 123, and 124 are in the neutral position, the flow control valves 6a, 6b, 6c,... Are all in the neutral position. Therefore, the load ports 26a, 26b, 26c... Of the actuators 3a, 3b, 3c... Are connected to the tanks, respectively, and the maximum load pressure of the actuators 3a, 3b, 3c. It becomes equal to the tank pressure. The pressure sensor 41 detects this tank pressure.
 一方、電動機1によってメインポンプ2が駆動され、圧油供給油路2a,4aに圧油が供給される。圧油供給油路4aには、流量制御弁6a,6b,6c…と、メインリリーフ弁14と、アンロード弁15が接続されている。全ての操作レバーが中立のとき、流量制御弁6a,6b,6c…が閉じているため、メインポンプ2の吐出圧はアンロード弁15のバネ15aのセット圧にオーバライド特性の圧力を加算した圧力まで上昇する。 On the other hand, the main pump 2 is driven by the electric motor 1, and the pressure oil is supplied to the pressure oil supply oil passages 2a and 4a. The flow rate control valves 6a, 6b, 6c,..., The main relief valve 14, and the unload valve 15 are connected to the pressure oil supply oil passage 4a. When all the control levers are neutral, the flow rate control valves 6a, 6b, 6c,... Are closed, so that the discharge pressure of the main pump 2 is a pressure obtained by adding the override characteristic pressure to the set pressure of the spring 15a of the unload valve 15. To rise.
 ここで、アンロード弁15のセット圧はバネ15aによって一定に設定されており、そのセット圧は、基準回転数N0が最大であるときに演算部50eで算出される目標LS差圧PGRよりも高めに設定してある。例えば、目標LS差圧PGRが2MPaであるとすると、バネ15aのセット圧は2.5MPa程度であり,メインポンプ2の吐出圧(アンロード圧力)も概ね2.5MPaとなる。圧油供給油路4aに接続された圧力センサ40は、そのメインポンプ2の吐出圧を検出する。このときのメインポンプ2の吐出圧をPminで表す。 Here, the set pressure of the unload valve 15 is set to be constant by the spring 15a, and the set pressure is the target LS differential pressure P GR calculated by the calculation unit 50e when the reference rotational speed N 0 is maximum. It is set higher than. For example, if the target LS differential pressure PGR is 2 MPa, the set pressure of the spring 15a is about 2.5 MPa, and the discharge pressure (unload pressure) of the main pump 2 is also approximately 2.5 MPa. The pressure sensor 40 connected to the pressure oil supply oil passage 4a detects the discharge pressure of the main pump 2. The discharge pressure of the main pump 2 at this time is represented by Pmin .
 前述したように、圧力センサ40の検出信号はVPS、圧力センサ41の検出信号はVPLmaxである。コントローラ50は、演算部50a~50hにおいて、圧力センサ40,41の検出信号VPS,VPLmaxと基準回転数指示ダイヤル51の指示信号VECに基づいてメインポンプ2の仮想容量q*を算出する。 As described above, the detection signal of the pressure sensor 40 is V PS and the detection signal of the pressure sensor 41 is V PLmax . The controller 50 calculates the virtual capacity q * of the main pump 2 based on the detection signals V PS and V PLmax of the pressure sensors 40 and 41 and the instruction signal V EC of the reference rotation speed instruction dial 51 in the arithmetic units 50a to 50h. .
 また、コントローラ50は、演算部50rにおいて、演算部50aで求められるメインポンプ2の吐出圧PPSからカットオフ制御特性を模擬する特性を設定したテーブルによって仮想容量q*の制限値q*limitを算出する。ここで、このときのメインポンプ2の吐出圧PPSは、上述したとおりPminであり、演算部50rでは、PPS<Ppsoであるため、図3に示すカットオフ制御特性の仮想容量の制限値q*limitとしてqmaxを算出する。図3中、このときの演算点をA点で示している。 The controller 50, the arithmetic unit 50r, the virtual capacity q * limit value q * limit the discharge pressure P PS of the main pump 2 obtained in the calculating portion 50a by a table which sets the characteristic to simulate the cut-off control characteristics calculate. Here, since the discharge pressure P PS of the main pump 2 at this time is P min as described above, and in the calculation unit 50r, P PS <P pso , the virtual capacity of the cutoff control characteristic shown in FIG. Q max is calculated as the limit value q * limit. In FIG. 3, the calculation point at this time is indicated by point A.
 また、q*≦q*limitであるので、演算部50sにおいて、演算部50hで演算されたロードセンシング制御の仮想容量q*を選択し、これを新たな仮想容量q**として出力する。演算部50jにおいて、仮想容量q**に基準回転数N0を掛けて目標流量Qdを算出する。更に、演算部50kにおいて、目標流量Qdをメインポンプ2の最大容量qmaxで割って、メインポンプ2の目標回転数Ndを算出し、演算部50mにおいて、目標回転数Ndをインバータ60の指令信号VINVに換算し、この指令信号VINVをインバータ60に出力する。 Since q * ≦ q * limit, the calculation unit 50s selects the virtual capacity q * of the load sensing control calculated by the calculation unit 50h, and outputs this as a new virtual capacity q **. The calculating unit 50j, and calculates a target flow rate Q d is multiplied by the reference rotational speed N 0 in the virtual capacity q **. Further, the calculating unit 50k, by dividing the target flow rate Q d at maximum capacity q max of the main pump 2, and calculates the target rotational speed N d of the main pump 2, the calculating unit 50m, an inverter 60 the target speed N d The command signal V INV is converted to the command signal V INV and the command signal V INV is output to the inverter 60.
 ここで、前述したように、全ての操作レバーの中立時には最高負荷圧はタンク圧に等しく、メインポンプ2の吐出圧は、目標LS差圧PGRより大きくなっている。このため、PLS=PPS-PPLmax=PPS>PGRであるので、コントローラ50内で演算される差圧偏差ΔP(=PGR-PLS)は負の値となり、メインポンプ2の仮想容量q*が減少する。この仮想容量q*に対して、演算部50iに最小容量qminと最大容量qmaxが設定されており、仮想容量q*は最小容量qminまで小さくなり、その最小容量qminで保持される。このため、目標流量Qdが減少して最小の値となり、更にメインポンプ2の目標回転数Nd及びインバータ60の指令信号VINVがそれぞれ減少して最小の値となる。その結果、電動機1の回転数は最小値に保持される。 Here, as described above, when all the operation levers are neutral, the maximum load pressure is equal to the tank pressure, and the discharge pressure of the main pump 2 is larger than the target LS differential pressure PGR . Therefore, since P LS = P PS −P PLmax = P PS > P GR , the differential pressure deviation ΔP (= P GR −P LS ) calculated in the controller 50 becomes a negative value, and the main pump 2 The virtual capacity q * decreases. For this virtual volume q *, the minimum capacity q min and maximum capacity q max the calculation unit 50i is set, the virtual capacity q * decreases to a minimum capacity q min, held at its minimum capacity q min . For this reason, the target flow rate Q d is decreased to a minimum value, and the target rotation speed N d of the main pump 2 and the command signal V INV of the inverter 60 are respectively decreased to a minimum value. As a result, the rotation speed of the electric motor 1 is held at the minimum value.
 一方、このときのメインポンプ2の吐出圧は前述したとおりPminであり、Pmin<Pであるためトルク制御装置17のトルク制御傾転ピストン17aは動作せず、メインポンプ2の容量は最大qmaxにある。図4中、このときの動作点をA点で示している。 On the other hand, the discharge pressure of the main pump 2 at this time is P min as described above, and since P min <P 0 , the torque control tilt piston 17a of the torque control device 17 does not operate, and the capacity of the main pump 2 is It is at the maximum q max . In FIG. 4, the operating point at this time is indicated by point A.
 このようにメインポンプ2の容量は最大容量qmaxに保たれるが、電動機1の回転数制御によるロードセンシング制御により、仮想容量q**は演算部50iの制限処理により最小容量qminまで小さくなり、電動機1の回転数が最小値に保持されるので、メインポンプ2によって吐出される流量も最小に保持される。 As described above, the capacity of the main pump 2 is maintained at the maximum capacity q max , but the virtual capacity q ** is reduced to the minimum capacity q min by the limiting process of the arithmetic unit 50i by the load sensing control by the rotation speed control of the electric motor 1. Thus, since the rotation speed of the electric motor 1 is held at the minimum value, the flow rate discharged by the main pump 2 is also held at the minimum value.
 ここで、電動機1の最小回転数をNminとすると、
  Q=qmin×N0=qmax×Nmin
  Nmin=N0×(qmin/qmax
である。
Here, when the minimum rotation speed of the electric motor 1 is N min ,
Q d = q min × N 0 = q max × N min
N min = N 0 × (q min / q max )
It is.
 すなわち、このときのメインポンプ2の実容量をqとし、電動機1の制御後の回転数をN(以下単に回転数Nという)すると、この実容量qと仮想容量q**と回転数Nは
  q=qmax
  q**=qmin
  N=Nmin=N0×(qmin/qmax
 のようになる。
That is, assuming that the actual capacity of the main pump 2 at this time is q and the rotation speed after the control of the electric motor 1 is N (hereinafter simply referred to as the rotation speed N), the actual capacity q, the virtual capacity q **, and the rotation speed N are q = q max
q ** = q min
N = N min = N 0 × (q min / q max )
become that way.
 <ブーム上げ単独操作(軽負荷)>
 操作レバー装置122,123のうちブームに対応する操作レバー装置の操作レバーをブーム上げ方向に操作してブーム上げ操作を行った場合、パイロット圧供給路31から供給されるパイロット圧を元圧として、ブーム用の操作レバー装置のブーム上げ操作用のリモコン弁(図示せず)から、流量制御弁6aの端面受圧部にパイロット圧が作用し、流量制御弁6aが図中で左側に切り換わる。メインポンプ2からの圧油供給路5の圧油は、圧力補償弁7aを介して流量制御弁6aを通り、ブームシリンダ3aのボトム側に供給される。
<Boom raising single operation (light load)>
When the boom raising operation is performed by operating the operation lever of the operation lever device 122 or 123 corresponding to the boom in the boom raising direction, the pilot pressure supplied from the pilot pressure supply path 31 is used as the original pressure. A pilot pressure is applied to an end pressure receiving portion of the flow control valve 6a from a remote control valve (not shown) for boom raising operation of the boom operating lever device, and the flow control valve 6a is switched to the left side in the drawing. Pressure oil in the pressure oil supply path 5 from the main pump 2 passes through the flow rate control valve 6a via the pressure compensation valve 7a and is supplied to the bottom side of the boom cylinder 3a.
 このとき、ブームシリンダ3aの負荷圧は、流量制御弁6aの負荷ポート26a及びシャトル弁9a,9b,9cを経由して、信号油路27からアンロード弁15の受圧部15cに導かれる。アンロード弁15の受圧部15cにブームシリンダ3aの負荷圧が導かれることにより、アンロード弁15のクラッキング圧は、負荷圧+バネ15aのセット圧に設定され、メインポンプ2の吐出圧は負荷圧+バネ15aのセット圧+オーバライド特性の圧力まで上昇する。圧力センサ40,41はこのときのメインポンプ2の吐出圧と最高負荷圧を検出する。 At this time, the load pressure of the boom cylinder 3a is guided from the signal oil passage 27 to the pressure receiving portion 15c of the unload valve 15 via the load port 26a of the flow control valve 6a and the shuttle valves 9a, 9b, 9c. When the load pressure of the boom cylinder 3a is guided to the pressure receiving portion 15c of the unload valve 15, the cracking pressure of the unload valve 15 is set to the load pressure + the set pressure of the spring 15a, and the discharge pressure of the main pump 2 is the load pressure. The pressure rises to the pressure + the set pressure of the spring 15a + the pressure of the override characteristic. The pressure sensors 40 and 41 detect the discharge pressure and the maximum load pressure of the main pump 2 at this time.
 コントローラ50は、演算部50a~50hにおいて、圧力センサ40,41の検出信号VPS,VPLmaxと基準回転数指示ダイヤル51の指示信号VECに基づいてメインポンプ2の仮想容量q*を算出する。 The controller 50 calculates the virtual capacity q * of the main pump 2 based on the detection signals V PS and V PLmax of the pressure sensors 40 and 41 and the instruction signal V EC of the reference rotation speed instruction dial 51 in the arithmetic units 50a to 50h. .
 ここで、ブーム上げの起動時は、メインポンプ2の吐出圧は、上述したアンロード弁15の働きにより、目標LS差圧PGRよりも若干高めに設定されている。 Here, the boom-up when starting, the discharge pressure of the main pump 2, by the action of the unloading valve 15 described above, is set slightly higher than the target LS differential pressure P GR.
