WO2014083291A1 - Procede de fabrication d'une piece par fusion de poudre, les particules de poudre arrivant froides dans le bain - Google Patents

Procede de fabrication d'une piece par fusion de poudre, les particules de poudre arrivant froides dans le bain Download PDF

Info

Publication number
WO2014083291A1
WO2014083291A1 PCT/FR2013/052905 FR2013052905W WO2014083291A1 WO 2014083291 A1 WO2014083291 A1 WO 2014083291A1 FR 2013052905 W FR2013052905 W FR 2013052905W WO 2014083291 A1 WO2014083291 A1 WO 2014083291A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
bath
layer
high energy
energy beam
Prior art date
Application number
PCT/FR2013/052905
Other languages
English (en)
Inventor
Christophe Colin
Julie MAISONNEUVE
Gérard Saussereau
Original Assignee
Snecma
Mbda France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma, Mbda France filed Critical Snecma
Priority to RU2015125712A priority Critical patent/RU2678619C2/ru
Priority to CN201380062771.7A priority patent/CN104903030B/zh
Priority to JP2015544522A priority patent/JP6480341B2/ja
Priority to EP13808135.1A priority patent/EP2925471A1/fr
Priority to BR112015012278-7A priority patent/BR112015012278A2/pt
Priority to SG11201504105YA priority patent/SG11201504105YA/en
Priority to CA2892848A priority patent/CA2892848C/fr
Priority to US14/648,560 priority patent/US10967460B2/en
Publication of WO2014083291A1 publication Critical patent/WO2014083291A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/772Articles characterised by their shape and not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the field of manufacturing parts by melting powder by means of a high energy beam (laser beam, electron beam, etc.).
  • a high energy beam laser beam, electron beam, etc.
  • the invention more particularly relates to a method comprising the following steps:
  • a material is provided in the form of powder particles forming a powder bundle
  • a first quantity of this powder is heated to a temperature above the melting point T F of this powder using a high energy beam, and a first bath is formed on the surface of a support. comprising this melted powder and a portion of this support,
  • step (d) repeating step (c) until forming a first layer of this part on this support
  • step (g) repeating step (f) so as to form a second layer of the workpiece above said first layer, (h) Steps (e) to (g) are repeated for each layer above an already formed layer until the part is substantially in its final form.
  • Methods that make it possible to obtain mechanical parts of complex three-dimensional (3D) shape. These methods construct a layer-by-layer piece to reconstruct the desired shape of that piece.
  • the part can be reconstituted directly from the CAD / CAM file deduced from the data processing of its 3D CAD graphic file by means of a computer control of the machine which thus forms one on the other of the successive layers of melted then solidified, each layer consisting of juxtaposed cords having a size and a geometry defined from the CFAO file.
  • the particles constituting the powder are, for example, metal, intermetallic, ceramic, or polymer.
  • the melting temperature T F is a temperature between the liquidus temperature and the solidus temperature for the given composition of this alloy.
  • the construction support may be a part of another room on which it is desired to add an additional function. Its composition may be different from that of the powder particles and thus have a different melting temperature.
  • a first layer 10 of material is formed, under local protection or in a chamber under pressure or regulated depression of inert gas, by spraying particles of powder of this material on a support 80, through a nozzle 190.
  • This nozzle 190 emits, simultaneously with the projection of particles 60 of powder, a beam laser 95 which comes from a generator 90.
  • the first orifice 191 of the nozzle 190 through which the powder is projected onto the support 80 is coaxial with the second orifice 192 through which the laser beam 95 is emitted, so that the powder is projected in the laser beam 95.
  • the powder forms a cone of particles, this cone being hollow and having a certain thickness (powder beam 94 in Figure 4), and the laser beam 95 is conical.
  • the work plane P is defined as the plane containing the surface on which the layer is under construction / formation.
  • this surface is the (free) upper face S 0 of the support 80.
  • this surface is the (free) upper face of the [n + 1] layer. ] -th layer (with n integer, n ⁇ l).
  • the laser beam 95 forms a bath 102 on the support 80 by melting the region of the support 80 exposed to the laser beam.
  • the powder feeds the bath 102 in which it reaches the molten state, the powder having melted during its journey in the laser beam before arriving in the bath.
  • the nozzle 190 and the laser focal point can be adjusted and / or positioned so that the given size distribution powder does not spend enough time, for example, in the laser beam 95 so that all of its particles of different sizes are completely melted, and melt on arriving in the bath 102 previously formed on the surface of the support 80 by melting the region of the support 80 exposed to the laser beam 95.
  • the working distance WD is defined as the distance between the outlet of the nozzle 190 and the work plane P.
  • the powder may also not be melted by the laser beam 95 or be only partially because the size of all or some of the particles constituting the powder is too important for them to be fondues.
  • the lower the average diameter D p of the powder particles the greater their heating rate, but the shorter their maintenance at the melting stage and the faster their cooling.
  • Figure 3 demonstrates that the smaller the size distribution, the more all the particles of the powder arrive melted in the bath for a given work configuration.
  • the powder particles are heated by their passage in the laser beam 95 before feeding the bath.
  • the bath 102 is maintained and solidifies step by step to form a bead of solidified material 105 on the support 80.
  • the process is continued to form another cord solidified on the support 80, this other cord being for example juxtaposed to the first bead.
  • a first layer 10 of material is deposited on the support 80 which solidifies a first element 15 in one piece with the geometry conforms to that defined by the CAD / CAM file.
  • a second scan of the nozzle assembly 190 / laser beam 95 is then performed to similarly form a second layer 20 of material above the first element 15.
  • This second layer 20 forms a second consolidated element 25, the entire of these two elements 15 and 25 forming a block in one piece.
  • the baths 102 formed on the first element 15 during the construction of this second layer 20 generally comprise at least a portion of the first element 15 which has been melted by exposure to the laser beam 95, and the particles of the powder feed the baths 102. .
  • the work plane P is not necessarily parallel to the surface S 0 .
  • the Z axis defined as being perpendicular to the work plane P, is not necessarily parallel to the Z 0 axis.
  • Figure 5 is a cross section of the liquid bath formed in part in the support, and shows the shape of this bath.
  • the surface S 0 of the support 80 is the plane of zero height. Also, during the construction of the first layer, a plane parallel to So, a part of which is contained in this support or below this support (with reference to the axis Z 0 ) is of negative height, and a parallel plane at S 0 , a part of which is above the surface S 0 of the support (with reference to the axis Z 0 ) is of positive height.
  • a given work plane P for the construction of one [n] -th layer will be above another worktop attached to a lower layer if it has a positive height, greater than the height of that other plan.
  • the working plane of an upper layer may not be parallel to the working plane of the previous lower layer, in this case the Z axis of the upper layer makes a non-zero angle with the axis.
  • Z of the working plane of the lower layer, and the distance ⁇ , measured along the latter axis Z above each point of the lower layer, is a mean value.
  • This process of building the part layer by layer is then continued by adding additional layers above the already formed assembly.
  • FIG. 4 which represents the prior art, shows in more detail the configuration of the laser beam 95 and the powder beam 94.
  • the laser beam 95 leaves the nozzle 190 diverging at a 2 ⁇ angle from its focal point F L (located in the lower part of the nozzle 190) and illuminates a region of the support 80, thereby creating a bath 102.
  • the powder bundle 94 leaves the nozzle 190 converging at an angle ⁇ 2 to its focal point F P which lies inside the laser beam 95, and just on (or above) the surface of the support 80 (P worktop), so that the powder particles 60 pass a maximum time in the laser beam 95 to be heated.
  • the advantage of a wide laser / powder interaction upstream of the bath is to generate both a high deposition rate and a low dilution which are frequently sought in the case of reloading (surface repair of worn parts) and the coating of hard deposits.
  • the theoretical melting efficiency is defined as the ratio of the diameter 0 L of the laser beam 95 to the diameter P of the powder bundle 94, these two diameters being determined at the right of the worktop P.
  • 0 L can be replaced by the diameter of the liquid bath 0BL (see FIG. 4) in order to evaluate the yield, which depends inter alia on the parameterization chosen, in particular on the laser power, P L , on the scanning speed of the laser beam, V and the mass flow D m of powder.
  • the working configuration according to the prior art requires logically that the laser beam either defocused (its focal point F L is above the work plane P) for a focused powder beam (its focal point Fp is located on the work plane P) or a defocused powder beam whose focal point F P is above the work plane P and below the focal point F L , failing to generate an unstable construction and moreover not guaranteeing an acceptable melting efficiency.
  • the diameter of the laser beam 0 L measured at right of the plane P does not correspond to the diameter of the liquid bath 0 B L which is, meanwhile, approximated to the width (denoted e app ) the cord after solidification ( Figures 4 and 5).
  • This diameter of the liquid bath 0 B L is supposed to be a function of 0 L and thus of 0 L o but also of the parametrium defined by the triplet (P L , V, D m ) and moreover of the size D p of the different particles of powder and their Vp speeds in addition to depend on their thermo-physical properties.
  • the focal point F P of the powder beam 94 remains inside the laser beam 95, and just on (or above) the surface of the previously constructed layer (work plane P).
  • each layer 190 / laser beam 95 makes it possible to give each layer a form independent of the adjacent layers.
  • the lower layers of the room are annealed and cool as the top layers of the room are formed.
  • melt mass efficiency R m i.e., the ratio of the amount of material forming the finished part to the amount of material projected by the nozzle to form this part.
  • mass efficiency of recycled powder re cy that is to say the ratio of the amount of powder intact in morphology and agglomerates obtained for example after sieving the amount of material sprayed
  • stability of the baths formed on the surface of the part and the material health of the fabricated part for a given non-exhaustive set of parameters (size distribution D P of the powder particles, nature of the powder material, mass flow rate D m of powder, speed of displacement V of the nozzle / laser beam assembly, power P L provided by the laser, distribution of the power density on the work plane P, type of laser source (solid or gas), mode (pulsed or continuous), coaxial nozzle, nature and gas flow po D gp powder particles, nature and flow rate of the protective gas D gl through the axis of the nozzle, the angles 2 ⁇ and 2 ⁇ and
  • the aim of the invention is to propose a method and more particularly an optimized working configuration (defined by: Defoc L , defocus P , WD) for the DMD process which makes it possible firstly to improve the stability of the bath and in a second time to mass melting efficiency, the recycled powder mass yield, the material health and the construction speed (maximizing the Z-riser increment of the nozzle noted ⁇ ).
  • This goal is achieved by virtue of the fact that the powder particles arrive in each bath at a cold temperature relative to the temperature of the bath.
  • the mass yield of ⁇ ⁇ process defined as the sum of the mass of fusion yields (R m) and recycled fe re cy powder) is greater than the mass yield of the process in the case where the powder particles arrive hot partially or totally melted in the bath.
  • the powder particles, arriving in the bath will temper the temperature of the liquid bath TBL (because they are much colder than this bath, the latter being substantially at room temperature before entering the bath), while by increasing the volume of the bath and in particular that above the plane P without increasing the width and the height of the diluted zone (volume of the bath which is below the plane P). This inevitably leads to a rapid increase in the liquid / vapor surface tension of the bath, and consequently generates a better stability of the bath.
  • the focal point F L of the high energy beam is above the working plane P or on this plane, and the focal point F P of the powder bundle is below the working plane P, such that so that the powder particles do not intersect at any time the high energy beam between the outlet of the nozzle and the working plane P.
  • the focal point F P of the powder bundle can be located inside the support , especially when depositing the first layers. After the deposition of a number of layers, the focal point F P of the powder bundle may lie within the previously deposited layers. Thus, a majority of powder particles arrive cold in the previously formed bath on part of the already constructed part.
  • the powder bundle and the high energy beam may be substantially coaxial, that is to say that their axes form between them an angle of less than 30 °, preferably less than 20 °, more preferably less than 10 °, more preferably less than 5 °.
  • the high energy beam can easily follow the powder beam when making parts with complex geometry. Tracking the shape of the part to be manufactured is much more difficult in the case of a remote projection or melting, that is to say when the powder beam and the high energy beam are not substantially coaxial.
  • FIG. 1 is a diagram showing a possibility of positioning the high energy beam and the powder bundle in the case of the method according to the invention
  • FIG. 2 already described, is an explanatory diagram of the method according to the prior art illustrating the device of the DMD method
  • FIG. 3 already described, shows the effect of the diameter D P of the Ti-6Al-4V powder particles on their temperature from the outlet of the nozzle on arrival in the liquid bath
  • FIG. 4 is a diagram showing the positioning of the high energy beam and the powder bundle in the case of the method according to the prior art
  • FIG. 5 is a schematic representation of a cross section of the liquid bath formed in the support.
  • the powder particles arrive cold in the bath formed on the surface of the previous layer (or support).
  • the term "cold" means that the temperature of the particles is much lower than the temperature of the bath. Indeed, the temperature of the particles, before entering the bath, is substantially equal to the ambient temperature, for example of the order of 20 ° C.
  • the temperature of the liquid bath T B L is greater than the melting temperature T F of the material constituting the powder but lower than the boiling point T e of this material.
  • This melting temperature is greater than 550 ° C for aluminum alloys, 1300 ° C for nickel bases, 1450 ° C for steels and 1550 ° C for titanium alloys.
  • Figure 1 illustrates an embodiment of the invention that allows the powder particles to arrive cold in the bath formed on the surface of the previous layer (or support). Such an embodiment also has the advantage of facilitating the coaxial vision of the bath by among other things a CCD (Charge Coupled Device) camera to allow control of the on-line process, useful for the industrialization of the process.
  • CCD Charge Coupled Device
  • FIG. 1 shows a sectional view of a support 80 and a first layer 10 of material already deposited on this support 80.
  • a second layer 20 is then deposited on this first layer 10.
  • a bead 105 of this second layer 20 is under construction, the progression of the cord 105 from left to right, from upstream to downstream (direction of advance of the cord 105, or, equivalently, the liquid bath 102).
  • the bath 102 is thus located immediately downstream of the bead 105, under the nozzle 190 from which the laser beam 95 and the powder bundle 94 exit.
  • the upper surface of the first layer 10 then constitutes the work plane P relative to the second layer under construction and from which defocus laser defocus L , defocus powder defocus P , working distance WD, laser beam diameter 0 L , and powder beam diameter 0 P are measured.
  • the nozzle 190 emits, simultaneously with the projection of particles 60 of powder, a laser beam 95 which comes from a generator 90.
  • the first orifice 191 of the nozzle 190 through which the powder is projected on the support 80 is coaxial with the second orifice 192 by which the laser beam 95 is emitted, so that the powder is projected into the laser beam 95.
  • the powder forms a cone of particles, this hollow cone having a certain thickness (powder beam 94), and the laser beam is conical.
  • the nozzle 190 is configured and positioned so that the focal point F L of the high energy beam 95 is above the working plane P or on this plane, and the focal point F P of the beam powder 94 is located below the working plane P, so that the powder particles 60 do not intersect at any time the high energy beam between the outlet of the nozzle and the work plane P.
  • the focal point F P of the powder bundle may be located inside the support.
  • Defoc P powder defocusing is smaller than that shown in FIG. 1.
  • the diameter of the laser beam 0 L at the plane P is close to the diameter of the powder bundle 0 P at the plane P, for parameterization (P L / V, D m ) considered.
  • the diameter of the laser beam 0 L in line with the plane P is slightly smaller than the diameter of the powder beam 0 P at the right plane P.
  • Such a configuration is obtained, as represented in FIG. 1, by bringing the nozzle 190 closer to the working plane P of the configuration according to the prior art (FIG. 4), that is by decreasing the working distance WD.
  • Such a working configuration is particularly suitable for producing large cords 105, that is cords 105 whose width is greater than the diameter 0 L o of the high energy beam 95 at the laser focal point.
  • the diameter of the liquid bath 0 B L is then wider and more powder particles arrive cold in the liquid bath 102, which is beneficial as explained above.
  • the focal point F L of the high energy beam (95) may alternatively be located on the working plane P, which is preferable in the production of thin cords whose width is smaller.
  • the focal point F P of the powder bundle 94 can be located on the work plane P.
  • the focal point F P of the powder bundle 94 can also be located below the work plane P.
  • certain parameters can be adapted accordingly, in particular the laser power P L , the scanning speed V and / or the mass flow rate D m of powder.
  • an (additional) cooling of the nozzle 190 may be necessary, since the nozzle 190 heats up by radiation due to its proximity to the liquid bath 102.
  • Such cooling requires a expensive device.
  • the inventors have developed an embodiment which advantageously consists either in to decrease the distance Defoq, or to decrease the divergence half-angle ⁇ of the laser beam 95 with respect to the Z axis, returning in both cases to decrease 0 L so that it is lower than 0 P.
  • the defocus distance P of the powder beam 94 is increased in order to compensate for the decrease of 0 P in the event of an increase in WD and thus maintain 0 P greater than 0 L.
  • the nozzle 190 is thus configured and positioned so that the powder particles 60 reach the working plane P just outside the area of the working plane P covered by the laser beam 95.
  • the bath 102 is more thermally stable because the powder particles 60 rapidly cool the bath 102 (which results in an increase in the liquid / vapor surface tension of the bath, and certainly also a variation of the convective movements at the bath. in the bath because of the variation of the density of the liquid by the addition of "cold" powders and a change of the thermal gradient in the bath).
  • An additional advantage of the process according to the invention is that the powder particles 60 which did not participate in the formation of the liquid bath (because fallen outside the bath 102) remained cold and are therefore recyclable almost completely. .
  • the total mass yield of the process (melting + recycling) according to the invention is therefore much higher than the total mass yield of the process according to the prior art.
  • the bath has an oblong shape defined by ⁇ ⁇ 90 °, H a pp / e at pp ⁇ 1 and H ZR / H app ⁇ 0.6, where ⁇ is the angle of the upper surface of the bath 102 with the worktop P, H ap p the apparent height of the bead (part of the bath 102 above worktop P), e app its width, and H Z R the height of the remelted zone or diluted zone (part of the bath below worktop P) (see Figure 5).
  • the size distribution of the powder particles 60 is narrow (which corresponds to particles all having substantially the same size, which size is in agreement with the temperature and the volume of the liquid bath to be melted at any moment during the duration of the laser / bath interaction).
  • the probability is high for all the powder particles 60 to have time to melt in the bath 102 before the laser beam 95 is moves (and therefore stops heating this bath 102).
  • the process of feeding the bath of cold powder particles and of narrow size distribution will then be more effective in terms of stability and speed of construction because the temperature of the bath decreases more rapidly and the apparent height of the cords becomes larger. This apparent height is even greater than the particles are fine because the bath temperature will gradually decrease and then remain constant (solidification plateau reached) as the particles enter the bath 102.
  • the powder particles 60 have sizes ranging from 25 to 75 ⁇ m (microns). Preferably, these sizes are between 25 and 45 ⁇ m.
  • the positioning of the nozzle 190 is slaved to the spatial variations of the working plane P (variations in the height of consolidated material H app of a layer of the part to be constructed whereas the Z-rise increment ⁇ of the nozzle 190 is kept constant by pre-programming) so that, for each layer, the focal point F L of the laser beam 95 is at the same height above the work plane P and the focal point F P of the powder bundle 94 is at the same height below the work plane P.
  • the increment ⁇ can be enslaved to changes in the height of consolidated matter H app of a layer.

