WO2014084175A1 - Thermosetting resin sheet and electronic component packaging fabrication method - Google Patents

Thermosetting resin sheet and electronic component packaging fabrication method Download PDF

Info

Publication number
WO2014084175A1
WO2014084175A1 PCT/JP2013/081672 JP2013081672W WO2014084175A1 WO 2014084175 A1 WO2014084175 A1 WO 2014084175A1 JP 2013081672 W JP2013081672 W JP 2013081672W WO 2014084175 A1 WO2014084175 A1 WO 2014084175A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
resin sheet
electronic component
thermosetting
manufacturing
Prior art date
Application number
PCT/JP2013/081672
Other languages
French (fr)
Japanese (ja)
Inventor
剛 鳥成
豊田 英志
祐作 清水
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to SG11201504009UA priority Critical patent/SG11201504009UA/en
Publication of WO2014084175A1 publication Critical patent/WO2014084175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to a thermosetting resin sheet and a method for manufacturing an electronic component package.
  • an electronic component package typically, an electronic component fixed to a substrate, a temporary fixing material or the like is sealed with a sealing resin, and if necessary, the sealed material is packaged in units of electronic components.
  • the procedure of dicing is adopted.
  • an electronic component is manufactured from a wafer and sealed as it is to manufacture an electronic component package, a technology in which a plurality of electronic components are sealed in a wafer shape to form a sealed package, or A technique has been developed in which large-area electronic components are sealed and then separated into individual pieces by dicing.
  • a technique has been proposed which is performed by potting with a liquid thermosetting resin composition (Patent Document 1).
  • the area of the wafer-like encapsulated material will further increase for the purpose of cost reduction.
  • the resin may flow during molding due to its resin characteristics, resulting in a change in the resin composition, and it may not be possible to manufacture a semiconductor device with stable quality. is there.
  • An object of the present invention is to provide a thermosetting resin sheet capable of stably producing a high-quality electronic component package without causing fluctuations in the resin composition even during resin sealing in a large area, and an electronic component package using the same It is in providing the manufacturing method of.
  • thermosetting resin sheet As a result of intensive studies, the present inventors have found that the above problems can be solved by employing a specific thermosetting resin sheet, and have completed the present invention.
  • the present invention It is a thermosetting resin sheet in a B stage state that includes an inorganic filler and has a projected area in plan view of 31400 mm 2 or more.
  • thermosetting resin sheet since the projected area in plan view is 31400 mm 2 or more, a large-area electronic component (for example, an 8-inch wafer) can be easily sealed with resin and a plurality of electronic components Can be encapsulated in a large-area wafer in a batch.
  • thermosetting resin sheet since the thermosetting resin sheet is in a B-stage state, the resin composition is softened to some extent during resin sealing, but does not fluidize, and as a result, fluctuations in the resin composition represented by the uneven distribution of inorganic fillers. Can be suppressed, and a stable quality electronic component package can be manufactured. Furthermore, since it is in a B-stage state, it is easy to handle, and for example, resin sealing can be performed by simple pressing without using a special mold or spacer for resin sealing.
  • B stage refers to the intermediate state of curing of a thermosetting resin in accordance with the provisions of JIS K6800. It softens when the resin is heated and swells when exposed to certain solvents, but completely melts. ⁇ A state that does not dissolve.
  • the elastic modulus before thermosetting is preferably 1.5 ⁇ 10 3 Pa or more and 3 ⁇ 10 3 Pa or less in a temperature range of 90 to 130 ° C.
  • the elastic modulus before thermosetting in the above range, it can be sufficiently softened to follow the fluidity of the resin and to follow even if the shape of the electronic component or adherend is complicated, A high-quality electronic component package can be produced more efficiently.
  • the measurement procedure of the elasticity modulus of the thermosetting resin sheet before thermosetting is based on description of an Example.
  • the inorganic filler preferably has an average particle size of 54 ⁇ m or less. Thereby, even if it softens in the case of resin sealing, the dispersion state of an inorganic filler can be maintained favorable and the fluctuation
  • the content of the inorganic filler is preferably 70% by weight or more and 95% by weight or less.
  • thermosetting resin sheet preferably contains an elastomer, an epoxy resin, and a phenol resin. Thereby, the favorable handling property before resin sealing, softening property, and high reliability after resin sealing (after thermosetting) are securable.
  • the present invention also includes a thermosetting resin sheet wound body in which a long body of the thermosetting resin sheet is wound into a roll.
  • the present invention is a method of manufacturing an electronic component package, A lamination step of laminating the thermosetting resin sheet on the electronic component so as to cover one or a plurality of electronic components, and a sealing body forming step of forming a sealing body by thermosetting the thermosetting resin sheet Including Also included is a method for manufacturing an electronic component package, in which the proportion of the planar projection area of the electronic component in the planar projection area of the thermosetting resin sheet is 50% or more.
  • thermosetting resin sheet since a predetermined thermosetting resin sheet is used, it is possible to easily and efficiently perform resin sealing in a large area of an electronic component.
  • area occupation ratio since the ratio of the planar projection area of the electronic component in the planar projection area of the thermosetting resin sheet (hereinafter also simply referred to as “area occupation ratio”) is 50% or more, the electronic component per unit area The number of processes can be increased, and manufacturing with higher efficiency and lower cost becomes possible.
  • thermosetting resin sheet in the B-stage state can maintain the shape of the initial state to a certain extent without fluidizing while sufficiently softening at the time of resin sealing.
  • a thermosetting resin sheet can be laminated on an electronic component by a simple hot press process without using a special mold or the like for shape maintenance or molding.
  • the manufacturing method may further include a dicing step of dicing the sealing body to form an electronic component module. Since electronic parts can be sealed in a large area, the width of product design can be widened.
  • the electronic component may be a semiconductor chip or a semiconductor wafer.
  • thermosetting resin sheet which concerns on one Embodiment of this invention. It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention.
  • thermosetting resin sheet The thermosetting resin sheet according to the present embodiment will be described with reference to FIG.
  • FIG. 1 is a cross-sectional view schematically showing a thermosetting resin sheet according to an embodiment of the present invention.
  • the thermosetting resin sheet 11 in the B-stage state is typically provided in a state of being laminated on a support 11a such as a polyethylene terephthalate (PET) film. Note that a release treatment may be applied to the support 11a in order to easily peel the thermosetting resin sheet 11.
  • PET polyethylene terephthalate
  • Plan view projection area of the thermosetting resin sheet 11 may be any 31400Mm 2 or more, preferably 49063Mm 2 or more, more preferably 70650Mm 2 or more.
  • the upper limit of the planar projection area is not particularly limited, and can be set as appropriate according to the production line design. For example, it may be 70650 mm 2 or less (equivalent to a 12-inch wafer), and in the future, 125600 mm 2 or less. (Equivalent to a 16-inch wafer) may be used. Needless to say, a larger projected area in plan view can also be suitably employed.
  • the plan view shape of the thermosetting resin sheet 11 is not particularly limited, and may be a circle, an ellipse, a racetrack, a rectangle, a square, a rhombus, a parallelogram, a triangle having an arbitrary interior angle, a rectangle, a pentagon, a hexagon, or the like. Any shape having an outline formed by a straight line, a curved line, or a combination thereof can be adopted.
  • the lower limit of the elastic modulus of the thermosetting resin sheet 11 before thermosetting is preferably 1.5 ⁇ 10 3 Pa or more in the temperature range of 90 to 130 ° C., and is 1.7 ⁇ 10 3 Pa or more. More preferably, it is more preferably 2.5 ⁇ 10 3 Pa or more.
  • the upper limit of the elastic modulus before thermosetting is preferably 3 ⁇ 10 4 Pa or less, more preferably 2 ⁇ 10 4 Pa or less, and further preferably 1.5 ⁇ 10 4 Pa or less. .
  • the resin composition for forming the thermosetting resin sheet is not particularly limited as long as it has the above-described characteristics and can be used for resin sealing of electronic components such as semiconductor chips.
  • the following A An epoxy resin composition containing an E component to a component is preferable.
  • the C component may or may not be added as necessary.
  • the epoxy resin (component A) is not particularly limited.
  • Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
  • a modified bisphenol A type epoxy resin having a flexible skeleton such as an acetal group or a polyoxyalkylene group is preferable, and a modified bisphenol A type epoxy resin having an acetal group is in a liquid state and is easy to handle. Therefore, it can be particularly preferably used.
  • the content of the epoxy resin (component A) is preferably set in the range of 1 to 10% by weight with respect to the entire epoxy resin composition.
  • the phenol resin (component B) is not particularly limited as long as it causes a curing reaction with the epoxy resin (component A).
  • a phenol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more.
  • phenol resin those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin (component A), and above all, from the viewpoint of high curing reactivity.
  • a phenol novolac resin can be preferably used. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.
  • the blending ratio of the epoxy resin (component A) and the phenol resin (component B) is a hydroxyl group in the phenol resin (component B) with respect to 1 equivalent of the epoxy group in the epoxy resin (component A). It is preferable to blend so that the total amount becomes 0.7 to 1.5 equivalents, more preferably 0.9 to 1.2 equivalents.
  • the structure There is no particular limitation on the structure as long as it has such an effect.
  • various acrylic copolymers such as polyacrylates, styrene acrylate copolymers, butadiene rubber, styrene-butadiene rubber (SBR), ethylene-vinyl acetate copolymer (EVA), isoprene rubber, acrylonitrile rubber, etc. Polymers can be used.
  • thermosetting resin sheet can be improved because it is easily dispersed in the epoxy resin (component A) and has high reactivity with the epoxy resin (component A). It is preferable to use an acrylic copolymer. These may be used alone or in combination of two or more.
  • the acrylic copolymer can be synthesized, for example, by radical polymerization of an acrylic monomer mixture having a predetermined mixing ratio by a conventional method.
  • a method for radical polymerization a solution polymerization method in which an organic solvent is used as a solvent or a suspension polymerization method in which polymerization is performed while dispersing raw material monomers in water are used.
  • polymerization initiator used in this case examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis- (2,4-dimethylvaleronitrile), and 2,2′-azobis-4- Methoxy-2,4-dimethylvaleronitrile, other azo or diazo polymerization initiators, peroxide polymerization initiators such as benzoyl peroxide and methyl ethyl ketone peroxide are used.
  • a dispersing agent such as polyacrylamide or polyvinyl alcohol.
  • the content of the elastomer (component C) is 15 to 30% by weight of the entire epoxy resin composition. If the content of the elastomer (component C) is less than 15% by weight, it becomes difficult to obtain the flexibility and flexibility of the thermosetting resin sheet 11, and further the resin sealing that suppresses the warp of the thermosetting resin sheet. It will also be difficult. On the other hand, when the content exceeds 30% by weight, the melt viscosity of the thermosetting resin sheet 11 is increased, the embedding property of the electronic component is lowered, and the strength and heat resistance of the cured body of the thermosetting resin sheet 11 are reduced. Tend to decrease.
  • the weight ratio of the elastomer (component C) to the epoxy resin (component A) is preferably set in the range of 3 to 4.7.
  • weight ratio is less than 3, it is difficult to control the fluidity of the thermosetting resin sheet 11, and when it exceeds 4.7, the adhesion of the thermosetting resin sheet 11 to electronic components tends to be inferior. Because it is seen.
  • the inorganic filler (component D) is not particularly limited, and various conventionally known fillers can be used.
  • the internal stress is reduced by reducing the coefficient of thermal expansion of the cured product of the epoxy resin composition, and as a result, warpage of the thermosetting resin sheet 11 after sealing of the electronic component can be suppressed.
  • a powder it is more preferable to use a fused silica powder among the silica powders.
  • the fused silica powder include spherical fused silica powder and crushed fused silica powder. From the viewpoint of fluidity, it is particularly preferable to use a spherical fused silica powder.
  • those having an average particle diameter in the range of 54 ⁇ m or less are preferably used, those in the range of 0.1 to 30 ⁇ m are more preferable, and those in the range of 0.3 to 15 ⁇ m are particularly preferable.
  • the average particle diameter can be derived by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the content of the inorganic filler (component D) is preferably 70 to 95% by weight of the entire epoxy resin composition, more preferably 75 to 92% by weight, and still more preferably 80 to 90% by weight.
  • the content of the inorganic filler (component D) is less than 50% by weight, the linear expansion coefficient of the cured product of the epoxy resin composition increases, and thus the warp of the thermosetting resin sheet 11 tends to increase.
  • liquidity of the thermosetting resin sheet 11 will worsen when the said content exceeds 90 weight%, the tendency for the adhesiveness with an electronic component to fall is seen.
  • the curing accelerator (component E) is not particularly limited as long as it allows curing of the epoxy resin and the phenol resin, but from the viewpoint of curability and storage stability, triphenylphosphine or tetraphenylphosphonium tetraphenyl. Organic phosphorus compounds such as borates and imidazole compounds are preferably used. These curing accelerators may be used alone or in combination with other curing accelerators.
  • the content of the curing accelerator (component E) is preferably 0.1 to 5 parts by weight with respect to a total of 100 parts by weight of the epoxy resin (component A) and the phenol resin (component B).
  • a flame retardant component may be added to the epoxy resin composition.
  • various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, and complex metal hydroxide can be used.
  • the average particle diameter of the metal hydroxide is preferably 1 to 10 ⁇ m, more preferably 2 to 5 ⁇ m, from the viewpoint of ensuring appropriate fluidity when the epoxy resin composition is heated. It is.
  • the average particle size of the metal hydroxide is less than 1 ⁇ m, it becomes difficult to uniformly disperse in the epoxy resin composition, and the fluidity during heating of the epoxy resin composition tends to be insufficient.
  • the surface area per addition amount of a metal hydroxide (E component) will become small when an average particle diameter exceeds 10 micrometers, the tendency for a flame-retardant effect to fall is seen.
  • a phosphazene compound can be used in addition to the above metal hydroxide.
  • phosphazene compounds for example, SPR-100, SA-100, SP-100 (above, Otsuka Chemical Co., Ltd.), FP-100, FP-110 (above, Fushimi Pharmaceutical Co., Ltd.) and the like are commercially available. is there.
  • the phosphazene compound represented by the formula (1) or the formula (2) is preferable from the viewpoint of exhibiting a flame retardant effect even in a small amount, and the content of phosphorus element contained in these phosphanzene compounds is 12% by weight or more. Is preferred.
  • n is an integer of 3 to 25
  • R 1 and R 2 are the same or different and are selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group.
  • a monovalent organic group having (In the formula (2), n and m are each independently an integer of 3 to 25.
  • R 3 and R 5 are the same or different and are composed of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group.
  • R 4 is a divalent organic group having a functional group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group. .
  • n is an integer of 3 to 25
  • R 6 and R 7 are the same or different and are hydrogen, a hydroxyl group, an alkyl group, an alkoxy group, or a glycidyl group.
  • the cyclic phosphazene oligomer represented by the above formula (3) is commercially available, for example, FP-100, FP-110 (above, Fushimi Pharmaceutical Co., Ltd.) and the like.
  • the content of the phosphazene compound includes the epoxy resin (component A), phenol resin (component B), elastomer (component D), curing accelerator (component E) and phosphazene compound (other components) contained in the epoxy resin composition. It is preferably 10 to 30% by weight of the total organic component containing. That is, when the content of the phosphazene compound is less than 10% by weight of the total organic components, the flame retardancy of the thermosetting resin sheet 11 is reduced and the unevenness on the adherend (for example, a substrate on which an electronic component is mounted). There is a tendency that the followability is lowered and voids are generated. When the content exceeds 30% by weight of the whole organic component, tackiness is likely to occur on the surface of the thermosetting resin sheet 11, and the workability tends to be lowered, such as difficulty in alignment with the adherend. .
  • the above-described metal hydroxide and phosphazene compound can be used in combination, and the thermosetting resin sheet 11 having excellent flame retardancy can be obtained while ensuring the flexibility necessary for sheet sealing.
  • the thermosetting resin sheet 11 having excellent flame retardancy can be obtained while ensuring the flexibility necessary for sheet sealing.
  • flame retardants organic-based from the viewpoint of the deformability of the thermosetting resin sheet at the time of molding of the resin sealing, the followability to the unevenness of the electronic component or adherend, and the adhesion to the electronic component or adherend It is desirable to use a flame retardant, and a phosphazene flame retardant is particularly preferably used.
  • the epoxy resin composition can be appropriately mixed with other additives such as pigments including carbon black as necessary.
  • thermosetting resin sheet A method for producing a thermosetting resin sheet will be described below.
  • an epoxy resin composition is prepared by mixing the above-described components.
  • the mixing method is not particularly limited as long as each component is uniformly dispersed and mixed.
  • a varnish in which each component is dissolved or dispersed in an organic solvent or the like is applied to form a sheet.
  • a kneaded material may be prepared by directly kneading each compounding component with a kneader or the like, and the kneaded material thus obtained may be extruded to form a sheet.
  • the above components A to E and other additives as necessary are mixed as appropriate according to a conventional method, and uniformly dissolved or dispersed in an organic solvent to prepare a varnish.
  • the B-stage thermosetting resin sheet 11 can be obtained by applying the varnish on a support such as polyester and drying it. If necessary, a release sheet such as a polyester film may be bonded to protect the surface of the thermosetting resin sheet. The release sheet peels at the time of sealing.
  • the organic solvent is not particularly limited, and various conventionally known organic solvents such as methyl ethyl ketone, acetone, cyclohexanone, dioxane, diethyl ketone, toluene, and ethyl acetate can be used. These may be used alone or in combination of two or more. Usually, it is preferable to use an organic solvent so that the solid content concentration of the varnish is in the range of 30 to 60% by weight.
  • the thickness of the sheet after drying the organic solvent is not particularly limited, but is usually preferably set to 5 to 100 ⁇ m, more preferably 20 to 70 ⁇ m, from the viewpoint of thickness uniformity and the amount of residual solvent. is there.
  • the above components A to E and, if necessary, each component of other additives are mixed using a known method such as a mixer, and then kneaded to prepare a kneaded product.
  • the method of melt kneading is not particularly limited, and examples thereof include a method of melt kneading with a known kneader such as a mixing roll, a pressure kneader, or an extruder.
  • a kneader for example, a kneading screw having a portion in which the protruding amount of the screw blade from the screw shaft in a part of the axial direction is smaller than the protruding amount of the screw blade of the other portion or the shaft
  • a kneader equipped with a kneading screw having no screw blades in a part of the direction can be suitably used.
  • Low shear force and low agitation in the part where the protruding amount of the screw wing is small or where there is no screw wing increases the compression rate of the kneaded product, and it is possible to eliminate the trapped air and generate pores in the obtained kneaded product Can be suppressed.
  • the kneading conditions are not particularly limited as long as the temperature is equal to or higher than the softening point of each component described above.
  • the thermosetting property of the epoxy resin it is preferably 40 to 140 ° C., more preferably The temperature is 60 to 120 ° C., and the time is, for example, 1 to 30 minutes, preferably 5 to 15 minutes. Thereby, a kneaded material can be prepared.
  • the thermosetting resin sheet 11 in a B-stage state can be obtained by molding the obtained kneaded material by extrusion molding.
  • the thermosetting resin sheet 11 can be formed by extrusion molding without cooling the kneaded product after melt-kneading while maintaining a high temperature state.
  • Such an extrusion method is not particularly limited, and examples thereof include a T-die extrusion method, a roll rolling method, a roll kneading method, a co-extrusion method, and a calendar molding method.
  • the extrusion temperature is not particularly limited as long as it is equal to or higher than the softening point of each component described above.
  • the thermosetting property and moldability of the epoxy resin for example, 40 to 150 ° C., preferably 50 to 140 ° C. Preferably, it is 70 to 120 ° C.
  • the thermosetting resin sheet 11 can be formed.
  • thermosetting resin sheet thus obtained may be used by being laminated so as to have a desired thickness if necessary. That is, the thermosetting resin sheet may be used in a single layer structure, or may be used as a laminate formed by laminating two or more multilayer structures.
  • FIGS. 2A to 2E are cross-sectional views schematically showing one process of a method for manufacturing an electronic component package according to an embodiment of the present invention.
  • a semiconductor chip mounted on a substrate is sealed with a thermosetting resin sheet to produce an electronic component package.
  • a semiconductor chip is used as the electronic component and a printed wiring board is used as the adherend.
  • other elements may be used.
  • a capacitor, a sensor device, a light emitting element, a vibration element or the like can be used as an electronic component, and a lead frame, a tape carrier, or the like can be used as an adherend.
  • a lead frame, a tape carrier, or the like can be used as an adherend.
  • the method for manufacturing an electronic component package according to the first embodiment is suitable for manufacturing a flip-chip type mounting substrate.
  • a printed wiring board 12 on which a plurality of semiconductor chips 13 are mounted is prepared (see FIG. 2A).
  • the semiconductor chip 13 can be formed by dicing a semiconductor wafer on which a predetermined circuit is formed by a known method.
  • a known apparatus such as a flip chip bonder or a die bonder can be used.
  • the semiconductor chip 13 and the printed wiring board 12 are electrically connected via protruding electrodes 13a such as bumps.
  • an underfill material 14 is filled between the semiconductor chip 13 and the printed wiring board 12 in order to alleviate the difference in thermal expansion coefficient between them and particularly to prevent the occurrence of cracks or the like at the connection site.
  • a known material may be used as the underfill material 14.
  • the underfill material 14 may be arranged by injecting the liquid underfill material 14 between the semiconductor chip 13 and the semiconductor chip 13 on the printed wiring board 12, or a semiconductor with a sheet-like underfill material 14. The preparation may be performed by connecting the semiconductor chip 13 and the printed wiring board 12 after preparing the chip 13 or the printed wiring board 12.
  • thermosetting resin sheet 11 is laminated on the printed wiring board 12 so as to cover the semiconductor chip 13, and the semiconductor chip 13 is resin-sealed with the thermosetting resin sheet (see FIG. 2B).
  • the thermosetting resin sheet 11 functions as a sealing resin for protecting the semiconductor chip 13 and its accompanying elements from the external environment.
  • the method for laminating the thermosetting resin sheet 11 is not particularly limited, and a melt-kneaded product of a resin composition for forming a thermosetting resin sheet is extruded and the extruded product is placed on the printed wiring board 12. Then, a method for forming and laminating the thermosetting resin sheet 11 at once by pressing and a resin composition for forming the thermosetting resin sheet 11 are applied onto the release treatment sheet and applied. For example, a method of transferring the thermosetting resin sheet 11 onto the printed wiring board 12 after the film is dried to form the thermosetting resin sheet 11 may be used.
  • thermosetting resin sheet 11 by adopting the thermosetting resin sheet 11, the semiconductor chip 13 can be embedded simply by sticking on the printed wiring board 12 to the cover of the semiconductor chip 13, thereby improving the production efficiency of the semiconductor package. Can be made.
  • the thermosetting resin sheet 11 can be laminated on the printed wiring board 12 by a known method such as hot pressing or laminator.
  • the temperature is, for example, 40 to 120 ° C., preferably 50 to 100 ° C.
  • the pressure is, for example, 50 to 2500 kPa, preferably 100 to 2000 kPa
  • the time is, for example, 0 3 to 10 minutes, preferably 0.5 to 5 minutes.
  • it is preferable to perform pressing under reduced pressure conditions for example, 10 to 2000 Pa).
  • the ratio of the planar projection area of the electronic component in the planar projection area of the thermosetting resin sheet may be 50% or more, preferably 80% or more, and more preferably 85% or more.
  • the upper limit of the area occupation ratio is preferably 100% or less, but may be a lower value (for example, 98% or less).
  • Examples of the case where the area occupation ratio is 100% include a mode in which the wafer is sealed with a thermosetting resin sheet having the same planar projection area as that of the wafer, as described in the second embodiment, but is not limited thereto.
  • the aspect with the same planar projection area of an electronic component and a thermosetting resin sheet is mentioned.
  • thermosetting resin sheet is thermoset to form the sealing body 15 (see FIG. 2B).
  • the conditions for the thermosetting treatment of the thermosetting resin sheet are preferably 100 to 200 ° C., more preferably 120 to 180 ° C. as the heating temperature, and preferably 10 to 180 minutes, more preferably 30 to 120 minutes as the heating time. In the meantime, you may pressurize as needed. In the pressurization, preferably 0.1 MPa to 10 MPa, more preferably 0.5 MPa to 5 MPa can be employed.
  • the surface of the sealing body 15 is ground to form the grinding body 16 (see FIG. 2C).
  • the semiconductor chip 13 may be ground together with the thermosetting resin sheet 11 as shown in FIG. 2C, or only the thermosetting resin sheet 11 may be ground. Grinding may be performed using a known grinding apparatus. A procedure for forming the grinding body 16 having a predetermined thickness by rotating the grinding tool such as a diamond tool while grinding the surface of the sealing body while feeding the sealing body 15 to the grinding tool can be suitably employed.
  • bumping may be performed to form bumps 17 on the surface opposite to the semiconductor chip mounting surface of the printed wiring board 12 (see FIG. 2D).
  • the bumping process can be performed by a known method such as a solder ball or solder plating.
  • the material of the bump is not particularly limited.
  • tin-lead metal material tin-silver metal material, tin-silver-copper metal material, tin-zinc metal material, tin-zinc-bismuth metal material, etc.
  • Solders alloys
  • gold-based metal materials copper-based metal materials, and the like.