 一方、ブーム上げ起動時において、ブームシリンダ3aの負荷圧がメインポンプ2の吐出圧よりも高かった場合は、ロードセンシング差圧PLS(=PPS-PPLmax)はPPS<PPLmaxであるので、負の値となる。その結果、演算部50fで計算される差圧偏差ΔPは、ΔP=PPS-PLS>PGR>0となり、演算部50gで仮想容量変化量Δqが演算される。演算部50gは、前述したように、ΔPが高くなる程、仮想容量変化量Δqも大きくなるように構成されている。また、ブーム上げ起動時にはΔP>0であるため、Δqも>0である。演算部50hでは、1サイクル前の仮想容量q*にそのΔqを加算してロードセンシング制御の仮想容量q*を算出する。Δq>0であるから、仮想容量q*は増加していく。 On the other hand, if the load pressure of the boom cylinder 3a is higher than the discharge pressure of the main pump 2 when the boom is raised, the load sensing differential pressure P LS (= P PS −P PLmax ) is P PS <P PLmax . So it becomes a negative value. As a result, the differential pressure deviation ΔP calculated by the calculation unit 50f is ΔP = P PS −P LS > P GR > 0, and the virtual capacity change amount Δq is calculated by the calculation unit 50g. As described above, the calculation unit 50g is configured such that the virtual capacity change amount Δq increases as ΔP increases. In addition, since ΔP> 0 when the boom is raised, Δq is also> 0. The computing unit 50h calculates the load sensing control virtual capacity q * by adding Δq to the virtual capacity q * one cycle before. Since Δq> 0, the virtual capacity q * increases.
 また、メインポンプ2の吐出圧PPSは演算部50rにも導かれている。演算部50rは、メインポンプ2の吐出圧が設定値Ppso以下である場合、カットオフ制御の仮想容量制限値q*limitはqmaxに保持される。図3中、このときの演算点の一例をB点で示している。メインポンプ2の吐出圧はPである。 Further, the discharge pressure P PS of the main pump 2 is also led to the calculation unit 50r. When the discharge pressure of the main pump 2 is equal to or less than the set value P pso , the calculation unit 50r holds the virtual capacity limit value q * limit for cut-off control at qmax. In FIG. 3, an example of the calculation point at this time is indicated by B point. Discharge pressure of the main pump 2 is P b.
 演算部50sでは、仮想容量q*とqmaxの小さい方を新たな仮想容量q**として出力する。仮想容量q*がqmaxよりも小さい場合は仮想容量q*をそのまま出力し、仮想容量q*がqmaxよりも大きくなると、qmaxを出力する。続いて、演算部50iにおいて、新たな仮想容量q**に対して、最小容量qmin以下とならずかつ最大容量qmax以上とならないように制限が掛けられる。 The arithmetic unit 50s, and outputs a smaller virtual volume q * and q max as a new virtual volume q **. Virtual capacity q * is smaller than q max outputs the virtual capacity q * as it is, the virtual capacity q * is greater than q max, and outputs the q max. Subsequently, in the calculation unit 50i, the new virtual capacity q ** is restricted so as not to be less than the minimum capacity q min and not more than the maximum capacity qmax.
 よって、ブーム上げ起動時は、仮想容量q**は操作レバー中立時の最小容量qminから最大容量qmaxになるまで増加していく。 Therefore, when the boom is raised, the virtual capacity q ** increases from the minimum capacity q min when the control lever is neutral to the maximum capacity q max .
 コントローラ50は、このようにして得られた仮想容量q**に、演算部50jにおいて基準回転数N0を掛けて目標流量Qdを算出する。更に、演算部50kにおいて、目標流量Qdをメインポンプ2の最大容量qmaxで割って、メインポンプ2の目標回転数Ndを算出し、演算部50mにおいて、目標回転数Ndをインバータ60の指令信号VINVに換算し、この指令信号VINVをインバータ60に出力する。 Controller 50, the virtual capacity q ** obtained in this manner, to calculate a target flow rate Q d is multiplied by the reference rotational speed N 0 in the calculating unit 50j. Further, the calculating unit 50k, by dividing the target flow rate Q d at maximum capacity q max of the main pump 2, and calculates the target rotational speed N d of the main pump 2, the calculating unit 50m, an inverter 60 the target speed N d The command signal V INV is converted to the command signal V INV and the command signal V INV is output to the inverter 60.
 このようにブーム起動時には仮想容量q**が増加していくので、電動機1の目標回転数Nd、すなわちインバータ60の指令信号VINVが増加する。 Thus, since the virtual capacity q ** increases when the boom is activated, the target rotational speed N d of the electric motor 1, that is, the command signal V INV of the inverter 60 increases.
 電動機1の回転数は、ロードセンシング差圧PLSが目標LS差圧PGRと等しくなるまで増加を続け、PLS=PGRとなるとΔP=0となるので、Δq=0となり、仮想容量q**はある一定の値に保たれる。 The rotation speed of the electric motor 1 continues to increase until the load sensing differential pressure P LS becomes equal to the target LS differential pressure P GR, and when P LS = P GR , ΔP = 0, so Δq = 0, and the virtual capacity q ** is kept at a certain value.
 このように第2圧油供給油路4aの圧力、すなわちメインポンプ2の吐出圧が最高負荷圧よりも目標LS差圧PGRだけ高くなるように、インバータの指令信号VINVを増減させ、電動機1の回転数を制御し、電動機1を用いたいわゆるロードセンシング制御を行う。 Thus the pressure in the second hydraulic fluid supply passage 4a, i.e. as discharge pressure of the main pump 2 is increased by the target LS differential pressure P GR than the maximum load pressure, to increase or decrease the command signal V INV of the inverter, the motor 1 is controlled so as to perform load sensing control using the electric motor 1.
 一方、このときのメインポンプ2の吐出圧Pbは、軽負荷でPb<Pであるため、トルク制御装置17のトルク制御傾転ピストン17aは動作せず、メインポンプ2の容量は最大にある。図4中、このときの動作点の一例をB点で示している。 On the other hand, since the discharge pressure P b of the main pump 2 at this time is P b <P 0 at a light load, the torque control tilting piston 17a of the torque control device 17 does not operate, and the capacity of the main pump 2 is maximum. It is in. In FIG. 4, an example of the operating point at this time is indicated by point B.
 ここで、電動機1の最大回転数は仮想容量q**がqmaxにあるときの回転数であり、最大回転数をNmaxとすると、
  Q=qmax×N0=qmax×Nmax
  Nmax=N0
 である。
Here, the maximum rotation speed of the electric motor 1 is the rotation speed when the virtual capacity q ** is at q max , and the maximum rotation speed is N max .
Q d = q max × N 0 = q max × N max
N max = N 0
It is.
 すなわち、このときのメインポンプ2の実容量qと仮想容量q**と回転数Nは
  q=qmax
  qmin<q**≦qmax
  Nmin<N≦Nmax
  (Nmin<N≦N0
 のようになる。
That is, the real capacity q, the virtual capacity q **, and the rotational speed N of the main pump 2 at this time are q = q max
q min <q ** ≦ q max
N min <N ≦ N max
(N min <N ≦ N 0 )
become that way.
 <ブーム上げ単独操作(重負荷)>
 ブームシリンダ3aの負荷圧が高くなり、メインポンプ2の吐出圧(圧油供給油路4aの圧力)がトルク制御装置17のバネ17b1,17b2により決まる第2所定圧力P以上になった場合、コントローラ50では、「ブーム上げ単独操作(軽負荷)」の場合と同様に、演算部50a~50c,50f~50hにおいてロードセンシング制御の仮想容量q*が演算される。また、メインポンプ2の吐出圧がP以上で設定値Ppso以下である場合は、演算部50rで演算されるカットオフ制御の制限値q*limitは、qmaxに保持される。図3中、このときの演算点の一例をC点で示している。メインポンプ2の吐出圧はPである。そして、演算部50s,50iにおいては「ブーム上げ単独操作(軽負荷)」の場合と同様の処理が行われ、演算部50j~50mにおいて、仮想容量q**からインバータ60の指令信号VINVが演算され、インバータ60に出力される。したがって、このときも、「ブーム上げ単独操作(軽負荷)」の場合と同様、ロードセンシング制御の仮想容量q*は操作レバーの操作量(要求流量)に応じて増減して最小から最大まで変化し、電動機1の回転数(メインポンプ2の回転数)も同様に操作レバーの操作量(要求流量)に応じて最小から最大まで変化する。
<Boom raising single operation (heavy load)>
Load pressure of the boom cylinder 3a is high, when it becomes the second predetermined pressure P 0 or the discharge pressure of the main pump 2 (the pressure of hydraulic fluid supply passage 4a) is determined by the spring 17b1,17b2 the torque control device 17, In the controller 50, the virtual capacity q * of the load sensing control is calculated in the calculation units 50a to 50c and 50f to 50h as in the case of the “boom raising single operation (light load)”. Further, when the discharge pressure of the main pump 2 is not less than P 0 and not more than the set value P pso , the cut-off control limit value q * limit calculated by the calculation unit 50r is held at q max . In FIG. 3, an example of the calculation point at this time is indicated by C point. The discharge pressure of the main pump 2 is Pc . Then, the calculation units 50s and 50i perform the same processing as in the case of the “boom raising single operation (light load)”, and in the calculation units 50j to 50m, the command signal V INV of the inverter 60 is obtained from the virtual capacity q **. Calculated and output to the inverter 60. Therefore, the virtual capacity q * of load sensing control increases or decreases according to the operation amount (required flow rate) of the operation lever and changes from the minimum to the maximum, as in the case of “Boom raising single operation (light load)”. Similarly, the rotational speed of the electric motor 1 (the rotational speed of the main pump 2) also changes from the minimum to the maximum according to the operation amount (required flow rate) of the operation lever.
 一方、このときは、メインポンプ2の吐出圧が第2所定圧力P以上であるため、トルク制御装置17のトルク制御傾転ピストン17aが作動し、メインポンプ2の容量を減少させる。このためメインポンプ2の吐出圧が上昇するにしたがってメインポンプ2の容量を減少させる、いわゆるトルク制限制御が行われる。図4中、このときの動作点の一例をC1点で示している。メインポンプ2の容量(実容量)はqcである。 On the other hand, at this time, since the discharge pressure of the main pump 2 is equal to or higher than the second predetermined pressure P 0 , the torque control tilting piston 17a of the torque control device 17 is operated to reduce the capacity of the main pump 2. For this reason, so-called torque limit control is performed to reduce the capacity of the main pump 2 as the discharge pressure of the main pump 2 increases. In FIG. 4, an example of the operating point at this time is indicated by a point C1. The capacity (actual capacity) of the main pump 2 is qc.
 ここで、前述したように、図4のTP1,TP2の特性線はバネ17b1,17b2により設定されており、メインポンプ2の吸収トルク(ポンプ吐出圧と容量の積)-したがって電動機1の駆動トルク-は特性線TP1,TP2に接する最大トルク(制限トルク)TMを超えないよう制御される。 Here, as described above, the characteristic lines of TP1 and TP2 in FIG. 4 are set by the springs 17b1 and 17b2, and the absorption torque of the main pump 2 (product of pump discharge pressure and capacity) —therefore, the drive torque of the electric motor 1 -Is controlled so as not to exceed the maximum torque (limit torque) TM in contact with the characteristic lines TP1 and TP2.
 すなわち、メインポンプ2の実容量qと仮想容量q**と回転数Nは
  q=qc
  qmin<q**≦qmax
  Nmin<N≦Nmax
  (Nmin<N≦N0
 のようになる。
That is, the real capacity q, the virtual capacity q **, and the rotational speed N of the main pump 2 are q = qc.
q min <q ** ≦ q max
N min <N ≦ N max
(N min <N ≦ N 0 )
become that way.
 ブームシリンダ3aの負荷圧が更に高くなり、メインポンプ2の吐出圧が設定値Ppso以上の例えばPの圧力となった場合、コントローラ50は、演算部50rにおいて、カットオフ制御特性TP3から、カットオフ制御の制限値q*limitとして図3のM点とN点の間の例えばE点の値q*limite(qmaxとq*limit0の間の値)を演算する。続いて、演算部50sで、仮想容量q*とq*limitの小さい方を新たな仮想容量q**として出力する。続いて、演算部50iにおいて、新たな仮想容量q**に対して制限が掛けられ、演算部50j~50mにおいて、仮想容量q**からインバータ60の指令信号VINVが演算され、インバータ60に出力される。 Load pressure of the boom cylinder 3a is further increased, if the discharge pressure of the main pump 2 becomes a pressure set value P pso more example P e, the controller 50, the arithmetic unit 50r, from the cut-off control characteristics TP3, calculating a cut-off control of the limit value q * limit the value of for example the point E between the point M and point N in FIG. 3 q * limite (values between q max and q * limit0). Subsequently, the computing unit 50s outputs the smaller of the virtual capacity q * and q * limit as a new virtual capacity q **. Subsequently, the calculation unit 50i limits the new virtual capacity q **, and the calculation units 50j to 50m calculate the command signal V INV of the inverter 60 from the virtual capacity q **. Is output.
