WO2014083650A1 - 空気調和装置 - Google Patents
空気調和装置 Download PDFInfo
- Publication number
- WO2014083650A1 WO2014083650A1 PCT/JP2012/080912 JP2012080912W WO2014083650A1 WO 2014083650 A1 WO2014083650 A1 WO 2014083650A1 JP 2012080912 W JP2012080912 W JP 2012080912W WO 2014083650 A1 WO2014083650 A1 WO 2014083650A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- source side
- heat source
- heat exchanger
- side heat
- heat
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
- F25B47/022—Defrosting cycles hot gas defrosting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/0408—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
- F28D1/0426—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
- F28D1/0435—Combination of units extending one behind the other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
- F28F1/325—Fins with openings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/025—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
- F25B2313/0251—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/025—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
- F25B2313/0253—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/031—Sensor arrangements
- F25B2313/0314—Temperature sensors near the indoor heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/031—Sensor arrangements
- F25B2313/0315—Temperature sensors near the outdoor heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2104—Temperatures of an indoor room or compartment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2106—Temperatures of fresh outdoor air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21152—Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D2001/0253—Particular components
- F28D2001/026—Cores
- F28D2001/0273—Cores having special shape, e.g. curved, annular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0061—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0061—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
- F28D2021/0063—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0061—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
- F28D2021/0064—Vaporizers, e.g. evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/02—Arrangements of fins common to different heat exchange sections, the fins being in contact with different heat exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2270/00—Thermal insulation; Thermal decoupling
Definitions
- the present invention relates to an air conditioner.
- an outdoor unit that is a heat source unit arranged outside a building is connected to an indoor unit (indoor unit) arranged inside the building by pipe connection.
- the refrigerant circuit is configured to circulate the refrigerant.
- heating or cooling of the air-conditioning target space is performed by heating and cooling the air using the heat radiation and heat absorption of the refrigerant.
- the heat exchanger of the outdoor unit serves as an evaporator, and the low-temperature refrigerant and air exchange heat, so that moisture in the air is transferred to the fins and heat transfer tubes of the heat exchanger. It condenses and frosts on the heat exchanger.
- the defrosting operation is performed by stopping the heating operation, switching the refrigerant flow switching valve, and using the heat exchanger of the outdoor unit as a condenser. Such a defrosting operation can prevent a decrease in heating capacity.
- the indoor heating operation is also stopped during the defrosting operation, the indoor temperature is lowered and the comfort of the indoor environment is impaired.
- a plurality of outdoor heat exchangers are provided, and bypass piping is provided so that the discharge gas of the compressor can be bypassed to each heat exchanger via an on-off valve.
- bypass piping is provided so that the discharge gas of the compressor can be bypassed to each heat exchanger via an on-off valve.
- the air conditioning apparatus described in Patent Literature 1 and Patent Literature 2 uses a plurality of outdoor heat exchangers, and simultaneously performs heating operation with an evaporator and defrosting operation with a condenser.
- the positional relationship of each heat exchanger is not clarified. For example, when the evaporator and the condenser are arranged next to each other (for example, arranged one above the other) and the heat exchangers constituting each are connected continuously via fins, At the boundary, heat leakage from the condenser to the evaporator occurs through the connected fins.
- the defrosting ability of the condenser decreases near the boundary between the evaporator and the condenser, and defrosting near the boundary becomes insufficient. For this reason, the time required for defrosting becomes long, the indoor heating capability during defrosting operation falls, and the comfort of indoor environment is impaired. Furthermore, water droplets generated after defrosting freeze, generating root ice, reducing the heat transfer area of the heat exchanger, reducing the heating capacity, and impairing the comfort of the indoor environment.
- the frosting amount of the heat exchanger operating as an evaporator increases during the defrosting operation. For this reason, the heat transfer area of the heat exchanger operating as an evaporator is reduced, the heating capacity is reduced, and the comfort of the indoor environment is impaired.
- the present invention has been made to solve the above-described problem, and provides an air conditioner that can suppress heat leakage through fins between a plurality of heat exchangers arranged adjacent to each other. For the purpose.
- a compressor, a load-side heat exchanger, a load-side expansion device, and a plurality of heat source-side heat exchangers connected in parallel to each other are sequentially connected by piping so that the refrigerant circulates.
- a main circuit a bypass pipe that branches a part of the refrigerant discharged from the compressor, and flows into the heat source side heat exchanger to be defrosted among the plurality of heat source side heat exchangers, and a flow of the bypass pipe
- the heat source side heat exchanger includes a plurality of fins arranged at intervals so as to allow air to pass therethrough, and a plurality of heat transfer tubes inserted into the plurality of fins and through which the refrigerant flows.
- the present invention can suppress heat leakage through fins between a plurality of heat source side heat exchangers arranged adjacent to each other. Therefore, even when a part of the plurality of heat source side heat exchangers is defrosted and the other part is operated for heating, residual frost and roots at the boundary part of the plurality of adjacent heat source side heat exchangers. Generation of ice can be suppressed. Therefore, it is possible to provide an air conditioner that shortens the defrosting time, suppresses a decrease in heating capacity, and ensures the comfort of the indoor environment.
- FIG. 1 is a schematic circuit configuration diagram showing an example of a circuit configuration of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the detailed structure of the air conditioning apparatus 100 is demonstrated. As shown in FIG. 1, the air conditioner 100 includes an outdoor unit 1 and an indoor unit 2, and the outdoor unit 1 and the indoor unit 2 are connected by a refrigerant main pipe 4. The air conditioning apparatus 100 circulates refrigerant and performs air conditioning using a refrigeration cycle. The air-conditioning apparatus 100 has a cooling only operation mode in which all the indoor units 2 to be operated are cooled, a heating only operation mode in which all the indoor units 2 to be heated are heated, or the indoor unit 2 is continuing the heating operation. A defrosting operation mode for defrosting the heat exchanger in the outdoor unit 1 can be selected.
- the outdoor unit 1 includes a compressor 10, a refrigerant flow switching device 11, such as a four-way valve, a heat source side heat exchanger 12a, a heat source side heat exchanger 12b, an accumulator 13, a refrigerant pipe 3, and a hot gas bypass pipe 5. Mounted.
- the compressor 10, the refrigerant flow switching device 11 such as a four-way valve, the heat source side heat exchanger 12 a, the heat source side heat exchanger 12 b, and the accumulator 13 are connected by a refrigerant pipe 3.
- the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are connected to each other in parallel by the refrigerant pipe 3.
- Second opening / closing devices 31a and 31b are provided in the refrigerant pipe 3 on the load side expansion device 22 side of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b.
- the hot gas bypass pipe 5 branches a part of the high-temperature refrigerant discharged from the compressor 10 and flows into the heat source side heat exchanger 12 to be defrosted among the heat source side heat exchanger 12a and the heat source side heat exchanger 12b. Let That is, as shown in FIG. 1, one end of the hot gas bypass pipe 5 is connected to the refrigerant pipe 3 between the discharge unit of the compressor 10 and the refrigerant flow switching device 11. Further, the other end of the hot gas bypass pipe 5 is branched into two branches, one being connected to the refrigerant pipe 3 between the heat source side heat exchanger 12a and the second switchgear 31a, and the other being the heat source side heat exchanger.
- the hot gas bypass pipe 5 connected to the heat source side heat exchanger 12a is provided with a first opening / closing device 30a.
- the hot gas bypass pipe 5 connected to the heat source side heat exchanger 12b is provided with a first opening / closing device 30b.
- the first opening / closing device 30a, the first opening / closing device 30b, the second opening / closing device 31a, and the second opening / closing device 31b constitute the “connection switching device” of the present invention.
- the compressor 10 sucks the refrigerant and compresses the refrigerant to a high temperature / high pressure state.
- the compressor 10 is configured by, for example, an inverter compressor capable of capacity control.
- the refrigerant flow switching device 11 switches the refrigerant flow in the heating only operation mode and the refrigerant flow in the cooling only operation mode.
- Both the heat source side heat exchanger 12a and the heat source side heat exchanger 12b function as an evaporator during the heating only operation mode and function as a condenser during the cooling only operation mode. Further, during the defrosting operation, one of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b functions as an evaporator and the other functions as a condenser.
- FIG. 2 is a schematic structural diagram showing an example of an outdoor unit installation state of the heat source side heat exchanger in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- the heat source side heat exchanger 12 a and the heat source side heat exchanger 12 b are arranged in the casing 51 of the outdoor unit 1.
- the heat source side heat exchanger 12a and the heat source side heat exchanger 12b include a plurality of fins arranged at intervals so that air passes, a plurality of heat transfer tubes inserted into the plurality of fins and through which the refrigerant flows, have.
- the heat source side heat exchanger 12a and the heat source side heat exchanger 12b exchange heat between air supplied from a blower such as the fan 52 and the refrigerant.
- the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are arranged adjacent to each other such that the plurality of fins face the same direction.
- the heat source side heat exchanger 12a is disposed on the upper side
- the heat source side heat exchanger 12b is disposed on the lower side.
- the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are respectively arranged adjacent to each other in the step direction of the heat transfer tubes. That is, the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are arranged in the vertical direction such that the fins face the same direction.
- a heat leakage reduction mechanism that reduces the amount of heat leakage between the adjacent heat source side heat exchangers 12a and 12b is provided between the adjacent fins. Details will be described later.
- the accumulator 13 is provided on the suction side of the compressor 10 and stores excess refrigerant due to a difference in operation state between the heating only operation mode and the cooling only operation mode, and excess refrigerant with respect to a transient change in operation. .
- the first opening / closing device 30a allows a high-temperature refrigerant to flow into the heat source side heat exchanger 12a from the hot gas bypass pipe 5. Open / close valve.
- the first switchgear 30b allows a high-temperature refrigerant to flow from the hot gas bypass pipe 5 into the heat source side heat exchanger 12b. Open / close valve.
- the first opening / closing devices 30a and 30b are constituted by a device capable of opening and closing a refrigerant flow path, such as a two-way valve, a solenoid valve, or an electronic expansion valve.
- the second opening / closing device 31a is a low-temperature two-phase flow that flows into the outdoor unit 1 from the indoor unit 2 through the refrigerant main pipe 4. This is an on-off valve for blocking the refrigerant flow path so that the refrigerant does not flow into the heat source side heat exchanger 12a.
- the second opening / closing device 31b is a low-temperature two-phase flow that flows into the outdoor unit 1 from the indoor unit 2 through the refrigerant main pipe 4.
- the second opening / closing devices 31a and 31b are constituted by a device capable of opening and closing a refrigerant flow path, such as a two-way valve, a solenoid valve, or an electronic expansion valve.
- the outdoor unit 1 is provided with a first pressure sensor 41 and a second pressure sensor 42 as pressure detection means.
- the first pressure sensor 41 is provided in a pipe between the compressor 10 and the refrigerant flow switching device 11.
- the first pressure sensor 41 detects the pressure of the high-temperature and high-pressure refrigerant discharged from the compressor 10.
- the second pressure sensor 42 is provided in a pipe between the refrigerant flow switching device 11 and the accumulator 13.
- the second pressure sensor 42 detects the pressure of the low-pressure refrigerant sucked into the compressor 10.
- the outdoor unit 1 is provided with a first temperature sensor 43, a second temperature sensor 45, a third temperature sensor 48a, and a third temperature sensor 48b as temperature detection means.
- the first temperature sensor 43, the second temperature sensor 45, the third temperature sensor 48a, and the third temperature sensor 48b are composed of, for example, a thermistor.
- the first temperature sensor 43 is provided in a pipe between the compressor 10 and the refrigerant flow switching device 11.
- the first temperature sensor 43 measures the temperature of the refrigerant discharged from the compressor 10.
- the 2nd temperature sensor 45 is provided in the air suction part of either the heat source side heat exchanger 12a or the heat source side heat exchanger 12b.
- the second temperature sensor 45 measures the air temperature around the outdoor unit 1.
- the third temperature sensor 48 a is provided in a pipe between the heat source side heat exchanger 12 a and the refrigerant flow switching device 11.
- the third temperature sensor 48a measures the temperature of the refrigerant flowing out from the heat source side heat exchanger 12a operating as an evaporator.
- the third temperature sensor 48 b is provided in a pipe between the heat source side heat exchanger 12 b and the refrigerant flow switching device 11.
- the third temperature sensor 48b measures the temperature of the refrigerant flowing out from the heat source side heat exchanger 12b operating as an evaporator.
- the indoor unit 2 is equipped with a load side heat exchanger 21 and a load side expansion device 22.
- the load-side heat exchanger 21 is connected to the outdoor unit 1 through the refrigerant main pipe 4 and refrigerant flows in or out.
- the load side heat exchanger 21 performs heat exchange between air supplied from a blower such as a fan and a refrigerant, for example.
- the load-side heat exchanger 21 generates heating air or cooling air to be supplied to the indoor space.
- the load side throttle device 22 functions as a pressure reducing valve and an expansion valve, and decompresses the refrigerant to expand it.
- the load side expansion device 22 is provided on the upstream side of the load side heat exchanger 21 in the refrigerant flow during the cooling only operation mode.
- the load side throttle device 22 is configured by a valve whose opening degree can be variably controlled.
- the load side throttle device 22 is composed of, for example, an electronic expansion valve.
- the indoor unit 2 is provided with a fourth temperature sensor 46, a fifth temperature sensor 47, and a sixth temperature sensor 44 as temperature detecting means.
- the 4th temperature sensor 46, the 5th temperature sensor 47, and the 6th temperature sensor 44 comprise a thermistor etc., for example.
- the fourth temperature sensor 46 is provided in a pipe between the load side expansion device 22 and the load side heat exchanger 21.
- the fourth temperature sensor 46 detects the temperature of the refrigerant flowing into the load side heat exchanger 21 or the refrigerant flowing out of the load side heat exchanger.
- the fifth temperature sensor 47 is provided in a pipe between the load side heat exchanger 21 and the refrigerant flow switching device 11 of the outdoor unit 1.
- the fifth temperature sensor 47 detects the temperature of the refrigerant flowing into the load side heat exchanger 21 or the refrigerant flowing out of the load side heat exchanger 21.
- the sixth temperature sensor 44 is provided in the air suction portion of the load side heat exchanger 21. The sixth temperature sensor 44 detects the ambient air temperature in the room.
- the air conditioner 100 includes the compressor 10, the refrigerant flow switching device 11, the load side heat exchanger 21, the load side expansion device 22, and the heat source side heat exchanger 12a connected in parallel to each other. 12b are sequentially connected by piping to form a main circuit through which the refrigerant circulates. Further, a part of the refrigerant discharged from the compressor 10 is branched to form a bypass circuit that flows into the heat source side heat exchanger 12 to be defrosted among the heat source side heat exchangers 12a and 12b.
- the case where one indoor unit 2 is connected to the outdoor unit 1 through the refrigerant main pipe 4 is shown as an example.
- the present invention is not limited to this configuration.
- a plurality of indoor units 2 may be provided, and the plurality of indoor units 2 may be connected to the outdoor unit 1 in parallel.
- the control device 50 is constituted by a microcomputer, and the air conditioning apparatus 100 has a control device 50 constituted by a microcomputer.
- the control device 50 switches the driving frequency of the compressor 10, the rotational speed of the blower (including ON / OFF), the switching of the refrigerant flow switching device 11, the first, based on detection information from various detection means and instructions from the remote controller.
- Control of opening / closing of the opening / closing devices 30a, 30b, opening / closing of the second opening / closing device 31, opening degree of the load side expansion device 22, and the like, and each operation mode described later is executed.
- the control device 50 may be provided for each unit, or may be provided in the outdoor unit 1 or the indoor unit 2.
- each operation mode executed by the air conditioner 100 will be described. Below, each operation mode is demonstrated with the flow of a refrigerant
- FIG. 3 is a refrigerant circuit diagram illustrating the refrigerant flow in the cooling only operation mode of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- the cooling only operation mode will be described by taking as an example a case where a cooling load is generated in the load-side heat exchanger 21.
- the flow direction of the refrigerant is indicated by solid arrows.
- the refrigerant flow switching device 11 is switched to the state shown by the solid line in FIG. Both the first opening / closing device 30a and the first opening / closing device 30b are switched to the closed state and block the refrigerant. Both the second opening / closing device 31a and the second opening / closing device 31b are switched to the open state and allow the refrigerant to pass therethrough.
- the low-temperature and low-pressure refrigerant When the compressor 10 is driven, the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12a and the heat source side heat exchanger 12b via the refrigerant flow switching device 11.
- the high-temperature and high-pressure gas refrigerant that has flowed into the heat-source-side heat exchanger 12a and the heat-source-side heat exchanger 12b is radiated to the outdoor air in each of the heat-source-side heat exchanger 12a and the heat-source-side heat exchanger 12b, and is a high-pressure liquid refrigerant. It becomes.
- the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b merges through the second opening / closing device 31a and the second opening / closing device 31b, respectively, and flows out of the outdoor unit 1.
- the high-pressure liquid refrigerant that has flowed out of the outdoor unit 1 flows into the indoor unit 2 through the refrigerant main pipe 4 and is expanded by the load side expansion device 22 to become a low-temperature / low-pressure two-phase refrigerant.
- the two-phase refrigerant flows into the load-side heat exchanger 21 that operates as an evaporator and absorbs heat from the room air, thereby cooling the room air and becoming a low-temperature and low-pressure gas refrigerant.
- the gas refrigerant that has flowed out of the load-side heat exchanger 21 flows into the outdoor unit 1 again through the refrigerant main pipe 4.
- the refrigerant flowing into the outdoor unit 1 passes through the refrigerant flow switching device 11 and the accumulator 13 and is sucked into the compressor 10 again.
- the control device 50 loads the throttle device on the load side so that the superheat (superheat degree) obtained as the difference between the temperature detected by the fourth temperature sensor 46 and the temperature detected by the fifth temperature sensor 47 is constant.
- the opening degree of 22 is controlled.
- FIG. 4 is a refrigerant circuit diagram illustrating the refrigerant flow in the heating only operation mode of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- the heating only operation mode will be described by taking as an example a case where a thermal load is generated in the load-side heat exchanger 21.
- the flow direction of the refrigerant is indicated by solid line arrows.
- the refrigerant flow switching device 11 is switched to the state shown by the solid line in FIG. Both the first opening / closing device 30a and the first opening / closing device 30b are switched to the closed state and block the refrigerant. Both the second opening / closing device 31a and the second opening / closing device 31b are switched to the open state and allow the refrigerant to pass therethrough.
- the compressor 10 When the compressor 10 is driven, the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11.
- the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the indoor unit 2 through the refrigerant main pipe 4, and dissipates heat to the indoor air in the load-side heat exchanger 21, thereby heating the indoor air. It becomes a liquid refrigerant.
- the liquid refrigerant that has flowed out of the load-side heat exchanger 21 is expanded by the load-side expansion device 22, becomes a low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant, and flows into the outdoor unit 1 again through the refrigerant main pipe 4.
- the low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12a and the heat source side heat exchanger 12b through the second switchgear 31a and the second switchgear 31b, respectively.
- the refrigerant that has flowed into the heat source side heat exchanger 12a and the heat source side heat exchanger 12b absorbs heat from the outdoor air and becomes a low-temperature / low-pressure gas refrigerant, and the compressor 10 passes through the refrigerant flow switching device 11 and the accumulator 13. Inhaled again.
- the control device 50 has a constant subcool (degree of subcooling) obtained as a difference between a value obtained by converting the pressure detected by the first pressure sensor 41 into a saturation temperature and a temperature detected by the fourth temperature sensor 46. Thus, the opening degree of the load side expansion device 22 is controlled.
- the defrosting operation mode is performed when the detection results of the third temperature sensors 48a and 48b provided on the outlet sides of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are equal to or less than a predetermined value.
- the control device 50 performs the heating only operation mode, and when the detection result of the third temperature sensors 48a and 48b becomes a predetermined value or less (for example, about ⁇ 10 ° C. or less), the heat source side heat exchangers 12a and 12b It is determined that a predetermined amount of frost has occurred on the fin, and the defrosting operation mode is performed.
- the heat source side heat exchanger 12b located on the lower side in the casing 51 is defrosted, and then the upper side in the casing 51 The defrosting of the heat source side heat exchanger 12a located in is performed.
- the heat source side heat exchanger 12a and the heat source side heat exchanger 12b the heat source side heat exchanger that is not a defrost target is operated as an evaporator, and the load side heat exchanger 21 of the indoor unit 2 is operated as a condenser. Continue heating operation.
- FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is defrosting the heat source side heat exchanger 12b in the defrosting operation mode. is there.
- the flow direction of the refrigerant is indicated by solid line arrows.
- the refrigerant flow switching device 11 is maintained in the state shown by the solid line in FIG.
- the first opening / closing device 30b is switched to the open state and allows the refrigerant to pass therethrough.
- the second opening / closing device 31b is switched to the closed state and blocks the refrigerant.
- the first opening / closing device 30a is maintained in a closed state and blocks the refrigerant.
- the second opening / closing device 31a is maintained in the open state and allows the refrigerant to pass therethrough.
- the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
- a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the hot gas bypass pipe 5 and flows into the heat source side heat exchanger 12b through the first opening / closing device 30b.
- the high-temperature and high-pressure gas refrigerant flowing into the heat source side heat exchanger 12b becomes a low temperature gas refrigerant while melting frost adhering to the heat source side heat exchanger 12b, and merges with the refrigerant flowing out from the heat source side heat exchanger 12a.
- Another part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 via the refrigerant flow switching device 11.
- the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the indoor unit 2 through the refrigerant main pipe 4, and dissipates heat to the indoor air in the load-side heat exchanger 21, thereby heating the indoor air. It becomes a liquid refrigerant.
- the liquid refrigerant that has flowed out of the load-side heat exchanger 21 is expanded by the load-side expansion device 22, becomes a low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant, and flows into the outdoor unit 1 again through the refrigerant main pipe 4.
- the low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant flowing into the outdoor unit 1 flows into the heat source side heat exchanger 12a via the second opening / closing device 31a.
- the refrigerant flowing into the heat source side heat exchanger 12a absorbs heat from the outdoor air and becomes a low-temperature and low-pressure gas refrigerant.
- the gas refrigerant that has flowed out of the heat source side heat exchanger 12a merges with the gas refrigerant that has flowed out of the heat source side heat exchanger 12b, and is sucked into the compressor 10 again via the refrigerant flow switching device 11 and the accumulator 13. .
- the control device 50 When the temperature of the gas refrigerant at the outlet of the heat source side heat exchanger 12b detected by the third temperature sensor 48b becomes equal to or higher than a predetermined value (for example, 10 ° C. or higher), the control device 50 The defrosting of the side heat exchanger 12b is completed. Thereafter, defrosting of the heat source side heat exchanger 12a is performed.
- a predetermined value for example, 10 ° C. or higher
- the predetermined time is set to be equal to or longer than the time required until all the frost is melted, assuming that the entire heat source side heat exchanger 12b has been frosted without any gap and injecting a part of the high-temperature / high-pressure refrigerant. Good.
- FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is performing defrosting of the heat source side heat exchanger 12a in the defrosting operation mode. is there.
- the flow direction of the refrigerant is indicated by solid arrows.
- the refrigerant flow switching device 11 is maintained in the state shown by the solid line in FIG.
- the first opening / closing device 30a is switched to the open state and allows the refrigerant to pass therethrough.
- the second opening / closing device 31a is switched to the closed state and blocks the refrigerant.
- the first opening / closing device 30b is switched to the closed state and blocks the refrigerant.
- the second opening / closing device 31b is switched to the open state and allows the refrigerant to pass therethrough.
- the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
- a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the hot gas bypass pipe 5 and flows into the heat source side heat exchanger 12a through the first opening / closing device 30a.
- the high-temperature and high-pressure gas refrigerant flowing into the heat source side heat exchanger 12a becomes a low temperature gas refrigerant while melting frost adhering to the heat source side heat exchanger 12a, and merges with the refrigerant flowing out from the heat source side heat exchanger 12b.
- Another part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 via the refrigerant flow switching device 11.
- the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the indoor unit 2 through the refrigerant main pipe 4, and dissipates heat to the indoor air in the load-side heat exchanger 21, thereby heating the indoor air. It becomes a liquid refrigerant.
- the liquid refrigerant that has flowed out of the load-side heat exchanger 21 is expanded by the load-side expansion device 22, becomes a low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant, and flows into the outdoor unit 1 again through the refrigerant main pipe 4.
- the low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant flowing into the outdoor unit 1 flows into the heat source side heat exchanger 12b via the second opening / closing device 31b.
- the refrigerant flowing into the heat source side heat exchanger 12b absorbs heat from the outdoor air and becomes a low-temperature and low-pressure gas refrigerant.
- the gas refrigerant that has flowed out of the heat source side heat exchanger 12b merges with the gas refrigerant that has flowed out of the heat source side heat exchanger 12a, and is sucked into the compressor 10 again via the refrigerant flow switching device 11 and the accumulator 13. .
- the control device 50 When the temperature of the gas refrigerant at the outlet of the heat source side heat exchanger 12a detected by the third temperature sensor 48a becomes equal to or higher than a predetermined value (for example, 10 ° C or higher), the control device 50 The defrosting of the side heat exchanger 12a is completed.
- a predetermined value for example, 10 ° C or higher
- the predetermined time is set to be equal to or longer than the time required until all the frost is melted when it is assumed that the entire heat source side heat exchanger 12a has been frosted without any gap and a part of the high-temperature / high-pressure refrigerant flows. Good.
- the heat source side heat exchangers 12a and 12b can be defrosted while continuing the heating operation. Moreover, defrosting of the heat source side heat exchanger 12b located below the housing
- the defrost of the heat source side heat exchanger 12b was implemented and the case where the defrost of the heat source side heat exchanger 12a was implemented after that was demonstrated, this invention is not limited to this.
- a predetermined temperature or lower eg, ⁇ 10 ° C. or lower
- defrosting is performed first from the heat source side heat exchanger 12a. May be.
- FIG. 7 is a schematic structural diagram showing an example of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention that is divided without sharing the fins of the heat source side heat exchanger.
- 61 is a fin of the heat source side heat exchanger 12a.
- Reference numeral 64 denotes a heat transfer tube of the heat source side heat exchanger 12a.
- 62 is a fin of the heat source side heat exchanger 12b.
- 65 is a heat transfer tube of the heat source side heat exchanger 12b.
- the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are arranged adjacent to each other in the vertical direction (stage direction).
- the lowermost end face of the fin 61 of the heat source side heat exchanger 12a located on the upper side and the uppermost end face of the fin 62 of the heat source side heat exchanger 12b located on the lower side are divided. Further, the lowermost end surface of the fin 61 of the heat source side heat exchanger 12a located on the upper side and the uppermost end surface of the fin 62 of the heat source side heat exchanger 12b located on the lower side are in contact with each other at the boundary portion 63. Are arranged.
- the end surfaces of the fins 61 and the fins 62 are roughened to form a heat leakage reduction mechanism. Note that at least one of the end surfaces of the fin 61 and the fin 62 in the boundary portion 63 may be roughened.
- the fin 61 and the fin 62 are only in contact with each other at the boundary portion 63 by this heat leakage reduction mechanism. For this reason, the amount of heat leakage from the condenser to the evaporator due to heat conduction between the fin 61 and the fin 62 is suppressed as compared with the case where the fin 61 and the fin 62 are integrally formed (shared).
- the amount of heat leakage Q1 between the heat source side heat exchanger 12a and the heat source side heat exchanger 12b can be expressed by the following equation (1) using a general equation for heat exchange by heat conduction.
- T1 [° C.] is the refrigerant gas temperature of the heat source side heat exchanger 12 serving as a condenser among the heat source side heat exchangers 12a and 12b.
- T2 [° C.] is an inlet two-phase refrigerant temperature of the heat source side heat exchanger 12 serving as an evaporator among the heat source side heat exchangers 12a and 12b.
- ⁇ [W / mK] is the thermal conductivity of the fin.
- ⁇ [m] is a distance between fins indicating the distance between the heat transfer tube end near the boundary 63 of the heat source side heat exchanger 12a and the heat transfer tube end near the boundary 63 of the heat source side heat exchanger 12b.
- a [m 2 ] is an area calculated by multiplying the fin width [m], the fin thickness [m], and the number of fins.
- the amount of heat leakage Q1 when the fin 61 and the fin 62 are integrally formed (shared) will be examined.
- the average temperature T1 of the gas refrigerant flowing in the condenser for defrosting is set to 20 ° C.
- the temperature T2 of the refrigerant flowing in the evaporator used in the heating operation is set to ⁇ 15 ° C.
- the distance ⁇ between fins of the heat transfer tube end of the evaporator at the boundary 63 and the heat transfer tube end of the condenser is 12.5 mm
- the fin width is 17 mm and the fin thickness when the heat exchange is not divided.
- the thickness is 0.1 mm and the number of fins is 3700.
- the heat leakage amount Q1 from the condenser to the evaporator when the fins are shared without being divided is about 3.60 kW.
- the amount of heat leakage Q1 when the fins at the boundary 63 between the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are divided is examined.
- the product of the heat transfer area (contact area) of the contact portion between the fin 61 of the upper heat source side heat exchanger 12a and the fin 62 of the lower heat source side heat exchanger 12b and the heat passage rate is Assume that the heat transfer area (contact area) in the case of sharing is half the product of the heat transmission rate.
- the heat leakage amount Q1 from the condenser to the evaporator due to heat conduction of the fins is suppressed by about 25% or more compared to the case where all the fins are connected in common, and the heat leakage amount Q1 is about 2%. .7 kW.
- the time required to complete the defrosting is examined.
- the amount of heat Q2 (calculated by multiplying the frost melting latent heat and the weight of frost) necessary to melt the frost frosted on the evaporator is about 1.5 MJ, from the condenser to the evaporator due to heat conduction of the fins.
- the amount of heat exchange Q3 between the refrigerant and frost used for defrosting when there is no heat leakage amount is about 5.5 kW.
- the time required for completing the defrosting is obtained by dividing the frost melting heat amount Q2 by the difference between the heat exchange amount Q3 and the heat leakage amount Q1.
- the time required for completing the defrosting is as follows: About 13 minutes.
- the heat leakage amount Q1 is suppressed by about 25% to be about 2.7 kW, and the defrosting is completed when the heat exchange amounts Q2 and Q3 are the above conditions.
- the time required to do this is about 9 minutes. Therefore, the time required to complete the defrosting can be shortened by about 4 minutes.
- the discharge from the compressor 10 is used for defrosting.
- a part of the refrigerant can be used for heating quickly. Therefore, a reduction in heating capacity can be suppressed.
- the indoor temperature fall can be suppressed and the comfort of the indoor environment can be ensured.
- the temperature drop is suppressed in the fin on the condenser side of the boundary portion 63 between the heat source side heat exchanger 12a and the heat source side heat exchanger 12b, water droplets generated by defrosting the heat exchanger on the upper side of the condenser Icing can be suppressed, and generation of root ice can be suppressed.
- FIG. 8 is a schematic structural diagram showing an example of a case where the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is divided without sharing the fins of the heat source side heat exchanger and provided with notches.
- a notch 66 is formed. This notch 66 constitutes a heat leakage reduction mechanism.
- FIG. 8 is a schematic structural diagram showing an example of a case where the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is divided without sharing the fins of the heat source side heat exchanger and provided with notches.
- the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are arranged adjacent to each other in the vertical direction (step direction).
- the lowermost end face of the fin 61 of the heat source side heat exchanger 12a located on the upper side and the uppermost end face of the fin 62 of the heat source side heat exchanger 12b located on the lower side are divided. Further, the lowermost end surface of the fin 61 of the heat source side heat exchanger 12a located on the upper side and the uppermost end surface of the fin 62 of the heat source side heat exchanger 12b located on the lower side are in contact with each other at the boundary portion 63. Are arranged.
- the heat source side heat exchanger 12a and the heat source side heat exchanger 12a are provided in a part of fin of the boundary part 63 of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b.
- the contact area of the fins at the boundary 63 with the heat source side heat exchanger 12b is reduced. Therefore, the amount of heat leakage from the condenser to the evaporator due to heat conduction of the fins can be further reduced.
- the thermal conductivity of air is much smaller than that of the fin material (eg, aluminum).
- the thermal conductivity of air is about 0.026 [W / (m ⁇ K)], whereas the thermal conductivity of aluminum is about 200 [W / (m ⁇ K)].
- the height of the fin notch 66 in the step direction is about 0.1 mm, the amount of heat leakage due to heat conduction of air is as much as 1% of the amount of heat leakage due to heat conduction of aluminum which is the material of the fin.
- the effect of suppressing heat leakage is sufficiently obtained.
- the height of the notch 66 of a fin should just be about 0.1 mm or more, for example.
- the longer the width (in the horizontal direction) of the fin cutout 66 the smaller the amount of heat leakage. For this reason, it is good to set with the longest length which is not crushed with the weight of the heat source side heat exchanger 12a located in the upper direction of the step direction of the heat source side heat exchanger 12. For example, if the length of the notch 66 is set to be at least half the width of the fin, defrosting can be performed without residual frost.
- FIG. 9 is a schematic structural diagram showing an example of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention in which a part of the fins of the heat source side heat exchanger is shared and a notch is provided.
- the fins 61 of the heat source side heat exchanger 12a located on the upper side and the fins 62 of the heat source side heat exchanger 12b located on the lower side are integrated (shared). That is, the fin 61 and the fin 62 are shared without being divided.
- a notch 66 is formed in the portion. This notch 66 constitutes a heat leakage reduction mechanism.
- the same effect as the configuration shown in FIGS. 7 and 8 can be obtained.
- the heat source side heat exchanger 12a and the heat source side heat exchanger 12b can be manufactured simultaneously. For this reason, compared with the case where the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are manufactured separately, a manufacturing process reduces and the manufacturing cost of the heat source side heat exchanger 12 can be reduced.
- FIG. 10 is a schematic structural diagram showing an example of the case where the air-conditioning apparatus 100 according to Embodiment 1 of the present invention shares some fins of the heat source side heat exchanger and is provided with slits.
- the fins 61 of the heat source side heat exchanger 12a and the fins 62 of the heat source side heat exchanger 12b are integrated (shared), and the fins at both ends of the notch are formed at the fin boundary 63.
- a slit 67 is provided which is processed without being cut off (cut and raised). The slit 67 constitutes a heat leakage reduction mechanism.
- FIG. 11 is a schematic structural diagram showing an example in which the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is divided without sharing the fins of the heat source side heat exchanger and provided with an elliptical cutout. It is.
- the shape of the notch 66 or the slit 67 of the fin at the boundary between the heat source side heat exchanger 12a and the heat source side heat exchanger 12b is not limited to the rectangular shape shown in FIGS. It is sufficient if there is a space in the fin contact portion of the boundary portion 63 between the heat source side heat exchanger 12a and the heat source side heat exchanger 12b.
- FIG. 12 is a schematic structural diagram showing an example of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention in which a part of the fin is shared and two notches are provided.
- the number of fin notches 66 or slits 67 at the boundary 63 between the heat source side heat exchanger 12a and the heat source side heat exchanger 12b is one notch 66 or slit as shown in FIGS. It is not limited to 67.
- two notches 66 as shown in FIG. 12 may be formed, or three or more notches 66 may be formed.
- the same effect as the configuration shown in FIGS. 7, 8, and 10 can be obtained. In other words, if the product of the heat transfer area between the fins sandwiching the notch 66 and the heat transmission rate are the same, the configuration shown in FIGS. 7, 8, and 10 has the same effect of reducing the amount of heat leakage.
- FIG. 13 is a schematic structural diagram showing an example of an outdoor unit installation state in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention when a gap is provided between the upper and lower sides of the heat source side heat exchanger.
- the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are arranged adjacent to each other in the vertical direction (stage direction).
- the lowermost end face of the fin 61 of the heat source side heat exchanger 12a located on the upper side and the uppermost end face of the fin 62 of the heat source side heat exchanger 12b located on the lower side are divided.
- a gap 54 is provided between the lowermost end surface of the fin 61 of the heat source side heat exchanger 12a located on the upper side and the uppermost end surface of the fin 62 of the heat source side heat exchanger 12b located on the lower side. It has been.
- the gap 54 constitutes a heat leakage reduction mechanism.
- the arrangement method of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b may be any method as long as it is set so that a space exists between the heat source side heat exchanger 12a and the heat source side heat exchanger 12b.
- a receiving plate 53 formed of, for example, a SUS plate or a coated steel plate is provided at the lowermost portion of the heat source side heat exchanger 12 a to support the heat source side heat exchanger 12 a.
- the air path of the gap 54 between the heat source side heat exchanger 12a and the heat source side heat exchanger 12b is preferably closed by, for example, a SUS plate, a coated steel plate, or the like to suppress wind bypass. .
- the distance of the gap 54 will be considered.
- the heat source side heat exchanger 12a and the heat source side heat exchanger 12a that can be installed in the casing of the outdoor unit 1 are compared with the case where the gap 54 is not provided.
- the height of the heat source side heat exchanger 12b is shortened. For this reason, the number of stages of the heat transfer tubes decreases, and the heat transfer area of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b as a whole decreases.
- FIG. 14 is a comparison diagram of the heat transfer area ratio of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention and COP, which is one of the indexes representing the performance of the air-conditioning apparatus.
- the relationship between the heat transfer area ratio of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b and the COP is, for example, as shown in FIG. FIG. 14 shows an example in which the capacity of the outdoor unit 1 is 10 horsepower (28 kW) and the air volume is constant.
- the COP (coefficient of performance) is a value (efficiency) obtained by dividing the heating capacity by the total input power of the outdoor unit 1 and the indoor unit 2.
- the heat transfer area ratio of the heat source side heat exchanger 12 is about 96.7%. That's it.
- the product of the number of stages and the heat transfer area ratio is about 58 stages. That is, in order to keep the COP reduction rate within 1%, the number of stages of about 58 or more is required.
- the length in the step direction of the gap 54 is obtained by multiplying the difference between the number of steps when there is no gap 54 and the number of steps when there is the gap 54 by the distance between the center portions of the heat transfer tubes in the step direction. For example, when the distance between the center portions of the heat transfer tubes in the step direction is about 20 mm, the length in the step direction of the gap 54 is the difference between 60 steps when there is no gap 54 and 58 steps when there is a gap 54. It is necessary to multiply the two stages by about 20 mm to be about 40 mm or less.
- the length Ls in the step direction of the gap 54 is defined as Ac [ ⁇ ] for the heat transfer area ratio, Dd [step] when there is no gap 54, and Ld [mm] for the distance between the heat transfer tube centers in the step direction. ], It is represented by Formula (2). Further, when the COP reduction rate is suppressed to about 1% or less, 96.7% is substituted into Ac in Equation (2), and becomes equal to or less than Equation (3).
- heat leakage between the heat source side heat exchanger 12a and the heat source side heat exchanger 12b can be suppressed. Therefore, even if a part of the plurality of heat source side heat exchangers 12 is defrosted and the other part is operated for heating, the remaining part is left at the boundary 63 of the plurality of adjacent heat source side heat exchangers 12. Generation of frost and root ice can be suppressed. Therefore, the defrosting time can be shortened, the decrease in heating capacity can be suppressed, and the comfort of the indoor environment can be ensured.
- FIG. FIG. 15 is a schematic circuit configuration diagram showing an example of a circuit configuration of the air-conditioning apparatus 200 according to Embodiment 2 of the present invention. Based on FIG. 15, the configuration of the air-conditioning apparatus 200 according to Embodiment 2 will be described focusing on differences from the air-conditioning apparatus 100 according to Embodiment 1 described above.
- the second opening / closing device 31 a that blocks the refrigerant in the heat source side heat exchanger 12 a is installed between the heat source side heat exchanger 12 a and the refrigerant flow switching device 11.
- the second opening / closing device 31 b that blocks the refrigerant of the heat source side heat exchanger 12 b is installed between the heat source side heat exchanger 12 b and the refrigerant flow switching device 11.
- One end of the hot gas bypass pipe 5 is connected to the refrigerant pipe 3 between the discharge part of the compressor 10 and the refrigerant flow switching device 11. Further, the other end of the hot gas bypass pipe 5 is branched into two branches, one being connected to the refrigerant pipe 3 between the heat source side heat exchanger 12a and the second switchgear 31a, and the other being the heat source side heat exchanger. It connects to the refrigerant
- the hot gas bypass pipe 5 connected to the heat source side heat exchanger 12a is provided with a first opening / closing device 30a.
- the hot gas bypass pipe 5 connected to the heat source side heat exchanger 12b is provided with a first opening / closing device 30b.
- the 3rd opening-and-closing apparatus 32a which can change an opening degree is provided in piping of the load side expansion apparatus 22 of the heat source side heat exchanger 12a.
- the 3rd opening-and-closing apparatus 32b which can change an opening degree is provided in piping of the load side expansion apparatus 22 of the heat source side heat exchanger 12b.
- the third opening / closing devices 32a and 32b are throttle devices whose opening degree (opening area) is changed in order to adjust the pressure in the heat source side heat exchanger 12 serving as a condenser.
- the other configuration is the same as that of the air conditioning apparatus 100 according to Embodiment 1, and thus the description thereof is omitted. Further, the flow of the refrigerant in the cooling only operation mode and the heating only operation mode of the air conditioner 200 is the same as that of the air conditioner 100 according to the first embodiment, and thus the description thereof is omitted.
- the first switchgear 30a, the first switchgear 30b, the second switchgear 31a, the second switchgear 31b, the third switchgear 32a, and the third switchgear 32b Configure the “connection switching device”.
- FIG. 15 the flow direction of the refrigerant
- the refrigerant flow switching device 11 In the defrosting operation mode, the refrigerant flow switching device 11 is maintained in the state shown by the solid line in FIG.
- the first opening / closing device 30b In the defrosting operation mode, when the heat source side heat exchanger 12b is to be defrosted, the first opening / closing device 30b is switched to the open state and allows the refrigerant to pass therethrough.
- the second opening / closing device 31b is switched to the closed state and blocks the refrigerant.
- the first opening / closing device 30a is maintained in a closed state and blocks the refrigerant.
- the second opening / closing device 31a is maintained in the open state and allows the refrigerant to pass therethrough.
- the third opening / closing device 32b is set to a fully open state and allows the refrigerant to pass therethrough.
- the third opening / closing device 32a is opened by the control device 50 so that the saturation pressure of the two-phase refrigerant calculated from the detection result of the sixth temperature sensor 48b is equal to or higher than a certain value (for example, about 0.8 MPa for the R410A refrigerant). The degree is controlled.
- the low-temperature and low-pressure refrigerant When the compressor 10 is driven, the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
- a part of the high-temperature / high-pressure gas refrigerant discharged from the compressor 10 is depressurized by the hot gas bypass pipe 5 and the first opening / closing device 30b so as to be higher than 0 ° C. in terms of saturation temperature, It becomes a gas refrigerant and flows into the heat source side heat exchanger 12b.
- the medium-pressure and high-temperature gas refrigerant that has flowed into the heat source side heat exchanger 12b becomes a two-phase refrigerant having a low intermediate pressure or a medium pressure refrigerant while melting frost adhering to the heat source side heat exchanger 12b. And passes through the third opening / closing device 32b.
- the refrigerant that has passed through the third opening / closing device 32b joins the two-phase refrigerant or liquid refrigerant having a low intermediate pressure / low temperature flowing into the outdoor unit 1 from the indoor unit 2 on the upstream side of the third opening / closing device 32a.
- the liquid refrigerant that has flowed out of the load-side heat exchanger 21 is expanded by the load-side expansion device 22, becomes a low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant, and flows into the outdoor unit 1 again through the refrigerant main pipe 4.
- the low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant that has flowed into the outdoor unit 1 merges with the refrigerant from the third switchgear 32b upstream of the third switchgear 32a, and flows into the heat source side heat exchanger 12a.
- the refrigerant flowing into the heat source side heat exchanger 12a absorbs heat from the outdoor air and becomes a low-temperature and low-pressure gas refrigerant.
- the gas refrigerant that has flowed out of the heat source side heat exchanger 12a is again sucked into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 13.
- the controller 50 opens the opening of the third opening / closing device 32a so that the saturation pressure of the two-phase refrigerant calculated from the detection result of the sixth temperature sensor 48b is equal to or higher than a certain value (for example, about 0.8 MPa for R410A refrigerant). To control. That is, the control device 50 controls the opening degree of the third opening / closing device 32a so that the saturation pressure of the two-phase refrigerant calculated from the detection result of the sixth temperature sensor 48b becomes greater than 0 ° C. in terms of saturation temperature. To do.
- a certain value for example, about 0.8 MPa for R410A refrigerant
- the determination of the completion of defrosting of the heat source side heat exchanger 12b may be determined, for example, when the temperature of the third temperature sensor 48b is equal to or higher than a predetermined value (for example, 5 ° C.), that the frost has melted.
- a predetermined value for example, 5 ° C.
- the alphabet a in the description of the defrosting operation of the heat source side heat exchanger 12b is used. It becomes the operation
- the saturation temperature of the refrigerant in the heat source side heat exchanger 12 serving as a condenser is set to a medium pressure (for example, higher than 0 ° C., which is higher than the frost temperature).
- R410A refrigerant is about 0.8 MPa or more).
- the amount of heat leakage Q1 between the heat source side heat exchanger 12a and the heat source side heat exchanger 12b is examined.
- the air conditioner 200 according to the second embodiment as a configuration of the heat leakage reduction mechanism, as shown in FIG. 7, a fin 63 is formed at the boundary 63 between the heat source side heat exchanger 12 a and the heat source side heat exchanger 12 b.
- the saturation temperature T1 of the two-phase refrigerant flowing in the condenser for defrosting is set to 5 ° C.
- the temperature T2 of the refrigerant flowing in the evaporator used in the heating operation is set to ⁇ 25 ° C.
- the distance ⁇ between the fins of the heat transfer tube end of the evaporator and the heat transfer tube end of the condenser at the boundary 63 is 12.5 mm, and the fin width is 17 mm and the fin thickness when the heat exchange is not divided. 0.1 mm and 3700 fins.
- the heat leakage amount Q1 from the condenser to the evaporator when the fins are shared without being divided is about 3.22 kW.
- the amount of heat leakage Q1 when the fins at the boundary 63 between the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are divided is examined.
- the product of the heat transfer area (contact area) of the contact portion between the fin 61 of the upper heat source side heat exchanger 12a and the fin 62 of the lower heat source side heat exchanger 12b and the heat passage rate is Assume that the heat transfer area (contact area) in the case of sharing is half the product of the heat transmission rate.
- the heat leakage amount Q1 from the condenser to the evaporator due to heat conduction of the fins is suppressed by about 25% or more compared to the case where all the fins are connected in common, and the heat leakage amount Q1 is about 2%. .42 kW.
- the time required to complete the defrosting is examined.
- the amount of heat Q2 (calculated by multiplying the frost melting latent heat and the weight of frost) necessary to melt the frost frosted on the evaporator is about 1.5 MJ, from the condenser to the evaporator due to heat conduction of the fins.
- the amount of heat exchange Q3 between the refrigerant and frost used for defrosting when there is no heat leakage amount is about 5.5 kW.
- the time required for completing the defrosting is obtained by dividing the frost melting heat amount Q2 by the difference between the heat exchange amount Q3 and the heat leakage amount Q1.
- the time required for completing the defrosting is about 11 minutes.
- the heat leakage amount Q1 is suppressed by about 25% to be about 2.42 kW, and the heat exchange amounts Q2 and Q3 are the above conditions. Then, the time required to complete the defrosting is about 8 minutes. Therefore, the time required to complete the defrosting can be shortened by about 3 minutes.
- the discharge from the compressor 10 is used for defrosting.
- a part of the refrigerant can be used for heating quickly. Therefore, a reduction in heating capacity can be suppressed.
- the indoor temperature fall can be suppressed and the comfort of the indoor environment can be ensured.
- the temperature drop is suppressed in the fin on the condenser side of the boundary portion 63 between the heat source side heat exchanger 12a and the heat source side heat exchanger 12b, water droplets generated by defrosting the heat exchanger on the upper side of the condenser Icing can be suppressed, and generation of root ice can be suppressed.
- the configuration of FIG. 7 is applied as the configuration of the heat leakage reduction mechanism, but the configuration is not limited thereto.
- the configuration of the heat leakage reducing mechanism the same effects as the configuration shown in FIG. 7 can be obtained even with the configurations of FIGS. 8 to 13 described in the first embodiment.
- the third opening / closing device 32a and the third opening / closing device 32b are throttle devices that can change the opening degree (opening area) is shown. Is not limited to this.
- (Modification 1) For example, as shown in FIG. 16, in the air-conditioning apparatus 200 according to Embodiment 2, one of the third opening / closing devices 32b (or the third opening / closing device 32a) is a throttle whose opening degree (opening area) can be changed. You may change to an apparatus.
- the third opening / closing device changed to a throttling device in which the third opening / closing device 32a (or the third opening / closing device 32b) that has not been changed is always opened and the opening degree (opening area) can be changed.
- the pressure in the heat source side heat exchanger 12 serving as a condenser is adjusted using 32b (or the third opening / closing device 32a). Even in such a configuration, the same operation as the air conditioner 200 shown in FIG. 15 is possible, and the same effect can be obtained.
- the saturation temperature of the refrigerant in the heat source side heat exchanger 12 serving as a condenser is set to a medium pressure higher than 0 ° C. that is higher than the frost temperature (for example, about 0.8 MPa or more with R410A refrigerant).
- Any circuit configuration can be used.
- the number of the second opening / closing device 31 that is a throttling device whose opening degree (opening area) can be changed may be one. With this configuration, the number of throttle devices that can change the opening degree (opening area) of an electronic expansion valve equipped with a stepping motor, which is generally more complicated and expensive than a solenoid valve, is reduced.
- the outdoor unit 1 can be manufactured at a low cost.
- Modification 2 For example, as shown in FIG. 17, in the air conditioning apparatus 200 according to Embodiment 2, the opening degree (opening area) of one of the third opening / closing devices 32b (or the third opening / closing device 32a) is changed. It may be changed to a diaphragm device. In this case, only one third opening / closing device 32 is installed, and the pressure in the heat source side heat exchanger 12 serving as a condenser is adjusted during the defrosting operation. Even in such a configuration, the same operation as the air conditioner 200 shown in FIG. 15 is possible, and the same effect can be obtained. Furthermore, with the configuration shown in FIG. 17, the circuit configuration is simplified, and the outdoor unit 1 can be manufactured at low cost.
- Modification 3 For example, as shown in FIG. 18, in the air conditioning apparatus 200 according to Embodiment 2, the opening degree (opening area) of one of the third opening / closing devices 32b (or the third opening / closing device 32a) is changed. In this case, only one third opening / closing device 32 is installed. Then, the heat source side heat exchanger 12a or the heat source side heat exchanger 12a or the heat source side heat exchanger 12b is newly connected to the refrigerant pipe 3 between the third switchgear 32b (or the third switchgear 32a). A fourth switchgear 33a and a fourth switchgear 33b are installed to shut off the refrigerant in the heat source side heat exchanger 12b. Further, a refrigerant bypass pipe 6 is installed.
- One end of the refrigerant bypass pipe 6 is connected to each of the heat source side heat exchangers 12a and 12b and the refrigerant pipe 3 between the fourth switchgear 33, and the other end is connected to the third switchgear 32 and the load side throttle device. 22 to the flow path between the two.
- the refrigerant in the heat source side heat exchanger 12 serving as a condenser is caused to flow into the refrigerant pipe 3 by the refrigerant bypass pipe 6 in the defrosting operation mode.
- the fifth opening / closing device 34a and the fifth opening / closing device 34b for switching the refrigerant flow path of the refrigerant bypass pipe 6 are connected between the heat source side heat exchanger 12 and the fourth opening / closing device 33 each corresponding to one end.
- the refrigerant bypass pipe 6 is installed.
- the fourth opening / closing device 33 a is opened.
- the fourth opening / closing device 33b is closed.
- the fifth opening / closing device 34a is closed.
- the fifth opening / closing device 34b is opened.
- the pressure in the heat source side heat exchanger 12b serving as a condenser is adjusted by the third switching device 32b (or the third switching device 32a).
- a part of the condensed refrigerant is passed through the fifth opening / closing device 34b in the refrigerant pipe 3 between the third opening / closing device 32b (or the third opening / closing device 32a) and the load-side throttle device 22 on the load side.
- the refrigerant is combined with other refrigerant flowing into the outdoor unit 1 from the expansion device 22. Further, all the refrigerant absorbs heat from the air through the third opening / closing device 32b (or the third opening / closing device 32a) and the fourth opening / closing device 33a in the heat source side heat exchanger 12a, which is an evaporator. Then, the air is sucked into the compressor 10 through the second opening / closing device 31a, the refrigerant flow switching device 11, and the accumulator 13. Other operations are the same as those in FIG.
- the alphabet a in the description of the defrosting operation of the heat source side heat exchanger 12b is used. It becomes the operation
- Examples of the heat source side refrigerant in the first and second embodiments include non-combustible refrigerants such as R410A, R407C, and R22, mixed refrigerants including HFO1234yf, HFO1234ze (E), R32, HC, R32, and HFO1234yf, and the aforementioned refrigerants
- a refrigerant exhibiting slight flammability such as a refrigerant using a mixed refrigerant containing at least one component, a highly flammable refrigerant such as propane (R290), a refrigerant whose high pressure side operates supercritically, such as CO2 (R744), Can be used as
- the third opening / closing devices 32a and 32b are throttle devices that can change the opening degree (opening area), but any device that can change the opening area of the flow path may be used.
- the expansion device may be an electronic expansion valve that is driven by a stepping motor, or a plurality of small electromagnetic valves arranged in parallel and switched to change the opening area.
- the heat source side heat exchangers 12a and 12b of the first embodiment and the second embodiment are bent in a U shape and are arranged in two stages in the step direction (vertical direction in which each fin faces the same direction).
- the heat source side heat exchanger 12 may have a structure in which a plurality of units are located, such as a structure without bending, or three or more stages in the step direction (vertical direction in which each fin faces the same direction).
- the arrangement of the plurality of heat source side heat exchangers 12 is not limited to the upper and lower sides, and may be arranged in the left and right direction and the front and rear direction.
- the air conditioning apparatus 100 according to Embodiment 1 and the air conditioning apparatus 200 according to Embodiment 2 have been described using the air conditioning apparatus that switches between cooling and heating operations as an example, this is not limiting, and simultaneous cooling and heating operations are possible.
- the present invention can also be applied to an air conditioner having a circuit configuration. Further, the refrigerant flow switching device 11 may be omitted, and only the heating only operation mode and the defrosting operation mode may be performed.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Air Conditioning Control Device (AREA)
Abstract
熱源側熱交換器12は、空気が通過するように間隔を空けて配置された複数のフィン61、62と、複数のフィン61、62に挿入され内部を冷媒が流れる複数の伝熱管64、65と、を有し、複数の熱源側熱交換器12a、12bは、複数のフィン61、62が同一方向を向くように、互いに隣り合って配置され、隣り合う複数のフィン61、62の間に、隣り合う熱源側熱交換器12a、12bの間での熱漏洩量を低減させる熱漏洩低減機構を備えた。
Description
本発明は、空気調和装置に関するものである。
従来、ビル用マルチエアコンなどの空気調和装置においては、例えば建物外に配置した熱源機である室外機(室外ユニット)と、建物内に配置した室内機(室内ユニット)との間を配管接続して冷媒回路を構成し、冷媒を循環させている。そして、冷媒の放熱、吸熱を利用して、空気を加熱、冷却することで、空調対象空間の暖房又は冷房を行っている。
このようなビル用マルチエアコンの暖房運転時は、室外機の熱交換器が蒸発器となり、低温の冷媒と空気が熱交換することで、空気中の水分が熱交換器のフィン及び伝熱管に凝結して、熱交換器に着霜する。
このように、熱交換器に着霜すると、熱交換器の風路が塞がれ、空気と熱交換する熱交換器の伝熱面積が小さくなるため、暖房能力不足の問題が生じる。そこで、暖房運転を停止して、冷媒流路切替弁を切り替えて、室外機の熱交換器を凝縮器とすることで、除霜運転を行う。このような除霜運転によって、暖房能力の低下を防ぐことができる。しかし、除霜運転の間は、室内の暖房運転も停止するため、室内温度が低下して室内環境の快適性が損なわれる。
このように、熱交換器に着霜すると、熱交換器の風路が塞がれ、空気と熱交換する熱交換器の伝熱面積が小さくなるため、暖房能力不足の問題が生じる。そこで、暖房運転を停止して、冷媒流路切替弁を切り替えて、室外機の熱交換器を凝縮器とすることで、除霜運転を行う。このような除霜運転によって、暖房能力の低下を防ぐことができる。しかし、除霜運転の間は、室内の暖房運転も停止するため、室内温度が低下して室内環境の快適性が損なわれる。
従来の技術では、このような問題点を解決するために、室外の熱交換器を複数設けて、圧縮機の吐出ガスをそれぞれの熱交換器に、開閉弁を介してバイパスできるようにバイパス配管を設け、その複数の熱交換器を蒸発器と凝縮器に分けて利用することで、除霜運転と暖房運転とを同時に実施する技術がある(例えば、特許文献1、特許文献2)。
特許文献1、特許文献2に記載されている空気調和装置は、複数の室外熱交換器を使用し、蒸発器で暖房運転、凝縮器で除霜運転を同時に実施している。しかし、それぞれの熱交換器の位置関係が明確にされていない。例えば、蒸発器と凝縮器とが互いに隣り合って配置(例えば上下に配置)され、それぞれを構成する熱交換器が、フィンを介して連続して接続されている場合、蒸発器と凝縮器との境界で、接続されているフィンを介して凝縮器から蒸発器に熱漏洩が生じる。
熱漏洩が生じることで、凝縮器の除霜能力は、蒸発器と凝縮器との境界付近で低下し、その境界付近での除霜が不十分となる。このため、除霜に要する時間が長くなり、除霜運転の間の室内の暖房能力が低下し、室内環境の快適性が損なわれる。さらに、除霜後に発生する水滴が氷結することで根氷が発生し、熱交換器の伝熱面積が小さくなり、暖房能力が低下し、室内環境の快適性が損なわれる。
熱漏洩が生じることで、凝縮器の除霜能力は、蒸発器と凝縮器との境界付近で低下し、その境界付近での除霜が不十分となる。このため、除霜に要する時間が長くなり、除霜運転の間の室内の暖房能力が低下し、室内環境の快適性が損なわれる。さらに、除霜後に発生する水滴が氷結することで根氷が発生し、熱交換器の伝熱面積が小さくなり、暖房能力が低下し、室内環境の快適性が損なわれる。
また、残霜と根氷を防ぐために、除霜運転の時間を長く設定しても、除霜運転中に蒸発器として動作している熱交換器の着霜量が増加する。このため、蒸発器として動作している熱交換器の伝熱面積が小さくなり、暖房能力が低下し、室内環境の快適性が損なわれる。
本発明は、上記の課題を解決するためになされたもので、隣り合って配置された複数の熱交換器の間で、フィンを介した熱漏洩を抑制することができる空気調和装置を提供することを目的とする。
本発明に係る空気調和装置は、圧縮機、負荷側熱交換器、負荷側絞り装置、及び、互いに並列に接続された複数の熱源側熱交換器が、配管で順次接続されて冷媒が循環する主回路と、前記圧縮機が吐出した冷媒の一部を分岐し、前記複数の熱源側熱交換器のうち除霜対象の前記熱源側熱交換器に流入させるバイパス配管と、前記バイパス配管の流路の通過又は遮断、及び、前記複数の熱源側熱交換器に接続された前記主回路の前記配管の流路の通過又は遮断を切り替えて、除霜対象の前記熱源側熱交換器を切り替える接続切替装置と、を備え、前記熱源側熱交換器は、空気が通過するように間隔を空けて配置された複数のフィンと、前記複数のフィンに挿入され内部を前記冷媒が流れる複数の伝熱管と、を有し、前記複数の熱源側熱交換器は、前記複数のフィンが同一方向を向くように、互いに隣り合って配置され、隣り合う前記複数のフィンの間に、隣り合う前記熱源側熱交換器の間での熱漏洩量を低減させる熱漏洩低減機構を備えたことを特徴とする。
本発明は、隣り合って配置された複数の熱源側熱交換器の間で、フィンを介した熱漏洩を抑制することができる。よって、複数の熱源側熱交換器の一部を除霜運転し、他の一部を暖房運転した場合であっても、隣り合う複数の熱源側熱交換器の境界部で、残霜及び根氷の発生を抑制することができる。したがって、除霜時間を短縮し、暖房能力の低下を抑制して、室内環境の快適性を確保した空気調和装置を提供することができる。
以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る空気調和装置100の、回路構成の一例示す概略回路構成図である。
図1に基づいて、空気調和装置100の詳しい構成について説明する。
図1に示すように、空気調和装置100は、室外機1及び室内機2を備え、室外機1と室内機2とが冷媒主管4で接続されている。
この空気調和装置100は、冷媒を循環させ、冷凍サイクルを利用した空気調和を行う。空気調和装置100は、運転する全ての室内機2が冷房を行う全冷房運転モード、運転する全ての室内機2が暖房を行う全暖房運転モード、又は、室内機2が暖房運転を継続しつつ室外機1内の熱交換機を除霜する除霜運転モード、を選択できるものである。
図1は、本発明の実施の形態1に係る空気調和装置100の、回路構成の一例示す概略回路構成図である。
図1に基づいて、空気調和装置100の詳しい構成について説明する。
図1に示すように、空気調和装置100は、室外機1及び室内機2を備え、室外機1と室内機2とが冷媒主管4で接続されている。
この空気調和装置100は、冷媒を循環させ、冷凍サイクルを利用した空気調和を行う。空気調和装置100は、運転する全ての室内機2が冷房を行う全冷房運転モード、運転する全ての室内機2が暖房を行う全暖房運転モード、又は、室内機2が暖房運転を継続しつつ室外機1内の熱交換機を除霜する除霜運転モード、を選択できるものである。
[室外機1]
室外機1には、圧縮機10、四方弁等の冷媒流路切替装置11、熱源側熱交換器12a、熱源側熱交換器12b、及び、アキュムレータ13、冷媒配管3、ホットガスバイパス配管5が、搭載されている。
圧縮機10、四方弁等の冷媒流路切替装置11、熱源側熱交換器12a、熱源側熱交換器12b、アキュムレータ13は、冷媒配管3で接続されている。
熱源側熱交換器12a及び熱源側熱交換器12bは、冷媒配管3で互いに並列に接続されている。熱源側熱交換器12a及び熱源側熱交換器12bの、負荷側絞り装置22側の冷媒配管3には、第2開閉装置31a、31bが設けられている。
室外機1には、圧縮機10、四方弁等の冷媒流路切替装置11、熱源側熱交換器12a、熱源側熱交換器12b、及び、アキュムレータ13、冷媒配管3、ホットガスバイパス配管5が、搭載されている。
圧縮機10、四方弁等の冷媒流路切替装置11、熱源側熱交換器12a、熱源側熱交換器12b、アキュムレータ13は、冷媒配管3で接続されている。
熱源側熱交換器12a及び熱源側熱交換器12bは、冷媒配管3で互いに並列に接続されている。熱源側熱交換器12a及び熱源側熱交換器12bの、負荷側絞り装置22側の冷媒配管3には、第2開閉装置31a、31bが設けられている。
ホットガスバイパス配管5は、圧縮機10が吐出した高温の冷媒の一部を分岐し、熱源側熱交換器12a及び熱源側熱交換器12bのうち除霜対象の熱源側熱交換器12に流入させる。
即ち、図1に示すように、ホットガスバイパス配管5の一端は、圧縮機10の吐出部と冷媒流路切替装置11との間の冷媒配管3に接続される。
また、ホットガスバイパス配管5の他端は、2分岐し、一方が、熱源側熱交換器12aと第2開閉装置31aとの間の冷媒配管3に接続され、他方が、熱源側熱交換器12bと第2開閉装置31bとの間の冷媒配管3に接続される。
熱源側熱交換器12aに接続されたホットガスバイパス配管5には、第1開閉装置30aが設けられている。熱源側熱交換器12bに接続されたホットガスバイパス配管5には、第1開閉装置30bが設けられている。
即ち、図1に示すように、ホットガスバイパス配管5の一端は、圧縮機10の吐出部と冷媒流路切替装置11との間の冷媒配管3に接続される。
また、ホットガスバイパス配管5の他端は、2分岐し、一方が、熱源側熱交換器12aと第2開閉装置31aとの間の冷媒配管3に接続され、他方が、熱源側熱交換器12bと第2開閉装置31bとの間の冷媒配管3に接続される。
熱源側熱交換器12aに接続されたホットガスバイパス配管5には、第1開閉装置30aが設けられている。熱源側熱交換器12bに接続されたホットガスバイパス配管5には、第1開閉装置30bが設けられている。
なお、本実施の形態1における、第1開閉装置30a、第1開閉装置30b、第2開閉装置31a、及び第2開閉装置31bは、本発明の「接続切替装置」を構成する。
圧縮機10は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にする。圧縮機10は、例えば、容量制御可能なインバータ圧縮機等で構成する。
冷媒流路切替装置11は、全暖房運転モード時における冷媒の流れと、全冷房運転モード時における冷媒の流れとを切り替える。
冷媒流路切替装置11は、全暖房運転モード時における冷媒の流れと、全冷房運転モード時における冷媒の流れとを切り替える。
熱源側熱交換器12a及び熱源側熱交換器12bは、全暖房運転モード中には、共に蒸発器として機能し、全冷房運転モード中には、共に凝縮器として機能する。また、熱源側熱交換器12a及び熱源側熱交換器12bは、除霜運転中には、一方が蒸発器として機能し、他方が凝縮器として機能する。
図2は、本発明の実施の形態1に係る空気調和装置100の、熱源側熱交換器の室外機設置状態の一例を示す概略構造図である。
図2に示すように、熱源側熱交換器12a及び熱源側熱交換器12bは、室外機1の筐体51内に配置されている。熱源側熱交換器12a及び熱源側熱交換器12bは、空気が通過するように間隔を空けて配置された複数のフィンと、複数のフィンに挿入され内部を冷媒が流れる複数の伝熱管と、を有している。 熱源側熱交換器12a及び熱源側熱交換器12bは、ファン52等の送風機から供給される空気と、冷媒との間で熱交換を行う。
図2に示すように、熱源側熱交換器12a及び熱源側熱交換器12bは、室外機1の筐体51内に配置されている。熱源側熱交換器12a及び熱源側熱交換器12bは、空気が通過するように間隔を空けて配置された複数のフィンと、複数のフィンに挿入され内部を冷媒が流れる複数の伝熱管と、を有している。 熱源側熱交換器12a及び熱源側熱交換器12bは、ファン52等の送風機から供給される空気と、冷媒との間で熱交換を行う。
熱源側熱交換器12a及び熱源側熱交換器12bは、複数のフィンが同一方向を向くように、互いに隣り合って配置されている。例えば、図2に示すように、上側に熱源側熱交換器12aが配置され、下側に熱源側熱交換器12bが配置されている。熱源側熱交換器12a及び熱源側熱交換器12bは、それぞれ、伝熱管の段方向に隣り合って配置される。即ち、熱源側熱交換器12a及び熱源側熱交換器12bは、それぞれの、フィンが同一方向を向くような上下方向に配置されている。
隣り合う複数のフィンの間には、隣り合う熱源側熱交換器12a、12bの間での熱漏洩量を低減させる熱漏洩低減機構が設けられている。詳細は後述する。
隣り合う複数のフィンの間には、隣り合う熱源側熱交換器12a、12bの間での熱漏洩量を低減させる熱漏洩低減機構が設けられている。詳細は後述する。
再び図1に基づいて説明する。
アキュムレータ13は、圧縮機10の吸入側に設けられており、全暖房運転モード中と全冷房運転モード中の運転状態の違いによる余剰冷媒、過渡的な運転の変化に対する余剰冷媒を蓄えるものである。
第1開閉装置30aは、除霜運転モード中に、熱源側熱交換器12aが凝縮器として動作する場合に、ホットガスバイパス配管5から高温の冷媒を熱源側熱交換器12aに流入させるための開閉弁である。第1開閉装置30bは、除霜運転モード中に、熱源側熱交換器12bが凝縮器として動作する場合に、ホットガスバイパス配管5から高温の冷媒を熱源側熱交換器12bに流入させるための開閉弁である。第1開閉装置30a、30bは、例えば、二方弁、電磁弁、電子式膨張弁等、冷媒の流路を開閉可能なもので構成する。
第2開閉装置31aは、除霜運転モード中に、熱源側熱交換器12aが凝縮器として動作する場合に、室内機2から冷媒主管4を介して室外機1に流入される低温の二相冷媒を、熱源側熱交換器12aに流入させないように、冷媒の流路を遮断させるための開閉弁である。第2開閉装置31bは、除霜運転モード中に、熱源側熱交換器12bが凝縮器として動作する場合に、室内機2から冷媒主管4を介して室外機1に流入される低温の二相冷媒を、熱源側熱交換器12bに流入させないように、冷媒の流路を遮断させるための開閉弁である。第2開閉装置31a、31bは、例えば、二方弁、電磁弁、電子式膨張弁等、冷媒の流路を開閉可能なもので構成する。
室外機1には、圧力検出手段として、第1圧力センサ41及び第2圧力センサ42が設けられている。
第1圧力センサ41は、圧縮機10と冷媒流路切替装置11との間の配管に設けられている。第1圧力センサ41は、圧縮機10が吐出した高温・高圧の冷媒の圧力を検出する。
第2圧力センサ42は、冷媒流路切替装置11とアキュムレータ13の間の配管に設けられている。第2圧力センサ42は、圧縮機10に吸入される低圧の冷媒の圧力を検出する。
第1圧力センサ41は、圧縮機10と冷媒流路切替装置11との間の配管に設けられている。第1圧力センサ41は、圧縮機10が吐出した高温・高圧の冷媒の圧力を検出する。
第2圧力センサ42は、冷媒流路切替装置11とアキュムレータ13の間の配管に設けられている。第2圧力センサ42は、圧縮機10に吸入される低圧の冷媒の圧力を検出する。
室外機1には、温度検出手段として、第1温度センサ43、第2温度センサ45、第3温度センサ48a、第3温度センサ48bが設けられている。第1温度センサ43、第2温度センサ45、第3温度センサ48a、第3温度センサ48bは、例えばサーミスター等で構成する。
第1温度センサ43は、圧縮機10と冷媒流路切替装置11の間の配管に設けられている。第1温度センサ43は、圧縮機10が吐出した冷媒の温度を測定する。
第2温度センサ45は、熱源側熱交換器12a又は熱源側熱交換器12bのいずれかの空気吸込み部に設けられている。第2温度センサ45は、室外機1の周囲の空気温度を測定する。
第3温度センサ48aは、熱源側熱交換器12aと冷媒流路切替装置11の間の配管に設けられている。
第3温度センサ48aは、蒸発器として動作する熱源側熱交換器12aから流出した冷媒の温度を測定する。
第3温度センサ48bは、熱源側熱交換器12bと冷媒流路切替装置11の間の配管に設けられている。第3温度センサ48bは、蒸発器として動作する熱源側熱交換器12bから流出した冷媒の温度を測定する。
第1温度センサ43は、圧縮機10と冷媒流路切替装置11の間の配管に設けられている。第1温度センサ43は、圧縮機10が吐出した冷媒の温度を測定する。
第2温度センサ45は、熱源側熱交換器12a又は熱源側熱交換器12bのいずれかの空気吸込み部に設けられている。第2温度センサ45は、室外機1の周囲の空気温度を測定する。
第3温度センサ48aは、熱源側熱交換器12aと冷媒流路切替装置11の間の配管に設けられている。
第3温度センサ48aは、蒸発器として動作する熱源側熱交換器12aから流出した冷媒の温度を測定する。
第3温度センサ48bは、熱源側熱交換器12bと冷媒流路切替装置11の間の配管に設けられている。第3温度センサ48bは、蒸発器として動作する熱源側熱交換器12bから流出した冷媒の温度を測定する。
[室内機2]
室内機2には、負荷側熱交換器21と、負荷側絞り装置22とが搭載されている。
負荷側熱交換器21は、冷媒主管4を介して室外機1と接続され、冷媒が流入又は流出する。負荷側熱交換器21は、例えばファン等の送風機から供給される空気と冷媒との間で熱交換を行う。負荷側熱交換器21は、室内空間に供給するための、暖房用の空気、又は冷房用の空気を生成する。
負荷側絞り装置22は、減圧弁、膨張弁としての機能を有し、冷媒を減圧して膨張させる。負荷側絞り装置22は、全冷房運転モード中の冷媒の流れにおいて、負荷側熱交換器21の上流側に設けられている。負荷側絞り装置22は、開度が可変に制御可能である弁で構成する。負荷側絞り装置22は、例えば電子式膨張弁等で構成する。
室内機2には、負荷側熱交換器21と、負荷側絞り装置22とが搭載されている。
負荷側熱交換器21は、冷媒主管4を介して室外機1と接続され、冷媒が流入又は流出する。負荷側熱交換器21は、例えばファン等の送風機から供給される空気と冷媒との間で熱交換を行う。負荷側熱交換器21は、室内空間に供給するための、暖房用の空気、又は冷房用の空気を生成する。
負荷側絞り装置22は、減圧弁、膨張弁としての機能を有し、冷媒を減圧して膨張させる。負荷側絞り装置22は、全冷房運転モード中の冷媒の流れにおいて、負荷側熱交換器21の上流側に設けられている。負荷側絞り装置22は、開度が可変に制御可能である弁で構成する。負荷側絞り装置22は、例えば電子式膨張弁等で構成する。
また、室内機2には、温度検出手段として、第4温度センサ46、第5温度センサ47、第6温度センサ44が設けられている。第4温度センサ46、第5温度センサ47、第6温度センサ44は、例えばサーミスター等で構成する。
第4温度センサ46は、負荷側絞り装置22と負荷側熱交換器21の間の配管に設けられている。第4温度センサ46は、負荷側熱交換器21に流入する冷媒、又は、負荷側熱交換器から流出した冷媒の温度を検出する。
第5温度センサ47は、負荷側熱交換器21と室外機1の冷媒流路切替装置11との間の配管に設けられている。第5温度センサ47は、負荷側熱交換器21に流入する冷媒、又は、負荷側熱交換器21から流出した冷媒の温度を検出する。
第6温度センサ44は、負荷側熱交換器21の空気吸込み部に設けられている。第6温度センサ44は、室内の周囲空気温度を検出する。
第4温度センサ46は、負荷側絞り装置22と負荷側熱交換器21の間の配管に設けられている。第4温度センサ46は、負荷側熱交換器21に流入する冷媒、又は、負荷側熱交換器から流出した冷媒の温度を検出する。
第5温度センサ47は、負荷側熱交換器21と室外機1の冷媒流路切替装置11との間の配管に設けられている。第5温度センサ47は、負荷側熱交換器21に流入する冷媒、又は、負荷側熱交換器21から流出した冷媒の温度を検出する。
第6温度センサ44は、負荷側熱交換器21の空気吸込み部に設けられている。第6温度センサ44は、室内の周囲空気温度を検出する。
上記の構成より、空気調和装置100は、圧縮機10、冷媒流路切替装置11、負荷側熱交換器21、負荷側絞り装置22、及び、互いに並列に接続された熱源側熱交換器12a、12bが、配管で順次接続されて冷媒が循環する主回路を形成する。また、圧縮機10が吐出した冷媒の一部を分岐し、熱源側熱交換器12a、12bのうち除霜対象の熱源側熱交換器12に流入させるバイパス回路を形成する。
なお、本実施の形態1の構成例では、図1に示したように、1台の室内機2が、冷媒主管4を介して室外機1に接続されている場合を例に示しているが、本発明はこの構成に限定されない。室内機2を複数台備え、複数台の室内機2を室外機1にそれぞれ並列に接続しても良い。
制御装置50は、マイクロコンピュータで構成され、空気調和装置100は、マイクロコンピュータで構成した制御装置50を有している。制御装置50は、各種検出手段での検出情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、冷媒流路切替装置11の切り替え、第1開閉装置30a、30bの開/閉、第2開閉装置31の開/閉、負荷側絞り装置22の開度、等を制御し、後述する各運転モードを実行する。なお、制御装置50は、ユニット毎に設けてもよく、室外機1または室内機2に設けてもよい。
次に、空気調和装置100が実行する各運転モードについて説明する。
以下に、各運転モードについて、冷媒の流れとともに説明する。
以下に、各運転モードについて、冷媒の流れとともに説明する。
[全冷房運転モード]
図3は、本発明の実施の形態1に係る空気調和装置100の、全冷房運転モード時における冷媒の流れを示す冷媒回路図である。
この図3では、負荷側熱交換器21で冷熱負荷が発生している場合を例に、全冷房運転モードについて説明する。なお、図3では、冷媒の流れ方向を実線矢印で示している。
図3は、本発明の実施の形態1に係る空気調和装置100の、全冷房運転モード時における冷媒の流れを示す冷媒回路図である。
この図3では、負荷側熱交換器21で冷熱負荷が発生している場合を例に、全冷房運転モードについて説明する。なお、図3では、冷媒の流れ方向を実線矢印で示している。
全冷房運転モードでは、冷媒流路切替装置11が図3の実線で示される状態に切り替えられる。第1開閉装置30a及び第1開閉装置30bは、共に、閉状態に切り替えられ、冷媒を遮断する。第2開閉装置31a及び第2開閉装置31bは、共に、開状態に切り替えられ、冷媒を通過させる。
圧縮機10が駆動すると低温・低圧の冷媒が圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を介して、熱源側熱交換器12a及び熱源側熱交換器12bに流入する。
熱源側熱交換器12a及び熱源側熱交換器12bに流入した高温・高圧ガス冷媒は、熱源側熱交換器12a及び熱源側熱交換器12bのそれぞれで、室外空気に放熱して高圧の液冷媒となる。熱源側熱交換器12a及び熱源側熱交換器12bから流出した高圧の液冷媒は、それぞれ、第2開閉装置31a及び第2開閉装置31bを経て合流し、室外機1から流出する。
熱源側熱交換器12a及び熱源側熱交換器12bに流入した高温・高圧ガス冷媒は、熱源側熱交換器12a及び熱源側熱交換器12bのそれぞれで、室外空気に放熱して高圧の液冷媒となる。熱源側熱交換器12a及び熱源側熱交換器12bから流出した高圧の液冷媒は、それぞれ、第2開閉装置31a及び第2開閉装置31bを経て合流し、室外機1から流出する。
室外機1から流出した高圧の液冷媒は、冷媒主管4を通って、室内機2に流入し、負荷側絞り装置22で膨張されて、低温・低圧の二相冷媒となる。この二相冷媒は、蒸発器として動作する負荷側熱交換器21に流入し、室内空気から吸熱することで、室内空気を冷却して、低温・低圧のガス冷媒となる。
負荷側熱交換器21から流出したガス冷媒は、冷媒主管4を通って、再び室外機1へ流入する。室外機1に流入した冷媒は、冷媒流路切替装置11及びアキュムレータ13を通って、圧縮機10に再度吸入される。
負荷側熱交換器21から流出したガス冷媒は、冷媒主管4を通って、再び室外機1へ流入する。室外機1に流入した冷媒は、冷媒流路切替装置11及びアキュムレータ13を通って、圧縮機10に再度吸入される。
制御装置50は、第4温度センサ46で検出された温度と、第5温度センサ47で検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように、負荷側絞り装置22の開度を制御する。
[全暖房運転モード]
図4は、本発明の実施の形態1に係る空気調和装置100の、全暖房運転モード時における冷媒の流れを示す冷媒回路図である。
この図4では、負荷側熱交換器21で温熱負荷が発生している場合を例に、全暖房運転モードについて説明する。なお、図4では、冷媒の流れ方向を実線矢印で示している。
図4は、本発明の実施の形態1に係る空気調和装置100の、全暖房運転モード時における冷媒の流れを示す冷媒回路図である。
この図4では、負荷側熱交換器21で温熱負荷が発生している場合を例に、全暖房運転モードについて説明する。なお、図4では、冷媒の流れ方向を実線矢印で示している。
全暖房運転モードでは、冷媒流路切替装置11が図4の実線で示される状態に切り替えられる。第1開閉装置30a及び第1開閉装置30bは、共に、閉状態に切り替えられ、冷媒を遮断する。第2開閉装置31a及び第2開閉装置31bは、共に、開状態に切り替えられ、冷媒を通過させる。
圧縮機10が駆動すると低温・低圧の冷媒が圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を介して、室外機1から流出する。
室外機1から流出した高温・高圧のガス冷媒は、冷媒主管4を通って、室内機2に流入し、負荷側熱交換器21で室内空気に放熱することで、室内空気を暖房しながら、液冷媒となる。
負荷側熱交換器21から流出した液冷媒は、負荷側絞り装置22で膨張されて、低温・中圧の二相冷媒もしくは液冷媒となり、冷媒主管4を通って再び室外機1へ流入する。
負荷側熱交換器21から流出した液冷媒は、負荷側絞り装置22で膨張されて、低温・中圧の二相冷媒もしくは液冷媒となり、冷媒主管4を通って再び室外機1へ流入する。
室外機1へ流入した低温・中圧の二相冷媒もしくは液冷媒は、第2開閉装置31a及び第2開閉装置31bを介し、それぞれ、熱源側熱交換器12a及び熱源側熱交換器12bに流入する。熱源側熱交換器12a及び熱源側熱交換器12bに流入した冷媒は、室外空気から吸熱して、低温・低圧のガス冷媒となり、冷媒流路切替装置11及びアキュムレータ13を介して、圧縮機10に再度吸入される。
制御装置50は、第1圧力センサ41で検出された圧力を飽和温度に換算した値と、第4温度センサ46で検出された温度との差として得られるサブクール(過冷却度)が一定になるように、負荷側絞り装置22の開度を制御する。
[除霜運転モード]
除霜運転モードは、熱源側熱交換器12a及び熱源側熱交換器12bのそれぞれの出口側に設けられた、第3温度センサ48a、48bの検出結果が、所定値以下であるときに実施される。すなわち、制御装置50は、全暖房運転モードを実施し、第3温度センサ48a、48bの検出結果が、所定値以下(例えば約-10℃以下)となると、熱源側熱交換器12a、12bのフィンに着霜が所定量発生したと判定し、除霜運転モードを実施する。
本実施の形態1に係る空気調和装置100の除霜運転モードにおいては、筐体51内の下側に位置する熱源側熱交換器12bの除霜を実施し、その後、筐体51内の上側に位置する熱源側熱交換器12aの除霜を実施する。また、熱源側熱交換器12a及び熱源側熱交換器12bのうち、除霜対象でない熱源側熱交換器を蒸発器として動作させ、室内機2の負荷側熱交換器21を凝縮器として動作させて暖房運転を継続する。
(熱源側熱交換器12bの除霜)
図5は、本発明の実施の形態1に係る空気調和装置100の、除霜運転モード時における熱源側熱交換器12bの除霜を実施している場合の冷媒の流れを示す冷媒回路図である。なお、図5では、冷媒の流れ方向を実線矢印で示している。
図5は、本発明の実施の形態1に係る空気調和装置100の、除霜運転モード時における熱源側熱交換器12bの除霜を実施している場合の冷媒の流れを示す冷媒回路図である。なお、図5では、冷媒の流れ方向を実線矢印で示している。
除霜運転モードでは、冷媒流路切替装置11が図5の実線で示される状態に維持される。
また、除霜運転モードにおいて、熱源側熱交換器12bを除霜対象とする場合、第1開閉装置30bは、開状態に切り替えられ、冷媒を通過させる。
第2開閉装置31bは、閉状態に切り替えられ、冷媒を遮断する。
第1開閉装置30aは、閉状態に維持され、冷媒を遮断する。
第2開閉装置31aは、開状態に維持され、冷媒を通過させる。
また、除霜運転モードにおいて、熱源側熱交換器12bを除霜対象とする場合、第1開閉装置30bは、開状態に切り替えられ、冷媒を通過させる。
第2開閉装置31bは、閉状態に切り替えられ、冷媒を遮断する。
第1開閉装置30aは、閉状態に維持され、冷媒を遮断する。
第2開閉装置31aは、開状態に維持され、冷媒を通過させる。
圧縮機10が駆動すると低温・低圧の冷媒が圧縮され、高温・高圧のガス冷媒となって吐出される。
圧縮機10から吐出された高温・高圧のガス冷媒の一部は、ホットガスバイパス配管5を通過し、第1開閉装置30bを経て、熱源側熱交換器12bに流入する。熱源側熱交換器12bに流入した高温・高圧のガス冷媒は、熱源側熱交換器12bに付着した霜を融かしながら低温のガス冷媒となり、熱源側熱交換器12aから流出した冷媒と合流する。
圧縮機10から吐出された高温・高圧のガス冷媒の他の一部は、冷媒流路切替装置11を介して、室外機1から流出する。
圧縮機10から吐出された高温・高圧のガス冷媒の一部は、ホットガスバイパス配管5を通過し、第1開閉装置30bを経て、熱源側熱交換器12bに流入する。熱源側熱交換器12bに流入した高温・高圧のガス冷媒は、熱源側熱交換器12bに付着した霜を融かしながら低温のガス冷媒となり、熱源側熱交換器12aから流出した冷媒と合流する。
圧縮機10から吐出された高温・高圧のガス冷媒の他の一部は、冷媒流路切替装置11を介して、室外機1から流出する。
室外機1から流出した高温・高圧のガス冷媒は、冷媒主管4を通って、室内機2に流入し、負荷側熱交換器21で室内空気に放熱することで、室内空気を暖房しながら、液冷媒となる。
負荷側熱交換器21から流出した液冷媒は、負荷側絞り装置22で膨張されて、低温・中圧の二相冷媒もしくは液冷媒となり、冷媒主管4を通って再び室外機1へ流入する。
負荷側熱交換器21から流出した液冷媒は、負荷側絞り装置22で膨張されて、低温・中圧の二相冷媒もしくは液冷媒となり、冷媒主管4を通って再び室外機1へ流入する。
室外機1へ流入した低温・中圧の二相冷媒もしくは液冷媒は、第2開閉装置31aを介し、熱源側熱交換器12aに流入する。熱源側熱交換器12aに流入した冷媒は、室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12aを流出したガス冷媒は、熱源側熱交換器12bを流出したガス冷媒と合流して、冷媒流路切替装置11及びアキュムレータ13を介して、圧縮機10に再度吸入される。
制御装置50は、例えば、所定時間経過後、もしくは第3温度センサ48bで検出した熱源側熱交換器12b出口のガス冷媒の温度が所定値以上(例えば10℃以上)となった場合に、熱源側熱交換器12bの除霜を完了する。
その後、熱源側熱交換器12aの除霜を実施する。
その後、熱源側熱交換器12aの除霜を実施する。
ここで、所定時間は、熱源側熱交換器12b全体に隙間なく着霜したと想定し、高温・高圧の冷媒の一部を流入させた場合、霜が全て融けるまでの所要時間以上で設定するとよい。
(熱源側熱交換器12aの除霜)
図6は、本発明の実施の形態1に係る空気調和装置100の、除霜運転モード時における熱源側熱交換器12aの除霜を実施している場合の冷媒の流れを示す冷媒回路図である。なお、図6では、冷媒の流れ方向を実線矢印で示している。
図6は、本発明の実施の形態1に係る空気調和装置100の、除霜運転モード時における熱源側熱交換器12aの除霜を実施している場合の冷媒の流れを示す冷媒回路図である。なお、図6では、冷媒の流れ方向を実線矢印で示している。
除霜運転モードでは、冷媒流路切替装置11が図6の実線で示される状態に維持される。
また、除霜運転モードにおいて、熱源側熱交換器12aを除霜対象とする場合、第1開閉装置30aは、開状態に切り替えられ、冷媒を通過させる。
第2開閉装置31aは、閉状態に切り替えられ、冷媒を遮断する。
第1開閉装置30bは、閉状態に切り替えられ、冷媒を遮断する。
第2開閉装置31bは、開状態に切り替えられ、冷媒を通過させる。
また、除霜運転モードにおいて、熱源側熱交換器12aを除霜対象とする場合、第1開閉装置30aは、開状態に切り替えられ、冷媒を通過させる。
第2開閉装置31aは、閉状態に切り替えられ、冷媒を遮断する。
第1開閉装置30bは、閉状態に切り替えられ、冷媒を遮断する。
第2開閉装置31bは、開状態に切り替えられ、冷媒を通過させる。
圧縮機10が駆動すると低温・低圧の冷媒が圧縮され、高温・高圧のガス冷媒となって吐出される。
圧縮機10から吐出された高温・高圧のガス冷媒の一部は、ホットガスバイパス配管5を通過し、第1開閉装置30aを経て、熱源側熱交換器12aに流入する。熱源側熱交換器12aに流入した高温・高圧のガス冷媒は、熱源側熱交換器12aに付着した霜を融かしながら低温のガス冷媒となり、熱源側熱交換器12bから流出した冷媒と合流する。
圧縮機10から吐出された高温・高圧のガス冷媒の他の一部は、冷媒流路切替装置11を介して、室外機1から流出する。
圧縮機10から吐出された高温・高圧のガス冷媒の一部は、ホットガスバイパス配管5を通過し、第1開閉装置30aを経て、熱源側熱交換器12aに流入する。熱源側熱交換器12aに流入した高温・高圧のガス冷媒は、熱源側熱交換器12aに付着した霜を融かしながら低温のガス冷媒となり、熱源側熱交換器12bから流出した冷媒と合流する。
圧縮機10から吐出された高温・高圧のガス冷媒の他の一部は、冷媒流路切替装置11を介して、室外機1から流出する。
室外機1から流出した高温・高圧のガス冷媒は、冷媒主管4を通って、室内機2に流入し、負荷側熱交換器21で室内空気に放熱することで、室内空気を暖房しながら、液冷媒となる。
負荷側熱交換器21から流出した液冷媒は、負荷側絞り装置22で膨張されて、低温・中圧の二相冷媒もしくは液冷媒となり、冷媒主管4を通って再び室外機1へ流入する。
負荷側熱交換器21から流出した液冷媒は、負荷側絞り装置22で膨張されて、低温・中圧の二相冷媒もしくは液冷媒となり、冷媒主管4を通って再び室外機1へ流入する。
室外機1へ流入した低温・中圧の二相冷媒もしくは液冷媒は、第2開閉装置31bを介し、熱源側熱交換器12bに流入する。熱源側熱交換器12bに流入した冷媒は、室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12bを流出したガス冷媒は、熱源側熱交換器12aを流出したガス冷媒と合流して、冷媒流路切替装置11及びアキュムレータ13を介して、圧縮機10に再度吸入される。
制御装置50は、例えば、所定時間経過後、もしくは第3温度センサ48aで検出した熱源側熱交換器12a出口のガス冷媒の温度が所定値以上(例えば10℃以上)となった場合に、熱源側熱交換器12aの除霜を完了する。
ここで、所定時間は、熱源側熱交換器12a全体に隙間なく着霜したと想定し、高温・高圧の冷媒の一部を流入させた場合、霜が全て融けるまでの所要時間以上で設定するとよい。
このように除霜運転モードを実施することで、暖房運転を継続しながら、熱源側熱交換器12a、12bの除霜をすることができる。
また、筐体51の下側に位置する熱源側熱交換器12bの除霜を実施し、その後、上側に位置する熱源側熱交換器12aの除霜を実施する。このため、熱源側熱交換器12aの除霜によって溶けた水が、まだ除霜されていない下側の熱源側熱交換器12bにて再凍結を起こすことを防止することができ、効率よく除霜を行うことができる。
また、筐体51の下側に位置する熱源側熱交換器12bの除霜を実施し、その後、上側に位置する熱源側熱交換器12aの除霜を実施する。このため、熱源側熱交換器12aの除霜によって溶けた水が、まだ除霜されていない下側の熱源側熱交換器12bにて再凍結を起こすことを防止することができ、効率よく除霜を行うことができる。
なお、上記の説明では、熱源側熱交換器12bの除霜を実施し、その後、熱源側熱交換器12aの除霜を実施する場合を説明したが、本発明はこれに限定されない。例えば、第3温度センサ48aから検出された温度が、第3温度センサ48bよりも先に所定温度以下(例えば-10℃以下)になった場合は、熱源側熱交換器12aから先に除霜してもよい。
[熱漏洩低減機構]
(フィン構造(1))
図7は、本発明の実施の形態1に係る空気調和装置100の、熱源側熱交換器のフィンを共有せずに分割した場合の一例を示す概略構造図である。
図7において、61は、熱源側熱交換器12aのフィンである。64は、熱源側熱交換器12aの伝熱管である。62は、熱源側熱交換器12bのフィンである。65は、熱源側熱交換器12bの伝熱管である。
(フィン構造(1))
図7は、本発明の実施の形態1に係る空気調和装置100の、熱源側熱交換器のフィンを共有せずに分割した場合の一例を示す概略構造図である。
図7において、61は、熱源側熱交換器12aのフィンである。64は、熱源側熱交換器12aの伝熱管である。62は、熱源側熱交換器12bのフィンである。65は、熱源側熱交換器12bの伝熱管である。
熱源側熱交換器12a及び熱源側熱交換器12bは、上下方向(段方向)に、互いに隣り合って配置されている。上側に位置する熱源側熱交換器12aのフィン61の最下部の端面と、下側に位置する熱源側熱交換器12bのフィン62の最上部の端面とが分割されている。
また、上側に位置する熱源側熱交換器12aのフィン61の最下部の端面と、下側に位置する熱源側熱交換器12bのフィン62の最上部の端面とが、境界部63で接触して配置されている。
また、上側に位置する熱源側熱交換器12aのフィン61の最下部の端面と、下側に位置する熱源側熱交換器12bのフィン62の最上部の端面とが、境界部63で接触して配置されている。
熱源側熱交換器12a及び熱源側熱交換器12bの境界部63において、フィン61及びフィン62のそれぞれ端面は、粗面加工され、熱漏洩低減機構を構成している。
なお、境界部63におけるフィン61及びフィン62の端面のうち、少なくとも一方に粗面加工を施せばよい。
なお、境界部63におけるフィン61及びフィン62の端面のうち、少なくとも一方に粗面加工を施せばよい。
この熱漏洩低減機構によって、境界部63においてフィン61とフィン62とが一部でしか接触しなくなる。このため、フィン61とフィン62との間での熱伝導による凝縮器から蒸発器への熱漏洩量が、フィン61とフィン62とを一体で形成(共有)した場合に比べ、抑制される。
熱源側熱交換器12aと熱源側熱交換器12bとの間における熱漏洩量Q1は、一般的な熱伝導による熱交換量の式を用いて、下記式(1)で表せる。
ここで、T1[℃]は、熱源側熱交換器12a、12bのうち、凝縮器となる熱源側熱交換器12の冷媒ガス温度である。
T2[℃]は、熱源側熱交換器12a、12bのうち、蒸発器となる熱源側熱交換器12の入口二相冷媒温度である。
λ[W/mK]は、フィンの熱伝導率である。
δ[m]は、熱源側熱交換器12aの境界部63付近の伝熱管端部と熱源側熱交換器12bの境界部63付近の伝熱管端部との距離を示すフィン間距離である。
A[m2]は、フィン幅[m]とフィン厚さ[m]とフィンの数とを乗じて算出される面積である。
ここで、T1[℃]は、熱源側熱交換器12a、12bのうち、凝縮器となる熱源側熱交換器12の冷媒ガス温度である。
T2[℃]は、熱源側熱交換器12a、12bのうち、蒸発器となる熱源側熱交換器12の入口二相冷媒温度である。
λ[W/mK]は、フィンの熱伝導率である。
δ[m]は、熱源側熱交換器12aの境界部63付近の伝熱管端部と熱源側熱交換器12bの境界部63付近の伝熱管端部との距離を示すフィン間距離である。
A[m2]は、フィン幅[m]とフィン厚さ[m]とフィンの数とを乗じて算出される面積である。
ここで、フィン61とフィン62とを一体で形成(共有)した場合の、熱漏洩量Q1を検討する。
例えば、除霜を行う凝縮器内に流れるガス冷媒の平均温度T1を20℃とし、暖房運転で使用される蒸発器内に流れる冷媒の温度T2を-15℃とする。また、境界部63の蒸発器の伝熱管端部と、凝縮器の伝熱管端部とのフィン間距離δを12.5mmとし、熱交が分割されていない状態でのフィン幅17mm、フィン厚さ0.1mm、フィン数3700枚とする。
この場合、式(1)より、フィンを分割せずに共有している場合の凝縮器から蒸発器への熱漏洩量Q1は、約3.60kWとなる。
例えば、除霜を行う凝縮器内に流れるガス冷媒の平均温度T1を20℃とし、暖房運転で使用される蒸発器内に流れる冷媒の温度T2を-15℃とする。また、境界部63の蒸発器の伝熱管端部と、凝縮器の伝熱管端部とのフィン間距離δを12.5mmとし、熱交が分割されていない状態でのフィン幅17mm、フィン厚さ0.1mm、フィン数3700枚とする。
この場合、式(1)より、フィンを分割せずに共有している場合の凝縮器から蒸発器への熱漏洩量Q1は、約3.60kWとなる。
これに対し、図7のように、熱源側熱交換器12aと、熱源側熱交換器12bとの境界部63のフィンを分割した場合の、熱漏洩量Q1を検討する。
例えば、上側の熱源側熱交換器12aのフィン61と下側の熱源側熱交換器12bのフィン62との接触部の伝熱面積(接触面積)と、熱通過率との積が、フィンを共有する場合の伝熱面積(接触面積)と熱通過率の積の半分であった場合を仮定する。
この場合、フィンの熱伝導による凝縮器から蒸発器への熱漏洩量Q1が、フィンの全てを共有して接続されている場合に比べ、約25%以上抑制され、熱漏洩量Q1は約2.7kWとなる。
なお、フィンの全てを共有して接続されている場合に比べ、熱漏洩量Q1が半分まで至らないのは、フィン内の温度分布の影響であると考えられる。
例えば、上側の熱源側熱交換器12aのフィン61と下側の熱源側熱交換器12bのフィン62との接触部の伝熱面積(接触面積)と、熱通過率との積が、フィンを共有する場合の伝熱面積(接触面積)と熱通過率の積の半分であった場合を仮定する。
この場合、フィンの熱伝導による凝縮器から蒸発器への熱漏洩量Q1が、フィンの全てを共有して接続されている場合に比べ、約25%以上抑制され、熱漏洩量Q1は約2.7kWとなる。
なお、フィンの全てを共有して接続されている場合に比べ、熱漏洩量Q1が半分まで至らないのは、フィン内の温度分布の影響であると考えられる。
次に、除霜が完了するまでに要する時間を検討する。
例えば、蒸発器に着霜した霜を融解させるのに必要な熱量Q2(霜の融解潜熱と霜の重量を乗じて算出)が約1.5MJ、フィンの熱伝導による凝縮器から蒸発器への熱漏洩量がない場合の除霜に利用する冷媒と霜との熱交換量Q3が約5.5kWとする。
除霜が完了するまでに要する時間は、霜の溶解熱量Q2を、熱交換量Q3と熱漏洩量Q1との差で除算すると求まる。
フィン61とフィン62とを一体で形成(共有)した場合、熱漏洩量Q1が約3.60kWで、熱交換量Q2、Q3が上記の条件とすると、除霜が完了するまでに要する時間は、約13分となる。
これに対し、図7のように、フィンを分割した場合、熱漏洩量Q1が約25%抑制されて約2.7kWとなり、熱交換量Q2、Q3が上記の条件とすると、除霜が完了するまでに要する時間は、約9分となる。
よって、除霜完了までに要する時間が、約4分短縮することができる。
例えば、蒸発器に着霜した霜を融解させるのに必要な熱量Q2(霜の融解潜熱と霜の重量を乗じて算出)が約1.5MJ、フィンの熱伝導による凝縮器から蒸発器への熱漏洩量がない場合の除霜に利用する冷媒と霜との熱交換量Q3が約5.5kWとする。
除霜が完了するまでに要する時間は、霜の溶解熱量Q2を、熱交換量Q3と熱漏洩量Q1との差で除算すると求まる。
フィン61とフィン62とを一体で形成(共有)した場合、熱漏洩量Q1が約3.60kWで、熱交換量Q2、Q3が上記の条件とすると、除霜が完了するまでに要する時間は、約13分となる。
これに対し、図7のように、フィンを分割した場合、熱漏洩量Q1が約25%抑制されて約2.7kWとなり、熱交換量Q2、Q3が上記の条件とすると、除霜が完了するまでに要する時間は、約9分となる。
よって、除霜完了までに要する時間が、約4分短縮することができる。
このように除霜完了までの時間が短縮されることで、フィンの熱伝導による凝縮器から蒸発器への熱漏洩がある場合と比較して、除霜に使用するために圧縮機10から吐出された冷媒の一部を、早く暖房に使用することがでる。よって、暖房能力の低下を抑制することができる。また、室内の温度低下を抑制することができ、室内環境の快適性が確保できる。
さらに、熱源側熱交換器12aと熱源側熱交換器12bとの境界部63の凝縮器側のフィンにおいて、温度低下が抑制されるため、凝縮器上側の熱交換器の除霜によって発生する水滴の氷着を抑制でき、根氷の発生を抑制することができる。
さらに、熱源側熱交換器12aと熱源側熱交換器12bとの境界部63の凝縮器側のフィンにおいて、温度低下が抑制されるため、凝縮器上側の熱交換器の除霜によって発生する水滴の氷着を抑制でき、根氷の発生を抑制することができる。
(フィン構造(2))
次に、熱漏洩低減機構の別の構成について説明する。
図8は、本発明の実施の形態1に係る空気調和装置100の、熱源側熱交換器のフィンを共有せずに分割し、切り欠きを設けた場合の一例を示す概略構造図である。
図8に示すように、上側に位置する熱源側熱交換器12aのフィン61の最下部の端面、又は、下側に位置する熱源側熱交換器12bのフィン62の最上部の端面の一部に、切り欠き66を形成する。この切り欠き66によって熱漏洩低減機構を構成している。
なお、図8の例においても、熱源側熱交換器12a及び熱源側熱交換器12bは、上下方向(段方向)に、互いに隣り合って配置されている。上側に位置する熱源側熱交換器12aのフィン61の最下部の端面と、下側に位置する熱源側熱交換器12bのフィン62の最上部の端面とが分割されている。
また、上側に位置する熱源側熱交換器12aのフィン61の最下部の端面と、下側に位置する熱源側熱交換器12bのフィン62の最上部の端面とが、境界部63で接触して配置されている。
次に、熱漏洩低減機構の別の構成について説明する。
図8は、本発明の実施の形態1に係る空気調和装置100の、熱源側熱交換器のフィンを共有せずに分割し、切り欠きを設けた場合の一例を示す概略構造図である。
図8に示すように、上側に位置する熱源側熱交換器12aのフィン61の最下部の端面、又は、下側に位置する熱源側熱交換器12bのフィン62の最上部の端面の一部に、切り欠き66を形成する。この切り欠き66によって熱漏洩低減機構を構成している。
なお、図8の例においても、熱源側熱交換器12a及び熱源側熱交換器12bは、上下方向(段方向)に、互いに隣り合って配置されている。上側に位置する熱源側熱交換器12aのフィン61の最下部の端面と、下側に位置する熱源側熱交換器12bのフィン62の最上部の端面とが分割されている。
また、上側に位置する熱源側熱交換器12aのフィン61の最下部の端面と、下側に位置する熱源側熱交換器12bのフィン62の最上部の端面とが、境界部63で接触して配置されている。
このように、熱源側熱交換器12aと熱源側熱交換器12bとの境界部63のフィンの一部に切り欠き66を設けることで、図7の構成よりも、熱源側熱交換器12aと熱源側熱交換器12bとの境界部63のフィンの接触面積が小さくなる。よって、フィンの熱伝導による凝縮器から蒸発器への熱漏洩量をさらに小さくすることができる。
空気の熱伝導率は、フィンの材料(例えばアルミニウム)の熱伝導率よりも非常に小さい。空気の熱伝導率が約0.026[W/(m・K)]に対し、アルミニウムの熱伝導率は約200[W/(m・K)]である。
このため、フィンの切り欠き66の段方向の高さを約0.1mmとしても、空気の熱伝導による熱漏洩量は、フィンの材料であるアルミニウムの熱伝導による熱漏洩量の1%にも満たず、十分に熱漏洩抑制の効果が得られる。このため、フィンの切り欠き66の高さは、例えば、約0.1mm以上とすれば良い。
このため、フィンの切り欠き66の段方向の高さを約0.1mmとしても、空気の熱伝導による熱漏洩量は、フィンの材料であるアルミニウムの熱伝導による熱漏洩量の1%にも満たず、十分に熱漏洩抑制の効果が得られる。このため、フィンの切り欠き66の高さは、例えば、約0.1mm以上とすれば良い。
また、フィンの切り欠き66の幅(水平方向)の長さを長くするほど、熱漏洩量は小さくなる。このため、熱源側熱交換器12の段方向の上側に位置する熱源側熱交換器12aの重量によって潰れない最長の長さで設定すると良い。例えば、切り欠き66の幅の長さは、フィンの幅の半分以上の長さで設定すれば、残霜なく除霜可能となる。
(フィン構造(3))
さらに、熱漏洩低減機構の別の構成について説明する。
図9は、本発明の実施の形態1に係る空気調和装置100の、熱源側熱交換器のフィンの一部を共有し、切り欠きを設けた場合の一例を示す概略構造図である。
図9に示すように、上側に位置する熱源側熱交換器12aのフィン61と、下側に位置する熱源側熱交換器12bのフィン62とが一体化(共有)されている。つまり、フィン61とフィン62とを分割せずに共有している。
そして、上側に位置する熱源側熱交換器12aの伝熱管64の最下段と、下側に位置する熱源側熱交換器12bの伝熱管65の最上段との間のフィンの境界部63の一部に、切り欠き66を形成する。この切り欠き66によって熱漏洩低減機構を構成している。
さらに、熱漏洩低減機構の別の構成について説明する。
図9は、本発明の実施の形態1に係る空気調和装置100の、熱源側熱交換器のフィンの一部を共有し、切り欠きを設けた場合の一例を示す概略構造図である。
図9に示すように、上側に位置する熱源側熱交換器12aのフィン61と、下側に位置する熱源側熱交換器12bのフィン62とが一体化(共有)されている。つまり、フィン61とフィン62とを分割せずに共有している。
そして、上側に位置する熱源側熱交換器12aの伝熱管64の最下段と、下側に位置する熱源側熱交換器12bの伝熱管65の最上段との間のフィンの境界部63の一部に、切り欠き66を形成する。この切り欠き66によって熱漏洩低減機構を構成している。
このような構成においても、上述した図7、図8に示す構成と同様の効果が得られる。
また、フィンの一部を共有し、フィンの境界部63に切り欠き66を設けることで、熱源側熱交換器12aと、熱源側熱交換器12bとを同時に製作することが可能となる。このため、熱源側熱交換器12aと熱源側熱交換器12bとを別々に製作する場合と比較して、製造工程が減少し、熱源側熱交換器12の製造コストを低減することができる。
また、フィンの一部を共有し、フィンの境界部63に切り欠き66を設けることで、熱源側熱交換器12aと、熱源側熱交換器12bとを同時に製作することが可能となる。このため、熱源側熱交換器12aと熱源側熱交換器12bとを別々に製作する場合と比較して、製造工程が減少し、熱源側熱交換器12の製造コストを低減することができる。
(フィン構造(4))
さらに、熱漏洩低減機構の別の構成について説明する。
図10は、本発明の実施の形態1に係る空気調和装置100の、熱源側熱交換器のフィンの一部を共有し、スリットを設けた場合の一例を示す概略構造図である。
図10に示すように、熱源側熱交換器12aのフィン61と、熱源側熱交換器12bのフィン62とを一体化(共有)し、フィンの境界部63に、切り欠きの両端部のフィンを切り離さずに残して加工(切り起こし加工)した、スリット67を設ける。このスリット67によって熱漏洩低減機構を構成している。
さらに、熱漏洩低減機構の別の構成について説明する。
図10は、本発明の実施の形態1に係る空気調和装置100の、熱源側熱交換器のフィンの一部を共有し、スリットを設けた場合の一例を示す概略構造図である。
図10に示すように、熱源側熱交換器12aのフィン61と、熱源側熱交換器12bのフィン62とを一体化(共有)し、フィンの境界部63に、切り欠きの両端部のフィンを切り離さずに残して加工(切り起こし加工)した、スリット67を設ける。このスリット67によって熱漏洩低減機構を構成している。
このような構成においても、熱源側熱交換器12aと熱源側熱交換器12bとの境界部63に空間ができるため、上述した図7、図8、図9に示す構成と同様の効果が得られる。
(フィン構造(5))
さらに、熱漏洩低減機構の別の構成について説明する。
図11は、本発明の実施の形態1に係る空気調和装置100の、熱源側熱交換器のフィンを共有せずに分割し、楕円状の切り欠きを設けた場合の一例を示す概略構造図である。
熱源側熱交換器12aと熱源側熱交換器12bとの境界部のフィンの切り欠き66又はスリット67の形状は、図7、図8、図10に示す長方形の形状に限らない。熱源側熱交換器12aと熱源側熱交換器12bとの境界部63のフィンの接触部に空間が存在すれば良い。
例えば図11に示すような半楕円の形状など、様々な形状としても、図7、図8に示す構成と同様の効果が得られる。
なお、図7、図8、図10の構成において、熱源側熱交換器12aに切り欠き66又はスリット67を設けた例を示したが、本発明はこれに限定されない。熱源側熱交換器12bに切り欠き66又はスリット67を設けても、図7、図8、図10に示す構成と同様の効果が得られる。
さらに、熱漏洩低減機構の別の構成について説明する。
図11は、本発明の実施の形態1に係る空気調和装置100の、熱源側熱交換器のフィンを共有せずに分割し、楕円状の切り欠きを設けた場合の一例を示す概略構造図である。
熱源側熱交換器12aと熱源側熱交換器12bとの境界部のフィンの切り欠き66又はスリット67の形状は、図7、図8、図10に示す長方形の形状に限らない。熱源側熱交換器12aと熱源側熱交換器12bとの境界部63のフィンの接触部に空間が存在すれば良い。
例えば図11に示すような半楕円の形状など、様々な形状としても、図7、図8に示す構成と同様の効果が得られる。
なお、図7、図8、図10の構成において、熱源側熱交換器12aに切り欠き66又はスリット67を設けた例を示したが、本発明はこれに限定されない。熱源側熱交換器12bに切り欠き66又はスリット67を設けても、図7、図8、図10に示す構成と同様の効果が得られる。
(フィン構造(6))
さらに、熱漏洩低減機構の別の構成について説明する。
図12は、本発明の実施の形態1に係る空気調和装置100の、フィンの一部を共有し、切り欠きを2箇所設けた場合の一例を示す概略構造図である。
熱源側熱交換器12aと熱源側熱交換器12bとの境界部63のフィンの切り欠き66又はスリット67の数量は、図7、図8、図10に示すような1つの切り欠き66又はスリット67に限定されない。
例えば図12に示すような2つの切り欠き66を形成しても良いし、3つ以上の切り欠き66を形成しても良い。この構成においても、図7、図8、図10に示す構成と同様の効果が得られる。つまり、切り欠き66を挟むフィン間の伝熱面積と熱通過率との積が同じであれば、図7、図8、図10に示す構成と、同一の熱漏洩量の削減効果がある。
さらに、熱漏洩低減機構の別の構成について説明する。
図12は、本発明の実施の形態1に係る空気調和装置100の、フィンの一部を共有し、切り欠きを2箇所設けた場合の一例を示す概略構造図である。
熱源側熱交換器12aと熱源側熱交換器12bとの境界部63のフィンの切り欠き66又はスリット67の数量は、図7、図8、図10に示すような1つの切り欠き66又はスリット67に限定されない。
例えば図12に示すような2つの切り欠き66を形成しても良いし、3つ以上の切り欠き66を形成しても良い。この構成においても、図7、図8、図10に示す構成と同様の効果が得られる。つまり、切り欠き66を挟むフィン間の伝熱面積と熱通過率との積が同じであれば、図7、図8、図10に示す構成と、同一の熱漏洩量の削減効果がある。
なお、図7、図8、図10では、熱源側熱交換器12aの下端に切り欠き66又はスリット67を設けた例を示したが、これに限らず、熱源側熱交換器12bの上端に切り欠き66又はスリット67を設けても、図7、図8、図10に示す構成と同様の効果が得られる。
(フィン構造(7))
さらに、熱漏洩低減機構の別の構成について説明する。
図13は、本発明の実施の形態1に係る空気調和装置100の、熱源側熱交換器の上下間に隙間を設けた場合の室外機設置状態の一例を示す概略構造図である。
図13に示すように、
熱源側熱交換器12a及び熱源側熱交換器12bは、上下方向(段方向)に、互いに隣り合って配置されている。上側に位置する熱源側熱交換器12aのフィン61の最下部の端面と、下側に位置する熱源側熱交換器12bのフィン62の最上部の端面とが分割されている。
また、上側に位置する熱源側熱交換器12aのフィン61の最下部の端面と、下側に位置する熱源側熱交換器12bのフィン62の最上部の端面との間に、隙間54が設けられている。隙間54によって熱漏洩低減機構を構成している。
さらに、熱漏洩低減機構の別の構成について説明する。
図13は、本発明の実施の形態1に係る空気調和装置100の、熱源側熱交換器の上下間に隙間を設けた場合の室外機設置状態の一例を示す概略構造図である。
図13に示すように、
熱源側熱交換器12a及び熱源側熱交換器12bは、上下方向(段方向)に、互いに隣り合って配置されている。上側に位置する熱源側熱交換器12aのフィン61の最下部の端面と、下側に位置する熱源側熱交換器12bのフィン62の最上部の端面とが分割されている。
また、上側に位置する熱源側熱交換器12aのフィン61の最下部の端面と、下側に位置する熱源側熱交換器12bのフィン62の最上部の端面との間に、隙間54が設けられている。隙間54によって熱漏洩低減機構を構成している。
このように、熱源側熱交換器12aと熱源側熱交換器12bとの間に隙間54を設けても、図7~図12に示す構成と同様の効果が得られる。
熱源側熱交換器12a及び熱源側熱交換器12bの配置方法は、熱源側熱交換器12aと熱源側熱交換器12bとの間に、空間が存在するように設定すれば任意の方法でよい。
例えば図13に示すように、熱源側熱交換器12aの最下部に、例えば、SUS製の板、塗装鋼板などで形成した受け板53を設けて、熱源側熱交換器12aを支える。
なお、このような配置方法では、熱源側熱交換器12aと熱源側熱交換器12bとの間の隙間54から、風がバイパスして、熱源側熱交換器12aを通る風量が減少する場合がある。このため、熱源側熱交換器12aと熱源側熱交換器12bとの間の隙間54の風路を、例えば、SUS製の板、塗装鋼板などによって塞ぎ、風のバイパスを抑制するようにすると良い。
例えば図13に示すように、熱源側熱交換器12aの最下部に、例えば、SUS製の板、塗装鋼板などで形成した受け板53を設けて、熱源側熱交換器12aを支える。
なお、このような配置方法では、熱源側熱交換器12aと熱源側熱交換器12bとの間の隙間54から、風がバイパスして、熱源側熱交換器12aを通る風量が減少する場合がある。このため、熱源側熱交換器12aと熱源側熱交換器12bとの間の隙間54の風路を、例えば、SUS製の板、塗装鋼板などによって塞ぎ、風のバイパスを抑制するようにすると良い。
次に、隙間54の距離について検討する。
熱源側熱交換器12aと熱源側熱交換器12bとの間に隙間54を設ける場合、隙間54を設けない場合と比較して、室外機1の筐体内に設置できる熱源側熱交換器12a及び熱源側熱交換器12bの高さが短くなる。このため、伝熱管の段数が減少し、熱源側熱交換器12a及び熱源側熱交換器12b全体の伝熱面積が減少する。
熱源側熱交換器12aと熱源側熱交換器12bとの間に隙間54を設ける場合、隙間54を設けない場合と比較して、室外機1の筐体内に設置できる熱源側熱交換器12a及び熱源側熱交換器12bの高さが短くなる。このため、伝熱管の段数が減少し、熱源側熱交換器12a及び熱源側熱交換器12b全体の伝熱面積が減少する。
図14は、本発明の実施の形態1に係る空気調和装置100の、伝熱面積比と、空気調和装置の性能の大きさを表す指標の一つであるCOPとの比較図である。
熱源側熱交換器12a及び熱源側熱交換器12bの伝熱面積比と、COPとの関係は、例えば図14に示すようになる。
なお、図14においては、室外機1の能力が10馬力(28kW)で、風量を一定とした場合の一例を示している。
COP(成績係数)は、暖房能力を室外機1と室内機2の入力電力の合計で除した値(効率)である。
熱源側熱交換器12a及び熱源側熱交換器12bの伝熱面積比と、COPとの関係は、例えば図14に示すようになる。
なお、図14においては、室外機1の能力が10馬力(28kW)で、風量を一定とした場合の一例を示している。
COP(成績係数)は、暖房能力を室外機1と室内機2の入力電力の合計で除した値(効率)である。
図14に示すように、空気調和装置100の性能を維持するために、COPの低下率を約1%以内に抑えるとすると、熱源側熱交換器12の伝熱面積比は約96.7%以上となる。
熱源側熱交換器12a及び熱源側熱交換器12bの合計の段数を60段とした場合、段数と伝熱面積比との積は約58段となる。つまり、COPの低下率を1%以内に抑えるためには、約58段以上の段数が必要となる。
隙間54の段方向の長さは、隙間54が無い場合の段数と隙間54が有る場合の段数との差に、段方向の伝熱管中心部間の距離を乗じることで求まる。例えば、段方向の伝熱管中心部間の距離を約20mmとした場合、隙間54の段方向の長さは、隙間54が無い場合の60段と、隙間54が有る場合の58段との差である2段に、約20mmに乗じて、約40mm以下とする必要がある。
熱源側熱交換器12a及び熱源側熱交換器12bの合計の段数を60段とした場合、段数と伝熱面積比との積は約58段となる。つまり、COPの低下率を1%以内に抑えるためには、約58段以上の段数が必要となる。
隙間54の段方向の長さは、隙間54が無い場合の段数と隙間54が有る場合の段数との差に、段方向の伝熱管中心部間の距離を乗じることで求まる。例えば、段方向の伝熱管中心部間の距離を約20mmとした場合、隙間54の段方向の長さは、隙間54が無い場合の60段と、隙間54が有る場合の58段との差である2段に、約20mmに乗じて、約40mm以下とする必要がある。
よって、隙間54の段方向の長さLsは、伝熱面積比をAc[-]、隙間54が無い場合の段数をDd[段]、段方向の伝熱管中心部間の距離をLd[mm]とすると、式(2)で表される。
また、COPの低下率を約1%以内に抑える場合、式(2)のAcに96.7%を代入し、式(3)以下となる。
また、COPの低下率を約1%以内に抑える場合、式(2)のAcに96.7%を代入し、式(3)以下となる。
このように隙間54の距離Lsを設定することで、COPの低下率を約1%以内に抑えつつ、熱源側熱交換器12aと熱源側熱交換器12aとの間での熱漏洩量を低減させることができる。
以上のように本実施の形態1においては、除霜運転モードにおいて、熱源側熱交換器12aと熱源側熱交換器12bとの間での熱漏洩を抑制することができる。よって、複数の熱源側熱交換器12の一部を除霜運転し、他の一部を暖房運転した場合であっても、隣り合う複数の熱源側熱交換器12の境界部63で、残霜及び根氷の発生を抑制することができる。したがって、除霜時間を短縮し、暖房能力の低下を抑制して、室内環境の快適性を確保することができる。
実施の形態2.
図15は、本発明の実施の形態2に係る空気調和装置200の、回路構成の一例を示す概略回路構成図である。
図15に基づいて、実施の形態2に係る空気調和装置200の構成について、上記実施の形態1に係る空気調和装置100との相違点を中心に説明する。
図15は、本発明の実施の形態2に係る空気調和装置200の、回路構成の一例を示す概略回路構成図である。
図15に基づいて、実施の形態2に係る空気調和装置200の構成について、上記実施の形態1に係る空気調和装置100との相違点を中心に説明する。
図15に示すように、熱源側熱交換器12aの冷媒を遮断する第2開閉装置31aは、熱源側熱交換器12aと冷媒流路切替装置11の間に設置される。熱源側熱交換器12bの冷媒を遮断する第2開閉装置31bは、熱源側熱交換器12bと冷媒流路切替装置11の間に設置される。
ホットガスバイパス配管5の一端は、圧縮機10の吐出部と冷媒流路切替装置11との間の冷媒配管3に接続される。また、ホットガスバイパス配管5の他端は、2分岐し、一方が、熱源側熱交換器12aと第2開閉装置31aとの間の冷媒配管3に接続され、他方が、熱源側熱交換器12bと第2開閉装置31bとの間の冷媒配管3に接続される。
熱源側熱交換器12aに接続されたホットガスバイパス配管5には、第1開閉装置30aが設けられている。熱源側熱交換器12bに接続されたホットガスバイパス配管5には、第1開閉装置30bが設けられている。
熱源側熱交換器12aに接続されたホットガスバイパス配管5には、第1開閉装置30aが設けられている。熱源側熱交換器12bに接続されたホットガスバイパス配管5には、第1開閉装置30bが設けられている。
さらに、熱源側熱交換器12aの負荷側絞り装置22の配管に、開度が変更できる第3開閉装置32aが設けられている。また、熱源側熱交換器12bの負荷側絞り装置22の配管に、開度が変更できる第3開閉装置32bが設けられている。
第3開閉装置32a、32bは、凝縮器となる熱源側熱交換器12内の圧力調整を行うため、開度(開口面積)が変化させられる絞り装置である。
第3開閉装置32a、32bは、凝縮器となる熱源側熱交換器12内の圧力調整を行うため、開度(開口面積)が変化させられる絞り装置である。
その他の構成は、上記実施の形態1に係る空気調和装置100と同様であるため、説明を省略する。
また、空気調和装置200の全冷房運転モード及び全暖房運転モード時の冷媒の流れは、上記実施の形態1に係る空気調和装置100と同様のため、説明を省略する。
また、空気調和装置200の全冷房運転モード及び全暖房運転モード時の冷媒の流れは、上記実施の形態1に係る空気調和装置100と同様のため、説明を省略する。
なお、本実施の形態2における、第1開閉装置30a、第1開閉装置30b、第2開閉装置31a、第2開閉装置31b、第3開閉装置32a、及び第3開閉装置32bは、本発明の「接続切替装置」を構成する。
(除霜運転モード)
本実施の形態2に係る空気調和装置200の除霜運転モードにおいても、筐体51内の下側に位置する熱源側熱交換器12bの除霜を実施し、その後、筐体51内の上側に位置する熱源側熱交換器12aの除霜を実施する。
なお、除霜運転モードを開始する条件は、実施の形態1に係る空気調和装置100と同様である。
本実施の形態2に係る空気調和装置200の除霜運転モードにおいても、筐体51内の下側に位置する熱源側熱交換器12bの除霜を実施し、その後、筐体51内の上側に位置する熱源側熱交換器12aの除霜を実施する。
なお、除霜運転モードを開始する条件は、実施の形態1に係る空気調和装置100と同様である。
(熱源側熱交換器12bの除霜)
図15では、熱源側熱交換器12bの除霜を実施している場合の冷媒の流れ方向を実線矢印で示している。
除霜運転モードでは、冷媒流路切替装置11が図15の実線で示される状態に維持される。
また、除霜運転モードにおいて、熱源側熱交換器12bを除霜対象とする場合、第1開閉装置30bは、開状態に切り替えられ、冷媒を通過させる。
第2開閉装置31bは、閉状態に切り替えられ、冷媒を遮断する。
第1開閉装置30aは、閉状態に維持され、冷媒を遮断する。
第2開閉装置31aは、開状態に維持され、冷媒を通過させる。
第3開閉装置32bは全開状態に設定され、冷媒を通過させる。
第3開閉装置32aは、制御装置50によって、第6温度センサ48bの検出結果より算出される二相冷媒の飽和圧力が一定(例えばR410A冷媒で約0.8MPa程度)以上になるように、開度が制御される。
図15では、熱源側熱交換器12bの除霜を実施している場合の冷媒の流れ方向を実線矢印で示している。
除霜運転モードでは、冷媒流路切替装置11が図15の実線で示される状態に維持される。
また、除霜運転モードにおいて、熱源側熱交換器12bを除霜対象とする場合、第1開閉装置30bは、開状態に切り替えられ、冷媒を通過させる。
第2開閉装置31bは、閉状態に切り替えられ、冷媒を遮断する。
第1開閉装置30aは、閉状態に維持され、冷媒を遮断する。
第2開閉装置31aは、開状態に維持され、冷媒を通過させる。
第3開閉装置32bは全開状態に設定され、冷媒を通過させる。
第3開閉装置32aは、制御装置50によって、第6温度センサ48bの検出結果より算出される二相冷媒の飽和圧力が一定(例えばR410A冷媒で約0.8MPa程度)以上になるように、開度が制御される。
圧縮機10が駆動すると低温・低圧の冷媒が圧縮され、高温・高圧のガス冷媒となって吐出される。
圧縮機10から吐出された高温・高圧のガス冷媒の一部は、ホットガスバイパス配管5と、第1開閉装置30bで飽和温度換算で0℃より大きくなる程度に減圧され、中圧・高温のガス冷媒となり、熱源側熱交換器12bに流入する。熱源側熱交換器12bに流入した中圧・高温のガス冷媒は、熱源側熱交換器12bに付着した霜を融かしながら中圧の低い乾き度の二相冷媒、もしくは中圧の冷媒となり、第3開閉装置32bを通過する。第3開閉装置32bを通過した冷媒は、室内機2より室外機1に流入した中圧・低温の低い乾き度の二相冷媒、もしくは液冷媒と、第3開閉装置32aの上流側で合流する。
圧縮機10から吐出された高温・高圧のガス冷媒の一部は、ホットガスバイパス配管5と、第1開閉装置30bで飽和温度換算で0℃より大きくなる程度に減圧され、中圧・高温のガス冷媒となり、熱源側熱交換器12bに流入する。熱源側熱交換器12bに流入した中圧・高温のガス冷媒は、熱源側熱交換器12bに付着した霜を融かしながら中圧の低い乾き度の二相冷媒、もしくは中圧の冷媒となり、第3開閉装置32bを通過する。第3開閉装置32bを通過した冷媒は、室内機2より室外機1に流入した中圧・低温の低い乾き度の二相冷媒、もしくは液冷媒と、第3開閉装置32aの上流側で合流する。
圧縮機10から吐出された高温・高圧のガス冷媒の他の一部は、冷媒流路切替装置11を介して、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒主管4を通って、室内機2に流入し、負荷側熱交換器21で室内空気に放熱することで、室内空気を暖房しながら、液冷媒となる。負荷側熱交換器21から流出した液冷媒は、負荷側絞り装置22で膨張されて、低温・中圧の二相冷媒もしくは液冷媒となり、冷媒主管4を通って再び室外機1へ流入する。
室外機1へ流入した低温・中圧の二相冷媒もしくは液冷媒は、第3開閉装置32aの上流で、第3開閉装置32bからの冷媒と合流し、熱源側熱交換器12aに流入する。熱源側熱交換器12aに流入した冷媒は、室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12aを流出したガス冷媒は、冷媒流路切替装置11及びアキュムレータ13を介して、圧縮機10に再度吸入される。
制御装置50は、第6温度センサ48bの検出結果より算出される二相冷媒の飽和圧力が一定(例えばR410A冷媒で約0.8MPa程度)以上になるように、第3開閉装置32aの開度を制御する。つまり、制御装置50は、第6温度センサ48bの検出結果より算出される二相冷媒の飽和圧力が、飽和温度換算で0℃よりも大きくなるように、第3開閉装置32aの開度が制御する。
熱源側熱交換器12bの除霜完了の判定は、例えば第3温度センサ48bの温度がある所定値以上(例えば5℃)となった場合、霜が融けたと判断すればよい。
その他の除霜運転モードの動作は、上記実施の形態1に係る空気調和装置100と同様である。
その他の除霜運転モードの動作は、上記実施の形態1に係る空気調和装置100と同様である。
熱源側熱交換器12bの除霜が完了したあと、熱源側熱交換器12aの除霜を実施する場合は、前述の熱源側熱交換器12bの除霜動作の説明の中のアルファベットのaとbとを入れ替えた動作となる。即ち、第1開閉装置30a、30b、第2開閉装置31a、31bの開閉状態が逆転し、熱源側熱交換器12aと熱源側熱交換器12bとの冷媒の流れが入れ替わる。また、第3開閉装置32aが全開状態となり、第3開閉装置32bの開度が制御される。
このように熱源側熱交換器12の除霜運転モードにおいて、凝縮器となる熱源側熱交換器12内の冷媒の飽和温度を、霜の温度よりも高い、0℃より大きくなる中圧(例えばR410A冷媒で約0.8MPa以上)とする。このため、冷媒の二相域(潜熱)を利用することができ、上記実施の形態1に係る空気調和装置100の構成よりも、少ない冷媒循環量で、同等の除霜能力を得ることができる
次に、熱源側熱交換器12aと熱源側熱交換器12bとの間における熱漏洩量Q1を検討する。
本実施の形態2に係る空気調和装置200において、熱漏洩低減機構の構成として、上記図7に示すように、熱源側熱交換器12aと熱源側熱交換器12bとの境界部63で、フィンが共有されずに分割されている場合について検討する。
例えば、除霜を行う凝縮器内に流れる二相冷媒の飽和温度T1を5℃とし、暖房運転で使用される蒸発器内に流れる冷媒の温度T2を-25℃とする。また、境界部63の蒸発器の伝熱管端部と凝縮器の伝熱管端部とのフィン間距離δが12.5mmとし、熱交が分割されていない状態でのフィン幅17mm、フィン厚さ0.1mm、フィン数3700枚とする。
この場合、上記式(1)より、フィンを分割せずに共有している場合の凝縮器から蒸発器への熱漏洩量Q1は、約3.22kWとなる。
本実施の形態2に係る空気調和装置200において、熱漏洩低減機構の構成として、上記図7に示すように、熱源側熱交換器12aと熱源側熱交換器12bとの境界部63で、フィンが共有されずに分割されている場合について検討する。
例えば、除霜を行う凝縮器内に流れる二相冷媒の飽和温度T1を5℃とし、暖房運転で使用される蒸発器内に流れる冷媒の温度T2を-25℃とする。また、境界部63の蒸発器の伝熱管端部と凝縮器の伝熱管端部とのフィン間距離δが12.5mmとし、熱交が分割されていない状態でのフィン幅17mm、フィン厚さ0.1mm、フィン数3700枚とする。
この場合、上記式(1)より、フィンを分割せずに共有している場合の凝縮器から蒸発器への熱漏洩量Q1は、約3.22kWとなる。
これに対し、図7のように、熱源側熱交換器12aと、熱源側熱交換器12bとの境界部63のフィンを分割した場合の、熱漏洩量Q1を検討する。
例えば、上側の熱源側熱交換器12aのフィン61と下側の熱源側熱交換器12bのフィン62との接触部の伝熱面積(接触面積)と、熱通過率との積が、フィンを共有する場合の伝熱面積(接触面積)と熱通過率の積の半分であった場合を仮定する。
この場合、フィンの熱伝導による凝縮器から蒸発器への熱漏洩量Q1が、フィンの全てを共有して接続されている場合に比べ、約25%以上抑制され、熱漏洩量Q1は約2.42kWとなる。
例えば、上側の熱源側熱交換器12aのフィン61と下側の熱源側熱交換器12bのフィン62との接触部の伝熱面積(接触面積)と、熱通過率との積が、フィンを共有する場合の伝熱面積(接触面積)と熱通過率の積の半分であった場合を仮定する。
この場合、フィンの熱伝導による凝縮器から蒸発器への熱漏洩量Q1が、フィンの全てを共有して接続されている場合に比べ、約25%以上抑制され、熱漏洩量Q1は約2.42kWとなる。
次に、除霜が完了するまでに要する時間を検討する。
例えば、蒸発器に着霜した霜を融解させるのに必要な熱量Q2(霜の融解潜熱と霜の重量を乗じて算出)が約1.5MJ、フィンの熱伝導による凝縮器から蒸発器への熱漏洩量がない場合の除霜に利用する冷媒と霜との熱交換量Q3が約5.5kWとする。
除霜が完了するまでに要する時間は、霜の溶解熱量Q2を、熱交換量Q3と熱漏洩量Q1との差で除算すると求まる。
フィン61とフィン62とを一体で形成(共有)した場合、熱漏洩量Q1が約3.22kWで、熱交換量Q2、Q3が上記の条件とすると、除霜が完了するまでに要する時間は、約11分となる。
これに対し、実施の形態2に係る空気調和装置200では、フィンを分割した場合、熱漏洩量Q1が約25%抑制されて約2.42kWとなり、熱交換量Q2、Q3が上記の条件とすると、除霜が完了するまでに要する時間は、約8分となる。
よって、除霜完了までに要する時間が、約3分短縮することができる。
例えば、蒸発器に着霜した霜を融解させるのに必要な熱量Q2(霜の融解潜熱と霜の重量を乗じて算出)が約1.5MJ、フィンの熱伝導による凝縮器から蒸発器への熱漏洩量がない場合の除霜に利用する冷媒と霜との熱交換量Q3が約5.5kWとする。
除霜が完了するまでに要する時間は、霜の溶解熱量Q2を、熱交換量Q3と熱漏洩量Q1との差で除算すると求まる。
フィン61とフィン62とを一体で形成(共有)した場合、熱漏洩量Q1が約3.22kWで、熱交換量Q2、Q3が上記の条件とすると、除霜が完了するまでに要する時間は、約11分となる。
これに対し、実施の形態2に係る空気調和装置200では、フィンを分割した場合、熱漏洩量Q1が約25%抑制されて約2.42kWとなり、熱交換量Q2、Q3が上記の条件とすると、除霜が完了するまでに要する時間は、約8分となる。
よって、除霜完了までに要する時間が、約3分短縮することができる。
このように除霜完了までの時間が短縮されることで、フィンの熱伝導による凝縮器から蒸発器への熱漏洩がある場合と比較して、除霜に使用するために圧縮機10から吐出された冷媒の一部を、早く暖房に使用することがでる。よって、暖房能力の低下を抑制することができる。また、室内の温度低下を抑制することができ、室内環境の快適性が確保できる。
さらに、熱源側熱交換器12aと熱源側熱交換器12bとの境界部63の凝縮器側のフィンにおいて、温度低下が抑制されるため、凝縮器上側の熱交換器の除霜によって発生する水滴の氷着を抑制でき、根氷の発生を抑制することができる。
さらに、熱源側熱交換器12aと熱源側熱交換器12bとの境界部63の凝縮器側のフィンにおいて、温度低下が抑制されるため、凝縮器上側の熱交換器の除霜によって発生する水滴の氷着を抑制でき、根氷の発生を抑制することができる。
なお、上記の説明では、実施の形態2に係る空気調和装置200において、熱漏洩低減機構の構成として、上記図7の構成を適用してが、これに限定されない。熱漏洩低減機構の構成として、上記実施の形態1で説明した、図8~13の構成としても、図7に示す構成と同等の効果が得られる。
なお、図15に示す空気調和装置200では、第3開閉装置32a及び第3開閉装置32bの2つを、開度(開口面積)が変化させられる絞り装置とした例を示したが、本発明はこれに限定されない。
(変形例1)
例えば、図16に示すように、実施の形態2に係る空気調和装置200において、第3開閉装置32b(もしくは第3開閉装置32a)の1つを、開度(開口面積)が変化させられる絞り装置に変更しても良い。この場合、除霜運転時に、変更していない第3開閉装置32a(もしくは、第3開閉装置32b)を常に開とし、開度(開口面積)が変化させられる絞り装置に変更した第3開閉装置32b(もしくは、第3開閉装置32a)を使用し、凝縮器となる熱源側熱交換器12内の圧力調整を実施する。このような構成においても、上記図15に示す空気調和装置200と同様の動作が可能であり、同様の効果が得られる。
(変形例1)
例えば、図16に示すように、実施の形態2に係る空気調和装置200において、第3開閉装置32b(もしくは第3開閉装置32a)の1つを、開度(開口面積)が変化させられる絞り装置に変更しても良い。この場合、除霜運転時に、変更していない第3開閉装置32a(もしくは、第3開閉装置32b)を常に開とし、開度(開口面積)が変化させられる絞り装置に変更した第3開閉装置32b(もしくは、第3開閉装置32a)を使用し、凝縮器となる熱源側熱交換器12内の圧力調整を実施する。このような構成においても、上記図15に示す空気調和装置200と同様の動作が可能であり、同様の効果が得られる。
すなわち、除霜運転時に、凝縮器となる熱源側熱交換器12内の冷媒の飽和温度を、霜の温度よりも高い、0℃より大きくなる中圧(例えばR410A冷媒で約0.8MPa以上)にできる回路構成であれば良い。例えば、開度(開口面積)が変化させられる絞り装置である第2開閉装置31は1つでも良い。
このように構成することで、一般的に電磁弁よりも構造が複雑で高価となる、ステッピングモータ搭載の電子式膨張弁などの開度(開口面積)が変化させられる絞り装置の設置数を減らすことができ、安価に室外機1を製造できる。
このように構成することで、一般的に電磁弁よりも構造が複雑で高価となる、ステッピングモータ搭載の電子式膨張弁などの開度(開口面積)が変化させられる絞り装置の設置数を減らすことができ、安価に室外機1を製造できる。
(変形例2)
また、例えば、図17に示すように、実施の形態2に係る空気調和装置200において、第3開閉装置32b(もしくは第3開閉装置32a)の1つを、開度(開口面積)が変化させられる絞り装置に変更しても良い。この場合、第3開閉装置32を1つのみを設置して、除霜運転時に、凝縮器となる熱源側熱交換器12内の圧力調整を実施する。このような構成においても、上記図15に示す空気調和装置200と同様の動作が可能であり、同様の効果が得られる。さらに、図17に示す構成することで、回路構成が簡素化され、安価に室外機1を製造できる。
また、例えば、図17に示すように、実施の形態2に係る空気調和装置200において、第3開閉装置32b(もしくは第3開閉装置32a)の1つを、開度(開口面積)が変化させられる絞り装置に変更しても良い。この場合、第3開閉装置32を1つのみを設置して、除霜運転時に、凝縮器となる熱源側熱交換器12内の圧力調整を実施する。このような構成においても、上記図15に示す空気調和装置200と同様の動作が可能であり、同様の効果が得られる。さらに、図17に示す構成することで、回路構成が簡素化され、安価に室外機1を製造できる。
(変形例3)
また、例えば、図18に示すように、実施の形態2に係る空気調和装置200において、第3開閉装置32b(もしくは第3開閉装置32a)の1つを、開度(開口面積)が変化させられる絞り装置に変更し、その第3開閉装置32を1つのみを設置する。そして、新たに、熱源側熱交換器12a及び熱源側熱交換器12bのそれぞれと、第3開閉装置32b(もしくは第3開閉装置32a)の間の冷媒配管3に、熱源側熱交換器12aもしくは熱源側熱交換器12bの冷媒を遮断するための、第4開閉装置33aと第4開閉装置33bとを設置する。
さらに、冷媒バイパス配管6を設置する。この冷媒バイパス配管6の一端は、熱源側熱交換器12a、12bのそれぞれと、第4開閉装置33の間の冷媒配管3に接続され、他端は、第3開閉装置32と負荷側絞り装置22との間の流路に接続される。この冷媒バイパス配管6によって、除霜運転モード時に、凝縮器となる熱源側熱交換器12内の冷媒を、冷媒配管3に流入させる。
また、冷媒バイパス配管6の冷媒流路を切り替えるための、第5開閉装置34aと第5開閉装置34bを、一端がそれぞれ対応した熱源側熱交換器12と第4開閉装置33との間に接続されている冷媒バイパス配管6に設置する。
また、例えば、図18に示すように、実施の形態2に係る空気調和装置200において、第3開閉装置32b(もしくは第3開閉装置32a)の1つを、開度(開口面積)が変化させられる絞り装置に変更し、その第3開閉装置32を1つのみを設置する。そして、新たに、熱源側熱交換器12a及び熱源側熱交換器12bのそれぞれと、第3開閉装置32b(もしくは第3開閉装置32a)の間の冷媒配管3に、熱源側熱交換器12aもしくは熱源側熱交換器12bの冷媒を遮断するための、第4開閉装置33aと第4開閉装置33bとを設置する。
さらに、冷媒バイパス配管6を設置する。この冷媒バイパス配管6の一端は、熱源側熱交換器12a、12bのそれぞれと、第4開閉装置33の間の冷媒配管3に接続され、他端は、第3開閉装置32と負荷側絞り装置22との間の流路に接続される。この冷媒バイパス配管6によって、除霜運転モード時に、凝縮器となる熱源側熱交換器12内の冷媒を、冷媒配管3に流入させる。
また、冷媒バイパス配管6の冷媒流路を切り替えるための、第5開閉装置34aと第5開閉装置34bを、一端がそれぞれ対応した熱源側熱交換器12と第4開閉装置33との間に接続されている冷媒バイパス配管6に設置する。
図18に示す空気調和装置200において、熱源側熱交換器12bの除霜運転を実施する場合、第4開閉装置33aは開状態とする。第4開閉装置33bは閉とする。第5開閉装置34aは閉状態とする。第5開閉装置34bは開状態とする。
除霜運転モードにおいて、凝縮器となる熱源側熱交換器12b内の圧力調整を第3開閉装置32b(もしくは第3開閉装置32a)で実施する。また、凝縮後の一部の冷媒を、第5開閉装置34bを介して、第3開閉装置32b(もしくは第3開閉装置32a)と負荷側絞り装置22との間の冷媒配管3で、負荷側絞り装置22から室外機1に流入するその他の冷媒と合流させる。また、全冷媒が第3開閉装置32b(もしくは第3開閉装置32a)、第4開閉装置33aを介し、蒸発器である熱源側熱交換器12aで空気より吸熱し、低圧の二相もしくはガス冷媒となり、その後、第2開閉装置31a、冷媒流路切替装置11、アキュムレータ13を介し、圧縮機10に吸入される。
その他の動作は図15と同様である。
除霜運転モードにおいて、凝縮器となる熱源側熱交換器12b内の圧力調整を第3開閉装置32b(もしくは第3開閉装置32a)で実施する。また、凝縮後の一部の冷媒を、第5開閉装置34bを介して、第3開閉装置32b(もしくは第3開閉装置32a)と負荷側絞り装置22との間の冷媒配管3で、負荷側絞り装置22から室外機1に流入するその他の冷媒と合流させる。また、全冷媒が第3開閉装置32b(もしくは第3開閉装置32a)、第4開閉装置33aを介し、蒸発器である熱源側熱交換器12aで空気より吸熱し、低圧の二相もしくはガス冷媒となり、その後、第2開閉装置31a、冷媒流路切替装置11、アキュムレータ13を介し、圧縮機10に吸入される。
その他の動作は図15と同様である。
熱源側熱交換器12bの除霜が完了したあと、熱源側熱交換器12aの除霜を実施する場合は、前述の熱源側熱交換器12bの除霜動作の説明の中のアルファベットのaとbとを入れ替えた動作となる。
即ち、第1開閉装置30a、30b、第4開閉装置33a、33b、第5開閉装置34a、34bの開閉状態が逆転し、熱源側熱交換器12aと熱源側熱交換器12bとの冷媒の流れが入れ替わる。
即ち、第1開閉装置30a、30b、第4開閉装置33a、33b、第5開閉装置34a、34bの開閉状態が逆転し、熱源側熱交換器12aと熱源側熱交換器12bとの冷媒の流れが入れ替わる。
[冷媒]
上記実施の形態1及び実施の形態2の熱源側冷媒としては、R410A、R407C、R22等の不燃性冷媒、HFO1234yf、HFO1234ze(E)、R32、HC、R32とHFO1234yfとを含む混合冷媒、前述冷媒が少なくとも一成分含む混合冷媒を用いた冷媒等の微燃性を示す冷媒、プロパン(R290)等の強燃性冷媒、CO2(R744)等の高圧側が超臨界で動作する冷媒を、熱源側冷媒として用いることができる。
上記実施の形態1及び実施の形態2の熱源側冷媒としては、R410A、R407C、R22等の不燃性冷媒、HFO1234yf、HFO1234ze(E)、R32、HC、R32とHFO1234yfとを含む混合冷媒、前述冷媒が少なくとも一成分含む混合冷媒を用いた冷媒等の微燃性を示す冷媒、プロパン(R290)等の強燃性冷媒、CO2(R744)等の高圧側が超臨界で動作する冷媒を、熱源側冷媒として用いることができる。
[第1の開閉装置]
上記実施の形態1及び実施の形態2の第1開閉装置30a、30bとしては、電磁弁を使用する例を説明したが、電磁弁の他に、電子式膨張弁のように開度を可変できる弁も開閉弁として使用してもよい。
上記実施の形態1及び実施の形態2の第1開閉装置30a、30bとしては、電磁弁を使用する例を説明したが、電磁弁の他に、電子式膨張弁のように開度を可変できる弁も開閉弁として使用してもよい。
[第2の開閉装置]
上記実施の形態1及び実施の形態2の第2開閉装置31a、31bとしては、電磁弁を使用する例を説明したが、電磁弁の他に、電子式膨張弁のように開度を可変できる弁も開閉弁として使用してもよい。
上記実施の形態1及び実施の形態2の第2開閉装置31a、31bとしては、電磁弁を使用する例を説明したが、電磁弁の他に、電子式膨張弁のように開度を可変できる弁も開閉弁として使用してもよい。
[第3の開閉装置]
本実施の形態2では、第3開閉装置32a、32bを、開度(開口面積)を変化させられる絞り装置としたが、流路の開口面積を変更可能な装置であればよい。
例えば、絞り装置としては、ステッピングモータで駆動させる電子式膨張弁でもよいし、小型の電磁弁を複数並列に並べてそれらを切り替えて開口面積を変えても良い。
本実施の形態2では、第3開閉装置32a、32bを、開度(開口面積)を変化させられる絞り装置としたが、流路の開口面積を変更可能な装置であればよい。
例えば、絞り装置としては、ステッピングモータで駆動させる電子式膨張弁でもよいし、小型の電磁弁を複数並列に並べてそれらを切り替えて開口面積を変えても良い。
[第4の開閉装置]
本実施の形態2の第4開閉装置33としては、電磁弁を使用する例を説明したが、電磁弁の他に、電子式膨張弁のように開度を可変できる弁も開閉弁として使用してもよい。
本実施の形態2の第4開閉装置33としては、電磁弁を使用する例を説明したが、電磁弁の他に、電子式膨張弁のように開度を可変できる弁も開閉弁として使用してもよい。
[第5の開閉装置]
本実施の形態2の第5開閉装置34としては、電磁弁を使用する例を説明したが、電磁弁の他に、電子式膨張弁のように開度を可変できる弁も開閉弁として使用してもよい。
本実施の形態2の第5開閉装置34としては、電磁弁を使用する例を説明したが、電磁弁の他に、電子式膨張弁のように開度を可変できる弁も開閉弁として使用してもよい。
[熱源側熱交換器]
上記実施の形態1及び実施の形態2の熱源側熱交換器12a、12bは、U字状に曲げられており、段方向(それぞれのフィンが同一方向を向くような上下方向)に2段で位置する例を説明したが、本発明はこれに限定されない。
熱源側熱交換器12としては、曲げがない構造、段方向(それぞれのフィンが同一方向を向くような上下方向)に3段以上など、複数台位置する構成としてもよい。
また、複数の熱源側熱交換器12の配置は、上下に限らず、左右方向、前後方向に配置しても良い。
上記実施の形態1及び実施の形態2の熱源側熱交換器12a、12bは、U字状に曲げられており、段方向(それぞれのフィンが同一方向を向くような上下方向)に2段で位置する例を説明したが、本発明はこれに限定されない。
熱源側熱交換器12としては、曲げがない構造、段方向(それぞれのフィンが同一方向を向くような上下方向)に3段以上など、複数台位置する構成としてもよい。
また、複数の熱源側熱交換器12の配置は、上下に限らず、左右方向、前後方向に配置しても良い。
実施の形態1に係る空気調和装置100、及び、実施の形態2に係る空気調和装置200は、冷暖運転を切り替える空気調和装置を例に説明したが、これに限らず、冷暖同時運転が可能な回路構成の空気調和装置についても適用できる。また、冷媒流路切替装置11を省略し、全暖房運転モードと除霜運転モードのみを実施するようにしても良い。
1 室外機、2 室内機、3 冷媒配管、4 冷媒主管、5 ホットガスバイパス配管、6 冷媒バイパス配管、10 圧縮機、11 冷媒流路切替装置、12a~b 熱源側熱交換器、13 アキュムレータ、21 負荷側熱交換器、22 負荷側絞り装置、30a~b 第1開閉装置、31a~b 第2開閉装置、32a~b 第3開閉装置、33a~b 第4開閉装置、34a~b 第5開閉装置、41 第1圧力センサ、42 第2圧力センサ、43 第1温度センサ、44 第2温度センサ、45 第3温度センサ、46 第4温度センサ、47 第5温度センサ、48a~b 第6温度センサ、50 制御装置、51 筐体、52 ファン、53 受け板、54 隙間、61 フィン、62 フィン、63 境界部63、64 伝熱管、65 伝熱管、66 切り欠き、67 スリット、100 空気調和装置、200 空気調和装置。
Claims (11)
- 圧縮機、負荷側熱交換器、負荷側絞り装置、及び、互いに並列に接続された複数の熱源側熱交換器が、配管で順次接続されて冷媒が循環する主回路と、
前記圧縮機が吐出した冷媒の一部を分岐し、前記複数の熱源側熱交換器のうち除霜対象の前記熱源側熱交換器に流入させるバイパス配管と、
前記バイパス配管の流路の通過又は遮断、及び、前記複数の熱源側熱交換器に接続された前記主回路の前記配管の流路の通過又は遮断を切り替えて、除霜対象の前記熱源側熱交換器を切り替える接続切替装置と、
を備え、
前記熱源側熱交換器は、
空気が通過するように間隔を空けて配置された複数のフィンと、
前記複数のフィンに挿入され内部を前記冷媒が流れる複数の伝熱管と、を有し、
前記複数の熱源側熱交換器は、
前記複数のフィンが同一方向を向くように、互いに隣り合って配置され、
隣り合う前記複数のフィンの間に、隣り合う前記熱源側熱交換器の間での熱漏洩量を低減させる熱漏洩低減機構を備えた
ことを特徴とする空気調和装置。 - 前記複数の熱源側熱交換器のうち、除霜対象の前記熱源側熱交換器に前記圧縮機が吐出した前記冷媒の一部を流入させる除霜運転中に、除霜対象以外の前記熱源側熱交換器の少なくとも1つが蒸発器として機能して暖房運転を行い、
除霜対象の前記熱源側熱交換器を順次切り替える
ことを特徴とする請求項1に記載の空気調和装置。 - 前記接続切替装置は、
前記バイパス配管から前記複数の熱源側熱交換器への流路の通過又は遮断を行う複数の第1開閉装置と、
前記複数の熱源側熱交換器の前記負荷側絞り装置側の前記配管の流路の通過又は遮断を行う複数の第2開閉装置と、によって構成され、
前記複数の熱源側熱交換器のうち、除霜対象の前記熱源側熱交換器に対応する、前記第1開閉装置を開にし、前記第2開閉装置を閉にする
ことを特徴とする請求項1又は2に記載の空気調和装置。 - 前記接続切替装置は、
前記バイパス配管から前記複数の熱源側熱交換器への流路の通過又は遮断を行う複数の第1開閉装置と、
前記複数の熱源側熱交換器の前記圧縮機の吸入側の前記配管の流路の通過又は遮断を行う複数の第2開閉装置と、
前記複数の熱源側熱交換器の前記負荷側絞り装置側の前記配管に設けられ、開度が変更できる第3開閉装置と、によって構成された
前記複数の熱源側熱交換器のうち、除霜対象の前記熱源側熱交換器に対応する、前記第1開閉装置を開にし、前記第2開閉装置を閉にし、
除霜対象の前記熱源側熱交換器を流出する前記冷媒の圧力が、飽和温度換算で0℃よりも大きくなるように、前記第3開閉装置の開度を調整する
ことを特徴とする請求項1又は2に記載の空気調和装置。 - 前記複数の熱源側熱交換器は、上下方向に、互いに隣り合って配置され、
前記複数の熱源側熱交換器のうち、上側に位置する前記熱源側熱交換器の前記フィンの最下部の端面と、下側に位置する前記熱源側熱交換器の前記フィンの最上部の端面とが分割された
ことを特徴とする請求項1~4の何れか一項に記載の空気調和装置。 - 前記熱漏洩低減機構は、
前記複数の熱源側熱交換器のうち、上側に位置する前記熱源側熱交換器の前記フィンの最下部の端面と、下側に位置する前記熱源側熱交換器の前記フィンの最上部の端面との隙間によって構成され、
前記隙間の距離(Ls)が、
前記複数の熱源側熱交換器が分割されない状態での前記複数の伝熱管の段数(Dd)と、前記複数の熱源側熱交換器が分割されない状態での段方向の前記複数の伝熱管の中心部間の距離(Ld)と、0.033との積で算出される値以下である
ことを特徴とする請求項5に記載の空気調和装置。 - 前記複数の熱源側熱交換器は、上側に位置する前記熱源側熱交換器の前記フィンの最下部の端面と、下側に位置する前記熱源側熱交換器の前記フィンの最上部の端面とが接触して配置され、
前記熱漏洩低減機構は、
前記複数の熱源側熱交換器のうち、上側に位置する前記熱源側熱交換器の前記フィンの最下部の端面、及び、下側に位置する前記熱源側熱交換器の前記フィンの最上部の端面の少なくとも一方に形成した粗面によって構成された
ことを特徴とする請求項5に記載の空気調和装置。 - 前記複数の熱源側熱交換器は、上側に位置する前記熱源側熱交換器の前記フィンの最下部の端面と、下側に位置する前記熱源側熱交換器の前記フィンの最上部の端面とが接触して配置され、
前記熱漏洩低減機構は、
前記複数の熱源側熱交換器のうち、上側に位置する前記熱源側熱交換器の前記フィンの最下部の端面、及び、下側に位置する前記熱源側熱交換器の前記フィンの最上部の端面の少なくとも一方の、一部に形成した切り欠きによって構成された
ことを特徴とする請求項5に記載の空気調和装置。 - 前記複数の熱源側熱交換器は、上下方向に、互いに隣り合って配置され、
前記複数の熱源側熱交換器のうち、上側に位置する前記熱源側熱交換器の前記フィンと、下側に位置する前記熱源側熱交換器の前記フィンとが一体化され、
前記熱漏洩低減機構は、
前記複数の熱源側熱交換器のうち、上側に位置する前記熱源側熱交換器と、下側に位置する前記熱源側熱交換器との間の前記フィンに形成した切り欠きによって構成された
ことを特徴とする請求項1~4の何れか一項に記載の空気調和装置。 - 前記切り欠きの幅の長さが、前記フィンの幅の長さの半分以上である
ことを特徴とする請求項8又は9に記載の空気調和装置。 - 前記複数の熱源側熱交換器は、上下方向に、互いに隣り合って配置され、
前記複数の熱源側熱交換器のうち、上側に位置する前記熱源側熱交換器が蒸発器として機能して暖房運転を行いながら、下側に位置する前記熱源側熱交換器を除霜対象とした除霜運転を行った後、
下側に位置する前記熱源側熱交換器が蒸発器として機能して暖房運転を行いながら、上側に位置する前記熱源側熱交換器を除霜対象とした除霜運転を行う
ことを特徴とする請求項1~10の何れか一項に記載の空気調和装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12889228.8A EP2930450B1 (en) | 2012-11-29 | 2012-11-29 | Air conditioning device |
JP2014549699A JP5980349B2 (ja) | 2012-11-29 | 2012-11-29 | 空気調和装置 |
PCT/JP2012/080912 WO2014083650A1 (ja) | 2012-11-29 | 2012-11-29 | 空気調和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/080912 WO2014083650A1 (ja) | 2012-11-29 | 2012-11-29 | 空気調和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014083650A1 true WO2014083650A1 (ja) | 2014-06-05 |
Family
ID=50827323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/080912 WO2014083650A1 (ja) | 2012-11-29 | 2012-11-29 | 空気調和装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2930450B1 (ja) |
JP (1) | JP5980349B2 (ja) |
WO (1) | WO2014083650A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3246635A4 (en) * | 2015-01-13 | 2018-09-05 | Mitsubishi Electric Corporation | Refrigeration cycle device |
US10520233B2 (en) | 2015-01-13 | 2019-12-31 | Mitsubishi Electric Corporation | Air-conditioning apparatus for a plurality of parallel outdoor units |
WO2020079835A1 (ja) * | 2018-10-19 | 2020-04-23 | 三菱電機株式会社 | 空調装置 |
WO2023071152A1 (zh) * | 2021-10-28 | 2023-05-04 | 青岛海尔空调器有限总公司 | 一种空调除霜控制方法、控制装置及空调器 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106225294A (zh) * | 2016-08-29 | 2016-12-14 | 烟台欧森纳地源空调股份有限公司 | 一种低温风冷热泵系统 |
AU2018245192A1 (en) | 2017-03-27 | 2019-11-14 | Daikin Industries, Ltd. | Heat exchanger and refrigeration apparatus |
JP6880901B2 (ja) * | 2017-03-27 | 2021-06-02 | ダイキン工業株式会社 | 熱交換器ユニット |
CN107013977B (zh) * | 2017-04-01 | 2020-11-03 | 青岛海尔空调器有限总公司 | 空调系统 |
CN107504746A (zh) * | 2017-08-22 | 2017-12-22 | 广东美的暖通设备有限公司 | 热泵组件、除霜控制方法和存储介质 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62175530A (ja) * | 1986-01-30 | 1987-08-01 | Matsushita Electric Ind Co Ltd | 加熱装置 |
JP2008249236A (ja) * | 2007-03-30 | 2008-10-16 | Mitsubishi Electric Corp | 空気調和装置 |
JP2009036404A (ja) * | 2007-07-31 | 2009-02-19 | Denso Corp | 冷凍サイクル |
JP2009085484A (ja) * | 2007-09-28 | 2009-04-23 | Daikin Ind Ltd | 空気調和機用室外機 |
US20100170270A1 (en) | 2009-01-06 | 2010-07-08 | Lg Electronics Inc. | Air conditioner and defrosting operation method of the same |
WO2010082325A1 (ja) | 2009-01-15 | 2010-07-22 | 三菱電機株式会社 | 空気調和装置 |
JP2010249335A (ja) * | 2009-04-10 | 2010-11-04 | Mitsubishi Electric Corp | 空気調和機 |
JP2012159256A (ja) * | 2011-02-02 | 2012-08-23 | Daikin Industries Ltd | 空気調和機用熱交換器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5213817B2 (ja) * | 2009-09-01 | 2013-06-19 | 三菱電機株式会社 | 空気調和機 |
US9651281B2 (en) * | 2010-07-21 | 2017-05-16 | Chang Duk Jeon | Alternating type heat pump |
US9279608B2 (en) * | 2010-07-29 | 2016-03-08 | Mitsubishi Electric Corporation | Heat pump |
-
2012
- 2012-11-29 WO PCT/JP2012/080912 patent/WO2014083650A1/ja active Application Filing
- 2012-11-29 JP JP2014549699A patent/JP5980349B2/ja active Active
- 2012-11-29 EP EP12889228.8A patent/EP2930450B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62175530A (ja) * | 1986-01-30 | 1987-08-01 | Matsushita Electric Ind Co Ltd | 加熱装置 |
JP2008249236A (ja) * | 2007-03-30 | 2008-10-16 | Mitsubishi Electric Corp | 空気調和装置 |
JP2009036404A (ja) * | 2007-07-31 | 2009-02-19 | Denso Corp | 冷凍サイクル |
JP2009085484A (ja) * | 2007-09-28 | 2009-04-23 | Daikin Ind Ltd | 空気調和機用室外機 |
US20100170270A1 (en) | 2009-01-06 | 2010-07-08 | Lg Electronics Inc. | Air conditioner and defrosting operation method of the same |
WO2010082325A1 (ja) | 2009-01-15 | 2010-07-22 | 三菱電機株式会社 | 空気調和装置 |
JP2010249335A (ja) * | 2009-04-10 | 2010-11-04 | Mitsubishi Electric Corp | 空気調和機 |
JP2012159256A (ja) * | 2011-02-02 | 2012-08-23 | Daikin Industries Ltd | 空気調和機用熱交換器 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3246635A4 (en) * | 2015-01-13 | 2018-09-05 | Mitsubishi Electric Corporation | Refrigeration cycle device |
US10508826B2 (en) | 2015-01-13 | 2019-12-17 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
US10520233B2 (en) | 2015-01-13 | 2019-12-31 | Mitsubishi Electric Corporation | Air-conditioning apparatus for a plurality of parallel outdoor units |
WO2020079835A1 (ja) * | 2018-10-19 | 2020-04-23 | 三菱電機株式会社 | 空調装置 |
JPWO2020079835A1 (ja) * | 2018-10-19 | 2021-09-24 | 三菱電機株式会社 | 空調装置 |
JP7034325B2 (ja) | 2018-10-19 | 2022-03-11 | 三菱電機株式会社 | 空調装置 |
WO2023071152A1 (zh) * | 2021-10-28 | 2023-05-04 | 青岛海尔空调器有限总公司 | 一种空调除霜控制方法、控制装置及空调器 |
Also Published As
Publication number | Publication date |
---|---|
EP2930450A1 (en) | 2015-10-14 |
JP5980349B2 (ja) | 2016-08-31 |
EP2930450A4 (en) | 2016-09-14 |
JPWO2014083650A1 (ja) | 2017-01-05 |
EP2930450B1 (en) | 2020-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5980349B2 (ja) | 空気調和装置 | |
JP5992112B2 (ja) | 空気調和装置 | |
JP6685409B2 (ja) | 空気調和装置 | |
JP5992089B2 (ja) | 空気調和装置 | |
JP6005255B2 (ja) | 空気調和装置 | |
JP5992088B2 (ja) | 空気調和装置 | |
JP5968519B2 (ja) | 空気調和装置 | |
JPWO2011125111A1 (ja) | 空調給湯複合システム | |
JP6479181B2 (ja) | 空気調和装置 | |
JPWO2014141375A1 (ja) | 空気調和装置 | |
JP6038382B2 (ja) | 空気調和装置 | |
EP3106768B1 (en) | Heat source-side unit and air conditioning device | |
US20240167735A1 (en) | Heat source unit and air conditioner | |
JP2010096360A (ja) | 空気調和装置 | |
JP2013253726A (ja) | 熱交換システム | |
WO2015029223A1 (ja) | 空気調和装置 | |
JP6573723B2 (ja) | 空気調和装置 | |
JP4244900B2 (ja) | 冷凍装置 | |
JPWO2018037452A1 (ja) | 空気調和装置 | |
JP6727296B2 (ja) | 空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12889228 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014549699 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012889228 Country of ref document: EP |