Abstract

L'invention concerne un procédé de fabrication d'une pièce comprenant les étapes suivantes : (a) On fournit un matériau sous forme de particules de poudre (60), (b) On chauffe une première quantité de la poudre à une température supérieure à la température de fusion TF de cette poudre à l'aide d'un faisceau de haute énergie (95), et on forme à la surface d'un support (80) un premier bain comprenant cette poudre fondue et une portion de ce support (80), (c) On chauffe de même une deuxième quantité de la poudre, et on forme à la surface du support (80) un deuxième bain comprenant cette poudre fondue en aval du premier bain, (d) On répète l'étape (c) jusqu'à former une première couche (10) de la pièce sur le support (80), (e) On chauffe de même une [n]ième quantité de la poudre, et on forme un [n]ième bain comprenant en partie cette poudre fondue au-dessus d'une portion de la première couche (10), (f) On chauffe de même une [n+1]ième quantité de la poudre, et on forme un [n+1]ième bain comprenant en partie cette poudre fondue en aval du [n]ième bain au-dessus d'une portion de la première couche (10), (g) On répète l'étape (f) de façon à former une deuxième couche (20) de la pièce au-dessus de la première couche (10), (h) On répète les étapes (e) à (g) pour chaque couche située au dessus d'une couche déjà formée jusqu'à ce que la pièce soit sensiblement sous sa forme finale. Les particules (60) de poudre arrivent dans chacun des bains à une température très inférieure à la température du bain.

Description

PROCEDE DE FABRICATION D'UNE PIECE PAR FUSION DE POUDRE, LES PARTICULES DE POUDRE ARRIVANT FROIDES DANS LE BAIN
La présente invention concerne le domaine de la fabrication de pièces par fusion de poudre au moyen d'un faisceau de haute énergie (faisceau laser, faisceau d'électrons,...).
L'invention concerne plus particulièrement un procédé comprenant les étapes suivantes :
(a) On fournit un matériau sous forme de particules de poudre formant un faisceau de poudre,
(b) On chauffe une première quantité de cette poudre à une température supérieure à la température de fusion TF de cette poudre à l'aide d'un faisceau de haute énergie, et on forme à la surface d'un support un premier bain comprenant cette poudre fondue et une portion de ce support,
(c) On chauffe une deuxième quantité de cette poudre à une température supérieure à sa température de fusion TF à l'aide de ce faisceau de haute énergie, et on forme à la surface du support un deuxième bain comprenant cette poudre fondue et une portion de ce support en aval de ce premier bain,
(d) On répète l'étape (c) jusqu'à former une première couche de cette pièce sur ce support,
(e) On chauffe une [n]-ième quantité de cette poudre à une température supérieure à sa température de fusion TF à l'aide d'un faisceau de haute énergie, et on forme un [n]-ième bain comprenant en partie cette poudre fondue au dessus d'une portion de cette première couche,
(0 On chauffe une [n+l]-ième quantité de cette poudre à une température supérieure à sa température de fusion TF à l'aide de ce faisceau de haute énergie, et on forme un [n+l]-ième bain comprenant en partie cette poudre fondue en aval dudit [n]-ième bain au dessus d'une portion de cette première couche,
(g) On répète l'étape (f) de façon à former une deuxième couche de la pièce au-dessus de ladite première couche, (h) On répète les étapes (e) à (g) pour chaque couche située au dessus d'une couche déjà formée jusqu'à ce que la pièce soit sensiblement sous sa forme finale.
Dans le procédé ci-dessus, il faut [n-1] quantités de poudre pour former la première couche.
On connaît des procédés qui permettent d'obtenir des pièces mécaniques de forme complexe en trois dimensions (3D). Ces procédés construisent une pièce couche par couche jusqu'à reconstituer la forme désirée de cette pièce. Avantageusement, la pièce peut être reconstituée directement à partir du fichier CFAO déduit du traitement des données de son fichier graphique CAO en 3D au moyen d'un pilotage par ordinateur de la machine qui forme ainsi l'une sur l'autre des couches successives de matière fondue puis solidifiée, chaque couche étant constituée de cordons juxtaposés ayant une taille et une géométrie définie à partir du fichier CFAO.
Les particules constituant la poudre sont par exemple métalliques, intermétalliques, céramiques, ou polymères.
Dans la présente demande, dans le cas où la poudre est un alliage métallique, la température de fusion TF est une température comprise entre la température de liquidus et la température de solidus pour la composition donnée de cet alliage.
Le support de construction peut être une partie d'une autre pièce sur laquelle on désire rajouter une fonction supplémentaire. Sa composition peut être différente de celle des particules de poudre projetée et ainsi posséder une température de fusion différente.
Ces procédés sont notamment la projection laser (en anglais "Direct Métal Déposition" ou DMD), la "fusion sélective par laser" (en anglais "Sélective Laser Melting" ou SLM), et la "fusion par faisceau d'électrons" (en anglais "Electron Beam Melting" ou EBM).
Le fonctionnement du procédé DMD est expliqué ci-dessous en référence aux figures 2, 4, et 5.
On forme, sous protection locale ou dans une enceinte en surpression ou en dépression régulée de gaz inerte, une première couche 10 de matériau par projection de particules de poudre de ce matériau sur un support 80, au travers d'une buse 190. Cette buse 190 émet, simultanément à la projection de particules 60 de poudre, un faisceau laser 95 qui provient d'un générateur 90. Le premier orifice 191 de la buse 190 par lequel la poudre est projetée sur le support 80 est coaxial au second orifice 192 par lequel le faisceau laser 95 est émis, de telle sorte que la poudre est projetée dans le faisceau laser 95. La poudre forme un cône de particules, ce cône étant creux et présentant une certaine épaisseur (faisceau de poudre 94 en figure 4), et le faisceau laser 95 est conique.
On définit le plan de travail P comme étant le plan contenant la surface sur laquelle la couche est en construction/en formation.
Pour la construction de la première couche, cette surface est la face supérieure (libre) S0 du support 80. Pour la construction de la [n+l]-ième couche, cette surface est la face supérieure (libre) de la [n]-ième couche (avec n entier, n≥l).
Le faisceau laser 95 forme un bain 102 sur le support 80 par fusion de la région du support 80 exposée au faisceau laser. La poudre alimente le bain 102 dans lequel elle parvient à l'état fondu, la poudre ayant été fondue durant son trajet dans le faisceau laser avant d'arriver dans le bain.
Alternativement, la buse 190 et le point focal laser peuvent être réglés et/ou positionnés de telle sorte que la poudre de distribution de tailles donnée, ne passe pas par exemple suffisamment de temps dans le faisceau laser 95 pour que l'ensemble de ses particules de tailles différentes soient complètement fondues, et fondent en arrivant dans le bain 102 préalablement formé sur la surface du support 80 par fusion de la région du support 80 exposée au faisceau laser 95.
On définit la distance de travail WD comme la distance entre la sortie de la buse 190 et le plan de travail P.
Sur la distance de travail WD considérée, la poudre peut également ne pas être fondue par le faisceau laser 95 ou ne l'être que partiellement parce que la taille de toutes ou certaines des particules constituant la poudre est trop importante pour que celles-ci soient fondues. En effet, d'après la figure 3, plus le diamètre moyen Dp des particules de poudre est faible, plus leur vitesse de chauffe est importante, mais plus leur maintien au palier de fusion est court et leur refroidissement est rapide. Par ailleurs, la figure 3 démontre que plus la distribution des tailles est étroite, plus l'ensemble des particules de la poudre arrivent fondues dans le bain pour une configuration de travail donnée.
Dans tous les cas, les particules de poudre sont chauffées de par leur passage dans le faisceau laser 95 avant d'alimenter le bain.
Tandis que le faisceau laser 95 (ou le support 80) se déplace vers l'aval, le bain 102 est entretenu et se solidifie de proche en proche pour former un cordon de matière solidifiée 105 sur le support 80. On poursuit le processus pour former un autre cordon solidifié sur le support 80, cet autre cordon étant par exemple juxtaposé au premier cordon. Ainsi, par déplacement de la buse 190 ou du support 80 dans un plan parallèle au plan de travail P précédent, on dépose sur le support 80 une première couche 10 de matière qui forme en se solidifiant un premier élément 15 d'un seul tenant dont la géométrie est conforme à celle définie par le fichier CFAO.
On effectue ensuite un second balayage de l'ensemble buse 190/ faisceau laser 95, afin de former de façon similaire une deuxième couche 20 de matière au dessus du premier élément 15. Cette deuxième couche 20 forme un deuxième élément consolidé 25, l'ensemble de ces deux éléments 15 et 25 formant un bloc d'un seul tenant. Les bains 102 formés sur le premier élément 15 lors de la construction de cette deuxième couche 20 comprennent en général au moins une partie du premier élément 15 qui a été fondue par exposition au faisceau laser 95, et les particules de la poudre alimentent les bains 102.
On considère le repère constitué par l'axe vertical Z0 perpendiculaire à la surface supérieure So du support, et par la surface So du support. Ce repère est attaché au support 80 ou plus exactement à la pièce en construction dont le plan de travail P est défini par la surface S0 du support lors du dépôt de la première couche de matière ou par la surface supérieure de la dernière couche qui vient d'être déposée.
Pour une couche en général, le plan de travail P n'est pas nécessairement parallèle à la surface S0. L'axe Z défini comme étant perpendiculaire au plan de travail P, n'est donc pas nécessairement parallèle à l'axe Z0.
Entre deux couches successives, la buse se déplace suivant l'axe Z d'une valeur ΔΖ égale théoriquement à la hauteur de matière Happ réellement déposée qui doit être constante (indépendamment de la trajectoire de la buse) et suffisamment importante dans le cas d'une construction optimale et stable (figures 4 et 5). La figure 5 est une coupe transversale du bain liquide formé en partie dans le support, et montre la forme de ce bain.
La surface S0 du support 80 est le plan de hauteur nulle. Aussi, lors de la construction de la première couche, un plan parallèle à So dont une partie est contenue dans ce support ou en-dessous de ce support (en référence à l'axe Z0) est de hauteur négative, et un plan parallèle à S0 dont une partie est au-dessus de la surface So du support (en référence à l'axe Z0) est de hauteur positive.
Un plan de travail P donné relatif à la construction d'une [n]-ième couche sera au-dessus d'un autre plan de travail attaché à une couche inférieure s'il a une hauteur positive, supérieure à la hauteur de cet autre plan.
Dans ce repère lié au support 80 et à la pièce, la deuxième couche
20 est construite sur un plan de travail P qui est situé au-dessus du plan de travail de la première couche 10, ces deux plans étant distants de ΔΖ mesuré selon l'axe Z perpendiculaire au plan de travail P.
Dans le cas général, le plan de travail d'une couche supérieure peut ne pas être parallèle au plan de travail de la couche inférieure précédente, dans ce cas l'axe Z de la couche supérieure fait un angle non-nul avec l'axe Z du plan de travail de la couche inférieure, et la distance ΔΖ, mesurée selon ce dernier axe Z au-dessus de chaque point de la couche inférieure, est une valeur moyenne.
On poursuit ensuite ce processus d'élaboration de la pièce couche par couche en ajoutant des couches supplémentaires au-dessus de l'ensemble déjà formé.
La figure 4, qui représente l'art antérieur, montre plus en détail la configuration du faisceau laser 95 et du faisceau de poudre 94. Le faisceau laser 95 sort de la buse 190 en divergeant d'un angle 2 β depuis son point focal FL (situé dans la partie inférieure de la buse 190) et illumine une région du support 80, contribuant à y créer un bain 102.
Le faisceau de poudre 94 sort de la buse 190 en convergeant selon un angle 2 δ vers son point focal FP qui se situe à l'intérieur du faisceau laser 95, et juste sur (ou au-dessus de) la surface du support 80 (plan de travail P), de façon à ce que les particules de poudre 60 passent un maximum de temps dans le faisceau laser 95 pour être chauffées. L'avantage d'une large interaction laser/poudre en amont du bain est d'engendrer à la fois un taux de déposition important et une faible dilution qui sont fréquemment recherchés dans le cas du rechargement (réparation en surface de pièces usées) et du revêtement de dépôts durs.
On définit le rendement théorique de fusion comme le rapport du diamètre 0L du faisceau laser 95 sur le diamètre 0P du faisceau de poudre 94, ces deux diamètres étant déterminés au droit du plan de travail P.
Alternativement, on peut remplacer 0L par le diamètre du bain liquide 0BL (voir figure 4) pour évaluer le rendement lequel dépend entre autre du paramétrage choisi, notamment de la puissance laser, PL, de la vitesse de balayage du faisceau laser, V et du débit massique Dm de poudre.
Le diamètre laser au point focal laser (soit 0Lo) étant bien souvent très inférieur au diamètre 0Po du faisceau de poudre au point focal poudre, la configuration de travail selon l'art antérieur demande fort logiquement à ce que le faisceau laser soit défocalisé (son point focal FL se situe au-dessus du plan de travail P) pour un faisceau de poudre focalisé (son point focal Fp se situe sur le plan de travail P) ou un faisceau de poudre défocalisé dont le point focal FP se situe au-dessus du plan de travail P et en dessous du point focal FL, à défaut d'engendrer une construction instable et qui plus est ne garantissant pas un rendement de fusion acceptable. Comme indiqué ci-avant, en règle générale le diamètre du faisceau laser 0L mesuré au droit du plan P, ne correspond pas au diamètre du bain liquide 0BL qui est, quant à lui, approximé à la largeur (notée eapp) du cordon après solidification (figures 4 et 5).
Ce diamètre du bain liquide 0BL est supposé être fonction de 0L et donc de 0Lo mais également de la paramétrie définie par le triplet (PL, V, Dm) et de surcroît de la taille Dp des différentes particules de poudre et de leurs vitesses Vp en plus de dépendre de leurs propriétés thermo- physiques.
Au cours du processus de construction de la pièce couche par couche, la buse 190 se déplace notamment en hauteur, et en maintenant constante la distance entre les points FL et FP (soit DéfocL- DéfocP= constante) où DéfocL et DéfocP représentent respectivement la défocalisation laser et celle de la poudre définies par Défoq. = {distance entre point FL et plan de travail P} et DéfocP = {distance entre point FP et plan de travail P} et sont visibles sur la figure 4).
Ainsi, le point focal FP du faisceau de poudre 94 reste à l'intérieur du faisceau laser 95, et juste sur (ou au-dessus de) la surface de la couche précédemment construite (plan de travail P).
On a donc un faisceau laser défocalisé (DéfocL>0) et un faisceau de poudre focalisé (DéfocP=0) sur le plan P ou défocalisé (DéfocP>0) au- dessus du plan P, et les deux angles 2β et 2δ doivent être configurés de telle sorte que d'une part la distance de travail WD entre la sortie de la buse et ce plan P soit suffisamment importante pour éviter la dégradation du bas de la buse par le rayonnement du bain et d'autre part que l'ouverture du faisceau laser à la sortie de la buse reste inférieure au diamètre du cône intérieur.
Le déplacement du support 80 ou le balayage de l'ensemble buse
190/faisceau laser 95 permet de donner à chaque couche une forme indépendante des couches adjacentes. Les couches inférieures de la pièce sont recuites et se refroidissent au fur et à mesure que l'on forme les couches supérieures de la pièce.
II existe cependant un besoin d'améliorer le rendement massique Rm de fusion (c'est-à-dire le rapport de la quantité de matière formant la pièce finie à la quantité de matière projetée par la buse pour former cette pièce), le rendement massique de poudre recyclée recy (c'est-à-dire le rapport de la quantité de poudre intacte en morphologie et agglomérats obtenue par exemple après un tamisage à la quantité de matière projetée), la stabilité des bains formés à la surface de la pièce et la santé matière de la pièce fabriquée, pour un ensemble non exhaustif de paramètres donné (distribution de tailles DP des particules de poudre, nature du matériau de la poudre, débit massique Dm de poudre, vitesse de déplacement V de l'ensemble buse/faisceau laser, puissance PL fournie par le laser, répartition de la densité de puissance sur le plan de travail P, type de source laser (solide ou gaz), mode (puisé ou continu), buse coaxiale, nature et débit du gaz porteur Dgp des particules de poudre, nature et débit du gaz protecteur Dgl traversant l'axe de la buse, les angles 2 β et 2 δ ainsi que les diamètres 0Lo et 0PO définis ci-avant, etc). L'invention vise à proposer un procédé et plus particulièrement une configuration de travail optimisée (définie par: DéfocL, DéfocP, WD) pour le procédé DMD qui permet d'améliorer en premier lieu la stabilité du bain et dans un second temps le rendement massique de fusion, le rendement massique de poudre recyclée, la santé matière et la vitesse de construction (maximisation de l'incrément de montée en Z de la buse noté ΔΖ).
Ce but est atteint grâce au fait que les particules de poudre arrivent dans chaque bain à une température froide par rapport à la température du bain.
Grâce à ces dispositions, le rendement massique du procédé ηρ défini comme la somme des rendements massiques de fusion (Rm) et de poudre recyclée fërecy) est supérieur au rendement massique du procédé dans le cas où les particules de poudre arrivent chaudes, voire partiellement ou totalement fondues, dans le bain. En outre, les particules de poudre, en arrivant dans le bain, vont tempérer la température de ce bain liquide TBL (car elles sont beaucoup plus froides que ce bain, ces dernières étant sensiblement à température ambiante avant de pénétrer dans le bain), tout en augmentant le volume du bain et en particulier celui au-dessus du plan P sans accroître la largeur et la hauteur de la zone diluée (volume du bain qui se trouve en-dessous du plan P). Ceci entraîne immanquablement une augmentation rapide de la tension de surface liquide/vapeur du bain, et par conséquent engendre une meilleure stabilité du bain.
De plus, le fait de favoriser ainsi une dilution importante à chaque couche déposée permet de minimiser les défauts de fabrication.
Avantageusement, le point focal FL du faisceau de haute énergie se situe au-dessus du plan de travail P ou sur ce plan, et le point focal FP du faisceau de poudre se situe en-dessous du plan de travail P, de telle sorte que les particules de poudre ne croisent à aucun moment le faisceau de haute énergie entre la sortie de la buse et le plan de travail P. En particulier, le point focal FP du faisceau de poudre peut se situer à l'intérieur du support, notamment lors du dépôt des premières couches. Après le dépôt d'un certain nombre de couches, le point focal FP du faisceau de poudre peut se situer à l'intérieur des couches précédemment déposées. Ainsi, une majorité de particules de poudre arrivent froides dans le bain préalablement formé sur une partie de la pièce déjà construite.
Ces particules pénètrent alors dans un bain qui est suffisamment large (0BL> 0P) et profond (HZ >Happ : voir définitions ci-dessous en référence à la figure 5) pour intégrer une quantité et proportion maximales de l'ensemble des particules projetées par la buse pendant le temps d'interaction laser/bain, défini par le rapport de 0L sur V.
De plus, le reste des particules de poudre étant intactes, non chauffées par le faisceau de haute énergie, sont parfaitement recyclables.
De plus, le faisceau de poudre et le faisceau de haute énergie peuvent être sensiblement coaxiaux, c'est-à-dire que leurs axes forment entre eux un angle inférieur à 30°, de préférence inférieur à 20°, de préférence encore inférieur à 10°, de préférence encore inférieur à 5°. Ainsi, le faisceau de haute énergie peut suivre facilement le faisceau de poudre lors de la fabrication de pièces à la géométrie complexe. Le suivi de la forme de la pièce à fabriquer est bien plus difficile dans le cas d'une projection ou fusion déportée, c'est-à-dire lorsque le faisceau de poudre et le faisceau de haute énergie ne sont pas sensiblement coaxiaux.
L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels :
- la figure 1 est un schéma montrant une possibilité du positionnement du faisceau de haute énergie et du faisceau de poudre dans le cas du procédé selon l'invention,
- la figure 2, déjà décrite, est un schéma explicatif du procédé selon l'art antérieur illustrant le dispositif du procédé DMD,
- la figure 3, déjà décrite, représente l'effet du diamètre DP des particules de poudre de TÏ-6AI-4V sur leur température de la sortie de la buse à leur arrivée dans le bain liquide,
- la figure 4, déjà décrite, est un schéma montrant le positionnement du faisceau de haute énergie et du faisceau de poudre dans le cas du procédé selon l'art antérieur,
- la figure 5, déjà décrite, est une représentation schématique d'une coupe transversale du bain liquide formé dans le support. Selon l'invention, les particules de poudre arrivent froides dans le bain formé à la surface de la couche précédente (ou du support). Le terme "froide" signifie que la température des particules est beaucoup plus basse que la température du bain. En effet, la température des particules, avant de pénétrer dans le bain, est sensiblement égale à la température ambiante, par exemple de l'ordre de 20°C.
En comparaison, la température du bain liquide TBL est supérieure à la température de fusion TF du matériau constituant la poudre mais inférieure à la température d'ébullition Tévap de ce matériau. Cette température de fusion est supérieure à 550°C pour les alliages d'aluminium, 1300°C pour les bases nickel, 1450°C pour les aciers et 1550°C pour les alliages de titane.
La figure 1 illustre un mode de réalisation de l'invention qui permet aux particules de poudre d'arriver froides dans le bain formé à la surface de la couche précédente (ou du support). Un tel mode de réalisation présente en outre l'avantage de faciliter la vision coaxiale du bain par entre autre une caméra CCD (Charge Coupled Device) afin de permettre un contrôle du procédé en ligne, utile pour l'industrialisation du procédé.
La figure 1 montre une vue en coupe d'un support 80 et d'une première couche 10 de matériau déjà déposée sur ce support 80. Une deuxième couche 20 est ensuite déposée sur cette première couche 10. Un cordon 105 de cette deuxième couche 20 est en cours de construction, la progression du cordon 105 s'effectuant de la gauche vers la droite, de l'amont vers l'aval (direction d'avancement du cordon 105, ou, de façon équivalente, du bain liquide 102). Le bain 102 se situe ainsi immédiatement en aval du cordon 105, sous la buse 190 de laquelle sortent le faisceau laser 95 et le faisceau de poudre 94. La surface supérieure de la première couche 10 constitue alors le plan de travail P relatif à la deuxième couche en construction et à partir duquel la défocalisation laser DéfocL, la défocalisation poudre DéfocP, la distance de travail WD, le diamètre du faisceau laser 0L, et le diamètre du faisceau de poudre 0P sont mesurés.
La buse 190 émet, simultanément à la projection de particules 60 de poudre, un faisceau laser 95 qui provient d'un générateur 90. Le premier orifice 191 de la buse 190 par lequel la poudre est projetée sur le support 80 est coaxial au second orifice 192 par lequel le faisceau laser 95 est émis, de telle sorte que la poudre soit projetée dans le faisceau laser 95. La poudre forme un cône de particules, ce cône creux présentant une certaine épaisseur (faisceau de poudre 94), et le faisceau laser est conique.
Selon l'invention, la buse 190 est configurée et positionnée de telle sorte que le point focal FL du faisceau de haute énergie 95 se situe au- dessus du plan de travail P ou sur ce plan, et le point focal FP du faisceau de poudre 94 se situe en-dessous du plan de travail P, de telle sorte que les particules de poudre 60 ne croisent à aucun moment le faisceau de haute énergie entre la sortie de la buse et le plan de travail P.
Selon un autre mode de réalisation que celui de la figure 1, le point focal FP du faisceau de poudre peut se situer à l'intérieur du support. Dans ce cas, la défocalisation poudre DéfocP est plus petite que celle représentée sur la figure 1. Ainsi, le diamètre du faisceau laser 0L au droit du plan P est proche du diamètre du faisceau de poudre 0P au droit du plan P, pour le paramétrage (PL/ V, Dm) considéré.
Par exemple, le diamètre du faisceau laser 0L au droit du plan P est légèrement inférieur au diamètre du faisceau de poudre 0P au droit du plan P.
Une telle configuration est obtenue, comme représenté en figure 1, en rapprochant la buse 190 du plan de travail P de la configuration selon l'art antérieur (figure 4), c'est-à-dire en diminuant la distance de travail WD.
Une telle configuration de travail est particulièrement adaptée à la réalisation de larges cordons 105, c'est-à-dire de cordons 105 dont la largeur est supérieure au diamètre 0Lo du faisceau de haute énergie 95 au point focal laser.
En effet, le diamètre du bain liquide 0BL est alors plus large et plus de particules de poudre arrivent froides dans le bain liquide 102, ce qui est bénéfique comme expliqué plus haut.
Le point focal FL du faisceau de haute énergie (95) peut alternativement se situer sur le plan de travail P, ce qui est préférable dans la réalisation de cordons fins, dont la largeur est plus faible. Dans ce cas, le point focal FP du faisceau de poudre 94 peut se situer sur le plan de travail P. Le point focal FP du faisceau de poudre 94 peut également se situer en-dessous du plan de travail P. Pour optimiser le procédé selon l'invention, on peut adapter certains paramètres en conséquence, notamment la puissance laser PL, la vitesse de balayage V et/ou le débit massique Dm de poudre.
Cependant, dans ce mode de réalisation représenté par la figure 1, un refroidissement (supplémentaire) de la buse 190 peut être nécessaire, car la buse 190 s'échauffe par rayonnement de par sa proximité avec le bain liquide 102. Un tel refroidissement nécessite un dispositif coûteux.
Pour pallier ce problème et ainsi conserver une distance de travail WD (éloignement de la buse du bain) suffisante tout en évitant que le faisceau de poudre ne croise le faisceau de haute énergie, les inventeurs ont élaboré un mode de réalisation qui consiste avantageusement soit à diminuer la distance Défoq., soit à diminuer le demi-angle de divergence β du faisceau laser 95 par rapport à l'axe Z, revenant dans les deux cas à diminuer 0L afin qu'il soit plus faible que 0P.
Alternativement, on augmente la distance DéfocP du faisceau de poudre 94 afin de compenser la diminution de 0P en cas d'une augmentation de WD et ainsi maintenir 0P supérieure à 0L.
Cette diminution de la distance DéfocL et de l'angle β et cette augmentation de la distance DéfocP peuvent être effectuées conjointement.
Ces variations de ces trois variables peuvent être effectuées indépendamment ou en supplément d'une augmentation de la distance de travail WD. En pratique, la buse 190 est donc configurée et positionnée de telle sorte que les particules de poudre 60 atteignent le plan de travail P juste à l'extérieur de la zone du plan de travail P couverte par le faisceau laser 95.
Ainsi, étant donné que le bain liquide 102 s'étend par conduction un peu au-delà de cette zone, la majorité des particules de poudre 60 tombent dans le bain 102 sans avoir interagi avec le faisceau laser 95. Les particules de poudre 60 sont donc encore froides avant de pénétrer dans le bain 102. Un avantage de cette absence d'interaction laser-poudre en amont du bain 102 est d'éviter le changement de forme, la formation d'agglomérats et l'oxydation préjudiciable des particules de poudre 60.
Ceci explique que les essais réalisés par les inventeurs montrent que le rendement massique de fusion Rm dans le procédé selon l'invention est supérieur au rendement massique de fusion dans le cas où les poudres arrivent chaudes, voire partiellement ou totalement fondues, dans le bain.
De plus, le bain 102 est plus stable thermiquement, car les particules de poudre 60 refroidissent rapidement le bain 102 (ce qui entraîne une augmentation de la tension de surface liquide/vapeur du bain, et très certainement aussi une variation des mouvements de convection au sein du bain du fait de la variation de la densité du liquide par l'addition de poudres « froides » et d'un changement du gradient thermique dans le bain).
Un avantage supplémentaire du procédé selon l'invention est que les particules de poudre 60 qui n'ont pas participé à la formation du bain liquide (car tombées à l'extérieur du bain 102) sont restées froides et sont donc recyclables presqu'en totalité. Le rendement massique total du procédé (fusion+recyclage) selon l'invention est donc bien supérieur au rendement massique total du procédé selon l'art antérieur.
Avantageusement, pour une plus grande stabilité du bain 102 et une meilleure santé matière après l'établissement local d'un régime thermique stationnaire autour du bain de la pièce en construction, le bain revêt une forme oblongue définie par θ<90°, Happ/eapp<l et HZR/Happ≥0,6, où Θ désigne l'angle de la surface supérieure du bain 102 avec le plan de travail P, Happ la hauteur apparente du cordon (partie du bain 102 au-dessus de plan de travail P), eapp sa largeur, et HZR la hauteur de la zone refondue ou zone diluée (partie du bain en dessous de plan de travail P) (voir figure 5).
De préférence, les trois quantités Θ, Happ/eapp, et HZR/Happ vérifient les relations : 15ο≤θ<60°, 0,04≤Happ/eapp≤0,75, et 1< HZR/Happ≤6.
Dans le cas d'un rechargement de matière sur une pièce, ces quantités vérifient de préférence les relations :
30°≤θ≤60°, 0,15≤Happ/eapp≤0,25, et 0,01< HZR/Happ<0,025.
Avantageusement, la distribution de la taille des particules de poudre 60 est étroite (ce qui correspond à des particules présentant toutes sensiblement la même taille, laquelle taille est en accord avec la température et le volume du bain liquide pour être fondue à tout instant pendant la durée de l'interaction laser/bain). En effet, dans ce cas, la probabilité est grande pour que toutes les particules de poudre 60 aient le temps de fondre dans le bain 102 avant que le faisceau laser 95 se déplace (et cesse donc de chauffer ce bain 102). Le procédé consistant à alimenter le bain de particules de poudre froides et de distribution étroite en taille sera alors plus efficace en termes de stabilité et vitesse de construction car la température du bain diminue plus rapidement et la hauteur apparente des cordons devient plus importante. Cette hauteur apparente est d'autant plus grande que les particules sont fines car la température du bain va progressivement diminuer puis rester constante (palier de solidification atteint) au fur et à mesure que les particules pénètrent dans le bain 102.
Par exemple, les particules de poudre 60 présentent des tailles s'échelonnant entre 25 et 75 pm (microns). Préférentiellement, ces tailles sont comprises entre 25 et 45 pm.
Dans le procédé selon l'art antérieur, une distribution des particules de poudre 60 plus large est plus préjudiciable. En effet en présence d'interaction laser/poudre, les particules de poudre 60, ayant des tailles différentes, arrivent dans le bain à des températures différentes, et par conséquent la température du bain fluctue, ce qui est susceptible de conduire à une instabilité du bain.
Avantageusement, on asservit le positionnement de la buse 190, à savoir la distance de travail WD, aux variations spatiales du plan de travail P (variations de la hauteur de matière consolidée Happ d'une couche de la pièce à construire alors que l'incrément ΔΖ de montée en Z de la buse 190 est maintenu constant par pré-programmation) de telle sorte que, pour chaque couche, le point focal FL du faisceau laser 95 se situe à la même hauteur au-dessus du plan de travail P, et le point focal FP du faisceau de poudre 94 se situe à la même hauteur en-dessous du plan de travail P.
Alternativement, on peut asservir l'incrément ΔΖ aux variations de la hauteur de matière consolidée Happ d'une couche.
Ces asservissements sont réalisés en utilisant un programme de contrôle procédé de type connu, qu'il n'est pas nécessaire de décrire ici.

Claims

14/083291 15 REVENDICATIONS
1. Procédé de fabrication d'une pièce comprenant les étapes suivantes :
(a) On fournit un matériau sous forme de particules de poudre (60) formant un faisceau de poudre (94),
(b) On chauffe une première quantité de ladite poudre à une température supérieure à la température de fusion TF de cette poudre à l'aide d'un faisceau de haute énergie (95), et on forme à la surface d'un support (80) un premier bain comprenant cette poudre fondue et une portion de ce support (80),
(c) On chauffe une deuxième quantité de ladite poudre à une température supérieure à sa température de fusion TF à l'aide dudit faisceau de haute énergie (95), et on forme à la surface du support (80) un deuxième bain comprenant cette poudre fondue et une portion de ce support (80) en aval dudit premier bain,
(d) On répète l'étape (c) jusqu'à former une première couche (10) de ladite pièce sur ledit support (80),
(e) On chauffe une [n]'eme quantité de ladite poudre à une température supérieure à sa température de fusion TF à l'aide d'un faisceau de haute énergie (95), et on forme un [n]'eme bain comprenant en partie cette poudre fondue au-dessus d'une portion de ladite première couche (10),
(f) On chauffe une [n+l]'eme quantité de ladite poudre à une température supérieure à sa température de fusion TF à l'aide dudit faisceau de haute énergie (95), et on forme un [n+l]ième bain comprenant en partie cette poudre fondue en aval dudit [n]ième bain au-dessus d'une portion de ladite première couche (10),
(g) On répète l'étape (f) de façon à former une deuxième couche (20) de ladite pièce au-dessus de ladite première couche (10),
(h) On répète les étapes (e) à (g) pour chaque couche située au dessus d'une couche déjà formée jusqu'à ce que ladite pièce soit sensiblement sous sa forme finale,
ledit procédé étant caractérisé en ce que le faisceau de poudre (94) et le faisceau de haute énergie (95) sont sensiblement coaxiaux et en ce que 14/083291
16
les particules (60) de poudre arrivent dans chacun des bains à une température froide par rapport à la température dudit bain.
2. Procédé de fabrication d'une pièce selon la revendication 1 caractérisé en ce que le point focal FL du faisceau de haute énergie (95) se situe au-dessus du plan de travail P ou sur ce plan, et le point focal FP du faisceau de poudre (94) se situe en-dessous du plan de travail P, de telle sorte que les particules de poudres ne croisent à aucun moment le faisceau de haute énergie (95) entre la sortie d'une buse (190) et le plan de travail P, le plan de travail P étant défini comme le plan contenant la surface sur laquelle une desdites couches est en formation.
3. Procédé de fabrication d'une pièce selon la revendication 2 caractérisé en ce que pour obtenir la disposition du point focal FL du faisceau de haute énergie (95) et du point focal FP du faisceau de poudre (94) selon la revendication 2, on augmente la distance de défocalisation Défocp du faisceau de poudre (94), et/ou on diminue le demi-angle de divergence β du faisceau laser (95) par rapport à la perpendiculaire audit plan de travail P ou on diminue la distance de défocalisation Défoq. du faisceau de haute énergie (95).
4. Procédé de fabrication d'une pièce selon l'une quelconque des revendications 1 à 3 caractérisé en ce que la distribution de la taille des particules de poudre 60 est étroite.
5. Procédé de fabrication d'une pièce selon l'une quelconque des revendications 1 à 4 caractérisé en ce que chacun desdits bains revêt une forme définie par θ<90°, Happ/eapp<l et HZR/Happ>0,6, où Θ désigne l'angle de la surface supérieure dudit bain avec ledit plan de travail P, Happ la hauteur apparente du cordon, eapp sa largeur et HZR la hauteur de la zone refondue.
6. Procédé de fabrication d'une pièce selon la revendication 5 caractérisé en ce que les trois quantités Θ, HaPp/eapp et HZR/Happ vérifient les relations : 15°≤θ≤60°, 0,04<Happ/eapp<0,75, et 1< HZR/Happ<6.
PCT/FR2013/052905 2012-11-30 2013-11-29 Procede de fabrication d'une piece par fusion de poudre, les particules de poudre arrivant froides dans le bain WO2014083291A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2015125712A RU2678619C2 (ru) 2012-11-30 2013-11-29 Способ изготовления детали плавлением порошка, частицы которого достигают жидкой ванны в холодном состоянии
CN201380062771.7A CN104903030B (zh) 2012-11-30 2013-11-29 通过熔化粉末制造部件的方法,该粉末颗粒以冷却状态到达熔池
JP2015544522A JP6480341B2 (ja) 2012-11-30 2013-11-29 粉末粒子が低温状態で浴に到達する、粉末を溶融させることによる部品製造方法
EP13808135.1A EP2925471A1 (fr) 2012-11-30 2013-11-29 Procede de fabrication d'une piece par fusion de poudre, les particules de poudre arrivant froides dans le bain
BR112015012278-7A BR112015012278A2 (pt) 2012-11-30 2013-11-29 método de fabricar uma peça
SG11201504105YA SG11201504105YA (en) 2012-11-30 2013-11-29 Method for manufacturing a part by melting powder, the powder particles reaching the bath in a cold state
CA2892848A CA2892848C (fr) 2012-11-30 2013-11-29 Procede de fabrication d'une piece par fusion de poudre, les particules de poudre arrivant froides dans le bain
US14/648,560 US10967460B2 (en) 2012-11-30 2013-11-29 Method for manufacturing a part by melting powder, the powder particles reaching the bath in a cold state

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1203257 2012-11-30
FR1203257A FR2998818B1 (fr) 2012-11-30 2012-11-30 Procede de fabrication d'une piece par fusion de poudre les particules de poudre arrivant froides dans le bain

Publications (1)

Publication Number Publication Date
WO2014083291A1 true WO2014083291A1 (fr) 2014-06-05

Family

ID=48237001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/052905 WO2014083291A1 (fr) 2012-11-30 2013-11-29 Procede de fabrication d'une piece par fusion de poudre, les particules de poudre arrivant froides dans le bain

Country Status (10)

Country Link
US (1) US10967460B2 (fr)
EP (1) EP2925471A1 (fr)
JP (2) JP6480341B2 (fr)
CN (1) CN104903030B (fr)
BR (1) BR112015012278A2 (fr)
CA (1) CA2892848C (fr)
FR (1) FR2998818B1 (fr)
RU (1) RU2678619C2 (fr)
SG (2) SG10201703930VA (fr)
WO (1) WO2014083291A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA112682C2 (uk) * 2014-10-23 2016-10-10 Приватне Акціонерне Товариство "Нво "Червона Хвиля" Спосіб виготовлення тривимірних об'єктів і пристрій для його реалізації
RU2627527C2 (ru) * 2015-09-25 2017-08-08 Анатолий Евгеньевич Волков Способ и устройство аддитивного изготовления деталей методом прямого осаждения материала, управляемого в электромагнитном поле
US20180361665A1 (en) * 2015-12-18 2018-12-20 Aurora Labs Limited 3D Printing Method and Apparatus
FR3064509B1 (fr) 2017-03-28 2019-04-05 Safran Aircraft Engines Dispositif de fabrication additive d'une piece de turbomachine par depot direct de metal sur un substrat
US10898968B2 (en) * 2017-04-28 2021-01-26 Divergent Technologies, Inc. Scatter reduction in additive manufacturing
WO2019083042A1 (fr) * 2017-10-27 2019-05-02 キヤノン株式会社 Procédé de production d'un objet moulé en céramique
JP7366529B2 (ja) * 2017-10-27 2023-10-23 キヤノン株式会社 造形物の製造方法および造形物
CN108044930B (zh) * 2017-11-23 2020-02-21 上海汉信模具制造有限公司 一种塑胶粉末随形阶梯温度床的增材制造方法
US11084221B2 (en) 2018-04-26 2021-08-10 General Electric Company Method and apparatus for a re-coater blade alignment
US11179808B1 (en) * 2018-07-11 2021-11-23 Rosemount Aerospace Inc. System and method of additive manufacturing
US11219951B2 (en) * 2019-07-03 2022-01-11 Directed Metal 3D, S.L. Multi-mode laser device for metal manufacturing applications
KR102236148B1 (ko) * 2019-12-31 2021-04-06 한국과학기술원 3d 프린팅 공정 중 형성되는 용융풀 크기를 제어할 수 있는 3d 프린팅 시스템 및 방법
KR102220823B1 (ko) * 2019-12-31 2021-02-26 한국과학기술원 3d 프린팅 공정 중 형성되는 용융풀 깊이를 추정하는 방법 및 장치, 그리고 이를 구비한 3d 프린팅 시스템
CN113953534B (zh) * 2020-07-16 2023-08-04 中国航发商用航空发动机有限责任公司 支撑结构及其成形方法、装置、存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927992A (en) * 1987-03-04 1990-05-22 Westinghouse Electric Corp. Energy beam casting of metal articles
GB2228224A (en) * 1989-02-08 1990-08-22 Gen Electric Fabrication of articles
EP2292357A1 (fr) * 2009-08-10 2011-03-09 BEGO Bremer Goldschlägerei Wilh.-Herbst GmbH & Co KG Article céramique ou verre-céramique et procédés de production de cet article

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2052566B (en) * 1979-03-30 1982-12-15 Rolls Royce Laser aplication of hard surface alloy
RU2031764C1 (ru) * 1991-06-27 1995-03-27 Научно-производственное объединение технологии автомобильной промышленности "НИИТавтопром" Сопло для лазерной обработки
US5396333A (en) * 1992-05-21 1995-03-07 General Electric Company Device and method for observing and analyzing a stream of material
US6656409B1 (en) * 1999-07-07 2003-12-02 Optomec Design Company Manufacturable geometries for thermal management of complex three-dimensional shapes
US6391251B1 (en) 1999-07-07 2002-05-21 Optomec Design Company Forming structures from CAD solid models
US20060003095A1 (en) * 1999-07-07 2006-01-05 Optomec Design Company Greater angle and overhanging materials deposition
US8629368B2 (en) * 2006-01-30 2014-01-14 Dm3D Technology, Llc High-speed, ultra precision manufacturing station that combines direct metal deposition and EDM
JP2007301980A (ja) 2006-04-10 2007-11-22 Matsushita Electric Ind Co Ltd レーザ積層方法およびレーザ積層装置
CN101264519B (zh) * 2008-04-08 2010-06-16 西安交通大学 一种可调式激光同轴送粉喷嘴
CN101418706B (zh) * 2008-11-20 2010-12-22 浙江工业大学 一种汽轮机抗气蚀叶片及其成形方法
RU2450891C1 (ru) * 2010-12-16 2012-05-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ спекания деталей лазерным послойным синтезом

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927992A (en) * 1987-03-04 1990-05-22 Westinghouse Electric Corp. Energy beam casting of metal articles
GB2228224A (en) * 1989-02-08 1990-08-22 Gen Electric Fabrication of articles
EP2292357A1 (fr) * 2009-08-10 2011-03-09 BEGO Bremer Goldschlägerei Wilh.-Herbst GmbH & Co KG Article céramique ou verre-céramique et procédés de production de cet article

Also Published As

Publication number Publication date
RU2678619C2 (ru) 2019-01-30
JP2016504215A (ja) 2016-02-12
FR2998818B1 (fr) 2020-01-31
JP2019064268A (ja) 2019-04-25
EP2925471A1 (fr) 2015-10-07
SG10201703930VA (en) 2017-06-29
CN104903030A (zh) 2015-09-09
CA2892848C (fr) 2021-06-29
CA2892848A1 (fr) 2014-06-05
US10967460B2 (en) 2021-04-06
BR112015012278A2 (pt) 2018-04-24
SG11201504105YA (en) 2015-07-30
JP6480341B2 (ja) 2019-03-06
CN104903030B (zh) 2017-10-24
FR2998818A1 (fr) 2014-06-06
US20150298259A1 (en) 2015-10-22
RU2015125712A (ru) 2017-01-10

Similar Documents

Publication Publication Date Title
CA2892848C (fr) Procede de fabrication d&#39;une piece par fusion de poudre, les particules de poudre arrivant froides dans le bain
WO2014083292A1 (fr) Procédé de fusion de poudre avec chauffage de la zone adjacente au bain
FR2998496A1 (fr) Procede de fabrication additive d&#39;une piece par fusion selective ou frittage selectif de lits de poudre a compacite optimisee par faisceau de haute energie
EP2794151B1 (fr) Procede et appareil pour realiser des objets tridimensionnels
EP2540433B1 (fr) Procédé de rechargement d&#39;un moule de verrerie par rechargement laser de poudres
FR2991613A1 (fr) Procede de fabrication de piece par fusion selective ou frittage selectif de lits de poudre(s) au moyen d&#39;un faisceau de haute energie
FR2998497A1 (fr) Procede de fusion selective de lits de poudre par faisceau de haute energie sous une depression de gaz
US11097350B2 (en) Pre-fusion laser sintering for metal powder stabilization during additive manufacturing
FR3064509A1 (fr) Dispositif de fabrication additive d&#39;une piece de turbomachine par depot direct de metal sur un substrat
EP3969213A1 (fr) Procédé de fabrication additive pour une pièce métallique
FR3054462A1 (fr) Procede d&#39;atomisation de gouttes metalliques en vue de l&#39;obtention d&#39;une poudre metallique
EP3924122A1 (fr) Procede de fabrication additive avec separation par zone secable
FR3053632A1 (fr) Procede de fabrication additive avec enlevement de matiere entre deux couches
EP3065908B1 (fr) Procede de rechargement a l&#39;arc electrique avec protection gazeuse constitue d&#39;un melange gazeux argon/helium
EP4017672A1 (fr) Procede de fabrication additive d&#39;une piece de turbomachine
WO2023037083A1 (fr) Procédé de dépôt de fil métallique fondu à l&#39;aide d&#39;un faisceau laser balayé sur la surface de la pièce.
WO2020234526A1 (fr) Dispositif et procédé de fabrication additive par fusion laser sur lit de poudre
FR3046740A1 (fr) Procede de rechargement ou de fabrication d&#39;une piece metallique
FR3056426A1 (fr) Outillage pour la fabrication de pieces par fusion selective ou frittage selectif sur lit de poudre, et procede associe
FR3098742A1 (fr) Fabrication additive selective sur lit de poudre, notamment pour pieces de turbomoteur
FR3062397A1 (fr) Procede et installation de fabrication d&#39;une piece par plasmaformage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808135

Country of ref document: EP

Kind code of ref document: A1

WD Withdrawal of designations after international publication
ENP Entry into the national phase

Ref document number: 2892848

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015544522

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14648560

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013808135

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015125712

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015012278

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015012278

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150527