 このようにブームシリンダ3aの負荷圧が更に高くなり、メインポンプ2の吐出圧が設定値Ppso以上となった場合は、仮想容量q**が制限されるので、電動機1の回転数が低く抑えられる。このとき、メインポンプ2Aは図4中のE1点で動作しており、ポンプ容量(実容量)はqeである。 As described above, when the load pressure of the boom cylinder 3a is further increased and the discharge pressure of the main pump 2 becomes equal to or higher than the set value P pso , the virtual capacity q ** is limited, so that the rotational speed of the electric motor 1 is low. It can be suppressed. At this time, the main pump 2A operates at point E1 in FIG. 4, and the pump capacity (actual capacity) is qe.
 <ブーム上げ単独操作(リリーフ時)>
 ブームシリンダ3aが例えば伸長しストロークエンドに達するような場合、メインポンプ2の吐出圧(第2圧油供給油路4aの圧力)は更に高くなり、リリーフ弁14の設定圧まで上昇していく。リリーフ弁14が作動すると、第2圧油供給油路4aの圧力は、リリーフ弁14のバネによって予め設定された圧力(いわゆるリリーフ圧-Pmax)に保たれる。また、信号油路27には、流量制御弁6aの負荷ポート26aを経由してブームシリンダ3aの負荷圧が導かれるが、この圧力は上記リリーフ圧と等しくなる。つまり、この状態では、第2圧油供給油路4aの圧力は信号油路27の圧力と等しく、リリーフ弁14によって設定されるリリーフ圧と同じとなる。
<Boom raising single operation (at the time of relief)>
For example, when the boom cylinder 3a extends and reaches the stroke end, the discharge pressure of the main pump 2 (pressure of the second pressure oil supply oil passage 4a) further increases and rises to the set pressure of the relief valve 14. When the relief valve 14 is actuated, the pressure in the second pressure oil supply oil passage 4a is maintained at a preset pressure (so-called relief pressure -P max ) by the spring of the relief valve 14. Further, the load pressure of the boom cylinder 3a is led to the signal oil passage 27 via the load port 26a of the flow control valve 6a, and this pressure becomes equal to the relief pressure. That is, in this state, the pressure of the second pressure oil supply oil passage 4a is equal to the pressure of the signal oil passage 27, and is the same as the relief pressure set by the relief valve 14.
 また、コントローラ50には、圧力センサ40による第2圧油供給油路4aの圧力の検出信号VPSと、圧力センサ41による信号油路27の圧力の検出信号VPLmaxが導かれるが、これらの圧力は等しく、リリーフ弁14によって設定されるリリーフ圧と同じである。 The controller 50 is supplied with a pressure detection signal V PS for the pressure of the second pressure oil supply oil passage 4a by the pressure sensor 40 and a pressure detection signal V PLmax for the pressure of the signal oil passage 27 by the pressure sensor 41. The pressures are equal and are the same as the relief pressure set by the relief valve 14.
 このときコントローラ50は、第2圧油供給油路4aの圧力が信号油路27の圧力よりも目標LS差圧PGRだけ高くなるようにメインポンプ2の仮想容量q*を増減させるが、この場合は、PLS=PPS-Plmax=0<PGRであるので、ΔP(=PGR-PLS)は正の値となり、メインポンプ2の仮想容量q*が増加する。 At this time, the controller 50 increases or decreases the virtual capacity q * of the main pump 2 so that the pressure in the second pressure oil supply oil passage 4a is higher than the pressure in the signal oil passage 27 by the target LS differential pressure PGR. In this case, since P LS = P PS −Plmax = 0 <P GR , ΔP (= P GR −P LS ) becomes a positive value, and the virtual capacity q * of the main pump 2 increases.
 しかし、メインポンプ2の吐出圧、すなわち圧油供給油路4aの圧力は、リリーフ弁14が作動するリリーフ時にはPmaxとなるので、演算部50rにおいて、カットオフ制御特性TP3から、カットオフ制御の仮想容量制限値q*limitとして図3のN点の値、すなわち最小値q*limit0を演算する。続いて、演算部50sで、仮想容量q*とq*limitの小さい方を新たな仮想容量q**として出力するが、このときは仮想容量q*>q*limit0であるので、仮想容量q**はq*limit0に保持される。続いて、演算部50iにおいて、新たな仮想容量q**に対して制限が掛けられ、演算部50j~50mにおいて、仮想容量q**からインバータ60の指令信号VINVが演算され、インバータ60に出力される。ここで、仮想容量q**はq*limit0であるので、演算部50jにおいて演算される目標流量QdもQminに近いQsmallであり、演算部50kにおいて演算されるメインポンプ2の目標回転数NdもNminに近いNsmallである。これにより電動機1の回転数はNsmall相当の極めて小さい値に抑えられる。 However, since the discharge pressure of the main pump 2, that is, the pressure of the pressure oil supply oil passage 4a, becomes P max at the time of relief when the relief valve 14 operates, the calculation unit 50r determines the cutoff control from the cutoff control characteristic TP3. As the virtual capacity limit value q * limit, the value at the N point in FIG. 3, that is, the minimum value q * limit0 is calculated. Subsequently, the computing unit 50s outputs the smaller of the virtual capacity q * and q * limit as a new virtual capacity q **. At this time, since the virtual capacity q *> q * limit0, the virtual capacity q ** is held at q * limit0. Subsequently, the calculation unit 50i limits the new virtual capacity q **, and the calculation units 50j to 50m calculate the command signal V INV of the inverter 60 from the virtual capacity q **. Is output. Since the virtual volume q ** is q * limit0, target flow rate Q d calculated in the calculation unit 50j is also Qsmall close to Q min, the target rotational speed of the main pump 2 calculated in the calculation unit 50k N d is also Nsmall close to the N min. Thereby, the rotation speed of the electric motor 1 is suppressed to an extremely small value corresponding to Nsmall.
 一方、このときもメインポンプ2の吐出圧(Pmax)は第2所定圧力P以上であるため、トルク制御装置17のトルク制御傾転ピストン17aが作動し、メインポンプ2の容量を減少させるトルク制限制御が行われる。図4中、このときの動作点をD点で示している。メインポンプ2の容量はトルク制限制御の最小容量qlimit-minまで減少する。 On the other hand, since the discharge pressure (P max ) of the main pump 2 is equal to or higher than the second predetermined pressure P 0 at this time as well, the torque control tilting piston 17a of the torque control device 17 is activated to reduce the capacity of the main pump 2. Torque limit control is performed. In FIG. 4, the operating point at this time is indicated by a point D. The capacity of the main pump 2 decreases to the minimum capacity qlimit-min for torque limit control.
 すなわち、このときのメインポンプ2の実容量qと仮想容量q**と回転数Nは
  q=qlimit-min
  q**=q*limit0
  N=Nsmall
 のようになる。
That is, the real capacity q, virtual capacity q **, and rotation speed N of the main pump 2 at this time are q = qlimit-min
q ** = q * limit0
N = Nsmall
become that way.
 以上はブーム操作を行った場合の動作であるが、アーム307等その他の作業要素に対応する操作レバー装置の操作レバーを操作した場合も同様である。 The above is the operation when the boom operation is performed, but the same applies when the operation lever of the operation lever device corresponding to other work elements such as the arm 307 is operated.
 ~効果~
 <効果1>
 本実施の形態においては、コントローラ50にロードセンシング制御だけでなく、メインポンプ2の吐出圧がメインリリーフ弁14の設定圧力Pmax近くの設定値Ppso以上に上昇したときに、メインポンプ2の吐出流量を減少させるようメインポンプ2の回転数を制御するカットオフ制御を行わせる構成とした。これによりブームシリンダ3a、アームシリンダ3bなどの油圧シリンダがストロークエンドに達したときに、メインポンプ2から吐出される流量を抑えることができるため、メインリリーフ弁14から無駄に消費される動力を抑えることができる。その結果、電動機1の消費電力が減るため、電動機1の電力源であるバッテリ70を長持ちさせることができ、電動式油圧作業機械(油圧ショベル)の稼動時間を延長することができる。更に、メインリリーフ弁14の作動時の発熱も減るため、作動油の冷却システムの小型化が可能となる。
~ Effect ~
<Effect 1>
In the present embodiment, not only the load sensing control but also when the discharge pressure of the main pump 2 rises above the set value P pso near the set pressure P max of the main relief valve 14 to the controller 50, Cut-off control for controlling the rotation speed of the main pump 2 is performed so as to reduce the discharge flow rate. Thereby, when the hydraulic cylinders such as the boom cylinder 3a and the arm cylinder 3b reach the stroke end, the flow rate discharged from the main pump 2 can be suppressed, so that the power consumed in vain from the main relief valve 14 is suppressed. be able to. As a result, since the power consumption of the electric motor 1 is reduced, the battery 70 that is the electric power source of the electric motor 1 can be extended, and the operating time of the electric hydraulic working machine (hydraulic excavator) can be extended. Further, since the heat generation during the operation of the main relief valve 14 is reduced, the hydraulic oil cooling system can be downsized.
 また、同じくブームシリンダ3a、アームシリンダ3bなどの油圧シリンダがストロークエンドに達したときなどに、電動機1の回転数が増加することを抑えることができるので、電動機1の回転数上昇に伴う騒音・振動の増加を抑え、オペレータの快適性が損なわれることを防ぐことができる。 Similarly, when the hydraulic cylinders such as the boom cylinder 3a and the arm cylinder 3b reach the stroke end, it is possible to suppress an increase in the rotational speed of the electric motor 1. The increase in vibration can be suppressed and the operator's comfort can be prevented from being impaired.
 <効果2>
 また、本実施の形態では、コントローラ50の電動機回転数制御により、ロードセンシング制御とカットオフ制御を行うことに加えて、メインポンプ2にトルク制御装置17を設け、メインポンプ2の吐出圧がメインリリーフ弁14の設定圧力Pmax近くの設定値Ppso以下の圧力範囲(P~Ppso範囲内)にあるとき、メインポンプ2の吐出圧が上昇するにしたがってメインポンプ2の吐出流量を減少させ、メインポンプ2の吸収トルクを制限するトルク制御を行わせる構成とした。これによりメインポンプ2の吐出圧が上昇したとき、電動機回転数制御によるカットオフ制御が始まる前の間においても、メインポンプ2の吸収トルクを制限するトルク制御によりメインポンプ2の消費馬力が抑えられ、電動機1の消費電力が減るため、電動機1の電力源であるバッテリ70を更に長持ちさせ、電動式油圧作業機械の稼動時間を更に延長することができる。また、電動機1の消費電力が減るため、電動機1を小型化することができる。
<Effect 2>
Further, in the present embodiment, in addition to performing load sensing control and cut-off control by the motor speed control of the controller 50, the main pump 2 is provided with a torque control device 17, and the discharge pressure of the main pump 2 is maintained at the main pressure. When the pressure of the relief valve 14 is within the pressure range below the set value P pso near the set pressure P max (within the range of P 0 to P pso ), the discharge flow rate of the main pump 2 decreases as the discharge pressure of the main pump 2 increases. Thus, the torque control for limiting the absorption torque of the main pump 2 is performed. As a result, when the discharge pressure of the main pump 2 rises, the horsepower consumed by the main pump 2 is suppressed by the torque control that limits the absorption torque of the main pump 2 even before the cutoff control by the motor rotation speed control starts. Since the power consumption of the electric motor 1 is reduced, the battery 70 that is the electric power source of the electric motor 1 can be further extended, and the operating time of the electric hydraulic working machine can be further extended. Moreover, since the power consumption of the electric motor 1 decreases, the electric motor 1 can be reduced in size.
 この効果を図6A及び図6Bを用いて更に説明する。 This effect will be further described with reference to FIGS. 6A and 6B.
 図6Aは、トルク制御装置を備えない固定容量式油圧ポンプを電動機回転数制御することでロードセンシング制御を行う従来の油圧駆動装置の馬力特性を示す図であり、図6Bは本実施の形態の油圧駆動装置の馬力特性を示す図である。従来の油圧駆動装置における固定容量式の油圧ポンプの容量(一定)は、図3に示した本実施の形態におけるメインポンプ2の最大容量と同じqmaxであると仮定する。 FIG. 6A is a diagram showing the horsepower characteristics of a conventional hydraulic drive device that performs load sensing control by controlling the rotation speed of a fixed displacement hydraulic pump that does not include a torque control device, and FIG. It is a figure which shows the horsepower characteristic of a hydraulic drive device. It is assumed that the capacity (constant) of the fixed displacement hydraulic pump in the conventional hydraulic drive device is the same q max as the maximum capacity of the main pump 2 in the present embodiment shown in FIG.
