WO2014083977A1 - 電圧非直線性抵抗素子 - Google Patents
電圧非直線性抵抗素子 Download PDFInfo
- Publication number
- WO2014083977A1 WO2014083977A1 PCT/JP2013/078786 JP2013078786W WO2014083977A1 WO 2014083977 A1 WO2014083977 A1 WO 2014083977A1 JP 2013078786 W JP2013078786 W JP 2013078786W WO 2014083977 A1 WO2014083977 A1 WO 2014083977A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- voltage
- linear resistance
- resistance material
- voltage non
- Prior art date
Links
- 239000010949 copper Substances 0.000 claims abstract description 110
- 239000000463 material Substances 0.000 claims abstract description 85
- 229910017985 Cu—Zr Inorganic materials 0.000 claims abstract description 70
- 150000001875 compounds Chemical class 0.000 claims abstract description 53
- 239000000843 powder Substances 0.000 claims abstract description 49
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 32
- 229910002056 binary alloy Inorganic materials 0.000 claims abstract description 22
- 230000005496 eutectics Effects 0.000 claims abstract description 15
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 14
- 239000013078 crystal Substances 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 32
- 229910052802 copper Inorganic materials 0.000 claims description 20
- 238000005245 sintering Methods 0.000 claims description 16
- 238000009689 gas atomisation Methods 0.000 claims description 6
- 238000002490 spark plasma sintering Methods 0.000 abstract description 40
- 239000012071 phase Substances 0.000 description 122
- 238000005259 measurement Methods 0.000 description 24
- 239000002245 particle Substances 0.000 description 20
- 229910045601 alloy Inorganic materials 0.000 description 18
- 239000000956 alloy Substances 0.000 description 18
- 229910001093 Zr alloy Inorganic materials 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- 230000008569 process Effects 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 7
- 210000001787 dendrite Anatomy 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 238000010587 phase diagram Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000005491 wire drawing Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000002003 electron diffraction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000000349 field-emission scanning electron micrograph Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- BWHLPLXXIDYSNW-UHFFFAOYSA-N ketorolac tromethamine Chemical compound OCC(N)(CO)CO.OC(=O)C1CCN2C1=CC=C2C(=O)C1=CC=CC=C1 BWHLPLXXIDYSNW-UHFFFAOYSA-N 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- 230000034655 secondary growth Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
- H01C7/105—Varistor cores
- H01C7/108—Metal oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
- B22F2003/1051—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/047—Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
Definitions
- the present invention relates to a voltage non-linear resistance element.
- a Zener diode-capacitor parallel circuit, a varistor, and the like are known as countermeasure parts for protecting circuits and elements of electronic devices from overvoltage such as abnormal voltage (surge) or static electricity (ESD).
- surge abnormal voltage
- ESD static electricity
- varistors are widely used because they can be reduced in size compared to a parallel circuit of a Zener diode and a capacitor.
- a typical varistor is a ZnO varistor.
- Such ZnO varistors generally have a crystal structure generated by a ceramic powder firing process. A high-resistance grain boundary region and a low-resistance grain region exist, and a Schottky barrier is formed at the interface between them. It is considered to exhibit linear resistance characteristics).
- Patent Literature 1 to 3
- JP 05-055010 A Japanese Patent Laid-Open No. 05-234716 JP 05-226116 A
- the varistor voltage of the ZnO varistor is usually several tens of volts, and even those of Patent Documents 1 to 3 have a varistor voltage of 3 V or more, and thus further reduction of the voltage has been desired. Also, the miniaturization has not been sufficient.
- the present invention has been made to solve such a problem, and a main object of the present invention is to provide a novel voltage nonlinear resistance element.
- the present inventors have pulverized a copper alloy containing Zr, produced a discharge plasma sintered copper alloy, and examined its current-voltage characteristics.
- the present invention has been completed by showing a voltage non-linear resistance characteristic and a current suddenly increasing at a relatively low voltage of about 1 to 3V.
- the voltage nonlinear resistance element of the present invention is A voltage nonlinear resistance material made of a copper alloy having a two-phase structure of Cu and a Cu—Zr compound containing no eutectic phase; Electrodes, It is equipped with.
- the voltage non-linear resistance material of the present invention has a region made of copper and a region containing at least zirconium.
- the former plays the same role as the low-resistance grain region in the ZnO varistor, the latter plays the same role as the high-resistance grain boundary region in the ZnO varistor, and seems to be a Schottky barrier at the interface between the two. Since an electrical barrier is formed, it is surmised that when the voltage increases, a mechanism such as a tunnel effect works due to overvoltage, and the current rapidly increases.
- a voltage nonlinear resistance element of the present invention includes a voltage nonlinear resistance material made of a copper alloy having a two-phase structure of Cu and a Cu—Zr compound not containing a eutectic phase, and an electrode.
- the voltage non-linear resistance material means a material exhibiting current-voltage non-linear resistance characteristics that develop conductivity when the voltage exceeds a predetermined value, for example, current-voltage characteristics such as a diode. And those showing current-voltage characteristics such as varistors.
- the voltage nonlinear resistance material is a copper alloy having a two-phase structure of Cu and a Cu—Zr compound containing no eutectic phase.
- the Cu phase is a phase containing Cu, and may be a phase containing ⁇ -Cu, for example. Further, the Cu phase may contain solute Zr to the extent that solid solution is allowed on the equilibrium diagram. This Cu phase may not include a eutectic phase.
- the eutectic phase means, for example, a phase containing Cu and a Cu—Zr compound described later.
- This Cu phase may be formed of a crystal having a size of 10 ⁇ m or less when the voltage nonlinear resistance material is viewed in cross section.
- the size of the Cu phase refers to the long side of each structure of the Cu phase in the SEM image obtained by cross-sectional view of the voltage nonlinear resistance material.
- the voltage non-linear resistance material of the present invention includes a Cu—Zr compound phase.
- FIG. 1 is a Cu—Zr binary phase diagram with the Zr content on the horizontal axis and the temperature on the vertical axis (Source: D. Arias and JPAbriata, Bull, Alloy phase diagram 11 (1990), 452-459). .).
- Examples of the Cu—Zr compound phase include various types shown in the Cu—Zr binary phase diagram shown in FIG. Further, although not shown in the Cu—Zr binary phase diagram, the Cu 5 Zr phase, which is a compound having a composition very close to the Cu 9 Zr 2 phase, is also included.
- the Cu—Zr compound phase may include, for example, at least one of a Cu 5 Zr phase, a Cu 9 Zr 2 phase, and a Cu 8 Zr 3 phase. Of these, the Cu 5 Zr phase and the Cu 9 Zr 2 phase are preferred. In the Cu 5 Zr phase and Cu 9 Zr 2 phase, voltage nonlinear resistance characteristics are expected.
- the phase is identified by, for example, observing the structure using a scanning transmission electron microscope (STEM) and then analyzing the composition of the visual field where the structure is observed using an energy dispersive X-ray analyzer (EDX). Or by structural analysis by nano electron diffraction (NBD).
- the Cu—Zr compound phase may be a single phase or a phase containing two or more kinds of Cu—Zr compounds.
- Cu 9 Zr 2 Aitansho and Cu 5 Zr Aitansho may be a Cu 8 Zr 3 phase single-phase
- other Cu-Zr compound Cu 5 Zr phase and the main phase Cu 9 Zr 2 and Cu 8 Zr 3
- a Cu 9 Zr 2 phase may be used as a main phase
- another Cu—Zr compound Cu 5 Zr or Cu 8 Zr 3
- the main phase refers to the phase having the highest abundance ratio (volume ratio) in the Cu—Zr compound phase
- the subphase refers to the phase other than the main phase in the Cu—Zr compound phase.
- This Cu—Zr compound phase does not contain a eutectic phase.
- the eutectic phase refers to a phase containing Cu and a Cu—Zr compound.
- the Cu—Zr compound phase may be formed of crystals having a size of 10 ⁇ m or less when the voltage nonlinear resistance material is viewed in cross section.
- the size of the Cu—Zr compound phase refers to the long side of each structure of the Cu—Zr compound phase in the SEM image of the voltage non-linear resistance material in cross section.
- the voltage non-linear resistance material of the present invention contains Cu and Zr.
- the amount of Zr is not particularly limited, but is preferably 18 at% or less. This is because a Cu—Zr compound phase is obtained as can be seen from the binary phase diagram shown in FIG. Among these, the amount of Zr is preferably 0.2 at% or more and 18.0 at% or less. Among these, the amount of Zr is preferably 0.2 at% or more and 8.0 at% or less, and more preferably 5.0 at% or more and 8.0 at% or less. This is because if the amount of Zr is 0.2 at% or more, voltage non-linear resistance characteristics can be obtained, and if it is 8.0 at% or less, the workability is good and the structure can be easily refined by processing.
- the amount of Zr may be 8.0 at% or more and 18.0 at% or less.
- the voltage nonlinear resistance material mainly contains a Cu—Zr compound phase, it is considered that the voltage nonlinear resistance material is suitable for use in a voltage nonlinear resistance element having a high withstand voltage.
- the voltage non-linear resistance material may contain an element other than Cu and Zr. Examples of such elements include those intentionally added, impurities inevitably mixed in the manufacturing process, and other oxygen and carbon observed as oxides and carbides.
- the voltage nonlinear resistance material of the present invention may have a mosaic structure in which crystals having a size of 10 ⁇ m or less are dispersed when viewed in cross section.
- the Cu phase and the Cu—Zr compound phase may be observed in a mosaic structure.
- This mosaic structure can be confirmed, for example, when the amount of Zr is 5.0 at% or more.
- This mosaic structure may be a uniform and dense two-phase structure.
- the Cu phase and the Cu—Zr compound phase do not include a eutectic phase, and may not include a dendrite and a structure in which the dendrite has grown.
- the voltage nonlinear resistance material of the present invention may be formed by spark plasma sintering (SPS: Spark Plasma Sintering) of Cu—Zr binary alloy powder. Further, a Cu—Zr binary alloy powder having a hypoeutectic composition may be formed by spark plasma sintering.
- SPS Spark Plasma Sintering
- a copper alloy having a two-phase structure of Cu and a Cu—Zr compound containing no eutectic phase can be more easily produced.
- the hypoeutectic composition may include, for example, a composition containing Zr of 0.2 at% or more and 8.00 at% or less and the other being Cu.
- This voltage non-linear resistance material may include an inevitable component (for example, a trace amount of oxygen).
- direct current pulse energization may be performed so that the temperature is 0.9 Tm ° C. or lower (Tm (° C.) is the melting point of the alloy powder). By doing so, it is easy to have a mosaic structure formed by the Cu phase and the Cu—Zr compound phase.
- the voltage non-linear resistance material may be formed of Cu—Zr binary alloy powder prepared by using a Cu—Zr binary alloy by a high pressure gas atomization method. In this way, powder metallurgy is easy.
- the voltage non-linear resistance material of the present invention may have a mosaic-like structure which is obtained by subjecting a Cu—Zr binary alloy powder to spark plasma sintering and then wire drawing and extending in the wire drawing direction.
- the voltage non-linear resistance material of the present invention may have a mosaic structure that is rolled after the discharge plasma sintering of the Cu—Zr binary alloy powder and flattened in the rolling direction. This also has voltage-nonlinear resistance characteristics.
- the voltage-nonlinear resistance characteristic can be adjusted by changing the shape of the tissue by processing.
