WO2014083793A1 - 断熱材及びその製造方法 - Google Patents

断熱材及びその製造方法 Download PDF

Info

Publication number
WO2014083793A1
WO2014083793A1 PCT/JP2013/006695 JP2013006695W WO2014083793A1 WO 2014083793 A1 WO2014083793 A1 WO 2014083793A1 JP 2013006695 W JP2013006695 W JP 2013006695W WO 2014083793 A1 WO2014083793 A1 WO 2014083793A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixed powder
fine particles
insulating material
heat insulating
phosphorus
Prior art date
Application number
PCT/JP2013/006695
Other languages
English (en)
French (fr)
Inventor
正年 坂倉
寿文 大貫
壮二郎 福代
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Publication of WO2014083793A1 publication Critical patent/WO2014083793A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • C04B35/6309Aluminium phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • C04B35/6313Alkali metal or alkaline earth metal phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • C04B2235/3212Calcium phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage

Definitions

  • the present invention relates to a heat insulating material and a method for producing the same, and more particularly to an improvement in heat resistance of the heat insulating material.
  • a heat insulating material made of a pressure-molded body including silica particles or alumina particles, a radiation scattering material, and reinforcing fibers is known (for example, Patent Document 1).
  • a heat insulating material made of silica particles has a large shrinkage when used in an environment exceeding 1100 ° C., and a heat insulating material having heat resistance at a temperature exceeding 1100 ° C. has been demanded. Furthermore, it is desired to have the same strength and thermal conductivity as the heat insulating material containing silica particles.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a heat insulating material having improved heat resistance at high temperatures and a method for producing the same.
  • the present inventors used alumina particles instead of silica particles.
  • a heat insulating material mainly composed of alumina particles is superior in heat resistance to a heat insulating material mainly composed of silica particles, but when it exceeds 1150 ° C., the shrinkage is large and the heat resistance is insufficient.
  • the present inventors have found that the cause of shrinkage is corundumation (crystal transition) of alumina, and have searched for compounds that can suppress the corundumization rate, thereby completing the present invention.
  • a heat insulating material according to an embodiment of the present invention for solving the above-described problems is characterized by having a dry pressure-molded body of a mixed powder containing alumina fine particles and a phosphorus compound. ADVANTAGE OF THE INVENTION According to this invention, the heat insulating material which improved the heat resistance in high temperature can be provided.
  • the phosphorus compound may be a phosphorus compound that chemically reacts with alumina contained in the alumina fine particles to generate a compound containing aluminum and phosphorus.
  • the compound containing aluminum and phosphorus may be orthorhombic aluminum phosphate (AlPO 4 ) whose peak is detected within a range of 21 ° to 23 ° in XRD measurement. Further, in the dry pressure-molded body, a peak of orthorhombic aluminum phosphate (AlPO 4 ) is detected in the range of 21 ° to 23 ° in XRD measurement after being heated at 1200 ° C. for 24 hours. It is good as well.
  • the phosphorus compound may be orthorhombic aluminum phosphate (AlPO 4 ) whose peak is detected in a range of 21 ° to 23 ° in XRD measurement.
  • AlPO 4 orthorhombic aluminum phosphate
  • the heating linear shrinkage rate of the dry pressure molded body when the dry pressure molded body is heated at 1200 ° C. for 24 hours may be 10% or less.
  • a method for manufacturing a heat insulating material according to an embodiment of the present invention for solving the above problems is a method for manufacturing a heat insulating material having a dry pressure-molded body containing alumina fine particles, and the alumina fine particles and a phosphorus compound are used. It is characterized by including obtaining the said dry-type pressure-molded body of the mixed powder containing. ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the heat insulating material which the heat resistance in high temperature improved can be provided.
  • the phosphorus compound may be a phosphorus compound that chemically reacts with alumina contained in the alumina fine particles to generate a compound containing aluminum and phosphorus.
  • the compound containing aluminum and phosphorus may be orthorhombic aluminum phosphate (AlPO 4 ) whose peak is detected within a range of 21 ° to 23 ° in XRD measurement.
  • AlPO 4 orthorhombic aluminum phosphate
  • an orthorhombic aluminum phosphate (AlPO 4 ) peak is detected in the range of 21 ° to 23 ° in XRD measurement after heating at 1200 ° C. for 24 hours. It is good also as obtaining a dry-type pressure-molded body.
  • any of the methods may further include heating the mixed powder at a temperature of 700 ° C. or higher. In this case, the temperature may be higher than 1000 ° C.
  • the method is such that the mixed powder is heated at the temperature to produce aluminum particles produced by a chemical reaction between the alumina particles, alumina contained in the alumina particles, and the phosphorus compound. And obtaining the mixed powder containing a compound containing phosphorus.
  • the mixed powder is heated at the temperature to obtain a mixed powder containing the alumina fine particles and a compound containing aluminum derived from the alumina fine particles and phosphorus derived from the phosphorus compound. It is good also as including.
  • the mixed powder is heated at the temperature to obtain a mixed powder containing the alumina fine particles and a compound containing aluminum and phosphorus, which was not included before heating. It may also include obtaining. Further, the compound containing aluminum and phosphorus may be orthorhombic aluminum phosphate (AlPO 4 ) whose peak is detected within a range of 21 ° to 23 ° in XRD measurement.
  • AlPO 4 orthorhombic aluminum phosphate
  • Example 1 which concerns on one Embodiment of this invention, it is explanatory drawing which shows an example of the result of having evaluated the characteristic of the heat insulating material.
  • explanatory diagram showing an example of the Mg (H 2 PO 4) result of the XRD measurement of the heat insulating material after heating produced from raw materials including 2 ⁇ 4H 2 O It is.
  • an explanatory view showing one example of Mg 3 (PO 4) result of the XRD measurement of the heat insulating material after heating produced from raw materials including 2 ⁇ 8H 2 O is there.
  • Example 1 Ca (H 2 PO 4) explanatory diagram showing an example of a result of the XRD measurement of the heat insulating material after heating produced from raw materials including 2 ⁇ H 2 O It is.
  • Example 1 it is an explanatory diagram showing an example of a result of the XRD measurement of the heat insulating material after heating produced from raw materials including NH 4 H 2 PO 4.
  • Example 1 it is an explanatory diagram showing an example of a (NH 4) 2 HPO 4 was thermally insulated XRD measurement of material after heating produced from raw materials containing the result.
  • Example 1 it is an explanatory diagram showing an example of Al (H 2 PO 4) 3 was thermally insulated XRD measurement of material after heating produced from raw materials containing the result.
  • Example 1 it is an explanatory diagram showing an example of a result of the XRD measurement of the heat insulating material after heating produced from raw materials including AlPO 4 hexagonal.
  • Example 1 it is an explanatory diagram showing an example of a result of the XRD measurement of the heat insulating material after heating produced from raw materials including AlPO 4 orthorhombic.
  • Example 1 it is an explanatory diagram showing an example of a (C 6 H 5) 3 results P was XRD measurement of the heat insulating material after heating produced from raw materials including.
  • Example 1 which concerns on one Embodiment of this invention, it is explanatory drawing which shows an example of the result of having performed the XRD measurement of the heat insulating material after the heating manufactured from the raw material which does not contain a phosphorus compound.
  • explanatory diagram showing an example of the Mg (H 2 PO 4) result of the XRD measurement of the heat insulating material before heating produced from raw materials including 2 ⁇ 4H 2 O It is.
  • Example 1 an explanatory view showing one example of Mg 3 (PO 4) result of the XRD measurement of the insulation before heating produced from raw materials including 2 ⁇ 8H 2 O is there.
  • it is an explanatory diagram showing an example of a result of the XRD measurement of the heat insulating material before heating produced from raw materials including NH 4 H 2 PO 4.
  • Example 1 it is an explanatory diagram showing an example of a (NH 4) 2 results HPO 4 were XRD measurement of the heat insulating material before heating, which is manufactured from the raw materials including.
  • Example 1 it is an explanatory diagram showing an example of a result of the XRD measurement of the heat insulating material before heating produced from raw materials including AlPO 4 hexagonal.
  • Example 1 it is an explanatory diagram showing an example of a result of the XRD measurement of the heat insulating material before heating produced from raw materials including AlPO 4 orthorhombic.
  • Example 1 it is an explanatory diagram showing an example of a (C 6 H 5) 3 results P was XRD measurement of the heat insulating material before heating, which is manufactured from the raw materials including.
  • Example 1 which concerns on one Embodiment of this invention, it is explanatory drawing which shows an example of the result of having performed the XRD measurement of the heat insulating material before the heating manufactured from the raw material which does not contain a phosphorus compound.
  • Example 2 which concerns on one Embodiment of this invention, it is explanatory drawing which shows an example of the result of having evaluated the characteristic of the heat insulating material.
  • Example 2 which concerns on one Embodiment of this invention, it is explanatory drawing which shows an example of the result of having evaluated the correlation with the content rate of the phosphorus compound in a raw material, and the heat-line shrinkage rate at 1200 degreeC of a heat insulating material.
  • Example 2 which concerns on one Embodiment of this invention, it is explanatory drawing which shows an example of the result of having evaluated the correlation with the molar ratio of phosphorus and aluminum in a raw material, and the heating linear shrinkage rate at 1200 degreeC of a heat insulating material.
  • Example 2 which concerns on one Embodiment of this invention, it is explanatory drawing which shows an example of the result of having evaluated the correlation of the content rate of the phosphorus compound in a raw material, and the corundumization rate of a heat insulating material.
  • Example 2 which concerns on one Embodiment of this invention, it is explanatory drawing which shows an example of the result of having evaluated the correlation with the molar ratio of the phosphorus in a raw material, and the corundumization rate of a heat insulating material.
  • Example 2 which concerns on one Embodiment of this invention, it is explanatory drawing which shows an example of the result of having performed the FE-SEM observation of the heat insulating material before the heating manufactured from the raw material which does not contain a phosphorus compound. It is explanatory drawing which shows an example of the result of having performed the FE-SEM observation of the heat insulating material after the heating manufactured from the raw material which does not contain a phosphorus compound in Example 2 which concerns on one Embodiment of this invention. It is explanatory drawing which shows an example of the result of having performed the FE-SEM observation of the heat insulating material after the heating manufactured from the raw material containing a phosphorus compound in Example 2 which concerns on one Embodiment of this invention.
  • This method is a method for producing a heat insulating material having a dry pressure-formed body containing alumina fine particles, and includes obtaining the dry pressure-formed body of a mixed powder containing the alumina fine particles and a phosphorus compound. is there.
  • the alumina fine particles are fine particles containing alumina (Al 2 O 3 ) other than ⁇ -alumina (corundum) as a main component (for example, fine particles containing 95% by weight or more of the alumina), and are used as a raw material for a heat insulating material. If it is a thing, it will not be restricted in particular.
  • the alumina fine particles may not contain ⁇ -alumina (for example, a corundum peak is not detected in XRD measurement).
  • the alumina fine particles may be alumina fine particles having an average primary particle size of 100 nm or less, for example.
  • the average particle diameter of the primary particles of the alumina fine particles may be 50 nm or less, or may be 30 nm or less.
  • the lower limit of the average particle size of the primary particles of the alumina fine particles is not particularly limited, but the average particle size may be, for example, 2 nm or more.
  • the alumina fine particles may be produced by, for example, a gas phase method and / or a wet method. That is, the alumina fine particles may be, for example, dry alumina fine particles produced by a vapor phase method or wet alumina fine particles produced by a wet method. More specifically, the alumina fine particles may be, for example, fumed alumina fine particles produced by a gas phase method.
  • one of the characteristic features of the present invention is that a phosphorus compound is used in addition to the alumina fine particles as described above. That is, the inventors of the present invention, as a result of intensive studies on the technical means for improving the heat resistance of the dry pressure molded body containing alumina fine particles, as a raw material of the dry pressure molded body, It has been uniquely found that the heat resistance of the dry pressure-molded body is effectively improved by using a mixed powder obtained by mixing a phosphorus compound.
  • the phosphorus compound is not particularly limited as long as it improves the heat resistance of the dry pressure-formed body as compared with the case where the phosphorus compound is not used. That is, as the phosphorus compound, an inorganic phosphorus compound and / or an organic phosphorus compound can be used.
  • the phosphorus compound may be, for example, a phosphorus compound that chemically reacts with alumina contained in alumina fine particles to generate a compound containing aluminum and phosphorus.
  • the phosphorus compound reacts chemically with alumina under heating (for example, at a temperature of 700 ° C. or higher or higher than 1100 ° C.) to produce a compound containing aluminum and phosphorus. It may be there.
  • the compound containing aluminum and phosphorus produced by the chemical reaction between the phosphorus compound and alumina is not particularly limited as long as it is a compound containing aluminum derived from alumina fine particles and phosphorus derived from the phosphorus compound.
  • orthorhombic aluminum phosphate AlPO 4
  • the mixed powder chemically reacts with alumina contained in the alumina fine particles, and an orthorhombic aluminum phosphate (a peak is detected in the range of 21 ° to 23 ° in XRD measurement)
  • a phosphorus compound that produces AlPO 4 may be a phosphorus compound other than orthorhombic aluminum phosphate, or the orthorhombic aluminum phosphate. It is good as well.
  • the phosphorus compound is, for example, the heating linear shrinkage of the dry pressure molded body when the dry pressure molded body is heated at 1200 ° C. for 24 hours, and the dry pressure molded body does not contain the phosphorus compound. It is good also as what is reduced compared with.
  • the phosphorus compound may be, for example, a phosphate.
  • the phosphate may be, for example, one or more phosphates selected from the group consisting of aluminum, alkaline earth metals, and ammonia.
  • aluminum phosphate examples include aluminum dihydrogen phosphate (Al (H 2 PO 4 ) 3 ), dialuminum hydrogen phosphate (Al 2 (HPO 4 ) 3 ), aluminum phosphate (AlPO 4 ), and metaphosphoric acid. It may be at least one selected from the group consisting of aluminum (Al (PO 3 ) 3 ).
  • the alkaline earth metal phosphate may be, for example, one or more phosphates selected from the group consisting of magnesium, calcium, strontium, and barium.
  • magnesium phosphate include magnesium dihydrogen phosphate tetrahydrate (Mg (H 2 PO 4 ) 2 .4H 2 O) and trimagnesium phosphate octahydrate (Mg 3 (PO 4 ) 2. 8H 2 O), magnesium hydrogen phosphate trihydrate (MgHPO 4 .3H 2 O), magnesium metaphosphate (Mg (PO 3 ) 2 ) and magnesium pyrophosphate (Mg 2 P 2 O 7 ) It is good also as being 1 or more types.
  • Examples of calcium phosphate include calcium dihydrogen phosphate monohydrate (Ca (H 2 PO 4 ) 2 .H 2 O), calcium hydrogen phosphate dihydrate (CaHPO 4 .2H 2 O), It may be at least one selected from the group consisting of calcium metaphosphate (Ca (PO 3 ) 2 ) and hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ).
  • the strontium phosphate may be, for example, strontium hydrogen phosphate (SrHPO 4 ).
  • the barium phosphate may be, for example, barium hydrogen phosphate (BaHPO 4 ).
  • Examples of the phosphate of ammonia include ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), and ammonium phosphate ((NH 4 ) 3 PO 4 ). It is good also as being 1 or more types selected from the group which consists of.
  • the phosphorus compound may be an organic phosphorus compound.
  • the organic phosphorus compound is not particularly limited as long as it is an organic compound containing at least one phosphorus atom in the molecule (for example, a compound containing at least one carbon atom and at least one phosphorus atom in the molecule).
  • it may be a phosphine derivative and / or a phosphate ester.
  • the mixed powder containing the alumina fine particles and the phosphorus compound is prepared by mixing the alumina fine particles and the phosphorus compound. That is, the mixed powder is prepared by, for example, dry mixing alumina fine particles and phosphorus compound powder.
  • the amount of the alumina fine particles contained in the mixed powder is not particularly limited as long as the desired characteristics of the dry pressure molded body are realized. That is, the mixed powder may contain, for example, 40 to 99% by weight of alumina fine particles. Further, for example, 55 to 90 wt%, 60 to 80 wt%, or 65 to 75 wt% alumina particles may be included.
  • the amount of the phosphorus compound contained in the mixed powder is not particularly limited as long as the desired characteristics of the dry pressure molded body are achieved. That is, the mixed powder may contain, for example, 0.5 to 60% by weight of a phosphorus compound. Further, for example, it may contain 1.0 to 45% by weight, 1 to 35% by weight, 2 to 25% by weight, or 3 to 10% by weight of a phosphorus compound.
  • the mixed powder has a molar ratio of phosphorus (P) to aluminum (Al) contained in the mixed powder, for example, 0.01 or more, 0.02 or more, more than 0.02, 0.03 or more, It is good also as including the quantity of the phosphorus compound which will be more than 0.03, 0.04 or more, or 0.05 or more.
  • the mixed powder has, for example, a molar ratio of 40 to 99% by weight of alumina fine particles and phosphorus (P) to aluminum (Al) contained in the mixed powder of 0.01 or more, 0.02 or more, It is good also as including the quantity of the phosphorus compound which will be more than 0.02, 0.03 or more, more than 0.03, 0.04 or more, or 0.05 or more.
  • the upper limit of the molar ratio of phosphorus (P) to aluminum (Al) contained in the mixed powder is not particularly limited as long as the desired characteristics of the dry pressure-formed body are achieved, but the molar ratio is For example, it may be 0.23 or less.
  • the mixed powder has, for example, a molar ratio of phosphorus (P) to aluminum (Al) contained in alumina fine particles of 0.01 or more, 0.02 or more, more than 0.02, 0.03 or more, 0.0. It is good also as including the quantity of the phosphorus compound which will be more than 03, 0.04 or more, or 0.05 or more.
  • the mixed powder has, for example, a molar ratio of 40 to 99% by weight of alumina fine particles and phosphorus (P) to aluminum (Al) contained in the alumina fine particles in the mixed powder of 0.01 or more and 0 0.02 or more, 0.02 or more, 0.03 or more, 0.03 or more, 0.04 or more, or 0.05 or more.
  • the upper limit of the molar ratio of phosphorus (P) to aluminum (Al) contained in the alumina fine particles in the mixed powder is not particularly limited as long as the desired characteristics of the dry pressure-formed body are achieved.
  • the molar ratio may be, for example, 0.25 or less.
  • the mixed powder may further contain other components. That is, the mixed powder may further include, for example, reinforcing fibers.
  • the reinforcing fiber is not particularly limited as long as it can reinforce the dry pressure molded body.
  • the reinforcing fiber may be, for example, an inorganic fiber.
  • the inorganic fiber is, for example, one selected from the group consisting of glass fiber, silica-alumina fiber, silica-alumina-magnesia fiber, silica fiber, alumina fiber, zirconia fiber, biosoluble inorganic fiber, rock wool and basalt fiber. That's it. Silica-alumina-magnesia fiber, alumina fiber, and silica-alumina fiber are preferable.
  • the biosoluble fiber include inorganic fibers having a composition in which the total of SiO 2 , Al 2 O 3 and ZrO 2 is 50 to 82% by weight, and the total of CaO and MgO is 18 to 50% by weight. Further, an inorganic fiber having a composition of 50 to 82% by weight of SiO 2 and 10 to 43% by weight of the total of CaO and MgO can be exemplified.
  • the average fiber length of the reinforcing fibers may be, for example, 0.5 mm or more and 20 mm or less, or 1 mm or more and 10 mm or less.
  • the average fiber diameter of the reinforcing fibers may be, for example, 1 ⁇ m or more and 20 ⁇ m or less, or 2 ⁇ m or more and 15 ⁇ m or less.
  • the amount of fiber may be, for example, 1 to 20% by weight, 1.5 to 10% by weight, or 2 to 9% by weight.
  • the mixed powder includes alumina fine particles, a phosphorus compound, and reinforcing fibers
  • the mixed powder is, for example, 45 to 98 wt% alumina fine particles, 1 to 30 wt% phosphorus compound, and 1 to 30 wt%. These reinforcing fibers may be included.
  • the mixed powder may further include, for example, a radiation scattering material.
  • the radiation scattering material is not particularly limited as long as it reduces heat transfer by radiation. That is, the radiation scattering material may be at least one selected from the group consisting of silicon carbide, zirconia, zirconium silicate, titania, silicon nitride, iron oxide, chromium oxide, zinc sulfide, and barium titanate. .
  • the average particle diameter of the radiation scattering material may be, for example, 1 ⁇ m or more and 50 ⁇ m or less, or 1 ⁇ m or more and 20 ⁇ m or less.
  • the radiation scattering material is preferably a far-infrared reflective material, for example, a material having a relative refractive index of 1.25 or more for light having a wavelength of 1 ⁇ m or more.
  • the amount of the radiation scattering material may be, for example, 1 to 40% by weight, 5 to 35% by weight, or 10 to 30% by weight.
  • the mixed powder may further contain other metal oxide fine particles. That is, the raw material may further include, for example, silica (SiO 2 ) fine particles.
  • the silica fine particles may be, for example, dry silica fine particles (for example, fumed silica fine particles) produced by a gas phase method.
  • the content of the silica fine particles in the mixed powder may be 10% by weight or less, may be 5% by weight or less, and may be less than 5% by weight.
  • the mixed powder may not contain silica fine particles (the content of silica fine particles in the mixed powder is 0% by weight).
  • the mixed powder may not contain metal oxide fine particles other than alumina fine particles.
  • the mixed powder may not contain a binder (for example, an inorganic binder such as a water glass adhesive or an organic binder such as a resin).
  • a dry pressure-molded body of mixed powder containing alumina fine particles and a phosphorus compound, which is formed by dry press molding is obtained. That is, a dry pressure molded body can be obtained by dry press molding a mixed powder containing alumina fine particles and a phosphorus compound. More specifically, for example, by filling a predetermined mold with the mixed powder prepared as described above and dry press molding, a dry pressure molded body having a shape corresponding to the mold is manufactured. .
  • the present method is, for example, a dry pressure molded body of a mixed powder containing alumina fine particles and a phosphorus compound, and is within a range of 21 ° to 23 ° in XRD measurement after being heated at 1200 ° C. for 24 hours. It is also possible to obtain the dry pressure-molded product in which the peak of orthorhombic aluminum phosphate (AlPO 4 ) is detected. That is, in this case, when the dry pressure molded body obtained by this method is heated at 1200 ° C. for 24 hours, the orthodoxic aluminum phosphate (in the range of 21 ° to 23 ° in the subsequent XRD measurement ( The peak of AlPO 4 ) is detected.
  • AlPO 4 orthorhombic aluminum phosphate
  • the shape of the dry pressure molded body is not particularly limited, and may be, for example, a board shape, a plate shape, or a cylindrical shape.
  • the temperature at which dry press molding is performed is not particularly limited.
  • the temperature may be 0 ° C. or more and 100 ° C. or less, or may be 0 ° C. or more and 50 ° C. or less.
  • the dry pressure molded body thus obtained may be used as it is as a heat insulating material or as a part of the heat insulating material.
  • the heat insulating material is, for example, the dry pressure molded body and one or more other heat resistances different from the dry pressure molded body. It is good also as having a heat insulation member. That is, in this case, the heat insulating material is, for example, a dry pressure molded body, a heat insulating member having higher heat resistance and / or a dry pressure molded body laminated on the high temperature side of the dry pressure molded body. It is good also as having the cheaper and heat insulation member with lower heat resistance laminated
  • the present method may further include heating the mixed powder at a temperature of 700 ° C. or higher. That is, in this case, in this method, the mixed powder is fired. And in this method, the dry-type pressure-molded body of the heated mixed powder is manufactured. Heating of the mixed powder may be performed before molding of the dry pressure molded body, or may be performed after molding of the dry pressure molded body.
  • a mixed powder before molding is heated at a predetermined temperature, and then the heated mixed powder is dry press molded to obtain a dry pressure molded body of the heated mixed powder. It is good. More specifically, first, before forming a dry pressure molded body, a mixed powder containing alumina fine particles and a phosphorus compound is heated at a predetermined temperature to produce the heated mixed powder. And the dry press molding of the mixed powder after this heating is performed, and the dry press-molding body comprised from the said heated mixed powder is manufactured.
  • the mixed powder before heating is dry press-molded to form a dry pressure-formed body, and then the dry pressure-formed body is heated at a predetermined temperature. It is good also as obtaining a dry-type pressure-molded body. More specifically, first, before the heating at a predetermined temperature, dry press molding of a mixed powder containing alumina fine particles and a phosphorus compound is performed to obtain a dry pressure molded body. Then, the dry pressure molded body is heated at the predetermined temperature to produce a dry pressure molded body composed of the heated mixed powder.
  • the temperature (heating temperature) for heating the mixed powder may be, for example, 800 ° C. or higher, 900 ° C. or higher, 1000 ° C. or higher, and 1100 ° C. or higher. It is good as well.
  • the heating temperature may be higher. That is, the heating temperature may be, for example, higher than 1100 ° C., may be 1150 ° C. or higher, and may be 1200 ° C. or higher.
  • the heating temperature may be, for example, higher than 1100 ° C., may be 1150 ° C. or higher, and may be 1200 ° C. or higher.
  • the inventors of the present invention as a result of intensive studies on the technical means for improving the heat resistance of the dry pressure molded product containing alumina fine particles, the dry pressure molded product containing no phosphorus compound, When heated at a temperature higher than 1100 ° C., characteristics such as heat resistance and heat insulation are impaired, whereas the dry pressure-molded body containing a phosphorus compound is heated at a temperature higher than 1100 ° C. It was found uniquely to maintain its characteristics effectively.
  • the inventors of the present invention firstly produced a corundum (crystal transition) by heating a dry pressure-molded body containing fine alumina particles and no phosphorus compound at a temperature of more than 1100 ° C. It has been found that the pore volume and the specific surface area are remarkably reduced as compared with the case where the dry pressure molded body is heated at a temperature of 1100 ° C. or lower.
  • the inventors of the present invention have been prepared by mixing alumina fine particles and a phosphorus compound as a result of intensive studies on technical means for suppressing the deterioration of the dry pressure molded body at such a high temperature.
  • the mixed powder even if the dry pressure molded body obtained by dry press molding of the mixed powder is heated at a temperature exceeding 1100 ° C., the generation of corundum, the pore volume and the ratio It has been found that the reduction of the surface area is effectively suppressed and shows a small heating linear shrinkage even at a high temperature (eg, 1200 ° C.).
  • the dry pressure molded body does not contain aluminum that was not included before heating. It was also found that a compound containing phosphorus and phosphorus (specifically, orthorhombic aluminum phosphate (AlPO 4 ) in which a peak is detected in the range of 21 ° to 23 ° in XRD measurement) was produced.
  • AlPO 4 orthorhombic aluminum phosphate
  • the mechanism by which the deterioration of the dry press-molded body due to heating at a temperature higher than 1100 ° C. is prevented by adding a phosphorus compound to the alumina fine particles is not clear, but one of them is, for example, mixed in alumina P 5+ is strongly bound to the surrounding Al 3+ to form a structure similar to orthorhombic aluminum phosphate and / or orthorhombic aluminum phosphate, and the kink atoms are immobilized. It is considered that the crystal transition (corundum formation) of alumina is suppressed.
  • the mixed powder before heating contains aluminum dihydrogen phosphate (Al (H 2 PO 4 ) 3 )
  • the first chemical reaction Al (H 2 PO 4 )
  • Al (H 2 PO 4 ) is caused by heating.
  • 3 ⁇ Al (PO 3 ) 3 + 3H 2 O proceeds and aluminum phosphate is further generated by the second chemical reaction (Al (PO 3 ) 3 + Al 2 O 3 ⁇ 3AlPO 4 ).
  • the mixed powder before heating contains calcium dihydrogen phosphate monohydrate (Ca (H 2 PO 4 ) 2 .H 2 O)
  • the first chemical reaction (Ca (H 2 PO 4) 2 ⁇ H 2 O ⁇ Ca (PO 3) 2 + 3H 2 O)
  • the second chemical reaction (3Ca (PO 3) 2 + 2Al 2 O 3 ⁇ 4AlPO 4 + Ca 3 (PO 4 ) It is considered that aluminum phosphate is produced by 2 ).
  • the mixed powder before heating contains magnesium dihydrogen phosphate tetrahydrate (Mg (H 2 PO 4 ) 2 .4H 2 O)
  • the first chemical reaction (Mg) is caused by heating.
  • (H 2 PO 4 ) 2 ⁇ 4H 2 O ⁇ Mg (PO 3 ) 2 + 6H 2 O) proceeds, and further the second chemical reaction (3Mg (PO 3 ) 2 + 2Al 2 O 3 ⁇ 4AlPO 4 + Mg 3 (PO 4 ) It is considered that aluminum phosphate is produced by 2 ).
  • the mixed powder before heating contains diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 )
  • (NH 4 ) 2 HPO 4 is heated to about 155 ° C. with ammonia ( NH 3 ) is lost to form NH 4 H 2 PO 4 , and further NH 4 H 2 PO 4 starts to decompose at about 190 ° C. to form (NH 4 PO 3 ) n (ammonium metaphosphate)
  • aluminum phosphate is generated by the following chemical reaction (2NH 4 PO 3 + Al 2 O 3 ⁇ 2AlPO 4 + 2NH 3 + H 2 O).
  • a mixed powder containing alumina fine particles and a phosphorus compound for example, by heating a mixed powder containing alumina fine particles and a phosphorus compound at the above-described heating temperature, the alumina fine particles, aluminum derived from the alumina fine particles, and the phosphorus compound are derived.
  • a mixed powder containing a compound containing phosphorus may be obtained.
  • the compound contains alumina fine particles, aluminum and phosphorus, and is included before heating. It is also possible to obtain a mixed powder containing a compound that has not been obtained. In this case, for example, in the X-ray diffraction (XRD) of the mixed powder after heating, a peak of a compound containing aluminum and phosphorus that is not detected in the mixed powder before heating is newly detected.
  • XRD X-ray diffraction
  • the compound containing aluminum and phosphorus may be formed on the surface of the alumina fine particles by heating the mixed powder containing the alumina fine particles and the phosphorus compound at the heating temperature described above.
  • the phosphorus compound contained in the mixed powder before heating is a powder mixed with alumina fine particles, and the alumina contained in the alumina fine particles and the phosphorus compound are on the surface of the alumina fine particles.
  • the compound containing aluminum and phosphorus produced by the chemical reaction is not formed, but by heating the mixed powder, the alumina contained in the alumina fine particles is formed on the surface of the alumina fine particles.
  • a compound containing aluminum and phosphorus produced by a chemical reaction with the phosphorus compound is newly formed.
  • a film of a compound containing aluminum and phosphorus may be formed on the surface of the alumina fine particles.
  • the compound containing aluminum and phosphorus may be orthorhombic aluminum phosphate (AlPO 4 ) whose peak is detected in the range of 21 ° to 23 ° in XRD measurement.
  • AlPO 4 orthorhombic aluminum phosphate
  • a mixed powder containing alumina fine particles and a phosphorus compound for example, by heating a mixed powder containing alumina fine particles and a phosphorus compound at the heating temperature, the alumina fine particles, the alumina contained in the alumina fine particles, and the chemical compound of the phosphorus compound are chemically treated.
  • a mixed powder containing orthorhombic aluminum phosphate (AlPO 4 ) whose peak is detected in the range of 21 ° to 23 ° in the XRD measurement generated by the reaction may be obtained.
  • alumina fine particles, aluminum derived from the alumina fine particles, and phosphorus derived from the phosphorus compound are obtained.
  • a mixed powder containing orthorhombic aluminum phosphate (AlPO 4 ) whose peak is detected in the range of 21 ° to 23 ° in the XRD measurement may be obtained.
  • the new generation of such a compound containing aluminum and phosphorus suppresses crystal transition (generation of corundum) and maintains the characteristics of the dry pressure-formed body.
  • the method for heating the mixed powder is not particularly limited as long as the mixed powder is maintained at the heating temperature described above. That is, for example, a dry pressure molded body that has not been heated at a predetermined heating temperature (for example, a temperature exceeding 1100 ° C.) is applied in an environment where the temperature can reach the predetermined heating temperature, and then the dry type In the use of the pressure molded body as a heat insulating material, when the temperature of the environment reaches the predetermined heating temperature, the mixed powder constituting the dry pressure molded body is heated at the predetermined heating temperature. It is good as well.
  • a predetermined heating temperature for example, a temperature exceeding 1100 ° C.
  • a mixed powder that has not yet been heated at a predetermined heating temperature (for example, a temperature exceeding 1100 ° C.) (a mixed powder before forming a dry pressure molded body, or a dry pressure molded body that has been molded)
  • the mixed powder may be heated at the predetermined heating temperature prior to use as a heat insulating material.
  • the mixed powder is heated in advance at a predetermined heating temperature, and then the heated dry powder compact of the mixed powder is allowed to reach a predetermined environment (for example, the temperature reaches the predetermined heating temperature). Environment) and use as a heat insulating material.
  • This method provides a method for manufacturing a heat insulating material with improved heat resistance at high temperatures. That is, in this method, as described above, by using a mixed powder prepared by mixing alumina fine particles and a phosphorus compound, characteristics such as heat resistance and heat insulation are effective even at a high temperature of over 1100 ° C. Therefore, it is possible to efficiently produce a heat insulating material having a dry pressure-molded body that has been maintained.
  • the heat insulating material having the dry pressure molded body of the mixed powder that has not been heated at the above-described heating temperature is also mixed powder heated at the heating temperature. It can be used as a heat insulating material having excellent heat resistance, similar to a dry pressure-formed body (a dry pressure-formed body of a mixed powder after firing).
  • the heat insulating material according to the present embodiment (hereinafter referred to as “the present heat insulating material”) will be described.
  • This heat insulating material is a heat insulating material having a dry pressure formed body of a mixed powder containing alumina fine particles and a phosphorus compound.
  • the present heat insulating material is preferably manufactured by the above-described method.
  • the dry pressure molded body of the heat insulating material When the mixed powder constituting the dry pressure molded body of the heat insulating material is not heated at the above-described heating temperature (the dry pressure molded body is a dry pressure molded green powder mixture)
  • the alumina fine particles and the phosphorus compound contained in the dry pressure-formed body are the alumina fine particles and the phosphorus compound before heating used for the preparation of the mixed powder described above.
  • the dry pressure-molded body contains the above-described inorganic phosphorus compound and / or organic phosphorus compound.
  • the phosphorus compound contained in the dry pressure molded body may be, for example, the above-described phosphorus compound that chemically reacts with alumina contained in the alumina fine particles to produce a compound containing aluminum and phosphorus.
  • the dry press-molded body is, for example, an orthorhombic system in which a peak is detected within a range of 21 ° to 23 ° in XRD measurement by chemically reacting with alumina contained in alumina fine particles. it may contain a phosphorus compound to produce an aluminum phosphate (AlPO 4).
  • an orthorhombic aluminum phosphate (AlPO 4 ) peak is detected in the range of 21 ° to 23 ° in XRD measurement after being heated at 1200 ° C. for 24 hours. It is good. That is, in this case, when the dry pressure molded body constituting the heat insulating material is heated at 1200 ° C. for 24 hours and then XRD measurement of the dry pressure molded body is performed, the dry pressure molded body is inclined within a range of 21 ° to 23 °. A peak of tetragonal aluminum phosphate (AlPO 4 ) is detected.
  • the dry pressure formed body of the heat insulating material when the mixed powder constituting the dry pressure formed body of the heat insulating material is heated at the heating temperature described above (the dry pressure formed body is dry pressed of the mixed powder after firing).
  • the dry pressure molded body may include, for example, a compound containing aluminum and phosphorus produced by the heating.
  • the compound containing aluminum and phosphorus generated by this heating may be formed on the surface of alumina fine particles, for example.
  • a film of a compound containing aluminum and phosphorus may be formed on the surface of the alumina fine particles.
  • the compound containing aluminum and phosphorus contained in the dry pressure molded body of the mixed powder after heating is composed of aluminum derived from alumina fine particles and the phosphorus compound contained in the mixed powder before heating.
  • it is not particularly limited as long as it is a compound containing phosphorus derived therefrom, for example, it is orthorhombic aluminum phosphate (AlPO 4 ) in which a peak is detected within a range of 21 ° to 23 ° in XRD measurement. It is good.
  • the heat insulating material is dry press-molded containing alumina fine particles and orthorhombic aluminum phosphate (AlPO 4 ) whose peak is detected in the range of 21 ° to 23 ° in XRD measurement. Will have a body.
  • the orthorhombic aluminum phosphate may be formed on the surface of the alumina fine particles.
  • an orthorhombic aluminum phosphate coating may be formed on the surface of the alumina fine particles.
  • a coating of orthorhombic aluminum phosphate is not formed on the surface of the alumina fine particles at the time before the heating. It is considered that a film of orthorhombic aluminum phosphate is formed on the surface of the alumina fine particles.
  • the amount of the alumina fine particles contained in the mixed powder constituting the dry pressure molded body of the heat insulating material is not particularly limited as long as the desired characteristics of the dry pressure molded body are realized. That is, the mixed powder may contain, for example, 40 to 99% by weight of alumina fine particles.
  • the amount of the phosphorus compound contained in the mixed powder is not particularly limited as long as the desired characteristics of the dry pressure molded body are achieved. That is, the mixed powder may contain, for example, 40 to 99% by weight of alumina fine particles and 1 to 60% by weight of a phosphorus compound.
  • the mixed powder has a molar ratio of phosphorus (P) to aluminum (Al) contained in the mixed powder, for example, 0.01 or more, 0.02 or more, more than 0.02, 0.03 or more, It is good also as including the quantity of the phosphorus compound which will be more than 0.03, 0.04 or more, or 0.05 or more.
  • the mixed powder has, for example, a molar ratio of 40 to 99% by weight of alumina fine particles and phosphorus (P) to aluminum (Al) contained in the mixed powder of 0.01 or more, 0.02 or more, It is good also as including the quantity of the phosphorus compound which will be more than 0.02, 0.03 or more, more than 0.03, 0.04 or more, or 0.05 or more.
  • the upper limit of the molar ratio of phosphorus (P) to aluminum (Al) contained in the mixed powder is not particularly limited as long as the desired characteristics of the dry pressure-formed body are achieved, but the molar ratio is For example, it may be 0.23 or less.
  • the mixed powder has, for example, a molar ratio of phosphorus (P) to aluminum (Al) contained in alumina fine particles of 0.01 or more, 0.02 or more, more than 0.02, 0.03 or more, 0.0. It is good also as including the quantity of the phosphorus compound which will be more than 03, 0.04 or more, or 0.05 or more.
  • the mixed powder has, for example, a molar ratio of 40 to 99% by weight of alumina fine particles and phosphorus (P) to aluminum (Al) contained in the alumina fine particles in the mixed powder of 0.01 or more and 0 0.02 or more, 0.02 or more, 0.03 or more, 0.03 or more, 0.04 or more, or 0.05 or more.
  • the upper limit of the molar ratio of phosphorus (P) to aluminum (Al) contained in the alumina fine particles in the mixed powder is not particularly limited as long as the desired characteristics of the dry pressure-formed body are achieved.
  • the molar ratio may be, for example, 0.25 or less.
  • the mixed powder is, for example, 45 to 98% by weight of alumina fine particles, 1 to 30% by weight phosphorus compound, and 1 to 30% by weight. It is good also as including a reinforcing fiber.
  • the total of alumina fine particles, phosphorus compounds, and optional reinforcing fibers, radiation scattering materials, and metal oxide fine particles may be 95 wt% or more, 98 wt% or more, or 99 wt% or more. it can. Moreover, an inevitable impurity may be included and it is good also as 100 weight%.
  • the present heat insulating material having such a dry pressure molded body has excellent heat insulating properties. That is, for example, the thermal conductivity at 1000 ° C. of the dry pressure-formed body may be 0.20 W / (m ⁇ K) or less, or may be 0.15 W / (m ⁇ K) or less. It may be 0.13 W / (m ⁇ K) or less, may be 0.10 W / (m ⁇ K) or less, and may be 0.04 W / (m ⁇ K) or less. Also good. Further, for example, the thermal conductivity at 25 ° C. of the dry pressure molded article may be 0.045 W / (m ⁇ K) or less, or 0.040 W / (m ⁇ K) or less. Good.
  • the specific surface area according to the BET method of the dry pressure-molded body may be 20 m 2 / g or more, or may be 30 m 2 / g or more.
  • the pore volume measured by the BJH method of the dry pressure molded article may be 0.3 cm 3 / g or more, or 0.5 cm 3 / g or more.
  • the bulk density of the dry press-molded body is not particularly limited, but may be, for example, 100 to 800 kg / m 3 or 200 to 500 kg / m 3 .
  • this heat insulating material has the outstanding heat resistance as above-mentioned. That is, for example, when the dry pressure molded body of the present heat insulating material is heated at 1200 ° C. for 24 hours, the heating linear shrinkage rate of the dry pressure molded body may be 10% or less. Furthermore, the heating linear shrinkage rate may be, for example, 8% or less, may be 6% or less, may be 5% or less, and may be 3% or less.
  • characteristics such as heat resistance can be adjusted by the amount of the phosphorus compound contained in the dry pressure-molded body. That is, according to the examination of the inventors of the present invention, by increasing the content of the phosphorus compound in the dry pressure-molded body, the heating linear shrinkage rate can be reduced, and the specific surface area and pore volume are increased. And generation of corundum can be suppressed.
  • This heat insulating material may be used in an environment where heat resistance at high temperature is required by utilizing its excellent heat resistance. That is, this heat insulating material is, for example, a heat insulating material used in an environment where heat resistance of over 1100 ° C. (for example, 1200 ° C. or higher) is required (for example, the maximum use temperature is over 1100 ° C. (for example, 1200 ° C. or higher)). It is also possible to be a heat insulating material). In this case, it can be said that this heat insulating material is a heat insulating material used in an environment where the temperature can exceed 1100 ° C. (for example, 1200 ° C. or higher).
  • a mixed powder containing alumina fine particles, phosphorus compound and reinforcing fibers was dry press molded to produce a heat insulating material comprising a dry pressure molded body.
  • alumina fine particles alumina fine particles (fumed alumina fine particles, manufactured by Nippon Aerosil Co., Ltd.) having an average primary particle size of about 13 nm were used.
  • phosphorus compounds As the phosphorus compounds, phosphorus compounds of the following nine (both powdered), i.e., magnesium dihydrogen phosphate tetrahydrate (Mg (H 2 PO 4) 2 ⁇ 4H 2 O, Taihei Chemical Industrial Co., Ltd.
  • Mg (H 2 PO 4) 2 ⁇ 4H 2 O Taihei Chemical Industrial Co., Ltd.
  • the orthorhombic aluminum phosphate is prepared by firing the above-described commercially available hexagonal aluminum phosphate in a crucible at 1250 ° C. for 8 hours and transferring the crystal from hexagonal to orthorhombic. We used what we did.
  • S2 glass fiber sica-alumina-magnesia fiber, manufactured by AGY
  • the mixed powder was filled into a mold having a predetermined deaeration mechanism. Then, dry press molding was performed by adjusting the press pressure so that the bulk density of the produced dry pressure molded body was 270 kg / m 3 . Thereafter, the molded plate-shaped dry pressure-molded body was taken out from the mold.
  • the dry pressure molded body was fired. That is, the dry pressure molded body was heated at 1200 ° C. for 24 hours.
  • a dry press-molded body was produced in the same manner as in the above example except that a mixed powder containing 95 wt% alumina fine particles and 5 wt% reinforcing fibers was used without containing a phosphorus compound. In this way, 10 types of heat insulating materials made of a dry pressure molded body were produced.
  • heating linear shrinkage rate (%) ⁇ (XY) / X ⁇ ⁇ 100.
  • X is the length (mm) of the specimen before heating
  • Y is the length (mm) of the specimen after heating.
  • the specific surface area of the dry pressure-molded body after heating was measured by the BET method.
  • the pore volume of the dry pressure-molded body after heating was measured by the BJH method. That is, a desorption isotherm showing the correlation between the relative pressure and the amount of adsorption is obtained by a gas adsorption method using a dry pressure molded body after heating as a test body, and the dry pressure molded body of the dry pressure molded body is obtained from the desorption isotherm.
  • the pore diameter was determined, and the pore volume of the dry pressure molded product was calculated from the pore diameter.
  • XRD measurement was performed on the dry pressure-molded body before and after heating.
  • FIG. 1 shows nine types of dry pressure molded bodies (Examples I to IX) produced using a phosphorus compound and one type of dry pressure molded body (Example X) produced without using the phosphorus compound. ) Shows the results of evaluating heating linear shrinkage (%) at 1200 ° C., specific surface area (m 2 / g), pore volume (cm 3 / g) and corundum detection in XRD.
  • 2A to 2J show XRD charts obtained for the dry pressure-formed body after heating.
  • 2A is Mg (H 2 PO 4 ) 2 .4H 2 O
  • FIG. 2B is Mg 3 (PO 4 ) 2 .8H 2 O
  • FIG. 2C is Ca (H 2 PO 4 ) 2 .H 2 O.
  • 2D shows NH 4 H 2 PO 4
  • FIG. 2E shows (NH 4 ) 2 HPO 4
  • FIG. 2F shows Al (H 2 PO 4 ) 3
  • FIG. 2G shows hexagonal AlPO 4 .
  • 2H shows the results of a dry press-molded body manufactured using orthorhombic AlPO 4
  • FIG. 2I shows (C 6 H 5 ) 3 P
  • FIG. 2J uses a phosphorus compound. The result of the dry-type pressure-molded body manufactured without this is shown.
  • FIG. 3A to 3I show XRD charts obtained for each of the dry pressure-formed bodies before heating. That is, FIG. 3A shows Mg (H 2 PO 4 ) 2 .4H 2 O, FIG. 3B shows Mg 3 (PO 4 ) 2 .8H 2 O, and FIG. 3C shows Ca (H 2 PO 4 ) 2 .H 2 O.
  • 3D shows NH 4 H 2 PO 4
  • FIG. 3E shows (NH 4 ) 2 HPO 4
  • FIG. 3F shows hexagonal AlPO 4
  • FIG. 3G shows orthorhombic AlPO 4
  • FIG. 3H FIG. 3I shows the results of the dry pressure-molded bodies manufactured using (C 6 H 5 ) 3 P, respectively
  • FIG. 3I shows the results of the dry-type pressure molded bodies manufactured without using the phosphorus compound. Show. Note that the Al (H 2 PO 4) 3 dry-pressed compact before heating manufactured using could not be performed XRD measurement on account of the experiment.
  • corundum was not detected before heating in the dry pressure-molded body produced without using a phosphorus compound (Example X), and alumina other than corundum ( ⁇ -alumina, ⁇ -alumina, ( ⁇ -alumina, ⁇ -alumina) were detected (FIGS. 1 and 3I), but only corundum was detected after heating (FIGS. 1 and 2J).
  • alumina other than corundum ⁇ -alumina, ⁇ -alumina, ( ⁇ -alumina, ⁇ -alumina) were detected
  • corundum was not detected before heating, and corundum was not detected or extremely slight even after heating. It was only detected (FIGS. 1, 2A to 2I, and FIGS. 3A to 3H).
  • FIGS. 2A to 2G, FIG. 2I, FIGS. 3A to 3F and FIG. 3H eight types of dry pressure moldings manufactured using phosphorus compounds other than orthorhombic aluminum phosphate are used.
  • the peak of orthorhombic aluminum phosphate (AlPO 4 ) not detected before heating ranges from 21 ° to 23 ° (around 21.8 °) ) was detected.
  • a peak of hexagonal aluminum phosphate (Berlinite) was detected at around 26.4 ° as a phosphorus compound.
  • FIG. 1 hexagonal aluminum phosphate
  • the dry pressure-molded body after heating had an orthorhombic aluminum phosphate peak that was not included before heating at 21.8 °. Newly detected in the vicinity.
  • orthorhombic aluminum phosphate peak that was not included before heating at 21.8 °. Newly detected in the vicinity.
  • FIGS. 2H and 3G in the dry pressure molded body (Example VIII) manufactured using orthorhombic aluminum phosphate, orthorhombic phosphoric acid is used before and after heating.
  • An aluminum (AlPO 4 ) peak was detected in the range of 21 ° to 23 ° (around 21.8 °).
  • the aluminum phosphate (FIGS. 3A to 3F and FIG. 3H) newly detected in the dry pressure-formed body after heating is heated to the alumina contained in the dry pressure-formed body before heating. It was thought to have been produced by a chemical reaction with a phosphorus compound. Further, in Example VIII in which a dry press-molded body was produced using orthorhombic aluminum phosphate, it is not clear only from the results of XRD measurement (FIGS. 2H and 3G), but it is shown in FIG. Thus, since the orthorhombic aluminum phosphate was added before heating, the same effects as those of Examples I to VII and IX were obtained. The chemical reaction between aluminum phosphate and alumina was considered to be involved.
  • the specific surface area is 100 to 119 (m 2 / g) and the pore volume is 0.51 to 0.70 (cm 3). / G), and no corundum peak was detected in the XRD chart.
  • the powder material heated at 1150 ° C. has a specific surface area of 69 (m 2 / g) and a pore volume of 0.49 (cm 3 / g), which is a corundum peak in the XRD chart. Was slightly detected.
  • the powder material heated at 1200 ° C. has a specific surface area of 13 (m 2 / g), a pore volume of 0.05 (cm 3 / g), and only corundum is detected on the XRD chart. It was.
  • the powder material composed of alumina fine particles not containing a phosphorus compound is damaged by heating at a temperature exceeding 1100 ° C., and corundum generation (crystal (Metastasis) may be involved.
  • the phosphorus compound aluminum dihydrogen phosphate (Al (H 2 PO 4 ) 3 ) manufactured by Nacalai Tesque Co., Ltd. was used. And the heat insulating material which consists of a dry-type pressure-molded body was manufactured like the above-mentioned Example 1 by changing the content rate of the phosphorus compound in mixed powder.
  • Mixed dry powder of 0.0 wt% (alumina fine particles 75.0 wt%, reinforcing fiber 5.0 wt%) was dry press molded to produce six types of dry powder
  • a dry press-molded body was made in the same manner as in the above example except that a mixed powder not containing a phosphorus compound and containing 95.0 wt% alumina fine particles and 5.0 wt% reinforcing fibers was used. Manufactured. In this way, seven kinds of heat insulating materials were manufactured.
  • FIG. 4 shows the content (wt%) of the phosphorus compound in the mixed powder and the molar ratio of phosphorus (P) to aluminum (Al) in the mixed powder (P / (Al ratio), heating linear shrinkage rate (%), specific surface area (m 2 / g), pore volume (cm 3 / g) and corundumization rate (%) are shown.
  • FIG. 5A shows the correlation between the phosphorus compound content (wt%) in the mixed powder and the heating linear shrinkage (%) of the dry pressure-molded product
  • FIG. 5B shows the mixed powder
  • 2 shows the correlation between the P / Al ratio and the heating linear shrinkage rate
  • FIG. 6A shows the correlation between the phosphorus compound content (wt%) in the mixed powder and the corundumization rate (%) of the dry pressure-molded body after heating
  • FIG. The correlation between the P / Al ratio in the powder and the corundum ratio is shown.
  • FIGS. 7A to 7C a dry press-molded body before heating (FIG. 7A) produced using a mixed powder containing no phosphorus compound and a mixed powder containing no phosphorus compound are used.
  • the thermal linear shrinkage rate of the dry pressure molded body produced from the mixed powder containing the phosphorus compound is 2.1 to 6.7%. It was significantly smaller than that of the dry pressure-molded body produced from the mixed powder not containing (18.2%).
  • the heating linear shrinkage rate of the dry compression molded body produced from the mixed powder containing the phosphorus compound tends to decrease as the content ratio of the phosphorus compound and the P / Al ratio in the mixed powder increase. It was done.
  • the specific surface area and pore volume after heating of the dry-type pressure-molded body produced from the mixed powder containing the phosphorus compound are the dry type produced from the mixed powder not containing the phosphorus compound. It was larger than that of the pressure-molded body.
  • the heated dry pressure molded body (FIG. 7B) manufactured from the mixed powder not containing the phosphorus compound is manufactured from the mixed powder not containing the phosphorus compound.
  • a significant increase in the particle size of the fine particles was confirmed as compared with the dry pressure molded body before heating (FIG. 7A).
  • FIG. 7C the particle size of the fine particles was kept small in the heated dry pressure molded body produced from the mixed powder containing the phosphorus compound.
  • the corundumization rate after heating of the dry pressure molded body produced from the mixed powder containing no phosphorus compound was 100%, whereas phosphorus It was confirmed that the dry pressure molded body produced from the mixed powder containing the compound had a tendency to decrease as the content of the phosphorus compound and the P / Al ratio in the mixed powder increased.
  • the content of the phosphorus compound in the mixed powder is more than 3.8 wt% (when the P / Al ratio is more than 0.02 or more than 0.03), the dry addition after heating is performed. The corundumization rate of the compact was significantly reduced. Further, when the content of the phosphorus compound in the mixed powder is more than 6.2 wt% (when the P / Al ratio is more than 0.03 or more than 0.05), the dry addition after heating is performed. The generation of corundum in the green body was substantially avoided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本発明に係る断熱材は、アルミナ微粒子とリン化合物とを含む乾式加圧成形体を有する。本発明に係る断熱材の製造方法は、アルミナ微粒子を含む乾式加圧成形体を有する断熱材の製造方法であって、前記アルミナ微粒子とリン化合物とを含む混合粉体の前記乾式加圧成形体を得ることを含む。

Description

断熱材及びその製造方法
 本発明は、断熱材及びその製造方法に関し、特に、断熱材の耐熱性の向上に関する。
 従来、シリカ粒子又はアルミナ粒子、輻射散乱材、補強繊維を含む加圧成形体からなる断熱材が知られている(例えば、特許文献1)。シリカ粒子からなる断熱材は、1100℃を超える環境で用いると収縮が大きく、1100℃を超える温度で耐熱性を有する断熱材が求められていた。さらに、シリカ粒子を含む断熱材と同等の強度、熱伝導率を備えることが望まれる。
特開2012-149658号公報
 本発明は、上記課題に鑑みて為されたものであって、高温での耐熱性が向上した断熱材及びその製造方法を提供することをその目的の一つとする。
 上記課題を解決するために、本発明者らは、シリカ粒子ではなくアルミナ粒子を用いた。しかしながら、アルミナ粒子を主体とする断熱材であっても、シリカ粒子を主体とする断熱材よりは耐熱性に優れるが、1150℃を超えると収縮が大きく、耐熱性が不十分であった。本発明者らは、収縮の一因が、アルミナのコランダム化(結晶転移)であることを見出し、コランダム化率を抑制できる化合物を探求し、本発明を完成させた。
 上記課題を解決するための本発明の一実施形態に係る断熱材は、アルミナ微粒子とリン化合物とを含む混合粉体の乾式加圧成形体を有することを特徴とする。本発明によれば、高温での耐熱性が向上した断熱材を提供することができる。
 また、前記断熱材において、前記リン化合物は、前記アルミナ微粒子に含まれるアルミナと化学的に反応してアルミニウム及びリンを含む化合物を生成するリン化合物であることとしてもよい。この場合、前記アルミニウム及びリンを含む化合物は、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)であることとしてもよい。また、前記乾式加圧成形体は、1200℃で24時間加熱された後のXRD測定において21°~23°の範囲内に斜方晶系のリン酸アルミニウム(AlPO)のピークが検出されることとしてもよい。
 また、前記断熱材において、前記リン化合物は、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)であることとしてもよい。
 また、前記いずれかの断熱材において、前記乾式加圧成形体を1200℃で24時間加熱した場合における前記乾式加圧成形体の加熱線収縮率は、10%以下であることとしてもよい。
 上記課題を解決するための本発明の一実施形態に係る断熱材の製造方法は、アルミナ微粒子を含む乾式加圧成形体を有する断熱材の製造方法であって、前記アルミナ微粒子とリン化合物とを含む混合粉体の前記乾式加圧成形体を得ることを含むことを特徴とする。本発明によれば、高温での耐熱性が向上した断熱材の製造方法を提供することができる。
 また、前記方法において、前記リン化合物は、前記アルミナ微粒子に含まれるアルミナと化学的に反応してアルミニウム及びリンを含む化合物を生成するリン化合物であることとしてもよい。この場合、前記アルミニウム及びリンを含む化合物は、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)であることとしてもよい。また、前記いずれかの方法において、1200℃で24時間加熱された後のXRD測定において21°~23°の範囲内に斜方晶系のリン酸アルミニウム(AlPO)のピークが検出される前記乾式加圧成形体を得ることとしてもよい。
 また、前記いずれかの方法は、前記混合粉体を700℃以上の温度で加熱することをさらに含むこととしてもよい。この場合、前記温度は、1000℃超であることとしてもよい。また、これらの場合、前記方法は、前記混合粉体を前記温度で加熱することにより、前記アルミナ微粒子と、前記アルミナ微粒子に含まれるアルミナと前記リン化合物との化学的な反応により生成されたアルミニウム及びリンを含む化合物とを含む前記混合粉体を得ることを含むこととしてもよい。また、前記方法は、前記混合粉体を前記温度で加熱することにより、前記アルミナ微粒子と、前記アルミナ微粒子に由来するアルミニウム及び前記リン化合物に由来するリンを含む化合物とを含む混合粉体を得ることを含むこととしてもよい。また、前記方法は、前記混合粉体を前記温度で加熱することにより、前記アルミナ微粒子と、アルミニウム及びリンを含む化合物であって加熱前には含まれていなかった化合物とを含む混合粉体を得ることを含むこととしてもよい。また、前記アルミニウム及びリンを含む化合物は、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)であることとしてもよい。
 本発明によれば、高温での耐熱性が向上した断熱材及びその製造方法を提供することができる。
本発明の一実施形態に係る実施例1において、断熱材の特性を評価した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、Mg(HPO・4HOを含む原料から製造された加熱後の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、Mg(PO・8HOを含む原料から製造された加熱後の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、Ca(HPO・HOを含む原料から製造された加熱後の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、NHPOを含む原料から製造された加熱後の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、(NHHPOを含む原料から製造された加熱後の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、Al(HPOを含む原料から製造された加熱後の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、六方晶系のAlPOを含む原料から製造された加熱後の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、斜方晶系のAlPOを含む原料から製造された加熱後の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、(CPを含む原料から製造された加熱後の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、リン化合物を含まない原料から製造された加熱後の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、Mg(HPO・4HOを含む原料から製造された加熱前の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、Mg(PO・8HOを含む原料から製造された加熱前の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、Ca(HPO・HOを含む原料から製造された加熱前の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、NHPOを含む原料から製造された加熱前の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、(NHHPOを含む原料から製造された加熱前の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、六方晶系のAlPOを含む原料から製造された加熱前の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、斜方晶系のAlPOを含む原料から製造された加熱前の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、(CPを含む原料から製造された加熱前の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例1において、リン化合物を含まない原料から製造された加熱前の断熱材のXRD測定を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例2において、断熱材の特性を評価した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例2において、原料におけるリン化合物の含有率と断熱材の1200℃における加熱線収縮率との相関関係を評価した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例2において、原料におけるリンとアルミニウムとのモル比と断熱材の1200℃における加熱線収縮率との相関関係を評価した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例2において、原料におけるリン化合物の含有率と断熱材のコランダム化率との相関関係を評価した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例2において、原料におけるリンとアルミニウムとのモル比と断熱材のコランダム化率との相関関係を評価した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例2において、リン化合物を含まない原料から製造した加熱前の断熱材のFE-SEM観察を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例2において、リン化合物を含まない原料から製造した加熱後の断熱材のFE-SEM観察を行った結果の一例を示す説明図である。 本発明の一実施形態に係る実施例2において、リン化合物を含む原料から製造した加熱後の断熱材のFE-SEM観察を行った結果の一例を示す説明図である。
 以下に、本発明の一実施形態について説明する。なお、本発明は、本実施形態に限られるものではない。
 まず、本実施形態に係る断熱材の製造方法(以下、「本方法」という。)について説明する。本方法は、アルミナ微粒子を含む乾式加圧成形体を有する断熱材の製造方法であって、当該アルミナ微粒子とリン化合物とを含む混合粉体の当該乾式加圧成形体を得ることを含む方法である。
 アルミナ微粒子は、α-アルミナ(コランダム)以外のアルミナ(Al)を主成分として含む微粒子(例えば、当該アルミナを95重量%以上含む微粒子)であって、断熱材の原料として使用されるものであれば特に限られない。なお、このアルミナ微粒子は、α-アルミナを含まない(例えば、XRD測定において、コランダムのピークが検出されない)こととしてもよい。
 アルミナ微粒子は、例えば、一次粒子の平均粒径が100nm以下のアルミナ微粒子であることとしてもよい。この場合、アルミナ微粒子の一次粒子の平均粒径は、50nm以下であることとしてもよく、30nm以下であることとしてもよい。アルミナ微粒子の一次粒子の平均粒径の下限値は、特に限られないが、当該平均粒径は、例えば、2nm以上であることとしてもよい。
 アルミナ微粒子は、例えば、気相法で製造されたもの及び/又は湿式法で製造されたものであることとしてもよい。すなわち、アルミナ微粒子は、例えば、気相法で製造された乾式アルミナ微粒子であることとしてもよく、湿式法で製造された湿式アルミナ微粒子であることとしてもよい。より具体的に、アルミナ微粒子は、例えば、気相法で製造されたフュームドアルミナ微粒子であることとしてもよい。
 そして、本発明に特徴的なことの一つは、上述したようなアルミナ微粒子に加えて、リン化合物を使用することである。すなわち、本発明の発明者らは、アルミナ微粒子を含む乾式加圧成形体の耐熱性を向上させる技術的手段について鋭意検討を重ねた結果、当該乾式加圧成形体の原料として、当該アルミナ微粒子とリン化合物とを混合して得られた混合粉体を使用することにより、当該乾式加圧成形体の耐熱性が効果的に向上することを独自に見出した。
 リン化合物は、当該リン化合物を使用しない場合に比べて乾式加圧成形体の耐熱性を向上させるものであれば特に限られない。すなわち、リン化合物としては、無機リン化合物及び/又は有機リン化合物を使用することができる。
 リン化合物は、例えば、アルミナ微粒子に含まれるアルミナと化学的に反応してアルミニウム及びリンを含む化合物を生成するリン化合物であることとしてもよい。この場合、リン化合物は、例えば、加熱下において(例えば、700℃以上の温度、又は1100℃超の温度で)、アルミナと化学的に反応して、アルミニウム及びリンを含む化合物を生成するものであることとしてもよい。
 ここで、リン化合物とアルミナとの化学的な反応により生成されるアルミニウム及びリンを含む化合物は、アルミナ微粒子に由来するアルミニウム及びリン化合物に由来するリンを含む化合物であれば、特に限られないが、例えば、後述するように、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)であることとしてもよい。すなわち、この場合、混合粉体は、アルミナ微粒子に含まれるアルミナと化学的に反応して、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)を生成するリン化合物を含む。なお、上記化学的な反応前の混合粉体に含まれるリン化合物は、斜方晶系のリン酸アルミニウム以外のリン化合物であることとしてもよいし、当該斜方晶系のリン酸アルミニウムであることとしてもよい。
 また、リン化合物は、例えば、乾式加圧成形体を1200℃で24時間加熱した場合における当該乾式加圧成形体の加熱線収縮率を、当該乾式加圧成形体が当該リン化合物を含まない場合に比べて低減させるものであることとしてもよい。
 リン化合物は、例えば、リン酸塩であることとしてもよい。リン酸塩は、例えば、アルミニウム、アルカリ土類金属及びアンモニアからなる群より選択される1種以上のリン酸塩であることとしてもよい。
 アルミニウムのリン酸塩は、例えば、リン酸二水素アルミニウム(Al(HPO)、リン酸水素二アルミニウム(Al(HPO)、リン酸アルミニウム(AlPO)及びメタリン酸アルミニウム(Al(PO)からなる群より選択される1種以上であることとしてもよい。
 アルカリ土類金属のリン酸塩は、例えば、マグネシウム、カルシウム、ストロンチウム及びバリウムからなる群より選択される1種以上のリン酸塩であることとしてもよい。マグネシウムのリン酸塩は、例えば、リン酸二水素マグネシウム四水和物(Mg(HPO・4HO)、リン酸三マグネシウム八水和物(Mg(PO・8HO)、リン酸水素マグネシウム三水和物(MgHPO・3HO)、メタリン酸マグネシウム(Mg(PO)及びピロリン酸マグネシウム(Mg)からなる群より選択される1種以上であることとしてもよい。カルシウムのリン酸塩は、例えば、リン酸二水素カルシウム一水和物(Ca(HPO・HO)、リン酸水素カルシウム二水和物(CaHPO・2HO)、メタリン酸カルシウム(Ca(PO)及びヒドロキシアパタイト(Ca10(PO(OH))からなる群より選択される1種以上であることとしてもよい。ストロンチウムのリン酸塩は、例えば、リン酸水素ストロンチウム(SrHPO)であることとしてもよい。バリウムのリン酸塩は、例えば、リン酸水素バリウム(BaHPO)であることとしてもよい。
 アンモニアのリン酸塩は、例えば、リン酸二水素アンモニウム(NHPO)、リン酸水素二アンモニウム((NHHPO)及びリン酸アンモニウム((NHPO)からなる群より選択される1種以上であることとしてもよい。
 リン化合物は、有機リン化合物であることとしてもよい。有機リン化合物は、その分子中に少なくとも1つのリン原子を含む有機化合物(例えば、その分子中に、少なくとも1つの炭素原子と、少なくとも1つのリン原子とを含む化合物)であれば、特に限られず、例えば、ホスフィン誘導体及び/又はリン酸エステルであることとしてもよい。
 アルミナ微粒子とリン化合物とを含む混合粉体は、当該アルミナ微粒子と当該リン化合物とを混合することにより調製される。すなわち、混合粉体は、例えば、アルミナ微粒子とリン化合物の粉体とを乾式で混合することにより調製される。
 混合粉体に含まれるアルミナ微粒子の量は、乾式加圧成形体の所望の特性を実現する範囲であれば特に限られない。すなわち、混合粉体は、例えば、40~99重量%のアルミナ微粒子を含むこととしてもよい。また、例えば、55~90重量%、60~80重量%、又は65~75重量%のアルミナ粒子を含むこととしてもよい。
 混合粉体に含まれるリン化合物の量は、乾式加圧成形体の所望の特性を実現する範囲であれば特に限られない。すなわち、混合粉体は、例えば、0.5~60重量%のリン化合物とを含むこととしてもよい。また、例えば、1.0~45重量%、1~35重量%、2~25重量%、又は3~10重量%のリン化合物とを含むこととしてもよい。
 また、混合粉体は、例えば、当該混合粉体に含まれるアルミニウム(Al)に対するリン(P)のモル比が、0.01以上、0.02以上、0.02超、0.03以上、0.03超、0.04以上又は0.05以上となる量のリン化合物を含むこととしてもよい。
 すなわち、混合粉体は、例えば、40~99重量%のアルミナ微粒子と、当該混合粉体に含まれるアルミニウム(Al)に対するリン(P)のモル比が、0.01以上、0.02以上、0.02超、0.03以上、0.03超、0.04以上又は0.05以上となる量のリン化合物とを含むこととしてもよい。
 上記モル比が大きくなるにつれて、リン化合物の使用による効果も大きくなる傾向がある。混合粉体に含まれるアルミニウム(Al)に対するリン(P)のモル比の上限値は、乾式加圧成形体の所望の特性を実現する範囲であれば特に限られないが、当該モル比は、例えば、0.23以下であることとしてもよい。
 また、混合粉体は、例えば、アルミナ微粒子に含まれるアルミニウム(Al)に対するリン(P)のモル比が、0.01以上、0.02以上、0.02超、0.03以上、0.03超、0.04以上又は0.05以上となる量のリン化合物を含むこととしてもよい。
 すなわち、混合粉体は、例えば、40~99重量%のアルミナ微粒子と、当該混合粉体中のアルミナ微粒子に含まれるアルミニウム(Al)に対するリン(P)のモル比が、0.01以上、0.02以上、0.02超、0.03以上、0.03超、0.04以上又は0.05以上となる量のリン化合物とを含むこととしてもよい。
 上記モル比が大きくなるにつれて、リン化合物の使用による効果も大きくなる傾向がある。混合粉体中のアルミナ微粒子に含まれるアルミニウム(Al)に対するリン(P)のモル比の上限値は、乾式加圧成形体の所望の特性を実現する範囲であれば特に限られないが、当該モル比は、例えば、0.25以下であることとしてもよい。
 混合粉体は、さらに他の成分を含むこととしてもよい。すなわち、混合粉体は、例えば、補強繊維をさらに含むこととしてもよい。補強繊維は、乾式加圧成形体を補強できるものであれば特に限られない。補強繊維は、例えば、無機繊維であることとしてもよい。
 無機繊維は、例えば、ガラス繊維、シリカ-アルミナ繊維、シリカ-アルミナ-マグネシア繊維、シリカ繊維、アルミナ繊維、ジルコニア繊維、生体溶解性無機繊維、ロックウール及びバサルト繊維からなる群より選択される1種以上である。好ましくはシリカ-アルミナ-マグネシア繊維、アルミナ繊維、シリカ-アルミナ繊維である。
 生体溶解性繊維として、SiO、AlとZrOとの合計が50~82重量%、CaOとMgOとの合計が18~50重量%の組成の無機繊維を例示できる。また、SiOが50~82重量%、CaOとMgOとの合計が10~43重量%の組成の無機繊維も例示できる。
 補強繊維の平均繊維長は、例えば、0.5mm以上、20mm以下であることとしてもよく、1mm以上、10mm以下であることとしてもよい。補強繊維の平均繊維径は、例えば、1μm以上、20μm以下であることとしてもよく、2μm以上、15μm以下であることとしてもよい。
 繊維の量は、例えば、1~20重量%、1.5~10重量%、又は2~9重量%としてもよい。
 混合粉体がアルミナ微粒子とリン化合物と補強繊維とを含む場合、当該混合粉体は、例えば、45~98重量%のアルミナ微粒子と、1~30重量%のリン化合物と、1~30重量%の補強繊維とを含むこととしてもよい。
 また、混合粉体は、例えば、輻射散乱材をさらに含むこととしてもよい。輻射散乱材は、輻射による伝熱を低減するものであれば特に限られない。すなわち、輻射散乱材は、例えば、炭化珪素、ジルコニア、珪酸ジルコニウム、チタニア、窒化珪素、酸化鉄、酸化クロム、硫化亜鉛、チタン酸バリウムからなる群より選択される1種以上であることとしてもよい。輻射散乱材の平均粒径は、例えば、1μm以上、50μm以下であることとしてもよく、1μm以上、20μm以下であることとしてもよい。輻射散乱材は、遠赤外線反射性のものが好ましく、例えば、1μm以上の波長の光に対する比屈折率が1.25以上であるものが好ましい。
 輻射散乱材の量は、例えば、1~40重量%、5~35重量%、又は10~30重量%としてもよい。
 また、混合粉体は、他の金属酸化物微粒子をさらに含むこととしてもよい。すなわち、原料は、例えば、シリカ(SiO)微粒子をさらに含むこととしてもよい。シリカ微粒子は、例えば、気相法で製造された乾式シリカ微粒子(例えば、フュームドシリカ微粒子)であることとしてもよい。混合粉体におけるシリカ微粒子の含有量は、10重量%以下であることとしてもよく、5重量%以下であることとしてもよく、5重量%未満であることとしてもよい。また、混合粉体はシリカ微粒子を含まない(混合粉体におけるシリカ微粒子の含有量が0重量%である)こととしてもよい。さらに、混合粉体は、アルミナ微粒子以外の他の金属酸化物微粒子を含まないこととしてもよい。また、混合粉体は、結合剤(例えば、水ガラス接着剤等の無機結合剤や、樹脂等の有機結合剤)を含まないこととしてもよい。
 そして、本方法においては、乾式プレス成形により成形された、アルミナ微粒子とリン化合物とを含む混合粉体の乾式加圧成形体を得る。すなわち、乾式加圧成形体は、アルミナ微粒子とリン化合物とを含む混合粉体を乾式プレス成形することにより得られる。より具体的に、例えば、上述のようにして調製された混合粉体を所定の成形型に充填し、乾式プレス成形することにより、当該成形型に対応する形状の乾式加圧成形体を製造する。
 また、本方法は、例えば、アルミナ微粒子とリン化合物とを含む混合粉体の乾式加圧成形体であって、1200℃で24時間加熱された後のXRD測定において21°~23°の範囲内に斜方晶系のリン酸アルミニウム(AlPO)のピークが検出される当該乾式加圧成形体を得ることとしてもよい。すなわち、この場合、本方法で得られる乾式加圧成形体は、1200℃で24時間加熱された場合、その後のXRD測定において21°~23°の範囲内に斜方晶系のリン酸アルミニウム(AlPO)のピークが検出されるものである。
 乾式加圧成形体の形状は、特に限られないが、例えば、ボード状、板状又は円筒状であることとしてもよい。乾式プレス成形を行う温度は、特に限られないが、例えば、0℃以上、100℃以下の温度で行うこととしてもよく、0℃以上、50℃以下の温度で行うこととしてもよい。
 こうして得られる乾式加圧成形体は、そのまま断熱材として、又は断熱材の一部として使用されることとしてもよい。乾式加圧成形体が断熱材の一部として使用される場合、当該断熱材は、例えば、当該乾式加圧成形体と、耐熱性が当該乾式加圧成形体とは異なる1つ以上の他の断熱部材とを有することとしてもよい。すなわち、この場合、断熱材は、例えば、乾式加圧成形体と、当該乾式加圧成形体の高温側に積層された、より耐熱性の高い断熱部材、及び/又は当該乾式加圧成形体の低温側に積層された、より安価でより耐熱性の低い断熱部材と、を有することとしてもよい。
 また、本方法は、混合粉体を700℃以上の温度で加熱することをさらに含むこととしてもよい。すなわち、この場合、本方法においては、混合粉体を焼成する。そして、本方法においては、加熱された混合粉体の乾式加圧成形体を製造する。混合粉体の加熱は、乾式加圧成形体の成形前に行うこととしてもよいし、乾式加圧成形体の成形後に行うこととしてもよい。
 すなわち、例えば、成形前の混合粉体を所定の温度で加熱し、次いで、加熱された当該混合粉体を乾式プレス成形することにより、加熱された混合粉体の乾式加圧成形体を得ることとしてもよい。より具体的に、まず、乾式加圧成形体の成形前に、アルミナ微粒子とリン化合物とを含む混合粉体を所定の温度で加熱し、加熱された当該混合粉体を製造する。そして、この加熱後の混合粉体の乾式プレス成形を行って、当該加熱された混合粉体から構成される乾式加圧成形体を製造する。
 また、例えば、加熱前の混合粉体を乾式プレス成形して乾式加圧成形体を成形し、次いで、当該乾式加圧成形体を所定の温度で加熱することにより、加熱された混合粉体の乾式加圧成形体を得ることとしてもよい。より具体的に、まず、所定温度での加熱前に、アルミナ微粒子とリン化合物とを含む混合粉体の乾式プレス成形を行って、乾式加圧成形体を得る。そして、この乾式加圧成形体を当該所定の温度で加熱して、加熱された混合粉体から構成される乾式加圧成形体を製造する。
 混合粉体を加熱する温度(加熱温度)は、例えば、800℃以上であることとしてもよく、900℃以上であることとしてもよく、1000℃以上であることとしてもよく、1100℃以上であることとしてもよい。
 加熱温度は、さらに高温であることとしてもよい。すなわち、加熱温度は、例えば、1100℃超であることとしてもよく、1150℃以上であることとしてもよく、1200℃以上であることとしてもよい。このような高温で混合粉体を加熱する場合、リン化合物の使用による効果が特に顕著となる。
 ここで、本発明の発明者らは、アルミナ微粒子を含む乾式加圧成形体の耐熱性を向上させる技術的手段について鋭意検討を重ねた結果、リン化合物を含まない当該乾式加圧成形体は、1100℃超の温度で加熱されると、その耐熱性や断熱性等の特性が損なわれるのに対し、リン化合物を含む当該乾式加圧成形体は、1100℃超の温度で加熱されても、その特性を効果的に維持することを独自に見出した。
 より具体的に、本発明の発明者らは、まず、アルミナ微粒子を含みリン化合物を含まない乾式加圧成形体を1100℃超の温度で加熱すると、コランダム(corundum)の生成(結晶の転移)が起こり、且つ当該乾式加圧成形体を1100℃以下の温度で加熱する場合に比べて、細孔容積の減少及び比表面積の減少が顕著に起こることを見出した。
 そこで、本発明の発明者らは、このような高温下での乾式加圧成形体の劣化を抑制する技術的手段について鋭意検討を重ねた結果、アルミナ微粒子とリン化合物とを混合して調製された混合粉体を使用することにより、当該混合粉体の乾式プレス成形により得られた乾式加圧成形体は、1100℃超の温度で加熱されても、コランダムの生成や、細孔容積及び比表面積の減少が効果的に抑制され、高温(例えば、1200℃)においても小さい加熱線収縮率を示すことを見出した。
 さらに、本発明の発明者らは、アルミナ微粒子及びリン化合物を含む乾式加圧成形体を1100℃超の温度で加熱すると、当該乾式加圧成形体において、加熱前には含まれていなかったアルミニウム及びリンを含む化合物(具体的には、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO))が生成されることも見出した。
 アルミナ微粒子にリン化合物を添加することによって1100℃超の温度での加熱による乾式加圧成形体の劣化が防止されるメカニズムは、明らかではないが、その一つとしては、例えば、アルミナに混入したP5+が、その周囲のAl3+と強く結び付いて、斜方晶系のリン酸アルミニウム及び/又は斜方晶系のリン酸アルミニウムに類似した構造を形成し、キンク原子が不動化されることにより、アルミナの結晶転移(コランダムの生成)が抑制されることが考えられる。なお、加熱前に斜方晶系のリン酸アルミニウムを添加した場合でも、同様に斜方晶系のリン酸アルミニウムに類似した構造を形成し、キンク原子が不動化されることにより、アルミナの結晶転移(コランダムの生成)が抑制されると考えられる。
 具体的に、例えば、加熱前の混合粉体がリン酸二水素アルミニウム(Al(HPO)を含む場合には、加熱によって、第一の化学反応(Al(HPO→Al(PO+3HO)が進行し、さらに第二の化学反応(Al(PO+Al→3AlPO)によってリン酸アルミニウムが生成されることが考えられる。
 また、例えば、加熱前の混合粉体がリン酸二水素カルシウム一水和物(Ca(HPO・HO)を含む場合には、加熱によって、第一の化学反応(Ca(HPO・HO→Ca(PO+3HO)が進行し、さらに第二の化学反応(3Ca(PO+2Al→4AlPO+Ca(PO)によってリン酸アルミニウムが生成されることが考えられる。
 また、例えば、加熱前の混合粉体がリン酸二水素マグネシウム四水和物(Mg(HPO・4HO)を含む場合には、加熱によって、第一の化学反応(Mg(HPO・4HO→Mg(PO+6HO)が進行し、さらに第二の化学反応(3Mg(PO+2Al→4AlPO+Mg(PO)によってリン酸アルミニウムが生成されることが考えられる。
 また、例えば、加熱前の混合粉体がリン酸水素二アンモニウム((NHHPO)を含む場合には、加熱によって、まず、(NHHPOが約155℃でアンモニア(NH)を失ってNHPOが生成し、さらにNHPOが約190℃で分解を始め、(NHPO(メタリン酸アンモニウム)が生成し、最終的に次の化学反応(2NHPO+Al→2AlPO+2NH+HO)によってリン酸アルミニウムが生成されることが考えられる。
 そこで、本方法においては、例えば、アルミナ微粒子とリン化合物とを含む混合粉体を上述した加熱温度で加熱することにより、当該アルミナ微粒子と、当該アルミナ微粒子に含まれるアルミナと当該リン化合物との化学的な反応により生成されたアルミニウム及びリンを含む化合物とを含む混合粉体を得ることとしてもよい。
 また、本方法においては、例えば、アルミナ微粒子とリン化合物とを含む混合粉体を上述した加熱温度で加熱することにより、当該アルミナ微粒子と、当該アルミナ微粒子に由来するアルミニウム及び当該リン化合物に由来するリンを含む化合物とを含む混合粉体を得ることとしてもよい。
 すなわち、例えば、アルミナ微粒子とリン化合物とを含む混合粉体を上述した加熱温度で加熱することにより、当該混合粉体において、当該アルミナ微粒子に含まれるアルミナと当該リン化合物との化学反応を進行させ、当該アルミナ微粒子に由来するアルミニウムと当該リン化合物に由来するリンとを含む化合物を新たに生成させる。
 また、本方法においては、例えば、アルミナ微粒子とリン化合物とを含む混合粉体を上述した加熱温度で加熱することにより、当該アルミナ微粒子と、アルミニウム及びリンを含む化合物であって加熱前には含まれていなかった化合物とを含む混合粉体を得ることとしてもよい。この場合、例えば、加熱後の混合粉体のX線回折(XRD)において、加熱前の当該混合粉体には検出されなかったアルミニウム及びリンを含む化合物のピークが新たに検出される。
 また、本方法においては、アルミナ微粒子とリン化合物とを含む混合粉体を上述した加熱温度で加熱することにより、上記アルミニウム及びリンを含む化合物を、当該アルミナ微粒子の表面に形成することとしてもよい。すなわち、この場合、例えば、加熱前の混合粉体に含まれるリン化合物は、アルミナ微粒子と混合された粉体であり、当該アルミナ微粒子の表面には、当該アルミナ微粒子に含まれるアルミナと当該リン化合物との化学的な反応により生成されたアルミニウム及びリンを含む化合物は形成されていないのに対し、当該混合粉体を加熱することにより、当該アルミナ微粒子の表面に、当該アルミナ微粒子に含まれるアルミナと当該リン化合物との化学的な反応により生成されたアルミニウム及びリンを含む化合物を新たに形成する。これらの場合、例えば、アルミナ微粒子の表面において、アルミニウム及びリンを含む化合物の被膜を形成することとしてもよい。
 また、上記アルミニウム及びリンを含む化合物は、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)であることとしてもよい。
 すなわち、本方法においては、例えば、アルミナ微粒子及びリン化合物を含む混合粉体を上記加熱温度で加熱することにより、当該アルミナ微粒子と、当該アルミナ微粒子に含まれるアルミナと当該リン化合物との化学的な反応により生成されたXRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)とを含む混合粉体を得ることとしてもよい。
 また、本方法においては、例えば、アルミナ微粒子及びリン化合物を含む混合粉体を上記加熱温度で加熱することにより、当該アルミナ微粒子と、当該アルミナ微粒子に由来するアルミニウム及び当該リン化合物に由来するリンを含みXRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)とを含む混合粉体を得ることとしてもよい。
 また、本方法においては、例えば、アルミナ微粒子及びリン化合物を含む混合粉体を上記加熱温度で加熱することにより、当該アルミナ微粒子と、当該加熱前には含まれていなかった、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)とを含む混合粉体を得ることとしてもよい。
 また、本方法においては、アルミナ微粒子及びリン化合物を含む混合粉体を上記加熱温度で加熱することにより、当該アルミナ微粒子の表面に、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)を形成することとしてもよい。この場合、アルミナ微粒子の表面に、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)の被膜を形成することとしてもよい。
 上述したメカニズムによれば、このようなアルミニウム及びリンを含む化合物の新たな生成により、結晶転移(コランダムの生成)が抑制され、乾式加圧成形体の特性が維持される。
 なお、混合粉体を加熱する方法は、当該混合粉体を上述した加熱温度にて維持する方法であれば、特に限られない。すなわち、例えば、所定の加熱温度(例えば、1100℃超の温度)で未だ加熱されていない乾式加圧成形体を、温度が当該所定の加熱温度に到達し得る環境に施工し、その後、当該乾式加圧成形体の断熱材としての使用において、当該環境の温度が当該所定の加熱温度に到達することにより、当該乾式加圧成形体を構成する混合粉体が当該所定の加熱温度で加熱されることとしてもよい。
 また、所定の加熱温度(例えば、1100℃超の温度)で未だ加熱されていない混合粉体(乾式加圧成形体を成形する前の混合粉体、又は成形された乾式加圧成形体を構成している混合粉体)を、断熱材としての使用に先立って、当該所定の加熱温度で加熱することとしてもよい。この場合、予め混合粉体を所定の加熱温度で加熱し、その後、加熱された当該混合粉体の乾式加圧成形体を、所定の環境(例えば、温度が当該所定の加熱温度に到達し得る環境)に施工し、断熱材として使用する。
 本方法によれば、高温での耐熱性が向上した断熱材の製造方法が提供される。すなわち、本方法においては、上述のとおり、アルミナ微粒子とリン化合物とを混合して調製された混合粉体を使用することにより、1100℃超等の高温においても耐熱性や断熱性といった特性を効果的に維持した乾式加圧成形体を有する断熱材を効率よく製造することができる。
 なお、上述した加熱温度で未だ加熱されていない混合粉体の乾式加圧成形体(未焼成の混合粉体の乾式加圧成形体)を有する断熱材も、当該加熱温度で加熱された混合粉体の乾式加圧成形体(焼成後の混合粉体の乾式加圧成形体)と同様、優れた耐熱性を有する断熱材として使用することができる。
 次に、本実施形態に係る断熱材(以下、「本断熱材」という。)について説明する。本断熱材は、アルミナ微粒子とリン化合物とを含む混合粉体の乾式加圧成形体を有する断熱材である。本断熱材は、上述した本方法により好ましく製造される。
 本断熱材の乾式加圧成形体を構成する混合粉体が、上述した加熱温度で加熱されていないものである場合(当該乾式加圧成形体が、未焼成の混合粉体の乾式加圧成形体である場合)、当該乾式加圧成形体に含まれるアルミナ微粒子及びリン化合物は、上述した混合粉体の調製に使用された加熱前のアルミナ微粒子及びリン化合物である。
 すなわち、この場合、乾式加圧成形体は、上述した無機リン化合物及び/又は有機リン化合物を含む。乾式加圧成形体に含まれるリン化合物は、例えば、上述した、アルミナ微粒子に含まれるアルミナと化学的に反応してアルミニウム及びリンを含む化合物を生成するリン化合物であることとしてもよい。より具体的に、乾式加圧成形体は、例えば、アルミナ微粒子に含まれるアルミナと化学的に反応して、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)を生成するリン化合物を含むこととしてもよい。
 また、乾式加圧成形体は、1200℃で24時間加熱された後のXRD測定において21°~23°の範囲内に斜方晶系のリン酸アルミニウム(AlPO)のピークが検出されることとしてもよい。すなわち、この場合、本断熱材を構成する乾式加圧成形体を1200℃で24時間加熱し、その後、当該乾式加圧成形体のXRD測定を行うと、21°~23°の範囲内に斜方晶系のリン酸アルミニウム(AlPO)のピークが検出される。
 一方、本断熱材の乾式加圧成形体を構成する混合粉体が、上述した加熱温度で加熱されたものである場合(当該乾式加圧成形体が、焼成後の混合粉体の乾式加圧成形体である場合)、当該乾式加圧成形体は、例えば、当該加熱により生成されたアルミニウム及びリンを含む化合物を含むこととしてもよい。
 この加熱により生成されたアルミニウム及びリンを含む化合物は、例えば、アルミナ微粒子の表面に形成されていることとしてもよい。この場合、アルミナ微粒子の表面には、アルミニウム及びリンを含む化合物の被膜が形成されていることとしてもよい。
 加熱後の混合粉体の乾式加圧成形体に含まれる、アルミニウム及びリンを含む化合物は、上述したとおり、アルミナ微粒子に由来するアルミニウムと、加熱前の混合粉体に含まれていたリン化合物に由来するリンとを含む化合物であれば特に限られないが、例えば、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)であることとしてもよい。
 すなわち、この場合、本断熱材は、アルミナ微粒子と、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)とを含む乾式加圧成形体を有することとなる。また、この斜方晶系のリン酸アルミニウムは、アルミナ微粒子の表面に形成されていることとしてもよい。この場合、斜方晶系のリン酸アルミニウムの被膜がアルミナ微粒子の表面に形成されていることとしてもよい。なお、加熱前に斜方晶系のリン酸アルミニウムを添加する場合、当該加熱前の時点では、アルミナ微粒子の表面には斜方晶系のリン酸アルミニウムの被膜は形成されておらず、加熱によって当該アルミナ微粒子の表面に斜方晶系のリン酸アルミニウムの被膜が形成されると考えられる。
 本断熱材の乾式加圧成形体を構成する混合粉体に含まれるアルミナ微粒子の量は、当該乾式加圧成形体の所望の特性を実現する範囲であれば特に限られない。すなわち、混合粉体は、例えば、40~99重量%のアルミナ微粒子を含むこととしてもよい。
 混合粉体に含まれるリン化合物の量は、乾式加圧成形体の所望の特性を実現する範囲であれば特に限られない。すなわち、混合粉体は、例えば、40~99重量%のアルミナ微粒子と、1~60重量%のリン化合物とを含むこととしてもよい。
 また、混合粉体は、例えば、当該混合粉体に含まれるアルミニウム(Al)に対するリン(P)のモル比が、0.01以上、0.02以上、0.02超、0.03以上、0.03超、0.04以上又は0.05以上となる量のリン化合物を含むこととしてもよい。
 すなわち、混合粉体は、例えば、40~99重量%のアルミナ微粒子と、当該混合粉体に含まれるアルミニウム(Al)に対するリン(P)のモル比が、0.01以上、0.02以上、0.02超、0.03以上、0.03超、0.04以上又は0.05以上となる量のリン化合物とを含むこととしてもよい。
 上記モル比が大きくなるにつれて、リン化合物の使用による効果も大きくなる傾向がある。混合粉体に含まれるアルミニウム(Al)に対するリン(P)のモル比の上限値は、乾式加圧成形体の所望の特性を実現する範囲であれば特に限られないが、当該モル比は、例えば、0.23以下であることとしてもよい。
 また、混合粉体は、例えば、アルミナ微粒子に含まれるアルミニウム(Al)に対するリン(P)のモル比が、0.01以上、0.02以上、0.02超、0.03以上、0.03超、0.04以上又は0.05以上となる量のリン化合物を含むこととしてもよい。
 すなわち、混合粉体は、例えば、40~99重量%のアルミナ微粒子と、当該混合粉体中のアルミナ微粒子に含まれるアルミニウム(Al)に対するリン(P)のモル比が、0.01以上、0.02以上、0.02超、0.03以上、0.03超、0.04以上又は0.05以上となる量のリン化合物とを含むこととしてもよい。
 上記モル比が大きくなるにつれて、リン化合物の使用による効果も大きくなる傾向がある。混合粉体中のアルミナ微粒子に含まれるアルミニウム(Al)に対するリン(P)のモル比の上限値は、乾式加圧成形体の所望の特性を実現する範囲であれば特に限られないが、当該モル比は、例えば、0.25以下であることとしてもよい。
 また、混合粉体が、上述した補強繊維をさらに含む場合、当該混合粉体は、例えば、45~98重量%のアルミナ微粒子と、1~30重量%のリン化合物と、1~30重量%の補強繊維とを含むこととしてもよい。
 上記の混合粉体は、アルミナ微粒子、リン化合物、及び任意成分として補強繊維、輻射散乱材、金属酸化物微粒子の合計を95重量%以上、98重量%以上、又は99重量%以上とすることができる。また、不可避不純物を含んでもよく、100重量%としてもよい。
 このような乾式加圧成形体を有する本断熱材は、優れた断熱性を有する。すなわち、例えば、乾式加圧成形体の1000℃における熱伝導率は、0.20W/(m・K)以下であることとしてもよく、0.15W/(m・K)以下であることとしてもよく、0.13W/(m・K)以下であることとしてもよく、0.10W/(m・K)以下であることとしてもよく、0.04W/(m・K)以下であることとしてもよい。また、例えば、乾式加圧成形体の25℃における熱伝導率は、0.045W/(m・K)以下であることとしてもよく、0.040W/(m・K)以下であることとしてもよい。
 乾式加圧成形体のBET法による比表面積は、20m/g以上であることとしてもよく、30m/g以上であることとしてもよい。乾式加圧成形体のBJH法により測定される細孔容積は、0.3cm/g以上であることとしてもよく、0.5cm/g以上であることとしてもよい。乾式加圧成形体の嵩密度は、特に限られないが、例えば、100~800kg/mであることとしてもよく、200~500kg/mであることとしてもよい。
 そして、本断熱材は、上述のとおり優れた耐熱性を有する。すなわち、例えば、本断熱材の乾式加圧成形体を1200℃で24時間加熱した場合における当該乾式加圧成形体の加熱線収縮率は、10%以下であることとしてもよい。さらに、加熱線収縮率は、例えば、8%以下であることとしてもよく、6%以下であることとしてもよく、5%以下であることとしてもよく、3%以下であることとしてもよい。加熱線収縮率は、加熱前の乾式加圧成形体の長さ(X)及び1200℃で24時間加熱後の当該乾式加圧成形体の長さ(Y)に基づき次の式により算出される:加熱線収縮率(%)={(X-Y)/X}×100。
 なお、本断熱材においては、乾式加圧成形体に含まれるリン化合物の量によって、その耐熱性等の特性を調節することができる。すなわち、本発明の発明者らの検討によれば、乾式加圧成形体におけるリン化合物の含有量を増加させることにより、加熱線収縮率を低下させることができ、比表面積及び細孔容積を増加させることができ、コランダムの生成を抑制することができる。
 本断熱材は、その優れた耐熱性を利用して、高温での耐熱性が要求される環境で使用されることとしてもよい。すなわち、本断熱材は、例えば、1100℃超(例えば、1200℃以上)の耐熱性が要求される環境で使用される断熱材(例えば、最高使用温度が1100℃超(例えば、1200℃以上)の断熱材)であることとしてもよい。この場合、本断熱材は、温度が1100℃超(例えば、1200℃以上)になり得る環境で使用される断熱材であるともいえる。
 次に、本実施形態に係る具体的な実施例について説明する。
[断熱材の製造]
 アルミナ微粒子とリン化合物と補強繊維とを含む混合粉末を乾式プレス成形して乾式加圧成形体からなる断熱材を製造した。アルミナ微粒子としては、一次粒子の平均粒径が約13nmのアルミナ微粒子(フュームドアルミナ微粒子、日本アエロジル株式会社製)を使用した。
 リン化合物としては、次の9種類(いずれも粉末状)のリン化合物、すなわち、リン酸二水素マグネシウム四水和物(Mg(HPO・4HO、太平化学産業株式会社製)、リン酸三マグネシウム八水和物(Mg(PO・8HO、太平化学産業株式会社製)、リン酸二水素カルシウム一水和物(Ca(HPO・HO、和光純薬工業株式会社製)、リン酸二水素アンモニウム(NHPO、キシダ化学株式会社製)、リン酸水素二アンモニウム((NHHPO、ナカライテスク株式会社製)、リン酸二水素アルミニウム(Al(HPO、ナカライテスク株式会社製)、六方晶系のリン酸アルミニウム(AlPO、キシダ化学株式会社製)、斜方晶系のリン酸アルミニウム(AlPO)及びトリフェニルホスフィン((CP、ナカライテスク株式会社製)を使用した。なお、斜方晶系のリン酸アルミニウムとしては、上記市販の六方晶系のリン酸アルミニウムを坩堝中で1250℃にて8時間焼成し、結晶を六方晶から斜方晶に転移させることにより調製したものを使用した。補強繊維としては、S2ガラス繊維(シリカ-アルミナ-マグネシア繊維、AGY社製)(平均繊維径10μm、平均繊維長6.4mm、agy製)を使用した。
 まず、アルミナ微粒子75wt%と、上述した9種類のうち1種のリン化合物20wt%と、補強繊維5wt%とを混合装置に投入し、乾式混合することにより、混合粉末を調製した。
 次いで、この混合粉末を所定の脱気機構が付属した成形型に充填した。そして、製造される乾式加圧成形体の嵩密度が270kg/mとなるようにプレス圧を調節して、乾式プレス成形を行った。その後、成形された板状の乾式加圧成形体を成形型から取り出した。
 さらに、乾式加圧成形体を焼成した。すなわち、乾式加圧成形体を1200℃で24時間加熱した。また、比較のため、リン化合物を含まず、アルミナ微粒子95wt%と補強繊維5wt%とを含む混合粉末を使用した以外は上述の例と同様にして、乾式加圧成形体を製造した。こうして乾式加圧成形体からなる10種類の断熱材を製造した。
[断熱材の特性の評価]
 1200℃の加熱の前後で測定した乾式加圧成形体の長さの変化に基づき、1200℃で24時間加熱した場合における当該乾式加圧成形体の加熱線収縮率を算出した。すなわち、各乾式加圧成形体から、長さ100mm、幅30mm、厚さ15mmの板状の試験体を作製した。次いで、この試験体を電気炉中1200℃で24時間加熱した。なお、1200℃までの昇温速度は200℃/時間であった。さらに、加熱後の試験体の長さを測定した。そして、次式により加熱線収縮率を算出した:加熱線収縮率(%)={(X-Y)/X}×100。なお、この式において、Xは加熱前の試験体の長さ(mm)であり、Yは加熱後の当該試験体の長さ(mm)である。
 また、加熱後の乾式加圧成形体の比表面積をBET法により測定した。また、加熱後の乾式加圧成形体の細孔容積をBJH法により測定した。すなわち、加熱後の乾式加圧成形体を試験体として使用するガス吸着法により、相対圧と吸着量との相関関係を示す脱着等温線を取得し、当該脱着等温線から乾式加圧成形体の細孔径を求め、当該細孔径から当該乾式加圧成形体の細孔容積を算出した。さらに、加熱前及び加熱後の乾式加圧成形体について、XRD測定を行った。
[結果]
 図1には、リン化合物を使用して製造した9種類の乾式加圧成形体(例I~IX)、及び当該リン化合物を使用することなく製造した1種類の乾式加圧成形体(例X)の各々について、1200℃における加熱線収縮率(%)、比表面積(m/g)、細孔容積(cm/g)及びXRDにおけるコランダム検出を評価した結果を示す。
 また、図2A~図2Jには、加熱後の乾式加圧成形体について得られたXRDチャートを示す。すなわち、図2AはMg(HPO・4HOを、図2BはMg(PO・8HOを、図2CはCa(HPO・HOを、図2DはNHPOを、図2Eは(NHHPOを、図2FはAl(HPOを、図2Gは六方晶系のAlPOを、図2Hは斜方晶系のAlPOを、図2Iは(CPを、それぞれ使用して製造された乾式加圧成形体の結果を示し、図2Jは、リン化合物を使用することなく製造された乾式加圧成形体の結果を示す。
 また、図3A~図3Iには、加熱前の乾式加圧成形体の各々について得られたXRDチャートを示す。すなわち、図3AはMg(HPO・4HOを、図3BはMg(PO・8HOを、図3CはCa(HPO・HOを、図3DはNHPOを、図3Eは(NHHPOを、図3Fは六方晶系のAlPOを、図3Gは斜方晶系のAlPOを、図3Hは(CPを、それぞれ使用して製造された乾式加圧成形体の結果を示し、図3Iは、リン化合物を使用することなく製造された乾式加圧成形体の結果を示す。なお、Al(HPOを使用して製造された加熱前の乾式加圧成形体については実験の都合によりXRD測定を行うことができなかった。
 図1に示すように、リン化合物を使用して製造された9種類の乾式加圧成形体(例I~IX)はいずれも、リン化合物を使用することなく製造された乾式加圧成形体(例X)に比べて、加熱線収縮率が顕著に小さく、比表面積及び細孔容積が顕著に大きかった。すなわち、リン化合物を使用して製造された乾式加圧成形体の耐熱性及び断熱性に関する特性は、リン化合物を使用することなく製造された乾式加圧成形体に比べて、顕著に優れていた。
 また、XRD測定においては、リン化合物を使用することなく製造された乾式加圧成形体(例X)では、加熱前にコランダムは検出されず、コランダム以外のアルミナ(γ-アルミナ、δ-アルミナ、η-アルミナ、θ-アルミナ)が検出されたのに対し(図1、図3I)、加熱後はコランダムのみが検出された(図1、図2J)。一方、リン化合物を使用して製造された9種類の乾式加圧成形体(例I~IX)では、加熱前にコランダムは検出されず、加熱後においても、コランダムは検出されず又は極僅かに検出されたのみであった(図1、図2A~図2I、図3A~図3H)。
 また、図2A~図2G、図2I、図3A~図3F及び図3Hに示すように、斜方晶系のリン酸アルミニウム以外のリン化合物を使用して製造された8種類の乾式加圧成形体(例I~VII、IX)において、加熱後に、加熱前には検出されなかった斜方晶系のリン酸アルミニウム(AlPO)のピークが21°~23°の範囲(21.8°付近)に検出された。なお、例VIIについては、図3Fに示すように、加熱前の乾式加圧成形体においては、リン化合物として、六方晶系のリン酸アルミニウム(Berlinite)のピークが26.4°付近に検出されたのみであったに対し、図2Gに示すように、加熱後の乾式加圧成形体においては、加熱前には含まれていなかった斜方晶系のリン酸アルミニウムのピークが21.8°付近に新たに検出された。また、図2H及び図3Gに示すように、斜方晶系のリン酸アルミニウムを使用して製造された乾式加圧成形体(例VIII)においては、加熱の前後で斜方晶系のリン酸アルミニウム(AlPO)のピークが21°~23°の範囲(21.8°付近)に検出された。
 したがって、加熱後の乾式加圧成形体において新たに検出されたリン酸アルミニウム(図3A~図3F及び図3H)は、加熱によって、加熱前の当該乾式加圧成形体に含まれていたアルミナとリン化合物とが化学的に反応することにより生成されたものであると考えられた。また、斜方晶系のリン酸アルミニウムを使用して乾式加圧成形体を製造した例VIIIにおいては、XRD測定の結果(図2H及び図3G)のみからでは明らかではないが、図1に示すように、当該斜方晶系のリン酸アルミニウムを加熱前に添加することで、他の例I~VII、IXと同様の効果が得られたため、当該効果には、当該添加された斜方晶系のリン酸アルミニウムとアルミナとの化学的な反応が関与していると考えられた。
[予備試験]
 なお、上述した実験に先立って行った予備実験の結果について補足的に説明する。この予備実験では、リン化合物を含まず、アルミナ微粒子100wt%を含む粉末材料(アルミナ微粒子からなる粉末材料)を使用した。すなわち、この粉末材料を、800℃~1200℃の範囲内の5種類の温度(800℃、1000℃、1100℃、1150℃又は1200℃)で24時間加熱した。
 そして、互いに異なる温度で加熱された5種類の粉末材料、及び加熱していない粉末材料の各々について、上述の例と同様に、細孔容積及び比表面積の測定と、XRD測定とを行った。
 その結果、未加熱の粉末材料及び800℃~1100℃で加熱された粉末材料については、比表面積が100~119(m/g)、細孔容積が0.51~0.70(cm/g)であり、XRDチャートにおいてコランダムのピークは検出されなかった。
 これに対し、1150℃で加熱された粉末材料については、比表面積が69(m/g)であり、細孔容積が0.49(cm/g)であり、XRDチャートではコランダムのピークが僅かに検出された。
 さらに、1200℃で加熱された粉末材料については、比表面積が13(m/g)であり、細孔容積が0.05(cm/g)であり、XRDチャートではコランダムのみが検出された。
 すなわち、リン化合物を含まないアルミナ微粒子からなる粉末材料は、1100℃超の温度で加熱されることにより、その特性が損なわれることが確認されるとともに、当該特性の劣化にはコランダムの生成(結晶転移)が関与している可能性が示された。
[断熱材の製造]
 リン化合物として、リン酸二水素アルミニウム(Al(HPO)、ナカライテスク株式会社製)を使用した。そして、混合粉体におけるリン化合物の含有率を変えて、上述の実施例1と同様にして、乾式加圧成形体からなる断熱材を製造した。
 すなわち、リン化合物の含有率が1.9wt%(アルミナ微粒子93.1wt%、補強繊維5.0wt%)の原料、リン化合物の含有率が3.8wt%(アルミナ微粒子91.2wt%、補強繊維5.0wt%)の原料、リン化合物の含有率が6.2wt%(アルミナ微粒子88.8wt%、補強繊維5.0wt%)の原料、リン化合物の含有率が8.9wt%(アルミナ微粒子86.1wt%、補強繊維5.0wt%)の原料、リン化合物の含有率が16.4wt%(アルミナ微粒子78.6wt%、補強繊維5.0wt%)の原料、及びリン化合物の含有率が20.0wt%(アルミナ微粒子75.0wt%、補強繊維5.0wt%)の混合粉体を乾式プレス成形して6種類の乾式加圧成形体を製造した。
 また、比較のために、リン化合物を含まず、アルミナ微粒子95.0wt%と補強繊維5.0wt%とを含む混合粉体を使用した以外は上述の例と同様にして、乾式加圧成形体を製造した。こうして7種類の断熱材を製造した。
[断熱材の特性の評価]
 上述の実施例1と同様に、乾式加圧成形体の加熱線収縮率、比表面積及び細孔容積を測定するとともに、XRD測定を行った。なお、XRD測定においては、各乾式加圧成形体について、次の式により、コランダム化率(%)を算出した:コランダム化率(%)=(XRDチャートにおけるコランダムピーク強度)÷(リン化合物を使用することなく製造された乾式加圧成形体のXRDチャートにおけるコランダムピーク強度)×100。また、乾式加圧成形体の電解放出型電子顕微鏡(FE-SEM)による観察も行った。
[結果]
 図4には、7種類の乾式加圧成形体の各々について、混合粉体におけるリン化合物の含有率(wt%)、混合粉体におけるアルミニウム(Al)に対するリン(P)のモル比(P/Al比)、加熱線収縮率(%)、比表面積(m/g)、細孔容積(cm/g)及びコランダム化率(%)を評価した結果を示す。
 また、図5Aには、混合粉体におけるリン化合物の含有率(wt%)と、乾式加圧成形体の加熱線収縮率(%)との相関関係を示し、図5Bには、混合粉体におけるP/Al比と当該加熱線収縮率との相関関係を示す。また、図6Aには、混合粉体におけるリン化合物の含有率(wt%)と、加熱後の乾式加圧成形体のコランダム化率(%)との相関関係を示し、図6Bには、混合粉体におけるP/Al比と当該コランダム化率との相関関係を示す。
 また、図7A~図7Cには、リン化合物を含まない混合粉体を使用して製造された加熱前の乾式加圧成形体(図7A)、リン化合物を含まない混合粉体を使用して製造された加熱後の乾式加圧成形体(図7B)及びリン化合物を20wt%含む混合粉体を使用して製造された加熱後の乾式加圧成形体(図7C)のFE-SEM写真(50000倍)を示す。
 図4、図5A及び図5Bに示すように、リン化合物を含む混合粉体から製造された乾式加圧成形体の加熱線収縮率は、2.1~6.7%であり、リン化合物を含まない混合粉体から製造された乾式加圧成形体のそれ(18.2%)に比べて、顕著に小さかった。
 さらに、リン化合物を含む混合粉体から製造された乾式加圧成形体の加熱線収縮率は、当該混合粉体における当該リン化合物の含有率及びP/Al比が増加するにつれて低下する傾向が確認された。
 また、図4に示すように、リン化合物を含む混合粉体から製造された乾式加圧成形体の加熱後の比表面積及び細孔容積は、リン化合物を含まない混合粉体から製造された乾式加圧成形体のそれに比べて大きかった。
 さらに、リン化合物を含む混合粉体から製造された乾式加圧成形体の加熱後の比表面積及び細孔容積は、当該混合粉体における当該リン化合物の含有率及びP/Al比が増加するにつれて増加する傾向が確認された。
 また、図7A及び図7Bに示すように、リン化合物を含まない混合粉体から製造された加熱後の乾式加圧成形体(図7B)においては、リン化合物を含まない混合粉体から製造された加熱前の乾式加圧成形体(図7A)に比べて、微粒子の粒径の顕著な増大が確認された。これに対し、図7Cに示すように、リン化合物を含む混合粉体から製造された加熱後の乾式加圧成形体においては、微粒子の粒径は小さく維持されていた。
 また、図4、図6A及び図6Bに示すように、リン化合物を含まない混合粉体から製造された乾式加圧成形体の加熱後のコランダム化率は100%であったのに対し、リン化合物を含む混合粉体から製造された乾式加圧成形体の加熱後のそれは、当該混合粉体における当該リン化合物の含有率及びP/Al比が増加するにつれて低下する傾向が確認された。
 特に、混合粉体におけるリン化合物の含有率が3.8wt%超である場合(P/Al比が0.02超である場合、0.03以上である場合)には、加熱後の乾式加圧成形体のコランダム化率は顕著に低減された。さらに、混合粉体におけるリン化合物の含有率が6.2wt%超である場合(P/Al比が0.03超である場合、0.05以上である場合)には、加熱後の乾式加圧成形体におけるコランダムの生成は実質的に回避された。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (16)

  1.  アルミナ微粒子とリン化合物とを含む混合粉体の乾式加圧成形体を有する
     ことを特徴とする断熱材。
  2.  前記リン化合物は、前記アルミナ微粒子に含まれるアルミナと化学的に反応してアルミニウム及びリンを含む化合物を生成するリン化合物である
     ことを特徴とする請求項1に記載の断熱材。
  3.  前記アルミニウム及びリンを含む化合物は、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)である
     ことを特徴とする請求項2に記載の断熱材。
  4.  前記乾式加圧成形体は、1200℃で24時間加熱された後のXRD測定において21°~23°の範囲内に斜方晶系のリン酸アルミニウム(AlPO)のピークが検出される
     ことを特徴とする請求項1乃至3のいずれかに記載の断熱材。
  5.  前記リン化合物は、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)である
     ことを特徴とする請求項1に記載の断熱材。
  6.  前記乾式加圧成形体を1200℃で24時間加熱した場合における前記乾式加圧成形体の加熱線収縮率は、10%以下である
     ことを特徴とする請求項1乃至5のいずれかに記載の断熱材。
  7.  アルミナ微粒子を含む乾式加圧成形体を有する断熱材の製造方法であって、
     前記アルミナ微粒子とリン化合物とを含む混合粉体の前記乾式加圧成形体を得ること
     を含む
     ことを特徴とする断熱材の製造方法。
  8.  前記リン化合物は、前記アルミナ微粒子に含まれるアルミナと化学的に反応してアルミニウム及びリンを含む化合物を生成するリン化合物である
     ことを特徴とする請求項7に記載の断熱材の製造方法。
  9.  前記アルミニウム及びリンを含む化合物は、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)である
     ことを特徴とする請求項8に記載の断熱材の製造方法。
  10.  1200℃で24時間加熱された後のXRD測定において21°~23°の範囲内に斜方晶系のリン酸アルミニウム(AlPO)のピークが検出される前記乾式加圧成形体を得る
     ことを特徴とする請求項7乃至9のいずれかに記載の断熱材の製造方法。
  11.  前記混合粉体を700℃以上の温度で加熱することをさらに含む
     ことを特徴とする請求項7乃至10のいずれかに記載の断熱材の製造方法。
  12.  前記温度は、1000℃超である
     ことを特徴とする請求項11に記載の断熱材の製造方法。
  13.  前記混合粉体を前記温度で加熱することにより、前記アルミナ微粒子と、前記アルミナ微粒子に含まれるアルミナと前記リン化合物との化学的な反応により生成されたアルミニウム及びリンを含む化合物とを含む前記混合粉体を得ることを含む
     ことを特徴とする請求項11又は12に記載の断熱材の製造方法。
  14.  前記混合粉体を前記温度で加熱することにより、前記アルミナ微粒子と、前記アルミナ微粒子に由来するアルミニウム及び前記リン化合物に由来するリンを含む化合物とを含む混合粉体を得ることを含む
     ことを特徴とする請求項11乃至13のいずれかに記載の断熱材の製造方法。
  15.  前記混合粉体を前記温度で加熱することにより、前記アルミナ微粒子と、アルミニウム及びリンを含む化合物であって加熱前には含まれていなかった化合物とを含む混合粉体を得ることを含む
     ことを特徴とする請求項11乃至13のいずれかに記載の断熱材の製造方法。
  16.  前記アルミニウム及びリンを含む化合物は、XRD測定において21°~23°の範囲内にピークが検出される斜方晶系のリン酸アルミニウム(AlPO)である
     ことを特徴とする請求項13乃至15に記載の断熱材の製造方法。
PCT/JP2013/006695 2012-11-30 2013-11-14 断熱材及びその製造方法 WO2014083793A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012262910A JP2014108901A (ja) 2012-11-30 2012-11-30 断熱材及びその製造方法
JP2012-262910 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014083793A1 true WO2014083793A1 (ja) 2014-06-05

Family

ID=50827456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006695 WO2014083793A1 (ja) 2012-11-30 2013-11-14 断熱材及びその製造方法

Country Status (2)

Country Link
JP (1) JP2014108901A (ja)
WO (1) WO2014083793A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122036A1 (ja) * 2010-03-30 2011-10-06 株式会社クラレ 複合構造体、それを用いた包装材料および成形品、複合構造体の製造方法、ならびにコーティング液
WO2012050035A1 (ja) * 2010-10-14 2012-04-19 ニチアス株式会社 断熱材および断熱材の製造方法
WO2012090566A1 (ja) * 2010-12-27 2012-07-05 旭化成ケミカルズ株式会社 断熱材及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122036A1 (ja) * 2010-03-30 2011-10-06 株式会社クラレ 複合構造体、それを用いた包装材料および成形品、複合構造体の製造方法、ならびにコーティング液
JP2011226644A (ja) * 2010-03-30 2011-11-10 Kuraray Co Ltd 真空断熱材
CN102821945A (zh) * 2010-03-30 2012-12-12 可乐丽股份有限公司 复合结构体、使用该结构体的包装材料和成形品、复合结构体的制造方法、以及涂布液
EP2554367A1 (en) * 2010-03-30 2013-02-06 Kuraray Co., Ltd. Composite structure, packaging material and molded article each produced using same, process for production of composite structure, and coating solution
US20130034674A1 (en) * 2010-03-30 2013-02-07 Kuraray Co., Ltd. Composite structural material formed product and packaging material using the same, method for producing the composite structural material, and coating liquid
KR20130018282A (ko) * 2010-03-30 2013-02-20 가부시키가이샤 구라레 복합 구조체, 이를 사용한 포장 재료 및 성형품, 복합 구조체의 제조 방법, 및 코팅액
WO2012050035A1 (ja) * 2010-10-14 2012-04-19 ニチアス株式会社 断熱材および断熱材の製造方法
JP2012081701A (ja) * 2010-10-14 2012-04-26 Nichias Corp 断熱材および断熱材の製造方法
WO2012090566A1 (ja) * 2010-12-27 2012-07-05 旭化成ケミカルズ株式会社 断熱材及びその製造方法
KR20130095298A (ko) * 2010-12-27 2013-08-27 아사히 가세이 케미칼즈 가부시키가이샤 단열재 및 그 제조 방법

Also Published As

Publication number Publication date
JP2014108901A (ja) 2014-06-12

Similar Documents

Publication Publication Date Title
KR101206331B1 (ko) 산질화물 분말 및 그 제조방법
CN106350008B (zh) 尤其用于制造制动片的摩擦材料和相关制备方法
EP2829527A1 (en) Heat insulator composition, heat insulator using same, and method for manufacturing heat insulator
Colorado et al. Inorganic phosphate cement fabricated with wollastonite, barium titanate, and phosphoric acid
KR20120087909A (ko) 그라펜 층을 갖는 복합 재료 및 그의 제조 및 용도
US10253917B2 (en) Insulation material and method of manufacturing same
JP2011085216A (ja) 断熱材及びその製造方法
EP2801657B1 (en) Glass fiber board comprising inorganic binder and method for preparing same
JP2013527827A (ja) 耐火性組成物及びそれから物品を形成する方法
JPWO2020032060A1 (ja) 六方晶窒化ホウ素粉末、及び六方晶窒化ホウ素粉末の製造方法
EP3024799A1 (fr) Produit a haute teneur en alumine
JP5871685B2 (ja) けい酸カルシウム成形体およびその製造方法
WO2002072477A1 (fr) Procede d'elaboration de particules de graphite et refractaire employant ce procede
WO2014083793A1 (ja) 断熱材及びその製造方法
JP2012188307A (ja) 調湿建材及びその製造方法
JP2018146098A (ja) 断熱材の製造方法
Bernardo et al. Development of multiphase bioceramics from a filler-containing preceramic polymer
CN105315005A (zh) 绝热材料
JP5833152B2 (ja) 断熱材及びその製造方法
Hong et al. Densification, Crystallization, and Dielectric Properties of AlN, BN, and Si 3 N 4 Filler‐Containing LTCC Materials
JPH1179720A (ja) 六方晶窒化ほう素粉末及び用途
WO2021100617A1 (ja) 六方晶窒化ホウ素粉末
Boakye et al. Two Phase Monazite/Xenotime 30LaPO4–70YPO4 Coating of Ceramic Fiber Tows
JP2014129873A (ja) 断熱材及びその製造方法
JP2020001942A (ja) 断熱材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857840

Country of ref document: EP

Kind code of ref document: A1