WO2014080930A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2014080930A1
WO2014080930A1 PCT/JP2013/081257 JP2013081257W WO2014080930A1 WO 2014080930 A1 WO2014080930 A1 WO 2014080930A1 JP 2013081257 W JP2013081257 W JP 2013081257W WO 2014080930 A1 WO2014080930 A1 WO 2014080930A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
insulating film
region
substrate
display device
Prior art date
Application number
PCT/JP2013/081257
Other languages
English (en)
French (fr)
Inventor
錦 博彦
猛 原
達 岡部
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/440,580 priority Critical patent/US9519198B2/en
Publication of WO2014080930A1 publication Critical patent/WO2014080930A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136277Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Definitions

  • the present invention relates to a liquid crystal display device.
  • This application claims priority based on Japanese Patent Application No. 2012-255173 filed in Japan on November 21, 2012, the contents of which are incorporated herein by reference.
  • a vertical electric field type liquid crystal display device applies a substantially vertical electric field to liquid crystal molecules by a pair of electrodes arranged with a liquid crystal layer interposed therebetween.
  • This vertical electric field type liquid crystal display device has a structure such as a TN (Twisted Nematic) mode and a VA (Vertical Alignment) mode.
  • a horizontal electric field type liquid crystal display device is provided with a pair of electrodes insulated from each other on the liquid crystal layer side of one of a pair of substrates arranged with a liquid crystal layer interposed therebetween, and an electric field in a substantially horizontal direction is applied to liquid crystal molecules. To be applied.
  • the horizontal electric field type liquid crystal display device has a structure such as an IPS (In-Plane Switching) mode, an FFS (Fringe Field Switching) mode, or the like.
  • Patent Document 1 discloses an FFS mode structure in which a pixel electrode and a common electrode are disposed on the side of a liquid crystal layer of an array substrate so as to face each other with an interelectrode insulating film made of an inorganic insulating film interposed therebetween.
  • a passivation film made of an inorganic insulating film is formed on the array substrate so as to cover the semiconductor layer.
  • An interlayer film made of a resin material is formed so as to cover the passivation film.
  • the pixel electrode is formed on the interlayer film.
  • the interelectrode insulating film is formed so as to cover the pixel electrode on the interlayer film.
  • Patent Document 1 describes that an interelectrode insulating film is formed at a temperature lower than that of a passivation film so that the surfaces of the pixel electrode and the interlayer film are not roughened.
  • the interelectrode insulating film is formed by a low temperature process, the interelectrode insulating film becomes a film containing a large amount of hydrogen.
  • hydrogen may be detached from the film containing hydrogen and hydrogen may enter the semiconductor layer.
  • hydrogen enters the semiconductor layer the semiconductor layer is affected by hydrogen and the characteristics of the semiconductor layer are deteriorated.
  • the present invention has been made to solve the above problems, and provides a liquid crystal display device capable of suppressing the penetration of hydrogen into a semiconductor layer and suppressing the deterioration of the characteristics of the semiconductor layer. With the goal.
  • a liquid crystal display device includes a liquid crystal layer, and a first substrate and a second substrate disposed to face each other with the liquid crystal layer interposed therebetween, A plurality of first thin film transistors arranged in a display region and a plurality of second thin film transistors arranged around the display region and supplying a driving signal to the plurality of first thin film transistors are disposed on the liquid crystal layer side of one substrate.
  • a peripheral driving circuit including a thin film transistor, an organic insulating film formed to cover the plurality of first thin film transistors and the plurality of second thin film transistors, and an inorganic insulating film formed on the organic insulating film are provided.
  • Each of the plurality of second thin film transistors includes a semiconductor layer including a source portion, a channel portion, and a drain portion, and the inorganic insulating film is at least as viewed from the normal direction of the first substrate.
  • Serial is arranged in a region which does not overlap with the channel portion of the plurality of second thin film transistor.
  • a transparent capacitance structure is formed in the display region by the first transparent electrode and the second transparent electrode that are arranged to face each other with the inorganic insulating film interposed therebetween. May be.
  • the inorganic insulating film is formed in a region that does not overlap the plurality of second thin film transistors when viewed from the normal direction of the first substrate. It may be.
  • a frame-shaped sealing member that bonds the first substrate and the second substrate at a predetermined interval is provided.
  • the peripheral drive circuit may be disposed in a region surrounded by the seal member.
  • the organic insulating film is disposed in a region surrounded by the sealing member, and the inorganic insulating film is the sealing member of the organic insulating film. It may be formed so as to cover the side.
  • a plurality of terminals electrically connected to the peripheral drive circuit are formed outside the area surrounded by the seal member.
  • the edge of the inorganic insulating film may extend to the region where the plurality of terminals are formed via the seal member.
  • the material for forming the semiconductor layer may include an oxide composed of indium, gallium, and zinc. Good.
  • liquid crystal display device capable of suppressing the penetration of hydrogen into the semiconductor layer and suppressing the deterioration of the characteristics of the semiconductor layer.
  • FIG. 2 is a cross-sectional view of a peripheral region and a terminal formation region of the liquid crystal display device along line AA in FIG. It is sectional drawing of the peripheral region of the liquid crystal display device which concerns on a comparative example.
  • FIG. 1 is a plan view showing a liquid crystal display device 1 according to an embodiment of the present invention.
  • the liquid crystal display device 1 according to the present embodiment includes a liquid crystal layer 2, an element substrate 3 (first substrate), a counter substrate 4 (second substrate), and a seal member 5. ing.
  • the liquid crystal display device 1 of the present embodiment performs display in, for example, an FFS (Fringe Field Switching) mode, and a liquid crystal having a positive dielectric anisotropy is used for the liquid crystal layer 2.
  • FFS Field Switching
  • a liquid crystal having a positive dielectric anisotropy is used for the liquid crystal layer 2.
  • the display mode of the liquid crystal display device 1 is not limited to the FFS mode described above, but is a TN (Twisted Nematic) mode, a VA (Vertical Alignment) mode, an STN (Super Twisted Nematic) mode, or an IPS (In-Plane) mode. Switching) mode or the like can be used.
  • TN Transmission Nematic
  • VA Vertical Alignment
  • STN Super Twisted Nematic
  • IPS In-Plane
  • the element substrate 3 has a display area AR1 and a peripheral area AR2.
  • the display area AR1 is an area in which a plurality of pixels, which are display minimum unit areas, are arranged in a matrix.
  • the peripheral area AR2 is an area around the display area AR1.
  • the display area AR1 has a rectangular shape when viewed from the normal direction of the element substrate 3 (hereinafter referred to as a plan view).
  • the peripheral area AR2 has a rectangular frame shape in plan view.
  • the display area AR1 of the element substrate 3 includes a plurality of source bus lines (SL1 to SLm), a plurality of gate bus lines (GL1 to GLn), and a plurality of first thin film transistors 6 (Thin Film Transistor, hereinafter referred to as a first TFT). Abbreviated).
  • source bus lines may be collectively referred to as source bus lines SL.
  • gate bus lines may be collectively referred to as gate bus lines GL.
  • the plurality of source bus lines SL are arranged adjacent to each other so as to extend in parallel to each other.
  • the plurality of gate bus lines GL extend in parallel to each other and are arranged adjacent to each other so as to be orthogonal to the plurality of source bus lines SL. Note that the plurality of source bus lines SL and the plurality of gate bus lines GL are not necessarily orthogonal to each other, and may intersect each other at an angle other than 90 °.
  • a plurality of source bus lines SL and a plurality of gate bus lines GL are formed in a lattice shape.
  • a rectangular area defined by the adjacent source bus line SL and the adjacent gate bus line GL is one pixel.
  • a plurality of pixels (P11 to Pnm) are arranged in a matrix. In the following description, pixels may be collectively referred to as pixels P.
  • the plurality of first TFTs 6 are provided corresponding to the intersections of the plurality of source bus lines SL and the plurality of gate bus lines GL.
  • a source driver 7 and a gate driver 8 are provided as peripheral drive circuits.
  • the source driver 7 and the gate driver 8 are disposed in a region surrounded by the seal member 5.
  • the liquid crystal display device 1 of the present embodiment has a peripheral drive circuit built-in structure.
  • the source driver 7 and the gate driver 8 include a plurality of second thin film transistors (hereinafter abbreviated as second TFTs) to be described later.
  • the source driver 7 extends along the direction in which the plurality of source bus lines SL are arranged (hereinafter sometimes referred to as a horizontal line direction).
  • the source driver 7 is electrically connected to a plurality of source bus lines SL.
  • the gate driver 8 extends along the extending direction of the source bus line SL (hereinafter sometimes referred to as the vertical line direction).
  • the gate driver 8 is electrically connected to the plurality of gate bus lines GL.
  • the seal member 5 is disposed along the peripheral edge of the counter substrate 4 and has a rectangular frame shape in plan view.
  • a control circuit 9 and a plurality of terminals 10 are provided outside the region surrounded by the seal member 5 of the element substrate 3.