- the voltage non-linear resistance material of the present invention exhibits voltage-non-linear resistance characteristics having a voltage (so-called varistor voltage) that becomes conductive at any voltage in the range of 0.2 V to 3.0 V. It may be a thing. This is preferable because it can be easily used for an electronic device used at a relatively low voltage.
- This varistor voltage may be, for example, 0.4V, 0.6V, or 1.0V.
- a voltage range showing insulation can be adjusted.
- the electrode is not particularly limited, but various electrodes such as Cu, Cu alloy, Ag, Au, and Pt can be used.
- the formation method of an electrode is not specifically limited, It can form by various methods, such as welding, brazing, and printing.
- the shape of the voltage non-linear resistance element of the present invention is not particularly limited, and may be various shapes such as a square shape, a laminated shape, a cylindrical shape, and a wound shape.
- FIG. 2 shows an example of the voltage nonlinear resistance element 20 of the present invention.
- two electrodes 21 and 22 are provided so as to face each other with the voltage non-linear resistance material 30 interposed therebetween. A portion where 21 and 22 are not formed is covered with an insulating material 24.
- the voltage nonlinear resistance material 30 is made of a copper alloy having a two-phase structure of a Cu phase 31 and a Cu—Zr compound phase 32 not including a eutectic phase. In this voltage non-linear resistance material 30, the Cu phase 31 and the Cu—Zr compound phase 32 may form a mosaic structure.
- the Cu—Zr compound phase 32 may be a Cu 9 Zr 2 phase.
- the method for producing a voltage non-linear resistance material according to the present invention includes (1) a pulverizing step for producing a Cu—Zr binary alloy powder, and (2) a sintering process for subjecting the Cu—Zr binary alloy powder to spark plasma sintering. A knotting step.
- the powdering step may be omitted by preparing the alloy powder in advance. Moreover, it is good also as what performs the process process of drawing or rolling the sintered compact obtained at the sintering process.
- Cu—Zr binary alloy powder is prepared from the Cu—Zr binary alloy.
- the average particle size of the alloy powder is preferably 30 ⁇ m or less. This average particle diameter is taken as the D50 particle diameter measured using a laser diffraction particle size distribution analyzer.
- the raw material is preferably a copper alloy containing Zr in the range of 0.2 at% or more and 18.0 at% or less, and an alloy or a pure metal may be used.
- a hypoeutectic Cu—Zr binary alloy may be used, or a copper alloy containing Zr in the range of 5.0 at% to 8.0 at% may be used. Moreover, it is good also as what uses the copper alloy which contains Zr in 8.0 at% or more of range. It is desirable that this raw material does not contain elements other than Cu and Zr. Moreover, the copper alloy used for a raw material shall not have the mosaic structure mentioned above.
- the alloy powder obtained here may include dendrite terminated during solidification by rapid cooling. This dendrite may disappear in a later sintering process.
- the obtained Cu—Zr binary alloy powder is subjected to a discharge plasma sintering process.
- a Cu—Zr binary alloy powder having a hypoeutectic composition having an average particle size of 30 ⁇ m or less and containing Zr of 5.00 at% to 8.00 at% may be used.
- the direct current pulse can be, for example, in the range of 1.0 kA to 5 kA, more preferably in the range of 3 kA to 4 kA.
- the sintering temperature may be 0.9 Tm ° C. or lower, for example, 900 ° C. or lower.
- the lower limit of the sintering temperature is set to a temperature at which discharge plasma sintering is possible, and is appropriately set depending on the raw material composition, particle size, and direct current pulse conditions, but may be 600 ° C. or higher, for example.
- the holding time at the maximum temperature is set as appropriate, and can be, for example, 30 minutes or less, more preferably 15 minutes or less.
- the alloy powder At the time of spark plasma sintering, it is preferable to pressurize the alloy powder, for example, it is more preferable to press at 10 MPa or more, and it is more preferable to press at 30 MPa or more. In this way, a dense copper alloy can be obtained.
- As a pressing method Cu—Zr binary alloy powder may be housed in a graphite die and pressed with a graphite rod. Through such steps, a voltage nonlinear resistance material can be manufactured.
- the voltage nonlinear resistance element of the present embodiment described in detail above, a novel voltage nonlinear resistance element using a copper alloy containing Zr as a voltage nonlinear resistance material can be provided. That is, the copper alloy of the present invention can be used as a voltage nonlinear resistance material. The reason why such an effect is obtained is not clear, but is presumed as follows.
- the voltage non-linear resistance material of the present invention has a region made of copper and a region containing at least zirconium.
- the former plays the same role as the low-resistance grain region in the ZnO varistor, the latter plays the same role as the high-resistance grain boundary region in the ZnO varistor, and seems to be a Schottky barrier at the interface between the two. An electrical barrier is formed.
- the voltage non-linear resistance material of the present invention is presumed to have a voltage-nonlinear resistance characteristic due to the fact that when the voltage increases, a mechanism such as a tunnel effect works due to overvoltage, and the current rapidly increases. Inferred.
- a copper alloy was produced by a copper mold casting method.
- a Cu-4 at% Zr copper alloy, a Cu-4.5 at% Zr copper alloy, and a Cu-5.89 at% Zr copper alloy were designated as Experimental Examples 4 to 6, respectively.
- the Cu—Zr binary alloy composed of Zr having the above content and the balance Cu was levitation melted in an Ar gas atmosphere.
- a mold was applied to a pure copper mold engraved with a round bar-shaped cavity having a diameter of 10 mm, and a molten bar at about 1200 ° C. was poured to cast a round bar ingot. About this ingot, the diameter was measured with the micrometer and it confirmed that the diameter was 10 mm.
- the round bar ingot cooled to room temperature was passed through 20 to 40 dies, each having a hole diameter that gradually decreased at room temperature, and wire drawing was performed so that the diameter of the wire after drawing became 1 mm.
- the wire drawing speed was 20 m / min.
- the diameter was measured with the micrometer and it confirmed that the diameter was 1 mm.