  • a cutting method called full cut that cuts up to a dicing sheet can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used.
  • the expanding device when expanding a grinding body following a dicing process, this expansion can be performed using a conventionally well-known expanding apparatus.
  • the expanding device includes a donut-shaped outer ring that can push down the dicing sheet through the dicing ring, and an inner ring that has a smaller diameter than the outer ring and supports the dicing sheet.
  • a board mounting process for mounting the electronic module 18 obtained above on a separate board can be performed.
  • a known device such as a flip chip bonder or a die bonder can be used.
  • FIGS. 3A to 3E are cross-sectional views schematically showing one process of a method for manufacturing an electronic component package according to another embodiment of the present invention.
  • a plurality of protruding electrodes 23a may be formed on one side (see FIG. 3A), or protruding electrodes may be formed on both sides of the semiconductor wafer 29 (not shown).
  • the material of the bump electrode or conductive material such as a conductive material.
  • a tin-lead metal material, a tin-silver metal material, a tin-silver-copper metal material, a tin-zinc metal material examples thereof include solders (alloys) such as a tin-zinc-bismuth metal material, a gold metal material, and a copper metal material.
  • the height of the protruding electrode is also determined according to the application, and is generally about 20 to 200 ⁇ m.
  • the projecting electrodes on both surfaces may or may not be electrically connected.
  • Examples of the electrical connection between the protruding electrodes include a connection through a via called a TSV format.
  • thermosetting resin sheet 21 is laminated on the semiconductor wafer 29 so as to cover the protruding electrodes 23a, and one surface of the semiconductor wafer 29 is resin-sealed with the thermosetting resin sheet (see FIG. 3B).
  • This thermosetting resin sheet 21 functions as a sealing resin for protecting the semiconductor wafer 29 and its accompanying elements from the external environment.
  • the same conditions as in the first embodiment can be adopted for the method of laminating the thermosetting resin sheet 21 on the semiconductor wafer 29.
  • thermosetting resin sheet 21 is subjected to a thermosetting process to form the sealing body 25 (see FIG. 3B).
  • the conditions for the thermosetting treatment of the thermosetting resin sheet 21 can be the same conditions as in the first embodiment.
  • grinding process In the grinding step, the surface of the sealing body 25 is ground to form the grinding body 26 (see FIG. 3C). At the time of grinding, as shown in FIG. 3C, grinding is performed so that the protruding electrode 23a is exposed. Grinding may be performed using a known grinding apparatus.
  • bump formation process Next, bumping is performed to form bumps 27 on the exposed protruding electrodes 23a (see FIG. 3D).
  • the bumping method and bump material can be the same as those in the first embodiment.
  • the grinding body 26 composed of elements such as the thermosetting resin sheet 21, the semiconductor wafer 29, and the bumps 27 may be diced (see FIG. 3E). Thereby, the electronic module 28 in the semiconductor chip 23 unit can be obtained.
  • the dicing method the same method as in the first embodiment can be adopted.
  • a board mounting process for mounting the electronic module 28 obtained above on a separate board can be performed.
  • a known device such as a flip chip bonder or a die bonder can be used.
  • FIGS. 4A to 4G are cross-sectional views schematically showing one process of a method for manufacturing an electronic component package according to still another embodiment of the present invention.
  • the semiconductor chip mounted on the printed wiring board is resin-sealed with a thermosetting resin sheet, but in the third embodiment, the semiconductor chip is temporarily fixed instead of an adherend such as a substrate. Resin sealing is performed while temporarily fixed to the material.
  • the third embodiment is suitable for manufacturing an electronic component package called a so-called Fan-out (fan-out) wafer level package (WLP).
  • WLP Fan-out wafer level package
  • Temporal fixing material preparation process In the temporary fixing material preparing step, the temporary fixing material 3 in which the thermally expandable pressure-sensitive adhesive layer 3a is laminated on the support 3b is prepared (see FIG. 4A). In addition, it can replace with a thermally expansible adhesive layer, and can also use a radiation curing type adhesive layer. In the present embodiment, a temporary fixing material 3 including a thermally expandable pressure-sensitive adhesive layer will be described.
  • the heat-expandable pressure-sensitive adhesive layer 3a can be formed of a pressure-sensitive adhesive composition containing a polymer component and a foaming agent.
  • a polymer component particularly the base polymer
  • an acrylic polymer sometimes referred to as “acrylic polymer A”
  • acrylic polymer A examples include those using (meth) acrylic acid ester as a main monomer component.
  • Examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, sec-butyl ester, t-butyl ester, Pentyl ester, isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, Linear or branched alkyl ester having 1 to 30 carbon atoms, particularly 4 to 18 carbon atoms, of an alkyl group such as hexadecyl ester, oct
  • the acrylic polymer A corresponds to other monomer components that can be copolymerized with the (meth) acrylic acid ester, if necessary, for the purpose of modifying cohesive strength, heat resistance, crosslinkability, and the like. Units may be included.
  • monomer components include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, and carboxyethyl acrylate; acid anhydrides such as maleic anhydride and itaconic anhydride Group-containing monomers; hydroxyl group-containing monomers such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (N-substituted or unsubstituted) amide monomers such as N-butyl (meth) acrylamide, N-
  • (Substituted or unsubstituted) amino group-containing monomers (meth) acrylic acid alkoxyalkyl monomers such as methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate; N-vinylpyrrolidone, N -Methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, N-vinyloxazole, N-vinylmorpholine, N -Monomers having a nitrogen atom-containing ring such as vinylcaprolactam; N-vinylcarboxylic amides; Monomers containing sulfonic acid groups such as styrene sulfonic acid, allyl sulfonic acid, (meth) acryl
  • the acrylic polymer A can be obtained by polymerizing a single monomer or a mixture of two or more monomers.
  • the polymerization may be performed by any method such as solution polymerization (for example, radical polymerization, anionic polymerization, cationic polymerization), emulsion polymerization, bulk polymerization, suspension polymerization, photopolymerization (for example, ultraviolet (UV) polymerization). it can.
  • the weight average molecular weight of the acrylic polymer A is not particularly limited, but is preferably 350,000 to 1,000,000, more preferably about 450,000 to 800,000.
  • an external cross-linking agent can be appropriately used for the heat-expandable pressure-sensitive adhesive in order to adjust the adhesive force.
  • the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive.
  • the amount of the external crosslinking agent used is generally 20 parts by weight or less (preferably 0.1 to 10 parts by weight) with respect to 100 parts by weight of the base polymer.
  • the heat-expandable pressure-sensitive adhesive layer 3a contains a foaming agent for imparting heat-expandability as described above. Therefore, in the state in which the grinding body 36 including the semiconductor chip 33 ground on the thermally expandable pressure-sensitive adhesive layer 3a of the temporary fixing material 3 is formed (see FIG. 4D), the temporary fixing material 3 is at least partially attached at any time. And the foaming agent contained in the heated thermally expandable pressure-sensitive adhesive layer 3a is foamed and / or expanded, so that the thermally expandable pressure-sensitive adhesive layer 3a is at least partially expanded.
  • the pressure-sensitive adhesive surface (interface with the grinding body 36) corresponding to the expanded portion is deformed into an uneven shape, and the heat-expandable pressure-sensitive adhesive layer 3a and The adhesion area with the grinding body 36 is reduced, whereby the adhesive force between the two is reduced, and the grinding body 36 can be peeled from the temporary fixing material 3.
  • the foaming agent used in the heat-expandable pressure-sensitive adhesive layer 3a is not particularly limited and can be appropriately selected from known foaming agents.
  • a foaming agent can be used individually or in combination of 2 or more types.
  • thermally expandable microspheres can be suitably used.
  • the heat-expandable microsphere is not particularly limited, and can be appropriately selected from known heat-expandable microspheres (such as various inorganic heat-expandable microspheres and organic heat-expandable microspheres).
  • a microencapsulated foaming agent can be suitably used from the viewpoint of easy mixing operation.
  • thermally expandable microspheres include microspheres in which substances such as isobutane, propane, and pentane that are easily gasified and expanded by heating are encapsulated in an elastic shell.
  • the shell is often formed of a hot-melt material or a material that is destroyed by thermal expansion.
  • Examples of the substance forming the shell include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
  • Thermally expandable microspheres can be produced by a conventional method such as a coacervation method or an interfacial polymerization method.
  • Examples of the thermally expandable microspheres include, for example, a series of “Matsumoto Microsphere F30” and “Matsumoto Microsphere F301D” (trade names “Matsumoto Microsphere F30”, manufactured by Matsumoto Yushi Seiyaku Co., Ltd.).
  • Commercially available products such as “051DU”, “053DU”, “551DU”, “551-20DU”, and “551-80DU” can be used.
  • the particle size (average particle diameter) of the thermally expandable microspheres can be appropriately selected according to the thickness of the thermally expandable pressure-sensitive adhesive layer. .
  • the average particle diameter of the heat-expandable microspheres can be selected from a range of, for example, 100 ⁇ m or less (preferably 80 ⁇ m or less, more preferably 1 ⁇ m to 50 ⁇ m, particularly 1 ⁇ m to 30 ⁇ m). Note that the adjustment of the particle size of the thermally expandable microspheres may be performed in the process of generating the thermally expandable microspheres, or may be performed by means such as classification after the generation. It is preferable that the thermally expandable microspheres have the same particle size.
  • a foaming agent other than the thermally expandable microsphere can also be used.
  • various foaming agents such as various inorganic foaming agents and organic foaming agents can be appropriately selected and used.
  • the inorganic foaming agent include ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, various azides and the like.
  • organic foaming agents include, for example, water; chlorofluorinated alkane compounds such as trichloromonofluoromethane and dichloromonofluoromethane; azobisisobutyronitrile, azodicarbonamide, and barium azodi.
  • Azo compounds such as carboxylates; hydrazine compounds such as paratoluenesulfonyl hydrazide, diphenylsulfone-3,3'-disulfonyl hydrazide, 4,4'-oxybis (benzenesulfonyl hydrazide), allyl bis (sulfonyl hydrazide); p- Semicarbazide compounds such as toluylenesulfonyl semicarbazide and 4,4′-oxybis (benzenesulfonyl semicarbazide); Triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole; N, N′-dinitrosope Data methylene terrorism lamin, N, N'-dimethyl -N, N'N-nitroso compounds such as dinitrosoterephthalamide, and the like.
  • the volume expansion coefficient is 5 times or more, especially 7 times or more, particularly 10 times or more.
  • a foaming agent having an appropriate strength that does not burst is preferred.
  • the amount of foaming agent can be set as appropriate depending on the expansion ratio of the thermally expandable pressure-sensitive adhesive layer and the ability to lower the adhesive strength, but generally a thermally expandable pressure-sensitive adhesive layer is formed.
  • the amount is, for example, 1 part by weight to 150 parts by weight (preferably 10 parts by weight to 130 parts by weight, more preferably 25 parts by weight to 100 parts by weight) with respect to 100 parts by weight of the base polymer.
  • a foaming agent having a foaming start temperature (thermal expansion start temperature) (T 0 ) in the range of 80 ° C. to 210 ° C. can be suitably used, preferably 90 ° C. to 200 ° C. (more The foaming start temperature is preferably from 95 ° C to 200 ° C, particularly preferably from 100 ° C to 170 ° C.
  • the foaming agent may foam due to heat during production or use of the sealing body or the grinding body, and handling properties and productivity are lowered.
  • the foaming starting temperature (T 0) of the blowing agent corresponding to the foaming starting temperature of the heat-expandable pressure-sensitive adhesive layer (T 0).
  • the foaming agent that is, a method of thermally expanding the thermally expandable pressure-sensitive adhesive layer
  • it can be appropriately selected from known heat foaming methods.
  • the heat-expandable pressure-sensitive adhesive layer has an elastic modulus of 23 ° C. in a form not containing a foaming agent from the viewpoint of a balance between moderate adhesive force before heat treatment and lowering of adhesive force after heat treatment. It is preferably 5 ⁇ 10 4 Pa to 1 ⁇ 10 6 Pa at ⁇ 150 ° C., more preferably 5 ⁇ 10 4 Pa to 8 ⁇ 10 5 Pa, and particularly 5 ⁇ 10 4 Pa to 5 ⁇ 10 5 Pa. It is preferable that When the elastic modulus (temperature: 23 ° C.
  • the thermal expandability may be inferior and the peelability may be deteriorated.
  • the elastic modulus (temperature: 23 ° C. to 150 ° C.) of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent is larger than 1 ⁇ 10 6 Pa, the initial adhesiveness may be inferior.
  • the thermally expansible adhesive layer of the form which does not contain a foaming agent is corresponded to the adhesive layer formed with the adhesive (The foaming agent is not contained). Therefore, the elastic modulus of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent can be measured using a pressure-sensitive adhesive (no foaming agent is included).
  • the heat-expandable pressure-sensitive adhesive layer includes a pressure-sensitive adhesive capable of forming a pressure-sensitive adhesive layer having an elastic modulus at 23 ° C. to 150 ° C. of 5 ⁇ 10 4 Pa to 1 ⁇ 10 6 Pa, and a thermal expansion containing a foaming agent. It can be formed with an adhesive.
  • the modulus of elasticity of the thermally expandable pressure-sensitive adhesive layer in the form not containing the foaming agent is the heat-expandable pressure-sensitive adhesive layer in the form in which the foaming agent is not added (that is, the pressure-sensitive adhesive layer by the pressure-sensitive adhesive not containing the foaming agent).
  • a rheometric dynamic viscoelasticity measuring device “ARES” sample thickness: about 1.5 mm, ⁇ 7.9 mm parallel plate jig, in shear mode , Frequency: 1 Hz, rate of temperature increase: 5 ° C./min, strain: 0.1% (23 ° C.), 0.3% (150 ° C.) measured at 23 ° C. and 150 ° C. shear storage elasticity obtained The value of the rate G ′ was used.
  • the elastic modulus of the thermally expandable pressure-sensitive adhesive layer can be controlled by adjusting the type of the base polymer of the pressure-sensitive adhesive, the crosslinking agent, the additive, and the like.
  • the thickness of the heat-expandable pressure-sensitive adhesive layer is not particularly limited, and can be appropriately selected depending on the reduction in adhesive strength, and is, for example, about 5 ⁇ m to 300 ⁇ m (preferably 20 ⁇ m to 150 ⁇ m). However, when heat-expandable microspheres are used as the foaming agent, the thickness of the heat-expandable pressure-sensitive adhesive layer is preferably thicker than the maximum particle size of the heat-expandable microspheres contained. When the thickness of the heat-expandable pressure-sensitive adhesive layer is too thin, the surface smoothness is impaired by the unevenness of the heat-expandable microspheres, and the adhesiveness before heating (unfoamed state) is lowered.
  • the degree of deformation of the heat-expandable pressure-sensitive adhesive layer by heat treatment is small, and the adhesive force is not easily lowered.
  • the thickness of the heat-expandable pressure-sensitive adhesive layer is too thick, cohesive failure is likely to occur in the heat-expandable pressure-sensitive adhesive layer after expansion or foaming by heat treatment, and adhesive residue may be generated in the grinding body 36. .
  • the thermally expandable pressure-sensitive adhesive layer may be either a single layer or multiple layers.
  • the heat-expandable pressure-sensitive adhesive layer has various additives (for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an anti-aging agent, an antioxidant, and a surfactant. Agent, cross-linking agent, etc.).
  • additives for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an anti-aging agent, an antioxidant, and a surfactant. Agent, cross-linking agent, etc.).
  • the support 3 b is a thin plate member that serves as a strength matrix of the temporary fixing material 3.
  • the material of the support 3b may be appropriately selected in consideration of handling properties, heat resistance, etc., for example, metal materials such as SUS, plastic materials such as polyimide, polyamideimide, polyetheretherketone, polyethersulfone, etc. Can be used. Among these, a SUS plate is preferable from the viewpoints of heat resistance, strength, reusability, and the like.
  • the thickness of the support 3b can be appropriately selected in consideration of the intended strength and handleability, and is preferably 100 to 5000 ⁇ m, more preferably 300 to 2000 ⁇ m.
  • the temporary fixing material 3 is obtained by forming the thermally expandable pressure-sensitive adhesive layer 3a on the support 3b.
  • the heat-expandable pressure-sensitive adhesive layer is, for example, a sheet obtained by mixing a pressure-sensitive adhesive (pressure-sensitive adhesive), a foaming agent (heat-expandable microspheres, etc.) and, if necessary, a solvent or other additives. It can be formed using a conventional method for forming a layer.
  • a method of applying a mixture containing a pressure-sensitive adhesive, a foaming agent (thermally expansible microspheres, etc.), and, if necessary, a solvent and other additives onto the support 3b, an appropriate separator
  • the heat-expandable pressure-sensitive adhesive layer can be formed by applying the mixture on a release paper or the like to form a heat-expandable pressure-sensitive adhesive layer and transferring (transferring) the mixture onto the support 3b. it can.
  • the thermally expandable pressure-sensitive adhesive layer can be thermally expanded by heating.
  • an appropriate heating means such as a hot plate, a hot air dryer, a near infrared lamp, an air dryer or the like can be used.
  • the heating temperature during the heat treatment may be equal to or higher than the foaming start temperature (thermal expansion start temperature) of the foaming agent (thermally expansible microspheres, etc.) in the heat-expandable pressure-sensitive adhesive layer.
  • Typical heat treatment conditions are a temperature of 100 ° C. to 250 ° C., and a time of 1 second to 90 seconds (hot plate or the like) or 5 minutes to 15 minutes (hot air dryer or the like). Note that the heat treatment can be performed at an appropriate stage depending on the purpose of use. In some cases, an infrared lamp or heated water can be used as the heat source during the heat treatment.
  • an intermediate layer may be provided between the heat-expandable pressure-sensitive adhesive layer 3a and the support 3b for the purpose of improving adhesion and improving peelability after heating (not shown).
  • a rubbery organic elastic intermediate layer is provided as the intermediate layer.
  • the adhesion area can be increased, and the thermal expansion of the thermally expandable pressure-sensitive adhesive layer 3a is highly enhanced when the grinding body 36 after grinding is heated and peeled off from the temporary fixing material 3 (
  • the heat-expandable pressure-sensitive adhesive layer 3a can be preferentially and uniformly expanded in the thickness direction.
  • the rubbery organic elastic intermediate layer can be interposed on one side or both sides of the support 3b.
  • the rubbery organic elastic intermediate layer is preferably formed of natural rubber, synthetic rubber, or synthetic resin having rubber elasticity with a D-type Sure D-type hardness of 50 or less, particularly 40 or less based on ASTM D-2240. Even if it is essentially a hard polymer such as polyvinyl chloride, rubber elasticity can be manifested in combination with compounding agents such as plasticizers and softeners. Such a composition can also be used as a constituent material of the rubbery organic elastic intermediate layer.
  • the rubber-like organic elastic intermediate layer is, for example, a method (coating method) in which a coating liquid containing a rubber-like organic elastic layer forming material such as natural rubber, synthetic rubber, or synthetic resin having rubber elasticity is applied onto a substrate, A method in which a film made of a rubbery organic elastic layer forming material or a laminated film in which a layer made of the rubbery organic elastic layer forming material is previously formed on one or more thermally expandable pressure-sensitive adhesive layers is bonded to a substrate (dry Laminating method), and a forming method such as a method of co-extruding a resin composition containing a constituent material of a base material and a resin composition containing the rubber-like organic elastic layer forming material (co-extrusion method).
  • a coating liquid containing a rubber-like organic elastic layer forming material such as natural rubber, synthetic rubber, or synthetic resin having rubber elasticity is applied onto a substrate
  • the rubbery organic elastic intermediate layer may be formed of a sticky substance mainly composed of natural rubber, synthetic rubber, or synthetic resin having rubber elasticity, and may be a foam film or the like mainly composed of such a component. It may be formed.
  • Foaming is a conventional method, for example, a method using mechanical stirring, a method using a reaction product gas, a method using a foaming agent, a method for removing soluble substances, a method using a spray, a method for forming a syntactic foam, It can be performed by a sintering method or the like.
  • the thickness of the intermediate layer such as the rubbery organic elastic intermediate layer is, for example, about 5 ⁇ m to 300 ⁇ m, preferably about 20 ⁇ m to 150 ⁇ m.
  • the intermediate layer is, for example, a rubber-like organic elastic intermediate layer, if the thickness of the rubber-like organic elastic intermediate layer is too thin, it is not possible to form a three-dimensional structural change after heating and foaming. Sexuality may worsen.
  • the intermediate layer such as the rubbery organic elastic intermediate layer may be a single layer or may be composed of two or more layers.
  • various additives for example, a colorant, a thickener, an extender, a filler, a tackifier, a plasticizer, an anti-aging agent, an oxidation agent, etc.
  • An inhibitor for example, a surfactant, a cross-linking agent, etc.
  • semiconductor chip placement process In the semiconductor chip placement step, a plurality of semiconductor chips 33 are placed on the temporary fixing material 3 (see FIG. 4A).
  • a known device such as a flip chip bonder or a die bonder can be used for arranging the semiconductor chip 33.
  • the layout and the number of arrangement of the semiconductor chips 33 can be appropriately set according to the shape and size of the temporary fixing material 3, the number of target packages produced, and the like, for example, a matrix of a plurality of rows and a plurality of columns. Can be arranged in a line.
  • thermosetting resin sheet 31 is laminated on the temporary fixing material 3 so as to cover the plurality of semiconductor chips 33 and is resin-sealed (see FIG. 4B).
  • the same conditions as in the first embodiment can be adopted for the method of laminating the thermosetting resin sheet 31 on the temporary fixing material 3.
  • thermosetting resin sheet 31 is subjected to a thermosetting process to form the sealing body 35 (see FIG. 4B).
  • the conditions for the thermosetting treatment of the thermosetting resin sheet 31 can employ the same conditions as in the first embodiment.
  • grinding process In the grinding step, the surface of the sealing body 35 is ground to form a ground body 36 (see FIG. 4C). At the time of grinding, as shown in FIG. 4C, grinding is performed so that the semiconductor chip 33 is exposed. Grinding may be performed using a known grinding apparatus.
  • the temporary fixing material 3 is heated to thermally expand the heat-expandable pressure-sensitive adhesive layer 3a, whereby the heat-expandable pressure-sensitive adhesive layer 3a is peeled between the ground body 36. (See FIG. 4D). Peeling at the interface between the heat-expandable pressure-sensitive adhesive layer 3a and the grinding body 36 can be easily performed by heating the heat-expandable pressure-sensitive adhesive layer 3a to thermally expand it to reduce its adhesive strength.
  • the conditions in the above-mentioned column “Thermal expansion method for thermally expandable pressure-sensitive adhesive layer” can be preferably employed.
  • the surface of the grinding body 36 may be cleaned by plasma treatment or the like prior to the rewiring forming step with the semiconductor chip 33 exposed.
  • a metal seed layer is formed on the exposed semiconductor chip 33 by using a known method such as a vacuum film forming method, and the rewiring is performed by a known method such as a semi-additive method.
  • the wiring 39 can be formed.
  • an insulating layer such as polyimide or PBO may be formed on the rewiring 39 and the grinding body 36.
  • bumping processing for forming bumps 37 on the formed rewiring 39 may be performed (see FIG. 4F).
  • the bumping process can be performed by a known method such as a solder ball or solder plating.
  • the material of the bump 37 the same material as that of the first embodiment can be suitably used.
  • thermosetting resin sheet Preparation of thermosetting resin sheet
  • the following components were blended with a mixer, melt kneaded for 2 minutes at 120 ° C. with a twin-screw kneader, and then extruded from a T die to produce an extruded product having a thickness of 500 ⁇ m.
  • the extruded product was cut so that the projected area in plan view was 17663 mm 2 and the plan view shape was circular, and a thermosetting resin sheet A was obtained.
  • Epoxy resin Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epochine equivalent 200 g / eq. Softening point 80 ° C.)) 286 parts
  • Phenol resin Phenol resin having a biphenylaralkyl skeleton (Maywa Kasei Co., Ltd., MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.))
  • Curing accelerator Imidazole catalyst as a curing catalyst (manufactured by Shikoku Chemicals Co., Ltd., 2PHZ-PW) 6 parts
  • Inorganic filler Spherical fused silica powder (manufactured by Denki Kagaku Kogyo, FB-9454, average particle size 20 ⁇ m) 3695 parts
  • Silane coupling agent Epoxy group-containing silane coupling agent (manufactured
  • thermosetting resin sheet Preparation of thermosetting resin sheet
  • the following components were blended with a mixer, melt kneaded for 2 minutes at 120 ° C. with a twin-screw kneader, and then extruded from a T die to produce an extruded product having a thickness of 500 ⁇ m.
  • the extruded product was cut so that the projected area in plan view was 17663 mm 2 and the plan view shape was circular, and a thermosetting resin sheet B was obtained.
  • Epoxy resin Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epochine equivalent 200 g / eq. Softening point 80 ° C.)) 169 parts
  • Phenol resin Phenol resin having biphenylaralkyl skeleton (Maywa Kasei Co., Ltd., MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.)) 179 parts
  • Curing accelerator Imidazole catalyst as a curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PHZ-PW) 6 parts
  • Elastomer Styrene / isobutylene / styrene triblock copolymer (manufactured by Kaneka Corporation, SIBSTAR 072T) 152 parts
  • Inorganic filler spherical fused
  • thermosetting resin sheet before thermosetting About the produced thermosetting resin sheet (sample) before thermosetting, using a dynamic viscoelasticity measuring device “ARES” manufactured by TA Instruments, the samples were stacked to have a thickness of about 1.5 mm and ⁇ 8 mm Using a parallel plate jig, measured in shear mode, frequency: 1 Hz, heating rate: 10 ° C./min, strain: 5% (90 ° C. to 130 ° C.), in the range of 90 ° C. to 130 ° C. The minimum value and the maximum value of the obtained shear storage modulus G ′ were determined. The results are shown in Table 1.
  • thermosetting resin sheets A to B were pasted on the obtained semiconductor chip mounting substrate by a vacuum press under the following heating and pressing conditions. At this time, the area occupation ratio of the semiconductor chip with respect to the thermosetting resin sheet was 55%.
  • thermosetting resin sheet was thermoset in a hot air dryer at 180 ° C. for 1 hour to obtain a sealed body.
  • the semiconductor package was fabricated by thinning the sealing body to a thickness of 150 ⁇ m together with the semiconductor chip by grinding using a cutting device (manufactured by DISCO Corporation, surface planar “DFS8910”).
  • thermosetting resin sheet does not show uneven distribution of the inorganic filler, and it can be seen that a high-quality semiconductor package can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