 従来の油圧駆動装置では、油圧ポンプが固定容量式の油圧ポンプであるため、油圧ポンプの吐出圧が最大Pmaxとなるとき、油圧ポンプの容量は最大qmaxで一定のままである。このためロードセンシング制御により電動機の回転数が最大に制御されたとき、油圧ポンプの吐出流量は最大Qmaxとなり、油圧ポンプの消費馬力は最大吐出圧Pmaxと最大吐出流量Qmaxの積で表される値(図6A斜線部の面積)まで増加する。その結果、電動機の出力馬力が油圧ポンプの消費馬力に対応するHM*と大きくなる。電動機の消費電力が増加する。しかもこのときは、電動機冷却用の消費電力も増大する。したがって、電動機の電力源であるバッテリ(蓄電装置)の放電量が増大し、バッテリの減りが早く、作業機械の稼動時間が短くなってしまうという問題がある。 In the conventional hydraulic drive device, since the hydraulic pump is a fixed displacement hydraulic pump, the displacement of the hydraulic pump remains constant at the maximum q max when the discharge pressure of the hydraulic pump reaches the maximum P max . For this reason, when the rotation speed of the electric motor is controlled to the maximum by load sensing control, the discharge flow rate of the hydraulic pump becomes the maximum Q max , and the consumed horsepower of the hydraulic pump is expressed by the product of the maximum discharge pressure P max and the maximum discharge flow rate Q max. It increases to the value (the area of the shaded area in FIG. 6A). As a result, the output horsepower of the electric motor is increased to HM * corresponding to the consumed horsepower of the hydraulic pump. The power consumption of the electric motor increases. In addition, at this time, power consumption for cooling the motor also increases. Therefore, there is a problem in that the amount of discharge of a battery (power storage device) that is a power source of the electric motor increases, the battery is rapidly depleted, and the operation time of the work machine is shortened.
 また、電動機は油圧ポンプの最大の消費馬力を考慮して出力を決める必要があり、大きな出力の電動機が必要となるという問題もある。 Also, it is necessary to determine the output of the electric motor in consideration of the maximum power consumption of the hydraulic pump, and there is a problem that a motor with a large output is required.
 これに対し、本実施の形態では、電動機回転数制御によりロードセンシング制御を行うだけでなく、メインポンプ2を可変容量型としてトルク制御装置17を設け、「ブーム上げ単独操作(重負荷)」及び「ブーム上げ単独操作(リリーフ時)」の動作例で説明したように、メインポンプ2の吐出圧が上昇したときにメインポンプの吸収トルクが最大トルクTMを超えないように制御している。このようにメインポンプ2のトルク制限制御を行うことにより、メインポンプ2の吐出圧が上昇したときに、メインポンプ2の吸収トルクは最大トルクTM以下に制御され、メインポンプ2の消費馬力は最大トルクTMにそのときのメインポンプ2の回転数をかけた最大馬力HMを超えないように制御される。その結果、メインポンプ2の消費馬力が抑えられ、従来の電動機回転数制御によりロードセンシング制御を行う場合に比べて電動機1の出力馬力もHMに減り、電動機1の消費電力が減少する。これによりバッテリ70を長持ちさせ、電動式油圧作業機械の稼動時間を延長することができる。また、電動機1の出力馬力が減ることで電動機1を小型化することができる。 On the other hand, in the present embodiment, not only load sensing control is performed by controlling the number of revolutions of the motor, but the torque control device 17 is provided with the main pump 2 as a variable displacement type, and “boom raising single operation (heavy load)” and As described in the operation example of “Boom raising single operation (at the time of relief)”, the absorption torque of the main pump is controlled so as not to exceed the maximum torque TM when the discharge pressure of the main pump 2 rises. By performing the torque limit control of the main pump 2 in this way, when the discharge pressure of the main pump 2 increases, the absorption torque of the main pump 2 is controlled to be equal to or less than the maximum torque TM, and the consumed horsepower of the main pump 2 is maximum. Control is performed so as not to exceed the maximum horsepower HM obtained by multiplying the torque TM by the number of rotations of the main pump 2 at that time. As a result, the horsepower consumed by the main pump 2 is suppressed, the output horsepower of the motor 1 is reduced to HM, and the power consumption of the motor 1 is reduced as compared with the case where load sensing control is performed by conventional motor speed control. As a result, the battery 70 can last longer and the operating time of the electric hydraulic working machine can be extended. Moreover, the electric motor 1 can be reduced in size because the output horsepower of the electric motor 1 decreases.
 <効果3>
 また、本実施の形態では、コントローラ50のロードセンシング制御演算部50a~50c,50f~50hに油圧ポンプの仮想容量q*という概念を導入してロードセンシング制御の目標流量Qdを求め、電動機1の回転数を制御することで、電動機1の回転数制御によるロードセンシング制御を行うため、ロードセンシング制御に他の機能を組み込むことが容易となる。
<Effect 3>
Further, in this embodiment, obtains a target flow rate Q d of the load sensing control by introducing the concept of virtual capacity q * of the hydraulic pump load sensing control arithmetic unit 50a ~ 50c of the controller 50, to 50f ~ 50h, the motor 1 Since the load sensing control is performed by controlling the rotational speed of the electric motor 1 by controlling the rotational speed of the motor 1, it is easy to incorporate other functions into the load sensing control.
 例えば、上述したように、演算部50rでカットオフ制御の仮想容量制限値q*limitを演算し、演算部50sで、ロードセンシング制御演算部50a~50c,50f~50hで演算した仮想容量とその仮想容量制限値の小さい方を選択して新たな仮想容量を求め、電動機1の回転数を制御することで、電動機1の回転数制御によるカットオフ制御を容易に実現することができる。 For example, as described above, the virtual capacity limit value q * limit of the cutoff control is calculated by the calculation unit 50r, and the virtual capacity calculated by the load sensing control calculation units 50a to 50c and 50f to 50h is calculated by the calculation unit 50s. By selecting the smaller virtual capacity limit value to obtain a new virtual capacity and controlling the rotational speed of the electric motor 1, it is possible to easily realize cut-off control by controlling the rotational speed of the electric motor 1.
 また、コントローラ50は、基準回転数指示ダイヤル51の指示信号VECに基づいて基準回転数N0を設定し、かつこの基準回転数N0に基づいて基準回転数N0の大きさに応じた目標LS差圧PGRと目標流量Qdを演算する。 The controller 50 sets the reference rotation speed N 0 on the basis of an instruction signal V EC reference rotation speed instruction dial 51, and in accordance with the magnitude of the reference rotation speed N 0 on the basis of the reference rotational speed N 0 A target LS differential pressure PGR and a target flow rate Qd are calculated.
 これによりオペレータが基準回転数指示ダイヤル51を操作して基準回転数N0を小さくすることで、目標LS差圧PGRと目標流量Qdが小さくなるため、電動機1の回転数変化と回転数が小さくなり、良好な微操作性を得ることができる。 As a result, when the operator operates the reference rotation speed instruction dial 51 to reduce the reference rotation speed N 0 , the target LS differential pressure P GR and the target flow rate Q d are reduced. Becomes small and good fine operability can be obtained.
 更に、第2の実施の形態として後述するように、コントローラ50にトルク制御装置17と同様の働きをする制御アルゴリズムを組み込むことも可能となる。 Furthermore, as will be described later as the second embodiment, it is possible to incorporate a control algorithm that operates in the same manner as the torque control device 17 into the controller 50.
 <効果4>
 また、本実施の形態では、メインポンプ2を可変容量型とし、トルク制御装置17がメインポンプ2に設けられたため、トルク制御機能のある通常の油圧ポンプを用いて電動機の回転数制御を行うことにより、ロードセンシング制御とカットオフ制御とトルク制御を容易に実現することができる。
<Effect 4>
In the present embodiment, since the main pump 2 is a variable displacement type and the torque control device 17 is provided in the main pump 2, the rotation speed of the motor is controlled using a normal hydraulic pump having a torque control function. Thus, load sensing control, cutoff control, and torque control can be easily realized.
 図7は、本発明の第2の実施の形態における電動式油圧作業機械の油圧駆動装置の構成を示す図である。本実施の形態も、本発明をフロントスイング式の油圧ショベルの油圧駆動装置に適用した場合のものである。 FIG. 7 is a diagram showing a configuration of a hydraulic drive device for an electric hydraulic work machine according to the second embodiment of the present invention. This embodiment is also a case where the present invention is applied to a hydraulic drive device of a front swing type hydraulic excavator.
 ~構成~
 図7において、本実施の形態に係わる油圧駆動装置は、図1に示す第1の実施の形態と異なり、メインポンプ2Aは固定容量型であり、メインポンプ2Aは馬力制御用のトルク制御装置17を備えていない。一方、コントローラ50Aはメインポンプ2Aのカットオフ制御を模擬する制御機能に加えて、メインポンプ2Aの馬力制御を模擬する制御機能(トルク制御装置の機能)を備えている。
~ Configuration ~
In FIG. 7, the hydraulic drive apparatus according to the present embodiment is different from the first embodiment shown in FIG. 1 in that the main pump 2A is a fixed displacement type, and the main pump 2A is a torque control device 17 for controlling horsepower. Not equipped. On the other hand, the controller 50A has a control function (function of a torque control device) for simulating horsepower control of the main pump 2A in addition to a control function for simulating cut-off control of the main pump 2A.
 図8は、コントローラ50Aの処理内容を示す機能ブロック図である。 FIG. 8 is a functional block diagram showing the processing contents of the controller 50A.
 コントローラ50Aは、図2に示す機能ブロック図の演算部50rに代えて演算部50Arを備えている。 The controller 50A includes a calculation unit 50Ar instead of the calculation unit 50r in the functional block diagram shown in FIG.
 演算部50Arは、トルク制御を模擬する特性(トルク制御特性)とカットオフ制御を模擬した特性(カットオフ制御特性)を組み合わせた特性を設定したテーブルを有している。演算部50Arには演算部50aで変換したメインポンプ2Aの吐出圧PPSが入力され、演算部50Arはそのメインポンプ2Aの吐出圧PPSをテーブルに参照して対応する仮想容量の制限値(最大仮想容量)q*limitを算出する。 The calculation unit 50Ar has a table in which characteristics are set in which characteristics (torque control characteristics) that simulate torque control and characteristics (cutoff control characteristics) that simulate cutoff control are combined. The discharge pressure P PS of the main pump 2A converted by the calculation unit 50a is input to the calculation unit 50Ar, and the calculation unit 50Ar refers to the discharge pressure P PS of the main pump 2A in the table and the corresponding virtual capacity limit value ( Maximum virtual capacity) q * limit is calculated.
 図9は、演算部50Arに設定されるトルク制御を模擬する特性(トルク制御特性)とカットオフ制御を模擬した特性(カットオフ制御特性)を組み合わせた特性を示す図である。図10はメインポンプ2Aのトルク特性を示す図である。 FIG. 9 is a diagram showing characteristics obtained by combining characteristics (torque control characteristics) simulating torque control set in the arithmetic unit 50Ar and characteristics (cut-off control characteristics) simulating cut-off control. FIG. 10 is a diagram showing the torque characteristics of the main pump 2A.
 図10に示すように、メインポンプ2Aは固定容量型であるため、メインポンプ2Aの容量はメインポンプ2Aの吐出圧の全範囲にわたって一定であり、特性線TP0上の最大容量qmaxにある。また、メインポンプ2Aの吐出圧が上昇するとき、メインポンプ2Aの消費トルクは吐出圧の全範囲にわたって直線比例的に増大する。 As shown in FIG. 10, since the main pump 2A is a fixed capacity type, the capacity of the main pump 2A is constant over the entire range of the discharge pressure of the main pump 2A and is at the maximum capacity q max on the characteristic line TP0. Further, when the discharge pressure of the main pump 2A increases, the consumption torque of the main pump 2A increases linearly over the entire range of the discharge pressure.
 演算部50Arに設定されるトルク制御特性は、メインポンプ2Aの吐出圧がPより低いときのメインポンプ2Aの最大容量の特性線TP0に対応する特性TP0r2と、メインポンプ2Aの吐出圧がP以上になったときのトルク一定曲線TP4と、メインポンプ2Aの吐出圧が設定値Ppsoを超えたときのカットオフ制御特性TP5から構成されている。カットオフ制御特性TP5は、メインポンプ2Aの吐出圧が設定値Ppsoから最大吐出圧Pmaxまで上昇するとき、制限値q*limitがq*limit1から最小値q*limit2まで急峻かつ線形的に小さくなるように設定されている。設定値Ppsoは、前述したように、吸収トルク一定制御の開始圧力P(後述)よりも高く、最大吐出圧Pmaxに近い圧力である。また、制限値q*limit1は、メインポンプ2Aの吐出圧が設定値Ppsoにあるときのトルク一定曲線TP4上の値である。最小値q*limit2はメインポンプ2Aの最小容量qminに近い小さな容量であり、例えば最小容量qminである。 Torque control characteristics set to the arithmetic unit 50Ar is a characteristic TP0r2 the discharge pressure of the main pump 2A corresponds to the characteristic line TP0 maximum capacity of the main pump 2A when less than P 0, the discharge pressure of the main pump 2A P This is composed of a constant torque curve TP4 when it becomes 0 or more and a cutoff control characteristic TP5 when the discharge pressure of the main pump 2A exceeds the set value P pso . The cutoff control characteristic TP5 indicates that the limit value q * limit is steep and linear from q * limit1 to the minimum value q * limit2 when the discharge pressure of the main pump 2A increases from the set value P pso to the maximum discharge pressure P max. It is set to be smaller. As described above, the set value P pso is higher than the starting pressure P 0 (described later) of the constant absorption torque control, and is close to the maximum discharge pressure P max . The limit value q * limit1 is a value on the constant torque curve TP4 when the discharge pressure of the main pump 2A is at the set value P pso . The minimum value q * limit2 is a small volume close to the minimum capacity q min of the main pump 2A, for example, a minimum capacity q min.
 このように演算部50Arにトルク制御特性とカットオフ制御特性を組み合わせた特性が設定されている結果、演算部50Arでは、メインポンプ2Aの吐出圧PPSが低く、PPS<Pでは特性線TP0r2に基づいてq*limit=qmaxが演算され、メインポンプ2Aの吐出圧PPSが上昇し、PPS≧Pになると、トルク一定曲線TP4に基づいてq*limit=qlimitが演算される。また、メインポンプ2Aの吐出圧PPSが更に上昇し、PPS≧Ppsoになると、カットオフ制御特性TP5に基づいてq*limit=qlimitが演算され、ブームシリンダ3aがストロークエンドに達し、メインポンプ2Aの吐出圧が最大のPmaxに達すると、最小容量q*limit2(=qmin)が演算される。 As a result of the combination of the torque control characteristic and the cutoff control characteristic set in the arithmetic unit 50Ar as described above, the arithmetic unit 50Ar has a low discharge pressure P PS of the main pump 2A, and a characteristic line when P PS <P 0. q * limit = q max based on TP0r2 is calculated, the discharge pressure P PS of the main pump 2A rises and becomes P PS ≧ P 0, q * limit = qlimit is calculated based on the torque constant curve TP4 . Further, when the discharge pressure P PS of the main pump 2A further increases and P PS ≧ P pso , q * limit = qlimit is calculated based on the cutoff control characteristic TP5, the boom cylinder 3a reaches the stroke end, and the main When the discharge pressure of the pump 2A reaches the maximum P max, the minimum capacity q * limit2 (= q min) is calculated.
 演算部50sは、演算部50hで演算されたロードセンシング制御の仮想容量q*と演算部50rで求めた仮想容量の制限値q*limitの小さい方を選択して新たな仮想容量q**として出力する。 The calculation unit 50s selects a smaller one of the virtual capacity q * of the load sensing control calculated by the calculation unit 50h and the limit value q * limit of the virtual capacity obtained by the calculation unit 50r as a new virtual capacity q **. Output.
 それ以外の処理(演算部50a~50h、演算部50i~50mの処理)は図2に示したものと同じである。 Other processing (processing of the calculation units 50a to 50h and calculation units 50i to 50m) is the same as that shown in FIG.
 コントローラ50Aの上述した機能とインバータ60および圧力センサ40,41は、第1の実施の形態と同様、メインポンプ2Aの吐出圧が複数のアクチュエータ3a,3b,3c…の最高負荷圧より目標差圧だけ高くなるようメインポンプ2Aの回転数を制御するロードセンシング制御と、メインポンプ2Aの吐出圧がメインリリーフ弁14の設定圧力Pmax近くの第1所定圧力Ppso以上に上昇したときに、メインポンプ2Aの吐出流量を減少させるようメインポンプ2Aの回転数を制御するカットオフ制御とを行う電動機回転数制御装置200Aを構成する。 The above-described function of the controller 50A, the inverter 60, and the pressure sensors 40 and 41 are similar to the first embodiment in that the discharge pressure of the main pump 2A is higher than the maximum load pressure of the actuators 3a, 3b, 3c. Load sensing control for controlling the rotational speed of the main pump 2A so as to increase only when the discharge pressure of the main pump 2A rises above the first predetermined pressure P pso near the set pressure P max of the main relief valve 14 An electric motor rotation speed control device 200A that performs cut-off control for controlling the rotation speed of the main pump 2A so as to reduce the discharge flow rate of the pump 2A is configured.
 また、コントローラ50Aの演算部50a~50c,50f~50hは、圧力センサ40,41が検出したメインポンプ2Aの吐出圧PPS及び最高負荷圧PPLmaxと目標LS差圧PGRとに基づいて、メインポンプ2Aの吐出圧と最高負荷圧との差圧PLSと目標LS差圧PGRとの差圧偏差ΔPの正負に応じて増減するメインポンプ2Aの仮想容量q*を演算するロードセンシング制御演算部201を構成する。 The calculation units 50a to 50c and 50f to 50h of the controller 50A are based on the discharge pressure P PS and the maximum load pressure P PLmax of the main pump 2A detected by the pressure sensors 40 and 41, and the target LS differential pressure P GR . Load sensing control for calculating the virtual capacity q * of the main pump 2A that increases or decreases according to the positive or negative of the differential pressure deviation ΔP between the differential pressure P LS between the discharge pressure of the main pump 2A and the maximum load pressure and the target LS differential pressure P GR The calculation unit 201 is configured.
 コントローラ50Aの演算部50Ar,50sは、圧力センサ40が検出したメインポンプ2Aの吐出圧に基づいて、メインポンプ2Aの吐出圧がメインリリーフ弁14の設定圧力Pmax近くの第1所定圧力Ppso以上に上昇すると急減するカットオフ制御の仮想容量制限値q*limitを演算し、ロードセンシング制御演算部で演算した仮想容量q*と仮想容量制限値q*limitの小さい方を選択して新たな仮想容量q**を求める容量制限制御演算部202Aを構成する。 Based on the discharge pressure of the main pump 2A detected by the pressure sensor 40, the calculation units 50Ar and 50s of the controller 50A are configured to have a first predetermined pressure P pso that the discharge pressure of the main pump 2A is close to the set pressure P max of the main relief valve 14. Calculate the virtual capacity limit value q * limit of the cutoff control that suddenly decreases when it rises above, and select the smaller one of the virtual capacity q * and virtual capacity limit value q * limit calculated by the load sensing control calculation unit A capacity limit control calculation unit 202A for obtaining the virtual capacity q ** is configured.
 また、コントローラ50Aの演算部50Ar及び50sは、コントローラ50Aにコントローラ50Aの一機能として組み込まれ、メインポンプ2Aの吐出圧が上昇したときにメインポンプ2Aの吐出流量を減少させることでメインポンプ2Aの吸収トルクが予め設定した最大トルクを超えないように制御するトルク制御装置を構成する。 In addition, the calculation units 50Ar and 50s of the controller 50A are incorporated in the controller 50A as a function of the controller 50A, and when the discharge pressure of the main pump 2A increases, the discharge flow rate of the main pump 2A is decreased to reduce the main pump 2A. A torque control device is configured to control the absorption torque so as not to exceed a preset maximum torque.
 更に、演算部50Ar,50sは、圧力センサ40が検出したメインポンプ2Aの吐出圧に基づいて、メインポンプ2Aの吐出圧が、第2所定圧力P以上で、メインリリーフ弁14の設定圧力Pmax近くの第1所定圧力Ppso以下の圧力範囲(P~Ppso範囲内)にあるときは、メインポンプ2Aの吐出圧が高くなるにしたがって減少するトルク制限制御の仮想容量制限値q*limiを演算し、メインポンプ2Aの吐出圧がメインリリーフ弁14の設定圧力Pmax近くの第1所定圧力Ppso以上に上昇するとトルク制限制御の仮想容量の制限値から急減するカットオフ制御の仮想容量制限値q*limiを演算し、ロードセンシング制御演算部で演算した仮想容量q*と仮想容量制限値q*limiの小さい方を選択して新たな仮想容量q**を求める容量制限制御演算部202Aを構成する。 Further, the arithmetic unit 50aR, 50s, based on the discharge pressure of the main pump 2A, the pressure sensor 40 detects the discharge pressure of the main pump 2A is at a second predetermined pressure P 0 or more, the set pressure P of the main relief valve 14 A virtual capacity limit value q * for torque limit control that decreases as the discharge pressure of the main pump 2A increases when the pressure is in a pressure range (in the range of P 0 to P pso ) that is less than the first predetermined pressure P pso near max . When the limi is calculated and the discharge pressure of the main pump 2A rises above the first predetermined pressure P pso near the set pressure P max of the main relief valve 14, the virtual of the cutoff control that suddenly decreases from the limit value of the virtual capacity of the torque limit control Capacity for calculating a new virtual capacity q ** by calculating the capacity limit value q * limi and selecting the smaller one of the virtual capacity q * and the virtual capacity limit value q * limi calculated by the load sensing control calculation unit Constituting the limit control calculation unit 202A.
 演算部50Ar,50sは、圧力センサ40が検出したメインポンプ2Aの吐出圧に基づいて、メインポンプ2Aの吐出圧が高くなるにしたがって減少する仮想容量の制限値q*limitを演算し、上記ロードセンシング制御演算部(演算部50a~50c,50f~50h)で計算した仮想容量q*と仮想容量の制限値q*limitの小さい方を選択して新たな仮想容量q**を求めるトルク制限制御演算部であるということもできる。 Based on the discharge pressure of the main pump 2A detected by the pressure sensor 40, the calculation units 50Ar, 50s calculate a virtual capacity limit value q * limit that decreases as the discharge pressure of the main pump 2A increases, and the load Torque limit control for selecting a smaller virtual capacity q * and virtual capacity limit value q * limit calculated by the sensing control calculation units (calculation units 50a to 50c, 50f to 50h) to obtain a new virtual capacity q ** It can also be said that it is a calculation part.
 ~動作~
 次に本実施の形態の動作を説明する。
~ Operation ~
Next, the operation of the present embodiment will be described.
 <操作レバー中立時>
 操作レバー装置122,123,124の操作レバーを含む全ての操作装置が中立にあるときは、第1の実施の形態の「操作レバー中立時」の動作例で説明したように、メインポンプ2Aの吐出圧はアンロード弁15のバネ15aのセット圧相当のPminである。この場合、前述したように、コントローラ50Aの演算部50fで演算される差圧偏差ΔP(=PGR-PLS)は負の値であり、ロードセンシング制御の仮想容量q*は減少する。
<When the control lever is neutral>
When all the operation devices including the operation levers of the operation lever devices 122, 123, and 124 are neutral, as described in the operation example of “operation lever neutral” in the first embodiment, the main pump 2A The discharge pressure is P min corresponding to the set pressure of the spring 15 a of the unload valve 15. In this case, as described above, the differential pressure deviation ΔP (= P GR −P LS ) calculated by the calculation unit 50f of the controller 50A is a negative value, and the virtual capacity q * of the load sensing control decreases.
 一方、コントローラ50Aの演算部50aで求められるメインポンプ2Aの吐出圧PPSはPminであり、演算部50Arでは、PPS<Pであるため、トルク制御を模擬する特性から仮想容量の制限値q*limitとしてqmaxを算出する。図9中、このときの演算点をA1点で示している。 On the other hand, since the discharge pressure P PS of the main pump 2A obtained by the calculation unit 50a of the controller 50A is P min and P PS <P 0 in the calculation unit 50Ar, the virtual capacity is limited from the characteristics that simulate torque control. Q max is calculated as the value q * limit. In FIG. 9, the calculation point at this time is indicated by point A1.
 ここで、q*≦q*limitであるので、演算部50sでは、演算部50hで演算されたロードセンシング制御の仮想容量q*を選択し、これを新たな仮想容量q**として出力する。 Here, since q * ≦ q * limit, the calculation unit 50s selects the virtual capacity q * of the load sensing control calculated by the calculation unit 50h, and outputs this as a new virtual capacity q **.
 これ以後の処理は、第1の実施の形態における「操作レバー中立時」の場合と同じである。 The subsequent processing is the same as in the case of “when the control lever is neutral” in the first embodiment.
 ここで、仮想容量q**は演算部50iの制限処理により最小容量qminまで小さくなり、目標流量Qd、メインポンプ2Aの目標回転数Nd、インバータ60の指令信号VINVがそれぞれ最小の値となる。これにより電動機1の回転数が最小値に保持され、メインポンプ2Aの吐出流量も最小に保持される。 Here, the virtual capacity q ** is reduced to the minimum capacity q min by the limiting process of the calculation unit 50i, and the target flow rate Q d , the target rotation speed N d of the main pump 2A, and the command signal V INV of the inverter 60 are minimum. Value. Thereby, the rotation speed of the electric motor 1 is held at the minimum value, and the discharge flow rate of the main pump 2A is also held at the minimum value.
 一方、メインポンプ2Aは図10中のA1点で動作しており、ポンプ容量(実容量)はqmax(固定)である。 On the other hand, the main pump 2A operates at point A1 in FIG. 10, and the pump capacity (actual capacity) is q max (fixed).
 すなわち、メインポンプ2Aの実容量qと仮想容量q*と回転数Nは
  q=qmax(固定)
  q**=qmin
  N=Nmin=N0×(qmin/qmax
 のようになる。
That is, the real capacity q, virtual capacity q *, and rotation speed N of the main pump 2A are q = q max (fixed)
q ** = q min
N = N min = N 0 × (q min / q max )
become that way.
 <ブーム上げ単独操作(軽負荷)>
 操作レバー装置122,123のうちブームに対応する操作レバー装置の操作レバーをブーム上げ方向に操作してブーム上げ操作を行った場合、コントローラ50Aで演算されるロードセンシング制御の仮想容量q*は操作レバーの操作量(要求流量)に応じて増減する。このとき、メインポンプ2Aの吐出圧が設定値P以下である場合、演算部50Arではトルク制御を模擬する特性(図9の特性線TP0r2)から仮想容量の制限値q*limitとしてqmaxを算出する。図9中、このときの演算点をB1点で示している。メインポンプ2Aの吐出圧はPである。
<Boom raising single operation (light load)>
When the boom raising operation is performed by operating the operation lever of the operation lever device 122, 123 corresponding to the boom in the boom raising direction, the load sensing control virtual capacity q * calculated by the controller 50A is operated. Increase or decrease according to the lever operation amount (required flow rate). At this time, when the discharge pressure of the main pump 2A is equal to or less than the set value P 0 , the calculation unit 50Ar sets q max as a virtual capacity limit value q * limit from a characteristic that simulates torque control (characteristic line TP0r2 in FIG. 9). calculate. In FIG. 9, the calculation point at this time is indicated by point B1. Discharge pressure of the main pump 2A is a P b.
 そしてこの場合も、q*≦q*limitであるので、演算部50sでは演算部50hで演算されたロードセンシング制御の仮想容量q*を選択し、これを新たな仮想容量q**として出力する。 Also in this case, since q * ≦ q * limit, the calculation unit 50s selects the virtual capacity q * of the load sensing control calculated by the calculation unit 50h, and outputs this as a new virtual capacity q **. .
 これ以後の処理は第1の実施の形態における「ブーム上げ単独操作(軽負荷)」の場合と同じである。 The subsequent processing is the same as that in the case of the “boom raising single operation (light load)” in the first embodiment.
 ここで、仮想容量q**は操作レバーの操作量(要求流量)に応じて増減し、演算部50iの制限処理により最小から最大まで変化する。その結果、電動機1の回転数(メインポンプ2Aの回転数)も同様に操作レバーの操作量(要求流量)に応じて最小から最大まで変化する。 Here, the virtual capacity q ** increases or decreases in accordance with the operation amount (required flow rate) of the operation lever, and changes from the minimum to the maximum by the restriction process of the calculation unit 50i. As a result, the rotational speed of the electric motor 1 (the rotational speed of the main pump 2A) similarly changes from the minimum to the maximum according to the operation amount (required flow rate) of the operation lever.
 一方、メインポンプ2Aは図10中のB1点で動作しており、ポンプ容量(実容量)はqmax(固定)である。 On the other hand, the main pump 2A operates at point B1 in FIG. 10, and the pump capacity (actual capacity) is q max (fixed).
 すなわち、このときのメインポンプ2Aの実容量qと仮想容量q*と回転数Nは
  q=qmax(固定)
  qmin<q**≦qmax
  Nmin<N≦Nmax
  (Nmin<N≦N0
 のようになる。
That is, the real capacity q, the virtual capacity q *, and the rotation speed N of the main pump 2A at this time are q = q max (fixed)
q min <q ** ≦ q max
N min <N ≦ N max
(N min <N ≦ N 0 )
become that way.
 <ブーム上げ単独操作(重負荷)>
 ブームシリンダ3aの負荷圧が高くなる重負荷時においても、コントローラ50Aで演算されるロードセンシング制御の仮想容量q*は操作レバーの操作量(要求流量)に応じて増減する。このとき、重負荷時でメインポンプ2Aの吐出圧がP以上で設定値Ppso以下である場合は、演算部50Arでは、トルク制御を模擬する特性(図9のトルク一定曲線TP4)から仮想容量の制限値q*limitとしてqlimit(<qmax)を算出する。図9中、このときの演算点をC2点で示している。メインポンプ2Aの吐出圧はPである。C2点ではq*limit=q*limitcである。
<Boom raising single operation (heavy load)>
Even during a heavy load in which the load pressure of the boom cylinder 3a increases, the virtual capacity q * of the load sensing control calculated by the controller 50A increases or decreases according to the operation amount (required flow rate) of the operation lever. At this time, when the discharge pressure of the main pump 2A is not less than P 0 and not more than the set value P pso at the time of heavy load, the calculation unit 50Ar makes a hypothesis from the characteristic of torque control (torque constant curve TP4 in FIG. 9). calculating the qlimit (<q max) as the limit value q * limit of capacity. In FIG. 9, the calculation point at this time is indicated by point C2. The discharge pressure of the main pump 2A is Pc . At the point C2, q * limit = q * limitc.
 演算部50sでは、仮想容量q*と仮想容量の制限値q*limitの小さい方を選択して新たな仮想容量q**として出力する。すなわち、q*≦q*limitの場合はq*を選択し、q*>q*limitの場合はq*limitを選択し、それぞれこれらを新たな仮想容量q**として出力する。 In the calculation unit 50s, the smaller one of the virtual capacity q * and the virtual capacity limit value q * limit is selected and output as a new virtual capacity q **. That is, when q * ≦ q * limit, q * is selected, and when q *> q * limit, q * limit is selected, and these are output as new virtual capacity q **.
 これ以後の処理は、第1の実施の形態における「ブーム上げ単独操作(重負荷)」の場合と同じである。 The subsequent processing is the same as in the case of the “boom raising single operation (heavy load)” in the first embodiment.
 ここで、仮想容量q**がq*limitに制限されるので、目標流量Qd、メインポンプ2Aの目標回転数Nd、インバータ60の指令信号VINVがそれぞれ同様に制限され、電動機1の回転数が制限される。 Here, since the virtual capacity q ** is limited to q * limit, the target flow rate Q d , the target rotational speed N d of the main pump 2A, and the command signal V INV of the inverter 60 are similarly limited, and the electric motor 1 The rotation speed is limited.
 このようにコントローラ50の内部に、第1の実施の形態におけるトルク制御装置17と同じ働きを持つ制御機能を持ち、メインポンプ2Aの吸収トルクが最大トルク(制限トルク)TMを超えないよう制御される。 Thus, the controller 50 has a control function having the same function as the torque control device 17 in the first embodiment, and is controlled so that the absorption torque of the main pump 2A does not exceed the maximum torque (limit torque) TM. The
 一方、メインポンプ2Aは図10中のC3点で動作しており、ポンプ容量(実容量)はqmax(固定)である。 On the other hand, the main pump 2A operates at a point C3 in FIG. 10, and the pump capacity (actual capacity) is q max (fixed).
 このときのP点の仮想容量制限値q*limit1に対応する回転数をNlimit1とすると、メインポンプ2Aの実容量qと仮想容量q**と回転数Nは
  q=qmax(固定)
  q*limit1<q**≦qmax
  Nlimit1<N≦Nmax
 のようになる。
Assuming that the rotation speed corresponding to the virtual capacity limit value q * limit1 at point P is Nlimit1, the real capacity q, virtual capacity q **, and rotation speed N of the main pump 2A are q = q max (fixed).
q * limit1 <q *** ≦ q max
Nlimit1 <N ≦ N max
become that way.
 ブームシリンダ3aの負荷圧が更に高くなり、メインポンプ2Aの吐出圧が設定値Ppso以上の例えばPの圧力となった場合、コントローラ50は、演算部50Arにおいて、カットオフ制御特性TP5から、カットオフ制御の制限値q*limitとして図9のP点とQ点の間のF点の値q*limitfを演算する。続いて、演算部50sで、仮想容量q*とq*limitの小さい方を新たな仮想容量q**として出力する。続いて、演算部50iにおいて、新たな仮想容量q**に対して制限が掛けられ、演算部50j~50mにおいて、仮想容量q**からインバータ60の指令信号VINVが演算され、インバータ60に出力される。 Load pressure of the boom cylinder 3a is further increased, if the discharge pressure of the main pump 2A becomes the pressure set value P pso more example P f, the controller 50, the computing section 50aR, from the cut-off control characteristic TP5, The value q * limitf at the point F between the points P and Q in FIG. 9 is calculated as the limit value q * limit for the cutoff control. Subsequently, the computing unit 50s outputs the smaller of the virtual capacity q * and q * limit as a new virtual capacity q **. Subsequently, the calculation unit 50i limits the new virtual capacity q **, and the calculation units 50j to 50m calculate the command signal V INV of the inverter 60 from the virtual capacity q **. Is output.
 このようにブームシリンダ3aの負荷圧が更に高くなり、メインポンプ2Aの吐出圧が設定値Ppso以上となった場合は、仮想容量q**が制限されるので、電動機1の回転数が低く抑えられる。このとき、メインポンプ2Aは図10中のF1点で動作しており、ポンプ容量(実容量)はqmax(固定)である。 In this way, when the load pressure of the boom cylinder 3a further increases and the discharge pressure of the main pump 2A becomes equal to or higher than the set value P pso , the virtual capacity q ** is limited, so the rotational speed of the electric motor 1 is low. It can be suppressed. At this time, the main pump 2A operates at point F1 in FIG. 10, and the pump capacity (actual capacity) is q max (fixed).
 <ブーム上げ単独操作(リリーフ時)>
 ブームシリンダ3aが例えば伸長しストロークエンドに達するような場合は、前述したように、メインポンプ2Aの吐出圧はリリーフ圧Pmaxに保たれ、最高負荷圧もリリーフ圧と同じとなる。図10中、このときメインポンプ2AはD1点で動作している。この場合、前述したように、コントローラ50Aの演算部50fで演算される差圧偏差ΔP(=PGR-PLS)は正の値となり、ロードセンシング制御の仮想容量q*は増加する。
<Boom raising single operation (at the time of relief)>
For example, when the boom cylinder 3a extends to reach the stroke end, as described above, the discharge pressure of the main pump 2A is maintained at the relief pressure Pmax , and the maximum load pressure is the same as the relief pressure. In FIG. 10, at this time, the main pump 2A is operating at the point D1. In this case, as described above, the differential pressure deviation ΔP (= P GR −P LS ) calculated by the calculation unit 50f of the controller 50A becomes a positive value, and the virtual capacity q * of the load sensing control increases.
 一方、コントローラ50Aの演算部50aで求められるメインポンプ2Aの吐出圧PPSはPmaxであるため、演算部50Arでは、カットオフ制御特性TP5から、カットオフ制御の制限値q*limitとして図9のQ点の値、すなわち最小容量q*limit2(=qmin)を演算する。続いて、q*>q*limitであるため、演算部50sでは、演算部50rで演算した仮想容量の制限値q*limitを選択し、これを新たな仮想容量q**として出力する。 On the other hand, since the discharge pressure P PS of the main pump 2A obtained by the calculation unit 50a of the controller 50A is P max , the calculation unit 50Ar uses the cutoff control characteristic TP5 as the cutoff control limit value q * limit as shown in FIG. Q point value, that is, the minimum capacity q * limit2 (= q min ) is calculated. Subsequently, since q *> q * limit, the calculation unit 50s selects the virtual capacity limit value q * limit calculated by the calculation unit 50r, and outputs this as a new virtual capacity q **.
 これ以後の処理は、「ブーム上げ単独操作(リリーフ時)」の場合と同じである。 The subsequent processing is the same as in the case of “Boom raising single operation (at the time of relief)”.
 ここで、仮想容量q**はqlimit2(=qmin)に制限されるので、目標流量Qd、メインポンプ2Aの目標回転数Nd、インバータ60の指令信号VINVもそれぞれ同様に最小の値に制限され、電動機1の回転数が最小のNminに制限される。 Here, since the virtual capacity q ** is limited to qlimit2 (= q min ), the target flow rate Q d , the target rotational speed N d of the main pump 2A, and the command signal V INV of the inverter 60 are similarly minimum values. The number of rotations of the electric motor 1 is limited to the minimum N min .
 すなわち、このときのメインポンプ2Aの実容量qと仮想容量q**と回転数Nは
  q=qmax(固定)
  q**=qlimit2(=qmin
  N=Nmin
 のようになる。
That is, the real capacity q, virtual capacity q **, and rotation speed N of the main pump 2A at this time are q = q max (fixed)
q ** = qlimit2 (= q min )
N = N min
become that way.
 以上はブーム操作を行った場合の動作であるが、アーム307等その他の作業要素に対応する操作レバー装置の操作レバーを操作した場合も同様である。 The above is the operation when the boom operation is performed, but the same applies when the operation lever of the operation lever device corresponding to other work elements such as the arm 307 is operated.
 ~効果~
 <効果1>
 本実施の形態によっても、ブームシリンダ3a、アームシリンダ3bなどの油圧シリンダがストロークエンドに達したときに、メインポンプ2Aから吐出される流量を抑えることができるため、メインリリーフ弁14から無駄に消費される動力を抑えることができる。その結果、電動機1の消費電力が減るため、電動機1の電力源であるバッテリ70を長持ちさせることができ、電動式油圧作業機械(油圧ショベル)の稼動時間を延長することができる。更に、メインリリーフ弁14の作動時の発熱も減るため、作動油の冷却システムの小型化が可能となる。
~ Effect ~
<Effect 1>
Also in this embodiment, when the hydraulic cylinders such as the boom cylinder 3a and the arm cylinder 3b reach the stroke end, the flow rate discharged from the main pump 2A can be suppressed, so that the main relief valve 14 consumes wastefully. Can be suppressed. As a result, since the power consumption of the electric motor 1 is reduced, the battery 70 that is the electric power source of the electric motor 1 can be extended, and the operating time of the electric hydraulic working machine (hydraulic excavator) can be extended. Further, since the heat generation during the operation of the main relief valve 14 is reduced, the hydraulic oil cooling system can be downsized.
 また、同じくブームシリンダ3a、アームシリンダ3bなどの油圧シリンダがストロークエンドに達したときなどに、電動機1の回転数が増加することを抑えることができるので、電動機1の回転数上昇に伴う騒音・振動の増加を抑え、オペレータの快適性が損なわれることを防ぐことができる。 Similarly, when the hydraulic cylinders such as the boom cylinder 3a and the arm cylinder 3b reach the stroke end, it is possible to suppress an increase in the rotational speed of the electric motor 1. The increase in vibration can be suppressed and the operator's comfort can be prevented from being impaired.
 また、メインポンプ2Aの吐出圧が上昇したとき、電動機回転数制御によるカットオフ制御が始まる前の間においても、電動機回転数制御によるトルク制御によりメインポンプ2Aの消費馬力が抑えられ、電動機1の消費電力が減るため、電動機1の電力源であるバッテリ70を更に長持ちさせ、電動式油圧作業機械の稼動時間を更に延長することができる。また、電動機1の消費電力が減るため、電動機1を小型化することができる。 In addition, when the discharge pressure of the main pump 2A increases, the consumed horsepower of the main pump 2A is suppressed by the torque control based on the motor rotational speed control even before the cutoff control based on the motor rotational speed control is started. Since power consumption is reduced, the battery 70 that is the power source of the electric motor 1 can be further extended, and the operating time of the electric hydraulic work machine can be further extended. Moreover, since the power consumption of the electric motor 1 decreases, the electric motor 1 can be reduced in size.
 <効果2>
 また、本実施の形態によれば、メインポンプ2Aが固定容量型であるので、メインポンプ2Aのサイズを小さく抑えることができ、省スペースを実現することができる。
<Effect 2>
In addition, according to the present embodiment, since the main pump 2A is a fixed capacity type, the size of the main pump 2A can be kept small, and space saving can be realized.
 <その他>
 以上の実施の形態は本発明の精神の範囲内で種々の変更が可能である。例えば、上記実施の形態では、圧力補償弁7a,7b,7c…は、流量制御弁6a,6b,6c…のメータイン絞り部の下流側に配置され、全ての流量制御弁6a,6b,6c…の下流圧力を同じ最大負荷圧に制御することで流量制御弁6a,6b,6c…の前後差圧を同じ差圧に制御する後置きタイプとしたが、流量制御弁6a,6b,6c…のメータイン絞り部の上流側に配置され、メータイン絞り部の前後差圧を設定値に制御する前置きタイプであってもよい。
<Others>
Various modifications can be made to the above embodiment within the spirit of the present invention. For example, in the above-described embodiment, the pressure compensating valves 7a, 7b, 7c,... Are arranged on the downstream side of the meter-in restricting portions of the flow control valves 6a, 6b, 6c, and all the flow control valves 6a, 6b, 6c,. The downstream pressure of the flow control valves 6a, 6b, 6c... Is controlled to the same differential pressure by controlling the downstream pressure to the same maximum load pressure, but the flow control valves 6a, 6b, 6c. It may be a front-end type that is arranged upstream of the meter-in throttle and controls the differential pressure across the meter-in throttle to a set value.
 また、上記実施の形態では、作業機械が油圧ショベルである場合について説明したが、メインポンプの吐出油に基づいて複数のアクチュエータを駆動する作業機械であれば、油圧ショベル以外建設機械(例えば油圧クレーン、ホイール式ショベル等)に本発明を適用し、同様の効果を得ることができる。 Moreover, although the case where the work machine is a hydraulic excavator has been described in the above embodiment, a construction machine other than a hydraulic excavator (for example, a hydraulic crane) may be used as long as it is a work machine that drives a plurality of actuators based on oil discharged from the main pump. A similar effect can be obtained by applying the present invention to a wheel excavator or the like.
1 電動機
2,2A 油圧ポンプ(メインポンプ)
2a 第1圧油供給油路
3a,3b,3c,… アクチュエータ
4 コントロールバルブ
4a 第2圧油供給油路
6a,6b,6c,… 流量制御弁
7a,7b,7c,… 圧力補償弁
8a,8b,8c,… 油路
9a,9b,9c,… シャトル弁
14 メインリリーフ弁
15 アンロード弁
15a バネ
15b 開方向作動の受圧部
15c 閉方向作動の受圧部
17 トルク制御装置
17a トルク制御傾転ピストン
17b1,17b2 バネ
21a,21b,21c,… 閉方向作動の受圧部
22a,22b,22c,… 開方向作動の受圧部
24 ゲートロックレバー
25a,25b,25c,… 油路
26a,26b,26c,… 負荷ポート
27,27a,27b,27c,… 信号油路
30 パイロットポンプ
31,31a パイロット油路
32 パイロットリリーフ弁
38 パイロット油圧源
40,41 圧力センサ
50,50A コントローラ
50a~50m 演算部
50r,50Ar,50s 演算部
51 基準回転数指示ダイヤル51
60 インバータ
61 チョッパ
70 バッテリ
100 ゲートロック弁
122,123 操作レバー装置
200,200A 電動機回転数制御装置
201 ロードセンシング制御演算部
202,202A 容量制限制御演算部
q* 仮想容量
q*limit 仮想容量の制限値
q** 新たな仮想容量
TP1,TP2 トルク制御の特性線
TP3 カットオフ制御特性
TP4 トルク一定曲線
TP5 カットオフ制御特性
1 Electric motor 2, 2A Hydraulic pump (main pump)
2a First pressure oil supply oil passages 3a, 3b, 3c, ... Actuator 4 Control valve 4a Second pressure oil supply oil passages 6a, 6b, 6c, ... Flow rate control valves 7a, 7b, 7c, ... Pressure compensation valves 8a, 8b , 8c, ... Oil passages 9a, 9b, 9c, ... Shuttle valve 14 Main relief valve 15 Unload valve 15a Spring 15b Pressure receiving part 15c for opening direction operation Pressure receiving part 17 for closing direction operation Torque control device 17a Torque control tilt piston 17b1 , 17b2 Springs 21a, 21b, 21c,... Pressure-receiving portions 22a, 22b, 22c, operating in the closing direction ... Pressure-receiving portions 24 operating in the opening direction Gate lock levers 25a, 25b, 25c, ... Oil paths 26a, 26b, 26c, ... Port 27, 27a, 27b, 27c, ... Signal oil passage 30 Pilot pump 31, 31a Pilot oil passage 32 Pilot relay Valve 38 Pilot hydraulic power source 40, 41 Pressure sensor 50, 50A Controllers 50a to 50m Calculation units 50r, 50Ar, 50s Calculation unit 51 Reference rotation speed instruction dial 51
60 Inverter 61 Chopper 70 Battery 100 Gate lock valve 122, 123 Operation lever device 200, 200A Motor rotation speed control device 201 Load sensing control calculation unit 202, 202A Capacity limit control calculation unit q * Virtual capacity q * limit Limit value of virtual capacity q ** New virtual capacity TP1, TP2 Torque control characteristic line TP3 Cut-off control characteristic TP4 Constant torque curve TP5 Cut-off control characteristic

Claims (7)

  1.  電動機と、
     この電動機により駆動される油圧ポンプと、
     この油圧ポンプから吐出された圧油により駆動される複数のアクチュエータと、
     前記油圧ポンプから複数のアクチュエータへ供給される圧油の流量を制御する複数の流量制御弁と、
     前記油圧ポンプの吐出油を前記複数の流量制御弁に供給する圧油供給油路に接続され、前記油圧ポンプの吐出圧が設定圧力以上になると開状態となって前記圧油供給油路の圧油をタンクに戻すリリーフ弁と、
     前記電動機に電力を与える蓄電装置とを備えた電動式油圧作業機械の油圧駆動装置において、
     前記油圧ポンプの吐出圧が前記複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるよう前記油圧ポンプの回転数を制御するロードセンシング制御と、前記油圧ポンプの吐出圧が前記リリーフ弁の設定圧力近くの第1所定圧力以上に上昇したときに、前記油圧ポンプの吐出流量を減少させるよう前記油圧ポンプの回転数を制御するカットオフ制御とを行う電動機回転数制御装置とを備えることを特徴とする電動式油圧作業機械の油圧駆動装置。
    An electric motor,
    A hydraulic pump driven by this electric motor;
    A plurality of actuators driven by pressure oil discharged from the hydraulic pump;
    A plurality of flow rate control valves for controlling the flow rate of pressure oil supplied from the hydraulic pump to a plurality of actuators;
    It is connected to a pressure oil supply oil passage that supplies the discharge oil of the hydraulic pump to the plurality of flow control valves, and is opened when the discharge pressure of the hydraulic pump exceeds a set pressure. A relief valve that returns oil to the tank;
    In a hydraulic drive device of an electric hydraulic working machine comprising a power storage device for supplying electric power to the electric motor,
    Load sensing control for controlling the rotational speed of the hydraulic pump so that the discharge pressure of the hydraulic pump is higher than the maximum load pressure of the plurality of actuators by a target differential pressure, and the discharge pressure of the hydraulic pump is a set pressure of the relief valve An electric motor rotation speed control device for performing a cutoff control for controlling the rotation speed of the hydraulic pump so as to decrease the discharge flow rate of the hydraulic pump when the pressure rises to a nearby first predetermined pressure or more. Hydraulic drive device for electric hydraulic work machine.
  2.  請求項1に記載の電動式油圧作業機械の油圧駆動装置において、
     前記電動機回転数制御装置は、
     前記油圧ポンプの吐出圧を検出する第1圧力センサと、
     前記最大負荷圧を検出する第2圧力センサと、
     前記電動機の回転数を制御するインバータと、
     コントローラとを備え、
     前記コントローラは、
     前記第1及び第2圧力センサが検出した前記油圧ポンプの吐出圧及び前記最高負荷圧と目標LS差圧とに基づいて、前記油圧ポンプの吐出圧と前記最高負荷圧との差圧と前記目標LS差圧との差圧偏差の正負に応じて増減する前記油圧ポンプの仮想容量を演算するロードセンシング制御演算部と、
     前記第1圧力センサが検出した前記油圧ポンプの吐出圧に基づいて、前記油圧ポンプの吐出圧が前記第1所定圧力以上に上昇すると急減するカットオフ制御の前記仮想容量の制限値を演算し、前記ロードセンシング制御演算部で演算した前記仮想容量と前記仮想容量の制限値の小さい方を選択して新たな仮想容量を求める容量制限制御演算部とを有し、
     前記コントローラは、前記新たな仮想容量に前記基準回転数を乗じて前記油圧ポンプの目標流量を演算し、前記油圧ポンプの吐出流量が前記目標流量となるよう前記電動機の回転数を制御するための制御指令を前記インバータに出力することを特徴とする電動式油圧作業機械の油圧駆動装置。
    The hydraulic drive device for an electric hydraulic work machine according to claim 1,
    The motor rotation speed control device is:
    A first pressure sensor for detecting a discharge pressure of the hydraulic pump;
    A second pressure sensor for detecting the maximum load pressure;
    An inverter for controlling the rotational speed of the electric motor;
    With a controller,
    The controller is
    Based on the discharge pressure of the hydraulic pump, the maximum load pressure, and the target LS differential pressure detected by the first and second pressure sensors, the differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure and the target A load sensing control calculation unit for calculating a virtual capacity of the hydraulic pump that increases or decreases according to the positive or negative of the differential pressure deviation from the LS differential pressure;
    Based on the discharge pressure of the hydraulic pump detected by the first pressure sensor, the limit value of the virtual capacity of the cutoff control that suddenly decreases when the discharge pressure of the hydraulic pump rises above the first predetermined pressure is calculated, A capacity limit control calculation unit that calculates a new virtual capacity by selecting a smaller one of the virtual capacity calculated by the load sensing control calculation unit and the limit value of the virtual capacity;
    The controller calculates the target flow rate of the hydraulic pump by multiplying the new virtual capacity by the reference rotational speed, and controls the rotational speed of the electric motor so that the discharge flow rate of the hydraulic pump becomes the target flow rate. A hydraulic drive device for an electric hydraulic working machine, wherein a control command is output to the inverter.
  3.  請求項1に記載の電動式油圧作業機械の油圧駆動装置において、
     前記油圧ポンプの吐出圧が第2所定圧力以上で前記第1所定圧力以下の圧力範囲にあるとき、前記油圧ポンプの吐出圧が上昇するにしたがって前記油圧ポンプの吐出流量を減少させることで前記油圧ポンプの吸収トルクが予め設定した最大トルクを超えないように制御するトルク制御装置を更に備えることを特徴とする電動式油圧作業機械の油圧駆動装置。
    The hydraulic drive device for an electric hydraulic work machine according to claim 1,
    When the discharge pressure of the hydraulic pump is in a pressure range that is greater than or equal to a second predetermined pressure and less than or equal to the first predetermined pressure, the discharge flow rate of the hydraulic pump is decreased as the discharge pressure of the hydraulic pump increases, thereby reducing the hydraulic pressure. A hydraulic drive device for an electric hydraulic working machine, further comprising a torque control device for controlling the absorption torque of the pump so as not to exceed a preset maximum torque.
  4.  請求項2に記載の電動式油圧作業機械の油圧駆動装置において、
     前記油圧ポンプは可変容量型の油圧ポンプであり、
     前記油圧ポンプに設けられ、前記油圧ポンプの吐出圧が上昇したときに前記油圧ポンプの吐出流量を減少させることで前記油圧ポンプの吸収トルクが予め設定した最大トルクを超えないように制御するレギュレータを更に備えることを特徴とする電動式油圧作業機械の油圧駆動装置。
    The hydraulic drive device for an electric hydraulic work machine according to claim 2,
    The hydraulic pump is a variable displacement hydraulic pump,
    A regulator provided in the hydraulic pump for controlling the absorption torque of the hydraulic pump so as not to exceed a preset maximum torque by decreasing a discharge flow rate of the hydraulic pump when a discharge pressure of the hydraulic pump increases; A hydraulic drive device for an electric hydraulic work machine, further comprising:
  5.  請求項2に記載の電動式油圧作業機械の油圧駆動装置において、
     前記油圧ポンプは固定容量型の油圧ポンプであり、
     前記コントローラの一機能として組み込まれ、前記油圧ポンプの吐出圧が上昇したときに前記油圧ポンプの吐出流量を減少させることで前記油圧ポンプの吸収トルクが予め設定した最大トルクを超えないように制御するトルク制御装置を更に備えることを特徴とする電動式油圧作業機械の油圧駆動装置。
    The hydraulic drive device for an electric hydraulic work machine according to claim 2,
    The hydraulic pump is a fixed displacement hydraulic pump,
    It is incorporated as a function of the controller, and controls so that the absorption torque of the hydraulic pump does not exceed a preset maximum torque by reducing the discharge flow rate of the hydraulic pump when the discharge pressure of the hydraulic pump increases. A hydraulic drive device for an electric hydraulic work machine, further comprising a torque control device.
  6.  請求項2に記載の電動式油圧作業機械の油圧駆動装置において、
     前記油圧ポンプは固定容量型の油圧ポンプであり、
     前記容量制限制御演算部は、
     前記第1圧力センサが検出した前記油圧ポンプの吐出圧に基づいて、前記油圧ポンプの吐出圧が第2所定圧力以上で前記第1所定圧力以下の圧力範囲にあるときは、前記油圧ポンプの吐出圧が高くなるにしたがって減少するトルク制限制御の仮想容量の制限値を演算し、前記油圧ポンプの吐出圧が前記第1所定圧力以上に上昇すると前記トルク制限制御の仮想容量の制限値から急減するカットオフ制御の仮想容量の制限値を演算し、前記ロードセンシング制御演算部で演算した前記仮想容量と前記仮想容量の制限値の小さい方を選択して新たな仮想容量を求めることを特徴とする電動式油圧作業機械の油圧駆動装置。
    The hydraulic drive device for an electric hydraulic work machine according to claim 2,
    The hydraulic pump is a fixed displacement hydraulic pump,
    The capacity restriction control calculation unit is
    Based on the discharge pressure of the hydraulic pump detected by the first pressure sensor, when the discharge pressure of the hydraulic pump is in a pressure range not less than a second predetermined pressure and not more than the first predetermined pressure, the discharge of the hydraulic pump The limit value of the virtual capacity of torque limit control that decreases as the pressure increases is calculated, and when the discharge pressure of the hydraulic pump rises above the first predetermined pressure, the virtual capacity limit value of the torque limit control rapidly decreases. A virtual capacity limit value for cut-off control is calculated, and a new virtual capacity is obtained by selecting a smaller one of the virtual capacity calculated by the load sensing control calculation unit and the limit value of the virtual capacity. Hydraulic drive device for electric hydraulic work machine.
  7.  請求項2に記載の電動式油圧作業機械の油圧駆動装置において、
     前記基準回転数を指示する操作装置を更に備え、
     前記コントローラは、前記操作装置の指示信号に基づいて前記基準回転数を設定し、かつこの基準回転数に基づいて前記基準回転数の大きさに応じた前記目標LS差圧と前記目標流量を演算することを特徴とする電動式油圧作業機械の油圧駆動装置。
    The hydraulic drive device for an electric hydraulic work machine according to claim 2,
    An operation device for instructing the reference rotational speed;
    The controller sets the reference rotational speed based on an instruction signal from the operating device, and calculates the target LS differential pressure and the target flow rate according to the reference rotational speed based on the reference rotational speed. A hydraulic drive device for an electric hydraulic work machine.
PCT/JP2013/081795 2012-11-27 2013-11-26 Hydraulic drive device of electric hydraulic machinery WO2014084213A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380046824.6A CN104619996B (en) 2012-11-27 2013-11-26 The fluid pressure drive device of electrodynamic type hydraulic working machine
JP2014550200A JP6005176B2 (en) 2012-11-27 2013-11-26 Hydraulic drive device for electric hydraulic work machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012259053 2012-11-27
JP2012-259053 2012-11-27

Publications (1)

Publication Number Publication Date
WO2014084213A1 true WO2014084213A1 (en) 2014-06-05

Family

ID=50827849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081795 WO2014084213A1 (en) 2012-11-27 2013-11-26 Hydraulic drive device of electric hydraulic machinery

Country Status (3)

Country Link
JP (1) JP6005176B2 (en)
CN (1) CN104619996B (en)
WO (1) WO2014084213A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186841A1 (en) * 2018-03-28 2019-10-03 株式会社日立建機ティエラ Hydraulic drive device for construction machine
JP2021042602A (en) * 2019-09-12 2021-03-18 住友建機株式会社 Shovel
WO2021059337A1 (en) * 2019-09-24 2021-04-01 株式会社日立建機ティエラ Electric hydraulic working machine
CN113027870A (en) * 2021-03-17 2021-06-25 四川百纳科技有限责任公司 Independent heat dissipation system of all-terrain armored vehicle and control method thereof
CN113508207A (en) * 2019-03-29 2021-10-15 住友建机株式会社 Excavator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6858723B2 (en) * 2018-03-28 2021-04-14 日立建機株式会社 Wheel loader
KR102391357B1 (en) * 2018-09-05 2022-04-27 가부시키가이샤 히다치 겡키 티에라 Hydraulic drive of electric hydraulic working machine
WO2020184606A1 (en) * 2019-03-11 2020-09-17 住友建機株式会社 Shovel and shovel control method
CN110091703B (en) * 2019-05-31 2021-03-09 吉林大学 Pump displacement limiting method for extreme state of hub hydraulic driving system
CN110512686B (en) * 2019-08-02 2022-03-04 江苏恒立液压科技有限公司 Electric control hydraulic control system and engineering machinery with same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074505A (en) * 2001-08-30 2003-03-12 Mitsubishi Heavy Ind Ltd Injection molding machine, hydraulic operating mechanism of injection molding machine, and controlling method of the same
JP2003172302A (en) * 2001-12-06 2003-06-20 Yuken Kogyo Co Ltd Inverter drive hydraulic unit
JP2004036421A (en) * 2002-07-01 2004-02-05 Nikuni:Kk Method and device for supplying liquid
JP2008256037A (en) * 2007-04-03 2008-10-23 Hitachi Constr Mach Co Ltd Electric hydraulic work machine
JP2008256224A (en) * 2008-07-31 2008-10-23 Daishin Shoko:Kk Hydraulic pressure source distributed hydraulic unit using variable piston pump in oil immersed condition
JP2009255476A (en) * 2008-04-21 2009-11-05 Meiki Co Ltd Injection molding machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN171213B (en) * 1988-01-27 1992-08-15 Hitachi Construction Machinery
JP3115887B2 (en) * 1990-09-28 2000-12-11 株式会社小松製作所 Variable circuit of pump displacement in closed center load sensing system
JPH08135606A (en) * 1994-11-10 1996-05-31 Shin Caterpillar Mitsubishi Ltd Discharge quantity control device for hydraulic pump
CN1170068C (en) * 2002-04-23 2004-10-06 浙江大学 Electrohydraulic distributing control system for motion of several executors in engineering machinery
JP2007024103A (en) * 2005-07-13 2007-02-01 Hitachi Constr Mach Co Ltd Hydraulic drive mechanism
CN201896601U (en) * 2010-11-23 2011-07-13 宝鸡宝石特种车辆有限责任公司 Multi-channel load sensing hydraulic transmission system of cement truck for well cementation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074505A (en) * 2001-08-30 2003-03-12 Mitsubishi Heavy Ind Ltd Injection molding machine, hydraulic operating mechanism of injection molding machine, and controlling method of the same
JP2003172302A (en) * 2001-12-06 2003-06-20 Yuken Kogyo Co Ltd Inverter drive hydraulic unit
JP2004036421A (en) * 2002-07-01 2004-02-05 Nikuni:Kk Method and device for supplying liquid
JP2008256037A (en) * 2007-04-03 2008-10-23 Hitachi Constr Mach Co Ltd Electric hydraulic work machine
JP2009255476A (en) * 2008-04-21 2009-11-05 Meiki Co Ltd Injection molding machine
JP2008256224A (en) * 2008-07-31 2008-10-23 Daishin Shoko:Kk Hydraulic pressure source distributed hydraulic unit using variable piston pump in oil immersed condition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019186841A1 (en) * 2018-03-28 2020-04-30 株式会社日立建機ティエラ Hydraulic drive for construction machinery
EP3591239A4 (en) * 2018-03-28 2021-01-06 Hitachi Construction Machinery Tierra Co., Ltd. Hydraulic drive device for construction machine
WO2019186841A1 (en) * 2018-03-28 2019-10-03 株式会社日立建機ティエラ Hydraulic drive device for construction machine
US11214940B2 (en) 2018-03-28 2022-01-04 Hitachi Construction Machinery Tierra Co., Ltd. Hydraulic drive system for construction machine
CN113508207A (en) * 2019-03-29 2021-10-15 住友建机株式会社 Excavator
JP2021042602A (en) * 2019-09-12 2021-03-18 住友建機株式会社 Shovel
JP7396838B2 (en) 2019-09-12 2023-12-12 住友建機株式会社 excavator
CN113994092A (en) * 2019-09-24 2022-01-28 株式会社日立建机Tierra Electric hydraulic working machine
JPWO2021059337A1 (en) * 2019-09-24 2021-04-01
JP7261894B2 (en) 2019-09-24 2023-04-20 株式会社日立建機ティエラ electric hydraulic working machine
WO2021059337A1 (en) * 2019-09-24 2021-04-01 株式会社日立建機ティエラ Electric hydraulic working machine
CN113027870A (en) * 2021-03-17 2021-06-25 四川百纳科技有限责任公司 Independent heat dissipation system of all-terrain armored vehicle and control method thereof
CN113027870B (en) * 2021-03-17 2022-10-18 四川百纳科技有限责任公司 Independent heat dissipation system of all-terrain armored vehicle and control method thereof

Also Published As

Publication number Publication date
CN104619996B (en) 2017-10-10
CN104619996A (en) 2015-05-13
JP6005176B2 (en) 2016-10-12
JPWO2014084213A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5914510B2 (en) Hydraulic drive device for electric hydraulic work machine
JP6005176B2 (en) Hydraulic drive device for electric hydraulic work machine
JP5687150B2 (en) Construction machinery
JP6106097B2 (en) Power regeneration device for work machine and work machine
KR101973872B1 (en) Hydraulic drive system for work machine
JP6291394B2 (en) Hydraulic drive system for work machines
WO2013121922A1 (en) Construction machinery
WO2013031768A1 (en) Hydraulic drive device for construction machine
US9026297B2 (en) Control system for hybrid construction machine
JP6005185B2 (en) Hydraulic drive unit for construction machinery
KR102460499B1 (en) shovel
JPWO2012105345A1 (en) Power regeneration device for work machines
JP6450487B1 (en) Hydraulic excavator drive system
KR101747519B1 (en) Hybrid construction machine
US20120233995A1 (en) Hybrid operating machine
US10330128B2 (en) Hydraulic control system for work machine
JP5823932B2 (en) Hydraulic drive unit for construction machinery
JP2011226491A (en) Turning hydraulic circuit of hydraulic shovel
JPWO2018164238A1 (en) Excavator
JP5265595B2 (en) Control device for hybrid construction machine
JP5357073B2 (en) Pump controller for construction machinery
JP6989548B2 (en) Construction machinery
JP2013044398A (en) Hydraulic drive system
JP2006194273A (en) Fluid pressure control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550200

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859570

Country of ref document: EP

Kind code of ref document: A1