- microstructure was observed using a scanning electron microscope (SEM), a scanning transmission electron microscope (STEM), and a nanobeam electron diffraction method (NBD).
- SEM scanning electron microscope
- STEM scanning transmission electron microscope
- NBD nanobeam electron diffraction method
- FIG. 3 shows a cross-sectional SEM-BEI image of a Cu-5 at% Zr alloy powder (which was then sieved to 106 ⁇ m or less) prepared by a high pressure Ar gas atomization method.
- the particle size was 36 ⁇ m. Dendrites that were thought to have ended during solidification due to rapid cooling were observed.
- the secondary DAS (Dendrite Arm Spacing) was measured at four arbitrary locations, and the average value was 0.81 ⁇ m. This value is an order of magnitude smaller than that of 2.7 ⁇ m of the Cu-4 at% Zr alloy produced by the copper mold casting method, indicating a rapid cooling effect.
- FIG. 5 is a SEM-BEI image of a square plate obtained by SPS Cu—Zr alloy powder
- FIG. 5 (a) is a Cu-1 at% Zr alloy
- FIG. 5 (b) is a Cu-3at% Zr alloy
- FIG. (C) is a Cu-5 at% Zr alloy.
- the structure of the SPS material shown in FIG. 5 was a uniform and dense two-phase structure. This is different from the cast structure of the Cu—Zr alloy produced by the copper mold casting method of Experimental Examples 4-6. This can be said to be the greatest feature in the tissue formed by solid-phase bonding of rapidly cooled powder particles by SPS.
- FIG. 6 is an FE-SEM image of a Cu-5 at% Zr alloy (an SPS material of Experimental Example 3), and FIG. 6A shows a thin film obtained by electropolishing the SPS material of Experimental Example 3 by a twin jet method.
- 6 (b) is a BF image obtained by STEM observation of Area-A in FIG. 6 (a)
- FIG. 6 (c) is an Area-B in FIG. 6 (b). It is a BF image observed by STEM.
- 6 (d) is the Point-1 NDB pattern of FIG. 6 (c)
- FIG. 6 (e) is the Point-2 NDB pattern of FIG. 6 (c)
- FIG. 6 (f) is FIG. ) Point-3 NDB pattern.
- oxide particles having a size of about 30 to 80 nm are scattered along the powder particle interface.
- Table 1 shows the result of EDX point analysis of the arrows at the points Point-1 to 3 shown in FIG.
- Point 1 was presumed to be a Cu 5 Zr compound phase.
- Point-2 was a Cu phase. This Point-2 measurement result could not be detected at this time for reasons of analysis accuracy, but was estimated to contain supersaturated Zr at about 0.3 at%.
- this oxide was a complex oxide containing Cu and Zr.
- FIGS. 6 (d) to (f) different diffraction spots indicated by d1, d2 and d3 are obtained, respectively, and Table 2 shows the lattice spacing determined from these.
- Table 2 shows, for comparison, Cu 5 Zr, Cu 9 Zr 2 and Cu 8 Zr 3 compounds, Cu, Cu 8 , which have been observed so far in Cu-0.5 to 5 at% Zr alloy wires having a hypoeutectic composition. Lattice constants calculated on specific crystal planes with O 7 , Cu 4 O 3 and Cu 2 O 2 oxides are also shown.
- the NBD pattern of Point-1 almost coincided with the lattice constant of the Cu 5 Zr compound. In Point-2, it almost coincided with the lattice constant of Cu. On the other hand, the NBD pattern of Point-3 did not match the lattice constant of any Cu oxide. Therefore, in Point-3, it was considered that the fine particles on the powder particle interface may be complex oxides containing Zr atoms. 6 (a) to 6 (c) and the results of Table 2, Point-1 is a Cu 5 Zr compound single phase, Point-2 is an ⁇ -Cu phase, and Point-3 particles are oxides containing Cu and Zr. I found out.
- the Cu 5 Zr compound observed in the SPS material was a single phase, which was different from the eutectic phase (Cu + Cu 9 Zr 2 ) of the sample prepared by the copper mold casting method. That is, the dendrite structure of the ⁇ -Cu phase and the eutectic phase (Cu + Cu 5 Zr) observed in the powder material was changed to a two-phase structure of the ⁇ -Cu phase and the Cu 5 Zr compound single phase by SPS.
- FIG. 7 shows the result of X-ray diffraction measurement of a Cu-5 at% Zr alloy (SPS material of Experimental Example 3).
- This SPS material contained a Cu phase and a Cu 5 Zr compound phase like the powder material, and the position of each diffraction peak was slightly shifted to the low angle side with respect to the powder. That is, it was shown that the lattice constant of the SPS material was larger than that of the powder material. This was thought to be due to the fact that the lattice distortion introduced into the powder material by the rapid cooling of the high-pressure gas atomization method was alleviated by heating and holding in the SPS.
- FIG. 8 shows the measurement results of tensile strength (UTS) and electrical conductivity (EC) of a sample taken from a cut surface parallel to the pressing direction of the SPS material of Cu-1, 3, 5 at% Zr alloy.
- the strength increased with increasing Zr content and the conductivity decreased with increasing Zr content with respect to the Zr content.
- the conductivity of the SPS material was higher than the conductivity of 28% (IACS) of the Cu-4% Zr alloy as-cast material produced by, for example, a copper mold casting method. This was thought to be because the Cu phases in the powder particles were bonded together in a dense network by SPS.
- Example 1 The copper alloy of Experimental Example 3 was produced and used as the voltage nonlinear resistance material of Example 1.
- AFM-Current measurement Simultaneous measurement of AFM-current was performed using E-Sweep and NanoNavi station manufactured by SII. The shape was measured by scanning in contact with a probe in an AFM (Atomic Force Microscope) mode. The current distribution was measured while scanning in CITS (Current Imaging Tunneling Spectroscopy) mode. The DC bias was 1.0 V, and the measurement area was in the range of 10 ⁇ m ⁇ 10 ⁇ m.