Provided are a thermosetting resin sheet and an electronic component packaging fabrication method using the sheet that make it possible to manufacture high quality electronic component packaging in a stable manner without fluctuations in the resin composition, even when carrying out resin sealing of a large area. The present invention is a B stage thermosetting resin sheet which contains inorganic filler and which has a plan view projection area of at least 31400 mm2.

Description

熱硬化性樹脂シート及び電子部品パッケージの製造方法Method for manufacturing thermosetting resin sheet and electronic component package
 本発明は、熱硬化性樹脂シート及び電子部品パッケージの製造方法に関する。 The present invention relates to a thermosetting resin sheet and a method for manufacturing an electronic component package.
 電子部品パッケージの作製には、代表的に、基板や仮止め材等に固定された電子部品を封止樹脂にて封止し、必要に応じて封止物を電子部品単位のパッケージとなるようにダイシングするという手順が採用されている。近年、低コストを目的としてウェハから電子部品を作製しそのままの状態で封止して電子部品パッケージを作製する技術、複数の電子部品をウェハ状に封止して封止パッケージとする技術、あるいは大面積の電子部品を封止し、その後ダイシングにより個片化する技術等が展開されている。このようなウェハ状の封止物を利用するウェハ封止加工における樹脂封止として、液状の熱硬化性樹脂組成物によるポッティング等によって行う技術が提案されている(特許文献1)。 For the production of an electronic component package, typically, an electronic component fixed to a substrate, a temporary fixing material or the like is sealed with a sealing resin, and if necessary, the sealed material is packaged in units of electronic components. The procedure of dicing is adopted. In recent years, for the purpose of low cost, an electronic component is manufactured from a wafer and sealed as it is to manufacture an electronic component package, a technology in which a plurality of electronic components are sealed in a wafer shape to form a sealed package, or A technique has been developed in which large-area electronic components are sealed and then separated into individual pieces by dicing. As a resin sealing in a wafer sealing process using such a wafer-shaped sealing material, a technique has been proposed which is performed by potting with a liquid thermosetting resin composition (Patent Document 1).
特許第4403631号Japanese Patent No. 4403631
 今後、上述のようなウェハ封止加工では、コスト低減を目的としてウェハ状封止物の大面積化がますます進むと考えられる。しかしながら、液状樹脂を用いて大面積での一括封止を行う場合、その樹脂特性から成型時に樹脂が流動して樹脂組成の変動が生じ、安定した品質の半導体装置を作製することができないおそれがある。 In the future, in the wafer sealing process as described above, it is considered that the area of the wafer-like encapsulated material will further increase for the purpose of cost reduction. However, when batch sealing is performed using a liquid resin over a large area, the resin may flow during molding due to its resin characteristics, resulting in a change in the resin composition, and it may not be possible to manufacture a semiconductor device with stable quality. is there.
 本発明の目的は、大面積での樹脂封止の際にも樹脂組成の変動が生じず、高品質の電子部品パッケージを安定的に作製可能な熱硬化性樹脂シート及びこれを用いる電子部品パッケージの製造方法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a thermosetting resin sheet capable of stably producing a high-quality electronic component package without causing fluctuations in the resin composition even during resin sealing in a large area, and an electronic component package using the same It is in providing the manufacturing method of.
 本発明者らは、鋭意検討した結果、特定の熱硬化性樹脂シートを採用することにより上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies, the present inventors have found that the above problems can be solved by employing a specific thermosetting resin sheet, and have completed the present invention.
 すなわち、本発明は、
 無機充填剤を含み、平面視投影面積が31400mm以上であるBステージ状態の熱硬化性樹脂シートである。
That is, the present invention
It is a thermosetting resin sheet in a B stage state that includes an inorganic filler and has a projected area in plan view of 31400 mm 2 or more.
 当該熱硬化性樹脂シートでは、平面視投影面積を31400mm以上としているので、大面積の電子部品(例えば、8インチウェハ等)の樹脂封止を容易に行うことができるとともに、複数の電子部品を大面積のウェハ状に一括して樹脂封止することも可能となる。また、当該熱硬化性樹脂シートはBステージ状態にあるので、樹脂封止の際にある程度軟化はするものの流動化はせず、その結果、無機充填剤の偏在化に代表される樹脂組成の変動を抑制することができ、安定した品質の電子部品パッケージを作製することができる。さらにBステージ状態にあるので取り扱い性が良好であり、例えば樹脂封止の際の特殊な金型やスペーサ等を用いることなく、簡易なプレス加工により樹脂封止を行うことができる。 In the thermosetting resin sheet, since the projected area in plan view is 31400 mm 2 or more, a large-area electronic component (for example, an 8-inch wafer) can be easily sealed with resin and a plurality of electronic components Can be encapsulated in a large-area wafer in a batch. In addition, since the thermosetting resin sheet is in a B-stage state, the resin composition is softened to some extent during resin sealing, but does not fluidize, and as a result, fluctuations in the resin composition represented by the uneven distribution of inorganic fillers. Can be suppressed, and a stable quality electronic component package can be manufactured. Furthermore, since it is in a B-stage state, it is easy to handle, and for example, resin sealing can be performed by simple pressing without using a special mold or spacer for resin sealing.
 なお、本明細書において「Bステージ」は、JIS K6800の規定に従い、熱硬化性樹脂の硬化中間状態をいい、樹脂を加熱すると軟化し、ある種の溶剤に触れると膨潤するが、完全に溶融・溶解することはない状態をいう。 In this specification, “B stage” refers to the intermediate state of curing of a thermosetting resin in accordance with the provisions of JIS K6800. It softens when the resin is heated and swells when exposed to certain solvents, but completely melts.・ A state that does not dissolve.
 当該熱硬化性樹脂シートでは、熱硬化前の弾性率が90~130℃の温度範囲において1.5×10Pa以上3×10Pa以下であることが好ましい。熱硬化前の弾性率を上記範囲とすることにより、樹脂の流動化を防止しつつ、かつ電子部品や被着体の形状が複雑であってもそれに倣うように十分に軟化することができ、高品質の電子部品パッケージをより効率的に作製することができる。なお、熱硬化前の熱硬化性樹脂シートの弾性率の測定手順は、実施例の記載による。 In the thermosetting resin sheet, the elastic modulus before thermosetting is preferably 1.5 × 10 3 Pa or more and 3 × 10 3 Pa or less in a temperature range of 90 to 130 ° C. By making the elastic modulus before thermosetting in the above range, it can be sufficiently softened to follow the fluidity of the resin and to follow even if the shape of the electronic component or adherend is complicated, A high-quality electronic component package can be produced more efficiently. In addition, the measurement procedure of the elasticity modulus of the thermosetting resin sheet before thermosetting is based on description of an Example.
 当該熱硬化性樹脂シートでは、前記無機充填剤の平均粒径が54μm以下であることが好ましい。これにより、樹脂封止の際に軟化しても無機充填剤の分散状態を良好に維持することができ、樹脂組成の変動を抑制することができる。 In the thermosetting resin sheet, the inorganic filler preferably has an average particle size of 54 μm or less. Thereby, even if it softens in the case of resin sealing, the dispersion state of an inorganic filler can be maintained favorable and the fluctuation | variation of a resin composition can be suppressed.
 当該熱硬化性樹脂シートでは、前記無機充填剤の含有量が70重量%以上95重量%以下であることが好ましい。無機充填剤の含有量を上記範囲とすることにより、大面積での樹脂封止に適したBステージ状態を簡便に得ることができるとともに、樹脂封止の際の適度な軟化性を得ることができる。 In the thermosetting resin sheet, the content of the inorganic filler is preferably 70% by weight or more and 95% by weight or less. By setting the content of the inorganic filler in the above range, it is possible to easily obtain a B-stage state suitable for resin sealing in a large area and to obtain an appropriate softening property at the time of resin sealing. it can.
 当該熱硬化性樹脂シートは、エラストマー、エポキシ樹脂及びフェノール樹脂を含むことが好ましい。これにより、樹脂封止前の良好な取り扱い性及び軟化性、及び樹脂封止後(熱硬化後)の高度な信頼性を確保することができる。 The thermosetting resin sheet preferably contains an elastomer, an epoxy resin, and a phenol resin. Thereby, the favorable handling property before resin sealing, softening property, and high reliability after resin sealing (after thermosetting) are securable.
 本発明には、当該熱硬化性樹脂シートの長尺体がロール状に巻き取られた熱硬化性樹脂シート巻回体も含まれる。 The present invention also includes a thermosetting resin sheet wound body in which a long body of the thermosetting resin sheet is wound into a roll.
 さらに、本発明には、電子部品パッケージの製造方法であって、
 一又は複数の電子部品を覆うように当該熱硬化性樹脂シートを該電子部品上に積層する積層工程、及び
 前記熱硬化性樹脂シートを熱硬化させて封止体を形成する封止体形成工程
 を含み、
 前記熱硬化性樹脂シートの平面視投影面積に占める前記電子部品の平面視投影面積の割合が50%以上である電子部品パッケージの製造方法も含まれる。
Furthermore, the present invention is a method of manufacturing an electronic component package,
A lamination step of laminating the thermosetting resin sheet on the electronic component so as to cover one or a plurality of electronic components, and a sealing body forming step of forming a sealing body by thermosetting the thermosetting resin sheet Including
Also included is a method for manufacturing an electronic component package, in which the proportion of the planar projection area of the electronic component in the planar projection area of the thermosetting resin sheet is 50% or more.
 当該製造方法では、所定の熱硬化性樹脂シートを用いるので、電子部品の大面積での樹脂封止を容易かつ効率的に行うことができる。また、熱硬化性樹脂シートの平面視投影面積に占める電子部品の平面視投影面積の割合(以下、単に「面積占有率」ともいう。)を50%以上としているので、単位面積あたりの電子部品加工数を増加させることができ、より高効率かつ低コストでの製造が可能となる。 In the manufacturing method, since a predetermined thermosetting resin sheet is used, it is possible to easily and efficiently perform resin sealing in a large area of an electronic component. In addition, since the ratio of the planar projection area of the electronic component in the planar projection area of the thermosetting resin sheet (hereinafter also simply referred to as “area occupation ratio”) is 50% or more, the electronic component per unit area The number of processes can be increased, and manufacturing with higher efficiency and lower cost becomes possible.
 当該製造方法では、前記積層工程を熱プレス加工により行うことが好ましい。当該製造方法において、Bステージ状態にある所定の熱硬化性樹脂シートは、樹脂封止時に十分に軟化しつつも流動化することなく初期状態の形状を一定程度維持することができ、その結果、形状維持ないし成形のための特殊な金型等を用いることなく、簡易な熱プレス加工により熱硬化性樹脂シートを電子部品上に積層させることができる。 In the manufacturing method, it is preferable to perform the laminating process by hot pressing. In the manufacturing method, the predetermined thermosetting resin sheet in the B-stage state can maintain the shape of the initial state to a certain extent without fluidizing while sufficiently softening at the time of resin sealing. A thermosetting resin sheet can be laminated on an electronic component by a simple hot press process without using a special mold or the like for shape maintenance or molding.
 当該製造方法は、前記封止体をダイシングして電子部品モジュールを形成するダイシング工程をさらに含んでいてもよい。大面積での電子部品封止加工が可能となるので、製品設計の幅を広くすることができる。 The manufacturing method may further include a dicing step of dicing the sealing body to form an electronic component module. Since electronic parts can be sealed in a large area, the width of product design can be widened.
 当該製造方法では、前記電子部品が、半導体チップ又は半導体ウェハであってもよい。 In the manufacturing method, the electronic component may be a semiconductor chip or a semiconductor wafer.
本発明の一実施形態に係る熱硬化性樹脂シートを模式的に示す断面図である。It is sectional drawing which shows typically the thermosetting resin sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on one Embodiment of this invention. 本発明の別の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on another one Embodiment of this invention. 本発明の別の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on another one Embodiment of this invention. 本発明の別の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on another one Embodiment of this invention. 本発明の別の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on another one Embodiment of this invention. 本発明の別の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on another one Embodiment of this invention. 本発明のさらに別の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on another one Embodiment of this invention. 本発明のさらに別の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on another one Embodiment of this invention. 本発明のさらに別の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on another one Embodiment of this invention. 本発明のさらに別の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on another one Embodiment of this invention. 本発明のさらに別の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on another one Embodiment of this invention. 本発明のさらに別の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on another one Embodiment of this invention. 本発明のさらに別の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the electronic component package which concerns on another one Embodiment of this invention.
<第1実施形態>
 [熱硬化性樹脂シート]
 本実施形態に係る熱硬化性樹脂シートについて図1を参照しつつ説明する。図1は、本発明の一実施形態に係る熱硬化性樹脂シートを模式的に示す断面図である。Bステージ状態にある熱硬化性樹脂シート11は、代表的に、ポリエチレンテレフタレート(PET)フィルム等の支持体11a上に積層された状態で提供される。なお、支持体11aには熱硬化性樹脂シート11の剥離を容易に行うために離型処理が施されていてもよい。
<First Embodiment>
[Thermosetting resin sheet]
The thermosetting resin sheet according to the present embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view schematically showing a thermosetting resin sheet according to an embodiment of the present invention. The thermosetting resin sheet 11 in the B-stage state is typically provided in a state of being laminated on a support 11a such as a polyethylene terephthalate (PET) film. Note that a release treatment may be applied to the support 11a in order to easily peel the thermosetting resin sheet 11.
 熱硬化性樹脂シート11の平面視投影面積は、31400mm以上であればよく、好ましくは49063mm以上であり、より好ましくは70650mm以上である。なお、平面視投影面積の上限は特に限定されず、製造ライン設計に応じて適宜設定することができ、例えば70650mm以下(12インチウェハ相当)であってもよく、将来的には
125600mm以下(16インチウェハ相当)であってもよい。もちろん、これ以上の平面視投影面積も好適に採用することができる。熱硬化性樹脂シート11の平面視投影面積を上記範囲とすることで、高生産性で大面積の電子部品封止加工を行うことができる。
Plan view projection area of the thermosetting resin sheet 11 may be any 31400Mm 2 or more, preferably 49063Mm 2 or more, more preferably 70650Mm 2 or more. The upper limit of the planar projection area is not particularly limited, and can be set as appropriate according to the production line design. For example, it may be 70650 mm 2 or less (equivalent to a 12-inch wafer), and in the future, 125600 mm 2 or less. (Equivalent to a 16-inch wafer) may be used. Needless to say, a larger projected area in plan view can also be suitably employed. By setting the projected area of the thermosetting resin sheet 11 in plan view to the above range, it is possible to perform a large-area electronic component sealing process with high productivity.
 熱硬化性樹脂シート11の平面視形状は特に限定されず、円形、楕円形、レーストラック形、矩形、正方形、菱形、平行四辺形や、任意の内角を有する三角形、四角形、五角形、六角形等、直線、曲線又はこれらの組み合わせで形成された輪郭を有する任意の形状を採用することができる。 The plan view shape of the thermosetting resin sheet 11 is not particularly limited, and may be a circle, an ellipse, a racetrack, a rectangle, a square, a rhombus, a parallelogram, a triangle having an arbitrary interior angle, a rectangle, a pentagon, a hexagon, or the like. Any shape having an outline formed by a straight line, a curved line, or a combination thereof can be adopted.
 熱硬化前の熱硬化性樹脂シート11の弾性率は、90~130℃の温度範囲においてその下限が1.5×10Pa以上であることが好ましく、1.7×10Pa以上であることがより好ましく、2.5×10Pa以上であることがさらに好ましい。一方、熱硬化前の弾性率の上限は3×10Pa以下であることが好ましく、2×10Pa以下であることがより好ましく、1.5×10Pa以下であることがさらに好ましい。熱硬化前の弾性率を上記範囲とすることにより、樹脂の流動化を防止しつつ、かつ電子部品の形状が複雑であってもそれに倣うように十分に軟化することができ、高品質の電子部品パッケージをより効率的に作製することができる。 The lower limit of the elastic modulus of the thermosetting resin sheet 11 before thermosetting is preferably 1.5 × 10 3 Pa or more in the temperature range of 90 to 130 ° C., and is 1.7 × 10 3 Pa or more. More preferably, it is more preferably 2.5 × 10 3 Pa or more. On the other hand, the upper limit of the elastic modulus before thermosetting is preferably 3 × 10 4 Pa or less, more preferably 2 × 10 4 Pa or less, and further preferably 1.5 × 10 4 Pa or less. . By setting the elastic modulus before thermosetting within the above range, it is possible to prevent the fluidization of the resin and to sufficiently soften it to follow the complicated shape of the electronic component. The component package can be manufactured more efficiently.
 熱硬化性樹脂シートを形成する樹脂組成物は、上述のような特性を有し、半導体チップ等の電子部品の樹脂封止に利用可能なものであれば、特に限定されないが、例えば以下のA成分からE成分を含有するエポキシ樹脂組成物が好ましいものとして挙げられる。なお、C成分は必要に応じて添加しても添加しなくてもよい。
  A成分:エポキシ樹脂
  B成分:フェノール樹脂
  C成分:エラストマー
  D成分:無機充填剤
  E成分:硬化促進剤
The resin composition for forming the thermosetting resin sheet is not particularly limited as long as it has the above-described characteristics and can be used for resin sealing of electronic components such as semiconductor chips. For example, the following A An epoxy resin composition containing an E component to a component is preferable. The C component may or may not be added as necessary.
A component: Epoxy resin B component: Phenol resin C component: Elastomer D component: Inorganic filler E component: Curing accelerator
 (A成分)
 エポキシ樹脂(A成分)としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂等の各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。
(A component)
The epoxy resin (component A) is not particularly limited. For example, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
 エポキシ樹脂の硬化後の靭性及びエポキシ樹脂の反応性を確保する観点からは、エポキシ当量150~250、軟化点もしくは融点が50~130℃の常温で固形のものが好ましく、中でも、信頼性の観点から、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂が好ましい。 From the viewpoint of ensuring the toughness of the epoxy resin after curing and the reactivity of the epoxy resin, those having a solid at normal temperature having an epoxy equivalent of 150 to 250 and a softening point or melting point of 50 to 130 ° C. are preferable. Therefore, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, and biphenyl type epoxy resin are preferable.
 また、低応力性の観点から、アセタール基やポリオキシアルキレン基等の柔軟性骨格を有する変性ビスフェノールA型エポキシ樹脂が好ましく、アセタール基を有する変性ビスフェノールA型エポキシ樹脂は、液体状で取り扱いが良好であることから、特に好適に用いることができる。 Also, from the viewpoint of low stress, a modified bisphenol A type epoxy resin having a flexible skeleton such as an acetal group or a polyoxyalkylene group is preferable, and a modified bisphenol A type epoxy resin having an acetal group is in a liquid state and is easy to handle. Therefore, it can be particularly preferably used.
 エポキシ樹脂(A成分)の含有量は、エポキシ樹脂組成物全体に対して1~10重量%の範囲に設定することが好ましい。 The content of the epoxy resin (component A) is preferably set in the range of 1 to 10% by weight with respect to the entire epoxy resin composition.
 (B成分)
 フェノール樹脂(B成分)は、エポキシ樹脂(A成分)との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂、等が用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。
(B component)
The phenol resin (component B) is not particularly limited as long as it causes a curing reaction with the epoxy resin (component A). For example, a phenol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more.
 フェノール樹脂としては、エポキシ樹脂(A成分)との反応性の観点から、水酸基当量が70~250、軟化点が50~110℃のものを用いることが好ましく、中でも硬化反応性が高いという観点から、フェノールノボラック樹脂を好適に用いることができる。また、信頼性の観点から、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものも好適に用いることができる。 As the phenol resin, those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin (component A), and above all, from the viewpoint of high curing reactivity. A phenol novolac resin can be preferably used. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.
 エポキシ樹脂(A成分)とフェノール樹脂(B成分)の配合割合は、硬化反応性という観点から、エポキシ樹脂(A成分)中のエポキシ基1当量に対して、フェノール樹脂(B成分)中の水酸基の合計が0.7~1.5当量となるように配合することが好ましく、より好ましくは0.9~1.2当量である。 From the viewpoint of curing reactivity, the blending ratio of the epoxy resin (component A) and the phenol resin (component B) is a hydroxyl group in the phenol resin (component B) with respect to 1 equivalent of the epoxy group in the epoxy resin (component A). It is preferable to blend so that the total amount becomes 0.7 to 1.5 equivalents, more preferably 0.9 to 1.2 equivalents.
 (C成分)
 エポキシ樹脂(A成分)及びフェノール樹脂(B成分)とともに用いられるエラストマー(C成分)は、熱硬化性樹脂シートによる電子部品の封止に必要な可撓性をエポキシ樹脂組成物に付与するものであり、このような作用を奏するものであれば特にその構造を限定するものではない。例えば、ポリアクリル酸エステル等の各種アクリル系共重合体、スチレンアクリレート系共重合体、ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、エチレン-酢酸ビニルコポリマー(EVA)、イソプレンゴム、アクリロニトリルゴム等のゴム質重合体を用いることができる。中でも、エポキシ樹脂(A成分)へ分散させやすく、またエポキシ樹脂(A成分)との反応性も高いために、得られる熱硬化性樹脂シートの耐熱性や強度を向上させることができるという観点から、アクリル系共重合体を用いることが好ましい。これらは単独で用いてもよいし、2種以上併せて用いてもよい。
(C component)
The elastomer (component C) used together with the epoxy resin (component A) and the phenolic resin (component B) gives the epoxy resin composition the flexibility necessary for sealing electronic components with a thermosetting resin sheet. There is no particular limitation on the structure as long as it has such an effect. For example, various acrylic copolymers such as polyacrylates, styrene acrylate copolymers, butadiene rubber, styrene-butadiene rubber (SBR), ethylene-vinyl acetate copolymer (EVA), isoprene rubber, acrylonitrile rubber, etc. Polymers can be used. Among these, from the viewpoint that the heat resistance and strength of the resulting thermosetting resin sheet can be improved because it is easily dispersed in the epoxy resin (component A) and has high reactivity with the epoxy resin (component A). It is preferable to use an acrylic copolymer. These may be used alone or in combination of two or more.
 なお、アクリル系共重合体は、例えば、所定の混合比にしたアクリルモノマー混合物を、定法によってラジカル重合することにより合成することができる。ラジカル重合の方法としては、有機溶剤を溶媒に行う溶液重合法や、水中に原料モノマーを分散させながら重合を行う懸濁重合法が用いられる。その際に用いる重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-(2,4-ジメチルバレロニトリル)、2,2’-アゾビス-4-メトキシ-2,4-ジメチルバレロニトリル、その他のアゾ系又はジアゾ系重合開始剤、ベンゾイルパーオキサイド及びメチルエチルケトンパーオキサイド等の過酸化物系重合開始剤等が用いられる。なお、懸濁重合の場合は、例えばポリアクリルアミド、ポリビニルアルコールのような分散剤を加えることが望ましい。 The acrylic copolymer can be synthesized, for example, by radical polymerization of an acrylic monomer mixture having a predetermined mixing ratio by a conventional method. As a method for radical polymerization, a solution polymerization method in which an organic solvent is used as a solvent or a suspension polymerization method in which polymerization is performed while dispersing raw material monomers in water are used. Examples of the polymerization initiator used in this case include 2,2′-azobisisobutyronitrile, 2,2′-azobis- (2,4-dimethylvaleronitrile), and 2,2′-azobis-4- Methoxy-2,4-dimethylvaleronitrile, other azo or diazo polymerization initiators, peroxide polymerization initiators such as benzoyl peroxide and methyl ethyl ketone peroxide are used. In the case of suspension polymerization, it is desirable to add a dispersing agent such as polyacrylamide or polyvinyl alcohol.
 エラストマー(C成分)の含有量は、エポキシ樹脂組成物全体の15~30重量%である。エラストマー(C成分)の含有量が15重量%未満では、熱硬化性樹脂シート11の柔軟性及び可撓性を得るのが困難となり、さらには熱硬化性樹脂シートの反りを抑えた樹脂封止も困難となる。逆に上記含有量が30重量%を超えると、熱硬化性樹脂シート11の溶融粘度が高くなって電子部品の埋まり込み性が低下するとともに、熱硬化性樹脂シート11の硬化体の強度及び耐熱性が低下する傾向がみられる。 The content of the elastomer (component C) is 15 to 30% by weight of the entire epoxy resin composition. If the content of the elastomer (component C) is less than 15% by weight, it becomes difficult to obtain the flexibility and flexibility of the thermosetting resin sheet 11, and further the resin sealing that suppresses the warp of the thermosetting resin sheet. It will also be difficult. On the other hand, when the content exceeds 30% by weight, the melt viscosity of the thermosetting resin sheet 11 is increased, the embedding property of the electronic component is lowered, and the strength and heat resistance of the cured body of the thermosetting resin sheet 11 are reduced. Tend to decrease.
 また、エラストマー(C成分)のエポキシ樹脂(A成分)に対する重量比率(C成分の重量/A成分の重量)は、3~4.7の範囲に設定することが好ましい。上記重量比率が3未満の場合は、熱硬化性樹脂シート11の流動性をコントロールすることが困難となり、4.7を超えると熱硬化性樹脂シート11の電子部品への接着性が劣る傾向がみられるためである。 Also, the weight ratio of the elastomer (component C) to the epoxy resin (component A) (weight of component C / weight of component A) is preferably set in the range of 3 to 4.7. When the weight ratio is less than 3, it is difficult to control the fluidity of the thermosetting resin sheet 11, and when it exceeds 4.7, the adhesion of the thermosetting resin sheet 11 to electronic components tends to be inferior. Because it is seen.
 (D成分)
 無機質充填剤(D成分)は、特に限定されるものではなく、従来公知の各種充填剤を用いることができ、例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカ等)、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素の粉末が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。
(D component)
The inorganic filler (component D) is not particularly limited, and various conventionally known fillers can be used. For example, quartz glass, talc, silica (fused silica, crystalline silica, etc.), alumina, nitriding Examples thereof include aluminum, silicon nitride, and boron nitride powders. These may be used alone or in combination of two or more.
 中でも、エポキシ樹脂組成物の硬化体の熱線膨張係数が低減することにより内部応力を低減し、その結果、電子部品の封止後の熱硬化性樹脂シート11の反りを抑制できるという点から、シリカ粉末を用いることが好ましく、シリカ粉末の中でも溶融シリカ粉末を用いることがより好ましい。溶融シリカ粉末としては、球状溶融シリカ粉末、破砕溶融シリカ粉末が挙げられるが、流動性という観点から、球状溶融シリカ粉末を用いることが特に好ましい。中でも、平均粒径が54μm以下の範囲のものを用いることが好ましく、0.1~30μmの範囲のものを用いることがより好ましく、0.3~15μmの範囲のものを用いることが特に好ましい。 Among them, the internal stress is reduced by reducing the coefficient of thermal expansion of the cured product of the epoxy resin composition, and as a result, warpage of the thermosetting resin sheet 11 after sealing of the electronic component can be suppressed. It is preferable to use a powder, and it is more preferable to use a fused silica powder among the silica powders. Examples of the fused silica powder include spherical fused silica powder and crushed fused silica powder. From the viewpoint of fluidity, it is particularly preferable to use a spherical fused silica powder. Among them, those having an average particle diameter in the range of 54 μm or less are preferably used, those in the range of 0.1 to 30 μm are more preferable, and those in the range of 0.3 to 15 μm are particularly preferable.
 なお、平均粒径は、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。 The average particle diameter can be derived by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
 無機質充填剤(D成分)の含有量は、好ましくはエポキシ樹脂組成物全体の70~95重量%であり、より好ましくは75~92重量%であり、さらに好ましくは80~90重量%である。無機質充填剤(D成分)の含有量が50重量%未満では、エポキシ樹脂組成物の硬化体の線膨張係数が大きくなるために、熱硬化性樹脂シート11の反りが大きくなる傾向がみられる。一方、上記含有量が90重量%を超えると、熱硬化性樹脂シート11の柔軟性や流動性が悪くなるために、電子部品との接着性が低下する傾向がみられる。 The content of the inorganic filler (component D) is preferably 70 to 95% by weight of the entire epoxy resin composition, more preferably 75 to 92% by weight, and still more preferably 80 to 90% by weight. When the content of the inorganic filler (component D) is less than 50% by weight, the linear expansion coefficient of the cured product of the epoxy resin composition increases, and thus the warp of the thermosetting resin sheet 11 tends to increase. On the other hand, since the softness | flexibility and fluidity | liquidity of the thermosetting resin sheet 11 will worsen when the said content exceeds 90 weight%, the tendency for the adhesiveness with an electronic component to fall is seen.
 (E成分)
 硬化促進剤(E成分)は、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されるものではないが、硬化性と保存性の観点から、トリフェニルホスフィンやテトラフェニルホスホニウムテトラフェニルボレート等の有機リン系化合物や、イミダゾール系化合物が好適に用いられる。これら硬化促進剤は、単独で用いても良いし、他の硬化促進剤と併用しても構わない。
(E component)
The curing accelerator (component E) is not particularly limited as long as it allows curing of the epoxy resin and the phenol resin, but from the viewpoint of curability and storage stability, triphenylphosphine or tetraphenylphosphonium tetraphenyl. Organic phosphorus compounds such as borates and imidazole compounds are preferably used. These curing accelerators may be used alone or in combination with other curing accelerators.
 硬化促進剤(E成分)の含有量は、エポキシ樹脂(A成分)及びフェノール樹脂(B成分)の合計100重量部に対して0.1~5重量部であることが好ましい。 The content of the curing accelerator (component E) is preferably 0.1 to 5 parts by weight with respect to a total of 100 parts by weight of the epoxy resin (component A) and the phenol resin (component B).
 (その他の成分)
 また、エポキシ樹脂組成物には、A成分からE成分に加えて、難燃剤成分を加えてもよい。難燃剤組成分としては、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化鉄、水酸化カルシウム、水酸化スズ、複合化金属水酸化物等の各種金属水酸化物を用いることができる。
(Other ingredients)
In addition to the A component to the E component, a flame retardant component may be added to the epoxy resin composition. As the flame retardant composition, various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, and complex metal hydroxide can be used.
 金属水酸化物の平均粒径としては、エポキシ樹脂組成物を加熱した際に適当な流動性を確保するという観点から、平均粒径が1~10μmであることが好ましく、さらに好ましくは2~5μmである。金属水酸化物の平均粒径が1μm未満では、エポキシ樹脂組成物中に均一に分散させることが困難となるとともに、エポキシ樹脂組成物の加熱時における流動性が十分に得られない傾向がある。また、平均粒径が10μmを超えると、金属水酸化物(E成分)の添加量あたりの表面積が小さくなるため、難燃効果が低下する傾向がみられる。 The average particle diameter of the metal hydroxide is preferably 1 to 10 μm, more preferably 2 to 5 μm, from the viewpoint of ensuring appropriate fluidity when the epoxy resin composition is heated. It is. When the average particle size of the metal hydroxide is less than 1 μm, it becomes difficult to uniformly disperse in the epoxy resin composition, and the fluidity during heating of the epoxy resin composition tends to be insufficient. Moreover, since the surface area per addition amount of a metal hydroxide (E component) will become small when an average particle diameter exceeds 10 micrometers, the tendency for a flame-retardant effect to fall is seen.
 また、難燃剤成分としては上記金属水酸化物のほか、ホスファゼン化合物を用いることができる。ホスファゼン化合物としては、例えばSPR-100、SA-100、SP-100(以上、大塚化学株式会社)、FP-100、FP-110(以上、株式会社伏見製薬所)等が市販品として入手可能である。 Further, as the flame retardant component, a phosphazene compound can be used in addition to the above metal hydroxide. As phosphazene compounds, for example, SPR-100, SA-100, SP-100 (above, Otsuka Chemical Co., Ltd.), FP-100, FP-110 (above, Fushimi Pharmaceutical Co., Ltd.) and the like are commercially available. is there.
 少量でも難燃効果を発揮するという観点から、式(1)又は式(2)で表されるホスファゼン化合物が好ましく、これらホスファンゼン化合物に含まれるリン元素の含有率は、12重量%以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、nは3~25の整数であり、R及びRは同一又は異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される官能基を有する1価の有機基である。)
Figure JPOXMLDOC01-appb-C000002
(式(2)中、n及びmは、それぞれ独立して3~25の整数である。R及びRは同一又は異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される官能基を有する1価の有機基である。Rは、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される官能基を有する2価の有機基である。)
The phosphazene compound represented by the formula (1) or the formula (2) is preferable from the viewpoint of exhibiting a flame retardant effect even in a small amount, and the content of phosphorus element contained in these phosphanzene compounds is 12% by weight or more. Is preferred.
Figure JPOXMLDOC01-appb-C000001
(In the formula (1), n is an integer of 3 to 25, and R 1 and R 2 are the same or different and are selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group. A monovalent organic group having
Figure JPOXMLDOC01-appb-C000002
(In the formula (2), n and m are each independently an integer of 3 to 25. R 3 and R 5 are the same or different and are composed of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group. R 4 is a divalent organic group having a functional group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group. .)
 また、安定性及びボイドの生成抑制という観点から、式(3)で表される環状ホスファゼンオリゴマーを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式(3)中、nは3~25の整数であり、R及びRは同一又は異なって、水素、水酸基、アルキル基、アルコキシ基又はグリシジル基である。)
Moreover, it is preferable to use the cyclic phosphazene oligomer represented by Formula (3) from a viewpoint of stability and suppression of void formation.
Figure JPOXMLDOC01-appb-C000003
(In the formula (3), n is an integer of 3 to 25, and R 6 and R 7 are the same or different and are hydrogen, a hydroxyl group, an alkyl group, an alkoxy group, or a glycidyl group.)
 上記式(3)で表される環状ホスファゼンオリゴマーは、例えばFP-100、FP-110(以上、株式会社伏見製薬所)等が市販品として入手可能である。 The cyclic phosphazene oligomer represented by the above formula (3) is commercially available, for example, FP-100, FP-110 (above, Fushimi Pharmaceutical Co., Ltd.) and the like.
 ホスファゼン化合物の含有量は、エポキシ樹脂組成物中に含まれるエポキシ樹脂(A成分)、フェノール樹脂(B成分)、エラストマー(D成分)、硬化促進剤(E成分)及びホスファゼン化合物(その他の成分)を含む有機成分全体の10~30重量%であることが好ましい。すなわち、ホスファゼン化合物の含有量が、有機成分全体の10重量%未満では、熱硬化性樹脂シート11の難燃性が低下するとともに、被着体(例えば、電子部品を搭載した基板等)に対する凹凸追従性が低下し、ボイドが発生する傾向がみられる。上記含有量が有機成分全体の30重量%を超えると、熱硬化性樹脂シート11の表面にタックが生じやすくなり、被着体に対する位置合わせをしにくくなる等作業性が低下する傾向がみられる。 The content of the phosphazene compound includes the epoxy resin (component A), phenol resin (component B), elastomer (component D), curing accelerator (component E) and phosphazene compound (other components) contained in the epoxy resin composition. It is preferably 10 to 30% by weight of the total organic component containing. That is, when the content of the phosphazene compound is less than 10% by weight of the total organic components, the flame retardancy of the thermosetting resin sheet 11 is reduced and the unevenness on the adherend (for example, a substrate on which an electronic component is mounted). There is a tendency that the followability is lowered and voids are generated. When the content exceeds 30% by weight of the whole organic component, tackiness is likely to occur on the surface of the thermosetting resin sheet 11, and the workability tends to be lowered, such as difficulty in alignment with the adherend. .
 また、上記金属水酸化物及びホスファゼン化合物を併用し、シート封止に必要な可撓性を確保しつつ、難燃性に優れた熱硬化性樹脂シート11を得ることもできる。両者を併用することにより、金属水酸化物のみを用いた場合の十分な難燃性と、ホスファゼン化合物のみを用いた場合は、十分な可撓性を得ることができる。 Also, the above-described metal hydroxide and phosphazene compound can be used in combination, and the thermosetting resin sheet 11 having excellent flame retardancy can be obtained while ensuring the flexibility necessary for sheet sealing. By using both in combination, sufficient flame retardancy when only the metal hydroxide is used and sufficient flexibility can be obtained when only the phosphazene compound is used.
 上記難燃剤のうち、樹脂封止の成型時における熱硬化性樹脂シートの変形性、電子部品や被着体の凹凸への追従性、電子部品や被着体への密着性の点から有機系難燃剤を用いるのが望ましく、特にホスファゼン系難燃剤が好適に用いられる。 Among the above flame retardants, organic-based from the viewpoint of the deformability of the thermosetting resin sheet at the time of molding of the resin sealing, the followability to the unevenness of the electronic component or adherend, and the adhesion to the electronic component or adherend It is desirable to use a flame retardant, and a phosphazene flame retardant is particularly preferably used.
 なお、エポキシ樹脂組成物は、上記の各成分以外に必要に応じて、カーボンブラックをはじめとする顔料等、他の添加剤を適宜配合することができる。 In addition to the above components, the epoxy resin composition can be appropriately mixed with other additives such as pigments including carbon black as necessary.
 (熱硬化性樹脂シートの作製方法)
 熱硬化性樹脂シートの作製方法を以下に説明する。まず、上述の各成分を混合することによりエポキシ樹脂組成物を調製する。混合方法は、各成分が均一に分散混合される方法であれば特に限定するものではない。その後、例えば、各成分を有機溶剤等に溶解又は分散したワニスを塗工してシート状に形成する。あるいは、各配合成分を直接ニーダー等で混練することにより混練物を調製し、このようにして得られた混練物を押し出してシート状に形成してもよい。
(Method for producing thermosetting resin sheet)
A method for producing a thermosetting resin sheet will be described below. First, an epoxy resin composition is prepared by mixing the above-described components. The mixing method is not particularly limited as long as each component is uniformly dispersed and mixed. Thereafter, for example, a varnish in which each component is dissolved or dispersed in an organic solvent or the like is applied to form a sheet. Alternatively, a kneaded material may be prepared by directly kneading each compounding component with a kneader or the like, and the kneaded material thus obtained may be extruded to form a sheet.
 ワニスを用いる具体的な作製手順としては、上記A~E成分及び必要に応じて他の添加剤を常法に準じて適宜混合し、有機溶剤に均一に溶解あるいは分散させ、ワニスを調製する。ついで、上記ワニスをポリエステル等の支持体上に塗布し乾燥させることによりBステージ状態の熱硬化性樹脂シート11を得ることができる。そして必要により、熱硬化性樹脂シートの表面を保護するためにポリエステルフィルム等の剥離シートを貼り合わせてもよい。剥離シートは封止時に剥離する。 As a specific production procedure using a varnish, the above components A to E and other additives as necessary are mixed as appropriate according to a conventional method, and uniformly dissolved or dispersed in an organic solvent to prepare a varnish. Next, the B-stage thermosetting resin sheet 11 can be obtained by applying the varnish on a support such as polyester and drying it. If necessary, a release sheet such as a polyester film may be bonded to protect the surface of the thermosetting resin sheet. The release sheet peels at the time of sealing.
 上記有機溶剤としては、特に限定されるものではなく従来公知の各種有機溶剤、例えばメチルエチルケトン、アセトン、シクロヘキサノン、ジオキサン、ジエチルケトン、トルエン、酢酸エチル等を用いることができる。これらは単独で用いてもよいし、2種以上併せて用いてもよい。また通常、ワニスの固形分濃度が30~60重量%の範囲となるように有機溶剤を用いることが好ましい。 The organic solvent is not particularly limited, and various conventionally known organic solvents such as methyl ethyl ketone, acetone, cyclohexanone, dioxane, diethyl ketone, toluene, and ethyl acetate can be used. These may be used alone or in combination of two or more. Usually, it is preferable to use an organic solvent so that the solid content concentration of the varnish is in the range of 30 to 60% by weight.
 有機溶剤乾燥後のシートの厚みは、特に制限されるものではないが、厚みの均一性と残存溶剤量の観点から、通常、5~100μmに設定することが好ましく、より好ましくは20~70μmである。 The thickness of the sheet after drying the organic solvent is not particularly limited, but is usually preferably set to 5 to 100 μm, more preferably 20 to 70 μm, from the viewpoint of thickness uniformity and the amount of residual solvent. is there.
 一方、混練を用いる場合には、上記A~E成分及び必要に応じて他の添加剤の各成分をミキサーなど公知の方法を用いて混合し、その後、溶融混練することにより混練物を調製する。溶融混練する方法としては、特に限定されないが、例えば、ミキシングロール、加圧式ニーダー、押出機などの公知の混練機により、溶融混練する方法などが挙げられる。このようなニーダーとしては、例えば、軸方向の一部においてスクリュー羽のスクリュー軸からの突出量が他の部分のスクリュー羽のスクリュー軸からの突出量よりも小さい部分を有する混練用スクリュー、又は軸方向の一部においてスクリュー羽がない混練用スクリューを備えたニーダーを好適に用いることができる。スクリュー羽の突出量が小さい部分又はスクリュー羽がない部分では低せん断力かつ低攪拌となり、これにより混練物の圧縮率が高まって噛みこんだエアを排除可能となり、得られる混練物における気孔の発生を抑制することができる。 On the other hand, when kneading is used, the above components A to E and, if necessary, each component of other additives are mixed using a known method such as a mixer, and then kneaded to prepare a kneaded product. . The method of melt kneading is not particularly limited, and examples thereof include a method of melt kneading with a known kneader such as a mixing roll, a pressure kneader, or an extruder. As such a kneader, for example, a kneading screw having a portion in which the protruding amount of the screw blade from the screw shaft in a part of the axial direction is smaller than the protruding amount of the screw blade of the other portion or the shaft A kneader equipped with a kneading screw having no screw blades in a part of the direction can be suitably used. Low shear force and low agitation in the part where the protruding amount of the screw wing is small or where there is no screw wing increases the compression rate of the kneaded product, and it is possible to eliminate the trapped air and generate pores in the obtained kneaded product Can be suppressed.
 混練条件としては、温度が、上記した各成分の軟化点以上であれば特に制限されず、例えば30~150℃、エポキン樹脂の熱硬化性を考慮すると、好ましくは40~140℃、さらに好ましくは60~120℃であり、時間が、例えば1~30分間、好ましくは5~15分間である。これによって、混練物を調製することができる。 The kneading conditions are not particularly limited as long as the temperature is equal to or higher than the softening point of each component described above. For example, considering the thermosetting property of the epoxy resin, it is preferably 40 to 140 ° C., more preferably The temperature is 60 to 120 ° C., and the time is, for example, 1 to 30 minutes, preferably 5 to 15 minutes. Thereby, a kneaded material can be prepared.
 得られる混練物を押出成形により成形することにより、Bステージ状態の熱硬化性樹脂シート11を得ることができる。具体的には、溶融混練後の混練物を冷却することなく高温状態のままで、押出成形することで、熱硬化性樹脂シート11を形成することができる。このような押出方法としては、特に制限されず、Tダイ押出法、ロール圧延法、ロール混練法、共押出法、カレンダー成形法などが挙げられる。押出温度としては、上記した各成分の軟化点以上であれば、特に制限されないが、エポキシ樹脂の熱硬化性および成形性を考慮すると、例えば40~150℃、好ましくは、50~140℃、さらに好ましくは70~120℃である。以上により、熱硬化性樹脂シート11を形成することができる。 The thermosetting resin sheet 11 in a B-stage state can be obtained by molding the obtained kneaded material by extrusion molding. Specifically, the thermosetting resin sheet 11 can be formed by extrusion molding without cooling the kneaded product after melt-kneading while maintaining a high temperature state. Such an extrusion method is not particularly limited, and examples thereof include a T-die extrusion method, a roll rolling method, a roll kneading method, a co-extrusion method, and a calendar molding method. The extrusion temperature is not particularly limited as long as it is equal to or higher than the softening point of each component described above. However, considering the thermosetting property and moldability of the epoxy resin, for example, 40 to 150 ° C., preferably 50 to 140 ° C. Preferably, it is 70 to 120 ° C. As described above, the thermosetting resin sheet 11 can be formed.
 このようにして得られた熱硬化性樹脂シートは、必要により所望の厚みとなるように積層して使用してもよい。すなわち、熱硬化性樹脂シートは、単層構造にて使用してもよいし、2層以上の多層構造に積層してなる積層体として使用してもよい。 The thermosetting resin sheet thus obtained may be used by being laminated so as to have a desired thickness if necessary. That is, the thermosetting resin sheet may be used in a single layer structure, or may be used as a laminate formed by laminating two or more multilayer structures.
 [電子部品パッケージの製造方法]
 次に、上記熱硬化性樹脂シートを用いる本実施形態に係る電子部品パッケージの製造方法について図2A~2Eを参照しつつ説明する。図2A~2Eはそれぞれ、本発明の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。第1実施形態では、基板上に搭載された半導体チップを熱硬化性樹脂シートにより樹脂封止して電子部品パッケージを作製する。なお、本実施形態では、電子部品として半導体チップを用い、被着体としてプリント配線基板を用いているが、これら以外の要素を用いてもよい。例えば、電子部品としてコンデンサやセンサデバイス、発光素子、振動素子等、被着体としてリードフレーム、テープキャリア等を用いることができる。また、被着体を用いずに、仮固定材上に電子部品を仮固定しておき、これらを樹脂封止することもできる。いずれの要素を用いても、電子部品の樹脂封止による高度な保護を達成することができる。第1実施形態に係る電子部品パッケージの製造方法は、フリップチップ型実装基板の製造に好適である。
[Electronic component package manufacturing method]
Next, a method for manufacturing an electronic component package according to the present embodiment using the thermosetting resin sheet will be described with reference to FIGS. 2A to 2E. 2A to 2E are cross-sectional views schematically showing one process of a method for manufacturing an electronic component package according to an embodiment of the present invention. In the first embodiment, a semiconductor chip mounted on a substrate is sealed with a thermosetting resin sheet to produce an electronic component package. In this embodiment, a semiconductor chip is used as the electronic component and a printed wiring board is used as the adherend. However, other elements may be used. For example, a capacitor, a sensor device, a light emitting element, a vibration element or the like can be used as an electronic component, and a lead frame, a tape carrier, or the like can be used as an adherend. Moreover, it is also possible to temporarily fix electronic components on a temporary fixing material without using an adherend, and to seal them with a resin. Even if any element is used, a high degree of protection by resin sealing of the electronic component can be achieved. The method for manufacturing an electronic component package according to the first embodiment is suitable for manufacturing a flip-chip type mounting substrate.
 (半導体チップ搭載基板準備工程)
 半導体チップ搭載基板準備工程では、複数の半導体チップ13が搭載されたプリント配線基板12を準備する(図2A参照)。半導体チップ13は、所定の回路が形成された半導体ウェハを公知の方法でダイシングして個片化することにより形成することができる。半導体チップ13のプリント配線基板12への搭載には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。半導体チップ13とプリント配線基板12とはバンプ等の突起電極13aを介して電気的に接続されている。また、半導体チップ13とプリント配線基板12との間には両者の熱膨張率の差を緩和して特に接続部位におけるクラック等の発生を防止するためのアンダーフィル材14が充填されている。アンダーフィル材14としては公知のものを用いればよい。アンダーフィル材14の配置は、半導体チップ13のプリント配線基板12への搭載後、両者間に液状のアンダーフィル材14を注入させることにより行ってもよく、シート状のアンダーフィル材14付きの半導体チップ13又はプリント配線基板12を用意した上で、半導体チップ13とプリント配線基板12とを接続することにより行ってもよい。
(Semiconductor chip mounting board preparation process)
In the semiconductor chip mounting board preparing step, a printed wiring board 12 on which a plurality of semiconductor chips 13 are mounted is prepared (see FIG. 2A). The semiconductor chip 13 can be formed by dicing a semiconductor wafer on which a predetermined circuit is formed by a known method. For mounting the semiconductor chip 13 on the printed wiring board 12, a known apparatus such as a flip chip bonder or a die bonder can be used. The semiconductor chip 13 and the printed wiring board 12 are electrically connected via protruding electrodes 13a such as bumps. Also, an underfill material 14 is filled between the semiconductor chip 13 and the printed wiring board 12 in order to alleviate the difference in thermal expansion coefficient between them and particularly to prevent the occurrence of cracks or the like at the connection site. A known material may be used as the underfill material 14. The underfill material 14 may be arranged by injecting the liquid underfill material 14 between the semiconductor chip 13 and the semiconductor chip 13 on the printed wiring board 12, or a semiconductor with a sheet-like underfill material 14. The preparation may be performed by connecting the semiconductor chip 13 and the printed wiring board 12 after preparing the chip 13 or the printed wiring board 12.
 (封止工程)
 封止工程では、半導体チップ13を覆うようにプリント配線基板12へ熱硬化性樹脂シート11を積層し、半導体チップ13を上記熱硬化性樹脂シートで樹脂封止する(図2B参照)。この熱硬化性樹脂シート11は、半導体チップ13及びそれに付随する要素を外部環境から保護するための封止樹脂として機能する。
(Sealing process)
In the sealing step, the thermosetting resin sheet 11 is laminated on the printed wiring board 12 so as to cover the semiconductor chip 13, and the semiconductor chip 13 is resin-sealed with the thermosetting resin sheet (see FIG. 2B). The thermosetting resin sheet 11 functions as a sealing resin for protecting the semiconductor chip 13 and its accompanying elements from the external environment.
 熱硬化性樹脂シート11の積層方法としては特に限定されず、熱硬化性樹脂シートを形成するための樹脂組成物の溶融混練物を押出成形し、押出成形物をプリント配線基板12上に載置してプレスすることにより熱硬化性樹脂シート11の形成と積層とを一括にて行う方法や、熱硬化性樹脂シート11を形成するための樹脂組成物を離型処理シート上に塗布し、塗布膜を乾燥させて熱硬化性樹脂シート11を形成した上で、この熱硬化性樹脂シート11をプリント配線基板12上に転写する方法などが挙げられる。 The method for laminating the thermosetting resin sheet 11 is not particularly limited, and a melt-kneaded product of a resin composition for forming a thermosetting resin sheet is extruded and the extruded product is placed on the printed wiring board 12. Then, a method for forming and laminating the thermosetting resin sheet 11 at once by pressing and a resin composition for forming the thermosetting resin sheet 11 are applied onto the release treatment sheet and applied. For example, a method of transferring the thermosetting resin sheet 11 onto the printed wiring board 12 after the film is dried to form the thermosetting resin sheet 11 may be used.
 本実施形態では、上記熱硬化性樹脂シート11を採用することにより、半導体チップ13の被覆にプリント配線基板12上に貼り付けるだけで半導体チップ13を埋め込むことができ、半導体パッケージの生産効率を向上させることができる。この場合、熱プレスやラミネータなど公知の方法により熱硬化性樹脂シート11をプリント配線基板12上に積層することができる。熱プレス条件としては、温度が、例えば、40~120℃、好ましくは、50~100℃であり、圧力が、例えば、50~2500kPa、好ましくは、100~2000kPaであり、時間が、例えば、0.3~10分間、好ましくは、0.5~5分間である。また、熱硬化性樹脂シート11の半導体チップ13及びプリント配線基板12への密着性および追従性の向上を考慮すると、好ましくは、減圧条件下(例えば10~2000Pa)において、プレスすることが好ましい。 In the present embodiment, by adopting the thermosetting resin sheet 11, the semiconductor chip 13 can be embedded simply by sticking on the printed wiring board 12 to the cover of the semiconductor chip 13, thereby improving the production efficiency of the semiconductor package. Can be made. In this case, the thermosetting resin sheet 11 can be laminated on the printed wiring board 12 by a known method such as hot pressing or laminator. As hot press conditions, the temperature is, for example, 40 to 120 ° C., preferably 50 to 100 ° C., the pressure is, for example, 50 to 2500 kPa, preferably 100 to 2000 kPa, and the time is, for example, 0 3 to 10 minutes, preferably 0.5 to 5 minutes. Further, in consideration of improvement in adhesion and followability of the thermosetting resin sheet 11 to the semiconductor chip 13 and the printed wiring board 12, it is preferable to perform pressing under reduced pressure conditions (for example, 10 to 2000 Pa).
 熱硬化性樹脂シートの平面視投影面積に占める前記電子部品の平面視投影面積の割合は50%以上であればよく、80%以上であることが好ましく、85%以上であることがより好ましい。電子部品の面積占有率を上記範囲とすることで、高生産性かつ低コストで電子部品パッケージを製造することができる。なお、面積占有率の上限は100%以下が好ましいが、それより低い値(例えば、98%以下)であってもよい。面積占有率が100%の場合として、例えば第2実施形態に説明するような、ウェハと同じ平面視投影面積を有する熱硬化性樹脂シートによりウェハを封止する態様が挙げられるが、これに限定されず、電子部品と熱硬化性樹脂シートとの平面視投影面積が同じである態様が挙げられる。 The ratio of the planar projection area of the electronic component in the planar projection area of the thermosetting resin sheet may be 50% or more, preferably 80% or more, and more preferably 85% or more. By setting the area occupancy of the electronic component within the above range, an electronic component package can be manufactured with high productivity and low cost. The upper limit of the area occupation ratio is preferably 100% or less, but may be a lower value (for example, 98% or less). Examples of the case where the area occupation ratio is 100% include a mode in which the wafer is sealed with a thermosetting resin sheet having the same planar projection area as that of the wafer, as described in the second embodiment, but is not limited thereto. However, the aspect with the same planar projection area of an electronic component and a thermosetting resin sheet is mentioned.
 (封止体形成工程)
 封止体形成工程では、上記熱硬化性樹脂シートを熱硬化処理して封止体15を形成する(図2B参照)。熱硬化性樹脂シートの熱硬化処理の条件は、加熱温度として好ましくは100℃から200℃、より好ましくは120℃から180℃、加熱時間として好ましくは10分から180分、より好ましくは30分から120分の間、必要に応じて加圧しても良い。加圧の際は、好ましくは0.1MPaから10MPa、より好ましくは0.5MPaから5MPaを採用することができる。
(Sealing body forming process)
In the sealing body forming step, the thermosetting resin sheet is thermoset to form the sealing body 15 (see FIG. 2B). The conditions for the thermosetting treatment of the thermosetting resin sheet are preferably 100 to 200 ° C., more preferably 120 to 180 ° C. as the heating temperature, and preferably 10 to 180 minutes, more preferably 30 to 120 minutes as the heating time. In the meantime, you may pressurize as needed. In the pressurization, preferably 0.1 MPa to 10 MPa, more preferably 0.5 MPa to 5 MPa can be employed.
 (研削工程)
 研削工程では、上記封止体15の表面を研削して研削体16を形成する(図2C参照)。研削の際、図2Cに示すように熱硬化性樹脂シート11とともに半導体チップ13も研削してもよく、熱硬化性樹脂シート11のみを研削してもよい。研削は公知の研削装置を用いて行えばよい。ダイアモンドバイト等の研削バイトを回転させながら、そこに封止体15を送りつつ封止体表面を研削し、所定の厚さを有する研削体16を形成する手順を好適に採用することができる。
(Grinding process)
In the grinding step, the surface of the sealing body 15 is ground to form the grinding body 16 (see FIG. 2C). During grinding, the semiconductor chip 13 may be ground together with the thermosetting resin sheet 11 as shown in FIG. 2C, or only the thermosetting resin sheet 11 may be ground. Grinding may be performed using a known grinding apparatus. A procedure for forming the grinding body 16 having a predetermined thickness by rotating the grinding tool such as a diamond tool while grinding the surface of the sealing body while feeding the sealing body 15 to the grinding tool can be suitably employed.
 (バンプ形成工程)
 次いで、プリント配線基板12の半導体チップ搭載面とは反対側の面にバンプ17を形成するバンピング加工を行ってもよい(図2D参照)。バンピング加工は、半田ボールや半田メッキなど公知の方法で行うことができる。バンプの材質は特に限定されず、例えば、錫-鉛系金属材、錫-銀系金属材、錫-銀-銅系金属材、錫-亜鉛系金属材、錫-亜鉛-ビスマス系金属材等の半田類(合金)や、金系金属材、銅系金属材などが挙げられる。
(Bump formation process)
Next, bumping may be performed to form bumps 17 on the surface opposite to the semiconductor chip mounting surface of the printed wiring board 12 (see FIG. 2D). The bumping process can be performed by a known method such as a solder ball or solder plating. The material of the bump is not particularly limited. For example, tin-lead metal material, tin-silver metal material, tin-silver-copper metal material, tin-zinc metal material, tin-zinc-bismuth metal material, etc. Solders (alloys), gold-based metal materials, copper-based metal materials, and the like.
 (ダイシング工程)
 続いて、熱硬化性樹脂シート11、プリント配線基板12、及び半導体チップ13などの要素からなる研削体16のダイシングを行ってもよい(図2E参照)。これにより、半導体チップ13単位での電子モジュール18を得ることができる。ダイシングは、通常、従来公知のダイシングシートにより上記研削体16を固定した上で行う。切断箇所の位置合わせは直接照明又は間接照明を用いた画像認識により行ってもよい。
(Dicing process)
Then, you may dice the grinding body 16 which consists of elements, such as the thermosetting resin sheet 11, the printed wiring board 12, and the semiconductor chip 13 (refer FIG. 2E). Thereby, the electronic module 18 by the semiconductor chip 13 unit can be obtained. Dicing is usually performed after the grinding body 16 is fixed by a conventionally known dicing sheet. The alignment of the cut portion may be performed by image recognition using direct illumination or indirect illumination.
 本工程では、例えば、ダイシングシートまで切込みを行うフルカットと呼ばれる切断方式等を採用できる。本工程で用いるダイシング装置としては特に限定されず、従来公知のものを用いることができる。 In this step, for example, a cutting method called full cut that cuts up to a dicing sheet can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used.
 なお、ダイシング工程に続いて研削体のエキスパンドを行う場合、該エキスパンドは従来公知のエキスパンド装置を用いて行うことができる。エキスパンド装置は、ダイシングリングを介してダイシングシートを下方へ押し下げることが可能なドーナッツ状の外リングと、外リングよりも径が小さくダイシングシートを支持する内リングとを有している。このエキスパンド工程により、隣り合う電子モジュール18同士が接触して破損するのを防ぐことができる。 In addition, when expanding a grinding body following a dicing process, this expansion can be performed using a conventionally well-known expanding apparatus. The expanding device includes a donut-shaped outer ring that can push down the dicing sheet through the dicing ring, and an inner ring that has a smaller diameter than the outer ring and supports the dicing sheet. By this expanding process, it is possible to prevent the adjacent electronic modules 18 from coming into contact with each other and being damaged.
 (基板実装工程)
 必要に応じて、上記で得られた電子モジュール18を別途の基板(図示せず)に実装する基板実装工程を行うことができる。電子モジュール18の基板への実装には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
(Board mounting process)
If necessary, a board mounting process for mounting the electronic module 18 obtained above on a separate board (not shown) can be performed. For mounting the electronic module 18 on the substrate, a known device such as a flip chip bonder or a die bonder can be used.
<第2実施形態>
 次に、本発明の一実施形態である第2実施形態について説明する。第1実施形態では、フリップチップ型実装基板の製造に好適な製造方法について説明したが、第2実施形態では、いわゆるFan-in(ファンイン)型ウェハレベルパッケージ(WLP)と呼称される電子部品パッケージの製造に好適な製造方法について説明する。図3A~Eはそれぞれ、本発明の別の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。
Second Embodiment
Next, a second embodiment which is an embodiment of the present invention will be described. In the first embodiment, a manufacturing method suitable for manufacturing a flip chip type mounting substrate has been described. In the second embodiment, an electronic component called a so-called Fan-in type wafer level package (WLP) is used. A manufacturing method suitable for manufacturing a package will be described. 3A to 3E are cross-sectional views schematically showing one process of a method for manufacturing an electronic component package according to another embodiment of the present invention.
 (半導体ウェハ準備工程)
 半導体ウェハ29としては、片面に複数の突起電極23aが形成されていてもよく(図3A参照)、半導体ウェハ29の両面に突起電極が形成されていてもよい(図示せず)。バンプや導電材等の突起電極の材質としては、特に限定されず、例えば、錫-鉛系金属材、錫-銀系金属材、錫-銀-銅系金属材、錫-亜鉛系金属材、錫-亜鉛-ビスマス系金属材等の半田類(合金)や、金系金属材、銅系金属材などが挙げられる。突起電極の高さも用途に応じて定められ、一般的には20~200μm程度である。
(Semiconductor wafer preparation process)
As the semiconductor wafer 29, a plurality of protruding electrodes 23a may be formed on one side (see FIG. 3A), or protruding electrodes may be formed on both sides of the semiconductor wafer 29 (not shown). There are no particular limitations on the material of the bump electrode or conductive material such as a conductive material. For example, a tin-lead metal material, a tin-silver metal material, a tin-silver-copper metal material, a tin-zinc metal material, Examples thereof include solders (alloys) such as a tin-zinc-bismuth metal material, a gold metal material, and a copper metal material. The height of the protruding electrode is also determined according to the application, and is generally about 20 to 200 μm.
 半導体ウェハ29の両面に突起電極が形成されている場合、両面における突起電極同士は電気的に接続されていてもよく、接続されていなくてもよい。突起電極同士の電気的接続には、TSV形式と呼ばれるビアを介しての接続等が挙げられる。 When projecting electrodes are formed on both surfaces of the semiconductor wafer 29, the projecting electrodes on both surfaces may or may not be electrically connected. Examples of the electrical connection between the protruding electrodes include a connection through a via called a TSV format.
 (封止工程)
 封止工程では、突起電極23aを覆うように熱硬化性樹脂シート21を半導体ウェハ29へ積層し、半導体ウェハ29の片面を上記熱硬化性樹脂シートで樹脂封止する(図3B参照)。この熱硬化性樹脂シート21は、半導体ウェハ29及びそれに付随する要素を外部環境から保護するための封止樹脂として機能する。熱硬化性樹脂シート21の半導体ウェハ29への積層方法は、第1実施形態と同様の条件を採用することができる。
(Sealing process)
In the sealing step, the thermosetting resin sheet 21 is laminated on the semiconductor wafer 29 so as to cover the protruding electrodes 23a, and one surface of the semiconductor wafer 29 is resin-sealed with the thermosetting resin sheet (see FIG. 3B). This thermosetting resin sheet 21 functions as a sealing resin for protecting the semiconductor wafer 29 and its accompanying elements from the external environment. The same conditions as in the first embodiment can be adopted for the method of laminating the thermosetting resin sheet 21 on the semiconductor wafer 29.
 (封止体形成工程)
 封止体形成工程では、上記熱硬化性樹脂シート21に熱硬化処理を施して封止体25を形成する(図3B参照)。熱硬化性樹脂シート21の熱硬化処理の条件は、第1実施形態と同様の条件を採用することができる。
(Sealing body forming process)
In the sealing body forming step, the thermosetting resin sheet 21 is subjected to a thermosetting process to form the sealing body 25 (see FIG. 3B). The conditions for the thermosetting treatment of the thermosetting resin sheet 21 can be the same conditions as in the first embodiment.
 (研削工程)
 研削工程では、上記封止体25の表面を研削して研削体26を形成する(図3C参照)。研削の際、図3Cに示すように突起電極23aが露出するように研削する。研削は公知の研削装置を用いて行えばよい。
(Grinding process)
In the grinding step, the surface of the sealing body 25 is ground to form the grinding body 26 (see FIG. 3C). At the time of grinding, as shown in FIG. 3C, grinding is performed so that the protruding electrode 23a is exposed. Grinding may be performed using a known grinding apparatus.
 (バンプ形成工程)
 次いで、露出させた突起電極23a上にバンプ27を形成するバンピング加工を行う(図3D参照)。バンピング加工方法及びバンプの材質は、第1実施形態と同様のものを採用することができる。
(Bump formation process)
Next, bumping is performed to form bumps 27 on the exposed protruding electrodes 23a (see FIG. 3D). The bumping method and bump material can be the same as those in the first embodiment.
 (ダイシング工程)
 続いて、熱硬化性樹脂シート21、半導体ウェハ29及びバンプ27などの要素からなる研削体26のダイシングを行ってもよい(図3E参照)。これにより、半導体チップ23単位での電子モジュール28を得ることができる。ダイシング方法は、第1実施形態と同様の方法を採用することができる。
(Dicing process)
Subsequently, the grinding body 26 composed of elements such as the thermosetting resin sheet 21, the semiconductor wafer 29, and the bumps 27 may be diced (see FIG. 3E). Thereby, the electronic module 28 in the semiconductor chip 23 unit can be obtained. As the dicing method, the same method as in the first embodiment can be adopted.
 (基板実装工程)
 必要に応じて、上記で得られた電子モジュール28を別途の基板(図示せず)に実装する基板実装工程を行うことができる。電子モジュール28の基板への実装には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
(Board mounting process)
If necessary, a board mounting process for mounting the electronic module 28 obtained above on a separate board (not shown) can be performed. For mounting the electronic module 28 on the substrate, a known device such as a flip chip bonder or a die bonder can be used.
<第3実施形態>
 以下、本発明の一実施形態である第3実施形態について説明する。図4A~図4Gはそれぞれ、本発明のさらに別の一実施形態に係る電子部品パッケージの製造方法の一工程を模式的に示す断面図である。第1実施形態では、プリント配線基板に搭載された半導体チップを熱硬化性樹脂シートにて樹脂封止しているが、第3実施形態では、半導体チップを基板等の被着体ではなく仮固定材に仮固定した状態で樹脂封止を行う。この第3実施形態は、いわゆるFan-out(ファンアウト)型ウェハレベルパッケージ(WLP)と呼称される電子部品パッケージの製造に好適である。
<Third Embodiment>
Hereinafter, a third embodiment which is an embodiment of the present invention will be described. 4A to 4G are cross-sectional views schematically showing one process of a method for manufacturing an electronic component package according to still another embodiment of the present invention. In the first embodiment, the semiconductor chip mounted on the printed wiring board is resin-sealed with a thermosetting resin sheet, but in the third embodiment, the semiconductor chip is temporarily fixed instead of an adherend such as a substrate. Resin sealing is performed while temporarily fixed to the material. The third embodiment is suitable for manufacturing an electronic component package called a so-called Fan-out (fan-out) wafer level package (WLP).
 [仮固定材準備工程]
 仮固定材準備工程では、支持体3b上に熱膨張性粘着剤層3aが積層された仮固定材3を準備する(図4A参照)。なお、熱膨張性粘着剤層に代えて、放射線硬化型粘着剤層を用いることもできる。本実施形態では、熱膨張性粘着剤層を備える仮固定材3について説明する。
[Temporary fixing material preparation process]
In the temporary fixing material preparing step, the temporary fixing material 3 in which the thermally expandable pressure-sensitive adhesive layer 3a is laminated on the support 3b is prepared (see FIG. 4A). In addition, it can replace with a thermally expansible adhesive layer, and can also use a radiation curing type adhesive layer. In the present embodiment, a temporary fixing material 3 including a thermally expandable pressure-sensitive adhesive layer will be described.
 (熱膨張性粘着剤層)
 熱膨張性粘着剤層3aは、ポリマー成分と、発泡剤とを含む粘着剤組成物により形成することができる。ポリマー成分(特にベースポリマー)としては、アクリル系ポリマー(「アクリルポリマーA」と称する場合がある)を好適に用いることができる。アクリルポリマーAとしては、(メタ)アクリル酸エステルを主モノマー成分として用いたものが挙げられる。前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、sec-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステル等のアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステル等)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステル等)などが挙げられる。これらの(メタ)アクリル酸エステルは単独で又は2種以上を併用してもよい。
(Thermal expansion adhesive layer)
The heat-expandable pressure-sensitive adhesive layer 3a can be formed of a pressure-sensitive adhesive composition containing a polymer component and a foaming agent. As the polymer component (particularly the base polymer), an acrylic polymer (sometimes referred to as “acrylic polymer A”) can be suitably used. Examples of the acrylic polymer A include those using (meth) acrylic acid ester as a main monomer component. Examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, sec-butyl ester, t-butyl ester, Pentyl ester, isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, Linear or branched alkyl ester having 1 to 30 carbon atoms, particularly 4 to 18 carbon atoms, of an alkyl group such as hexadecyl ester, octadecyl ester or eicosyl ester Le etc.) and (meth) acrylic acid cycloalkyl esters (e.g., cyclopentyl ester, cyclohexyl ester, etc.) and the like. These (meth) acrylic acid esters may be used alone or in combination of two or more.
 なお、前記アクリルポリマーAは、凝集力、耐熱性、架橋性などの改質を目的として、必要に応じて、前記(メタ)アクリル酸エステルと共重合可能な他の単量体成分に対応する単位を含んでいてもよい。このような単量体成分として、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸、カルボキシエチルアクリレートなどのカルボキシル基含有モノマー;無水マレイン酸、無水イコタン酸などの酸無水物基含有モノマー;(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチルなどのヒドロキシル基含有モノマー;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミドなどの(N-置換又は無置換)アミド系モノマー;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル系モノマー;スチレン、α-メチルスチレンなどのスチレン系モノマー;ビニルメチルエーテル、ビニルエチルエーテルなどのビニルエーテル系モノマー;アクリロニトリル、メタクリロニトリルなどのシアノアクリレート系モノマー;(メタ)アクリル酸グリシジルなどのエポキシ基含有アクリル系モノマー;エチレン、プロピレン、イソプレン、ブタジエン、イソブチレンなどのオレフィン又はジエン系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸t-ブチルアミノエチルなどの(置換又は無置換)アミノ基含有モノマー;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチルなどの(メタ)アクリル酸アルコキシアルキル系モノマー;N-ビニルピロリドン、N-メチルビニルピロリドン、N-ビニルピリジン、N-ビニルピペリドン、N-ビニルピリミジン、N-ビニルピペラジン、N-ビニルピラジン、N-ビニルピロール、N-ビニルイミダゾール、N-ビニルオキサゾール、N-ビニルモルホリン、N-ビニルカプロラクタムなどの窒素原子含有環を有するモノマー;N-ビニルカルボン酸アミド類;スチレンスルホン酸、アリルスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレートなどのスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェートなどのリン酸基含有モノマー;N-シクロヘキシルマレイミド、N-イソプロピルマレイミド、N-ラウリルマレイミド、N-フェニルマレイミドなどのマレイミド系モノマー;N-メチルイタコンイミド、N-エチルイタコンイミド、N-ブチルイタコンイミド、N-オクチルイタコンイミド、N-2-エチルヘキシルイタコンイミド、N-シクロヘキシルイタコンイミド、N-ラウリルイタコンイミドなどのイタコンイミド系モノマー;N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクルロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミドなどのスクシンイミド系モノマー;(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコールなどのグリコール系アクリルエステルモノマー;(メタ)アクリル酸テトラヒドロフルフリルなどの酸素原子含有複素環を有するモノマー;フッ素系(メタ)アクリレートなどのフッ素原子を含有するアクリル酸エステル系モノマー;シリコーン系(メタ)アクリレートなどのケイ素原子を含有するアクリル酸エステル系モノマー;ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレート、ジビニルベンゼン、ブチルジ(メタ)アクリレート、ヘキシルジ(メタ)アクリレートなどの多官能モノマー等が挙げられる。 The acrylic polymer A corresponds to other monomer components that can be copolymerized with the (meth) acrylic acid ester, if necessary, for the purpose of modifying cohesive strength, heat resistance, crosslinkability, and the like. Units may be included. Examples of such monomer components include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, and carboxyethyl acrylate; acid anhydrides such as maleic anhydride and itaconic anhydride Group-containing monomers; hydroxyl group-containing monomers such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (N-substituted or unsubstituted) amide monomers such as N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide; vinyl ester monomers such as vinyl acetate and vinyl propionate Styling Styrene monomers such as α-methylstyrene; vinyl ether monomers such as vinyl methyl ether and vinyl ethyl ether; cyanoacrylate monomers such as acrylonitrile and methacrylonitrile; epoxy group-containing acrylic monomers such as glycidyl (meth) acrylate Olefins or diene monomers such as ethylene, propylene, isoprene, butadiene, isobutylene; aminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, t-butylaminoethyl (meth) acrylate, etc. (Substituted or unsubstituted) amino group-containing monomers; (meth) acrylic acid alkoxyalkyl monomers such as methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate; N-vinylpyrrolidone, N -Methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, N-vinyloxazole, N-vinylmorpholine, N -Monomers having a nitrogen atom-containing ring such as vinylcaprolactam; N-vinylcarboxylic amides; Monomers containing sulfonic acid groups such as styrene sulfonic acid, allyl sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate A phosphate group-containing monomer such as 2-hydroxyethylacryloyl phosphate; a maleimide monomer such as N-cyclohexylmaleimide, N-isopropylmaleimide, N-laurylmaleimide, N-phenylmaleimide; N Itacimide monomers such as methylitaconimide, N-ethylitaconimide, N-butylitaconimide, N-octylitaconimide, N-2-ethylhexylitaconimide, N-cyclohexylitaconimide, N-laurylitaconimide; N- ( Succinimide monomers such as (meth) acryloyloxymethylene succinimide, N- (meth) acryloyl-6-oxyhexamethylene succinimide, N- (meth) acryloyl-8-oxyoctamethylene succinimide; polyethylene glycol (meth) acrylate, (meth) ) Glycol acrylic ester monomers such as polypropylene glycol acrylate; Monomers having an oxygen atom-containing heterocycle such as tetrahydrofurfuryl (meth) acrylate; Fluorine Acrylic acid ester monomer containing fluorine atom such as (meth) acrylate; Acrylic acid ester monomer containing silicon atom such as silicone (meth) acrylate; Hexanediol di (meth) acrylate, (Poly) ethylene glycol di (Meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Dipentaerythritol hexa (meth) acrylate, epoxy acrylate, polyester acrylate, urethane acrylate, divinylbenzene, butyl di (meth) acrylate, hexyl And polyfunctional monomers such as di (meth) acrylate.
 前記アクリルポリマーAは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合(例えば、ラジカル重合、アニオン重合、カチオン重合など)、乳化重合、塊状重合、懸濁重合、光重合(例えば、紫外線(UV)重合など)等の何れの方式で行うこともできる。 The acrylic polymer A can be obtained by polymerizing a single monomer or a mixture of two or more monomers. The polymerization may be performed by any method such as solution polymerization (for example, radical polymerization, anionic polymerization, cationic polymerization), emulsion polymerization, bulk polymerization, suspension polymerization, photopolymerization (for example, ultraviolet (UV) polymerization). it can.
 アクリルポリマーAの重量平均分子量は、特に制限されないが、好ましくは35万~100万、更に好ましくは45万~80万程度である。 The weight average molecular weight of the acrylic polymer A is not particularly limited, but is preferably 350,000 to 1,000,000, more preferably about 450,000 to 800,000.
 また、熱膨張性粘着剤には、粘着力を調整するため、外部架橋剤を適宜に用いることもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤等のいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、さらには、粘着剤としての使用用途によって適宜決定される。外部架橋剤の使用量は、一般的には、前記ベースポリマー100重量部に対して、20重量部以下(好ましくは0.1重量部~10重量部)である。 Also, an external cross-linking agent can be appropriately used for the heat-expandable pressure-sensitive adhesive in order to adjust the adhesive force. Specific examples of the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them. When using an external cross-linking agent, the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive. The amount of the external crosslinking agent used is generally 20 parts by weight or less (preferably 0.1 to 10 parts by weight) with respect to 100 parts by weight of the base polymer.
 熱膨張性粘着剤層3aは、前述のように、熱膨張性を付与するための発泡剤を含有している。そのため、仮固定材3の熱膨張性粘着剤層3a上に研削された半導体チップ33を含む研削体36が形成された状態で(図4D参照)、任意な時に仮固定材3を少なくとも部分的に加熱して、該加熱された熱膨張性粘着剤層3aの部分に含有されている発泡剤を発泡及び/又は膨張させることにより、熱膨張性粘着剤層3aが少なくとも部分的に膨張し、この熱膨張性粘着剤層3aの少なくとも部分的な膨張により、該膨張した部分に対応した粘着面(研削体36との界面)が凹凸状に変形して、該熱膨張性粘着剤層3aと研削体36との接着面積が減少し、これにより、両者間の接着力が減少し、研削体36を仮固定材3から剥離させることができる。 The heat-expandable pressure-sensitive adhesive layer 3a contains a foaming agent for imparting heat-expandability as described above. Therefore, in the state in which the grinding body 36 including the semiconductor chip 33 ground on the thermally expandable pressure-sensitive adhesive layer 3a of the temporary fixing material 3 is formed (see FIG. 4D), the temporary fixing material 3 is at least partially attached at any time. And the foaming agent contained in the heated thermally expandable pressure-sensitive adhesive layer 3a is foamed and / or expanded, so that the thermally expandable pressure-sensitive adhesive layer 3a is at least partially expanded. Due to at least partial expansion of the thermally expandable pressure-sensitive adhesive layer 3a, the pressure-sensitive adhesive surface (interface with the grinding body 36) corresponding to the expanded portion is deformed into an uneven shape, and the heat-expandable pressure-sensitive adhesive layer 3a and The adhesion area with the grinding body 36 is reduced, whereby the adhesive force between the two is reduced, and the grinding body 36 can be peeled from the temporary fixing material 3.
 (発泡剤)
 熱膨張性粘着剤層3aにおいて用いられている発泡剤としては、特に制限されず、公知の発泡剤から適宜選択することができる。発泡剤は単独で又は2種以上組み合わせて使用することができる。発泡剤としては、熱膨張性微小球を好適に用いることができる。
(Foaming agent)
The foaming agent used in the heat-expandable pressure-sensitive adhesive layer 3a is not particularly limited and can be appropriately selected from known foaming agents. A foaming agent can be used individually or in combination of 2 or more types. As the foaming agent, thermally expandable microspheres can be suitably used.
 (熱膨張性微小球)
 熱膨張性微小球としては、特に制限されず、公知の熱膨張性微小球(種々の無機系熱膨張性微小球や、有機系熱膨張性微小球など)から適宜選択することができる。熱膨張性微小球としては、混合操作が容易である観点などより、マイクロカプセル化されている発泡剤を好適に用いることができる。このような熱膨張性微小球としては、例えば、イソブタン、プロパン、ペンタンなどの加熱により容易にガス化して膨張する物質を、弾性を有する殻内に内包させた微小球などが挙げられる。前記殻は、熱溶融性物質や熱膨張により破壊する物質で形成される場合が多い。前記殻を形成する物質として、例えば、塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホンなどが挙げられる。
(Thermally expandable microsphere)
The heat-expandable microsphere is not particularly limited, and can be appropriately selected from known heat-expandable microspheres (such as various inorganic heat-expandable microspheres and organic heat-expandable microspheres). As the thermally expandable microspheres, a microencapsulated foaming agent can be suitably used from the viewpoint of easy mixing operation. Examples of such thermally expandable microspheres include microspheres in which substances such as isobutane, propane, and pentane that are easily gasified and expanded by heating are encapsulated in an elastic shell. The shell is often formed of a hot-melt material or a material that is destroyed by thermal expansion. Examples of the substance forming the shell include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
 熱膨張性微小球は、慣用の方法、例えば、コアセルベーション法や、界面重合法などにより製造できる。なお、熱膨張性微小球には、例えば、松本油脂製薬株式会社製の商品名「マツモトマイクロスフェアー」のシリーズ(例えば、商品名「マツモトマイクロスフェアーF30」、同「マツモトマイクロスフェアーF301D」、同「マツモトマイクロスフェアーF50D」、同「マツモトマイクロスフェアーF501D」、同「マツモトマイクロスフェアーF80SD」、同「マツモトマイクロスフェアーF80VSD」など)の他、エクスパンセル社製の商品名「051DU」、同「053DU」、同「551DU」、同「551-20DU」、同「551-80DU」などの市販品を使用することができる。 Thermally expandable microspheres can be produced by a conventional method such as a coacervation method or an interfacial polymerization method. Examples of the thermally expandable microspheres include, for example, a series of “Matsumoto Microsphere F30” and “Matsumoto Microsphere F301D” (trade names “Matsumoto Microsphere F30”, manufactured by Matsumoto Yushi Seiyaku Co., Ltd.). "Matsumoto Microsphere F50D", "Matsumoto Microsphere F501D", "Matsumoto Microsphere F80SD", "Matsumoto Microsphere F80VSD", etc.) Commercially available products such as “051DU”, “053DU”, “551DU”, “551-20DU”, and “551-80DU” can be used.
 なお、発泡剤として熱膨張性微小球を用いた場合、該熱膨張性微小球の粒径(平均粒子径)としては、熱膨張性粘着剤層の厚みなどに応じて適宜選択することができる。熱膨張性微小球の平均粒子径としては、例えば、100μm以下(好ましくは80μm以下、さらに好ましくは1μm~50μm、特に1μm~30μm)の範囲から選択することができる。なお、熱膨張性微小球の粒径の調整は、熱膨張性微小球の生成過程で行われていてもよく、生成後、分級などの手段により行われてもよい。熱膨張性微小球としては、粒径が揃えられていることが好ましい。 When thermally expandable microspheres are used as the foaming agent, the particle size (average particle diameter) of the thermally expandable microspheres can be appropriately selected according to the thickness of the thermally expandable pressure-sensitive adhesive layer. . The average particle diameter of the heat-expandable microspheres can be selected from a range of, for example, 100 μm or less (preferably 80 μm or less, more preferably 1 μm to 50 μm, particularly 1 μm to 30 μm). Note that the adjustment of the particle size of the thermally expandable microspheres may be performed in the process of generating the thermally expandable microspheres, or may be performed by means such as classification after the generation. It is preferable that the thermally expandable microspheres have the same particle size.
 (その他の発泡剤)
 本実施形態では、発泡剤としては、熱膨張性微小球以外の発泡剤も用いることもできる。このような発泡剤としては、種々の無機系発泡剤や有機系発泡剤などの各種発泡剤を適宜選択して使用することができる。無機系発泡剤の代表的な例としては、例えば、炭酸アンモニウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水酸化ホウ素ナトリウム、各種アジド類などが挙げられる。
(Other foaming agents)
In the present embodiment, as the foaming agent, a foaming agent other than the thermally expandable microsphere can also be used. As such a foaming agent, various foaming agents such as various inorganic foaming agents and organic foaming agents can be appropriately selected and used. Typical examples of the inorganic foaming agent include ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, various azides and the like.
 また、有機系発泡剤の代表的な例としては、例えば、水;トリクロロモノフルオロメタン、ジクロロモノフルオロメタンなどの塩フッ化アルカン系化合物;アゾビスイソブチロニトリル、アゾジカルボンアミド、バリウムアゾジカルボキシレートなどのアゾ系化合物;パラトルエンスルホニルヒドラジド、ジフェニルスルホン-3,3´-ジスルホニルヒドラジド、4,4´-オキシビス(ベンゼンスルホニルヒドラジド)、アリルビス(スルホニルヒドラジド)などのヒドラジン系化合物;p-トルイレンスルホニルセミカルバジド、4,4´-オキシビス(ベンゼンスルホニルセミカルバジド)などのセミカルバジド系化合物;5-モルホリル-1,2,3,4-チアトリアゾールなどのトリアゾール系化合物;N,N´-ジニトロソペンタメチレンテロラミン、N,N´-ジメチル-N,N´-ジニトロソテレフタルアミドなどのN-ニトロソ系化合物などが挙げられる。 Representative examples of organic foaming agents include, for example, water; chlorofluorinated alkane compounds such as trichloromonofluoromethane and dichloromonofluoromethane; azobisisobutyronitrile, azodicarbonamide, and barium azodi. Azo compounds such as carboxylates; hydrazine compounds such as paratoluenesulfonyl hydrazide, diphenylsulfone-3,3'-disulfonyl hydrazide, 4,4'-oxybis (benzenesulfonyl hydrazide), allyl bis (sulfonyl hydrazide); p- Semicarbazide compounds such as toluylenesulfonyl semicarbazide and 4,4′-oxybis (benzenesulfonyl semicarbazide); Triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole; N, N′-dinitrosope Data methylene terrorism lamin, N, N'-dimethyl -N, N'N-nitroso compounds such as dinitrosoterephthalamide, and the like.
 本実施形態では、加熱処理により、熱膨張性粘着剤層の接着力を効率よく且つ安定して低下させるため、体積膨張率が5倍以上、なかでも7倍以上、特に10倍以上となるまで破裂しない適度な強度を有する発泡剤が好ましい。 In this embodiment, in order to reduce the adhesive force of the heat-expandable pressure-sensitive adhesive layer efficiently and stably by heat treatment, the volume expansion coefficient is 5 times or more, especially 7 times or more, particularly 10 times or more. A foaming agent having an appropriate strength that does not burst is preferred.
 発泡剤(熱膨張性微小球など)の配合量は、熱膨張性粘着剤層の膨張倍率や接着力の低下性などに応じて適宜設定しうるが、一般には熱膨張性粘着剤層を形成するベースポリマー100重量部に対して、例えば1重量部~150重量部(好ましくは10重量部~130重量部、さらに好ましくは25重量部~100重量部)である。 The amount of foaming agent (thermally expandable microspheres, etc.) can be set as appropriate depending on the expansion ratio of the thermally expandable pressure-sensitive adhesive layer and the ability to lower the adhesive strength, but generally a thermally expandable pressure-sensitive adhesive layer is formed. The amount is, for example, 1 part by weight to 150 parts by weight (preferably 10 parts by weight to 130 parts by weight, more preferably 25 parts by weight to 100 parts by weight) with respect to 100 parts by weight of the base polymer.
 本実施形態では、発泡剤としては、発泡開始温度(熱膨張開始温度)(T)が80℃~210℃の範囲のものを好適に用いることができ、好ましくは90℃~200℃(より好ましくは95℃~200℃、特に好ましくは100℃~170℃)の発泡開始温度を有するものである。発泡剤の発泡開始温度が80℃より低いと、封止体ないし研削体の製造時や使用時の熱により発泡剤が発泡してしまう場合があり、取り扱い性や生産性が低下する。一方、発泡剤の発泡開始温度が210℃を超える場合には、仮固定材の支持体や封止樹脂に過度の耐熱性が必要となり、取り扱い性、生産性やコスト面で好ましくない。なお、発泡剤の発泡開始温度(T)は、熱膨張性粘着剤層の発泡開始温度(T)に相当する。 In the present embodiment, a foaming agent having a foaming start temperature (thermal expansion start temperature) (T 0 ) in the range of 80 ° C. to 210 ° C. can be suitably used, preferably 90 ° C. to 200 ° C. (more The foaming start temperature is preferably from 95 ° C to 200 ° C, particularly preferably from 100 ° C to 170 ° C. When the foaming start temperature of the foaming agent is lower than 80 ° C., the foaming agent may foam due to heat during production or use of the sealing body or the grinding body, and handling properties and productivity are lowered. On the other hand, when the foaming start temperature of the foaming agent exceeds 210 ° C., excessive heat resistance is required for the support of the temporary fixing material and the sealing resin, which is not preferable in terms of handleability, productivity, and cost. Incidentally, the foaming starting temperature (T 0) of the blowing agent, corresponding to the foaming starting temperature of the heat-expandable pressure-sensitive adhesive layer (T 0).
 なお、発泡剤を発泡させる方法(すなわち、熱膨張性粘着剤層を熱膨張させる方法)としては、公知の加熱発泡方法から適宜選択して採用することができる。 In addition, as a method of foaming the foaming agent (that is, a method of thermally expanding the thermally expandable pressure-sensitive adhesive layer), it can be appropriately selected from known heat foaming methods.
 本実施形態では、熱膨張性粘着剤層は、加熱処理前の適度な接着力と加熱処理後の接着力の低下性のバランスの点から、発泡剤を含有しない形態での弾性率が23℃~150℃において5×10Pa~1×10Paであることが好ましく、さらに好ましくは5×10Pa~8×10Paであり、特に5×10Pa~5×10Paであることが好適である。熱膨張性粘着剤層の発泡剤を含有しない形態での弾性率(温度:23℃~150℃)が5×10Pa未満であると熱膨張性が劣り、剥離性が低下する場合がある。また、熱膨張性粘着剤層の発泡剤を含有しない形態での弾性率(温度:23℃~150℃)が1×10Paより大きい場合、初期接着性が劣る場合がある。 In the present embodiment, the heat-expandable pressure-sensitive adhesive layer has an elastic modulus of 23 ° C. in a form not containing a foaming agent from the viewpoint of a balance between moderate adhesive force before heat treatment and lowering of adhesive force after heat treatment. It is preferably 5 × 10 4 Pa to 1 × 10 6 Pa at −150 ° C., more preferably 5 × 10 4 Pa to 8 × 10 5 Pa, and particularly 5 × 10 4 Pa to 5 × 10 5 Pa. It is preferable that When the elastic modulus (temperature: 23 ° C. to 150 ° C.) of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent is less than 5 × 10 4 Pa, the thermal expandability may be inferior and the peelability may be deteriorated. . Further, when the elastic modulus (temperature: 23 ° C. to 150 ° C.) of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent is larger than 1 × 10 6 Pa, the initial adhesiveness may be inferior.
 なお、発泡剤を含有しない形態の熱膨張性粘着剤層は、粘着剤(発泡剤は含まれていない)により形成された粘着剤層に相当する。従って、熱膨張性粘着剤層の発泡剤を含有していない形態での弾性率は、粘着剤(発泡剤は含まれていない)を用いて測定することができる。なお、熱膨張性粘着剤層は、23℃~150℃における弾性率が5×10Pa~1×10Paである粘着剤層を形成可能な粘着剤と、発泡剤とを含む熱膨張性粘着剤により形成することができる。 In addition, the thermally expansible adhesive layer of the form which does not contain a foaming agent is corresponded to the adhesive layer formed with the adhesive (The foaming agent is not contained). Therefore, the elastic modulus of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent can be measured using a pressure-sensitive adhesive (no foaming agent is included). The heat-expandable pressure-sensitive adhesive layer includes a pressure-sensitive adhesive capable of forming a pressure-sensitive adhesive layer having an elastic modulus at 23 ° C. to 150 ° C. of 5 × 10 4 Pa to 1 × 10 6 Pa, and a thermal expansion containing a foaming agent. It can be formed with an adhesive.
 熱膨張性粘着剤層の発泡剤を含有しない形態での弾性率は、発泡剤が添加されていない形態の熱膨張性粘着剤層(すなわち、発泡剤が含まれていない粘着剤による粘着剤層)(サンプル)を作製し、レオメトリック社製動的粘弾性測定装置「ARES」を用いて、サンプル厚さ:約1.5mmで、φ7.9mmパラレルプレートの治具を用い、剪断モードにて、周波数:1Hz、昇温速度:5℃/分、歪み:0.1%(23℃)、0.3%(150℃)にて測定し、23℃および150℃で得られた剪断貯蔵弾性率G´の値とした。 The modulus of elasticity of the thermally expandable pressure-sensitive adhesive layer in the form not containing the foaming agent is the heat-expandable pressure-sensitive adhesive layer in the form in which the foaming agent is not added (that is, the pressure-sensitive adhesive layer by the pressure-sensitive adhesive not containing the foaming agent). ) (Sample), using a rheometric dynamic viscoelasticity measuring device “ARES”, sample thickness: about 1.5 mm, φ7.9 mm parallel plate jig, in shear mode , Frequency: 1 Hz, rate of temperature increase: 5 ° C./min, strain: 0.1% (23 ° C.), 0.3% (150 ° C.) measured at 23 ° C. and 150 ° C. shear storage elasticity obtained The value of the rate G ′ was used.
 熱膨張性粘着剤層の弾性率は、粘着剤のベースポリマーの種類、架橋剤、添加剤などを調節することによりコントロールすることができる。 The elastic modulus of the thermally expandable pressure-sensitive adhesive layer can be controlled by adjusting the type of the base polymer of the pressure-sensitive adhesive, the crosslinking agent, the additive, and the like.
 熱膨張性粘着剤層の厚さは、特に制限されず、接着力の低減性などにより適宜に選択することができ、例えば、5μm~300μm(好ましくは20μm~150μm)程度である。ただし、発泡剤として熱膨張性微小球が用いられている場合、熱膨張性粘着剤層の厚さは、含まれている熱膨張性微小球の最大粒径よりも厚いことが好ましい。熱膨張性粘着剤層の厚さが薄すぎると、熱膨張性微小球の凹凸により表面平滑性が損なわれ、加熱前(未発泡状態)の接着性が低下する。また、加熱処理による熱膨張性粘着剤層の変形度が小さく、接着力が円滑に低下しにくくなる。一方、熱膨張性粘着剤層の厚さが厚すぎると、加熱処理による膨張乃至発泡後に、熱膨張性粘着剤層に凝集破壊が生じやすくなり、研削体36に糊残りが発生する場合がある。 The thickness of the heat-expandable pressure-sensitive adhesive layer is not particularly limited, and can be appropriately selected depending on the reduction in adhesive strength, and is, for example, about 5 μm to 300 μm (preferably 20 μm to 150 μm). However, when heat-expandable microspheres are used as the foaming agent, the thickness of the heat-expandable pressure-sensitive adhesive layer is preferably thicker than the maximum particle size of the heat-expandable microspheres contained. When the thickness of the heat-expandable pressure-sensitive adhesive layer is too thin, the surface smoothness is impaired by the unevenness of the heat-expandable microspheres, and the adhesiveness before heating (unfoamed state) is lowered. In addition, the degree of deformation of the heat-expandable pressure-sensitive adhesive layer by heat treatment is small, and the adhesive force is not easily lowered. On the other hand, if the thickness of the heat-expandable pressure-sensitive adhesive layer is too thick, cohesive failure is likely to occur in the heat-expandable pressure-sensitive adhesive layer after expansion or foaming by heat treatment, and adhesive residue may be generated in the grinding body 36. .
 なお、熱膨張性粘着剤層は単層、複層の何れであってもよい。 The thermally expandable pressure-sensitive adhesive layer may be either a single layer or multiple layers.
 本実施形態では、熱膨張性粘着剤層には、各種添加剤(例えば、着色剤、増粘剤、増量剤、充填剤、粘着付与剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、架橋剤など)が含まれていても良い。 In the present embodiment, the heat-expandable pressure-sensitive adhesive layer has various additives (for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an anti-aging agent, an antioxidant, and a surfactant. Agent, cross-linking agent, etc.).
 (支持体)
 支持体3bは、仮固定材3の強度母体となる薄板状部材である。支持体3bの材料としては取り扱い性や耐熱性等を考慮して適宜選択すればよく、例えばSUS等の金属材料、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォン等のプラスチック材料等を用いることができる。これらの中でも、耐熱性や強度、再利用可能性等の観点から、SUSプレートが好ましい。
(Support)
The support 3 b is a thin plate member that serves as a strength matrix of the temporary fixing material 3. The material of the support 3b may be appropriately selected in consideration of handling properties, heat resistance, etc., for example, metal materials such as SUS, plastic materials such as polyimide, polyamideimide, polyetheretherketone, polyethersulfone, etc. Can be used. Among these, a SUS plate is preferable from the viewpoints of heat resistance, strength, reusability, and the like.
 支持体3bの厚さは目的とする強度や取り扱い性を考慮して適宜選択することができ、好ましくは100~5000μmであり、より好ましくは300~2000μmである。 The thickness of the support 3b can be appropriately selected in consideration of the intended strength and handleability, and is preferably 100 to 5000 μm, more preferably 300 to 2000 μm.
 (仮固定材の形成方法)
 仮固定材3は、支持体3b上に熱膨張性粘着剤層3aを形成することにより得られる。熱膨張性粘着剤層は、例えば、粘着剤(感圧接着剤)と、発泡剤(熱膨張性微小球など)と、必要に応じて溶媒やその他の添加剤などとを混合して、シート状の層に形成する慣用の方法を利用し形成することができる。具体的には、例えば、粘着剤、発泡剤(熱膨張性微小球など)、および必要に応じて溶媒やその他の添加剤を含む混合物を、支持体3b上に塗布する方法、適当なセパレータ(剥離紙など)上に前記混合物を塗布して熱膨張性粘着剤層を形成し、これを支持体3b上に転写(移着)する方法などにより、熱膨張性粘着剤層を形成することができる。
(Method for forming temporary fixing material)
The temporary fixing material 3 is obtained by forming the thermally expandable pressure-sensitive adhesive layer 3a on the support 3b. The heat-expandable pressure-sensitive adhesive layer is, for example, a sheet obtained by mixing a pressure-sensitive adhesive (pressure-sensitive adhesive), a foaming agent (heat-expandable microspheres, etc.) and, if necessary, a solvent or other additives. It can be formed using a conventional method for forming a layer. Specifically, for example, a method of applying a mixture containing a pressure-sensitive adhesive, a foaming agent (thermally expansible microspheres, etc.), and, if necessary, a solvent and other additives onto the support 3b, an appropriate separator ( The heat-expandable pressure-sensitive adhesive layer can be formed by applying the mixture on a release paper or the like to form a heat-expandable pressure-sensitive adhesive layer and transferring (transferring) the mixture onto the support 3b. it can.
 (熱膨張性粘着剤層の熱膨張方法)
 本実施形態では、熱膨張性粘着剤層は、加熱により熱膨張させることができる。加熱処理方法としては、例えば、ホットプレート、熱風乾燥機、近赤外線ランプ、エアードライヤーなどの適宜な加熱手段を利用して行うことができる。加熱処理時の加熱温度は、熱膨張性粘着剤層中の発泡剤(熱膨張性微小球など)の発泡開始温度(熱膨張開始温度)以上であればよいが、加熱処理の条件は、発泡剤(熱膨張性微小球など)の種類等による接着面積の減少性、支持体、半導体チップを含む研削体等の耐熱性、加熱方法(熱容量、加熱手段等)などにより適宜設定できる。一般的な加熱処理条件としては、温度100℃~250℃で、1秒間~90秒間(ホットプレートなど)または5分間~15分間(熱風乾燥機など)である。なお、加熱処理は使用目的に応じて適宜な段階で行うことができる。また、加熱処理時の熱源としては、赤外線ランプや加熱水を用いることができる場合もある。
(Thermal expansion method of the thermally expandable pressure-sensitive adhesive layer)
In the present embodiment, the thermally expandable pressure-sensitive adhesive layer can be thermally expanded by heating. As the heat treatment method, for example, an appropriate heating means such as a hot plate, a hot air dryer, a near infrared lamp, an air dryer or the like can be used. The heating temperature during the heat treatment may be equal to or higher than the foaming start temperature (thermal expansion start temperature) of the foaming agent (thermally expansible microspheres, etc.) in the heat-expandable pressure-sensitive adhesive layer. It can be set as appropriate depending on the reduction of the adhesion area depending on the type of agent (thermally expandable microspheres, etc.), the heat resistance of a support, a grinding body including a semiconductor chip, etc., the heating method (heat capacity, heating means, etc.), and the like. Typical heat treatment conditions are a temperature of 100 ° C. to 250 ° C., and a time of 1 second to 90 seconds (hot plate or the like) or 5 minutes to 15 minutes (hot air dryer or the like). Note that the heat treatment can be performed at an appropriate stage depending on the purpose of use. In some cases, an infrared lamp or heated water can be used as the heat source during the heat treatment.
 (中間層)
 本実施形態では、熱膨張性粘着剤層3aと支持体3bとの間に、密着力の向上や加熱後の剥離性の向上等を目的とした中間層が設けられていても良い(図示せず)。中でも、中間層としてゴム状有機弾性中間層が設けられていることが好ましい。このように、ゴム状有機弾性中間層を設けることにより、半導体チップ33を仮固定材3に接着する際に(図4A参照)、熱膨張性粘着剤層3aの表面を半導体チップ33の表面形状に良好に追従させて、接着面積を大きくすることができるとともに、仮固定材3から研削加工後の研削体36を加熱剥離させる際に、熱膨張性粘着剤層3aの加熱膨張を高度に(精度よく)コントロールし、熱膨張性粘着剤層3aを厚さ方向へ優先的に且つ均一に膨張させることができる。
(Middle layer)
In the present embodiment, an intermediate layer may be provided between the heat-expandable pressure-sensitive adhesive layer 3a and the support 3b for the purpose of improving adhesion and improving peelability after heating (not shown). ) Among them, it is preferable that a rubbery organic elastic intermediate layer is provided as the intermediate layer. Thus, by providing the rubber-like organic elastic intermediate layer, when the semiconductor chip 33 is bonded to the temporary fixing material 3 (see FIG. 4A), the surface of the thermally expandable pressure-sensitive adhesive layer 3a is changed to the surface shape of the semiconductor chip 33. The adhesion area can be increased, and the thermal expansion of the thermally expandable pressure-sensitive adhesive layer 3a is highly enhanced when the grinding body 36 after grinding is heated and peeled off from the temporary fixing material 3 ( The heat-expandable pressure-sensitive adhesive layer 3a can be preferentially and uniformly expanded in the thickness direction.
 なお、ゴム状有機弾性中間層は、支持体3bの片面又は両面に介在させることができる。 The rubbery organic elastic intermediate layer can be interposed on one side or both sides of the support 3b.
 ゴム状有機弾性中間層は、例えば、ASTM D-2240に基づくD型シュアーD型硬度が、50以下、特に40以下の天然ゴム、合成ゴム又はゴム弾性を有する合成樹脂により形成することが好ましい。なお、ポリ塩化ビニルなどのように本質的には硬質系ポリマーであっても、可塑剤や柔軟剤等の配合剤との組み合わせによりゴム弾性が発現しうる。このような組成物も、前記ゴム状有機弾性中間層の構成材料として使用できる。 The rubbery organic elastic intermediate layer is preferably formed of natural rubber, synthetic rubber, or synthetic resin having rubber elasticity with a D-type Sure D-type hardness of 50 or less, particularly 40 or less based on ASTM D-2240. Even if it is essentially a hard polymer such as polyvinyl chloride, rubber elasticity can be manifested in combination with compounding agents such as plasticizers and softeners. Such a composition can also be used as a constituent material of the rubbery organic elastic intermediate layer.
 ゴム状有機弾性中間層は、例えば、前記天然ゴム、合成ゴム又はゴム弾性を有する合成樹脂などのゴム状有機弾性層形成材を含むコーティング液を基材上に塗布する方式(コーティング法)、前記ゴム状有機弾性層形成材からなるフィルム、又は予め1層以上の熱膨張性粘着剤層上に前記ゴム状有機弾性層形成材からなる層を形成した積層フィルムを基材と接着する方式(ドライラミネート法)、基材の構成材料を含む樹脂組成物と前記ゴム状有機弾性層形成材を含む樹脂組成物とを共押出しする方式(共押出し法)などの形成方法により形成することができる。 The rubber-like organic elastic intermediate layer is, for example, a method (coating method) in which a coating liquid containing a rubber-like organic elastic layer forming material such as natural rubber, synthetic rubber, or synthetic resin having rubber elasticity is applied onto a substrate, A method in which a film made of a rubbery organic elastic layer forming material or a laminated film in which a layer made of the rubbery organic elastic layer forming material is previously formed on one or more thermally expandable pressure-sensitive adhesive layers is bonded to a substrate (dry Laminating method), and a forming method such as a method of co-extruding a resin composition containing a constituent material of a base material and a resin composition containing the rubber-like organic elastic layer forming material (co-extrusion method).
 なお、ゴム状有機弾性中間層は、天然ゴムや合成ゴム又はゴム弾性を有する合成樹脂を主成分とする粘着性物質で形成されていてもよく、また、かかる成分を主体とする発泡フィルム等で形成されていてもよい。発泡は、慣用の方法、例えば、機械的な攪拌による方法、反応生成ガスを利用する方法、発泡剤を使用する方法、可溶性物質を除去する方法、スプレーによる方法、シンタクチックフォームを形成する方法、焼結法などにより行うことができる。 The rubbery organic elastic intermediate layer may be formed of a sticky substance mainly composed of natural rubber, synthetic rubber, or synthetic resin having rubber elasticity, and may be a foam film or the like mainly composed of such a component. It may be formed. Foaming is a conventional method, for example, a method using mechanical stirring, a method using a reaction product gas, a method using a foaming agent, a method for removing soluble substances, a method using a spray, a method for forming a syntactic foam, It can be performed by a sintering method or the like.
 ゴム状有機弾性中間層等の中間層の厚さは、例えば、5μm~300μm、好ましくは20μm~150μm程度である。なお、中間層が、例えば、ゴム状有機弾性中間層である場合、ゴム状有機弾性中間層の厚さが薄すぎると、加熱発泡後の3次元的構造変化を形成することができず、剥離性が悪化する場合がある。 The thickness of the intermediate layer such as the rubbery organic elastic intermediate layer is, for example, about 5 μm to 300 μm, preferably about 20 μm to 150 μm. In addition, when the intermediate layer is, for example, a rubber-like organic elastic intermediate layer, if the thickness of the rubber-like organic elastic intermediate layer is too thin, it is not possible to form a three-dimensional structural change after heating and foaming. Sexuality may worsen.
 ゴム状有機弾性中間層等の中間層は単層であってもよく、2以上の層で構成されていてもよい。 The intermediate layer such as the rubbery organic elastic intermediate layer may be a single layer or may be composed of two or more layers.
 なお、中間層には、仮固定材の作用効果を損なわない範囲で、各種添加剤(例えば、着色剤、増粘剤、増量剤、充填剤、粘着付与剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、架橋剤など)が含まれていても良い。 In the intermediate layer, various additives (for example, a colorant, a thickener, an extender, a filler, a tackifier, a plasticizer, an anti-aging agent, an oxidation agent, etc.) An inhibitor, a surfactant, a cross-linking agent, etc.).
 (半導体チップ配置工程)
 半導体チップ配置工程では、上記仮固定材3上に複数の半導体チップ33を配置する(図4A参照)。半導体チップ33の配置には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
(Semiconductor chip placement process)
In the semiconductor chip placement step, a plurality of semiconductor chips 33 are placed on the temporary fixing material 3 (see FIG. 4A). A known device such as a flip chip bonder or a die bonder can be used for arranging the semiconductor chip 33.
 半導体チップ33の配置のレイアウトや配置数は、仮固定材3の形状やサイズ、目的とするパッケージの生産数などに応じて適宜設定することができ、例えば、複数行で、かつ複数列のマトリックス状に整列させて配置することができる。 The layout and the number of arrangement of the semiconductor chips 33 can be appropriately set according to the shape and size of the temporary fixing material 3, the number of target packages produced, and the like, for example, a matrix of a plurality of rows and a plurality of columns. Can be arranged in a line.
 (封止工程)
 封止工程では、複数の半導体チップ33を覆うように熱硬化性樹脂シート31を仮固定材3上へ積層して樹脂封止する(図4B参照)。熱硬化性樹脂シート31の仮固定材3上への積層方法は、第1実施形態と同様の条件を採用することができる。
(Sealing process)
In the sealing step, the thermosetting resin sheet 31 is laminated on the temporary fixing material 3 so as to cover the plurality of semiconductor chips 33 and is resin-sealed (see FIG. 4B). The same conditions as in the first embodiment can be adopted for the method of laminating the thermosetting resin sheet 31 on the temporary fixing material 3.
 (封止体形成工程)
 封止体形成工程では、上記熱硬化性樹脂シート31に熱硬化処理を施して封止体35を形成する(図4B参照)。熱硬化性樹脂シート31の熱硬化処理の条件は、第1実施形態と同様の条件を採用することができる。
(Sealing body forming process)
In the sealing body forming step, the thermosetting resin sheet 31 is subjected to a thermosetting process to form the sealing body 35 (see FIG. 4B). The conditions for the thermosetting treatment of the thermosetting resin sheet 31 can employ the same conditions as in the first embodiment.
 (研削工程)
 研削工程では、上記封止体35の表面を研削して研削体36を形成する(図4C参照)。研削の際、図4Cに示すように半導体チップ33が露出するように研削する。研削は公知の研削装置を用いて行えばよい。
(Grinding process)
In the grinding step, the surface of the sealing body 35 is ground to form a ground body 36 (see FIG. 4C). At the time of grinding, as shown in FIG. 4C, grinding is performed so that the semiconductor chip 33 is exposed. Grinding may be performed using a known grinding apparatus.
 (熱膨張性粘着剤層剥離工程)
 熱膨張性粘着剤層剥離工程では、仮固定材3を加熱して熱膨張性粘着剤層3aを熱膨張させることにより、熱膨張性粘着剤層3aと研削体36との間で剥離を行う(図4D参照)。熱膨張性粘着剤層3aを加熱して熱膨張させその粘着力を低下させることで、熱膨張性粘着剤層3aと研削体36との界面での剥離を容易に行うことができる。熱膨張の条件としては、上述の「熱膨張性粘着剤層の熱膨張方法」の欄の条件を好適に採用することができる。
(Thermal expansion adhesive layer peeling process)
In the heat-expandable pressure-sensitive adhesive layer peeling step, the temporary fixing material 3 is heated to thermally expand the heat-expandable pressure-sensitive adhesive layer 3a, whereby the heat-expandable pressure-sensitive adhesive layer 3a is peeled between the ground body 36. (See FIG. 4D). Peeling at the interface between the heat-expandable pressure-sensitive adhesive layer 3a and the grinding body 36 can be easily performed by heating the heat-expandable pressure-sensitive adhesive layer 3a to thermally expand it to reduce its adhesive strength. As the conditions for thermal expansion, the conditions in the above-mentioned column “Thermal expansion method for thermally expandable pressure-sensitive adhesive layer” can be preferably employed.
 本工程では、半導体チップ33が露出した状態で、再配線形成工程に先だってプラズマ処理などにより研削体36の表面をクリーニングしてもよい。 In this step, the surface of the grinding body 36 may be cleaned by plasma treatment or the like prior to the rewiring forming step with the semiconductor chip 33 exposed.
 (再配線形成工程)
 本実施形態ではさらに再配線形成工程を含むことが好ましい。再配線形成工程では、上記熱膨張性粘着剤層3aの剥離後、上記露出した半導体チップ33と接続する再配線39を研削体36上に形成する(図4E参照)。
(Rewiring process)
In this embodiment, it is preferable to further include a rewiring forming step. In the rewiring forming step, after the thermally expandable pressure-sensitive adhesive layer 3a is peeled off, a rewiring 39 connected to the exposed semiconductor chip 33 is formed on the grinding body 36 (see FIG. 4E).
 再配線の形成方法としては、例えば、露出している半導体チップ33上へ真空成膜法などの公知の方法を利用して金属シード層を形成し、セミアディティブ法などの公知の方法により、再配線39を形成することができる。 As a method of forming the rewiring, for example, a metal seed layer is formed on the exposed semiconductor chip 33 by using a known method such as a vacuum film forming method, and the rewiring is performed by a known method such as a semi-additive method. The wiring 39 can be formed.
 かかる後に、再配線39及び研削体36上へポリイミドやPBOなどの絶縁層を形成してもよい。 Thereafter, an insulating layer such as polyimide or PBO may be formed on the rewiring 39 and the grinding body 36.
 (バンプ形成工程)
 次いで、形成した再配線39上にバンプ37を形成するバンピング加工を行ってもよい(図4F参照)。バンピング加工は、半田ボールや半田メッキなど公知の方法で行うことができる。バンプ37の材質は、第1実施形態と同様の材質を好適に用いることができる。
(Bump formation process)
Next, bumping processing for forming bumps 37 on the formed rewiring 39 may be performed (see FIG. 4F). The bumping process can be performed by a known method such as a solder ball or solder plating. As the material of the bump 37, the same material as that of the first embodiment can be suitably used.
 (ダイシング工程)
 最後に、半導体チップ33、熱硬化性樹脂シート31及び再配線39などの要素からなる積層体のダイシングを行う(図4G参照)。これにより、チップ領域の外側に配線を引き出した電子部品モジュール38を得ることができる。ダイシング方法は、第1実施形態と同様の方法を採用することができる。
(Dicing process)
Finally, dicing is performed on the laminate including elements such as the semiconductor chip 33, the thermosetting resin sheet 31, and the rewiring 39 (see FIG. 4G). Thereby, it is possible to obtain the electronic component module 38 in which the wiring is drawn outside the chip region. As the dicing method, the same method as in the first embodiment can be adopted.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。また、部とあるのは、重量部を意味する。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in this example are not intended to limit the scope of the present invention only to those unless otherwise specified. The term “parts” means parts by weight.
[実施例1]
 (熱硬化性樹脂シートの作製)
 以下の成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ500μmの押出成形物を作製した。この押出成形物を平面視投影面積が17663mmで、平面視形状が円状となるようにカットし、熱硬化性樹脂シートAを得た。
[Example 1]
(Preparation of thermosetting resin sheet)
The following components were blended with a mixer, melt kneaded for 2 minutes at 120 ° C. with a twin-screw kneader, and then extruded from a T die to produce an extruded product having a thickness of 500 μm. The extruded product was cut so that the projected area in plan view was 17663 mm 2 and the plan view shape was circular, and a thermosetting resin sheet A was obtained.
 エポキシ樹脂:ビスフェノールF型エポキシ樹脂(新日鐵化学(株)製、YSLV-80XY(エポキン当量200g/eq.軟化点80℃))
   286部
 フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH-7851-SS(水酸基当量203g/eq.、軟化点67℃))
   303部
 硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ-PW)
   6部
 無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB-9454、平均粒子径20μm)
   3695部
 シランカップリング剤:エポキシ基含有シランカップリング剤(信越化学工業(株)製、KBM-403)
   5部
 カーボンブラック(三菱化学(株)製、#20)
   5部
Epoxy resin: Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epochine equivalent 200 g / eq. Softening point 80 ° C.))
286 parts Phenol resin: Phenol resin having a biphenylaralkyl skeleton (Maywa Kasei Co., Ltd., MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.))
303 parts Curing accelerator: Imidazole catalyst as a curing catalyst (manufactured by Shikoku Chemicals Co., Ltd., 2PHZ-PW)
6 parts Inorganic filler: Spherical fused silica powder (manufactured by Denki Kagaku Kogyo, FB-9454, average particle size 20 μm)
3695 parts Silane coupling agent: Epoxy group-containing silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403)
5 parts carbon black (Mitsubishi Chemical Corporation, # 20)
5 copies
[実施例2]
 (熱硬化性樹脂シートの作製)
 以下の成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ500μmの押出成形物を作製した。この押出成形物を平面視投影面積が17663mmで、平面視形状が円状となるようにカットし、熱硬化性樹脂シートBを得た。
[Example 2]
(Preparation of thermosetting resin sheet)
The following components were blended with a mixer, melt kneaded for 2 minutes at 120 ° C. with a twin-screw kneader, and then extruded from a T die to produce an extruded product having a thickness of 500 μm. The extruded product was cut so that the projected area in plan view was 17663 mm 2 and the plan view shape was circular, and a thermosetting resin sheet B was obtained.
 エポキシ樹脂:ビスフェノールF型エポキシ樹脂(新日鐵化学(株)製、YSLV-80XY(エポキン当量200g/eq.軟化点80℃))
   169部
 フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH-7851-SS(水酸基当量203g/eq.、軟化点67℃))
   179部
 硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ-PW)
   6部
 エラストマー:スチレン?イソブチレン?スチレントリブロック共重合体((株)カネカ製、SIBSTAR 072T)
   152部
 無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB-9454、平均粒子径20μm)
   4400部
 シランカップリング剤:エポキシ基含有シランカップリング剤(信越化学工業(株)製、KBM-403)
   5部
 カーボンブラック(三菱化学(株)製、#20)
   5部
 難燃剤:ホスファゼン化合物((株)伏見製薬所製、FP-100)
   89部
Epoxy resin: Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epochine equivalent 200 g / eq. Softening point 80 ° C.))
169 parts Phenol resin: Phenol resin having biphenylaralkyl skeleton (Maywa Kasei Co., Ltd., MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.))
179 parts Curing accelerator: Imidazole catalyst as a curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PHZ-PW)
6 parts Elastomer: Styrene / isobutylene / styrene triblock copolymer (manufactured by Kaneka Corporation, SIBSTAR 072T)
152 parts Inorganic filler: spherical fused silica powder (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-9454, average particle size 20 μm)
4400 parts Silane coupling agent: Epoxy group-containing silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403)
5 parts carbon black (Mitsubishi Chemical Corporation, # 20)
5 parts Flame retardant: Phosphazene compound (FP-100, manufactured by Fushimi Pharmaceutical Co., Ltd.)
89 copies
 (熱硬化前の熱硬化性樹脂シートの弾性率の測定)
 作製した熱硬化前の熱硬化性樹脂シート(サンプル)について、TAインスツルメント社製の動的粘弾性測定装置「ARES」を用いて、サンプルを重ねて厚さ:約1.5mmで、φ8mmパラレルプレートの治具を用い、剪断モードにて、周波数:1Hz、昇温速度:10℃/分、歪み:5%(90℃~130℃)にて測定し、90℃~130℃の範囲で得られた剪断貯蔵弾性率G´の最小値及び最大値を求めた。結果を表1に示す。
(Measurement of elastic modulus of thermosetting resin sheet before thermosetting)
About the produced thermosetting resin sheet (sample) before thermosetting, using a dynamic viscoelasticity measuring device “ARES” manufactured by TA Instruments, the samples were stacked to have a thickness of about 1.5 mm and φ8 mm Using a parallel plate jig, measured in shear mode, frequency: 1 Hz, heating rate: 10 ° C./min, strain: 5% (90 ° C. to 130 ° C.), in the range of 90 ° C. to 130 ° C. The minimum value and the maximum value of the obtained shear storage modulus G ′ were determined. The results are shown in Table 1.
 (半導体パッケージの作製)
 以下の仕様の半導体チップを下記ボンディング条件にてBT基板に実装した半導体チップ実装基板を作製した。
(Production of semiconductor package)
A semiconductor chip mounting substrate in which a semiconductor chip having the following specifications was mounted on a BT substrate under the following bonding conditions was produced.
 <半導体チップ>
 半導体チップサイズ:7.3mm□(厚さ400μm)
 バンプ材質:Cu 30μm、Sn-Ag 15μm厚み
 バンプ数:544バンプ
 バンプピッチ:50μm
 チップ数:16個(4個×4個)
<Semiconductor chip>
Semiconductor chip size: 7.3 mm □ (thickness 400 μm)
Bump material: Cu 30μm, Sn-Ag 15μm thickness Number of bumps: 544 bumps Bump pitch: 50μm
Number of chips: 16 (4 x 4)
 <ボンディング条件>
 装置:パナソニック電工(株)製
 ボンディング条件:150℃、49N、10sec
<Bonding conditions>
Equipment: manufactured by Panasonic Electric Works Co., Ltd. Bonding conditions: 150 ° C., 49 N, 10 sec
 得られた半導体チップ実装基板上に、以下に示す加熱加圧条件下、熱硬化性樹脂シートA~Bのそれぞれを真空プレスにより貼付けた。このときの熱硬化性樹脂シートに対する半導体チップの面積占有率は55%であった。 Each of the thermosetting resin sheets A to B was pasted on the obtained semiconductor chip mounting substrate by a vacuum press under the following heating and pressing conditions. At this time, the area occupation ratio of the semiconductor chip with respect to the thermosetting resin sheet was 55%.
 <貼り付け条件>
 温度:90℃
 加圧力:0.5MPa
 真空度:2000Pa
 プレス時間:3分
<Paste conditions>
Temperature: 90 ° C
Applied pressure: 0.5 MPa
Degree of vacuum: 2000Pa
Press time: 3 minutes
 大気圧に開放した後、熱風乾燥機中、180℃、1時間の条件で熱硬化性樹脂シートを熱硬化させ、封止体を得た。次いで、切削装置((株)DISCO製、サーフェスプレーナー「DFS8910」)を用いた研削により、封止体を半導体チップ共々厚さ150μmまで薄化することで、半導体パッケージを作製した。 After opening to atmospheric pressure, the thermosetting resin sheet was thermoset in a hot air dryer at 180 ° C. for 1 hour to obtain a sealed body. Next, the semiconductor package was fabricated by thinning the sealing body to a thickness of 150 μm together with the semiconductor chip by grinding using a cutting device (manufactured by DISCO Corporation, surface planar “DFS8910”).
 (半導体パッケージの封止樹脂の断面評価)
 電子顕微鏡(KEYENCE社製、商品名「デジタルマイクロスコープ」、200倍)により、半導体パッケージの封止樹脂の断面における無機充填剤の偏在の有無を観察し、無機充填剤の偏在が認められなかった場合を「○」、認められた場合を「×」として評価した。
Figure JPOXMLDOC01-appb-T000004
 
(Cross sectional evaluation of sealing resin for semiconductor package)
With an electron microscope (manufactured by KEYENCE, trade name “Digital Microscope”, 200 times), the presence or absence of the inorganic filler in the cross section of the sealing resin of the semiconductor package was observed, and the inorganic filler was not unevenly distributed. The case was evaluated as “◯”, and the case where it was recognized as “×”.
Figure JPOXMLDOC01-appb-T000004
 表1からも明らかなように、実施例1及び2では、熱硬化性樹脂シートにより作製した半導体パッケージでは無機充填剤の偏在が認められず、高品質の半導体パッケージを作製可能であることが分かる。 As is clear from Table 1, in Examples 1 and 2, the semiconductor package produced by the thermosetting resin sheet does not show uneven distribution of the inorganic filler, and it can be seen that a high-quality semiconductor package can be produced. .
    11、21、31  熱硬化性樹脂シート
    11a  支持体
    13、33  半導体チップ
    15、25、35  封止体
    16、26、36  研削体
    18、28、38  電子モジュール
    29  半導体ウェハ
11, 21, 31 Thermosetting resin sheet 11a Support body 13, 33 Semiconductor chip 15, 25, 35 Sealing body 16, 26, 36 Grinding body 18, 28, 38 Electronic module 29 Semiconductor wafer

Claims (10)

  1.  無機充填剤を含み、平面視投影面積が31400mm以上であるBステージ状態の熱硬化性樹脂シート。 A thermosetting resin sheet in a B-stage state containing an inorganic filler and having a plan view projected area of 31400 mm 2 or more.
  2.  熱硬化前の弾性率が90~130℃の温度範囲において1.5×10Pa以上3×10Pa以下である請求項1に記載の熱硬化性樹脂シート。 2. The thermosetting resin sheet according to claim 1, wherein the elastic modulus before thermosetting is 1.5 × 10 3 Pa or more and 3 × 10 3 Pa or less in a temperature range of 90 to 130 ° C.
  3.  前記無機充填剤の平均粒径が54μm以下である請求項1又は2に記載の熱硬化性樹脂シート。 The thermosetting resin sheet according to claim 1 or 2, wherein the inorganic filler has an average particle size of 54 µm or less.
  4.  前記無機充填剤の含有量が70重量%以上95重量%以下である請求項1~3のいずれか1項に記載の熱硬化性樹脂シート。 The thermosetting resin sheet according to any one of claims 1 to 3, wherein the content of the inorganic filler is 70 wt% or more and 95 wt% or less.
  5.  エラストマー、エポキシ樹脂及びフェノール樹脂を含む請求項1~4のいずれか1項に記載の熱硬化性樹脂シート。 The thermosetting resin sheet according to any one of claims 1 to 4, comprising an elastomer, an epoxy resin, and a phenol resin.
  6.  請求項1~5に記載の熱硬化性樹脂シートの長尺体がロール状に巻き取られた熱硬化性樹脂シート巻回体。 A thermosetting resin sheet wound body in which the long body of the thermosetting resin sheet according to claim 1 is wound into a roll.
  7.  電子部品パッケージの製造方法であって、
     一又は複数の電子部品を覆うように請求項1~5のいずれか1項に記載の熱硬化性樹脂シートを該電子部品上に積層する積層工程、及び
     前記熱硬化性樹脂シートを熱硬化させて封止体を形成する封止体形成工程
     を含み、
     前記熱硬化性樹脂シートの平面視投影面積に占める前記電子部品の平面視投影面積の割合が50%以上である電子部品パッケージの製造方法。
    An electronic component package manufacturing method comprising:
    A laminating step of laminating the thermosetting resin sheet according to any one of claims 1 to 5 on the electronic component so as to cover one or a plurality of electronic components, and thermosetting the thermosetting resin sheet. Including a sealing body forming step of forming a sealing body,
    The manufacturing method of the electronic component package whose ratio of the planar view projection area of the said electronic component to the planar view projection area of the said thermosetting resin sheet is 50% or more.
  8.  前記積層工程を熱プレス加工により行う請求項7に記載の電子部品パッケージの製造方法。 The method for manufacturing an electronic component package according to claim 7, wherein the lamination step is performed by hot pressing.
  9.  前記封止体をダイシングして電子部品モジュールを形成するダイシング工程をさらに含む請求項7又は8に記載の電子部品パッケージの製造方法。 The method of manufacturing an electronic component package according to claim 7 or 8, further comprising a dicing step of dicing the sealing body to form an electronic component module.
  10.  前記電子部品が、半導体チップ又は半導体ウェハである請求項7~9のいずれか1項に記載の電子部品パッケージの製造方法。
     
    The method of manufacturing an electronic component package according to any one of claims 7 to 9, wherein the electronic component is a semiconductor chip or a semiconductor wafer.
PCT/JP2013/081672 2012-11-29 2013-11-25 Thermosetting resin sheet and electronic component packaging fabrication method WO2014084175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG11201504009UA SG11201504009UA (en) 2012-11-29 2013-11-25 Thermosetting resin sheet and method for manufacturing electronic component package

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-261384 2012-11-29
JP2012261384 2012-11-29
JP2013240591A JP5943898B2 (en) 2012-11-29 2013-11-21 Method for manufacturing thermosetting resin sheet and electronic component package
JP2013-240591 2013-11-21

Publications (1)

Publication Number Publication Date
WO2014084175A1 true WO2014084175A1 (en) 2014-06-05

Family

ID=50827811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081672 WO2014084175A1 (en) 2012-11-29 2013-11-25 Thermosetting resin sheet and electronic component packaging fabrication method

Country Status (4)

Country Link
JP (1) JP5943898B2 (en)
SG (2) SG11201504009UA (en)
TW (1) TWI616476B (en)
WO (1) WO2014084175A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069517A (en) * 2014-09-30 2016-05-09 株式会社タムラ製作所 Black thermosetting resin composition and flexible substrate having film obtained by curing the same
CN107851697A (en) * 2016-01-27 2018-03-27 欧姆龙株式会社 The manufacture method of light-emitting device and light-emitting device
CN110600434A (en) * 2014-08-29 2019-12-20 日东电工株式会社 Sealing sheet, sealing sheet with spacer, semiconductor device, and method for manufacturing semiconductor device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6534540B2 (en) * 2014-09-27 2019-06-26 アイカ工業株式会社 Thermosetting sheet composition
JP6735071B2 (en) * 2015-05-13 2020-08-05 日東電工株式会社 Sealing resin sheet
TWI756181B (en) * 2015-08-28 2022-03-01 日商昭和電工材料股份有限公司 Composition for cushioning sheet and cushioning sheet
KR102441766B1 (en) 2017-04-28 2022-09-07 쇼와덴코머티리얼즈가부시끼가이샤 Encapsulation film and encapsulation structure, and manufacturing method thereof
JP6803498B1 (en) * 2019-03-29 2020-12-23 三井化学東セロ株式会社 Manufacturing method of electronic device
CN116888714A (en) 2021-02-01 2023-10-13 长濑化成株式会社 Sealing method for electronic component mounting board and thermosetting sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355622A (en) * 1999-04-15 2000-12-26 Shin Etsu Chem Co Ltd Epoxy resin composition and laminated film and semiconductor device using same
US6512031B1 (en) * 1999-04-15 2003-01-28 Shin-Etsu Chemical Co., Ltd. Epoxy resin composition, laminate film using the same, and semiconductor device
JP2009084563A (en) * 2007-09-13 2009-04-23 Hitachi Chem Co Ltd Adhesive composition, film adhesive, adhesion sheet, and semiconductor device
JP2011032434A (en) * 2009-08-05 2011-02-17 Nitto Denko Corp Sheet-like epoxy resin composition for sealing electronic parts, and electronic parts device assembly obtained from the composition, and electronic parts device
JP2011246586A (en) * 2010-05-26 2011-12-08 Hitachi Chem Co Ltd Film-like adhesive, adhesive sheet and semiconductor device
EP2461356A1 (en) * 2010-12-03 2012-06-06 Shin-Etsu Chemical Co., Ltd. Wafer mold material and method for manufacturing semiconductor apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4754185B2 (en) * 2004-05-27 2011-08-24 リンテック株式会社 Semiconductor sealing resin sheet and semiconductor device manufacturing method using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355622A (en) * 1999-04-15 2000-12-26 Shin Etsu Chem Co Ltd Epoxy resin composition and laminated film and semiconductor device using same
US6512031B1 (en) * 1999-04-15 2003-01-28 Shin-Etsu Chemical Co., Ltd. Epoxy resin composition, laminate film using the same, and semiconductor device
JP2009084563A (en) * 2007-09-13 2009-04-23 Hitachi Chem Co Ltd Adhesive composition, film adhesive, adhesion sheet, and semiconductor device
JP2011032434A (en) * 2009-08-05 2011-02-17 Nitto Denko Corp Sheet-like epoxy resin composition for sealing electronic parts, and electronic parts device assembly obtained from the composition, and electronic parts device
JP2011246586A (en) * 2010-05-26 2011-12-08 Hitachi Chem Co Ltd Film-like adhesive, adhesive sheet and semiconductor device
EP2461356A1 (en) * 2010-12-03 2012-06-06 Shin-Etsu Chemical Co., Ltd. Wafer mold material and method for manufacturing semiconductor apparatus
JP2012119599A (en) * 2010-12-03 2012-06-21 Shin Etsu Chem Co Ltd Wafer mold material and method of manufacturing semiconductor device
TW201236116A (en) * 2010-12-03 2012-09-01 Shinetsu Chemical Co Wafer mold material and method for manufacturing semiconductor apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600434A (en) * 2014-08-29 2019-12-20 日东电工株式会社 Sealing sheet, sealing sheet with spacer, semiconductor device, and method for manufacturing semiconductor device
JP2016069517A (en) * 2014-09-30 2016-05-09 株式会社タムラ製作所 Black thermosetting resin composition and flexible substrate having film obtained by curing the same
CN107851697A (en) * 2016-01-27 2018-03-27 欧姆龙株式会社 The manufacture method of light-emitting device and light-emitting device
EP3410499B1 (en) * 2016-01-27 2023-05-10 Omron Corporation Light emitting device, and manufacturing method of light emitting device

Also Published As

Publication number Publication date
SG11201504009UA (en) 2015-07-30
JP5943898B2 (en) 2016-07-05
TWI616476B (en) 2018-03-01
SG10201706422WA (en) 2017-09-28
TW201428032A (en) 2014-07-16
JP2014131016A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP5961055B2 (en) Sealing resin sheet, electronic component package manufacturing method, and electronic component package
JP5943898B2 (en) Method for manufacturing thermosetting resin sheet and electronic component package
WO2015019817A1 (en) Method for producing semiconductor package
JP5837381B2 (en) Manufacturing method of semiconductor device
TWI606925B (en) Thermosetting sealing resin sheet and manufacturing method of electronic part package
JP6484061B2 (en) Manufacturing method of electronic component package
WO2015019816A1 (en) Method for producing semiconductor package
WO2015076088A1 (en) Sealing sheet with separators on both surfaces, and method for manufacturing semiconductor device
WO2014196296A1 (en) Method for manufacturing semiconductor device
WO2015060106A1 (en) Semiconductor package manufacturing method
TWI624914B (en) Resin sheet for electronic component sealing, resin sealed semiconductor device, and method for manufacturing resin sealed semiconductor device
JP6041933B2 (en) Method for manufacturing thermosetting resin sheet and electronic component package
WO2016031579A1 (en) Method for manufacturing semiconductor device, and sealing sheet
WO2014083974A1 (en) Semiconductor-device manufacturing method
JP2015126129A (en) Method of manufacturing electronic component package
WO2015053081A1 (en) Method for manufacturing semiconductor device
JP2015126131A (en) Method of manufacturing electronic component package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858162

Country of ref document: EP

Kind code of ref document: A1