  • the planar view size of the element substrate 3 is larger than the planar view size of the counter substrate 4.
  • an area 3 ⁇ / b> S (hereinafter referred to as an overhang area) that protrudes from the counter substrate 4 is formed.
  • the control circuit 9 and the plurality of terminals 10 are arranged in the overhang region 3S of the element substrate 3.
  • the control circuit 9 supplies a signal for displaying on the liquid crystal display device 1 to the source driver 7 and the gate driver 8. Specifically, the control circuit 9 supplies an image signal to the source driver 7. The control circuit 9 supplies control signals to the source driver 7 and the gate driver 8. The source driver 7 and the gate driver 8 supply drive signals to the plurality of first TFTs 6.
  • the control signals supplied to the gate driver 8 include a gate start pulse (GSP), a gate shift clock signal (GSC), and a gate output enable signal (GOE).
  • GSP gate start pulse
  • GSC gate shift clock signal
  • GOE gate output enable signal
  • the control signal supplied to the source driver 7 includes a source start pulse (SSP), a source shift clock signal (SSC), a source output enable signal (SOE), a polarity control signal (POL), and the like.
  • SSP source start pulse
  • SSC source shift clock signal
  • SOE source output enable signal
  • POL polarity control signal
  • the gate driver 8 sequentially supplies scan signals to the gate bus lines (GL1 to GLn) in the order of GL1, GL2, GL3,. In response to this scan signal, the first TFT 6 is driven in units of horizontal lines.
  • the source driver 7 converts the supplied image signal into an analog image signal.
  • the source driver 7 supplies an image signal for one horizontal line to a plurality of source bus lines (SL1 to SLm) every horizontal period in which a scan signal is supplied to the gate bus line GL.
  • the plurality of terminals 10 are arranged along the horizontal line direction.
  • the plurality of terminals 10 are electrically connected to a source driver 7 and a gate driver 8 as peripheral drive circuits.
  • the area AR3 in which the plurality of terminals 10 are formed in the element substrate 3 is referred to as a terminal formation area.
  • FIG. 2 is a cross-sectional view of the display area AR1 of the element substrate 3 of the liquid crystal display device 1.
  • FIG. FIG. 3 is a cross-sectional view of the peripheral area AR2 and the terminal formation area AR3 of the liquid crystal display device 1 along the line AA in FIG. 2 and 3, the alignment film is not shown for convenience.
  • the element substrate 3 and the counter substrate 4 are disposed to face each other with the liquid crystal layer 2 interposed therebetween.
  • the element substrate 3 and the counter substrate 4 are bonded to each other with a predetermined interval by a seal member 5.
  • the first TFT 6 is formed on the transparent substrate 11 constituting the element substrate 3 in the display area AR ⁇ b> 1 of the element substrate 3.
  • the transparent substrate 11 for example, a glass substrate can be used.
  • the first TFT 6 includes a gate electrode 12 made of a first conductive film, a gate insulating film 13, a semiconductor layer 14, and a source electrode 16s and a drain electrode 16d made of a second conductive film.
  • the first TFT 6 of this embodiment is an n-channel type.
  • the first TFT 6 is not limited to the n-channel type but may be a p-channel type.
  • the form of the first TFT 6 of this embodiment is a bottom gate type.
  • the form of the first TFT 6 is not limited to the bottom gate type, and may be a top gate type.
  • the gate electrode 12 is formed on the transparent substrate 11.
  • a material for forming the gate electrode 12 for example, a laminated film of W (tungsten) / TaN (tantalum nitride), Mo (molybdenum), Ti (titanium), Al (aluminum), or the like can be used.
  • the gate electrode 12 is constituted by a part of the gate bus line GL.
  • a gate insulating film 13 is formed on the transparent substrate 11 so as to cover the gate electrode 12.
  • a material for forming the gate insulating film 13 for example, an inorganic insulating material such as a silicon nitride film, a silicon oxide film, a silicon nitride oxide film, or a stacked film thereof can be used.
  • a semiconductor layer 14 is formed on the gate insulating film 13 at a position facing the gate electrode 12.
  • IGZO In—Ga—Zn—O-based semiconductor
  • IGZO In—Ga—Zn—O-based semiconductor
  • the material for forming the semiconductor layer 14 is not limited to an oxide semiconductor such as IGZO, but may be, for example, CGS (Continuous Grain Silicon), LPS (Low-temperature Poly-Silicon), ⁇ A silicon semiconductor such as Si (Amorphous Silicon) can be used.
  • an oxide semiconductor such as IGZO as a forming material of the semiconductor layer 14.
  • An oxide semiconductor has higher mobility than ⁇ -Si. Therefore, a TFT using an oxide semiconductor can operate at a higher speed than a TFT using ⁇ -Si.
  • the oxide semiconductor layer is formed by a simpler process than the polycrystalline silicon layer, the oxide semiconductor layer can be applied to a device that requires a large area.
  • the oxide semiconductor layer can be formed as follows, for example. First, an IGZO film having a thickness of 30 nm to 300 nm is formed on the insulating film by sputtering. Next, a resist mask that covers a predetermined region of the IGZO film is formed by photolithography. Next, the portion of the IGZO film that is not covered with the resist mask is removed by wet etching. Thereafter, the resist mask is peeled off. In this manner, an oxide semiconductor layer is obtained.
  • IZO In—Zn—O-based semiconductor
  • ZTO which is an oxide composed of zinc and titanium
  • Zn—Ti—O based semiconductor can be used.
  • the semiconductor layer 14 includes a channel region 14c, a first high concentration impurity region 14s, a second high concentration impurity region 14d, a first low concentration impurity region 14a, and a second low concentration impurity region 14b.
  • the channel region 14 c functions as a channel portion of the semiconductor layer 14.
  • the first high concentration impurity region 14 s functions as a source part of the semiconductor layer 14.
  • the second high concentration impurity region 14 d functions as a drain portion of the semiconductor layer 14.
  • the first high-concentration impurity region 14s and the second high-concentration impurity region 14d are provided with a space therebetween so as to sandwich the channel region 14c.
  • the first high concentration impurity region 14s is provided closer to the source electrode 16s than the channel region 14c.
  • the second high concentration impurity region 14d is provided closer to the drain electrode 16d than the channel region 14c.
  • the channel region 14c is doped with a p-type impurity such as B (boron).
  • the first high-concentration impurity region 14s and the second high-concentration impurity region 14d each contain an n-type impurity at a higher concentration than the low-concentration impurity region. For this reason, in the first high-concentration impurity region 14s and the second high-concentration impurity region 14d, the n-type carrier concentration is higher than that in the low-concentration impurity region.
  • the first low concentration impurity region 14a is provided between the channel region 14c and the first high concentration impurity region 14s.
  • the second low concentration impurity region 14b is provided between the channel region 14c and the second high concentration impurity region 14d.
  • the first low-concentration impurity region 14a and the second low-concentration impurity region 14b each contain an n-type impurity at a lower concentration than the high-concentration impurity region. For this reason, in the first low concentration impurity region 14a and the second low concentration impurity region 14b, the n-type carrier concentration is lower than that of the high concentration impurity region.
  • the first high-concentration impurity region 14s, the first low-concentration impurity region 14a, the second high-concentration impurity region 14d, and the second low-concentration impurity region 14b each form an LDD (Lightly Doped Drain) structure. .
  • a first interlayer insulating film 15 is formed on the gate insulating film 13 so as to cover the semiconductor layer 14.
  • a material for forming the first interlayer insulating film 15 the same inorganic insulating material as that of the gate insulating film 13 described above can be used.
  • a source electrode 16s and a drain electrode 16d are formed on the first interlayer insulating film 15.
  • the source electrode 16 s is connected to the first high-concentration impurity region 14 s of the semiconductor layer 14 through a contact hole 16 sh that penetrates the first interlayer insulating film 15.
  • the drain electrode 16 d is connected to the second high-concentration impurity region 14 d of the semiconductor layer 14 through a contact hole 16 dh that penetrates the first interlayer insulating film 15.
  • a conductive material similar to that of the gate electrode 12 described above can be used.
  • a first passivation film 17 is formed so as to cover the source electrode 16s and the drain electrode 16d.
  • a material for forming the first passivation film 17 an inorganic insulating material similar to that of the gate insulating film 13 described above can be used.
  • a second interlayer insulating film 18 (organic insulating film) is formed on the first passivation film 17.
  • an organic insulating material such as polyimide, polyamide, acrylic, polyimide amide, or benzocyclobutene can be used.
  • a common electrode 20 (first transparent electrode) made of a third conductive film is formed.
  • a transparent conductive material such as ITO (Indium / Tin / Oxide) or IZO (Indium / Zinc / Oxide) can be used.
  • a second passivation film 19 (inorganic insulating film) is formed on the second interlayer insulating film 18 so as to cover the common electrode 20.
  • the same inorganic insulating material as the first passivation film 17 described above can be used.
  • a pixel electrode 21 (second transparent electrode) made of a fourth conductive film is formed on the second passivation film 19.
  • the same transparent conductive material as that for the common electrode 20 described above can be used.
  • a transparent capacitance structure is formed by the common electrode 20 and the pixel electrode 21 which are arranged to face each other with the second passivation film 19 interposed therebetween.
  • the second passivation film 19 functions as an interelectrode insulating film between the common electrode 20 and the pixel electrode 21.