- CP cross section polisher
- FIB Fluorused Ion Beam
- FIG. 9 is an SEM image of a cross section of the voltage nonlinear resistance material of Example 1.
- the part that appears white is the Cu—Zr compound phase
- the part that appears black is the Cu phase.
- the voltage nonlinear resistance material of Example 1 constituted a structure in which the Cu phase and the Cu—Zr compound phase were dispersed in a mosaic pattern.
- the square traces scattered on the SEM composition image are traces of FIB (Focused Ion Beam) processing.
- FIGS. 10A and 10B are SEM composition images and AFM-current measurement results of the cross section of the voltage nonlinear resistance material of Example 1, FIG. 10A is an SEM reflected electron image, and FIG. 10B is FIG. )
- FIG. 10 is a planar image in the field of view 1
- FIG. 10C is a current image in the field of view 1
- FIG. 11 is an analysis result of AFM-current measurement, and is a plan image in the field of view 1, a current image, and a scanning result diagram on the measurement line.
- FIGS. 10 and 11 since the particularly bright part in the planar image and the particularly bright part in the current image do not coincide with each other, it was found that the unevenness on the sample surface does not affect the current value. .
- FIGS. 10C and 10D are a current image in the visual field 1 of the voltage nonlinear resistance material of Example 1 and an IV curve at each point of the current image. 10 and 11, points 1 and 2 in the Cu phase that appear bright in the current image show the characteristics of the conductive material in which the current increases linearly in proportion to the increase in voltage.
- FIG. 12 shows SEM composition images and AFM-current measurement results of the cross section of the voltage nonlinear resistance material of Example 1,
- FIG. 12 (a) is an SEM reflected electron image
- FIG. 12 (b) is FIG. )
- FIG. 12 is a planar image in the field 2
- FIG. 12C is a current image in the field 2
- FIG. 12D is an IV curve in the field 2.
- FIG. 13 is an analysis result of AFM-current measurement, and is a plan image in the field of view 2, a current image, and a scanning result diagram on the measurement line.
- the current images and IV curves were the same as those shown in FIGS.
- the rise of current was observed from about 0.6V.
- the present invention can be used in the technical field related to the manufacture of resistance elements.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Powder Metallurgy (AREA)
- Thermistors And Varistors (AREA)
Abstract
Description
Cuと、共晶相を含まないCu-Zr化合物との2相の組織を有する銅合金からなる電圧非直線性抵抗材料と、
電極と、
を備えたものである。
この工程では、Cu-Zr二元系合金からCu-Zr二元系合金粉末を作製する。この工程では、特に限定されないが、例えば、Cu-Zr二元系合金から高圧ガスアトマイズ法により合金粉末を作製することが好ましい。このとき、合金粉末の平均粒径は、30μm以下であることが好ましい。この平均粒径は、レーザー回折式粒度分布測定装置を用いて測定するD50粒子径とする。原料としては、0.2at%以上18.0at%以下の範囲でZrを含む銅合金とすることが好ましく、合金を用いても、純金属を用いてもよい。このうち、亜共晶組成のCu-Zr二元系合金を用いるものとしてもよいし、Zrを5.0at%以上8.0at%以下の範囲で含む銅合金を用いてもよい。また、Zrを8.0at%以上の範囲で含む銅合金を用いるものとしてもよい。この原料は、Cu及びZr以外の元素を含まないことが望ましい。また、原料に用いる銅合金は、上述したモザイク状の組織を有さないものとすることができる。ここで得られる合金粉末には、急冷によって凝固途中で終結したデンドライトを含むものとしてもよい。このデンドライトは、のちの焼結工程で消滅することがある。
この工程では、得られたCu-Zr二元系合金粉末を放電プラズマ焼結する処理を行う。この工程では、Cu-Zr二元系合金粉末を、0.9Tm℃以下の温度(Tm(℃)は合金粉末の融点)となるように直流パルス通電を行うことにより放電プラズマ焼結する処理を行うものとしてもよい。また、この工程では、平均粒径が30μm以下であり、Zrを5.00at%以上8.00at%以下含有する亜共晶組成のCu-Zr二元系合金粉末を用いるものとしてもよい。この工程では、直流パルスは、例えば、1.0kA~5kAの範囲、より好ましくは、3kA~4kAの範囲とすることができる。焼結温度は、0.9Tm℃以下の温度とし、例えば、900℃以下としてもよい。なお、焼結温度の下限値は、放電プラズマ焼結が可能な温度とし、原料組成や粒度、直流パルスの条件により適宜設定するが、例えば、600℃以上としてもよい。最高温度での保持時間は、適宜設定するが、例えば、30分以下、より好ましくは15分以下とすることができる。放電プラズマ焼結時には、合金粉末を加圧することが好ましく、例えば、10MPa以上で加圧することがより好ましく、30MPa以上で加圧することが更に好ましい。こうすれば、緻密な銅合金を得ることができる。加圧方法としては、Cu-Zr二元系合金粉末を黒鉛ダイスに収容し、黒鉛棒により押圧するものとしてもよい。このような工程を経て、電圧非直線性抵抗材料を製造することができる。
粉末化工程としての高圧Arガスアトマイズ法で作製したCu-Zr合金粉末を用い、これらを106μm以下に篩い分けした。Zrの含有量は、1at%、3at%、5at%とし、それぞれ実験例1~3の合金粉末とした。合金粉末の粒度は、島津製作所製レーザー回折式粒度分布測定装置(SALD-3000J)を用いて測定した。この粉末の酸素含有量は0.100mass%であった。焼結工程としてのSPS(放電プラズマ焼結)は、SPSシンテックス(株)製放電プラズマ焼結装置(Model:SPS-3.2MK-IV)を用いて行った。50×50×10mmのキャビティを持つ黒鉛型内にCu-Zr合金粉末を225g入れ、3kA~4kAの直流パルス通電を行い、昇温速度0.4K/s、焼結温度1173K(約0.9Tm;Tmは合金の融点)、保持時間15min、加圧30MPaで実験例1~3の銅合金(SPS材)を作製した。
参考として、銅鋳型鋳造法で銅合金を作製した。Cu-4at%Zr銅合金、Cu-4.5at%Zr銅合金、およびCu-5.89at%Zr銅合金をそれぞれ実験例4~6とした。まず、上記含有量となるZrと残部CuとからなるCu-Zr二元系合金をArガス雰囲気下でレビテーション溶解した。次に、直径10mmの丸棒状のキャビティを彫り込んだ純銅鋳型に塗型をし、約1200℃の溶湯を注湯して丸棒インゴットを鋳造した。このインゴットについて、マイクロメーターで直径を測定して、直径が10mmであることを確認した。次に、室温まで冷却した丸棒インゴットを常温で、順次穴径が小さくなる20~40個のダイスに通して伸線後の線材の直径が1mmとなるように伸線加工を行った。このとき、伸線速度は20m/minとした。この銅合金線材について、マイクロメーターで直径を測定して、直径が1mmであることを確認した。
ミクロ組織の観察は、走査型電子顕微鏡(SEM)と走査型透過電子顕微鏡(STEM)、およびナノビーム電子線回折法(NBD)を用いて行った。
化合物相の同定は、Co-Kα線を用いてX線回折法により行った。
得られた実験例のSPS材の電気的性質は、常温においてプローブ式導電率測定および長さ500mmでの四端子法電気抵抗測定によって調べた。導電率はJISH0505に準じて銅合金の体積抵抗を測定し、焼き鈍した純銅の抵抗値(1.7241μΩcm)との比を計算して導電率(%IACS)に換算した。換算には、以下の式を用いた。導電率γ(%IACS)=1.7241÷体積抵抗ρ×100。
また機械的性質は、島津製作所製AG-I(JIS B7721 0.5級)精密万能試験機を用いてJISZ2201に準じて測定した。そして、最大荷重を銅合金線材の初期の断面積で除した値である引張強さを求めた。
高圧Arガスアトマイズ法で作製したCu-5at%Zr合金粉末(これはその後106μm以下に篩分けした)の断面SEM-BEI像を図3に示す.粒子径は36μmであった。急冷によって凝固途中で終結したと思われるデンドライトが観察された。2次DAS(Dendrite Arm Spacing)を任意の4ヶ所で測定し、その平均値を求めると0.81μmであった。この値は、銅鋳型鋳造法で作製したCu-4at%Zr合金の2.7μmに比べて1桁小さく、急冷効果を示している。この粉末では、多少凝集した状態が観察されたが、噴霧チャンバー壁への衝突で生じるフレーク状のものは取り除かれて少なかった。Cu-1、Cu-3、Cu-5at%Zr合金粉末の平均粒子径は、それぞれ26μm、23μmおよび19μm、標準偏差は0.25μm、0.28μmおよび0.32μmであった。どの組成の粒子径も、測定限界の1μmから106μmまでの範囲でほぼ対数正規分布していた。次に、Cu-5at%Zr合金粉末をX線回折法で調べた結果を図4に示す。母相であるα-Cu相と共晶相内のCu5Zr化合物相のX線回折ピークが観測された。また、これ以外に、Cu-Zr系化合物相としては、Cu9Zr2と思われる回折ピークが若干量観測された。
図5は、Cu-Zr合金粉末をSPSした角板のSEM-BEI像であり、図5(a)がCu-1at%Zr合金、図5(b)がCu-3at%Zr合金、図5(c)がCu-5at%Zr合金である。図5に示したSPS材の組織は、均一で緻密な二相組織となっていた。これは、実験例4~6の銅鋳型鋳造法で作製したCu-Zr合金の鋳造組織とは異なるものである。これは急冷された粉末粒子をSPSによる固相結合して生成した組織での最大の特徴といえる。また、実験例3のSPS材の各相をSEM-EDX分析すると、灰色の母相内ではCuと痕跡程度のZrが検出され、α-Cu相であることが分かった。一方、白色の第二相内で分析したZrの量は16.9at%であった。実験例3のSPS材では、化学量論的にもCu5Zr化合物相(Zr比は16.7at%)とよく一致し、第二相はCu5Zr化合物を含むことが分かった。すなわち、粉末材で観察されたCu5Zr化合物相は、SPS後も維持されていた。また、図5に示したCu-1、3、5at%Zr合金のSPS材の比重をアルキメデス法に測定した結果、それぞれ8.92、8.85および8.79であり、SPS材は十分、緻密化していることがわかった。
実験例3の銅合金を作製し、これを実施例1の電圧非直線性抵抗材料とした。
SII製のE-Sweep及びNanoNaviステーションを用いて、AFM-電流同時測定を行った。形状は、AFM(Atomic Force Microscope)モードで探針を接触させながら走査して測定した。また、電流分布はCITS(Current Imaging Tunneling Spectroscopy)モードで走査しながら測定した。DCバイアスは1.0Vとし、測定エリアは、10μm×10μmの範囲とした。試料調整としては、クロスセクションポリッシャ(CP)による断面加工を行い、FIB(Focused Ion Beam)により、マーキング加工を行った。
以上より、Cu-Zr化合物相を備える銅合金は、電圧非直線性抵抗特性を示し、電圧非直線性抵抗素子に利用可能であることが分かった。また、1V近傍の比較的低い電圧で電流が流れることが分かった。したがって、この低電圧領域(例えば、0.2V~3Vなど)で作動する電圧非直線性抵抗素子をより容易に作製することができることがわかった。
Claims (6)
- Cuと、共晶相を含まないCu-Zr化合物との2相の組織を有する銅合金からなる電圧非直線性抵抗材料と、
電極と、
を備えた電圧非直線性抵抗素子。 - 前記電圧非直線性抵抗材料は、前記Cu-Zr化合物が、Cu5Zr、Cu9Zr2及びCu8Zr3のうち少なくとも1以上である、請求項1に記載の電圧非直線性抵抗素子。
- 前記電圧非直線性抵抗材料は、Cu-Zr二元系合金粉末が放電プラズマ焼結されて形成されている、請求項1又は2に記載の電圧非直線性抵抗素子。
- 前記電圧非直線性抵抗材料は、Cu-Zr二元系合金を高圧ガスアトマイズ法により作製された前記Cu-Zr二元系合金粉末により形成されている、請求項3に記載の電圧非直線性抵抗素子。
- 前記電圧非直線性抵抗材料は、断面視したときに大きさ10μm以下の結晶が分散したモザイク状の前記組織を有する、請求項1~4のいずれか1項に記載の電圧非直線性抵抗素子。
- 前記電圧非直線性抵抗材料は、Zrを0.2at%以上18.0at%以下含有する、請求項1~5のいずれか1項に記載の電圧非直線性抵抗素子。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014550089A JPWO2014083977A1 (ja) | 2012-11-29 | 2013-10-24 | 電圧非直線性抵抗素子 |
CN201380061744.8A CN104871262A (zh) | 2012-11-29 | 2013-10-24 | 电压非线性电阻元件 |
EP13858795.1A EP2927913A4 (en) | 2012-11-29 | 2013-10-24 | NONLINEAR VOLTAGE RESISTANCE ELEMENT |
KR1020157014166A KR20150079899A (ko) | 2012-11-29 | 2013-10-24 | 전압 비직선성 저항 소자 |
US14/721,025 US20150255195A1 (en) | 2012-11-29 | 2015-05-26 | Voltage nonlinear resistive element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012260608 | 2012-11-29 | ||
JP2012-260608 | 2012-11-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/721,025 Continuation US20150255195A1 (en) | 2012-11-29 | 2015-05-26 | Voltage nonlinear resistive element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014083977A1 true WO2014083977A1 (ja) | 2014-06-05 |
Family
ID=50827623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/078786 WO2014083977A1 (ja) | 2012-11-29 | 2013-10-24 | 電圧非直線性抵抗素子 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150255195A1 (ja) |
EP (1) | EP2927913A4 (ja) |
JP (1) | JPWO2014083977A1 (ja) |
KR (1) | KR20150079899A (ja) |
CN (1) | CN104871262A (ja) |
WO (1) | WO2014083977A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016189929A1 (ja) * | 2015-05-22 | 2016-12-01 | 日本碍子株式会社 | 銅合金の製造方法および銅合金 |
WO2019230018A1 (ja) * | 2018-06-01 | 2019-12-05 | 山陽特殊製鋼株式会社 | Cu基合金粉末 |
US11987870B2 (en) | 2019-07-23 | 2024-05-21 | Sanyo Special Steel Co., Ltd. | Cu-based alloy powder |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104718584A (zh) * | 2012-10-10 | 2015-06-17 | 日本碍子株式会社 | 电压非线性电阻元件 |
EP3461921B1 (en) * | 2016-12-01 | 2021-06-02 | NGK Insulators, Ltd. | Electroconductive support member and method for manufacturing same |
JP7008076B2 (ja) * | 2017-08-21 | 2022-02-10 | Jx金属株式会社 | 積層造形用銅合金粉末、積層造形物の製造方法及び積層造形物 |
CN111405955B (zh) * | 2017-11-28 | 2022-03-22 | 日本碍子株式会社 | 导电性前端构件及其制造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0555010A (ja) | 1991-08-23 | 1993-03-05 | Sumitomo Kinzoku Ceramics:Kk | 電圧非直線性素子の製造方法 |
JPH05226116A (ja) | 1992-02-14 | 1993-09-03 | Murata Mfg Co Ltd | 積層型バリスタ |
JPH05234716A (ja) | 1992-02-26 | 1993-09-10 | Matsushita Electric Ind Co Ltd | 酸化亜鉛バリスタ |
JPH08124781A (ja) * | 1994-10-20 | 1996-05-17 | Taiyo Yuden Co Ltd | 半導体磁器の製造方法 |
JP4312641B2 (ja) * | 2004-03-29 | 2009-08-12 | 日本碍子株式会社 | 強度および導電性を兼備した銅合金およびその製造方法 |
WO2011030899A1 (ja) * | 2009-09-14 | 2011-03-17 | 日本碍子株式会社 | 銅合金箔、それを用いたフレキシブルプリント基板および銅合金箔の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4015230A (en) * | 1975-02-03 | 1977-03-29 | Matsushita Electric Industrial Co., Ltd. | Humidity sensitive ceramic resistor |
US4726991A (en) * | 1986-07-10 | 1988-02-23 | Eos Technologies Inc. | Electrical overstress protection material and process |
US9165695B2 (en) * | 2009-09-14 | 2015-10-20 | Ngk Insulators, Ltd. | Copper alloy wire and method for producing the same |
WO2014074360A1 (en) * | 2012-11-12 | 2014-05-15 | The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Amorphous metal thin-film non-linear resistor |
-
2013
- 2013-10-24 EP EP13858795.1A patent/EP2927913A4/en not_active Withdrawn
- 2013-10-24 KR KR1020157014166A patent/KR20150079899A/ko active Search and Examination
- 2013-10-24 WO PCT/JP2013/078786 patent/WO2014083977A1/ja active Application Filing
- 2013-10-24 CN CN201380061744.8A patent/CN104871262A/zh active Pending
- 2013-10-24 JP JP2014550089A patent/JPWO2014083977A1/ja active Pending
-
2015
- 2015-05-26 US US14/721,025 patent/US20150255195A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0555010A (ja) | 1991-08-23 | 1993-03-05 | Sumitomo Kinzoku Ceramics:Kk | 電圧非直線性素子の製造方法 |
JPH05226116A (ja) | 1992-02-14 | 1993-09-03 | Murata Mfg Co Ltd | 積層型バリスタ |
JPH05234716A (ja) | 1992-02-26 | 1993-09-10 | Matsushita Electric Ind Co Ltd | 酸化亜鉛バリスタ |
JPH08124781A (ja) * | 1994-10-20 | 1996-05-17 | Taiyo Yuden Co Ltd | 半導体磁器の製造方法 |
JP4312641B2 (ja) * | 2004-03-29 | 2009-08-12 | 日本碍子株式会社 | 強度および導電性を兼備した銅合金およびその製造方法 |
WO2011030899A1 (ja) * | 2009-09-14 | 2011-03-17 | 日本碍子株式会社 | 銅合金箔、それを用いたフレキシブルプリント基板および銅合金箔の製造方法 |
Non-Patent Citations (3)
Title |
---|
D. ARIAS; J.P. ABRIATA, BULL, ALLOY PHASE DIAGRAM, vol. 11, 1990, pages 452 - 459 |
HISAMICHI KIMURA ET AL.: "Electrical and mechanical properties of Cu-4.5 at. % Zr alloy produced by powder metallurgy", COPPER AND COPPER ALLOY, vol. 50, no. 1, 2011, pages 75 - 79, XP008179096 * |
See also references of EP2927913A4 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016189929A1 (ja) * | 2015-05-22 | 2016-12-01 | 日本碍子株式会社 | 銅合金の製造方法および銅合金 |
US20170130299A1 (en) * | 2015-05-22 | 2017-05-11 | Ngk Insulators, Ltd. | Method for manufacturing copper alloy and copper alloy |
KR20180009685A (ko) * | 2015-05-22 | 2018-01-29 | 엔지케이 인슐레이터 엘티디 | 구리 합금의 제조 방법 및 구리 합금 |
EP3135780A4 (en) * | 2015-05-22 | 2018-01-31 | NGK Insulators, Ltd. | Copper alloy manufacturing method and copper alloy |
JPWO2016189929A1 (ja) * | 2015-05-22 | 2018-02-22 | 日本碍子株式会社 | 銅合金の製造方法および銅合金 |
US10557184B2 (en) | 2015-05-22 | 2020-02-11 | Ngk Insulators, Ltd. | Method for manufacturing copper alloy and copper alloy |
KR102468099B1 (ko) | 2015-05-22 | 2022-11-16 | 엔지케이 인슐레이터 엘티디 | 구리 합금의 제조 방법 및 구리 합금 |
WO2019230018A1 (ja) * | 2018-06-01 | 2019-12-05 | 山陽特殊製鋼株式会社 | Cu基合金粉末 |
JP2019210497A (ja) * | 2018-06-01 | 2019-12-12 | 山陽特殊製鋼株式会社 | Cu基合金粉末 |
JP7132751B2 (ja) | 2018-06-01 | 2022-09-07 | 山陽特殊製鋼株式会社 | Cu基合金粉末 |
US11976344B2 (en) | 2018-06-01 | 2024-05-07 | Sanyo Special Steel Co., Ltd. | Cu-based alloy powder |
US11987870B2 (en) | 2019-07-23 | 2024-05-21 | Sanyo Special Steel Co., Ltd. | Cu-based alloy powder |
Also Published As
Publication number | Publication date |
---|---|
CN104871262A (zh) | 2015-08-26 |
JPWO2014083977A1 (ja) | 2017-01-05 |
EP2927913A4 (en) | 2016-07-06 |
KR20150079899A (ko) | 2015-07-08 |
US20150255195A1 (en) | 2015-09-10 |
EP2927913A1 (en) | 2015-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014083977A1 (ja) | 電圧非直線性抵抗素子 | |
EP2915890B1 (en) | Copper alloy and process for manufacturing same | |
EP3217424B1 (en) | Electroconductive assembly for electronic component, semiconductor device in which said assembly is used, and method for manufacturing electroconductive assembly | |
KR102437192B1 (ko) | 고강도·고도전성 구리 합금 판재 및 그 제조 방법 | |
CN111556902B (zh) | 铝合金线及铝合金线的制造方法 | |
JP2015096647A (ja) | アルミニウムと希土類元素との合金ターゲット及びその製造方法 | |
CN103732351B (zh) | 活性金属焊料 | |
TWI502084B (zh) | 電子.電氣機器用銅合金、電子.電氣機器用零件及端子 | |
JP2016074950A (ja) | 銅合金及びその製造方法 | |
JP6496072B1 (ja) | 積層造形用の金属粉末、および銅合金造形物の製造方法 | |
JP5030633B2 (ja) | Cr−Cu合金板、半導体用放熱板及び半導体用放熱部品 | |
WO2014057864A1 (ja) | 電圧非直線性抵抗素子 | |
CN109477164B (zh) | 导电性支持构件及其制造方法 | |
CN111405955B (zh) | 导电性前端构件及其制造方法 | |
JP6559865B1 (ja) | 銅合金造形物の製造方法および銅合金造形物 | |
Richert et al. | AgSnBi powder consolidated by composite mode of deformation | |
JP2015098624A (ja) | 超微細Al合金粉末および高強度Al合金成形体の製造方法、ならびに超微細Al合金粉末および高強度Al合金成形体。 | |
JP5476111B2 (ja) | 電子機器用通電部材用Cr−Cu合金とCr−Cu合金の製造方法、ならびにそのCr−Cu合金を用いたリードフレーム又はバスバーとその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13858795 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014550089 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2013858795 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013858795 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157014166 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |