WO2014080696A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2014080696A1
WO2014080696A1 PCT/JP2013/076691 JP2013076691W WO2014080696A1 WO 2014080696 A1 WO2014080696 A1 WO 2014080696A1 JP 2013076691 W JP2013076691 W JP 2013076691W WO 2014080696 A1 WO2014080696 A1 WO 2014080696A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking
vehicle
slip
ratio
driving force
Prior art date
Application number
PCT/JP2013/076691
Other languages
English (en)
French (fr)
Inventor
悠基 秋山
大澤 俊哉
横山 篤
山門 誠
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US14/646,275 priority Critical patent/US9573473B2/en
Priority to EP13856263.2A priority patent/EP2923877A4/en
Priority to CN201380060839.8A priority patent/CN104812612B/zh
Publication of WO2014080696A1 publication Critical patent/WO2014080696A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/102Indicating wheel slip ; Correction of wheel slip of individual wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1766Proportioning of brake forces according to vehicle axle loads, e.g. front to rear of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/465Slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/42Control modes by adaptive correction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/613ESP features related thereto

Definitions

  • the present invention relates to a vehicle control device that controls braking / driving force of an automobile.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • the motor consumes the electric energy of the battery by converting it into kinetic energy when giving driving force to the tire, but charges the battery by converting the kinetic energy into electric energy when giving braking force to the tire.
  • the latter operation is called energy regeneration (hereinafter referred to as regeneration).
  • regeneration energy regeneration
  • friction braking that converts kinetic energy into heat energy
  • heat is once generated, and energy dissipated in the air cannot be reused. Therefore, in EV and HEV, braking by regeneration as much as possible leads to energy saving.
  • the regenerative braking restriction becomes significant in order to keep the vehicle behavior stable.
  • Patent Document 1 shows a method of controlling the regenerative braking force in accordance with the slip ratio of the wheels.
  • Patent Document 2 as a technology that forms the basis of the present application. This is not based on regenerative braking, but shows a control method using the ratio of the wheel slip ratio to the braking force in order to keep the vehicle behavior stable with an appropriate margin.
  • JP 2006-304599 A Japanese Patent No. 04920054
  • the sum of squares of braking / driving force and lateral force that can be generated at the same time are fixed, so that the lateral braking force is improved to improve the regenerative braking force to increase the amount of energy regeneration and to stabilize the vehicle behavior. It is necessary to balance with securing.
  • the regenerative braking force is generated only in one of the front and rear, and even if used in combination with friction braking, the braking force Since there is often an extremely biased distribution of the front and rear, the balance of the lateral force that can be generated may be inevitably biased. In other words, in order to keep the vehicle behavior stable, it is a very disadvantageous condition and must be dealt with by controlling the braking force.
  • Patent Document 1 The technique described in Patent Document 1 described above has room for improvement in the accuracy of regenerative maximization control because the braking force is adjusted by using only the slip ratio as an index.
  • Patent Document 2 is a method for handling four braking forces collectively, and for application to regenerative braking, it is sufficient to deal with a case where the distribution of braking force changes greatly. There was no countermeasure.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a vehicle control device that improves regenerative power and realizes energy saving while ensuring stability of vehicle behavior. There is.
  • a vehicle control device includes a friction brake mechanism provided on front and rear wheels of a vehicle, and a regenerative braking mechanism provided on at least one of the front or rear wheels of the vehicle, An average wheel slip ratio calculation unit that calculates an average wheel slip ratio that averages the wheel slip ratio of each wheel, an average braking / driving force calculation unit that calculates an average braking / driving force that averages the braking / driving force of each wheel, and a vertical axis The slope of a straight line connecting the origin and the coordinate determined by the average wheel slip ratio and the average braking / driving force on a two-dimensional orthogonal coordinate system that gives the average braking / driving force and the average slip ratio to the horizontal axis.
  • a vehicle slip stiffness calculation unit that calculates the vehicle slip stiffness
  • a ratio calculation unit that calculates a ratio between the front wheel braking driving force and the rear wheel braking driving force, and a ratio between the front wheel braking driving force and the rear wheel braking driving force
  • a vehicle slip stiffness correction unit that corrects the control threshold value of the vehicle slip stiffness
  • a braking / driving force command unit that operates the friction brake mechanism and the regenerative braking mechanism so that the vehicle slip stiffness becomes the control threshold value.
  • the figure which shows the drift-out behavior of a vehicle The figure which shows the spin behavior of a vehicle.
  • the figure which shows the state of the front-and-rear wheel on the tire characteristic curve in 1st Example The figure which shows the state of the front-and-rear wheel on the tire characteristic curve in 1st Example.
  • the figure which shows the state of the front-and-rear wheel on the tire characteristic curve on other conditions in 1st Example The figure which shows the state of the front-and-rear wheel on the tire characteristic curve on other conditions in 1st Example.
  • the figure which shows the state of the front-and-rear wheel on the tire characteristic curve on other conditions in 1st Example The figure which shows the state of the front-and-rear wheel on the tire characteristic curve on other conditions in 1st Example.
  • the figure which shows the correction method of the vehicle slip stiffness threshold in 1st Example The figure which shows the correction method of the vehicle slip stiffness threshold in 1st Example.
  • the figure which shows the state of the front-back wheel at the time of applying the correction method of the vehicle slip stiffness threshold in 1st Example The figure which shows the state of the front-back wheel at the time of applying the correction method of the vehicle slip stiffness threshold in 1st Example.
  • the control flowchart in case rear-wheel slip stiffness can be acquired.
  • the control flowchart in case front wheel slip stiffness can be acquired.
  • the control flowchart in case the difference of the braking force of a front-and-back wheel can be acquired.
  • the figure which shows the state of the front-back wheel at the time of applying the correction method of the vehicle slip stiffness threshold in 2nd Example The figure which shows the state of the front-back wheel at the time of applying the correction method of the vehicle slip stiffness threshold in 2nd Example.
  • the figure which shows the state of the front-back wheel at the time of applying the correction method of the vehicle slip stiffness threshold in 2nd Example The block diagram of EV of 3rd Example which drives and regenerative braking with a motor with respect to the front and rear wheels to which the present invention is applied.
  • the figure which shows the correction method of the vehicle slip stiffness threshold in 3rd Example The figure which shows the state and control method of the front-and-rear wheel on the tire characteristic curve in 4th Example.
  • Automobiles may exhibit unstable vehicle behavior when braking / driving force is generated during turning due to tire characteristics.
  • friction braking has been established to some extent suitable for the state of motion of the vehicle.
  • an EV that performs energy regeneration adds an element called regenerative braking, which is ideal for ensuring vehicle stability. It becomes an unreasonable braking state.
  • Fig. 1 and Fig. 2 show the phenomena that can occur in a vehicle during turning braking.
  • Yf is the lateral force of the front wheel
  • Yr is the lateral force of the rear wheel
  • Tf is the braking force of the front wheel
  • Tr is the braking force of the rear wheel
  • lf is the distance from the front wheel axle to the center of gravity of the vehicle body
  • lr is the rear wheel axle to the vehicle body. Represents the distance to the center of gravity.
  • Yf and Yr tend to decrease as Tf and Tr increase, respectively.
  • Yf, Yr, Tf, and Tr are different for the left and right wheels, but are represented by the same symbol as an average of the left and right.
  • the turning braking state is taken as an example, but if Tf and Tr are reversed, the same phenomenon in the turning driving state can be expressed.
  • Fig. 1 shows a case where the lateral force of the front wheels is insufficient, and a drift-out behavior occurs in which the front wheels resist the centrifugal force and flow to the outside of the turn. This is because Yf ⁇ lf ⁇ Yr ⁇ lr is the yawing moment, and Yf ⁇ lf ⁇ Yr ⁇ lr due to Tf, so that a moment in the opposite direction to the turning acts on the vehicle body.
  • FIG. 2 shows a case where the lateral force of the rear wheel is insufficient, and a spin behavior occurs in which the rear wheel flows outside the turn without resisting centrifugal force. This is because Yf ⁇ lf> Yr ⁇ lr similarly due to Tr, and the moment in the turning direction acts on the vehicle body.
  • FIG. 3 shows the relationship between the braking / driving force and lateral force of the tire.
  • the inner dashed circle represents the tire linear region (described later) and the outer solid circle represents the tire frictional force limit.
  • As a friction characteristic of a tire there is an upper limit to the sum of squares of braking / driving force and lateral force that can be generated at the same time, and a state where the upper limit is reached, that is, a state where the frictional force is a limit. This upper limit is obtained by multiplying the vertical load of the tire by the friction coefficient. From this relationship, for example, if only the braking force is used up to the frictional force limit, the lateral force that can be generated becomes zero, and the stability of the vehicle cannot be maintained. In order to maintain the stability of the vehicle, it is necessary to leave a margin for the braking force to the frictional force limit, but if the braking force is kept in the linear region, an appropriate margin for generating the lateral force is secured. I can keep it.
  • FIG. 4 is a graph with the wheel slip ratio on the horizontal axis and the braking force on the vertical axis, and this curve is generally called a tire characteristic curve.
  • the tire characteristic curve has a linear region in which the braking force increases approximately proportionally to the increase in the slip rate from the origin, and the braking force increases with the increase in the slip rate, and the braking force is maximized.
  • the slip ratio When the slip ratio is exceeded, it can be divided into a non-linear region in which the braking force decreases as the slip ratio increases.
  • a similar tire characteristic curve is drawn using the vertical axis as the driving force.
  • ABS Anti-lock Brake System
  • control is performed by setting a target slip ratio near the maximum braking force in the non-linear region. Since the lateral force at this time is substantially 0, it cannot be said that the state is sufficient to maintain the stability of the vehicle.
  • FIG. 5 illustrates the configuration of a rear-wheel drive EV to which the vehicle control device of the present invention is applied.
  • a motor 13 as a regenerative braking mechanism is mounted on the rear side of the vehicle, and its output is transmitted from a gear box 16 incorporating a differential gear to left and right rear wheels 3 and 4 via left and right drive shafts.
  • the battery 15 is mounted near the center of the vehicle.
  • DC power supplied from the battery 15 is converted into three-phase AC by an inverter 14 mounted along with the motor 13. Then, the motor 13 is driven.
  • three-phase alternating current generated in the motor 13 is converted into direct current by regenerative control of the inverter 14 and stored in the battery 15.
  • the braking / driving torque or the rotational speed of the motor 13 is controlled by a command signal to the inverter 14. Since the current at the time of braking / driving can be measured through the inverter 14, information on the braking / driving torque generated by the motor 13 can be acquired.
  • each of the four wheels 101 (1 to 4) is provided with a friction braking device 102 (5 to 8) as a friction brake mechanism.
  • the friction braking device 102 is controlled by the brake ECU 17, and commands for the braking forces of the front wheels 1, 2 and the rear wheels 3, 4 from the braking force command value setting unit 18 provided in the regenerative control arithmetic device 22 that is a higher-level control device.
  • the braking of the four wheels 101 can be operated independently by giving priority to the operation of ABS and ESC (Electronic Stability Control) as necessary.
  • each of the four wheels 101 is provided with a wheel speed sensor 103 (9 to 12).
  • the vehicle slip stiffness calculation unit 19 provided in the regenerative control arithmetic unit 22 uses the information of the wheel speed sensor 103 to calculate a wheel slip ratio, slip stiffness, and a vehicle slip stiffness threshold described later.
  • the wheel slip rate is the ratio of the deviation of the wheel speed relative to the vehicle speed
  • the wheel speed of the wheel with the highest rotational speed is regarded as the vehicle speed, and the value considered as the vehicle speed.
  • a value obtained by dividing the difference between the wheel speed and the vehicle body speed is defined as the slip ratio.
  • Slip stiffness refers to the slope of the tire characteristic curve at the origin.
  • the slip stiffness in the present invention connects the point where the braking force is a certain slip ratio on the tire characteristic curve and the origin. It refers to the slope of a straight line.
  • the slip stiffness has a force dimension.
  • Slip stiffness and braking force can be obtained for each of the four wheels 101.
  • the average value of the four wheels 101 for the slip rate and braking force is the same as in Patent Document 2 described above. By using it and treating it as vehicle slip stiffness, the reliability as an index can be improved.
  • the regenerative control arithmetic device 22 processes the information from each sensor in a comprehensive manner by the braking force command value setting unit 18 provided therein, and sends a command signal to the inverter 14 and the brake ECU 17 that control the motor 13.
  • the regeneration control arithmetic unit 22 is a hardware independent computer in FIG. 5, but its function may be incorporated as a program in some other ECU.
  • FIG. 5 in FIG. 5 is an acceleration sensor fixed to the vehicle, and detects acceleration in the front-rear direction of the vehicle.
  • the brake pedal 24 is provided with a stroke sensor 25, which detects the amount of depression of the brake pedal 24 by the driver. Information on the detected depression amount is sent to the regenerative control arithmetic device 22, which treats it as a driver-requested braking force, and the basic operation of the braking force control is in accordance with the driver's intention. Generate deceleration.
  • the relationship between the deceleration generated in the vehicle with respect to the brake pressure in a range where the wheel slip ratio does not become excessive is obtained in advance, and the relationship between the deceleration with respect to the depression amount of the brake pedal 24 is also obtained.
  • the deceleration with respect to the depression amount of the brake pedal 24 is defined, and the deceleration corresponding to the operation amount of the driver is realized.
  • the regenerative braking torque corresponding to the operation of the brake pedal 24 is generated using the relationship of the vehicle deceleration to the regenerative braking torque of the motor 13 in the same range where the wheel slip ratio is not excessive. Carry out deceleration control according to the driver's intention.
  • the regenerative braking force can be easily acquired via the inverter 14 as the braking torque of the motor 13, and the value corresponds to the approximate braking force.
  • the difference from the braking force acting on the vehicle becomes large under the condition that the moment of inertia of the wheel in the rotational direction cannot be ignored and the slip ratio is excessive.
  • the braking force acting on the entire vehicle is measured by the acceleration sensor 23, and the regenerative braking force of the rear wheels 3 and 4 that are driving wheels by the motor 13 is simultaneously acquired, and the difference between the two is the front wheel that is a non-driving wheel. It may be calculated as the friction braking force generated at 1 and 2.
  • a sensor that measures force, torque, or moment may be provided at a portion where the braking force is transmitted to directly acquire the braking force.
  • FIG. 6 illustrates slip stiffness control, which is the technology underlying the present invention, using tire characteristic curves.
  • slip stiffness control is to keep the tire usage range on the tire characteristic curve in the linear region. Since the degree of increase in the braking force with respect to the increase in the slip ratio differs between the linear region and the nonlinear region, the distinction between the two can be determined by the difference in the tangent slope of the tire characteristic curve. However, in order to acquire the inclination, it is necessary to partially differentiate the braking force by the slip ratio, and since it is easily affected by measurement noise, it is difficult to use this inclination for control.
  • the slip stiffness used in the present invention is the slope of a straight line connecting the point on the tire characteristic curve and the origin, and does not directly indicate the degree of nonlinearity.
  • the shape of the tire characteristic curve is a convex curve passing through the origin, the degree of reduction of the slip stiffness at the point of use with respect to the slip stiffness near the origin can be used as an index of the nonlinear degree. For example, if the slip stiffness at the point of use is the same value as the slip stiffness near the origin, the region is a linear region, and the smaller the value, the stronger the degree of nonlinearity. This determination method can be applied regardless of the road surface ⁇ .
  • FIG. 7 shows the difference in tire characteristic curve depending on the road surface ⁇ .
  • the slip ratio in the non-linear region on the low ⁇ road is non-linear on the low ⁇ road compared to the slip ratio in the non-linear region on the high ⁇ road.
  • the determination by is greatly influenced by the road surface ⁇ as compared with the case where slip stiffness is used.
  • is estimated using this phenomenon.
  • the friction coefficient calculation unit that performs ⁇ estimation is included in the vehicle slip stiffness correction unit 21.
  • FIGS. 8A and 8B show examples of movements of use points on the tire characteristic curve from time t1 to time t2 and time t3 (FIG. 8A), time history of braking force, slip ratio, and slip stiffness (FIG. 8B). Is. Assuming that the target of slip stiffness is ks3, it is assumed that the slip stiffness is an excessively small value ks1 in the initial state. Therefore, the braking force is reduced from T1 to T2 from time t1 to t2.
  • the slip ratio changes from sw1 to sw2, and as a result, the slip stiffness changes from ks1 to ks2.
  • the slip ratio changes from sw2 to sw3, and as a result, the slip stiffness changes from ks2 to ks3.
  • braking is desired to be performed by regenerative braking of the rear wheels 3 and 4 as much as possible to save energy, but there is a problem that the stability of the vehicle must be maintained when the braking force of the rear wheels is increased. .
  • the regenerative braking force control based on slip stiffness which is the operation of this embodiment that solves this problem, will be described.
  • the friction braking device 5 provided in the front wheels 1 and 2 is used. , 6 are used together with the regenerative braking of the rear wheels 3, 4.
  • the vehicle slip stiffness that handles the four wheels collectively as a vehicle can be most accurately obtained from the slip ratio obtained by averaging the four wheels 101 and the braking force acting on the vehicle. Even if it is the structure which performs only by the rear wheels 3 and 4, vehicle slip stiffness is acquired and utilized for control.
  • 9A, 9B, and 9C show states of the front and rear wheels on the tire characteristic curve when the vehicle slip stiffness ks is used for controlling the rear wheel regenerative braking force and braking is performed only by the regenerative braking of the rear wheels 3 and 4.
  • the state when the front and rear wheels are handled together as a vehicle is shown.
  • the vehicle slip stiffness ks calculated by the vehicle slip stiffness calculation unit 19 is actually used for control.
  • the front wheel slip stiffness ksf in this state is the highest up to the non-linear range.
  • the maximum value with a margin is taken (FIG. 9A).
  • the rear wheels 3 and 4 are performing regenerative braking according to the regenerative braking command from the braking force command value setting unit 18, and the rear wheel slip stiffness ksr is in an allowable limit state in the linear region (FIG. 9B).
  • This is realized by setting the vehicle slip stiffness control target threshold value ksTh to a value at which the rear wheel slip stiffness ksr becomes a linear limit (FIG. 9C).
  • the rear wheel slip stiffness ksr is recovered by weakening the regenerative braking force.
  • ksTh is equivalent to the average value of ksr at which the front wheel is not braked and ksr at which the rear wheel is within the allowable limit of the linear region.
  • FIGS. 10A, 10B and 10C show that the vehicle slip stiffness ks is used for controlling the rear wheel regenerative braking force, and in addition to the regenerative braking of the rear wheels 3 and 4, friction braking is performed on the front wheels 1 and 2. This shows the state of the front and rear wheels on the tire characteristic curve.
  • the front wheel slip stiffness ksf has a value smaller than the maximum value (FIG. 10A).
  • the rear wheel slip stiffness ksr is larger than ksr in FIG. 9B (FIG. 10B). This is because the amount that the front wheel slip stiffness ksf in FIG. 10A has decreased from the ksf in FIG. 9A and the amount that the rear wheel slip stiffness ksr in FIG. 10B has increased from the ksr in FIG. This is realized by setting the vehicle slip stiffness control target threshold value ksTh to a value at which the rear wheel slip stiffness ksr becomes a linear limit (FIG. 10C).
  • the braking force ratio of the front and rear wheels changes by using not only regenerative braking on the rear wheels 3 and 4 but also friction braking on the front wheels 1 and 2.
  • the slip stiffness ksr of the rear wheel cannot be accurately controlled.
  • the margin for keeping the rear wheels 3 and 4 in the linear region becomes too large, and the regenerative force is excessively suppressed.
  • 11A and 11B show a vehicle slip stiffness threshold correction method for the front and rear wheel braking force ratios calculated by the front and rear wheel braking force ratio calculation unit 20, which is a ratio calculation unit.
  • the reference ratio of the front and rear wheel braking force ratio is a state where the front and rear wheel braking force ratio is an ideal braking force distribution in which the front and rear wheel slip ratios are equal, although the ground or ground load of the tire is also affected.
  • the friction braking device in which the hydraulic pressure is transmitted to each wheel and the sliding portion of the friction material is pressed by the piston that generates the force by converting the hydraulic pressure to generate the braking force, for example, the same pressure is applied to the front and rear wheels.
  • the vehicle slip stiffness calculation unit 19 calculates the reference slip stiffness from the reference ratio, and the value is used to control the vehicle slip stiffness. What is necessary is just to control as a threshold value.
  • the vehicle slip stiffness correction unit 21 corrects the value to a value larger than the setting in the vicinity of the ideal braking force distribution that has been set as the reference slip stiffness (FIG. 11A).
  • the friction braking force of the front wheels 1 and 2 is increased to obtain the deceleration together with the regenerative braking force of the rear wheels 3 and 4. This state is also reflected in the setting of the vehicle slip stiffness threshold value via the front and rear wheel braking force ratio calculation unit 20 (FIG. 11B).
  • the reference ratio of the front and rear wheel braking force when setting the reference slip stiffness may be corrected according to the vehicle state that affects the static or dynamic tire ground contact load.
  • a reference ratio calculation unit that corrects the reference ratio is included in the vehicle slip stiffness correction unit 21.
  • the deceleration calculation unit calculates the deceleration from the detection value of the acceleration sensor 23 and corrects the ground load fluctuation.
  • the friction coefficient calculation unit estimates the road surface ⁇ from the relationship between the slip stiffness, the slip ratio, and the braking / driving force, calculates the possible deceleration, and corrects the assumed ground load fluctuation. As a result, more accurate control can be performed.
  • FIG. 12A, 12B, and 12C show tire characteristic curves when friction braking is performed on the front wheels 1 and 2 in addition to the regenerative braking of the rear wheels 3 and 4 when the vehicle slip stiffness threshold correction is applied.
  • the state of the front and rear wheels is shown. Since the front wheels 1 and 2 perform friction braking, the front wheel slip stiffness ksf has a value smaller than the maximum value (FIG. 12A).
  • the threshold value by the above method according to the braking force ratio of the front and rear wheels (FIG. 12C)
  • the stability of the vehicle behavior of performing regenerative braking on the rear wheels 3 and 4 is maintained while using the vehicle slip stiffness as an index.
  • the deceleration required by the driver can be obtained and the regenerative power can be improved (FIG. 12B).
  • the vehicle can calculate the slip ratio that averages the four wheels 101 and the braking force that averages the four wheels 101, and the friction braking device 102 that is a friction brake mechanism provided on the four wheels 101, and the front wheels 1, a motor 13 serving as a regenerative braking mechanism provided on at least one of the rear wheels 3 and 4, a vehicle slip stiffness calculating section 19, a front and rear wheel braking force ratio calculating section 20 serving as a ratio calculating section, and a vehicle slip A stiffness correction unit 21 and a regeneration control arithmetic unit 22 that is a braking / driving force command value setting unit are provided.
  • the vehicle slip stiffness calculation unit 19 In a two-dimensional orthogonal coordinate system that gives the average braking force on the vertical axis and the average slip ratio on the horizontal axis, the slope of a straight line connecting the coordinates determined by the average wheel slip ratio and the average braking force and the origin is the slip stiffness of the vehicle. Calculate as The regenerative control calculation device 22 operates the friction braking device 102 and the motor 13 so that the vehicle slip stiffness becomes the vehicle slip stiffness threshold.
  • the vehicle slip stiffness correction unit 21 corrects the vehicle slip stiffness threshold according to the ratio between the front wheel braking force and the rear wheel braking force.
  • the vehicle slip stiffness threshold is corrected according to the ratio calculated by the front / rear wheel braking force ratio calculation unit 20 with respect to the reference slip stiffness, which is the vehicle slip stiffness when the slip ratios of the front wheels 1, 2 and the rear wheels 3, 4 are equal. It is a thing.
  • the regenerative braking force can be strengthened to the limit that can ensure the stability of the vehicle behavior, and energy saving can be realized.
  • the regenerative power can be improved while maintaining the stability of the vehicle behavior at the same level.
  • slip stiffness control is based on vehicle slip stiffness, but the effects of noise, etc. can be sufficiently suppressed without handling the four wheels 101 together, and the braking force and slip of each wheel can be used at a level that can be used for control. If rate information can be obtained, the following method can be used.
  • FIG. 13 is a flowchart showing the operation when the rear wheel slip stiffness can be acquired.
  • FIG. 14 is a flowchart showing the operation when the front wheel slip stiffness can be acquired.
  • FIG. 15 is a flowchart showing an operation when information on the difference in braking force between the front and rear wheels that is reliable can be acquired.
  • the state of the rear wheels 3 and 4 is maintained in the linear region by limiting the braking force of the rear wheels 3 and 4.
  • FIG. 16 illustrates the configuration of a front-wheel drive EV to which the vehicle control device of the present invention is applied as a second embodiment. The difference from the first embodiment is that regenerative braking is performed on the front wheels 1 and 2.
  • FIGS. 17A, 17B and 17C show the states of the front and rear wheels on the tire characteristic curve when the vehicle slip stiffness ks is used for controlling the front wheel regenerative braking force and braking is performed only by the regenerative braking of the front wheels 1 and 2. This shows the state when the front and rear wheels are handled together as a vehicle.
  • the front wheels 201 and 202 are performing regenerative braking according to the regenerative braking command from the braking force command value setting unit 218, and the front wheel slip stiffness ksf is in an allowable limit state in the linear region (FIG. 17A).
  • This is realized by setting the vehicle slip stiffness control target threshold value ksTh to a value at which the rear wheel slip stiffness ksr becomes a linear limit (FIG. 17C).
  • the method for controlling the front wheel regenerative braking force by the vehicle slip stiffness ks is the same as in the first embodiment.
  • 18A, 18B, and 18C show tire characteristic curves when the vehicle slip stiffness ks is used for controlling the front wheel regenerative braking force, and the rear wheels 3 and 4 perform friction braking in addition to the regenerative braking of the front wheels 1 and 2. It shows the state of the upper front and rear wheels.
  • the rear wheel slip stiffness ksr has a value smaller than the maximum value (FIG. 18B).
  • the front wheel slip stiffness ksf is larger than ksf in FIG. 17A (FIG. 18A).
  • this is because the amount of decrease in the rear wheel slip stiffness ksr in FIG. 18B from the ksr in FIG. 17B and the amount of increase in the front wheel slip stiffness ksf in FIG. 18A from the ksf in FIG. This is because there is a tendency.
  • the grounding load of the front wheels 1 and 2 of the regenerative braking wheel increases during braking, and the grounding load decreases during the braking of the rear wheels 3 and 4, so that It works in the direction in which the change of slip stiffness is promoted, and the influence appears larger than in the first embodiment. Therefore, the correction amount for the reference slip stiffness is also increased.
  • FIG. 19 shows a vehicle slip stiffness threshold correction method for the front and rear wheel braking force ratio calculated by the front and rear wheel braking force ratio calculation unit 20.
  • the vehicle slip stiffness correcting unit 21 corrects the value to a value larger than the setting near the ideal braking force distribution that has been set as the reference slip stiffness.
  • FIG. 20A, 20B, and 20C show tire characteristic curves when friction braking is performed on the rear wheels 3 and 4 in addition to the regenerative braking of the front wheels 1 and 2 when the correction of the vehicle slip stiffness threshold is applied.
  • the state of the front and rear wheels is shown. Since the rear wheels 3 and 4 perform friction braking, the rear wheel slip stiffness ksr has a value smaller than the maximum value (FIG. 20B).
  • the threshold value by the above method according to the braking force ratio of the front and rear wheels (FIG. 20C)
  • the stability of the vehicle behavior in which regenerative braking is performed on the front wheels 1 and 2 is maintained while the vehicle slip stiffness is used as an index.
  • the deceleration requested by the driver can be obtained as it is, and the regenerative power can be improved (FIG. 20A).
  • FIG. 21 shows the configuration of an EV that drives and regeneratively brakes both front and rear wheels to which the vehicle control device of the present invention is applied as a third embodiment.
  • the EV is substantially an integration of the configurations of the first and second embodiments described above, and the motors 13, 13 is used for driving and regenerative braking.
  • the front wheel 1 and 2 When applied to such a vehicle, depending on the configuration of the drive system, the front wheel 1 and 2 only regenerative braking to the rear wheels 3 and 4 only depending on the difference between the front and rear motor characteristics and the regenerative braking force front-rear distribution mechanism Regenerative braking at an arbitrary rate is assumed until regenerative braking.
  • FIG. 22 shows a vehicle slip stiffness threshold correction method for the front / rear wheel braking force ratio calculated by the front / rear wheel braking force ratio calculation unit 20. It is a graph that combines the range of use of the braking force ratio in a vehicle that performs regenerative braking with only the rear wheels and a vehicle that performs regenerative braking with only the front wheels. That is, FIG. 22 is a combination of FIG. 11A and FIG. 19 described above.
  • the fourth embodiment has substantially the same configuration as that of the first embodiment described above, but the vehicle slip stiffness calculation unit 19 individually calculates the front wheel slip stiffness and the rear wheel slip stiffness.
  • slip stiffness control can be performed for each of the front and rear wheels. That is, the vehicle slip stiffness calculation unit 19 in the fourth embodiment includes a front wheel slip stiffness calculation unit that calculates the front wheel slip stiffness and a rear wheel slip stiffness calculation unit that calculates the rear wheel slip stiffness.
  • FIG. 23 shows the front and rear wheel states and the control method on the tire characteristic curve in the fourth embodiment.
  • the braking force of the wheel is limited and the other wheel is limited. Increase the braking power.
  • the regenerative braking force can be limited as necessary to maintain the stability of the vehicle while giving priority to the use of the regenerative braking force for the generation of deceleration.
  • the threshold value of the slip stiffness of the front and rear wheels can be corrected based on the vehicle model according to the magnitude of the deceleration obtained by the acceleration sensor 23, and more accurate control can be performed.
  • the vehicle can individually calculate the slip ratio of the front wheels 1 and 2 and the rear wheels 3 and 4 and the braking / driving force of the front wheels 1 and 2 and the rear wheels 3 and 4.
  • a friction brake device 102 serving as a friction brake mechanism; a motor 13 serving as a regenerative braking mechanism provided on at least one of the front wheels 1 and 2 or the rear wheels 3 and 4; a vehicle slip stiffness calculating section 19; and a ratio calculating section;
  • the front-and-rear wheel braking force ratio calculating unit 20 and the regenerative control arithmetic unit 22 serving as a braking / driving force command unit are provided.
  • the vehicle slip stiffness calculation unit 19 calculates the front wheel slip stiffness and the rear wheel slip stiffness.
  • the front wheel slip stiffness is a straight line that connects the origin and the coordinates determined by the front wheel slip ratio and the front wheel braking / driving force on a two-dimensional orthogonal coordinate system that gives the front wheel braking / driving force on the vertical axis and the front wheel slip ratio on the horizontal axis. Calculated as slope.
  • the rear wheel slip stiffness is a coordinate determined by the rear wheel slip ratio and the rear wheel braking / driving force on the two-dimensional orthogonal coordinate system that gives the rear wheel braking / driving force on the vertical axis and the rear wheel slip ratio on the horizontal axis, It is calculated as the slope of the straight line connecting
  • the regenerative control arithmetic unit 22 operates the friction braking device 102 and the motor 13 so that the front wheel slip stiffness is equal to or greater than the front wheel slip stiffness threshold and the rear wheel slip stiffness is equal to or greater than the rear wheel slip stiffness threshold. Is activated.
  • the front wheel slip stiffness threshold is the front wheel slip stiffness at the linear limit where the tire characteristic representing the relationship between the front wheel slip ratio and the front wheel braking / driving force is a boundary between linear and nonlinear.
  • the rear wheel slip stiffness threshold is the rear wheel slip stiffness at a linear limit where the tire characteristic representing the relationship between the rear wheel slip ratio and the rear wheel braking / driving force is a boundary between linear and nonlinear.
  • the regenerative braking force can be strengthened to the limit that can ensure the stability of the vehicle behavior, and energy saving can be realized.
  • the stroke sensor 25 that detects the operation amount of the brake
  • detection by a pedal force sensor may be performed, and friction braking and regenerative braking may be simultaneously applied to the same wheel.
  • the present invention can be applied to a vehicle that drives the four wheels 101 independently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 車両挙動の安定を確保しながら回生力を向上させ、省エネルギー化を実現する車両制御装置であって、前後輪を平均したスリップ率や、前後輪を平均した制動力を算出可能であって、各車輪に設けられた摩擦制動装置と、後輪に設けられた回生制動機構となるモータと、車両スリップスティフネス算出部と、前後輪制動力割合算出部と、車両スリップスティフネス補正部と、回生制御演算装置と、を備え、回生制御演算装置は、車両スリップスティフネスが車両スリップスティフネス閾値となるように、摩擦制動装置とモータを作動させる。また車両スリップスティフネス補正部は、前輪制動力と後輪制動力との割合に応じて車両スリップスティフネス閾値を補正する。

Description

車両制御装置
 本発明は、自動車の制駆動力を制御する車両制御装置に関する。
 走行用の動力の全部または一部に電気エネルギーを用いる自動車であるEV(電気自動車)やHEV(ハイブリッド電気自動車)では、走行用のバッテリとタイヤを駆動するモータが搭載されている。モータは、タイヤに駆動力を与える際にはバッテリの電気エネルギーを運動エネルギーに変換して消費するが、タイヤに制動力を与える際には、運動エネルギーを電気エネルギーに変換してバッテリを充電することができ、後者の動作はエネルギー回生(以下、回生)と呼ばれる。対して、運動エネルギーを熱エネルギーに変換する摩擦制動では、一旦熱となり、空気中に放熱されたエネルギーの再利用はできないため、EVやHEVでは、極力回生によって制動を行うことが省エネにつながる。
 自動車においては、タイヤは制駆動力とともに旋回のための横力も発生させなければならないため、強い制動を行った場合、安定した旋回ができなくなる恐れがある。このような場合でも、摩擦制動の場合では、車両挙動の安定を最優先に、目的の制動力を発生させる制御を行うことができるが、回生によるエネルギーの回収を重視すると、車両挙動が不安定になる場合がある。
 特に、回生制動が可能なモータによって駆動される車輪が、前2輪や後2輪のみである駆動系の構成では、車両挙動の安定を保つために回生制動の制限が顕著となる。
 本技術分野の関連技術として、特許文献1がある。これには、車輪のスリップ率に対応して回生制動力を制御する方法が示されている。
 また、本願の基礎となる技術として、特許文献2がある。これは、回生制動を前提としたものではないが、車両挙動の安定を適切な余裕を持って保つための、制動力に対する車輪スリップ率の比を利用した制御方法が示されている。
特開2006-304599号公報 日本特許04920054号公報
 自動車に用いられるタイヤの特性として、同時に発生できる制駆動力と横力の二乗和が定まっているため、エネルギー回生量を多くするための回生制動力向上と、車両挙動の安定のための横力確保とのバランスをとる必要がある。
 特に、前2輪のみ、あるいは後2輪のみにモータのトルクが伝達される駆動系構成の車両では、回生制動力は前後いずれか一方のみに発生し、摩擦制動と併用したとしても、制動力の前後配分がしばしば極端に偏る場合があるため、発生できる横力の前後バランスも必然的に大きく偏る場合がある。つまり、車両挙動の安定を保つには、非常に不利な条件となるので、制動力の制御によって対処しなければならない。
 上記の特許文献1に記載の技術は、スリップ率のみを指標として制動力を加減するため、回生最大化制御の精度に改善の余地があった。
 また、上記の特許文献2に記載の技術は、制動力を4輪をまとめて扱う方法であり、回生制動への適用には、制動力の前後配分が大きく変化する場合についての対応が十分でなく、対策が必要であった。
 本発明は、このような事情に鑑みてなされたものであって、その目的とするところは、車両挙動の安定を確保しながら回生力を向上させ、省エネルギー化を実現する車両制御装置を提供することにある。
 上記課題を解決するために、本願の発明に係る車両制御装置は、車両の前後輪に設けられた摩擦ブレーキ機構と、上記車両の前輪もしくは後輪の少なくとも一方に設けられた回生制動機構と、各車輪の車輪スリップ率を平均した平均車輪スリップ率を算出する平均車輪スリップ率算出部と、各車輪の制駆動力を平均した平均制駆動力を算出する平均制駆動力算出部と、縦軸に上記平均制駆動力、横軸に上記平均スリップ率を与える2次元直交座標系上で、上記平均車輪スリップ率と上記平均制駆動力とによって決まる座標と、原点とを結んだ直線の傾きを車両のスリップスティフネスとして算出する車両スリップスティフネス算出部と、前輪制駆動力と後輪制駆動力との割合を算出する割合算出部と、前輪制駆動力と後輪制駆動力との割合に応じて上記車両スリップスティフネスの制御閾値を補正する車両スリップスティフネス補正部と、上記車両スリップスティフネスが上記制御閾値となるように、上記摩擦ブレーキ機構と上記回生制動機構を作動させる制駆動力指令部と、を備えた。
 回生制動力を車両挙動の安定が確保できる限界まで強めることができる制御方法によって、駆動系の構成による回生力の制限を緩和し、省エネルギー化を実現できる。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
車両のドリフトアウト挙動を示す図。 車両のスピン挙動を示す図。 本発明に係るタイヤの制駆動力と横力との関係を示す図。 本発明に係るタイヤ特性曲線を示す図。 本発明を適用する後輪駆動のEVの構成図。 本発明に係るスリップスティフネス制御を説明する図。 路面μによるタイヤ特性曲線の違いを示す図。 制動力指令によるスリップスティフネスの制御方法を示す図。 制動力指令によるスリップスティフネスの制御方法を示す図。 第1実施例におけるタイヤ特性曲線上の前後輪の状態を示す図。 第1実施例におけるタイヤ特性曲線上の前後輪の状態を示す図。 第1実施例におけるタイヤ特性曲線上の前後輪の状態を示す図。 第1実施例における他の条件でのタイヤ特性曲線上の前後輪の状態を示す図。 第1実施例における他の条件でのタイヤ特性曲線上の前後輪の状態を示す図。 第1実施例における他の条件でのタイヤ特性曲線上の前後輪の状態を示す図。 第1実施例における車両スリップスティフネス閾値の補正方法を示す図。 第1実施例における車両スリップスティフネス閾値の補正方法を示す図。 第1実施例における車両スリップスティフネス閾値の補正方法を適用した際の前後輪の状態を示す図。 第1実施例における車両スリップスティフネス閾値の補正方法を適用した際の前後輪の状態を示す図。 第1実施例における車両スリップスティフネス閾値の補正方法を適用した際の前後輪の状態を示す図。 後輪スリップスティフネスが取得できる場合の制御フローチャート。 前輪スリップスティフネスが取得できる場合の制御フローチャート。 前後輪の制動力の差が取得できる場合の制御フローチャート。 本発明を適用する第2実施例のEVの構成図。 第2実施例におけるタイヤ特性曲線上の前後輪の状態を示す図。 第2実施例におけるタイヤ特性曲線上の前後輪の状態を示す図。 第2実施例におけるタイヤ特性曲線上の前後輪の状態を示す図。 第2実施例における他の条件でのタイヤ特性曲線上の前後輪の状態を示す図。 第2実施例における他の条件でのタイヤ特性曲線上の前後輪の状態を示す図。 第2実施例における他の条件でのタイヤ特性曲線上の前後輪の状態を示す図。 第2実施例における車両スリップスティフネス閾値の補正方法を示す図。 第2実施例における車両スリップスティフネス閾値の補正方法を適用した際の前後輪の状態を示す図。 第2実施例における車両スリップスティフネス閾値の補正方法を適用した際の前後輪の状態を示す図。 第2実施例における車両スリップスティフネス閾値の補正方法を適用した際の前後輪の状態を示す図。 本発明を適用する前後輪共にモータによって駆動及び回生制動を行う第3実施例のEVの構成図。 第3実施例における車両スリップスティフネス閾値の補正方法を示す図。 第4実施例におけるタイヤ特性曲線上の前後輪の状態と制御方法を示す図。
 以下、本発明に係る車両制御装置の実施形態を図面を用いて説明するが、具体的な実施例の前に、前提となる車両運動に関する現象について述べる。
 自動車は、タイヤの特性に起因して、旋回中に制駆動力を発生させると、不安定な車両挙動を示す場合がある。車両の安定を保つため、摩擦制動では、車両の運動状態に適した制動方法がある程度確立されているが、エネルギー回生を行うEVでは、回生制動という要素が加わるため、車両の安定確保にとっては理想的でない制動状態となる。
 図1と図2は、旋回制動中の車両に発生し得る現象を示したものである。Yfは前輪の横力、Yrは後輪の横力、Tfは前輪の制動力、Trは後輪の制動力、lfは前輪車軸から車体の重心までの距離、lrは後輪車軸から車体の重心までの距離を表わす。後述するが、Yf、Yrはそれぞれ、Tf、Trの増加に伴い減少する傾向がある。なお本来、Yf、Yr、Tf、Trは左右輪で異なるが、左右を平均した量として同一記号で表現している。また、ここでは旋回制動状態を例としているが、Tf、Trを逆向きとすれば旋回駆動状態における同様の現象を表わせる。
 図1は、前輪の横力が不足した場合であり、前輪が遠心力に抗えず旋回外側に流れるドリフトアウト挙動が発生する。これは、Yf・lf-Yr・lrがヨーイングのモーメントであり、Tfに起因して、Yf・lf<Yr・lrとなるので、旋回とは逆方向のモーメントが車体に作用するためである。
 図2は、後輪の横力が不足した場合であり、後輪が遠心力に抗えず旋回外側に流れるスピン挙動が発生する。これは、同様にTrに起因して、Yf・lf>Yr・lrとなり、旋回方向のモーメントが車体に作用するためである。
 なお、制動によって、後輪から前輪へ荷重移動することにより、前輪の発生できる横力が増大する逆の現象も起こり得るが、本発明では、制動力が前後に極端に偏った場合に起こり易い上記の場面を対象としている。
 旋回中の挙動について説明したが、直線中であっても、発生できる横力が減少する同様の状態となり得、その場合は外乱の影響を受け易くなる。
 これらの現象が制動によって引き起こされるのは、自動車用タイヤの特性に起因するので、その点について説明する。
 図3は、タイヤの制駆動力と横力との関係を示したものである。内側の破線の円はタイヤの線形領域(後述)を表わし、外側の実線の円はタイヤの摩擦力限界を表わす。タイヤの摩擦特性として、同時に発生できる制駆動力と横力との二乗和には上限があり、上限に達している状態がすなわち摩擦力が限界となっている状態である。この上限とは、タイヤの垂直荷重に摩擦係数を乗じたものである。この関係から、例えば摩擦力限界まで制動力のみで使ってしまうと、発生できる横力は0となり、車両の安定性が保てなくなってしまう。車両の安定性を保つためには、制動力は摩擦力限界まで余裕を残しておく必要があるが、制動力を線形領域に留められれば、横力を発生するための適切な余裕を確保しておくことができる。
 図4は、横軸に車輪のスリップ率を、縦軸に制動力をとったグラフであり、この曲線は、一般にタイヤ特性曲線と呼ばれるものである。
 スリップ率は以下のように定義される。タイヤの有効半径をR、回転数をωとすると、車輪速Vwは、Vw=Rω、と表わされる。車体速をVとすると、制動時のスリップ率Swは、Sw=(V-Vw)/V、である。駆動時のスリップ率Swは制動時と定義が異なり、Sw=(Vw-V)/Vw、である。
 タイヤ特性曲線は、原点から、スリップ率の増加に対して略比例的に制動力が増加していく線形領域と、スリップ率の増加に対して制動力の増加が鈍り、制動力が最大となるスリップ率を過ぎるとスリップ率の増加に対して制動力が減少に至る非線形領域とに分けることができる。縦軸を駆動力としても、同様のタイヤ特性曲線が描かれる。
 大まかに述べて、車両がドリフトアウトやスピンを起こさない等の十分な安定性を保つことができるのは、線形領域でタイヤが使用されている範囲である。
 ABS(Anti-lock Brake System)が作動する場合は、非線形領域の中で、制動力が概ね最大となる付近に目標スリップ率を設定して制御する。このときの横力は略0となるため、車両の安定性を保つのに十分な状態とはいえない。
 上記を踏まえ、車両の安定性を確保しつつ回生力を向上させる本発明内容について、実施例として、以下、説明する。なお図1~図4に関して述べたように、制動力と駆動力は車両の前後方向に対して対称に扱うことができる。本発明は回生制動に主眼を置いているため、実施例は制動時について示すが、駆動しながら車両の安定を保つ方法として適用することもできる。
(第1実施例)
 図5は、本発明の車両制御装置が適用された後輪駆動のEVの構成を説明したものである。
 回生制動機構としてのモータ13は車両の後方に搭載され、その出力は、ディファレンシャルギヤを内蔵したギヤボックス16から左右のドライブシャフトを介して左右後輪3,4に伝達される。
 バッテリ15は車両の中央付近に搭載され、左右後輪3,4に駆動力を与える場合には、バッテリ15が供給する直流電力をモータ13に添って搭載されたインバータ14によって三相交流に変換し、モータ13を駆動する。また逆に左右後輪3,4に回生制動力を与える場合には、インバータ14の回生制御によって、モータ13に生じる三相交流を直流に変換し、バッテリ15に蓄電する。ただし、バッテリ15の状態によっては電力を受け入れられない場合があるので、バッテリ15側の制限により回生制動が常に行えるとは限らない。モータ13の制駆動トルクもしくは回転数は、インバータ14への指令信号に
よって制御される。なお、インバータ14を通して、制駆動時の電流を測ることができるので、モータ13が発生している制駆動トルクの情報を取得することができる。
 制動のためには、モータ13による回生制動の他に摩擦ブレーキ機構としての摩擦制動装置102(5~8)を4輪101(1~4)それぞれに備える。摩擦制動装置102は、ブレーキECU17によって制御され、上位の制御装置である回生制御演算装置22に備わった制動力指令値設定部18からの前輪1,2と後輪3,4の制動力の指令に原則として従うが、必要に応じてABSやESC(Electronic Stability Control)の作動を優先させて4輪101の制動を独立して動作させることができる。
 また、4輪101それぞれには、車輪速センサ103(9~12)を備える。回生制御演算装置22に備わった車両スリップスティフネス算出部19では、この車輪速センサ103の情報を利用して車輪のスリップ率やスリップスティフネス及び後述の車両スリップスティフネス閾値を算出する。
 具体的には、車輪のスリップ率は、車体速に対する車輪速のずれの割合であるため、制動時は、最も回転数が高い車輪の車輪速を車体速とみなし、その車体速とみなした値で、車輪速と車体速の差分を除算した値をスリップ率とする。
 スリップスティフネスとは、タイヤ特性曲線の原点での傾きを指すが、以下、本発明におけるスリップスティフネスは、タイヤ特性曲線上において、あるスリップ率である制動力となっている点と、原点とを結ぶ直線の傾きを指すこととする。
 制動力をFw、スリップ率をSwとすると、スリップスティフネスksは、ks=Fw/Sw、と表わされる。
 なお、スリップ率が無次元、制動力が力の次元を持つので、スリップスティフネスは力の次元を持つ。
 スリップスティフネスと制動力は、4輪101それぞれについて求めることができる。しかし、時系列で取得したスリップ率と制動力の値には、測定ノイズが重畳されるため、前述した特許文献2と同様に、スリップ率についても制動力についても4輪101を平均した値を用いて、車両スリップスティフネスとして扱うことで、指標としての信頼性を向上することができる。
 回生制御演算装置22は、その中に備わった制動力指令値設定部18で各センサ類からの情報を総合して処理し、モータ13を制御するインバータ14とブレーキECU17に指令信号を送る。この回生制御演算装置22は、図5ではハードウェア的に独立したコンピュータとしているが、何らかの他ECU内のプログラムとしてその機能が組み込まれていても良い。
 図5中の23は、車両に固定された加速度センサであり、車両の前後方向の加速度を検出する。
 図5中の24は、ブレーキペダルである。ブレーキペダル24にはストロークセンサ25が設けられており、ドライバによるブレーキペダル24の踏み込み量を検出する。検出された踏み込み量の情報は、回生制御演算装置22に送られ、回生制御演算装置22はそれをドライバ要求制動力として扱い、制動力制御の基本的な動作としては、ドライバの意思に応じた減速度を発生させる。
 具体的には、摩擦制動においては、車輪スリップ率が過大とならない範囲での、ブレーキ圧に対する車両に生じる減速度の関係をあらかじめ求めておき、ブレーキペダル24の踏み込み量に対する減速度の関係についても設定しておくことで、ブレーキペダル24の踏み込み量に対する減速度を規定し、ドライバの操作量に対応する減速度が実現される。
 また、回生制動においては、同じく車輪スリップ率が過大とならない範囲での、モータ13の回生制動トルクに対する車両減速度の関係を用いて、ブレーキペダル24操作に対応した回生制動トルクを発生させて、ドライバの意思に沿った減速制御を行う。
 これらは、摩擦制動と回生制動が同時に作用する場合でも、制動力を両者で分担させればよく、摩擦制動と回生制動とを任意の割合として、所望の制動力を発生できる。
 ただし、摩擦制動、回生制動のいずれにおいても、車輪スリップ率が過大な状態では、直接的に車両減速度を指定することができなくなるので、そのような状況下では、例えば、ブレーキECU17によってABSの動作であるスリップ率制御を行う。
 発生している制動力を取得するには、回生制動力については、モータ13の制動トルクがインバータ14を介して容易に取得できるので、その値が略制動力と対応する。ただし、車輪の、回転方向の慣性モーメントが無視できず、かつスリップ率が過大な条件では、車両に働く制動力との差異が大きくなる。
 あるいは、車両全体に作用している制動力を加速度センサ23によって測ると共に、モータ13による駆動輪である後輪3,4の回生制動力も同時に取得し、両者の差分を非駆動輪である前輪1,2に発生している摩擦制動力として算出しても良い。
 その他、図5には示さないが、制動力が伝わる部位に力、トルクあるいはモーメントを測るセンサを設けて、制動力を直接的に取得しても良い。
 図6は、タイヤ特性曲線を用いて、本発明の基礎となる技術である、スリップスティフネス制御を説明したものである。
 スリップスティフネス制御の目的は、タイヤ特性曲線上でのタイヤの使用範囲を線形領域に留めることである。線形領域と非線形領域では、スリップ率の増加に対する制動力の増加の程度が異なるため、両者の区別は、タイヤ特性曲線の接線の傾きの違いによって判断できる。ただし、傾きの取得には、制動力をスリップ率で偏微分する必要があり、計測ノイズの影響を受け易いことから、この傾きを制御に利用することは難しい。
 そこで、前述のスリップスティフネスを指標として用いる。本発明で利用するスリップスティフネスは、タイヤ特性曲線上の点と原点を結んだ直線の傾きであるため、非線形の度合いを直接示すものではない。しかし、タイヤ特性曲線の形状は、原点を通る上に凸の曲線であるため、原点付近のスリップスティフネスに対する、使用点でのスリップスティフネスの減少の程度を、非線形度合いの指標とすることができる。例えば、使用点でのスリップスティフネスが原点付近のスリップスティフネスと同等の値であれば線形領域であり、それより小さい値である程、非線形の度合いが強い領域といえる。この判断方法は、路面μによらず適用できる。
 図7は、路面μによるタイヤ特性曲線の違いを示したものである。タイヤ特性曲線の形状が大きく異なるわけではないが、高μ路において非線形領域となるスリップ率に対し、低μ路ではスリップ率が小さい領域から非線形となるので、線形領域と非線形領域とのスリップ率による判断は、スリップスティフネスを利用した場合に対して路面μの影響を大きく受けてしまう。
 逆にこのことを利用して、スリップ率が小さい領域で非線形となると、低μ路だと推定できるので、本発明においては、この現象を用いてμ推定を行う。このμ推定を行う摩擦係数算出部は、車両スリップスティフネス補正部21に含まれる。
 制動力が変化すると、タイヤ特性曲線上の使用点のスリップ率が変化しそれに応じてスリップスティフネスが変化する。したがって、スリップスティフネスを制御するには、制動力指令値を増減させればよい。図8A,Bは、時刻t1からt2、t3にかけての、タイヤ特性曲線上の使用点の動きと(図8A)、制動力、スリップ率、スリップスティフネスの時刻歴(図8B)の例を示したものである。スリップスティフネスの目標がks3であるとして、初期状態ではスリップスティフネスが過小な値ks1であるとする。そこで、時刻t1からt2にかけて制動力をT1からT2に減じる。このときスリップ率はsw1からsw2に推移し、結果としてスリップスティフネスはks1からks2となる。ここでks2が過大となったので、時刻t2からt3にかけて制動力をT2からT3に増やす。同様に、このときスリップ率はsw2からsw3に推移し、結果としてスリップスティフネスはks2からks3となる。
 このように制動力指令によるスリップスティフネス制御が可能なので、スリップスティフネスをある値以上に保つ制御目標閾値を設定し、閾値を下回った場合には制動力を減じることで、車両の安定性を確保できる。
 後輪駆動EVでは、省エネルギーのために制動は極力後輪3,4の回生制動で行いたいが、後輪の制動力を増加させた場合の車両の安定を保たなければならないという課題がある。この課題を解決する本実施例の動作である、スリップスティフネスによる回生制動力制御について説明する。
 後輪3,4の回生制動だけでは車両の安定を保って減速できない場合や、バッテリ15が回生制動によって発生する電力を十分に受け入れられない状態では、前輪1,2に備わった摩擦制動装置5,6を、後輪3,4の回生制動と併用する。
 センサ情報からスリップスティフネスを算出するには、4輪101を平均したスリップ率と、車両に働く制動力から、4輪分を車両としてまとめて扱う車両スリップスティフネスが最も精度が得られるので、回生制動を後輪3,4のみで行う構成であっても車両スリップスティフネスを取得して制御に利用する。
 図9A,B,Cは、車両スリップスティフネスksを後輪回生制動力の制御に用い、後輪3,4の回生制動のみで制動を行っている場合の、タイヤ特性曲線上の前後輪の状態と、車両として前後輪をまとめて扱った場合の状態を示したものである。前後輪及び車両スリップスティフネスのうち、実際に制御に利用するのは、車両スリップスティフネス算出部19によって算出される車両スリップスティフネスksの値のみとしている。
 制動力指令値設定部18から前輪摩擦制動装置5,6への制動指令は出されず、前輪1,2は制動を行っていないので、この状態での前輪スリップスティフネスksfは、非線形域まで最も余裕のある最大値をとる(図9A)。
 一方、制動力指令値設定部18からの回生制動指令によって後輪3,4は回生制動を行っており、後輪スリップスティフネスksrは線形領域の許容限界の状態である(図9B)。これは、車両スリップスティフネスの制御目標閾値ksThを、後輪スリップスティフネスksrが線形限界となる値に設定することで実現される(図9C)。閾値ksThを下回った場合には、回生制動力を弱めることによって後輪スリップスティフネスksrを回復させる。つまり、適切な車両スリップスティフネスの制御目標閾値ksThを与えれば、後輪回生制動力の車両スリップスティフネスksによる制御が可能となる。このksThの値は、前輪の制動を行っていない初期のksfと、後輪が線形領域の許容限界となったksrの平均値相当となる。
 上記と異なる条件として、図10A,B,Cは、車両スリップスティフネスksを後輪回生制動力の制御に用い、後輪3,4の回生制動に加えて前輪1,2で摩擦制動を行っている際の、タイヤ特性曲線上の前後輪の状態を示したものである。
 前輪1,2では摩擦制動を行っているので、前輪スリップスティフネスksfは、最大値よりは小さな値を持つ(図10A)。
 このとき、車両スリップスティフネスksが図9Cのksと同じ状態であるとすると、後輪スリップスティフネスksrは、図9Bのksrより大きな状態となる(図10B)。これは、図10Aの前輪スリップスティフネスksfが図9Aのksfより減少した分と、図10Bの後輪スリップスティフネスksrが図9Bのksrより増加した分が相殺される傾向にあるためである。これは、車両スリップスティフネスの制御目標閾値ksThを、後輪スリップスティフネスksrが線形限界となる値に設定することで実現される(図10C)。
 つまり、車両スリップスティフネスksをある一定値に制御しても、後輪3,4のみでの回生制動だけでなく前輪1,2の摩擦制動を併用する等で、前後輪の制動力割合が変化する場合には、後輪のスリップスティフネスksrを正確には制御できないことになる。この場合では、後輪3,4を線形域に留めるための余裕が大きくなり過ぎ、回生力を過剰に抑制するという影響が生じる。
 この点に関し、制動力割合の変化を考慮した閾値の補正によって対応する方法について説明する。
 図11A,Bは、割合算出部である前後輪制動力割合算出部20で算出した前後輪の制動力割合に対する車両スリップスティフネス閾値の補正方法を示したものである。
 静的あるいは動的なタイヤの接地荷重も影響するが、前後輪制動力割合が、前後輪のスリップ率が等しい理想制動力配分となるような状態を前後輪制動力割合の基準割合とする。この状態は、液圧が各輪に伝達され、液圧を変換して力を発生するピストンによって摩擦材の摺動部を押しつけて制動力を発生させる摩擦制動装置において、例えば前後輪に同圧を作用させる制動を行ったときに、ピストンの受圧面積や摩擦摺動部の寸法、材質等によって設定される状態に相当する。同状態では、前後輪のスリップスティフネスが概ね同じ値となり、概ね同時に線形領域の限界に至るので、車両スリップスティフネス算出部19は基準割合から基準スリップスティフネスを算出し、その値を車両スリップスティフネスの制御閾値として制御すれば良い。
 対して、後輪3,4の制動力割合が基準割合よりも大きい状態では、前輪1,2のスリップスティフネスが大きいことによって車両スリップスティフネスを増大させる傾向にあるため、車両スリップスティフネス閾値の設定は、基準スリップスティフネスとしていた理想制動力配分付近での設定よりも大きな値に、車両スリップスティフネス補正部21で補正する(図11A)。
 車両スリップスティフネスの制御によって、ドライバが要求する減速度が得られない場合は、前輪1,2の摩擦制動力を強めることで、後輪3,4の回生制動力と合わせて減速度を得るようにし、その状態がまた前後輪制動力割合算出部20を介して、車両スリップスティフネス閾値の設定に反映される(図11B)。
 なお、基準スリップスティフネスを設定する際の前後輪制動力の基準割合は、前述の静的あるいは動的なタイヤの接地荷重に影響する車両状態に応じて補正しても良い。この基準割合を補正する基準割合算出部は、車両スリップスティフネス補正部21に含まれる。例えば、減速度算出部として加速度センサ23の検出値から減速度を算出し、接地荷重変動分を補正する。あるいは、摩擦係数算出部によりスリップスティフネスやスリップ率と制駆動力の関係から路面μを推定して、発生可能な減速度を算出し、想定される接地荷重変動分を補正する。これによって、より高精度な制御が行える。
 図12A,B,Cは、車両スリップスティフネス閾値の補正を適用した場合の、後輪3,4の回生制動に加えて前輪1,2で摩擦制動を行っている際の、タイヤ特性曲線上の前後輪の状態を示したものである。前輪1,2では 摩擦制動を行っているので、前輪スリップスティフネスksfは、最大値よりは小さな値を持つ(図12A)。前後輪の制動力割合によって、上記の方法で閾値を補正することで(図12C)、車両スリップスティフネスを指標として用いながらも、後輪3,4で回生制動を行う車両挙動の安定性を維持したままドライバが要求する減速度を得、なおかつ回生力を向上させることができる(図12B)。
 このように車両は、4輪101を平均したスリップ率や、4輪101を平均した制動力を算出可能であって、4輪101に設けられた摩擦ブレーキ機構となる摩擦制動装置102と、前輪1,2もしくは後輪3,4の少なくとも一方に設けられた回生制動機構となるモータ13と、車両スリップスティフネス算出部19と、割合算出部となる前後輪制動力割合算出部20と、車両スリップスティフネス補正部21と、制駆動力指令値設定部である回生制御演算装置22と、を備える。
 車両スリップスティフネス算出部19は。縦軸に平均制動力、横軸に平均スリップ率を与える2次元直交座標系上で、平均車輪スリップ率と平均制動力とによって決まる座標と、原点とを結んだ直線の傾きを車両のスリップスティフネスとして算出する。回生制御演算装置22は、車両スリップスティフネスが車両スリップスティフネス閾値となるように、摩擦制動装置102とモータ13を作動を作動させる。また車両スリップスティフネス補正部21は、前輪制動力と後輪制動力との割合に応じて車両スリップスティフネス閾値を補正する。
 車両スリップスティフネス閾値は、前輪1,2と後輪3,4のスリップ率が等しくなるときの車両スリップスティフネスである基準スリップスティフネスを前後輪制動力割合算出部20で算出された割合に応じて補正したものである。
 これらによって、回生制動力を車両挙動の安定が確保できる限界まで強め、省エネルギー化を実現できる。
 特に、車両挙動が不安定になり易い後輪3,4のみで回生を行う車両においては、最も大きな効果が得られ、その他、前輪1,2のみで回生を行う車両、あるいは前後輪で回生を行うがその回生力の前後配分に制限のある車両、等でも効果を享受できる。
 さらに、本発明を適用しないスリップスティフネス制御に比して、車両挙動の安定性は同等に維持したまま、回生力を向上させることができる。
 スリップスティフネスの制御への利用は、車両スリップスティフネスを基本としているが、4輪101をまとめて扱わずともノイズ等の影響が十分に抑えられ、制御に利用できる水準で各輪の制動力とスリップ率の情報が取得できる場合には、下記の方法もとることができる。
 図13は、後輪スリップスティフネスが取得できる場合の動作を示すフローチャートである。
 後輪スリップスティフネスの情報を取得し(S601)、基準スリップスティフネスより後輪スリップスティフネスが小さいとき(S602)には、後輪3,4の制動力を制限(S603)する。この動作の目的は、タイヤ特性曲線上での後輪3,4の状態を線形領域に維持するためである。
 図14は、前輪スリップスティフネスが取得できる場合の動作を示すフローチャートである。
 前輪スリップスティフネスの情報を取得し(S611)、前輪1,2の制動力が所定値以上(S612)で、かつ前輪スリップスティフネスが基準スリップスティフネスより大きいとき(S613)には、後輪3,4の制動力を制限(S614)する。
 前輪1,2の制動力が小さくないにもかかわらず、前輪スリップスティフネスが基準スリップスティフネスに対して大きい状態は、相対的に後輪スリップスティフネスが小さくなっていることを意味する。その場合に、後輪3,4の制動力を制限することによって、タイヤ特性曲線上での後輪3,4の状態を線形領域に維持する。
 図15は、信頼に足る前後輪の制動力の差の情報が取得できる場合の動作を示すフローチャートである。
 前後輪の制動力の差の情報を取得し(S621)、前後輪の制動力の差が所定値以下(S622)で、かつ前輪スリップスティフネスが基準スリップスティフネスより大きいとき(S623)に、後輪の制動力を制限(S624)する。
 前輪1,2の制動力が後輪3,4に対して小さくないにもかかわらず、前輪スリップスティフネスが基準スリップスティフネスに対して大きいということは、相対的に後輪スリップスティフネスが小さくなっていることを意味するので、後輪3,4の制動力を制限することによって、後輪3,4の状態を線形領域に維持する。
 以下、本発明の他の実施例について説明するが、前述した第1実施例と同一の構成要素については同一の符号を付し、重複する説明を省略する。
(第2実施例)
 図16は、第2実施例として、本発明の車両制御装置が適用された前輪駆動のEVの構成を説明したものである。構成が第1実施例と異なる点は、回生制動が前輪1,2で行われる点である。
 図17A,B,Cは、車両スリップスティフネスksを前輪回生制動力の制御に用い、前輪1,2の回生制動のみで制動を行っている際の、タイヤ特性曲線上の前後輪の状態と、車両として前後輪をまとめて扱った場合の状態を示したものである。
 制動力指令値設定部18から後輪3,4への制動指令は出されず、後輪3,4は制動を行っていないので、この状態での後輪スリップスティフネスksrは、非線形域まで最も余裕のある最大値をとる(図17B)。
 一方、制動力指令値設定部218からの回生制動指令によって前輪201,202は回生制動を行っており、前輪スリップスティフネスksfは線形領域の許容限界の状態である(図17A)。これは、車両スリップスティフネスの制御目標閾値ksThを、後輪スリップスティフネスksrが線形限界となる値に設定することで実現される(図17C)。前輪回生制動力の車両スリップスティフネスksによる制御を行う方法は、第1実施例と同様である。
 図18A,B,Cは、車両スリップスティフネスksを前輪回生制動力の制御に用い、前輪1,2の回生制動に加えて後輪3,4で摩擦制動を行っている際の、タイヤ特性曲線上の前後輪の状態を示したものである。
 後輪3,4では摩擦制動を行っているので、後輪スリップスティフネスksrは、最大値よりは小さな値を持つ(図18B)。
 このとき、車両スリップスティフネスksが図17Cのksと同じ状態であるとすると、前輪スリップスティフネスksfは、図17Aのksfより大きな状態となる(図18A)。これは、やはり第1実施例と同様に、図18Bの後輪スリップスティフネスksrが図17Bのksrより減少した分と、図18Aの前輪スリップスティフネスksfが図17Aのksfより増加した分が相殺される傾向にあるためである。さらにこの第2実施例では、制動時に、回生制動輪の前輪1,2の接地荷重が増加、後輪3,4は制動時に接地荷重が減少するので、前輪回生制動のみの場合に対する前後輪のスリップスティフネスの変化が助長される方向に働き、影響は第1実施例よりも大きく現れる。そのため、基準スリップスティフネスに対する補正量も大きくなる。
 図19は、前後輪制動力割合算出部20で算出した前後輪の制動力割合に対する車両スリップスティフネス閾値の補正方法を示したものである。
 後輪3,4の制動力割合が基準割合よりも小さい状態では、後輪3,4のスリップスティフネスが大きいことによって、車両のスリップスティフネスを増大させる傾向になるため、車両スリップスティフネス閾値の設定は、基準スリップスティフネスとしていた理想制動力配分付近での設定よりも大きな値に、車両スリップスティフネス補正部21で補正する。
 図20A,B,Cは、車両スリップスティフネス閾値の補正を適用した場合の、前輪1,2の回生制動に加えて後輪3,4で摩擦制動を行っている際の、タイヤ特性曲線上の前後輪の状態を示したものである。後輪3,4では摩擦制動を行っているので、後輪スリップスティフネスksrは、最大値よりは小さな値を持つ(図20B)。前後輪の制動力割合によって、上記の方法で閾値を補正することで(図20C)、車両スリップスティフネスを指標として用いながらも、前輪1,2で回生制動を行う車両挙動の安定性を維持したままドライバが要求する減速度を得、なおかつ回生力を向上させることができる(図20A)。
(第3実施例)
 図21は、第3実施例として、本発明の車両制御装置が適用された前後輪共に駆動及び回生制動を行うEVの構成を示したものである。この第3実施例にEVは、実質的には、前述の第1実施例と第2実施例の構成を統合したものであり、前輪1,2及び後輪3,4が対応するモータ13,13によって駆動、及び回生制動するものである。
 このような車両へ適用する場合、駆動系の構成によって、前後のモータ特性の差や、回生制動力前後配分の仕組みに応じて、前輪1,2のみ回生制動から後輪3,4のみでの回生制動まで任意の割合での回生制動が想定される。
 図22は、前後輪制動力割合算出部20で算出した前後輪の制動力割合に対する車両スリップスティフネス閾値の補正方法を示したものである。後輪のみで回生制動を行う車両と、前輪のみで回生制動を行う車両での制動力割合の使用範囲を合わせたグラフとなる。すなわち、図22は、前述した図11Aと、図19を重ね合わせたものとなっている。
 このような第3実施例においても、車両スリップスティフネスを指標として用いながらも、前輪1,2及び後輪3,4で回生制動を行う車両挙動の安定性を維持したままドライバが要求する減速度を得、なおかつ回生力を向上させることができる。
(第4実施例)
 第4実施例として、前輪スリップスティフネスと、後輪スリップスティフネスが取得でき、個別に制御を行う場合について説明する。
 この第4実施例は、例えば、前述した第1実施例と略同一構成となっているが、車両スリップスティフネス算出部19が、前輪スリップスティフネスと、後輪スリップスティフネスと、を個別に算出することが可能になっており、前後輪各々について、スリップスティフネス制御を行うことが可能となっている。つまり、第4実施例における車両スリップスティフネス算出部19は、前輪スリップスティフネスを算出する前輪スリップスティフネス算出部と、後輪スリップスティフネスを算出する後輪スリップスティフネス算出部と、を有している。
 図23は、この第4実施例におけるタイヤ特性曲線上の前後輪の状態と制御方法を示したものである。
 前輪スリップスティフネス閾値ksfThと後輪スリップスティフネス閾値ksrThを各々設定しておき、制動によって前後いずれかの車輪のスリップスティフネスが閾値を下回る場合には、その車輪の制動力を制限しながら、他方の車輪の制動力を増していく。前後輪それぞれのスリップスティフネスを制御することで、減速度の発生のために回生制動力の使用を優先しつつ、車両の安定を保つ必要に応じて回生制動力を制限することができる。
 この場合でも、加速度センサ23によって得られる減速度の大きさに応じて、車両モデルに基づいて前後輪のスリップスティフネスの閾値を補正することができ、より高精度な制御が行える。
 このように車両は、前輪1,2及び後輪3,4のスリップ率と、前輪1,2及び後輪3,4の制駆動力を個別に算出可能であって、4輪101に設けられた摩擦ブレーキ機構となる摩擦制動装置102と、前輪1,2もしくは後輪3,4の少なくとも一方に設けられた回生制動機構となるモータ13と、車両スリップスティフネス算出部19と、割合算出部となる前後輪制動力割合算出部20と、制駆動力指令部となる回生制御演算装置22と、を備える。
 車両スリップスティフネス算出部19は、前輪スリップスティフネス及び後輪スリップ
スティフネスを算出する。前輪スリップスティフネスは、縦軸に前輪制駆動力、横軸に前輪スリップ率を与える2次元直交座標系上で、前輪スリップ率と前輪制駆動力とによって決まる座標と、原点とを結んだ直線の傾きとして算出される。後輪スリップスティフネスは、縦軸に後輪制駆動力、横軸に後輪スリップ率を与える2次元直交座標系上で、後輪スリップ率と後輪制駆動力とによって決まる座標と、原点とを結んだ直線の傾きとして算出される。
 そして、回生制御演算装置22は、前輪スリップスティフネスが前輪スリップスティフネス閾値以上となるようにすると共に、後輪スリップスティフネスが後輪スリップスティフネス閾値以上となるように、摩擦制動装置102とモータ13を作動を作動させる。
 前輪スリップスティフネス閾値は、前輪スリップ率と前輪制駆動力との関係を表すタイヤ特性が、線形と非線形の境目となる線形限界での前輪スリップスティフネスである。後輪スリップスティフネス閾値は、後輪スリップ率と後輪制駆動力との関係を表すタイヤ特性が、線形と非線形の境目となる線形限界での後輪スリップスティフネスである。
 これらによって、回生制動力を車両挙動の安定が確保できる限界まで強め、省エネルギー化を実現できる。
 以上、本発明の実施例について詳述したが、本発明は、上記の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 例えば、ブレーキの操作量を検出するストロークセンサ25に替えて、踏力センサによる検出としても良く、同一の車輪に摩擦制動と回生制動を同時に作用させても良い。また、4輪101を独立して駆動する車両にも適用できる。
 1…前輪
 2…前輪
 3…後輪
 4…後輪
 5…前輪摩擦制動装置
 6…前輪摩擦制動装置
 7…後輪摩擦制動装置
 8…後輪摩擦制動装置
 9…前輪車輪速センサ
 10…前輪車輪速センサ
 11…後輪車輪速センサ
 12…後輪車輪速センサ
 13…モータ
 14…インバータ
 15…バッテリ
 16…ギヤボックス
 17…ブレーキECU
 18…制動力指令値設定部
 19…車両スリップスティフネス算出部
 20…前後輪制動力割合算出部
 21…車両スリップスティフネス補正部
 22…回生制御演算装置
 23…加速度センサ
 24…ブレーキペダル
 25…ストロークセンサ

Claims (15)

  1.  車両の前後輪に設けられた摩擦ブレーキ機構と、
     上記車両の前輪もしくは後輪の少なくとも一方に設けられた回生制動機構と、
     各車輪の車輪スリップ率を平均した平均車輪スリップ率を算出する平均車輪スリップ率算出部と、
     各車輪の制駆動力を平均した平均制駆動力を算出する平均制駆動力算出部と、
     縦軸に上記平均制駆動力、横軸に上記平均スリップ率を与える2次元直交座標系上で、上記平均車輪スリップ率と上記平均制駆動力とによって決まる座標と、原点とを結んだ直線の傾きを車両のスリップスティフネスとして算出する車両スリップスティフネス算出部と、
     前輪制駆動力と後輪制駆動力との割合を算出する割合算出部と、
     前輪制駆動力と後輪制駆動力との割合に応じて上記車両スリップスティフネスの制御閾値を補正する車両スリップスティフネス補正部と、
     上記車両スリップスティフネスが上記制御閾値となるように、上記摩擦ブレーキ機構と上記回生制動機構を作動させる制駆動力指令部と、を備えた車両制御装置。
  2.  車両の前後輪に設けられた摩擦ブレーキ機構と、
     上記車両の前後輪のうち駆動輪に設けられた電動機と、
     各車輪の車輪スリップ率を平均した平均車輪スリップ率を算出する平均車輪スリップ率算出部と、
     各車輪の制駆動力を平均した平均制駆動力を算出する平均制駆動力算出部と、
     縦軸に上記平均制駆動力、横軸に上記平均スリップ率を与える2次元直交座標系上で、上記平均車輪スリップ率と上記平均制駆動力とによって決まる座標と、原点とを結んだ直線の傾きを車両のスリップスティフネスとして算出する車両スリップスティフネス算出部と、
     駆動輪制駆動力と非駆動輪制動力との割合を算出する割合算出部と、
     駆動輪制駆動力と非駆動輪制動力との割合に応じて上記車両スリップスティフネスの制御閾値を補正する車両スリップスティフネス補正部と、
     上記車両スリップスティフネスが上記制御閾値となるように、上記摩擦ブレーキ機構と上記電動機を作動させる制駆動力指令部と、を備えた車両制御装置。
  3.  上記制御閾値は、前後輪のスリップ率が等しくなるときの車両スリップスティフネスである基準スリップスティフネスを上記割合算出部で算出された割合に応じて補正したものである請求項1または2に記載の車両制御装置。
  4.  前後輪のスリップ率が等しい動力配分となる状態を上記割合算出部で算出される割合の基準割合とし、
     上記車両スリップスティフネス補正部は、上記割合算出部で算出された割合と上記基準割合との偏差が大きくなるほど、上記制御閾値が大きくなるように補正する請求項3に記載の車両制御装置。
  5.  上記基準割合を車両状態に応じて補正する基準割合補正部を備えた請求項3または4に記載の車両制御装置。
  6.  上記車両に作用する減速度を算出する減速度算出部を備え、
     上記基準割合補正部は、減速度に応じて上記基準割合を補正する請求項5に記載の車両制御装置。
  7.  上記車両の走行している路面の摩擦係数を算出する摩擦係数算出部を備え、
     上記基準割合補正部は、摩擦係数に応じて上記基準割合を補正する請求項5または6に記載の車両制御装置。
  8.  縦軸に後輪の制駆動力、横軸に後輪のスリップ率を与える2次元直交座標系上で、後輪スリップ率と後輪制駆動力とによって決まる座標と、原点とを結んだ直線の傾きを後輪のスリップスティフネスとして算出する後輪スリップスティフネス算出部を備え、
     上記後輪スリップスティフネスが、上記基準スリップスティフネスよりも小さい時に上記後輪制駆動力を制限する請求項3に記載の車両制御装置。
  9.  縦軸に前輪の制駆動力、横軸に前輪のスリップ率を与える2次元直交座標系上で、前輪スリップ率と前輪制駆動力とによって決まる座標と、原点とを結んだ直線の傾きを前輪のスリップスティフネスとして算出する前輪スリップスティフネス算出部を備え、
     上記前輪制駆動力が所定値以上で、かつ上記前輪スリップスティフネスが、上記基準スリップスティフネスよりも大きい時に上記後輪の制駆動力を制限する請求項3に記載の車両制御装置。
  10.  縦軸に前輪の制駆動力、横軸に前輪のスリップ率を与える2次元直交座標系上で、前輪スリップ率と前輪制駆動力とによって決まる座標と、原点とを結んだ直線の傾きを前輪のスリップスティフネスとして算出する前輪スリップスティフネス算出部と、
     前後輪間の制駆動力差を算出する制駆動力差算出部と、を備え、
     上記制駆動力差が所定の偏差以下で、かつ上記前輪スリップスティフネスが、上記基準スリップスティフネスよりも大きい時に上記後輪の制駆動力を制限する請求項3に記載の車両制御装置。
  11.  上記回生制動装置は、後輪に対して設けられている請求項1に記載の車両制御装置。
  12.  上記電動機は、後輪に対して設けられている請求項2に記載の車両制御装置。
  13.  車両の前後輪に設けられた摩擦ブレーキ機構と、
     上記車両の前輪もしくは後輪の少なくとも一方に設けられた回生制動機構と、
     上記前輪のスリップ率と上記後輪のスリップ率を算出するスリップ率算出部と、
     上記前輪の制駆動力である前輪制駆動力及び上記後輪の制駆動力である後輪制駆動力を算出する制駆動力算出部と、
     縦軸に上記前輪制駆動力、横軸に上記前輪スリップ率を与える2次元直交座標系上で、上記前輪スリップ率と上記前輪制駆動力とによって決まる座標と、原点とを結んだ直線の傾きを前輪のスリップスティフネスとして算出する前輪スリップスティフネス算出部と、
     縦軸に上記後輪制駆動力、横軸に上記後輪スリップ率を与える2次元直交座標系上で、上記後輪スリップ率と上記後輪制駆動力とによって決まる座標と、原点とを結んだ直線の傾きを後輪のスリップスティフネスとして算出する後輪スリップスティフネス算出部と、
     上記前輪スリップスティフネスが所定の前輪制御閾値以上となるようにすると共に、上記後輪スリップスティフネスが所定の後輪制御閾値以上となるように、上記摩擦ブレーキ機構と上記回生制動機構を作動させる制駆動力指令部とを備えた車両制御装置。
  14.  上記車両に作用する減速度を算出する減速度算出部を備え、
     上記減速度に応じて上記前輪制御閾値及び上記後輪制御閾値を補正する請求項13に記載の車両制御装置
  15.  上記前輪スリップ率と上記前輪制駆動力との関係を表すタイヤ特性が、線形と非線形の境目となる線形限界での前輪スリップスティフネスを上記前輪制御閾値とし、
     上記後輪スリップ率と上記後輪制駆動力との関係を表すタイヤ特性が、線形と非線形の境目となる線形限界での後輪スリップスティフネスを上記後輪制御閾値とする請求項13または14に記載の車両制御装置。
PCT/JP2013/076691 2012-11-21 2013-10-01 車両制御装置 WO2014080696A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/646,275 US9573473B2 (en) 2012-11-21 2013-10-01 Vehicle control device
EP13856263.2A EP2923877A4 (en) 2012-11-21 2013-10-01 VEHICLE CONTROL DEVICE
CN201380060839.8A CN104812612B (zh) 2012-11-21 2013-10-01 车辆控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012254858A JP6042706B2 (ja) 2012-11-21 2012-11-21 車両制御装置
JP2012-254858 2012-11-21

Publications (1)

Publication Number Publication Date
WO2014080696A1 true WO2014080696A1 (ja) 2014-05-30

Family

ID=50775886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076691 WO2014080696A1 (ja) 2012-11-21 2013-10-01 車両制御装置

Country Status (5)

Country Link
US (1) US9573473B2 (ja)
EP (1) EP2923877A4 (ja)
JP (1) JP6042706B2 (ja)
CN (1) CN104812612B (ja)
WO (1) WO2014080696A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2527396A (en) * 2014-03-26 2015-12-23 Ford Motor Co System and method for energy optimization in autonomous vehicle operation
CN105691214A (zh) * 2014-12-12 2016-06-22 现代自动车株式会社 用于在再生制动协同控制中控制制动力的方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5908779B2 (ja) * 2012-05-01 2016-04-26 日立オートモティブシステムズ株式会社 ブレーキ制御装置、ブレーキ制御方法
DE112014001455B4 (de) * 2013-03-15 2018-09-06 Advics Co., Ltd. Elektrisches Bremssystem für ein Fahrzeug
JP6201209B2 (ja) * 2013-09-12 2017-09-27 日立オートモティブシステムズ株式会社 駆動力制御装置及び駆動力制御方法
JP6478743B2 (ja) * 2015-03-23 2019-03-06 本田技研工業株式会社 移動体
JP6450267B2 (ja) 2015-06-23 2019-01-09 本田技研工業株式会社 移動体
JP6222746B2 (ja) * 2015-07-27 2017-11-01 本田技研工業株式会社 鞍乗り型車両の自動ブレーキ装置
DE102015115852A1 (de) * 2015-09-21 2017-03-23 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren zum Schätzen einer Achslastverteilung bei einem Lastzug
DE102015015922A1 (de) * 2015-12-09 2017-06-14 Wabco Gmbh Verfahren zum Einstellen von Bremsdrücken an pneumatisch betätigten Radbremsen eines Fahrzeugs, Bremsanlage zur Durchführung des Verfahrens sowie Fahrzeug
JP6414044B2 (ja) * 2015-12-25 2018-10-31 トヨタ自動車株式会社 車両の駆動力制御装置
US10065636B2 (en) * 2016-06-23 2018-09-04 Ford Global Technologies, Llc Vehicle tire saturation estimator
KR102417515B1 (ko) * 2016-11-24 2022-07-05 현대자동차주식회사 전기자동차의 제동 제어 장치 및 방법
DE102017005501A1 (de) * 2017-06-09 2018-12-13 Wabco Gmbh Verfahren und Bremsanlage zur elektronischen Einstellung der Bremskraftverteilung und Kraftfahrzeug mit einer solchen Bremsanlage
JP7010152B2 (ja) * 2018-06-14 2022-02-10 トヨタ自動車株式会社 車両のブレーキ制御装置
CN114007911A (zh) * 2019-06-14 2022-02-01 沃尔沃卡车集团 用于验证与车辆动力学相关联的模型的方法
CN112519737B (zh) * 2019-09-19 2021-11-02 广州汽车集团股份有限公司 一种车辆电制动强度的控制方法、装置、汽车及存储介质
KR20210153210A (ko) * 2020-06-10 2021-12-17 현대자동차주식회사 전기자동차의 가상 변속감 생성을 위한 제어 방법
WO2023227215A1 (en) * 2022-05-25 2023-11-30 Volvo Truck Corporation A method of controlling a heavy-duty vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880832A (ja) * 1994-09-14 1996-03-26 Toyota Motor Corp 車輌の挙動制御装置
JP2001018780A (ja) * 1999-07-08 2001-01-23 Aisin Seiki Co Ltd アンチスキッド制御装置
JP2003291790A (ja) * 2002-04-02 2003-10-15 Aisin Seiki Co Ltd 車両の制動力配分制御装置
JP2006034012A (ja) * 2004-07-16 2006-02-02 Toyota Motor Corp 車輪のスリップ率演算方法及び車輪の制駆動力制御方法
JP2006304599A (ja) 2006-06-26 2006-11-02 Toyota Motor Corp 車両の回生制動制御装置
JP2010095098A (ja) * 2008-10-15 2010-04-30 Nissan Motor Co Ltd 制動制御装置及び制動方法
JP4920054B2 (ja) 2009-03-30 2012-04-18 株式会社日立製作所 車両運動制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3610738B2 (ja) * 1997-08-21 2005-01-19 日産自動車株式会社 車輪スリップ制御装置付き車両の挙動制御装置
JP4659390B2 (ja) * 2004-05-31 2011-03-30 富士重工業株式会社 車両制動装置および車両制動方法
JP4325539B2 (ja) * 2004-11-09 2009-09-02 日産自動車株式会社 車両のモータトラクション制御装置
JP2007282406A (ja) * 2006-04-07 2007-10-25 Tokyo Metropolitan Univ 自動車の制動力制御システム
CN102202949B (zh) * 2008-10-29 2014-11-26 日产自动车株式会社 车辆接地面摩擦状态估计设备和方法
WO2012023162A1 (en) * 2010-08-20 2012-02-23 Univance Corporation A vehicle
JP5348226B2 (ja) * 2011-11-11 2013-11-20 日産自動車株式会社 車両の制動制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880832A (ja) * 1994-09-14 1996-03-26 Toyota Motor Corp 車輌の挙動制御装置
JP2001018780A (ja) * 1999-07-08 2001-01-23 Aisin Seiki Co Ltd アンチスキッド制御装置
JP2003291790A (ja) * 2002-04-02 2003-10-15 Aisin Seiki Co Ltd 車両の制動力配分制御装置
JP2006034012A (ja) * 2004-07-16 2006-02-02 Toyota Motor Corp 車輪のスリップ率演算方法及び車輪の制駆動力制御方法
JP2006304599A (ja) 2006-06-26 2006-11-02 Toyota Motor Corp 車両の回生制動制御装置
JP2010095098A (ja) * 2008-10-15 2010-04-30 Nissan Motor Co Ltd 制動制御装置及び制動方法
JP4920054B2 (ja) 2009-03-30 2012-04-18 株式会社日立製作所 車両運動制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2923877A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2527396A (en) * 2014-03-26 2015-12-23 Ford Motor Co System and method for energy optimization in autonomous vehicle operation
US9446768B2 (en) 2014-03-26 2016-09-20 Ford Global Technologies, Llc System and method for energy optimization in autonomous vehicle operation
GB2527396B (en) * 2014-03-26 2017-06-14 Ford Motor Co System and method for energy optimization in autonomous vehicle braking
CN105691214A (zh) * 2014-12-12 2016-06-22 现代自动车株式会社 用于在再生制动协同控制中控制制动力的方法

Also Published As

Publication number Publication date
EP2923877A1 (en) 2015-09-30
US20150291038A1 (en) 2015-10-15
CN104812612A (zh) 2015-07-29
JP6042706B2 (ja) 2016-12-14
JP2014103795A (ja) 2014-06-05
CN104812612B (zh) 2016-12-14
US9573473B2 (en) 2017-02-21
EP2923877A4 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6042706B2 (ja) 車両制御装置
US10093308B2 (en) Electronic stability control system for vehicle
KR102417515B1 (ko) 전기자동차의 제동 제어 장치 및 방법
EP3347228B1 (en) Electric vehicle with and method, controller and computer programm for a braking system
JP5879143B2 (ja) 車両運動制御装置及び車両運動制御方法
KR100903665B1 (ko) 가가속도 정보를 이용한 차량의 운동 제어장치
US10967870B2 (en) Hill descent system for vehicle and control method thereof
WO2015152377A1 (ja) 車両制御装置及び車両制御方法
US20110307129A1 (en) Vehicle steerability and stability control via independent wheel torque control
JP2017071385A (ja) 車両用回生制動協調制御システムの制動制御方法
CN108248454B (zh) 车身稳定控制系统、方法及汽车
US9174549B2 (en) Driving force control device for electric vehicle
JP5841265B2 (ja) 車輪制御装置、車両、車輪制御方法
US20200172109A1 (en) Vehicle having electric motor and driving control method for the same
KR20130059202A (ko) 상시 4wd 친환경 자동차의 토크 제어장치 및 방법
US20230134424A1 (en) Method for controlling driving force of vehicle
JP4524597B2 (ja) 四輪独立駆動車の駆動力配分装置
CN110239499B (zh) 车辆的控制装置及车辆的控制方法
CN109383467B (zh) 车辆混合制动控制方法、车辆及机器可读存储介质
JP6152705B2 (ja) 車両制御装置
JP2011051535A (ja) 電気ブレーキ装置
Jing et al. Effect of the tire lateral force saturation on stability control of 4WDEV steering
JP2016037159A (ja) 車両のロール制御装置
KR20230072899A (ko) xEV 자동차의 토크 벡터링 제어 방법 및 장치
KR20240053087A (ko) 차량의 트랙션 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14646275

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013856263

Country of ref document: EP