  • the pixel electrode 21 is connected to the drain electrode 16 d through a contact hole 21 h that penetrates the first passivation film 17, the second interlayer insulating film 18, and the second passivation film 19.
  • the pixel electrode 21 is connected to the second high concentration impurity region 14d of the semiconductor layer 14 using the drain electrode 16d as a relay electrode.
  • An alignment film (not shown) is formed on the second passivation film 19 so as to cover the pixel electrode 21.
  • the alignment film has an alignment regulating force for horizontally aligning liquid crystal molecules constituting the liquid crystal layer.
  • FIG. 3 the same components as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the second TFT 22 constituting the source driver 7 is formed on the transparent substrate 11 constituting the element substrate 3.
  • FIG. 3 for the sake of convenience, one second TFT 22 among the plurality of second TFTs 22 arranged in the peripheral area AR2 is shown.
  • the second interlayer insulating film 18 is formed so as to cover the plurality of first TFTs 6 and the plurality of second TFTs 22 described above.
  • the second interlayer insulating film 18 is disposed in a region surrounded by the seal member 5.
  • a second passivation film 19 is formed on the second interlayer insulating film 18.
  • the second passivation film 19 is formed to cover the side surface of the second interlayer insulating film 18 on the seal member 5 side.
  • the second passivation film 19 functions as a gas barrier film for suppressing intrusion of moisture or the like into the second interlayer insulating film 18.
  • the second passivation film 19 is not disposed immediately above the source driver 7. Specifically, as shown in FIG. 1, the second passivation film 19 is disposed in a region that does not overlap the source driver 7 (a region other than the source driver 7 formation region 7 ⁇ / b> S) in plan view. The second passivation film 19 is disposed in a region that does not overlap with the gate driver 8 (a region other than the formation region 8S of the gate driver 8) in plan view. In the second passivation film 19, an opening is formed in a region overlapping the formation region 7S of the source driver 7 and the formation region 8S of the gate driver 8 in plan view.
  • the opening can be formed as follows, for example. First, an inorganic insulating film such as a silicon nitride film is formed on the second interlayer insulating film 18 using the CVD method. Next, the portion of the inorganic insulating film that overlaps the source driver 7 and the gate driver 8 in plan view is removed by dry etching. In this way, the second passivation film 19 is obtained.
  • an inorganic insulating film such as a silicon nitride film is formed on the second interlayer insulating film 18 using the CVD method.
  • the portion of the inorganic insulating film that overlaps the source driver 7 and the gate driver 8 in plan view is removed by dry etching. In this way, the second passivation film 19 is obtained.
  • the opening can also be formed as follows. First, a resist mask that covers regions overlapping the source driver 7 and the gate driver 8 in plan view is formed by photolithography. Next, an inorganic insulating film is formed using the CVD method so as to cover the resist mask on the second interlayer insulating film 18. Thereafter, the resist mask is peeled off. In this way, the second passivation film 19 is obtained.
  • the terminals 10 are formed on the transparent substrate 11 constituting the element substrate 3.
  • a first conductive film, a second conductive film 16 t, a third conductive film 20 t, and a fourth conductive film 21 t in the same layer as the gate electrode 12 are stacked in this order from the transparent substrate 11 side on the transparent substrate 11.
  • a material for forming the second conductive film 16t a conductive material similar to that of the above-described source electrode 16s and drain electrode 16d can be used.
  • a material for forming the third conductive film 20t a conductive material similar to that of the above-described common electrode 20 can be used.
  • a material for forming the fourth conductive film 21t a conductive material similar to that of the pixel electrode 21 described above can be used.
  • the edge of the second passivation film 19 extends to the terminal formation area AR3 through the seal member 19.
  • the edge of the second passivation film 19 is disposed between the end of the third conductive film 20t and the end of the fourth conductive film 21t.
  • the counter substrate 4 is based on a transparent substrate such as a glass substrate.
  • the counter substrate 4 is a color filter substrate in which a color filter layer and a black matrix layer are formed on a transparent substrate.
  • An alignment film (not shown) is formed on the liquid crystal layer 2 side of the counter substrate 4.
  • FIG. 4 is a cross-sectional view of the peripheral area AR2 of the liquid crystal display device 1X according to the comparative example.
  • illustration of the liquid crystal layer, the counter substrate, and the alignment film is omitted for convenience.
  • reference numeral 3X denotes an element substrate.
  • Reference numeral 7X denotes a source driver.
  • Reference numeral 11X denotes a transparent substrate.
  • Reference numeral 12X denotes a gate electrode.
  • Reference numeral 13X denotes a gate insulating film.
  • Reference numeral 14X denotes a semiconductor layer.
  • Reference numeral 14Xc denotes a channel region (corresponding to a channel portion).
  • Reference numeral 14Xs denotes a first high-concentration impurity region (corresponding to a source portion).
  • Reference numeral 14Xd denotes a second high-concentration impurity region (corresponding to a drain portion).
  • Reference numeral 14Xa denotes a first low-concentration impurity region.
  • Reference numeral 14Xb denotes a second low-concentration impurity region.
  • Reference numeral 15X denotes a first interlayer insulating film.
  • Reference numeral 16Xs denotes a source electrode.
  • Reference numeral 16Xd denotes a drain electrode.
  • Reference numeral 17X denotes a first passivation film.
  • Reference numeral 18X denotes a second interlayer insulating film (corresponding to an organic insulating film).
  • Reference numeral 19X denotes a second passivation film (corresponding to an inorganic insulating film).
  • Reference numeral 22X denotes a second TFT.
  • the second passivation film 19X is disposed right above the source driver 7X.
  • the second passivation film 19X In the peripheral region AR2, if the second passivation film 19X is disposed on the second interlayer insulating film 18X, which is an organic insulating film, the second passivation film 19X cannot be formed at a high temperature.
  • the second passivation film 19X When the second passivation film 19X is formed by a low temperature process, the second passivation film 19X becomes a film containing a large amount of hydrogen (H).
  • hydrogen may be detached from the film containing hydrogen and hydrogen may enter the semiconductor layer 14X.
  • hydrogen enters the semiconductor layer 14X the semiconductor layer 14X is affected by hydrogen, and the characteristics of the semiconductor layer 14X are deteriorated.
  • the second passivation film 19 since the second passivation film 19 is arranged on the second interlayer insulating film 18 that is an organic insulating film, the second passivation film 19 cannot be formed at a high temperature. However, in the present embodiment, as shown in FIG. 3, the second passivation film 19 is not disposed immediately above the source driver 7. For this reason, even if the second passivation film 19 is formed by a low temperature process and the second passivation film 19 becomes a film containing a large amount of hydrogen, hydrogen released from the film containing hydrogen enters the semiconductor layer 14. Is suppressed. Therefore, it is possible to suppress the penetration of hydrogen into the semiconductor layer 14 and suppress the deterioration of the characteristics of the semiconductor layer 14.
  • the second passivation film 19 is disposed in a region that does not overlap the source driver 7 and the gate driver 8 in plan view. As a result, the second passivation film 19 and the channel region 14c are separated from each other in plan view. For this reason, hydrogen released from the film containing hydrogen is unlikely to enter the channel region 14 c of the semiconductor layer 14. Therefore, it becomes easy to suppress deterioration of the characteristics of the semiconductor layer 14. In addition, it is easy to form an opening in a region of the second passivation film 19 that overlaps the source driver 7 and the gate driver 8 in plan view.
  • the second passivation film 19 is described as an example in which the second passivation film 19 is disposed in a region that does not overlap with the source driver 7 and the gate driver 8 in a plan view.
  • the present invention is not limited thereto.
  • the second passivation film 19 may be formed in a region that does not overlap with the plurality of second TFTs 22 in plan view. In this case, an opening is formed in the second passivation film 19 in a region overlapping the plurality of second TFTs 22 in plan view.
  • the second passivation film 19 may be formed in a region that does not overlap with the channel regions 14c of the plurality of second TFTs 22 in plan view. In this case, an opening is formed in the second passivation film 19 in a region overlapping the channel regions 14c of the plurality of second TFTs 22 in plan view. That is, the second passivation film 19 only needs to be formed in a region that does not overlap with at least the channel regions 14c of the plurality of second TFTs 22 in plan view.
  • the second passivation film 19 has a source driver 7 and a gate driver 8 in plan view from the viewpoint of facilitating the deterioration of characteristics of the semiconductor layer 14 or from the viewpoint of easily forming an opening in the second passivation film 19. It is preferable to arrange in a region that does not overlap.
  • a second passivation film 19 as a gas barrier film is formed so as to cover the side surface of the second interlayer insulating film 18 on the seal member 5 side. Therefore, intrusion of moisture or the like into the second interlayer insulating film 18 can be suppressed in the peripheral region AR2.
  • the present invention can be used for a liquid crystal display device.
  • SYMBOLS 1 Liquid crystal display device, 2 ... Liquid crystal layer, 3 ... Element board
  • second passivation film inorganic insulating film

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)

Abstract

 液晶層と、前記液晶層を挟んで互いに対向して配置された第1基板及び第2基板と、を含み、第1基板の液晶層の側には、表示領域に配置された複数の第1薄膜トランジスタと、表示領域の周辺に配置され、複数の第1薄膜トランジスタに駆動信号を供給する、複数の第2薄膜トランジスタを含む周辺駆動回路と、複数の第1薄膜トランジスタ及び複数の第2薄膜トランジスタを覆って形成された有機絶縁膜と、有機絶縁膜の上に形成された無機絶縁膜と、が設けられ、複数の第2薄膜トランジスタのそれぞれが、ソース部、チャネル部及びドレイン部を含む半導体層を含み、無機絶縁膜が、第1基板の法線方向から見て、少なくとも複数の第2薄膜トランジスタのチャネル部と重ならない領域に配置されている。

Description

液晶表示装置
 本発明は、液晶表示装置に関する。
 本願は、2012年11月21日に、日本に出願された特願2012-255173号に基づき優先権を主張し、その内容をここに援用する。
 液晶表示装置として、縦電界方式のものと横電界方式のものとが知られている。
 縦電界方式の液晶表示装置は、液晶層を挟んで配置された一対の電極により、概ね縦方向の電界を液晶分子に印加するものである。この縦電界方式の液晶表示装置としては、TN(Twisted Nematic)モード、VA(Vertical Alignment)モード等の構造がある。
 横電界方式の液晶表示装置は、液晶層を挟んで配置された一対の基板のうちの一方の基板の液晶層の側に一対の電極を互いに絶縁して設け、概ね横方向の電界を液晶分子に印加するものである。この横電界方式の液晶表示装置としては、IPS(In-Plane Switching)モード、FFS(Fringe Field Switching)モード等の構造がある。
 例えば、特許文献1には、アレイ基板の液晶層の側に画素電極と共通電極とが、無機絶縁膜からなる電極間絶縁膜を挟んで互いに対向して配置された、FFSモードの構造が開示されている。
 アレイ基板には、半導体層を覆って無機絶縁膜からなるパッシベーション膜が形成されている。このパッシベーション膜を覆って樹脂材料からなる層間膜が形成されている。画素電極は、層間膜の上に形成されている。電極間絶縁膜は、層間膜の上の画素電極を覆って形成されている。
特開2010-8758号公報
 特許文献1には、画素電極及び層間膜の表面が荒れないようにするため、電極間絶縁膜を、パッシベーション膜よりも低温成膜条件で形成することが記載されている。電極間絶縁膜を低温プロセスで形成すると、電極間絶縁膜は多くの水素を含んだ膜となる。このような水素を含んだ膜が半導体層の上に形成されていると、水素を含んだ膜から水素が離脱し、水素が半導体層に侵入することがある。水素が半導体層に侵入した場合、半導体層が水素の影響を受け、半導体層の特性が劣化してしまう。
 本発明は、上記の課題を解決するためになされたものであって、水素の半導体層への侵入を抑制し、半導体層の特性の劣化を抑制することが可能な液晶表示装置を提供することを目的とする。
 上記の目的を達成するために、本発明は以下の手段を採用した。
 (1)すなわち、本発明の第一の態様に係る液晶表示装置は、液晶層と、前記液晶層を挟んで互いに対向して配置された第1基板及び第2基板と、を含み、前記第1基板の前記液晶層の側には、表示領域に配置された複数の第1薄膜トランジスタと、前記表示領域の周辺に配置され、前記複数の第1薄膜トランジスタに駆動信号を供給する、複数の第2薄膜トランジスタを含む周辺駆動回路と、前記複数の第1薄膜トランジスタ及び前記複数の第2薄膜トランジスタを覆って形成された有機絶縁膜と、前記有機絶縁膜の上に形成された無機絶縁膜と、が設けられ、前記複数の第2薄膜トランジスタのそれぞれが、ソース部、チャネル部及びドレイン部を含む半導体層を含み、前記無機絶縁膜が、前記第1基板の法線方向から見て、少なくとも前記複数の第2薄膜トランジスタの前記チャネル部と重ならない領域に配置されている。
 (2)上記(1)に記載の液晶表示装置では、前記表示領域には、前記無機絶縁膜を挟んで互いに対向して配置された第1透明電極及び第2透明電極により透明容量構造が形成されていてもよい。
 (3)上記(1)または(2)に記載の液晶表示装置では、前記無機絶縁膜が、前記第1基板の法線方向から見て、前記複数の第2薄膜トランジスタと重ならない領域に形成されていてもよい。
 (4)上記(1)から(3)までのいずれか一項に記載の液晶表示装置では、前記第1基板と前記第2基板とを所定の間隔をおいて貼り合わせる枠状のシール部材を含み、前記周辺駆動回路が、前記シール部材によって囲まれた領域内に配置されていてもよい。
 (5)上記(4)に記載の液晶表示装置では、前記有機絶縁膜が、前記シール部材によって囲まれた領域内に配置されており、前記無機絶縁膜が、前記有機絶縁膜の前記シール部材の側を覆って形成されていてもよい。
 (6)上記(4)または(5)に記載の液晶表示装置では、前記シール部材によって囲まれた領域外には、前記周辺駆動回路と電気的に接続された複数の端子が形成されており、 前記無機絶縁膜の端縁が、前記シール部材を介して前記複数の端子が形成された領域まで延びていてもよい。
 (7)上記(1)から(6)までのいずれか一項に記載の液晶表示装置では、前記半導体層の形成材料が、インジウム、ガリウム、及び亜鉛から構成される酸化物を含んでいてもよい。
 本発明によれば、水素の半導体層への侵入を抑制し、半導体層の特性の劣化を抑制することが可能な液晶表示装置を提供することができる。
本発明の一実施形態に係る液晶表示装置を示す平面図である。 液晶表示装置の素子基板の表示領域の断面図である。 図1のA-A線に沿った、液晶表示装置の周辺領域及び端子形成領域の断面図である。 比較例に係る液晶表示装置の周辺領域の断面図である。
 以下、本発明の一実施形態について、図1~図4を用いて説明する。
 なお、以下の全ての図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
 図1は、本発明の一実施形態に係る液晶表示装置1を示す平面図である。
 図1に示すように、本実施形態に係る液晶表示装置1は、液晶層2と、素子基板3(第1基板)と、対向基板4(第2基板)と、シール部材5と、を備えている。
 本実施形態の液晶表示装置1は、例えばFFS(Fringe Field Switching)モードで表示を行うものであり、液晶層2には誘電率異方性が正の液晶が用いられる。
 なお、液晶表示装置1の表示モードとしては、上記のFFSモードに限らず、TN(Twisted Nematic)モード、VA(Vertical Alignment, 垂直配向)モード、STN(Super Twisted Nematic)モード、IPS(In-Plane Switching)モード等を用いることができる。本実施形態では、FFSモードの液晶表示装置1を用いた例を挙げる。
 図1に示すように、素子基板3には、表示領域AR1と周辺領域AR2とが形成されている。表示領域AR1は、表示の最小単位領域である画素がマトリクス状に複数配置された領域である。周辺領域AR2は、表示領域AR1の周辺の領域である。表示領域AR1は、素子基板3の法線方向から見て(以下、平面視と称する)、矩形状である。周辺領域AR2は、平面視矩形枠状である。
 素子基板3の表示領域AR1には、複数のソースバスライン(SL1~SLm)と、複数のゲートバスライン(GL1~GLn)と、複数の第1薄膜トランジスタ6(Thin Film Transistor, 以下、第1TFTと略記する)と、が設けられている。以下の説明においては、ソースバスラインを総称してソースバスラインSLと記載することがある。ゲートバスラインを総称してゲートバスラインGLと記載することがある。
 複数のソースバスラインSLは、互いに平行に延在するように隣接して配置されている。複数のゲートバスラインGLは、互いに平行に延在し、かつ、複数のソースバスラインSLと直交するように互いに隣接して配置されている。なお、複数のソースバスラインSLと複数のゲートバスラインGLとは、必ずしも互いに直交している必要はなく、90°以外の角度で互いに交差していてもよい。
 素子基板3の表示領域AR1には、複数のソースバスラインSLと複数のゲートバスラインGLとが格子状に形成されている。隣接するソースバスラインSLと隣接するゲートバスラインGLとによって区画された矩形状の領域が一つの画素となる。本実施形態では、複数の画素(P11~Pnm)がマトリクス状に配置されている。以下の説明においては、画素を総称して画素Pと記載することがある。
 複数の第1TFT6は、複数のソースバスラインSLと複数のゲートバスラインGLとの各交差部に対応して設けられている。
 素子基板3の周辺領域AR2には、周辺駆動回路としてのソースドライバー7及びゲートドライバー8が設けられている。ソースドライバー7及びゲートドライバー8は、シール部材5によって囲まれた領域内に配置されている。本実施形態の液晶表示装置1は、周辺駆動回路内蔵型の構造である。ソースドライバー7及びゲートドライバー8は、後述する複数の第2薄膜トランジスタ(以下、第2TFTと略記する)を含んでいる。
 ソースドライバー7は、複数のソースバスラインSLの並び方向(以下、水平ライン方向と称することがある)に沿って延在している。ソースドライバー7は、複数のソースバスラインSLと電気的に接続されている。
 ゲートドライバー8は、ソースバスラインSLの延在方向(以下、垂直ライン方向と称することがある)に沿って延在している。ゲートドライバー8は、複数のゲートバスラインGLと電気的に接続されている。
 シール部材5は、対向基板4の周縁部に沿って配置されており、平面視矩形枠状である。素子基板3のシール部材5によって囲まれた領域外には、制御回路9と複数の端子10とが設けられている。
 素子基板3の平面視サイズは対向基板4の平面視サイズよりも大きい。素子基板3には、対向基板4に対して張り出した領域3S(以下、張り出し領域と称する)が形成されている。制御回路9と複数の端子10とは、素子基板3の張り出し領域3Sに配置されている。
 制御回路9は、ソースドライバー7及びゲートドライバー8に、液晶表示装置1にて表示を行うための信号を供給する。具体的には、制御回路9は、ソースドライバー7に画像信号を供給する。制御回路9は、ソースドライバー7及びゲートドライバー8に制御信号を供給する。ソースドライバー7及びゲートドライバー8は、複数の第1TFT6に駆動信号を供給する。
 ゲートドライバー8に供給される制御信号には、ゲート・スタートパルス(GSP)、ゲート・シフト・クロック信号(GSC)、ゲート出力イネーブル信号(GOE)が含まれる。
 ソースドライバー7に供給される制御信号には、ソース・スタートパルス(SSP)、ソース・シフト・クロック信号(SSC)、ソース出力イネーブル信号(SOE)、極性制御信号(POL)等が含まれる。
 ゲートドライバー8は、GL1、GL2、GL3、・・・GLnの順に、ゲートバスライン(GL1~GLn)にスキャン信号を順次的に供給する。このスキャン信号に応答して、第1TFT6が水平ライン単位で駆動される。
 ソースドライバー7は、供給された画像信号をアナログ画像信号に変換する。ソースドライバー7は、ゲートバスラインGLにスキャン信号が供給される1水平期間ごとに、1水平ライン分の画像信号を複数のソースバスライン(SL1~SLm)に供給する。
 複数の端子10は、水平ライン方向に沿って配列されている。複数の端子10は、周辺駆動回路としてのソースドライバー7及びゲートドライバー8と電気的に接続されている。以下の説明においては、素子基板3において複数の端子10が形成された領域AR3を端子形成領域と称する。
 図2は、液晶表示装置1の素子基板3の表示領域AR1の断面図である。図3は、図1のA-A線に沿った、液晶表示装置1の周辺領域AR2及び端子形成領域AR3の断面図である。なお、図2及び図3においては、便宜上、配向膜の図示を省略している。
 図3に示すように、素子基板3及び対向基板4は、液晶層2を挟んで互いに対向して配置されている。素子基板3と対向基板4とは、シール部材5により所定の間隔をおいて貼り合わされている。
 先ず、素子基板3の表示領域AR1の構成について図2を用いて説明する。
 図2に示すように、素子基板3の表示領域AR1において、素子基板3を構成する透明基板11上には、第1TFT6が形成されている。図2では、便宜上、表示領域AR1に配置された複数の第1TFT6のうち1つの第1TFT6を示している。透明基板11としては、例えばガラス基板を用いることができる。
 第1TFT6は、第1導電膜からなるゲート電極12と、ゲート絶縁膜13と、半導体層14と、第2導電膜からなるソース電極16s及びドレイン電極16dと、を備えている。
 本実施形態の第1TFT6はnチャネル型である。なお、第1TFT6は、nチャネル型に限らず、pチャネル型であってもよい。
 本実施形態の第1TFT6の形態は、ボトムゲート型である。なお、第1TFT6の形態は、ボトムゲート型に限らず、トップゲート型であってもよい。
 ゲート電極12は、透明基板11上に形成されている。ゲート電極12の形成材料としては、例えばW(タングステン)/TaN(窒化タンタル)の積層膜、Mo(モリブデン)、Ti(チタン)、Al(アルミニウム)等を用いることができる。なお、ゲート電極12は、ゲートバスラインGLの一部によって構成されている。
 透明基板11上には、ゲート電極12を覆うようにゲート絶縁膜13が形成されている。ゲート絶縁膜13の形成材料としては、例えば窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜またはこれらの積層膜等の無機絶縁性材料を用いることができる。
 ゲート絶縁膜13上には、ゲート電極12と対向する位置に半導体層14が形成されている。半導体層14の形成材料としては、インジウム、ガリウム、及び亜鉛から構成される酸化物であるIGZO(In-Ga-Zn-O系半導体)を用いることができる。
 なお、半導体層14の形成材料としては、IGZO等の酸化物半導体に限らず、例えばCGS(Continuous Grain Silicon:連続粒界シリコン)、LPS(Low-temperature Poly-Silicon:低温多結晶シリコン)、α-Si(Amorphous Silicon:非結晶シリコン)等のシリコン半導体を用いることができる。
 ただし、以下の観点から、半導体層14の形成材料としては、IGZO等の酸化物半導体を用いることが好ましい。
 酸化物半導体は、α-Siよりも高い移動度を有している。このため、酸化物半導体を用いたTFTは、α-Siを用いたTFTよりも高速で動作することが可能である。また、酸化物半導体層は、多結晶シリコン層よりも簡便なプロセスで形成されるため、大面積が必要とされる装置にも適用できる。
 酸化物半導体層は、例えば、以下のようにして形成できる。まず、スパッタ法を用いて、厚さが30nm以上300nm以下のIGZO膜を絶縁膜の上に形成する。次いで、フォトリソグラフィにより、IGZO膜の所定の領域を覆うレジストマスクを形成する。次いで、IGZO膜のうちレジストマスクで覆われていない部分をウエットエッチングにより除去する。その後、レジストマスクを剥離する。このようにして、酸化物半導体層が得られる。
 また、酸化物半導体としては、IGZOの他にも、例えばインジウム及び亜鉛から構成される酸化物であるIZO(In-Zn-O系半導体)、亜鉛及びチタンから構成される酸化物であるZTO(Zn-Ti-O系半導体)を用いることができる。
 半導体層14は、チャネル領域14c、第1高濃度不純物領域14s、第2高濃度不純物領域14d、第1低濃度不純物領域14a及び第2低濃度不純物領域14bを含んでいる。
 チャネル領域14cは、半導体層14のチャネル部として機能する。第1高濃度不純物領域14sは、半導体層14のソース部として機能する。第2高濃度不純物領域14dは、半導体層14のドレイン部として機能する。
 第1高濃度不純物領域14s及び第2高濃度不純物領域14dは、チャネル領域14cを挟むように間隔を空けて設けられている。第1高濃度不純物領域14sは、チャネル領域14cよりもソース電極16s側に設けられている。第2高濃度不純物領域14dは、チャネル領域14cよりもドレイン電極16d側に設けられている。
 チャネル領域14cには、B(ボロン)等のp型不純物がドープされている。
 第1高濃度不純物領域14s及び第2高濃度不純物領域14dには、それぞれn型不純物が低濃度不純物領域に比べて高濃度で含まれている。このため、第1高濃度不純物領域14s及び第2高濃度不純物領域14dにおいては、n型のキャリア濃度が低濃度不純物領域に比べて高い。
 第1低濃度不純物領域14aは、チャネル領域14cと第1高濃度不純物領域14sとの間に設けられている。第2低濃度不純物領域14bは、チャネル領域14cと第2高濃度不純物領域14dとの間に設けられている。
 第1低濃度不純物領域14a及び第2低濃度不純物領域14bには、それぞれn型不純物が高濃度不純物領域に比べて低濃度で含まれている。このため、第1低濃度不純物領域14a及び第2低濃度不純物領域14bにおいては、n型のキャリア濃度が高濃度不純物領域に比べて低い。
 このように、第1高濃度不純物領域14s及び第1低濃度不純物領域14a、第2高濃度不純物領域14d及び第2低濃度不純物領域14bは、それぞれLDD(Lightly Doped Drain)構造を形成している。
 ゲート絶縁膜13上には、半導体層14を覆うように第1層間絶縁膜15が形成されている。第1層間絶縁膜15の形成材料としては、上述のゲート絶縁膜13と同様の無機絶縁性材料を用いることができる。
 第1層間絶縁膜15上には、ソース電極16sおよびドレイン電極16dが形成されている。ソース電極16sは、第1層間絶縁膜15を貫通するコンタクトホール16shを介して半導体層14の第1高濃度不純物領域14sに接続されている。ドレイン電極16dは、第1層間絶縁膜15を貫通するコンタクトホール16dhを介して半導体層14の第2高濃度不純物領域14dに接続されている。ソース電極16sおよびドレイン電極16dの形成材料としては、上述のゲート電極12と同様の導電性材料を用いることができる。
 第1層間絶縁膜15上には、ソース電極16sおよびドレイン電極16dを覆うように第1パッシベーション膜17が形成されている。第1パッシベーション膜17の形成材料としては、上述のゲート絶縁膜13と同様の無機絶縁性材料を用いることができる。
 第1パッシベーション膜17上には、第2層間絶縁膜18(有機絶縁膜)が形成されている。第2層間絶縁膜18の形成材料としては、例えばポリイミド、ポリアミド、アクリル、ポリイミドアミド、ベンゾシクロブテン等の有機絶縁性材料を用いることができる。
 第2層間絶縁膜18上には、第3導電膜からなる共通電極20(第1透明電極)が形成されている。共通電極20の形成材料としては、例えばITO(Indium Tin Oxide、インジウム錫酸化物)、IZO(Indium Zinc Oxide、インジウム亜鉛酸化物)等の透明導電性材料を用いることができる。
 第2層間絶縁膜18上には、共通電極20を覆うように第2パッシベーション膜19(無機絶縁膜)が形成されている。第2パッシベーション膜19の形成材料としては、上述の第1パッシベーション膜17と同様の無機絶縁性材料を用いることができる。
 第2パッシベーション膜19上には、第4導電膜からなる画素電極21(第2透明電極)が形成されている。画素電極21の形成材料としては、上述の共通電極20と同様の透明導電性材料を用いることができる。
 表示領域AR1には、第2パッシベーション膜19を挟んで互いに対向して配置された共通電極20及び画素電極21により透明容量構造が形成されている。表示領域AR1において、第2パッシベーション膜19は、共通電極20と画素電極21との間の電極間絶縁膜として機能する。
 画素電極21は、第1パッシベーション膜17、第2層間絶縁膜18及び第2パッシベーション膜19を貫通するコンタクトホール21hを介してドレイン電極16dに接続されている。画素電極21は、ドレイン電極16dを中継用電極として半導体層14の第2高濃度不純物領域14dに接続されている。
 このような構成により、ゲートバスラインGLを通じて走査信号が供給され、第1TFT6がオン状態となったときに、ソースバスラインSLを通じてソース電極16sに供給された画像信号が、半導体層14、ドレイン電極16dを経て画素電極21に供給される。
 第2パッシベーション膜19上には、画素電極21を覆うように図示しない配向膜が形成されている。配向膜は、液晶層を構成する液晶分子を水平配向させる配向規制力を有している。
 次に、素子基板3の周辺領域AR2の構成について図3を用いて説明する。図3において、図2と共通の構成要素には同一の符号を付し、その詳細な説明は省略する。
 図3に示すように、素子基板3の周辺領域AR2において、素子基板3を構成する透明基板11上には、ソースドライバー7を構成する第2TFT22が形成されている。図3では、便宜上、周辺領域AR2に配置された複数の第2TFT22のうち1つの第2TFT22を示している。
 第2層間絶縁膜18は、上述の複数の第1TFT6及び複数の第2TFT22を覆って形成されている。第2層間絶縁膜18は、シール部材5によって囲まれた領域内に配置されている。第2層間絶縁膜18上には、第2パッシベーション膜19が形成されている。
第2パッシベーション膜19は、第2層間絶縁膜18のシール部材5の側の側面を覆って形成されている。周辺領域AR2において、第2パッシベーション膜19は、第2層間絶縁膜18への水分等の浸入を抑制するためのガスバリア膜として機能する。
 図3に示すように、第2パッシベーション膜19は、ソースドライバー7の真上には配置されていない。具体的には、図1に示すように、第2パッシベーション膜19は、平面視において、ソースドライバー7と重ならない領域(ソースドライバー7の形成領域7S以外の領域)に配置されている。第2パッシベーション膜19は、平面視において、ゲートドライバー8と重ならない領域(ゲートドライバー8の形成領域8S以外の領域)に配置されている。第2パッシベーション膜19には、平面視においてソースドライバー7の形成領域7S及びゲートドライバー8の形成領域8Sと重なる領域に、開口部が形成されている。
 開口部は、例えば、以下のようにして形成できる。まず、CVD法を用いて、窒化シリコン膜等の無機絶縁膜を第2層間絶縁膜18の上に形成する。次いで、無機絶縁膜のうち平面視でソースドライバー7及びゲートドライバー8に重なる部分をドライエッチングにより除去する。このようにして第2パッシベーション膜19が得られる。
 なお、開口部は以下のようにして形成することもできる。まず、フォトリソグラフィにより、平面視でソースドライバー7及びゲートドライバー8に重なる領域を覆うレジストマスクを形成する。次いで、CVD法を用いて、第2層間絶縁膜18の上のレジストマスクを覆うように無機絶縁膜を形成する。その後、レジストマスクを剥離する。このようにして、第2パッシベーション膜19が得られる。
 次に、素子基板3の端子形成領域AR3の構成について図3を用いて説明する。
 素子基板3の端子形成領域AR3において、素子基板3を構成する透明基板11上には、端子10が形成されている。
 端子10は、透明基板11上に、ゲート電極12と同層の第1導電膜、第2導電膜16t、第3導電膜20t及び第4導電膜21tが透明基板11の側からこの順に積層して構成されている。第2導電膜16tの形成材料としては、上述のソース電極16s及びドレイン電極16dと同様の導電性材料を用いることができる。第3導電膜20tの形成材料としては、上述の共通電極20と同様の導電性材料を用いることができる。第4導電膜21tの形成材料としては、上述の画素電極21と同様の導電性材料を用いることができる。
 第2パッシベーション膜19の端縁は、シール部材19を介して端子形成領域AR3まで延びている。第2パッシベーション膜19の端縁は、第3導電膜20tの端部と第4導電膜21tの端部との間に配置されている。
 次に、対向基板4の構成について説明する。
 対向基板4は、ガラス基板等の透明基板を基体としている。対向基板4は、透明基板にカラーフィルター層とブラックマトリクス層とが形成された、カラーフィルター基板である。対向基板4の液晶層2の側には、図示しない配向膜が形成されている。
 次に、本実施形態に係る液晶表示装置1の作用について図3及び図4を用いて説明する。
 図4は、比較例に係る液晶表示装置1Xの周辺領域AR2の断面図である。図4においては、便宜上、液晶層、対向基板及び配向膜の図示を省略する。
 図4において、符号3Xは素子基板である。符号7Xはソースドライバーである。符号11Xは透明基板である。符号12Xはゲート電極である。符号13Xはゲート絶縁膜である。符号14Xは半導体層である。符号14Xcはチャネル領域(チャネル部に相当)である。符号14Xsは第1高濃度不純物領域(ソース部に相当)である。符号14Xdは第2高濃度不純物領域(ドレイン部に相当)である。符号14Xaは第1低濃度不純物領域である。符号14Xbは第2低濃度不純物領域である。符号15Xは第1層間絶縁膜である。符号16Xsはソース電極である。符号16Xdはドレイン電極である。符号17Xは第1パッシベーション膜である。符号18Xは第2層間絶縁膜(有機絶縁膜に相当)である。符号19Xは第2パッシベーション膜(無機絶縁膜に相当)である。符号22Xは第2TFTである。
 図4に示すように、比較例に係る液晶表示装置1Xにおいては、第2パッシベーション膜19Xが、ソースドライバー7Xの真上に配置されている。
 周辺領域AR2において、第2パッシベーション膜19Xが、有機絶縁膜である第2層間絶縁膜18X上に配置される構成であると、第2パッシベーション膜19Xを高い温度で成膜することができない。第2パッシベーション膜19Xを低温プロセスで形成すると、第2パッシベーション膜19Xは多くの水素(H)を含んだ膜となる。このような水素を含んだ膜が半導体層14Xの上に形成されていると、水素を含んだ膜から水素が離脱し、水素が半導体層14Xに侵入することがある。水素が半導体層14Xに侵入した場合、半導体層14Xが水素の影響を受け、半導体層14Xの特性が劣化してしまう。
 本実施形態においても、第2パッシベーション膜19が、有機絶縁膜である第2層間絶縁膜18上に配置される構成であるため、第2パッシベーション膜19を高い温度で成膜することができない。しかしながら、本実施形態では、図3に示したように、第2パッシベーション膜19がソースドライバー7の真上に配置されていない。このため、第2パッシベーション膜19を低温プロセスで形成し、第2パッシベーション膜19が多くの水素を含んだ膜となっても、水素を含んだ膜から離脱した水素が半導体層14に侵入することが抑制される。よって、水素の半導体層14への侵入を抑制し、半導体層14の特性の劣化を抑制することが可能となる。
 半導体層14の特性の劣化を抑制するためには、水素を含んだ膜から離脱した水素の半導体層14のチャネル領域14cへの侵入を抑制することが重要である。本実施形態では、第2パッシベーション膜19が、平面視において、ソースドライバー7及びゲートドライバー8と重ならない領域に配置されている。これにより、平面視において、第2パッシベーション膜19とチャネル領域14cとが離間する。そのため、水素を含んだ膜から離脱した水素が半導体層14のチャネル領域14cに侵入しにくい。よって、半導体層14の特性の劣化を抑制しやすくなる。
 また、第2パッシベーション膜19のうち平面視でソースドライバー7及びゲートドライバー8と重なる領域に開口部を形成しやすくなる。
 なお、本実施形態では、第2パッシベーション膜19が、平面視において、ソースドライバー7及びゲートドライバー8と重ならない領域に配置されている例を挙げて説明したが、これに限らない。
 例えば、第2パッシベーション膜19が、平面視において、複数の第2TFT22と重ならない領域に形成されていてもよい。この場合、第2パッシベーション膜19には、平面視において複数の第2TFT22と重なる領域に、開口部が形成される。
 また、第2パッシベーション膜19は、平面視において、複数の第2TFT22のチャネル領域14cと重ならない領域に形成されていてもよい。この場合、第2パッシベーション膜19には、平面視において複数の第2TFT22のチャネル領域14cと重なる領域に、開口部が形成される。すなわち、第2パッシベーション膜19は、平面視において、少なくとも複数の第2TFT22のチャネル領域14cと重ならない領域に形成されていればよい。
 ただし、半導体層14の特性の劣化を抑制しやすくする観点または第2パッシベーション膜19に開口部を形成しやすくする観点から、第2パッシベーション膜19が、平面視において、ソースドライバー7及びゲートドライバー8と重ならない領域に配置されていることが好ましい。
 また、ガスバリア膜としての第2パッシベーション膜19が、第2層間絶縁膜18のシール部材5の側の側面を覆って形成されている。そのため、周辺領域AR2において、第2層間絶縁膜18への水分等の浸入を抑制することができる。
 以上、図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は上記の実施形態に限定されないことは言うまでもない。上記の実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
  その他、液晶表示装置の各構成要素の形状、数、配置、材料、形成方法等に関する具体的な記載は、上記の実施形態に限定されることなく、適宜変更が可能である。
 本発明は、液晶表示装置に利用可能である。
1…液晶表示装置、2…液晶層、3…素子基板(第1基板)、4…対向基板(第2基板)、5…シール部材、6…第1TFT(第1薄膜トランジスタ)、7…ソースドライバー(周辺駆動回路)、8…ゲートドライバー(周辺駆動回路)、10…端子、14…半導体層、14s…第1高濃度不純物領域(ソース部)、14c…チャネル領域(チャネル部)、14d…第2高濃度不純物領域(ドレイン部)、18…第2層間絶縁膜(有機絶縁膜)、19…第2パッシベーション膜(無機絶縁膜)、20…共通電極(第1電極)、21…画素電極(第2電極)、22…第2TFT(第2薄膜トランジスタ)、AR1…表示領域、AR2…周辺領域、AR3…端子形成領域(複数の端子が形成された領域)

Claims (7)

  1.  液晶層と、
     前記液晶層を挟んで互いに対向して配置された第1基板及び第2基板と、を含み、
     前記第1基板の前記液晶層の側には、
     表示領域に配置された複数の第1薄膜トランジスタと、
     前記表示領域の周辺に配置され、前記複数の第1薄膜トランジスタに駆動信号を供給する、複数の第2薄膜トランジスタを含む周辺駆動回路と、
     前記複数の第1薄膜トランジスタ及び前記複数の第2薄膜トランジスタを覆って形成された有機絶縁膜と、
     前記有機絶縁膜の上に形成された無機絶縁膜と、が設けられ、
     前記複数の第2薄膜トランジスタのそれぞれが、ソース部、チャネル部及びドレイン部を含む半導体層を含み、
     前記無機絶縁膜が、前記第1基板の法線方向から見て、少なくとも前記複数の第2薄膜トランジスタの前記チャネル部と重ならない領域に配置されている液晶表示装置。
  2.  前記表示領域には、前記無機絶縁膜を挟んで互いに対向して配置された第1透明電極及び第2透明電極により透明容量構造が形成されている請求項1に記載の液晶表示装置。
  3.  前記無機絶縁膜が、前記第1基板の法線方向から見て、前記複数の第2薄膜トランジスタと重ならない領域に形成されている請求項1または2に記載の液晶表示装置。
  4.  前記第1基板と前記第2基板とを所定の間隔をおいて貼り合わせる枠状のシール部材を含み、
     前記周辺駆動回路が、前記シール部材によって囲まれた領域内に配置されている請求項1から3までのいずれか一項に記載の液晶表示装置。
  5.  前記有機絶縁膜が、前記シール部材によって囲まれた領域内に配置されており、
     前記無機絶縁膜が、前記有機絶縁膜の前記シール部材の側を覆って形成されている請求項4に記載の液晶表示装置。
  6.  前記シール部材によって囲まれた領域外には、前記周辺駆動回路と電気的に接続された複数の端子が形成されており、
     前記無機絶縁膜の端縁が、前記シール部材を介して前記複数の端子が形成された領域まで延びている請求項4または5に記載の液晶表示装置。
  7.  前記半導体層の形成材料が、インジウム、ガリウム、及び亜鉛から構成される酸化物を含む請求項1から6までのいずれか一項に記載の液晶表示装置。
PCT/JP2013/081257 2012-11-21 2013-11-20 液晶表示装置 WO2014080930A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/440,580 US9519198B2 (en) 2012-11-21 2013-11-20 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012255173 2012-11-21
JP2012-255173 2012-11-21

Publications (1)

Publication Number Publication Date
WO2014080930A1 true WO2014080930A1 (ja) 2014-05-30

Family

ID=50776110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081257 WO2014080930A1 (ja) 2012-11-21 2013-11-20 液晶表示装置

Country Status (2)

Country Link
US (1) US9519198B2 (ja)
WO (1) WO2014080930A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051093A (ja) * 2014-09-01 2016-04-11 三菱電機株式会社 液晶表示パネル、及びその製造方法
CN106536366A (zh) * 2014-07-02 2017-03-22 荷兰联合利华有限公司 容器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319261B (zh) * 2014-10-22 2018-03-16 合肥京东方光电科技有限公司 一种阵列基板的制备方法、阵列基板和显示装置
KR102322015B1 (ko) * 2015-04-07 2021-11-05 삼성디스플레이 주식회사 박막트랜지스터 어레이 기판의 제조 방법 및 그에 따라 제조된 박막 트랜지스터 어레이 기판

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799614A (en) * 1980-12-11 1982-06-21 Matsushita Electric Ind Co Ltd Liquid crystal display cell
WO2012133103A1 (ja) * 2011-03-30 2012-10-04 シャープ株式会社 アクティブマトリクス基板、表示装置、およびアクティブマトリクス基板の製造方法
WO2012132953A1 (ja) * 2011-03-25 2012-10-04 シャープ株式会社 表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5348521B2 (ja) 2008-06-27 2013-11-20 株式会社ジャパンディスプレイ 液晶表示パネル
WO2013021866A1 (ja) * 2011-08-09 2013-02-14 シャープ株式会社 表示装置
KR102282866B1 (ko) * 2012-07-20 2021-07-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치, 및 표시 장치를 포함하는 전자 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799614A (en) * 1980-12-11 1982-06-21 Matsushita Electric Ind Co Ltd Liquid crystal display cell
WO2012132953A1 (ja) * 2011-03-25 2012-10-04 シャープ株式会社 表示装置
WO2012133103A1 (ja) * 2011-03-30 2012-10-04 シャープ株式会社 アクティブマトリクス基板、表示装置、およびアクティブマトリクス基板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536366A (zh) * 2014-07-02 2017-03-22 荷兰联合利华有限公司 容器
JP2016051093A (ja) * 2014-09-01 2016-04-11 三菱電機株式会社 液晶表示パネル、及びその製造方法

Also Published As

Publication number Publication date
US20150286082A1 (en) 2015-10-08
US9519198B2 (en) 2016-12-13

Similar Documents

Publication Publication Date Title
JP6373596B2 (ja) 液晶表示装置
US9496288B2 (en) Array substrate, display panel and display apparatus
US8405085B2 (en) Thin film transistor capable of reducing photo current leakage
US9465258B2 (en) Display panel having reduced influence of ions released from the sealant frame
JP5175127B2 (ja) 液晶表示装置
US9188799B2 (en) Liquid crystal display device having minimized bezel
US8228456B2 (en) Liquid crystal display and driving method thereof
JP5764665B2 (ja) 薄膜トランジスタアレイ基板及び液晶表示装置
WO2020021938A1 (ja) 表示装置
TW200705067A (en) Liquid crystal display apparatus
JP2010003910A (ja) 表示素子
KR102652674B1 (ko) 초고 해상도 액정 표시장치
JP6668160B2 (ja) 表示装置の製造方法
US10522567B2 (en) Semiconductor device and display device having a protection layer
US20150316814A1 (en) Liquid-crystal display panel, liquid-crystal display, and method for manufacturing liquid-crystal display panels
WO2014080930A1 (ja) 液晶表示装置
US10818766B2 (en) Active matrix substrate and liquid crystal display panel
US20170168332A1 (en) Thin film transistor substrate and display apparatus
JP6433169B2 (ja) 薄膜半導体装置
US20150198850A1 (en) Liquid crystal display device
JP2016009719A5 (ja)
JP2010243894A5 (ja)
KR20160093178A (ko) 표시 장치
WO2013170657A1 (zh) 像素结构、双栅像素结构及显示装置
JP2020129635A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856932

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14440580

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP