JP2008256037A - Electric hydraulic work machine - Google Patents

Electric hydraulic work machine Download PDF

Info

Publication number
JP2008256037A
JP2008256037A JP2007097270A JP2007097270A JP2008256037A JP 2008256037 A JP2008256037 A JP 2008256037A JP 2007097270 A JP2007097270 A JP 2007097270A JP 2007097270 A JP2007097270 A JP 2007097270A JP 2008256037 A JP2008256037 A JP 2008256037A
Authority
JP
Japan
Prior art keywords
frequency
hydraulic
electric
pressure
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007097270A
Other languages
Japanese (ja)
Inventor
Taisuke Ota
泰典 太田
Eiji Egawa
栄治 江川
Katsuyoshi Miyaji
勝善 宮路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2007097270A priority Critical patent/JP2008256037A/en
Publication of JP2008256037A publication Critical patent/JP2008256037A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize the structure of a system for load sensing. <P>SOLUTION: This electric hydraulic work machine includes: a fixed displacement hydraulic pump 11 driven by an electric motor 10; a plurality of hydraulic actuators 12 driven by pressurized oil from the hydraulic pump 11; an electric lever device 9 outputting an electric manipulate signal as a driving command of each hydraulic actuator 12 by lever operation; control valves 21, 22 controlling pressurized oil flows from the hydraulic pump 11 to the hydraulic actuators 12 according to the manipulate signal; and an electric motor control means 50 controlling the rotation of the electric motor 10. The electric motor control means 50 has: differential pressure detecting means 31, 32 detecting differential pressure between the discharge pressure Pp of the hydraulic pump 11 and the maximum load pressure PLmax of the plurality of hydraulic actuators 12; a frequency calculating means 52 calculating a target frequency fa of the electric motor 10 so that the differential pressure detected by the differential pressure detecting means 31, 32 is made constant; and driving means 53 to 55 each driving the electric motor 10 at a driving frequency f corresponding to the target frequency fa. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電動機により油圧ポンプを駆動して各種作業を行う電動式油圧作業機に関する。   The present invention relates to an electric hydraulic working machine that performs various operations by driving a hydraulic pump with an electric motor.

従来、複数の油圧アクチュエータを複合操作して作業を行う油圧ショベル等において、可変容量型油圧ポンプのポンプ圧と油圧アクチュエータの最大負荷圧との差圧が設定値になるようにポンプ押しのけ容積を制御するロードセンシング式油圧制御装置が知られている(例えば特許文献1参照)。   Conventionally, in a hydraulic excavator that performs operations by combining multiple hydraulic actuators, the displacement of the pump is controlled so that the differential pressure between the pump pressure of the variable displacement hydraulic pump and the maximum load pressure of the hydraulic actuator becomes the set value. A load sensing type hydraulic control device is known (see, for example, Patent Document 1).

特開平7−229169号公報JP-A-7-229169

しかしながら、上記特許文献1記載の装置のようにポンプ圧とアクチュエータの最大負荷圧との差圧に応じてレギュレータを調節し、ポンプ押しのけ容積を制御する場合、多数の油圧配管の取り回しが必要となり、装置が大型化する傾向にある。そのため、省スペースが要求されるミニショベル等に適用することは困難である。また、上記特許文献1記載の装置のような油圧によるロードセンシング式油圧制御装置では、装置を正常に機能させるために各種油圧機器のチューニングが必要となり、手間がかかるという問題があった。   However, when the regulator is adjusted according to the differential pressure between the pump pressure and the maximum load pressure of the actuator as in the device described in Patent Document 1, and the pump displacement volume is controlled, a large number of hydraulic pipes must be routed. There is a tendency for the apparatus to become larger. Therefore, it is difficult to apply to a mini excavator or the like that requires space saving. Further, in the load sensing type hydraulic control apparatus using hydraulic pressure such as the apparatus described in Patent Document 1, tuning of various hydraulic devices is necessary to make the apparatus function normally, which is troublesome.

本発明による電動式油圧作業機は、電動機により駆動される固定容量式の油圧ポンプと、油圧ポンプからの圧油により駆動される少なくとも2つの第1および第2の油圧アクチュエータと、レバー操作により第1および第2の油圧アクチュエータの駆動指令である電気的な操作信号を出力する電気レバー装置と、操作信号に応じて油圧ポンプから第1および第2の油圧アクチュエータへの圧油の流れをそれぞれ制御する第1および第2の制御弁と、電動機の回転を制御する電動機制御手段とを備え、電動機制御手段は、油圧ポンプの吐出圧と第1および第2の油圧アクチュエータの最大負荷圧との差圧を検出する差圧検出手段と、差圧検出手段により検出された差圧が一定となるように電動機の目標周波数を演算する周波数演算手段と、目標周波数に応じた駆動周波数で電動機を駆動する駆動手段とを有することを特徴とする。
予め電動機が所定トルクを出力するための上限周波数と下限周波数を設定し、目標周波数が下限周波数以上かつ上限周波数以下のときは目標周波数で電動機を駆動し、目標周波数が上限周波数より大きいとき、または下限周波数より小さいときは、上限周波数または下限周波数で電動機を駆動することもできる。
第1および第2の油圧アクチュエータの要求流量が油圧ポンプの最大吐出流量を超えた状態であるサチレーション状態を検出するサチレーション検出手段と、サチレーション検出手段によりサチレーション状態が検出されると、レバー操作による第1および第2の油圧アクチュエータへの圧油の供給を同一の割合で制限するように第1および第2の制御弁を制御する制御弁制御手段とをさらに備えることもできる。
この場合、目標周波数が上限周波数を超えるとサチレーション状態と判定することができる。
第1および第2の制御弁の前後差圧を負荷圧に拘わらず一定とする圧力補償弁をさらに設けることもできる。
An electric hydraulic working machine according to the present invention includes a fixed displacement hydraulic pump driven by an electric motor, at least two first and second hydraulic actuators driven by pressure oil from the hydraulic pump, and a lever operation. An electric lever device that outputs an electrical operation signal that is a drive command for the first and second hydraulic actuators, and controls the flow of pressure oil from the hydraulic pump to the first and second hydraulic actuators according to the operation signal, respectively. First and second control valves, and electric motor control means for controlling the rotation of the electric motor. The electric motor control means includes a difference between the discharge pressure of the hydraulic pump and the maximum load pressure of the first and second hydraulic actuators. A differential pressure detecting means for detecting pressure, a frequency calculating means for calculating a target frequency of the electric motor so that the differential pressure detected by the differential pressure detecting means is constant, and a target And having a driving means for driving the motor at a drive frequency corresponding to the wave number.
An upper limit frequency and a lower limit frequency for the motor to output a predetermined torque are set in advance, and when the target frequency is not less than the lower limit frequency and not more than the upper limit frequency, the motor is driven at the target frequency, and when the target frequency is greater than the upper limit frequency, or When smaller than the lower limit frequency, the electric motor can be driven at the upper limit frequency or the lower limit frequency.
Saturation detection means for detecting a saturation state in which the required flow rates of the first and second hydraulic actuators exceed the maximum discharge flow rate of the hydraulic pump, and when the saturation detection state is detected by the saturation detection means, Control valve control means for controlling the first and second control valves so as to limit the supply of pressure oil to the first and second hydraulic actuators at the same rate may be further provided.
In this case, the saturation state can be determined when the target frequency exceeds the upper limit frequency.
A pressure compensation valve that makes the differential pressure across the first and second control valves constant regardless of the load pressure may be further provided.

本発明によれば、ポンプ吐出圧と油圧アクチュエータの最大負荷圧との差圧が所定値となるように電動機の回転を制御するので、油圧配管の取り回しが少なくて済み、ミニショベル等に容易に適用できる。   According to the present invention, the rotation of the electric motor is controlled so that the differential pressure between the pump discharge pressure and the maximum load pressure of the hydraulic actuator becomes a predetermined value. Applicable.

−第1の実施の形態−
以下、図1〜図7を参照して本発明による電動式油圧作業機の第1の実施の形態について説明する。
図1は、本発明による電動式油圧作業機の一例である油圧ショベルの側面図であり、とくに小旋回が可能なミニショベルを示している。油圧ショベルは、走行体1と、旋回装置3を介して走行体1上に旋回可能に搭載された旋回体2と、旋回体2に回動可能に取り付けられたブーム5、アーム6、バケット7からなる作業用フロント4とを有する。
-First embodiment-
Hereinafter, a first embodiment of an electric hydraulic working machine according to the present invention will be described with reference to FIGS.
FIG. 1 is a side view of a hydraulic excavator which is an example of an electric hydraulic working machine according to the present invention, and particularly shows a mini excavator capable of small turning. The hydraulic excavator includes a traveling body 1, a revolving body 2 that is turnably mounted on the traveling body 1 via a turning device 3, a boom 5, an arm 6, and a bucket 7 that are rotatably attached to the revolving body 2. And a work front 4.

ブーム5はブームシリンダ5aにより回動可能に支持され、アーム6はアームシリンダ6aにより回動可能に支持され、バケット7はバケットシリンダ7aにより回動可能に支持されている。これら各シリンダ5a〜7aは、運転室8に設けられた操作レバー9により操作される。なお、アーム先端部にバケット7を取り付けたが、バケット7の代わりに他の作業用アタッチメントを取り付けることもできる。   The boom 5 is rotatably supported by the boom cylinder 5a, the arm 6 is rotatably supported by the arm cylinder 6a, and the bucket 7 is rotatably supported by the bucket cylinder 7a. These cylinders 5 a to 7 a are operated by an operation lever 9 provided in the cab 8. Although the bucket 7 is attached to the tip of the arm, other work attachments can be attached instead of the bucket 7.

図2は、第1の実施の形態に係る油圧ショベルのシステム構成を示す図である。図2のシステムは、電動機10と、電動機10により駆動される固定容量型油圧ポンプ11と、油圧ポンプ11からの圧油により駆動する複数の油圧アクチュエータ12(一例としてブームシリンダ5aとアームシリンダ6a)と、油圧ポンプ11から各油圧アクチュエータ12への圧油の流れを制御する方向制御弁ユニット20と、電動機10の回転を制御する制御ユニット50とで構成される。   FIG. 2 is a diagram illustrating a system configuration of the excavator according to the first embodiment. 2 includes an electric motor 10, a fixed displacement hydraulic pump 11 driven by the electric motor 10, and a plurality of hydraulic actuators 12 driven by pressure oil from the hydraulic pump 11 (boom cylinder 5a and arm cylinder 6a as an example). And a directional control valve unit 20 that controls the flow of pressure oil from the hydraulic pump 11 to each hydraulic actuator 12, and a control unit 50 that controls the rotation of the electric motor 10.

方向制御弁ユニット20は、ブームシリンダ5aへの圧油の流れを制御する方向制御弁21と、アームシリンダ6aへの圧油の流れを制御する方向制御弁22とを有する。方向制御弁21,22は互いに並列に配置され、各方向制御弁21,22には油圧ポンプ11からの圧油がそれぞれ分岐して導かれる。方向制御弁21,22は、各油圧アクチュエータ12に対応して設けた操作レバー9(図1)の操作量に応じて切り換えられる。操作レバー9は、操作量に応じた電気的な操作信号(レバー信号)を出力する電気レバーであり、方向制御弁21,22は、レバー信号に応じた制御信号によって切り換わる電磁比例弁である。   The direction control valve unit 20 includes a direction control valve 21 that controls the flow of pressure oil to the boom cylinder 5a, and a direction control valve 22 that controls the flow of pressure oil to the arm cylinder 6a. The direction control valves 21 and 22 are arranged in parallel with each other, and the pressure oil from the hydraulic pump 11 is branched and guided to the direction control valves 21 and 22, respectively. The direction control valves 21 and 22 are switched according to the operation amount of the operation lever 9 (FIG. 1) provided corresponding to each hydraulic actuator 12. The operation lever 9 is an electric lever that outputs an electric operation signal (lever signal) corresponding to the operation amount, and the direction control valves 21 and 22 are electromagnetic proportional valves that are switched by a control signal corresponding to the lever signal. .

方向制御弁21,22にポンプ吐出油を導く圧油供給経路には、それぞれ圧力補償弁23,24が設けられている。圧力補償弁23,24のばね23a,24aの設定圧はそれぞれ所定値Psにセットされており、圧力補償弁23,24は方向制御弁21,22の前後差圧が所定値Psとなるように作動する。これによりブームシリンダ圧PL1およびアームシリンダ圧PL2の変化に拘わらず方向制御弁21,22の前後差圧は一定に保たれ、各方向制御弁21,22の開口面積比通りにポンプ流量を分流できる。   Pressure compensation valves 23 and 24 are provided in the pressure oil supply paths for leading the pump discharge oil to the direction control valves 21 and 22, respectively. The set pressures of the springs 23a and 24a of the pressure compensation valves 23 and 24 are set to a predetermined value Ps, respectively, and the pressure compensation valves 23 and 24 are set so that the differential pressure across the directional control valves 21 and 22 becomes the predetermined value Ps. Operate. As a result, the differential pressure across the direction control valves 21 and 22 is kept constant regardless of changes in the boom cylinder pressure PL1 and the arm cylinder pressure PL2, and the pump flow rate can be divided according to the opening area ratio of the direction control valves 21 and 22. .

油圧ポンプ11の吐出圧Ppは、圧力センサ31により検出される。アクチュエータ12に作用する負荷圧のうち、最大負荷圧PLmaxはシャトル弁25,26で選択され、圧力センサ32により検出される。圧力センサ31,32により得られた圧力信号VP,VLは制御ユニット50に入力される。なお、27は、アクチュエータ12が非作動の無負荷時において、油圧ポンプ10からの余剰流量を作動油タンクに排出するためのアンロード弁であり、28は、回路保護用のメインリリーフ弁である。   The discharge pressure Pp of the hydraulic pump 11 is detected by the pressure sensor 31. Among the load pressures acting on the actuator 12, the maximum load pressure PLmax is selected by the shuttle valves 25 and 26 and detected by the pressure sensor 32. The pressure signals VP and VL obtained by the pressure sensors 31 and 32 are input to the control unit 50. Reference numeral 27 denotes an unload valve for discharging the surplus flow rate from the hydraulic pump 10 to the hydraulic oil tank when the actuator 12 is not operating and no load, and 28 is a main relief valve for circuit protection. .

制御ユニット50は、圧力信号VP,VLを入力する入力部51と、圧力信号VP,VLからポンプ吐出圧Ppと最大負荷圧PLmaxを算出し、このポンプ吐出圧Ppと最大負荷圧PLmaxとの差圧を目標差圧Psとするための電動機10の目標回転数(目標周波数fa)を演算する演算部52と、目標回転数で電動機10を駆動するように指令信号V0を出力する出力部53と、外部電源55からの電力を指令信号V0に応じた駆動周波数fに変換し、電動機10を駆動するインバータ54とで構成される。   The control unit 50 calculates the pump discharge pressure Pp and the maximum load pressure PLmax from the input unit 51 for inputting the pressure signals VP and VL, and the pressure signals VP and VL, and the difference between the pump discharge pressure Pp and the maximum load pressure PLmax. A calculation unit 52 that calculates a target rotational speed (target frequency fa) of the electric motor 10 for setting the pressure to the target differential pressure Ps, and an output unit 53 that outputs a command signal V0 so as to drive the electric motor 10 at the target rotational speed. The inverter 54 converts the electric power from the external power supply 55 into a driving frequency f corresponding to the command signal V0 and drives the electric motor 10.

本実施の形態では、ポンプ吐出圧Ppと最大負荷圧PLmaxとの差圧(Pp−PLmax)が目標差圧Psとなるように電動機10を制御する。すなわち制御ユニット50からの信号によりロードセンシングを行う。ここで、(Pp−PLmax)と目標差圧Psとの偏差を補正圧力ΔP(=(Pp−PLmax)−Ps)と定義する。図3は、補正圧力ΔPと目標増分周波数Δfとの関係を示す図であり、この関係は予め制御ユニット内のメモリに記憶されている。図3によれば、ΔP=0のときΔf=0であり、ΔPが0より大きくなるに従いΔfが0より小さくなり、ΔPが0より小さくなるに従いΔfが0より大きくなっている。本実施の形態では、図3の関係を用いて後述するように電動機10の駆動周波数fを補正する。   In the present embodiment, the electric motor 10 is controlled so that the differential pressure (Pp−PLmax) between the pump discharge pressure Pp and the maximum load pressure PLmax becomes the target differential pressure Ps. That is, load sensing is performed by a signal from the control unit 50. Here, a deviation between (Pp−PLmax) and the target differential pressure Ps is defined as a correction pressure ΔP (= (Pp−PLmax) −Ps). FIG. 3 is a diagram showing the relationship between the correction pressure ΔP and the target incremental frequency Δf, and this relationship is stored in advance in a memory in the control unit. According to FIG. 3, Δf = 0 when ΔP = 0, and Δf becomes smaller than 0 as ΔP becomes larger than 0, and Δf becomes larger than 0 as ΔP becomes smaller than 0. In the present embodiment, the drive frequency f of the electric motor 10 is corrected as will be described later using the relationship of FIG.

図4は、第1の実施の形態に係る制御ユニット50の詳細な構成を示すブロック図である。圧力センサ31,32からの圧力信号VP,VLは、圧力変換器35,36に入力され、圧力変換器35,36でポンプ吐出圧Ppと最大負荷圧PLmaxとにそれぞれ変換される。減算器37では、ポンプ吐出圧Ppから最大負荷圧PLmaxを減算し、差圧(Pp−PLmax)を求める。減算器38では、差圧(Pp−PLmax)から目標差圧Psを減算し、補正圧力ΔPを演算する。   FIG. 4 is a block diagram showing a detailed configuration of the control unit 50 according to the first embodiment. The pressure signals VP and VL from the pressure sensors 31 and 32 are input to the pressure converters 35 and 36, and converted into the pump discharge pressure Pp and the maximum load pressure PLmax by the pressure converters 35 and 36, respectively. The subtractor 37 subtracts the maximum load pressure PLmax from the pump discharge pressure Pp to obtain a differential pressure (Pp−PLmax). The subtracter 38 subtracts the target differential pressure Ps from the differential pressure (Pp−PLmax) to calculate a correction pressure ΔP.

Δf算出器39では、補正圧力ΔPを制御パラメータとして、図3の関係から目標増分周波数Δfを演算する。加算器40では、現在の駆動周波数fに目標増分周波数Δfを加算し、目標周波数faを演算する。出力部53では、予め定められた図5の特性に基づき、目標周波数faから駆動周波数fを演算し、この駆動周波数fに対応した指令信号V0をインバータ54に出力する。   The Δf calculator 39 calculates the target incremental frequency Δf from the relationship of FIG. 3 using the correction pressure ΔP as a control parameter. The adder 40 adds the target increment frequency Δf to the current drive frequency f and calculates the target frequency fa. The output unit 53 calculates the drive frequency f from the target frequency fa based on the predetermined characteristics shown in FIG. 5 and outputs a command signal V0 corresponding to the drive frequency f to the inverter 54.

図5は、目標周波数faと駆動周波数fの関係を示す図である。目標周波数faが下限周波数fmin以上かつ上限周波数fmax以下の範囲(fmin≦fa≦fmax)では、駆動周波数fは目標周波数faに等しい。目標周波数faが下限周波数fminより小さいと、駆動周波数fは下限周波数fminとなり、目標周波数faが上限周波数fmaxより大きいと、駆動周波数fは上限周波数fmaxとなる。すなわち駆動周波数fの上限値および下限値はそれぞれ上限周波数fmaxおよび下限周波数fminに制限されている。上限周波数fmaxは、電動機10の基底周波数f0に設定され、下限周波数fminは、アンロード弁29作動時のスタンバイ流量を確保するための最低回転数に対応した周波数に設定される。   FIG. 5 is a diagram illustrating the relationship between the target frequency fa and the drive frequency f. In a range where the target frequency fa is not less than the lower limit frequency fmin and not more than the upper limit frequency fmax (fmin ≦ fa ≦ fmax), the drive frequency f is equal to the target frequency fa. When the target frequency fa is smaller than the lower limit frequency fmin, the drive frequency f becomes the lower limit frequency fmin, and when the target frequency fa is larger than the upper limit frequency fmax, the drive frequency f becomes the upper limit frequency fmax. That is, the upper limit value and the lower limit value of the drive frequency f are limited to the upper limit frequency fmax and the lower limit frequency fmin, respectively. The upper limit frequency fmax is set to the base frequency f0 of the electric motor 10, and the lower limit frequency fmin is set to a frequency corresponding to the minimum rotational speed for ensuring the standby flow rate when the unload valve 29 is operated.

インバータ54は、外部電源55からの電力を指令信号V0に応じた駆動周波数fに変換し、駆動周波数fで電動機10を駆動する。図6は、指令信号V0と駆動周波数fの関係を示す図である。図6では、指令信号V0の増加に伴い駆動周波数fは増加しており、この図6の特性に基づき指令信号V0に応じて駆動周波数fが制御される。これにより電動機10は目標周波数に制御される。   The inverter 54 converts the electric power from the external power supply 55 into a drive frequency f corresponding to the command signal V0, and drives the electric motor 10 at the drive frequency f. FIG. 6 is a diagram showing the relationship between the command signal V0 and the drive frequency f. In FIG. 6, the drive frequency f increases as the command signal V0 increases, and the drive frequency f is controlled according to the command signal V0 based on the characteristics of FIG. Thereby, the electric motor 10 is controlled to the target frequency.

図7は、駆動周波数fと電動機10の出力トルクTの関係を示す図である。ここでは、上限周波数fmaxを基底周波数f0とし、そのときの出力トルクTを定格トルクTaとしている。電動機10は、ベクトル制御によって下限周波数fminから上限周波数fmaxにかけて一定の定格トルクTaを出力するように制御される。この場合の定格トルクTaは、油圧ポンプ11の押しのけ容積qとメインリリーフ弁28のリリーフ圧Prとで定まる最大ポンプ入力トルクTmaxよりも大きく設定されている。これにより駆動周波数fの全範囲(fmin≦f≦fmax)において、電動機10の出力トルクTが最大ポンプ入力トルクTmaxよりも大きくなり、安定した電動機10の速度制御が可能である。   FIG. 7 is a diagram showing the relationship between the drive frequency f and the output torque T of the electric motor 10. Here, the upper limit frequency fmax is the base frequency f0, and the output torque T at that time is the rated torque Ta. The electric motor 10 is controlled to output a constant rated torque Ta from the lower limit frequency fmin to the upper limit frequency fmax by vector control. The rated torque Ta in this case is set larger than the maximum pump input torque Tmax determined by the displacement volume q of the hydraulic pump 11 and the relief pressure Pr of the main relief valve 28. As a result, the output torque T of the electric motor 10 becomes larger than the maximum pump input torque Tmax in the entire range of the driving frequency f (fmin ≦ f ≦ fmax), and stable speed control of the electric motor 10 is possible.

本実施の形態に係る油圧ショベルは、排ガスや騒音がとくに問題となるような作業現場、例えば屋内の現場で使用される。制御ユニット50には外部電源55からケーブルを介して電力が供給される。ケーブルは旋回動作等によって長さが不足することがないように、例えば屋内の天井部から吊り下げられ、旋回中心上もしくはその近傍を経由して制御ユニット50に取り付けられる。   The hydraulic excavator according to the present embodiment is used at a work site where exhaust gas and noise are particularly problematic, for example, an indoor site. Power is supplied to the control unit 50 from the external power supply 55 via a cable. The cable is suspended from, for example, an indoor ceiling so that the length does not become insufficient due to a turning operation or the like, and is attached to the control unit 50 on or around the turning center.

操作レバー9の操作により油圧アクチュエータ12(例えばブームシリンダ5aとアームシリンダ6a)の駆動指令が入力されると、レバー操作量に応じて方向制御弁21,22が駆動され、油圧ポンプ11から各シリンダ5a,6aへの圧油の流れが制御される。ここで、方向制御弁ユニット20には圧力補償弁23,24が設けられているため、負荷圧PL1,PL2が変動した場合でも、各シリンダ5a,6aには操作レバー9の操作量に応じてポンプ吐出量を配分することができ、シリンダ5a,6aを適切に複合動作することができる。   When a drive command for the hydraulic actuator 12 (for example, the boom cylinder 5a and the arm cylinder 6a) is input by operating the operation lever 9, the direction control valves 21 and 22 are driven according to the lever operation amount, and the hydraulic pump 11 supplies each cylinder. The flow of pressure oil to 5a, 6a is controlled. Here, since the directional control valve unit 20 is provided with the pressure compensation valves 23 and 24, even if the load pressures PL1 and PL2 fluctuate, the cylinders 5a and 6a correspond to the operation amount of the operation lever 9. The pump discharge amount can be distributed, and the cylinders 5a and 6a can be appropriately combined.

制御ユニット50は、ポンプ吐出圧Ppと最高負荷圧PLmaxとの差圧を目標差圧Psとするための駆動周波数fを演算し、外部電源55をインバータ54で制御して駆動周波数fで電動機10を駆動する。例えば作業時に最高負荷圧PLmaxが上昇すると、(Pp−PLmax)が小さくなるため、図3の補正圧力ΔPが負になり、Δf算出器39からプラスの目標増分周波数Δfが出力される。これにより駆動周波数fが大きくなって電動機10の回転速度が速くなり、ポンプ吐出量が増大する。その結果、ポンプ吐出圧Ppが増加して、最高負荷圧PLmaxとポンプ吐出圧Ppとの差圧が目標差圧Psに制御され、電動機10の速度制御によりロードセンシング式油圧制御が可能となる。   The control unit 50 calculates a drive frequency f for setting the differential pressure between the pump discharge pressure Pp and the maximum load pressure PLmax as the target differential pressure Ps, and controls the external power source 55 with the inverter 54 to control the electric motor 10 with the drive frequency f. Drive. For example, when the maximum load pressure PLmax increases during work, (Pp−PLmax) decreases, so the correction pressure ΔP in FIG. 3 becomes negative, and a positive target incremental frequency Δf is output from the Δf calculator 39. As a result, the drive frequency f increases, the rotational speed of the electric motor 10 increases, and the pump discharge rate increases. As a result, the pump discharge pressure Pp increases, the differential pressure between the maximum load pressure PLmax and the pump discharge pressure Pp is controlled to the target differential pressure Ps, and load sensing type hydraulic control can be performed by speed control of the electric motor 10.

第1の実施の形態によれば以下のような作用効果を奏することができる。
(1)油圧ポンプ11駆動用の電動機10を速度制御してポンプ吐出圧Ppと最高負荷圧PLmaxとの差圧を目標差圧Psとするので、油圧ポンプ11を可変容量型ポンプとして構成する必要がなく、ポンプ押しのけ容積変更用の油圧配管等が不要になる。その結果、ロードセンシングのシステム全体を小型化することができ、ミニショベルに容易に適用することができる。また、電動機10の速度制御によりロードセンシングを行うため、油圧機器のチューニングの手間も省ける。可変容量型ポンプが必要ないので、システム全体を安価に構築できる。
(2)電動機10の速度制御によりロードセンシングを行うので、電動機の回転数を必要最低限のものとすることができる。その結果、例えば電動機10を一定の基底周波数f0で回転駆動しつつ、ポンプ容量を変更してロードセンシングを行うものに比べ、エネルギロスや発熱を抑えることができる。
(3)電動機10の駆動周波数fに上限周波数fmaxと下限周波数fminを設定し、この上限周波数fmaxと下限周波数fminの間の駆動周波数fで電動機10を駆動して電動機10が常に定格トルクTaを出力するようにしたので、電動機10の安定した速度制御が可能である。
(4)方向制御弁ユニット20に圧力補償弁23,24を設け、負荷に拘わらず方向制御弁21,22の前後差圧が一定となるようにしたので、ロードセンシングを行いつつ、油圧アクチュエータ12の複合操作を最適に行うことができる。
According to 1st Embodiment, there can exist the following effects.
(1) Since the speed of the electric motor 10 for driving the hydraulic pump 11 is controlled to set the differential pressure between the pump discharge pressure Pp and the maximum load pressure PLmax to the target differential pressure Ps, the hydraulic pump 11 needs to be configured as a variable displacement pump. This eliminates the need for hydraulic piping for changing the displacement of the pump. As a result, the entire load sensing system can be reduced in size and can be easily applied to a mini excavator. Further, since load sensing is performed by controlling the speed of the electric motor 10, the trouble of tuning the hydraulic equipment can be saved. Since a variable displacement pump is not required, the entire system can be constructed at low cost.
(2) Since load sensing is performed by speed control of the electric motor 10, the number of rotations of the electric motor can be minimized. As a result, for example, energy loss and heat generation can be suppressed as compared to a case where load sensing is performed by changing the pump capacity while rotating the motor 10 at a constant base frequency f0.
(3) An upper limit frequency fmax and a lower limit frequency fmin are set for the drive frequency f of the motor 10, and the motor 10 is driven at a drive frequency f between the upper limit frequency fmax and the lower limit frequency fmin so that the motor 10 always has the rated torque Ta. Since output is performed, stable speed control of the electric motor 10 is possible.
(4) Since the pressure compensation valves 23 and 24 are provided in the directional control valve unit 20 so that the differential pressure across the directional control valves 21 and 22 is constant regardless of the load, the hydraulic actuator 12 is performing load sensing. Can be optimally performed.

−第2の実施の形態−
図8〜図11を参照して本発明による電動式油圧作業機の第2の実施の形態について説明する。
第2の実施の形態では、ポンプ吐出流量がアクチュエータ12の要求流量よりも小さい状態であるサチレーション状態を検出し、方向制御弁の制御によりサチレーション対策を行う。なお、以下では第1の実施の形態との相違点を主に説明する。
-Second Embodiment-
A second embodiment of the electric hydraulic working machine according to the present invention will be described with reference to FIGS.
In the second embodiment, a saturation state in which the pump discharge flow rate is smaller than the required flow rate of the actuator 12 is detected, and a countermeasure against saturation is taken by controlling the direction control valve. In the following description, differences from the first embodiment will be mainly described.

図8は、第2の実施の形態に係る油圧ショベルのシステム構成を示す図である。なお、図2と同一の箇所には同一の符号を付している。第2の実施の形態の制御ユニット50には、電動機10を制御するための電動機制御部50aと、油圧アクチュエータ12(ここではブームシリンダ5aとアームシリンダ6aとする)駆動用の方向制御弁21,22を制御する制御弁制御部50bとが設けられている。電動機制御部50aは、図2の制御ユニット50と同一の構成である。   FIG. 8 is a diagram illustrating a system configuration of a hydraulic excavator according to the second embodiment. In addition, the same code | symbol is attached | subjected to the location same as FIG. The control unit 50 of the second embodiment includes an electric motor control unit 50a for controlling the electric motor 10, a directional control valve 21 for driving the hydraulic actuator 12 (here, the boom cylinder 5a and the arm cylinder 6a), And a control valve control unit 50 b for controlling the control unit 22. The motor control unit 50a has the same configuration as the control unit 50 of FIG.

操作レバー9は中立状態からA方向およびB方向に操作可能であり、操作レバー9の操作量はポテンショメータ9aで検出される。制御弁制御部50bは、レバー信号Lvを入力する入力部61と、方向制御弁21,22(電磁比例弁)に出力する制御信号(駆動電流)Iを演算する演算部62と、方向制御弁21,22に制御信号Iを出力する出力部63とを有する。   The operation lever 9 can be operated from the neutral state in the A direction and the B direction, and the operation amount of the operation lever 9 is detected by the potentiometer 9a. The control valve control unit 50b includes an input unit 61 that inputs a lever signal Lv, a calculation unit 62 that calculates a control signal (drive current) I output to the direction control valves 21 and 22 (electromagnetic proportional valves), and a direction control valve. 21 and 22 have an output unit 63 for outputting a control signal I.

図9は、第2の実施の形態に係る制御ユニット50の詳細構成を示すブロック図である。なお、図4と同一の箇所には同一の符号を付している。操作レバー9A,9Bはそれぞれ方向制御弁21,22の操作指令を入力する操作レバー9である。この操作レバー9A,9Bの操作量に応じたレバー信号Lvはそれぞれ制御弁制御部50bの入力部61A,61Bに入力される。信号算出器64A,64Bでは、予め定められた図11の特性に基づき、入力されたレバー信号Lvに対応した制御信号Iがそれぞれ演算される。   FIG. 9 is a block diagram showing a detailed configuration of the control unit 50 according to the second embodiment. In addition, the same code | symbol is attached | subjected to the location same as FIG. The operation levers 9A and 9B are operation levers 9 for inputting operation commands for the direction control valves 21 and 22, respectively. Lever signals Lv corresponding to the operation amounts of the operation levers 9A and 9B are input to the input units 61A and 61B of the control valve control unit 50b, respectively. In the signal calculators 64A and 64B, the control signal I corresponding to the input lever signal Lv is calculated based on the predetermined characteristics shown in FIG.

図11は、レバー信号Lvと制御信号Iとの関係を示す図である。図11に示すように操作レバー9が中立時にはレバー信号はLv0であり、このレバー中立付近には不感帯が設けられ、制御信号Iが0となっている。操作レバー9が中立位置から図8のA方向に操作されるとレバー信号Lvは増加し、B方向に操作されるとレバー信号Lvは減少する。操作レバー9が中立位置からA方向およびB方向へ所定量以上操作されると、操作量の増加に伴い制御信号Iが増加し、A方向およびB方向におけるレバー操作量が最大のとき、制御信号Iは最大Imaxとなる。   FIG. 11 is a diagram illustrating the relationship between the lever signal Lv and the control signal I. As shown in FIG. 11, when the control lever 9 is neutral, the lever signal is Lv0. A dead zone is provided near the lever neutral, and the control signal I is zero. When the operating lever 9 is operated from the neutral position in the direction A in FIG. 8, the lever signal Lv increases, and when the operating lever 9 is operated in the direction B, the lever signal Lv decreases. When the operation lever 9 is operated by a predetermined amount or more from the neutral position in the A direction and the B direction, the control signal I increases as the operation amount increases, and when the lever operation amount in the A direction and the B direction is maximum, the control signal I is the maximum Imax.

ゲイン算出器65には、電動機制御部50aで演算された目標周波数faが入力される。ゲイン算出器65では、予め定められた図10の特性に基づき修正ゲインKを演算する。図10は、目標周波数faと修正ゲインKの関係を示す図である。図10に示すように目標周波数faが上限周波数fmax以下では、修正ゲインKは1であり、目標周波数faが上限周波数fmaxを超えると、修正ゲインKは所定の演算式(例えばfmax/fa)に従って徐々に減少する。ここで、電動機10の駆動周波数fは上限周波数fmaxを超えないように制限されるため(図5)、目標周波数faが上限周波数fmaxを超えるとサチレーション状態となり、このサチレーション状態が検出されると修正ゲインKを1よりも小さくする。   The target frequency fa calculated by the motor control unit 50a is input to the gain calculator 65. The gain calculator 65 calculates a correction gain K based on the predetermined characteristics shown in FIG. FIG. 10 is a diagram showing the relationship between the target frequency fa and the correction gain K. As shown in FIG. As shown in FIG. 10, when the target frequency fa is equal to or lower than the upper limit frequency fmax, the correction gain K is 1, and when the target frequency fa exceeds the upper limit frequency fmax, the correction gain K is determined according to a predetermined arithmetic expression (for example, fmax / fa). Decrease gradually. Here, since the drive frequency f of the electric motor 10 is limited so as not to exceed the upper limit frequency fmax (FIG. 5), the saturation state is entered when the target frequency fa exceeds the upper limit frequency fmax, and correction is performed when this saturation state is detected. The gain K is made smaller than 1.

乗算器66A,66Bでは、信号算出器64A,64Bで演算された制御信号Iに修正ゲインKを乗じて制御信号Iをそれぞれ補正する。出力部63A,63Bでは、この補正後の制御信号I(=K・I)を方向制御弁21,22のソレノイド21a,21b,22a,22bに出力する。この場合、操作レバー9A,9BがA方向(図8)に操作されるとソレノイド21a,22aに制御信号Iを出力し、B方向に操作されるとソレノイド21b,22bに制御信号Iを出力する。これにより方向制御弁21,22が位置イ側または位置ロ側に切り換わる。   Multipliers 66A and 66B respectively correct the control signal I by multiplying the control signal I calculated by the signal calculators 64A and 64B by the correction gain K. The output parts 63A and 63B output the corrected control signal I (= K · I) to the solenoids 21a, 21b, 22a and 22b of the directional control valves 21 and 22, respectively. In this case, when the operation levers 9A and 9B are operated in the A direction (FIG. 8), the control signal I is output to the solenoids 21a and 22a, and when the operation levers 9A and 9B are operated in the B direction, the control signal I is output to the solenoids 21b and 22b. . As a result, the directional control valves 21 and 22 are switched to the position A side or the position B side.

以上の構成では、目標周波数faが上限周波数fmaxを超えるとサチレーション状態と判定し、修正ゲインKを1より小さくした。これにより、方向制御弁21,22に出力される制御信号Iが一様に小さくなり、各油圧アクチュエータ5a,6aへの圧油の供給量がそれぞれ等しい割合で減少する。その結果、複合操作時の流量比を一定に保った状態で作業を行うことができ、良好なサチレーション対策が可能である。この場合、全体の作業速度は遅くなるが、油圧アクチュエータ5a,6aの速度比は変化しないため、複合操作性は良好である。目標周波数faが基底周波数f0である上限周波数fmaxを超えるとサチレーション状態と判定するので、サチレーション状態を容易に検出できる。   In the above configuration, when the target frequency fa exceeds the upper limit frequency fmax, the saturation state is determined, and the correction gain K is made smaller than 1. As a result, the control signal I output to the directional control valves 21 and 22 is uniformly reduced, and the amount of pressure oil supplied to the hydraulic actuators 5a and 6a is reduced at an equal rate. As a result, the work can be performed in a state where the flow rate ratio at the time of the composite operation is kept constant, and a satisfactory countermeasure against saturation is possible. In this case, the overall work speed is slow, but the speed ratio of the hydraulic actuators 5a and 6a does not change, so the composite operability is good. Since the saturation state is determined when the target frequency fa exceeds the upper limit frequency fmax that is the base frequency f0, the saturation state can be easily detected.

なお、上記実施の形態では、サチレーション対策として制御信号Iに修正ゲインKを乗じるようにしたが、レバー信号Lvに修正ゲインKを乗じてレバー信号Lvを補正するようにしてもよい。この場合、例えば中立時のレバー信号Lv0を0とし、操作レバー9がA方向に操作されるとレバー信号Lvがプラス、B方向に操作されるとマイナスになるようにしてもよい。これにより修正ゲインKが1より小さいと、方向制御弁21,22に出力される制御信号Iも小さくなり、上述したのと同様、油圧アクチュエータ5a,6aへの圧油の供給量が抑えられる。   In the above embodiment, the control signal I is multiplied by the correction gain K as a countermeasure against saturation, but the lever signal Lv may be corrected by multiplying the lever signal Lv by the correction gain K. In this case, for example, the neutral lever signal Lv0 may be set to 0, and the lever signal Lv may be positive when the operation lever 9 is operated in the A direction and negative when the operation lever 9 is operated in the B direction. As a result, when the correction gain K is smaller than 1, the control signal I output to the directional control valves 21 and 22 is also reduced, and the amount of pressure oil supplied to the hydraulic actuators 5a and 6a is suppressed as described above.

なお、上記実施の形態では、油圧ポンプ11からの圧油によりブームシリンダ5aおよびアームシリンダ6aを複合操作する場合について説明したが、第1および第2の油圧アクチュエータの種類はこれに限らない。また、3つ以上の油圧アクチュエータを同時に複合操作するものでもよい。第1および第2の制御弁としての方向制御弁21,22の構成も上述したものに限らない。操作レバー9により油圧アクチュエータ12の駆動指令であるレバー信号Lvを出力するようにしたが、電気レバー装置の構成はいかなるものでもよい。例えば操作レバー9を十字方向に操作可能とすれば、1本の操作レバー9により2つの油圧アクチュエータ12の駆動指令を出力することができる。   In the above-described embodiment, the case where the boom cylinder 5a and the arm cylinder 6a are combined and operated by the pressure oil from the hydraulic pump 11 has been described. However, the types of the first and second hydraulic actuators are not limited thereto. Alternatively, three or more hydraulic actuators may be combined and operated simultaneously. The configuration of the direction control valves 21 and 22 as the first and second control valves is not limited to that described above. Although the lever signal Lv, which is a drive command for the hydraulic actuator 12, is output by the operation lever 9, any configuration of the electric lever device may be used. For example, if the operation lever 9 can be operated in the cross direction, the drive commands for the two hydraulic actuators 12 can be output by one operation lever 9.

制御ユニット50(図2)からの信号により電動機10の回転を制御するようにしたが、ポンプ吐出圧Ppと油圧アクチュエータ12の最大負荷圧PLmaxとの差圧が設定差圧Psとなるように電動機10の目標周波数faを演算し、この目標周波数faに応じた駆動周波数fで電動機10を駆動するのであれば、電動機制御手段の構成は上述したものに限らない。圧力センサ31,32の検出値によりポンプ吐出圧Ppと最大負荷圧PLmaxの差圧を検出するようにしたが、差圧検出手段の構成はこれに限らない。補正圧力ΔPと目標増分周波数Δfの関係(図3)を用いて目標周波数faを演算したが、周波数演算手段の構成はこれに限らない。例えば補正圧力ΔPと目標増分周波数Δfの関係を図12に示すように直線で近似してもよく、これによりΔfの演算が容易になる。   The rotation of the electric motor 10 is controlled by a signal from the control unit 50 (FIG. 2), but the electric motor is set so that the differential pressure between the pump discharge pressure Pp and the maximum load pressure PLmax of the hydraulic actuator 12 becomes the set differential pressure Ps. As long as the target frequency fa of 10 is calculated and the motor 10 is driven at the drive frequency f corresponding to the target frequency fa, the configuration of the motor control means is not limited to that described above. Although the differential pressure between the pump discharge pressure Pp and the maximum load pressure PLmax is detected based on the detection values of the pressure sensors 31, 32, the configuration of the differential pressure detection means is not limited to this. Although the target frequency fa is calculated using the relationship between the correction pressure ΔP and the target incremental frequency Δf (FIG. 3), the configuration of the frequency calculation means is not limited to this. For example, the relationship between the correction pressure ΔP and the target incremental frequency Δf may be approximated by a straight line as shown in FIG. 12, thereby facilitating the calculation of Δf.

目標周波数faに応じた駆動周波数fを出力部53で演算し、インバータ54への信号により駆動周波数fで電動機10を駆動するようにしたが、駆動手段はこれに限らない。図5の特性により目標周波数faを駆動周波数fに変換するのではなく、目標周波数faをそのまま駆動周波数fとして出力してもよい。目標周波数faが上限周波数fmaxを超えるとサチレーション状態を検出するようにしたが、サチレーション検出手段はこれに限らない。上記実施の形態では、制御信号Iに修正ゲインKを乗じるようにしたが、各油圧アクチュエータ5a,6aへの圧油の供給を同一の割合で制限するように制御弁21,22を制御するのであれば、制御弁制御手段の構成はこれに限らない。   Although the driving frequency f corresponding to the target frequency fa is calculated by the output unit 53 and the electric motor 10 is driven at the driving frequency f by the signal to the inverter 54, the driving means is not limited to this. Instead of converting the target frequency fa to the drive frequency f according to the characteristics of FIG. 5, the target frequency fa may be output as it is as the drive frequency f. Although the saturation state is detected when the target frequency fa exceeds the upper limit frequency fmax, the saturation detection means is not limited to this. In the above embodiment, the control signal I is multiplied by the correction gain K. However, the control valves 21 and 22 are controlled so as to limit the supply of pressure oil to the hydraulic actuators 5a and 6a at the same rate. If there is, the configuration of the control valve control means is not limited to this.

上記実施の形態は、油圧ショベル(図1)に適用したが、電動機で油圧ポンプを駆動して作業を行う他の電動式油圧作業機にも同様に適用することができる。すなわち、本発明の特徴、機能を実現できる限り、本発明は実施の形態の電動式油圧作業機に限定されない。   Although the said embodiment was applied to the hydraulic shovel (FIG. 1), it can apply similarly to the other electric hydraulic working machine which drives a hydraulic pump with an electric motor and works. That is, as long as the features and functions of the present invention can be realized, the present invention is not limited to the electric hydraulic working machine according to the embodiment.

本発明による電動式油圧作業機の一例である油圧ショベルの外観側面図。1 is an external side view of a hydraulic excavator that is an example of an electric hydraulic working machine according to the present invention. 第1の実施の形態に係る油圧ショベルのシステム構成を示す図。The figure which shows the system configuration | structure of the hydraulic excavator which concerns on 1st Embodiment. 補正圧力と目標増分周波数との関係を示す図。The figure which shows the relationship between correction | amendment pressure and a target incremental frequency. 第1の実施の形態に係る制御ユニットの詳細な構成を示すブロック図。The block diagram which shows the detailed structure of the control unit which concerns on 1st Embodiment. 目標周波数と駆動周波数の関係を示す図。The figure which shows the relationship between a target frequency and a drive frequency. 指令信号と駆動周波数の関係を示す図。The figure which shows the relationship between a command signal and a drive frequency. 電動機のトルク特性を示す図。The figure which shows the torque characteristic of an electric motor. 第2の実施の形態に係る油圧ショベルのシステム構成を示す図。The figure which shows the system configuration | structure of the hydraulic excavator which concerns on 2nd Embodiment. 第2の実施の形態に係る制御ユニットの詳細な構成を示すブロック図。The block diagram which shows the detailed structure of the control unit which concerns on 2nd Embodiment. 目標周波数と修正ゲインの関係を示す図。The figure which shows the relationship between a target frequency and correction gain. レバー信号と制御信号の関係を示す図。The figure which shows the relationship between a lever signal and a control signal. 図3の変形例を示す図。The figure which shows the modification of FIG.

符号の説明Explanation of symbols

9 操作レバー
10 電動機
11 油圧ポンプ
12 油圧アクチュエータ
21,22 方向制御弁
31,32 圧力センサ
50 制御ユニット
50a 電動機制御部
50b 制御弁制御部
52,62 演算部
53,63 出力部
54 インバータ
55 外部電源
DESCRIPTION OF SYMBOLS 9 Operation lever 10 Electric motor 11 Hydraulic pump 12 Hydraulic actuator 21, 22 Directional control valve 31, 32 Pressure sensor 50 Control unit 50a Electric motor control part 50b Control valve control part 52, 62 Calculation part 53, 63 Output part 54 Inverter 55 External power supply

Claims (5)

電動機により駆動される固定容量式の油圧ポンプと、
前記油圧ポンプからの圧油により駆動される少なくとも2つの第1および第2の油圧アクチュエータと、
レバー操作により前記第1および第2の油圧アクチュエータの駆動指令である電気的な操作信号を出力する電気レバー装置と、
前記操作信号に応じて前記油圧ポンプから前記第1および第2の油圧アクチュエータへの圧油の流れをそれぞれ制御する第1および第2の制御弁と、
前記電動機の回転を制御する電動機制御手段とを備え、
前記電動機制御手段は、
前記油圧ポンプの吐出圧と前記第1および第2の油圧アクチュエータの最大負荷圧との差圧を検出する差圧検出手段と、
前記差圧検出手段により検出された差圧が一定となるように前記電動機の目標周波数を演算する周波数演算手段と、
前記目標周波数に応じた駆動周波数で前記電動機を駆動する駆動手段とを有することを特徴とする電動式油圧作業機。
A fixed displacement hydraulic pump driven by an electric motor;
At least two first and second hydraulic actuators driven by pressure oil from the hydraulic pump;
An electric lever device that outputs an electric operation signal that is a drive command of the first and second hydraulic actuators by lever operation;
First and second control valves that respectively control the flow of pressure oil from the hydraulic pump to the first and second hydraulic actuators in response to the operation signal;
Electric motor control means for controlling the rotation of the electric motor,
The motor control means includes
Differential pressure detection means for detecting a differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of the first and second hydraulic actuators;
Frequency calculating means for calculating a target frequency of the electric motor so that the differential pressure detected by the differential pressure detecting means is constant;
An electric hydraulic working machine comprising driving means for driving the electric motor at a driving frequency corresponding to the target frequency.
請求項1に記載の電動式油圧作業機において、
前記電動機制御手段には、前記電動機が所定トルクを出力するための上限周波数と下限周波数が予め設定され、
前記駆動手段は、前記目標周波数が前記下限周波数以上かつ前記上限周波数以下のときは前記目標周波数で電動機を駆動し、前記目標周波数が前記上限周波数より大きいとき、または前記下限周波数より小さいときは、前記上限周波数または前記下限周波数で電動機を駆動することを特徴とする電動式油圧作業機。
The electric hydraulic working machine according to claim 1,
In the motor control means, an upper limit frequency and a lower limit frequency for the motor to output a predetermined torque are preset,
The driving means drives the motor at the target frequency when the target frequency is not less than the lower limit frequency and not more than the upper limit frequency, and when the target frequency is greater than the upper limit frequency or less than the lower limit frequency, An electric hydraulic working machine that drives an electric motor at the upper limit frequency or the lower limit frequency.
請求項2に記載の電動式油圧作業機において、
前記第1および第2の油圧アクチュエータの要求流量が前記油圧ポンプの最大吐出流量を超えた状態であるサチレーション状態を検出するサチレーション検出手段と、
前記サチレーション検出手段によりサチレーション状態が検出されると、レバー操作による前記第1および第2の油圧アクチュエータへの圧油の供給を同一の割合で制限するように前記第1および第2の制御弁を制御する制御弁制御手段とをさらに備えることを特徴とする電動式油圧作業機。
The electric hydraulic working machine according to claim 2,
Saturation detection means for detecting a saturation state in which required flow rates of the first and second hydraulic actuators exceed a maximum discharge flow rate of the hydraulic pump;
When the saturation state is detected by the saturation detection means, the first and second control valves are controlled so as to limit the supply of pressure oil to the first and second hydraulic actuators by lever operation at the same rate. An electric hydraulic working machine further comprising control valve control means for controlling.
請求項3に記載の電動式油圧作業機において、
前記サチレーション検出手段は、前記目標周波数が前記上限周波数を超えるとサチレーション状態と判定することを特徴とする電動式油圧作業機。
In the electric hydraulic working machine according to claim 3,
The saturation detection means determines that the saturation state is reached when the target frequency exceeds the upper limit frequency.
請求項1〜4のいずれか1項に記載の電動式油圧作業機において、
前記第1および第2の制御弁の前後差圧を負荷圧に拘わらず一定とする圧力補償弁がさらに設けられることを特徴とする電動式油圧作業機。
In the electric hydraulic working machine according to any one of claims 1 to 4,
An electric hydraulic working machine, further comprising a pressure compensation valve that makes the differential pressure across the first and second control valves constant regardless of load pressure.
JP2007097270A 2007-04-03 2007-04-03 Electric hydraulic work machine Pending JP2008256037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007097270A JP2008256037A (en) 2007-04-03 2007-04-03 Electric hydraulic work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007097270A JP2008256037A (en) 2007-04-03 2007-04-03 Electric hydraulic work machine

Publications (1)

Publication Number Publication Date
JP2008256037A true JP2008256037A (en) 2008-10-23

Family

ID=39979804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007097270A Pending JP2008256037A (en) 2007-04-03 2007-04-03 Electric hydraulic work machine

Country Status (1)

Country Link
JP (1) JP2008256037A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164182A (en) * 2009-01-19 2010-07-29 Toyota Industries Corp Hydraulic control device for industrial vehicle
WO2011105027A1 (en) * 2010-02-23 2011-09-01 株式会社竹内製作所 Hydraulic pressure control device
WO2013058326A1 (en) 2011-10-20 2013-04-25 日立建機株式会社 Hydraulic drive device of power-operated hydraulic operation machine
JP2013091932A (en) * 2011-10-24 2013-05-16 Kyokuto Kaihatsu Kogyo Co Ltd Concrete pump vehicle
JP2013100864A (en) * 2011-11-08 2013-05-23 Nissan Forklift Kk Electric motor control device
CN103765019A (en) * 2011-08-31 2014-04-30 日立建机株式会社 Hydraulic drive device for construction machine
JP2014098487A (en) * 2012-11-15 2014-05-29 Linde Hydraulics Gmbh & Co Kg Hydrostatic driving system
WO2014084213A1 (en) * 2012-11-27 2014-06-05 日立建機株式会社 Hydraulic drive device of electric hydraulic machinery
WO2014189445A1 (en) * 2013-05-24 2014-11-27 BAE Systems Hägglunds Aktiebolag Method and system for controlling hydraulic device
KR20190026878A (en) 2017-03-13 2019-03-13 가부시키가이샤 히다치 겡키 티에라 Hydraulic drive device of electric hydraulic working machine
WO2020040684A1 (en) * 2018-08-24 2020-02-27 Brokk Aktiebolag Demolition robot and method for supplying hydraulic power to a hydraulically powered tool at a demolition robot
WO2021173742A1 (en) * 2020-02-27 2021-09-02 Cnh Industrial America Llc System and method for controlling pump operating speed range of an electric work vehicle based on hydraulic fluid pressure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239386A (en) * 1987-03-26 1988-10-05 Tokyo Keiki Co Ltd Hydraulic control device
JPH04258508A (en) * 1991-02-07 1992-09-14 Sumitomo Constr Mach Co Ltd Hydraulic driving device for construction machine
JPH07229169A (en) * 1994-02-21 1995-08-29 Hitachi Constr Mach Co Ltd Hydraulic pressure control device of construction machine
JP2002323003A (en) * 2001-04-23 2002-11-08 Nachi Fujikoshi Corp Hydraulic drive unit
JP2006234082A (en) * 2005-02-25 2006-09-07 Shin Caterpillar Mitsubishi Ltd Load sensing hydraulic circuit of work machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239386A (en) * 1987-03-26 1988-10-05 Tokyo Keiki Co Ltd Hydraulic control device
JPH04258508A (en) * 1991-02-07 1992-09-14 Sumitomo Constr Mach Co Ltd Hydraulic driving device for construction machine
JPH07229169A (en) * 1994-02-21 1995-08-29 Hitachi Constr Mach Co Ltd Hydraulic pressure control device of construction machine
JP2002323003A (en) * 2001-04-23 2002-11-08 Nachi Fujikoshi Corp Hydraulic drive unit
JP2006234082A (en) * 2005-02-25 2006-09-07 Shin Caterpillar Mitsubishi Ltd Load sensing hydraulic circuit of work machine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164182A (en) * 2009-01-19 2010-07-29 Toyota Industries Corp Hydraulic control device for industrial vehicle
WO2011105027A1 (en) * 2010-02-23 2011-09-01 株式会社竹内製作所 Hydraulic pressure control device
JP2011174494A (en) * 2010-02-23 2011-09-08 Takeuchi Seisakusho:Kk Hydraulic control device
EP2541070A4 (en) * 2010-02-23 2017-11-22 Takeuchi Mfg. Co. Ltd. Hydraulic pressure control device
CN103765019A (en) * 2011-08-31 2014-04-30 日立建机株式会社 Hydraulic drive device for construction machine
CN103765019B (en) * 2011-08-31 2016-03-23 日立建机株式会社 The fluid pressure drive device of engineering machinery
KR20140079401A (en) 2011-10-20 2014-06-26 히다찌 겐끼 가부시키가이샤 Hydraulic drive device of power-operated hydraulic operation machine
JPWO2013058326A1 (en) * 2011-10-20 2015-04-02 日立建機株式会社 Hydraulic drive device for electric hydraulic work machine
US10280592B2 (en) 2011-10-20 2019-05-07 Hitachi Construction Machinery Tierra Co., Ltd. Hydraulic drive system for electrically-operated hydraulic work machine
CN103890409A (en) * 2011-10-20 2014-06-25 日立建机株式会社 Hydraulic drive device of power-operated hydraulic operation machine
WO2013058326A1 (en) 2011-10-20 2013-04-25 日立建機株式会社 Hydraulic drive device of power-operated hydraulic operation machine
JP2013091932A (en) * 2011-10-24 2013-05-16 Kyokuto Kaihatsu Kogyo Co Ltd Concrete pump vehicle
JP2013100864A (en) * 2011-11-08 2013-05-23 Nissan Forklift Kk Electric motor control device
JP2014098487A (en) * 2012-11-15 2014-05-29 Linde Hydraulics Gmbh & Co Kg Hydrostatic driving system
JP6005176B2 (en) * 2012-11-27 2016-10-12 日立建機株式会社 Hydraulic drive device for electric hydraulic work machine
WO2014084213A1 (en) * 2012-11-27 2014-06-05 日立建機株式会社 Hydraulic drive device of electric hydraulic machinery
WO2014189445A1 (en) * 2013-05-24 2014-11-27 BAE Systems Hägglunds Aktiebolag Method and system for controlling hydraulic device
KR20190026878A (en) 2017-03-13 2019-03-13 가부시키가이샤 히다치 겡키 티에라 Hydraulic drive device of electric hydraulic working machine
US10697150B2 (en) 2017-03-13 2020-06-30 Hitachi Construction Machinery Tierra Co., Ltd. Hydraulic drive system for electrically-driven hydraulic work machine
WO2020040684A1 (en) * 2018-08-24 2020-02-27 Brokk Aktiebolag Demolition robot and method for supplying hydraulic power to a hydraulically powered tool at a demolition robot
WO2021173742A1 (en) * 2020-02-27 2021-09-02 Cnh Industrial America Llc System and method for controlling pump operating speed range of an electric work vehicle based on hydraulic fluid pressure
US11933024B2 (en) 2020-02-27 2024-03-19 Cnh Industrial America Llc System and method for controlling pump operating speed range of an electric work vehicle based on hydraulic fluid pressure

Similar Documents

Publication Publication Date Title
JP2008256037A (en) Electric hydraulic work machine
JP6152473B2 (en) Pressure oil energy regeneration device for work machines
KR102097349B1 (en) Construction machinery
EP3306112B1 (en) Construction-machine hydraulic control device
KR101756780B1 (en) Pump control unit for hydraulic system
JP6383879B2 (en) Pressure oil energy regeneration device for work machines
WO2012160770A1 (en) Rotary work machine
JP5886976B2 (en) Work machine
KR102391357B1 (en) Hydraulic drive of electric hydraulic working machine
CN110462225B (en) Working machine
KR20160015164A (en) Rotation driving device for construction machine
JP5042471B2 (en) Hydraulic control equipment for construction machinery
KR101790903B1 (en) Construction machine
JP2012158932A (en) Hydraulic drive device for construction machine
JPH06200878A (en) Power unit output control device in work machine
JP7184725B2 (en) working machine
JP2009097605A (en) Electric hydraulic work machine
JP2016200241A (en) Hydraulic pressure control system and construction machine
JP2012159123A (en) Hydraulic driving device of construction machine
JPH10183692A (en) Hydraulic drive control device
JP2021195797A (en) Work machine
JP2006194273A (en) Fluid pressure control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A977 Report on retrieval

Effective date: 20110728

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110802

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110