WO2014080063A1 - Proteína recombinante y usos en el diagnóstico de la esclerosis múltiple - Google Patents

Proteína recombinante y usos en el diagnóstico de la esclerosis múltiple Download PDF

Info

Publication number
WO2014080063A1
WO2014080063A1 PCT/ES2013/070812 ES2013070812W WO2014080063A1 WO 2014080063 A1 WO2014080063 A1 WO 2014080063A1 ES 2013070812 W ES2013070812 W ES 2013070812W WO 2014080063 A1 WO2014080063 A1 WO 2014080063A1
Authority
WO
WIPO (PCT)
Prior art keywords
recombinant protein
antibody
multiple sclerosis
patients
expression
Prior art date
Application number
PCT/ES2013/070812
Other languages
English (en)
French (fr)
Inventor
Óscar FERNÁNDEZ FERNÁNDEZ
Begoña OLIVER MARTOS
Teresa ÓRPEZ ZAFRA
José PAVÍA MOLINA
Cristobalina MAYORGA MAYORGA
Laura LEYVA FERNÁNDEZ
María Jesús PINTO MEDEL
Original Assignee
Servicio Andaluz De Salud
Fundación Pública Andaluza Para La Investigación De Málaga En Biomedicina Y Salud (Fimabis)
Universidad De Málaga
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Servicio Andaluz De Salud, Fundación Pública Andaluza Para La Investigación De Málaga En Biomedicina Y Salud (Fimabis), Universidad De Málaga filed Critical Servicio Andaluz De Salud
Priority to US14/443,814 priority Critical patent/US10393758B2/en
Priority to EP13856322.6A priority patent/EP2930183B1/en
Publication of WO2014080063A1 publication Critical patent/WO2014080063A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7156Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for interferons [IFN]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/564Immunoassay; Biospecific binding assay; Materials therefor for pre-existing immune complex or autoimmune disease, i.e. systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, rheumatoid factors or complement components C1-C9
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/715Assays involving receptors, cell surface antigens or cell surface determinants for cytokines; for lymphokines; for interferons
    • G01N2333/7156Assays involving receptors, cell surface antigens or cell surface determinants for cytokines; for lymphokines; for interferons for interferons [IFN]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/285Demyelinating diseases; Multipel sclerosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/56Staging of a disease; Further complications associated with the disease

Definitions

  • Recombinant protein and uses in the diagnosis of multiple sclerosis are provided.
  • the present invention is within the field of biomedicine and biotechnology, and refers to the isolated IFNAR2.3 soluble receptor, produced recombinantly, and its use in the preparation of a medicament for the prevention and / or treatment of a disease inflammatory autoimmune demyelinating, in particular multiple sclerosis, and for use in the diagnosis of such diseases. It also refers to a method of diagnosis of individuals with multiple sclerosis, a kit and its uses.
  • MS Multiple sclerosis
  • CNS central nervous system
  • interferon beta interferon beta
  • Numerous clinical trials have shown that it decreases the frequency and severity of outbreaks, the number and volume of brain lesions observed by resonance and the progression on the scale of physical disability.
  • a significant percentage of patients (30-50%) do not respond adequately to treatment, as they continue with the presence of outbreaks and progress on the scale of physical disability.
  • the IFNB exerts its biological activity through interaction with the IFNAR surface receptor formed by two subunits, IFNAR1 and IFNAR2. Following the binding of IFNB to IFNAR2, dimerization of the two subunits occurs and the activation of the intracellular signaling cascade whose signal is transduced to the nucleus through the Jak-Stat pathway. In this way, the antiviral, antiproliferative and immunomodulatory activities of the IFNB are exercised.
  • the IFNAR2 subunit of the receptor undergoes alternative mRNA processing that results in three different isoforms: a short isoform (IFNAR2b), a functionally active long isoform (IFNAR2c) and the soluble isoform (slFNAR2, IFNAR2.3 or IFNAR2a).
  • IFNAR2c acts as a functional receptor together with IFNAR1 and is able to mediate the biological effects of IFNB.
  • IFNAR2.3 lacking cytoplasmic and transmembrane domains, has been identified in human biological fluids and although its role is undefined, it has been suggested that it may have a neutralizing ability to bind IFNB with the IFNAR2 receptor.
  • the clinical diagnosis of MS is complex. This is done taking into account the existence of clinical criteria for spatial dissemination (presenting symptoms and signs that indicate the existence of two independent lesions in the CNS) and temporal dissemination (two or more episodes of neurological dysfunction).
  • the studies of nerve conductivity of the optic, sensory and motor nerves also provide evidence of the existence of the disease, since the demyelination process implies a reduction in the conduction velocity of the nerve signals.
  • the study is carried out by comparing reaction times with pre-established measurements.
  • the diagnostic process is completed with tests to exclude other diseases that can mimic sclerosis such as Devic's disease, sarcoidosis, vasculitis and Lyme disease.
  • a first aspect of the invention relates to a recombinant protein obtainable by a method comprising:
  • a second aspect of the invention relates to an antibody, or a fragment thereof, that specifically recognizes a recombinant protein according to the first aspect of the invention.
  • a third aspect of the invention relates to a composition
  • a composition comprising:
  • SIFNAR2 protein IFANR2.3 or soluble IFNAR2
  • the composition is a pharmaceutical composition, more preferably it further comprises a pharmaceutically acceptable carrier and / or excipients.
  • a pharmaceutically acceptable carrier preferably it further comprises a pharmaceutically acceptable carrier and / or excipients.
  • it can comprise another active principle.
  • a fourth aspect of the invention relates to the composition of the third aspect of the invention for use as a medicament.
  • a fifth aspect of the invention relates to the composition of the third aspect of the invention for the prevention, control, treatment and / or relief of an autoimmune demyelinating inflammatory disease, preferably autoimmune demyelinating inflammatory disease is selected from the list consisting of: acute demyelinating diseases of the central nervous system and associated diseases (measles, chicken pox, rubella, enterovirus, Epstein-Barr, HTLV1, Herpes type 6, Herpes simplex and Influenza A and B), acute transverse myelitis (MT), Devic optic neuromyelitis, multiple sclerosis, optic neuritis, diffuse sclerosis or Schilder's disease, recurrent chronic polyneuropathy, leukodystrophy, Hughes syndrome, or any combination thereof. More preferably it refers to the composition of the third aspect of the invention for the prevention, control, treatment and / or relief of multiple sclerosis.
  • a sixth aspect of the invention relates to a method of obtaining useful data, for the diagnosis of individuals with multiple sclerosis, comprising:
  • step (b) compare the quantities obtained in step (b) with a reference quantity.
  • a seventh aspect of the invention relates to a method of diagnosis, prognosis and classification of individuals comprising steps (a) - (c) according to the sixth aspect of the invention, and also comprising assigning the individual of step (a) to the group of individuals with multiple sclerosis when they present a value greater than 2, 14 above the cut-off point established in the ROC curve.
  • it comprises assigning the individual of step (a) to the group of individuals without multiple sclerosis when they have a value below 1.14 below the cut-off point established in the ROC curve.
  • An eighth aspect of the invention relates to a method for predicting or predicting the evolution of a patient who has presented a clinically isolated symptom (CIS) to multiple sclerosis, which comprises steps (a) - (c) the sixth aspect of the invention, and which further comprises assigning the individual of step (a) to the group of individual that will evolve to multiple sclerosis, when they present higher and significant levels with respect to a reference sample.
  • a ninth aspect of the invention relates to the composition of the third aspect of the invention for the prevention, control, treatment and / or relief of an individual from step (a) assigned to the group of individuals with multiple sclerosis or who evolve to multiple sclerosis according to the seventh or eighth aspect of the invention.
  • a tenth aspect of the invention relates to a kit or device, comprising the elements necessary to quantify the IFNAR2.3 expression product, preferably the recombinant protein according to the first aspect of the invention.
  • An eleventh aspect of the invention relates to the use of the kit according to the tenth aspect of the invention to carry out a method as described in the sixth, seventh or eighth aspect of the invention.
  • a twelfth aspect of the invention refers to a computer-readable storage medium comprising program instructions capable of having a computer carry out the steps of the method according to the sixth, seventh or eighth aspect of the invention.
  • a final aspect of the invention relates to a transmissible signal comprising program instructions capable of having a computer carry out the steps of the method according to the sixth, seventh or eighth aspect of the invention.
  • the authors of the present invention have developed a method to aid in the diagnosis of multiple sclerosis, and have designed a semi-quantitative sandwich ELISA for the determination of serum IFNAR2.3. To validate this assay, they have cloned and purified the IFNAR2.3 protein, so that it can serve as a positive control to include in the assay. The optimization of each of the steps of the technique has been carried out and the intraassay and intersay variation thereof has been calculated. Once the methodology has been developed and optimized, serum soluble IFNAR2 values of patients with MS and healthy controls have been determined.
  • the authors of the invention have cloned and purified the IFNAR2.3 protein.
  • they have added a histidine-asparagine tail at the carboxy terminal end, and the recombinant protein is fused as a label.
  • the cell lysate is passed through an affinity column for purification.
  • the fusion protein with the tag is retained in the column while the other proteins and other contaminants are inflated through it.
  • a first aspect of the invention relates to a recombinant protein obtainable by a method comprising:
  • step (a) transforming a host with the expression vector of step (a), c) inducing the expression of the recombinant protein
  • the design of the vector based on genetic engineering techniques and the choice of the host cell largely determine the characteristics of the recombinant protein.
  • the gene construct of the invention may comprise, in addition to the nucleotide sequence SEQ ID NO. 1, elements that regulate the expression of said sequence.
  • regulatory elements include promoters and enhancers. Promoters are typically positioned at 5 'position with respect to the transcription or translation initiation site. Enhancers are able to influence gene expression when they are in 5 ⁇ 3 'position with regarding the cDNA or when they are part of an intron.
  • Regulatory sequences include, in addition to promoters, sequences that facilitate translation, intron processing signals, termination codons, signal sequences, internal ribosome binding sites (IRES) and polyadenylation signals.
  • the expression vector comprising the nucleotide sequence SEQ ID NO. 1 or a gene construct of the invention, is operatively coupled with a sequence that regulates the expression of said nucleotide sequence SEQ ID NO. 1 of said gene construction.
  • a sequence that regulates the expression of said nucleotide sequence SEQ ID NO. 1 of said gene construction is operatively coupled with a sequence that regulates the expression of said nucleotide sequence SEQ ID NO. 1 of said gene construction.
  • the person skilled in the art will note that the type of vector suitable for the expression of nucleic acids and gene constructs of the invention will depend on the organism in which it is desired to express the polynucleotide of the invention.
  • the expression vector is the prelinearized vector pEcoli-Cterm 6xHN Linear.
  • a cell or host organism may comprise the gene construct of the invention or a vector, as defined in the invention.
  • any type of host organism known to the person skilled in the art can be used in the present invention, such as a bacterial strain (Escherichia coli, Bacillus subtilis and the like), a yeast strain (Saccharomyces cerevisiae, Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha and the like), a transgenic plant (dicotyledonous or monocotyledone), an insect cell, for example, baculovirus, a mammalian cell (COS, CHO, C127, HeLa and the like) and a non-human transgenic (by example, a mouse, a cow, a goat, a rabbit, a pig, etc.).
  • the host of step (b) are expression bacteria. More preferably the expression bacteria are BL21 (DE3).
  • the BL21 (DE2) expression bacteria are chemically competent Escherichia coli cells, which possesses a genotype suitable for protein transformation and expression, and whose genome is known (Genome sequences of Escherichia coli B strains REL606 and BL21 (DE3). Jeong H, et al. J Mol Biol 2009 Dec 1 1).
  • a competent bacterium is characterized by a weakened bacterial wall and therefore is more easily able to capture a foreign DNA through a process of thermal or electrical shock (transformation).
  • Expression bacteria are used for protein production.
  • the expression bacteria are those that possess the necessary machinery to overexpress the inserted cDNA and produce the recombinant protein.
  • step (a) the integration of the nucleotide sequence SEQ ID NO: 1 of step (a) is performed by a ligation process.
  • the insert mixture plasmid was resuspended in the In-Fusion Dry-Down pellet product (Clontech).
  • In-Fusion Dry-Down pellet is a lyophilisate that contains the In-Fusion enzyme, which favors the attachment of the insert to the plasmid thanks to homology in the nucleotide sequence present in both.
  • a lyophilisate comprising the In-Fusion enzyme is used in the ligation.
  • This is a Poxvirus DNA polymerase with 3 'exonuclease activity -5', which is capable of binding DNA molecules having single strand short sequences and homologous at their ends, such as a PCR product amplified and a vector.
  • the insert was synthesized using nucleotide sequence primers SEQ ID NO: 5 and SEQ ID NO: 6.
  • Another aspect relates to a protein comprising the amino acid sequence SEQ ID NO: 2, or to the recombinant protein of the invention (soluble IFNAR2, SIFNAR2 or IFNAR2.3), or the protein of the invention (soluble IFNAR2, SIFNAR2 or IFNAR2. 3) obtained by other non-recombinant means, for use as a medicine; or, alternatively, to the use of a protein comprising the amino acid sequence SEQ ID NO: 2 or to the recombinant protein of the invention, or the protein of the invention (soluble IFNAR2, SIFNAR2 or IFNAR2.3) obtained by other non-recombinant means, in the preparation of a medicine.
  • the protein of the invention (soluble IFNAR2, SIFNAR2 or IFNAR2.3) is recombinant, and even more preferably obtained by the method described in the present invention, since the methods of obtaining and purifying described are advantageous, can be obtained by any method known in the state of the art for obtaining proteins.
  • Another aspect relates to a protein comprising the amino acid sequence SEQ ID NO: 2, the recombinant protein of the invention (soluble IFNAR2, SIFNAR2 or IFNAR2.3), or the protein of the invention (soluble IFNAR2, SIFNAR2 or IFNAR2.3 ) obtained by other non-recombinant means, for use in the prevention, control, treatment and / or relief of an autoimmune demyelinating inflammatory disease, or alternatively, the use of a protein comprising the amino acid sequence SEQ ID NO: 2, or recombinant protein (IFNAR2, SIFNAR2 or IFNAR2.3) of the invention, or the protein of the invention (soluble IFNAR2, SIFNAR2 or IFNAR2.3) obtained by other non-recombinant means, in the preparation of a medicament for diagnosis, prevention , control, treatment and / or relief of an autoimmune demyelinating inflammatory disease.
  • the autoimmune demyelinating inflammatory disease is selected from the list consisting of: acute demyelinating diseases of the central nervous system and associated diseases (measles, chickenpox, rubella, enterovirus, Epstein-Barr, HTLV1, Herpes type 6, Herpes simplex and Influenza A and B), acute transverse myelitis (MT), Devic optic neuromyelitis, multiple sclerosis, optic neuritis, diffuse sclerosis or Schilder's disease, Chronic relapsing polyneuropathy, leukodystrophy, Hughes syndrome, or any combination thereof. Even more preferably, the demyelinating inflammatory disease is multiple sclerosis.
  • Another aspect relates to a protein comprising the amino acid sequence SEQ ID NO: 2, the recombinant protein of the invention (soluble IFNAR2, SIFNAR2 or IFNAR2.3), or the protein of the invention (soluble IFNAR2, SIFNAR2 or IFNAR2.3 ) obtained by other non-recombinant means, for use in the diagnosis of multiple sclerosis, and more preferably, in the differential diagnosis of multiple sclerosis.
  • a protein comprising the amino acid sequence SEQ ID NO: 2, the recombinant protein of the invention (soluble IFNAR2, SIFNAR2 or IFNAR2.3), or the protein of the invention (soluble IFNAR2, SIFNAR2 or IFNAR2.3 ) obtained by other non-recombinant means, for use in the diagnosis of multiple sclerosis, and more preferably, in the differential diagnosis of multiple sclerosis.
  • the recombinant protein of the invention can be used for the prevention and treatment of autoimmune demyelinating inflammatory diseases such as multiple sclerosis.
  • antibodies or fragments thereof capable of binding to the recombinant protein of the invention are also an object of the present invention. These antibodies or fragments thereof can be easily obtained from antisera.
  • the antisera for the recombinant protein described in the present invention can be generated by standard techniques, for example, by injection of the recombinant protein of the invention into an appropriate animal and collection and purification of the animal antisera.
  • Antibodies or fragments thereof that bind to SEQ ID NO: 2, or a vacant sequence thereof according to the invention can be identified by standard immunoassays.
  • the antibodies thus obtained (hereinafter, antibodies of the invention) can be used for the diagnostic method of the invention.
  • the antibodies or fragments thereof are monoclonal antibodies.
  • the invention relates to an antibody or a fragment thereof that specifically recognizes the recombinant protein of the invention, hereafter referred to as the antibody of the invention.
  • Antibodies contemplated in the context of the present invention include polyclonal antisera, purified IgG molecules, supernatants or ascites containing monoclonal antibodies, Fv, Fab, Fab 'and F (ab') 2 fragments, ScFvdiabodies, triabodies, tetrabodies and humanized antibodies .
  • composition of the invention relates to a composition, hereinafter the composition of the invention, comprising:
  • compositions may be a pharmaceutical composition. Therefore, another aspect of the invention relates to pharmaceutical compositions, hereinafter pharmaceutical compositions of the invention, comprising at least one of the polynucleotides of the invention, polypeptides of the invention or its mature form, an antibody of the invention. , or a fragment thereof, the recombinant protein of the invention, the protein of the invention (soluble IFNAR2, SIFNAR2 or IFNAR2.3) obtained by other non-recombinant means, and / or accompanied by a pharmaceutically acceptable excipient.
  • the compounds and combinations of compounds of the invention can be formulated together with an excipient that is pharmaceutically acceptable.
  • Preferred excipients for use in the present invention include sugars, starches, celluloses, gums, proteins and others.
  • the pharmaceutical composition of the invention will be formulated in a pharmaceutical form of solid administration (e.g., tablets, capsules, dragees, granules, suppositories, etc.) or liquid (e.g., solutions, suspensions , emulsions, etc.), but not limited.
  • the pharmaceutical compositions of the invention can be administered by any route, including, but not limited to, oral, intravenous, intramuscular, intratraderial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteric, topical. , sublingual or rectal.
  • composition of the invention or the pharmaceutical composition of the invention for use as a medicament, or alternatively, to the use of the composition of the invention or the pharmaceutical composition of the invention in the manufacture of a medicament.
  • medication refers to any substance used for prevention, diagnosis, relief, treatment or cure of diseases or prevention of unwanted physiological conditions in man and animals.
  • Another aspect concerns the composition of the invention or the pharmaceutical composition of the invention for use in use in the prevention, control, treatment and / or relief of an autoimmune demyelinating inflammatory disease, or alternatively, the use of the composition of the invention or of the pharmaceutical composition of the invention in the preparation of a medicament for the prevention, control, treatment and / or relief of an autoimmune demyelinating inflammatory disease.
  • the autoimmune demyelinating inflammatory disease is selected from the list consisting of: acute demyelinating diseases of the central nervous system and associated diseases (measles, chicken pox, rubella, enterovirus, Epstein-Barr, HTLV1, Herpes type 6, Herpes simplex and Influenza A and B), acute transverse myelitis (MT), Devic optic neuromyelitis, multiple sclerosis, optic neuritis, diffuse sclerosis or Schilder's disease, Chronic relapsing polyneuropathy, leukodystrophy, Hughes syndrome, or any combination thereof. Even more preferably, the demyelinating inflammatory disease is multiple sclerosis.
  • Another aspect of the invention relates to the use of IFNAR2.3 for the diagnosis of individuals with multiple sclerosis.
  • Another aspect of the invention relates to a method of obtaining useful data, hereinafter the first method of the invention, for the diagnosis of individuals with multiple sclerosis, comprising:
  • the first method of the invention further comprises: c) comparing the IFNAR2.3 expression product obtained in step (b) with a reference amount
  • the reference amount is obtained from the constitutive expression values of IFNAR2.3, in a group of healthy individuals or, alternatively, who do not have multiple sclerosis. Suitable reference amounts can be determined by the method of the present invention from a reference sample that can be analyzed, for example, simultaneously or consecutively, together with the problem biological sample.
  • the reference sample may be the negative controls, that is, the amounts detected by the method of the invention in samples of individuals not suffering from the disease that is intended to be diagnosed.
  • the IFNAR2.3 expression product in step (b) of the first method of the invention is the IFNAR2.3 protein.
  • step (c) of the invention comprises comparing the detection of the IFNAR2.3 protein in the biological sample of (a) with the detection of the IFNAR2.3 protein in a reference population.
  • steps (b) and / or (c) of the methods described above can be totally or partially automated, for example, by means of a robotic sensor device for the detection of the quantity in step (b) or the computerized comparison in step (c).
  • the method of the invention is an in vitro method, and the sample on which the parameters are measured is an isolated sample.
  • an "isolated biological sample” includes, but not limited to, cells, tissues and / or biological fluids of an organism, obtained by any method known to a person skilled in the art.
  • the isolated biological sample of an individual from step (a) is serum.
  • the isolated biological sample of an individual from step (a) is cerebrospinal fluid.
  • the term “individual” is not intended to be limiting in any aspect, and may be of any age, sex and physical condition.
  • the detection of the IFNAR2.3 expression product can be performed by any means known in the state of the art.
  • the measurement of the IFNAR2.3 expression product although it can be qualitative, the amount or concentration of said expression product can also be determined, preferably semi-quantitatively or quantitatively, and can be carried out directly or indirectly.
  • Direct measurement refers to the measure of the quantity or concentration of the gene expression product, based on a signal that is obtained directly from the detection of the protein. Said signal - which we can also refer to as an intensity signal - can be obtained, for example, by measuring an intensity value of a chemical or physical property of said products.
  • the indirect measurement includes the measurement obtained from a secondary component or a biological measurement system (for example the measurement of cellular responses, ligands, "tags" or enzymatic reaction products).
  • Quantity refers to, but is not limited to, the absolute or relative quantity of gene or antibody expression products, as well as any other related value or parameter. with them or that may be derived from them.
  • Said values or parameters comprise signal intensity values obtained from any of the physical or chemical properties of said expression products obtained by direct measurement. Additionally, said values or parameters include all those obtained by indirect measurement, for example, any of the measurement systems described elsewhere in this document.
  • the term "comparison”, as used in the description, refers to, but is not limited to, the comparison of IFNAR2.3 expression products in a problem sample against the reference population, or alternatively, to the comparison of the quantity of the gene expression products or the amount of antibodies against IFNAR2.3 of the biological sample to be analyzed, also called the biological problem sample, with a quantity of the gene expression products or with a amount of antibodies against IFNAR2.3 of one or more desirable reference samples.
  • the reference sample can be analyzed, for example, simultaneously or consecutively, together with the problem biological sample.
  • the comparison described in section (c) of the method of the present invention can be performed manually or assisted by a computer.
  • Type I interferons exert their action through interaction with the IFNAR membrane receptor, formed by two IFNAR1 and IFNAR2 subunits.
  • the IFNAR2 subunit of the receptor undergoes alternative mRNA processing that results in three different forms: a short form (IFNAR2b), a functionally active long form (IFNAR2c) and the soluble form (slFNAR2, IFNAR2.3 or IFNAR2a).
  • IFNAR2b a short form
  • IFNAR2c functionally active long form
  • slFNAR2, IFNAR2.3 or IFNAR2a the soluble form
  • Only IFNAR2c acts as a functional receptor together with IFNAR1 and is able to mediate the biological effects of IFNB, through the activation of the JAK-STAT signaling cascade.
  • IFNAR2.3 is also defined by a nucleotide or polynucleotide sequence, which constitutes the coding sequence of the protein collected in SEQ ID NO: 2, and which would comprise various vanants from:
  • nucleic acid molecules encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 2,
  • nucleic acid molecules whose complementary hybrid chain with the polynucleotide sequence of a) are nucleic acid molecules whose complementary hybrid chain with the polynucleotide sequence of a),
  • nucleic acid molecules whose sequence differs from a) and / or b) due to the degeneracy of the genetic code
  • nucleic acid molecules encoding a polypeptide comprising the amino acid sequence with an identity of at least 60%, 70%, 80%, 90%, 95%, 98% or 99% with the SEQ ID NO: 2, and in which the polypeptide encoded by said nucleic acids possesses the activity and structural characteristics of the IFNAR2.3 protein.
  • SEQ ID NO1 is represented by the following nucleotide sequence:
  • the detection of the amount of IFNAR2.3 expression product is performed by an immunoassay.
  • immunoassay refers to any analytical technique that is based on the reaction of conjugation of an antibody with an antigen. Examples of immunoassays known in the state of the art are, for example, but not limited to: immunoblot, enzyme-linked immunosorbent assay (ELISA), linear immunoassay (LIA), radioimmunoassay (RIA), immunofluorescence, x-map or protein chips .
  • the immunoassay is an enzyme-linked immunosorbent assay or ELISA (Enzyme-Linked ImmunoSorbent Assay).
  • ELISA Enzyme-Linked ImmunoSorbent Assay
  • the ELISA is based on the premise that an immunoreactive (antigen or antibody) can be immobilized on a solid support, then bringing that system into contact with a fluid phase containing the complementary reagent that can bind to a marker compound.
  • ELISA There are different types of ELISA: direct ELISA, indirect ELISA or sandwich ELISA.
  • the ELISA is a sandwich ELISA.
  • marker compound refers to a compound capable of giving rise to a chromogenic, fluorogenic, radioactive and / or chemiluminescent signal that allows the detection and quantification of the amount of antibodies against to IFNAR2.3.
  • the marker compound is selected from the list comprising radioisotopes, enzymes, fluorophores or any molecule capable of being conjugated with another molecule or detected and / or quantified directly. This marker compound can bind to the antibody directly, or through another compound.
  • directly binding marker compounds are, but are not limited to, enzymes such as alkaline phosphatase or peroxidase, radioactive isotopes such as 32 P or 35 S, fluorochromes such as fluorescein or metal particles, for direct detection by colorimetry, autoradiography , fluorimetry, or metallography respectively.
  • enzymes such as alkaline phosphatase or peroxidase
  • radioactive isotopes such as 32 P or 35 S
  • fluorochromes such as fluorescein or metal particles
  • Another aspect of the invention relates to a method of diagnosis, prognosis and classification of individuals, hereinafter third method of the invention, comprising steps (a) - (c) according to the first method of the invention, and which also includes assigning the individual of step (a) to the group of individuals with or without multiple sclerosis, depending on the cut-off point established for the sample index. Values with the sample index above 2.14 (in the COR curve) allow us to classify subjects as patients with MS, while values below 1.24 (in the COR curve) are classified as healthy individuals.
  • CIS first clinically isolated symptom
  • SIFNAR2 can be used to predict or predict the evolution of CIS patients (clinically isolated syndrome) and be able to determine in advance whether the outbreak is going to reverse or is going to develop in multiple sclerosis.
  • Another aspect of the invention relates to the use of s ⁇ FNAR2 in the preparation of a marker to predict or predict the evolution of a CIS patient to multiple sclerosis.
  • sIFNAR has the ability to predict or predict which patients are more likely to convert to clinically defined MS (CDMS) after an isolated clinical syndrome (CIS). Therefore, another aspect of the invention relates to a method, hereafter referred to as the fourth method of the invention, to predict or predict the evolution of a CIS patient to multiple sclerosis, comprising steps (a) - (c) according to the first method of the invention, and which further comprises assigning the individual of step (a) to the group of individual that will evolve to MS, when they present higher and significant levels with respect to a reference sample.
  • the reference sample is obtained from patients who do not progress to MS.
  • kit or device hereafter kit or device of the invention, comprising the elements necessary to quantify the IFNAR2.3 expression product.
  • the kit or device of the present invention comprises at least one anti-IFNAR2.3 antibody.
  • the kit of the invention comprises secondary antibodies or positive and / or negative controls.
  • the kit comprises the polypeptide of the invention, produced by recombinant technology, as a positive control.
  • the kit can also include, without any limitation, buffers, protein extraction solutions, agents to prevent contamination, inhibitors of protein degradation, etc.
  • the kit can include all the supports and containers necessary for commissioning and optimization.
  • the kit further comprises instructions for carrying out the methods of the invention.
  • the kit of the invention comprises:
  • the primary antibody is an antibody comprising the amino acid sequence SEQ ID NO: 3
  • the secondary antibody is an antibody comprising the amino acid sequence SEQ ID NO: 4
  • kits of the invention for the diagnosis, prognosis, and classification of individuals who have multiple sclerosis.
  • Another aspect of the invention relates to a computer-readable storage medium comprising program instructions capable of having a computer perform the steps of any of the methods of the invention (of the first or second method of the invention ).
  • Another aspect of the invention relates to a transmissible signal comprising program instructions capable of having a computer perform the steps of any of the methods of the invention.
  • the first and / or second method of the invention may include additional steps, such as separation of proteins by mono and two-dimensional electrophoresis (2D-PAGE), or prior digestion with trypsin of a mixture of proteins (from the sample ) to then purify and analyze the peptides by mass spectrometry (MS), such as MALDI-TOF, or by multidimensional chromatography, by ICAT (Isotope-coded affinity tags), DIGE (Differential gel electrophoresis) or protein arrays.
  • MS mass spectrometry
  • polynucleotide and “nucleic acid” are used interchangeably herein, referring to polymorphic forms of nucleotides of any length, both ribonucleotides (RNA or RNA) and deoxyribonucleotides (DNA or DNA).
  • amino acid sequence refers to a polymethyl form of amino acids of any length, which may be coding or non-coding, Chemically or biochemically modified.
  • Fig. 1 Working scheme of the cloning, production and purification of the recombinant protein.
  • Fig. 2 Structure of the pEcoli-Cterm 6xHN Linear vector.
  • Fig. 3 Structure of structures flanking the insert.
  • Fig. 4 Agarose gel electrophoresis of the amplified obtained by PCR.
  • Fig . 5 Alignments of the nucleotide sequences in the 5 '-3'. In the first line the nucleotide sequence of IFNAR2.3 is shown, in the second and third line the nucleotide sequences with the flanking primers of the T7UP insert and
  • Terminal T7 obtained after the plasmid sequencing process.
  • Fig. 6 Graphs of the tuning of antibody concentrations for the
  • Fig. 7 Analysis of serum IFNAR2.3 values in patients treated with INFp, without treatment and controls.
  • Fig. 8 Analysis of serum IFNAR2.3 values in patients treated with INFp, without treatment, controls and patients treated with Copaxone®.
  • Fig. 9 COR curve (ROC) patients without treatment and controls.
  • Fig. 10 SDS-PAGE 12% and the Western Blot of purified SIFNAR2 (30 kDa). M shows the molecular weight. SDS-PAGE of purified SIFNAR2 (column 1) and Western Blot of the same sequence (column 2). (B) Relationship between the concentration of purified slFNAR2 and the optical density obtained by ELISA.
  • Fig. 11 Result of peptide fingerprint analysis by MALDI-TOF / TOF mass spectrometry.
  • Fig. 12 Nonparametric statistical analysis of SIFNAR2 levels of CIS patients who convert to sclerosis or not.
  • NO MS patients who do not convert to sclerosis.
  • IF MS patients who convert to a defined multiple sclerosis.
  • Serum slFNA2R2 levels were determined in two independent cohorts of untreated patients (NT) MS and healthy controls (HC) (A and B). The analysis performed with mixed cohorts and other inflammatory neurological diseases (OIND) (C) The data were analyzed with the use of the Kruskal-Wallis test of a variance pathway followed by the Mann-Whitney U test.
  • Fig. 16 Evaluation of IFN gamma and TNF alpha in patients with untreated MS The analysis of IFN gamma (A) and TNF alpha (B) expression in CD3 + cells of patients with MS not treated with high and low levels of SIFNAR2, by flow cytometry.
  • Fig. 19 Clinical treatment. One way ANOVA + Newman-Keuls.
  • Fig. 20 Clinical treatment. T-Test paired data.
  • the prokaryotic expression system chosen is the pre-linearized vector pEcoli-Cterm 6xHN Linear (Clontech).
  • the resulting protein will have a histidine-asparagine tail fused at the carboxy terminal end that will serve for purification.
  • the structure of the vector where the insert was integrated with the nucleotide sequence of our protein of interest is detailed.
  • the expression system of pEcoli Cterm 6xHN Linear is based on the T7 strong promoter expression system, controlled by the LacZ operon which in turn is inducible by IPTG (Isopropyl-p-D-thiogalactopyranoside).
  • the plasmid has an ampicillin resistance gene that allows the selection of clones containing the plasmid.
  • the BL21 bacteria (DE3) contain a chromosomal copy of the T7 RNA polymerase gene, which in turn is under the control of the IPU-inducible lacUV5 promoter.
  • the first point in the design of the cloning strategy was the synthesis of the insert.
  • all the information on the IFNAR2.3 sequence was collected, such as the signal sequence of the peptide, post-translational modifications, the biochemical characteristics of the protein, the domains thereof, etc. All this information was obtained from the UNIPROT database (http://www.uniprot.org/uniprot/P48551), which houses the amino acid sequences of the proteins and their biochemical characteristics.
  • the IFNAR2.3 mRNA sequence was obtained from the NCBI NUCLEOTIDE database (http: //www.ncbi. Nlm.nih.gov/nuccore.)
  • the 3 ' end • Have 15 homologous bases with the ends of the gene to be inserted.
  • the primers gave a product after the 638 bp amplification.
  • the sequences of the primers were:
  • the insert was synthesized by conventional PCR from the primers designed in the previous point, using a high fidelity Taq and using as a template a cDNA from a mixture of commercial human cDNA.
  • the optimal conditions of concentrations, temperature and times for the synthesis of the insert were the following:
  • Table 1 Summary of conventional PCR reagents for insert synthesis.
  • Antisense primer (20 ⁇ ) 1 ⁇ 0.4 ⁇
  • Table 2 Summary of temperature conditions for insert synthesis by conventional PCR.
  • the final product obtained from the PCR was separated according to its size by the technique of horizontal electrophoresis in a 2% agarose gel dissolved in TAE buffer, together with the Gold View Nucleic Acid Satin Intercalator (Sbs Genetech) at a dilution 1/20.
  • the gel was subjected to a constant current of 80 V and was viewed in an ultaviolet transilluminator, which allowed to locate the band of interest based on the number of base pairs.
  • the band located at the height of 638 bp was trimmed from the agarose gel with the help of a scalpel.
  • the sequence of the amplified insert contained in the agarose was purified with the commercial kit QIAquick Gel Extraction (QIAGEN) following the manufacturer's instructions. At the end of the process an eluate was obtained, which was quantified with a spectrophotometer (Nanodrop, Thermo) before being stored at -20 ° C.
  • the next point in the cloning process was the ligation process, that is, "sticking" the plasmid, the nucleotide sequence of IFNAR2.3, which will give rise to the recombinant protein.
  • the Clontech commercial house offers a computer tool (http://bioinfo.clontech.com/infusion) to calculate the optimal quantities of the vector and the insert, for the ligation process from the known variables length of the vector and the insert.
  • the insert mixture plasmid was resuspended in the In-Fusion Dry-Down pellet product (Clontech).
  • In-Fusion Dry-Down pellet is a lyophilisate that contains the In-Fusion enzyme, which favors the attachment of the insert to the plasmid thanks to homology in the nucleotide sequence present in both.
  • the ligation reaction was carried out in a thermal cycler, at 37 ° C for 15 minutes followed by 15 minutes at 50 ° C and subsequently transferred to ice. Finally, the ligation product was resuspended in 40 ⁇ of TE buffer (Tris-HCI, EDTA) at pH 8.
  • the competent bacteria used were MAX Efficiency DH5a TM Competent Cells (Invitrogen) which were transformed with the plasmid, following the following protocol:
  • the samples were incubated at 37 ° C, with agitation of 225 rpm for 1 hour. Finally, the transformed bacteria were seeded at different volumes in LB-Agar plates supplemented with 100 ⁇ g / ml ampicillin and incubated overnight at 37 ° C.
  • CFU colony forming units
  • the bacteria culture was aliquoted in 1.5 ml tubes and centrifuged at 16000g for 30 seconds in a microcentrifuge. From the product obtained, the supernatant was discarded and the precipitate was resuspended in 600 ⁇ of water, to which 100 ⁇ of cell lysis buffer was added and mixed by inversion. To this mixture was added 350 ⁇ of neutralizing solution and mixed again by inversion. It was then centrifuged at 16000g for 3 minutes. The supernatant obtained was transferred to one of the minicolumns provided by the kit that retains the DNA. It was centrifuged again at 16000g for 15 seconds. Then, 200 ⁇ of wash solution was added to the minicolumn and centrifuged again for 15 seconds.
  • the minicolumn was transferred to a clean microcentrifuge tube of 1.5 ml, 30 ⁇ of sterile water was added to the center of the membrane and incubated for 1 minute at room temperature . Finally, to obtain the purified plasmid DNA, it was centrifuged at 16000g for 15 seconds. Plasmid DNA was quantified by absorbance in the spectrophotometer (Nanodrop, Thermo) and was stored at -20 ° C until it was used.
  • Sequence insertion encompassed upstream sequences that coincided with the T7 promoter and downstream with the terminal T7 sequence.
  • the sequences obtained were aligned in the 5 '3' with the reference sequence number GeneBank NBCI: CAA61940.1 by bioinformatic program Multalin. Below is the results obtained after the alignment that assured us the integrity of the sequence and orientation in the correct reading frame:
  • the plasmid was transformed into the BL21 expression bacteria (DE3) for the production of the recombinant IFNAR2.3 protein, following the same protocol described above for transformation into replicative bacteria and plasmid detection. induction of IFNAR2.3 recombinant protein expression
  • the recombinant protein Under normal conditions, in the BL21 (DE3) bacteria transformed with the plasmid, the recombinant protein is not being expressed because its expression is repressed by the Lac (Lacl) repressor that is bound to the Lac operon. To allow its expression, it is necessary to add IPTG that acts as an inducer by sequestering the repressor and allowing the T7 RNA polymerase to bind to the T7 promoter and carry out the transcription process. To induce the expression of the IFNAR2.3 recombinant protein, the following protocol was followed:
  • the BL21 bacteria (DE3) with the plasmid were grown in 4ml of LB-Broth supplemented with ampicillin at a final concentration of 100pg / ml and incubated overnight at 37 ° C with agitation of 220 rpm.
  • the induction of protein expression was performed.
  • the culture of the previous day was diluted 1/10 in a final volume of 50 ml of LB-Broth medium supplemented with ampicillin and incubated at 37 ° C with agitation of 220 rpm until an optical density (OD) of 0.80-1 nm is reached.
  • the IPTG inducer was added to a final concentration of 0.5mM (previously established) and the culture was incubated for 4 hours at 37 ° C with agitation of 220 rpm. From this moment on, the transcription process for protein expression began.
  • the culture was collected and centrifuged at 1600g at 4 ° C for 20 minutes. The supernatant was discarded and the pellet stored at -80 ° C until later use.
  • the expressed recombinant protein was located inside the bacteria. To access it and be able to purify it, the bacterial wall had to be broken by physical and chemical processes that are detailed below:
  • the precipitate of bacteria stored at -80 ° C was thawed at room temperature.
  • 0.5ml of bacterial lysis buffer was added for each milliliter of initial culture and resuspended with the help of a pipette.
  • the resulting suspension was incubated for 1 hour at room temperature in rotation. After this time the sample was subjected to ultrasound in cycles of 5 pulses of 30 seconds on ice, and with an intensity of 40%. It was then ultracentrifuged at 15,000 g for 20 minutes at 4 ° C and with this the membranes of the bacteria released from the bacteria were separated. After ultracentrifugation, the supernatant was collected and passed through a 0.45 pm filter.
  • the product obtained after extraction contained the recombinant protein along with other bacterial proteins.
  • affinity chromatography technique was used, so that the IFNAR2.3 recombinant protein is retained by the histidine-asparagine tail it contains.
  • the chosen columns are presented in a volume of 1 ml and are filled with sepharose resin that have nickel ions attached. Nickel ions you they confer the ability to retain histidine-rich proteins and therefore the IFNAR2.3 recombinant protein will be retained, among others.
  • the protein release from the resin is produced by the addition of an imidazole-rich buffer that competes with the nickel binding site. The protocol followed is detailed below:
  • the resin was washed and equilibrated with 10 ml of equilibration buffer.
  • the protein extract containing our protein of interest was contacted with the resin in rotation at 4 ° C for 1 hour and subsequently, the resin was packed in the column. To remove the proteins not bound to the resin, it was washed with 10 ml of equilibration buffer. Finally, the proteins retained by nickel were eluted with 5 ml of elution buffer rich in imidazole and collected in 1 ml aliquots.
  • the first step for protein detection was the electrophoresis in polyacrylamide gels and subsequently the transfer of proteins to a membrane.
  • the samples were resuspended in 5x loading buffer and boiled at 100 ° C for 3 minutes in a thermoblock. These were then loaded into a 12% polyacrylamide gel, immersed in an electrophoresis buffer and subjected to a constant current of 130 V. Once the electrophoresis was completed, the gel obtained was immersed in transfer buffer for a few minutes.
  • the transfer was carried out in a semi-dry system in graphite sheets that had previously been moistened with water.
  • the nitrocellulose membrane with a pore size of 0.45 pm was then activated by immersing it in water and subsequently equilibrated in transfer buffer.
  • the sandwich was assembled; on the graphite plate; 9 transfer papers previously moistened in transfer buffer were placed, then the membrane on top and on this the gel to be transferred.
  • 9 dampened transfer papers were put back in transfer buffer. The transfer was performed for 45 minutes with an intensity of 0.8 mA / cm2. Once the transfer was finished, the membrane was separated and blocked with blocking buffer for 2h at room temperature and with stirring.
  • Blocking is a stage that avoids non-specific binding of antibodies to free membrane sites, these being blocked with milk casein.
  • the membrane was contacted with the primary anti-IFNAR2 Human antibody produced in rabbit (Abnova) 1/5000, previously established dilution, in blocking solution overnight at 4 ° C in rotation. The next day, the membrane was removed from the solution with antibody and washed with wash buffer. The membrane was incubated for one hour and a half with the anti-rabbit IgG antibody (Sigma-Aldrich) labeled with alkaline phosphatase, at a dilution 1/10000 in blocking solution. It was washed as in the previous point.
  • the membrane was revealed by contacting it with a mixture formed by 200 ⁇ of NBT / BCIP + 10 ml of developing solution at room temperature until a colored product appeared. Finally, the reaction was stopped by discarding the developing solution and immersing it in stop solution, rich in magnesium ions that block the development of the colorimetric reaction by removing the NBT / BCIP.
  • a sandwich ELISA has been developed that requires two different antibodies that bind to the same antigen.
  • the first antibody (bound to the plate) is the so-called primary antibody, while the second antibody detects the antigen immobilized by the first and is called the secondary antibody) Since the latter is not labeled, we have resorted to a third antibody (species -specific) conjugated to an enzyme that we will later face with its substrate that will lead to a colorimetric reaction.
  • the plaque is sensitized with a specific antibody that will recognize and immobilize our antigen under study (IFNAR2.3).
  • IFNAR2.3 a specific antibody that will recognize and immobilize our antigen under study
  • the plate was sensitized with the primary antibody as just described.
  • the recombinant protein IFNAR2.3 produced in bacteria and purified by affinity chromatography was used. Different dilutions of the IFNAR2.3 recombinant protein (1/20, 1/50, 1/100 and 1/200) were used; In addition, a negative control was included in each plate consisting of blocking solution (TBS / Tween 20/1% BSA). The samples were incubated at 37 ° C for 1 hour, after which was washed three times with TBS / Tween buffer.
  • the secondary antibody was added at different concentrations (400, 600 and 800 ng / ml in blocking solution) and incubated again for 1 hour at 37 ° C, again washing the plate 3 times with buffer TBS / Tween Subsequently, the incubation with an antibody conjugated to alkaline phosphatase was used, following the specifications of the supplier, which specifically detected mouse IgG and was incubated again for 1 hour at 37 ° C, washing the plate after incubation with TBS / Tween After this process, the alkaline phosphatase substrate solution was added to each well of the plate. After incubating the plate for 30 min at 37 ° C, the reaction was stopped with 3 M NaOH. As a result of the enzyme-substrate reaction, the wells in which there is an identification of the antigen appear bright yellow. The color intensity was quantified by reading the optical density of each well at 405 nm in a plate reader.
  • the intra-assay variation of the technique has been calculated, the OD determining the same sample in the same test 12 times and a variation coefficient of 12.2% has been obtained.
  • the OD of the same sample was determined in 7 different tests carried out on different days, obtaining a coefficient of variation of 17.1%.
  • Serum IFNAR2.3 expression shows significant differences in patients treated with IFN, untreated MS patients and healthy controls, as seen in Fig. 7.
  • treatment with IFNB increases serum levels of IFNAR2.3 compared to untreated patients and healthy controls.
  • the differences found between untreated patients and healthy controls, without intervening with IFNB treatment, are probably due to the pathogenesis of the disease.
  • patients treated with Copaxone® have been included. No significant differences were found between patients treated with Copaxone® and patients without treatment (they have very similar medians) and the differences between those treated with Copaxone® and healthy controls are maintained.
  • Cut off: 3 (DO NEG + Desv. St neg); Cut off: 3 (0.089 + 0.0136) 0.307
  • SENSITIVITY It is the probability of correctly classifying an individual that has been defined as positive with respect to the condition studied by the test. Probability that a sick subject obtains a positive result in the test. Sensitivity is, therefore, the ability of the test to detect the disease.
  • SPECIFICITY It is the probability of correctly classifying an individual that has been defined as negative. Probability of correctly classifying a healthy individual, that is, the probability that a healthy subject obtains a negative result.
  • This first analysis includes MS patients (without treatment, treated with IFN and treated with Copaxone®) and healthy controls (Fig. IX)
  • a second cohort was included to check if the data was replicated.
  • This second cohort comprised 208 patients with multiple sclerosis (136 treated and 72 untreated) and 64 healthy controls.
  • Recombinant SIFNAR2 was cloned and expressed in bacteria BL21 (DE3) cells and purified with affinity columns. This protein was used to optimize a semi-quantitative non-commercial enzyme linked immunosorbent assay to detect SIFNAR2 and was included as a positive control in each series. The absorbance was normalized and the data was analyzed using the Mann-Whitney U test and the ROC curve (receiver operating characteristics).
  • the initial cohort included 305 patients, recruited from the Carlos Haya Regional University Hospital (Malaga, Spain), with MS defined according to McDonald's revised criteria (McDonald et al., 2001. Ann Neurol 50: 121-7; Polman et al. , 2005. Ann Neurol 58: 840-6; Polman et al., 201 1. Ann Neurol 69: 292-302). Eighty-one patients were previously treated and had never received IFNB, glatiramer acetate (GA) or mitoxantrone, or corticosteroids in the three months prior to blood sampling. In total, 224 patients had been treated with IFNB 1 a or 1 b for at least one year, and 47 patients had been treated with GA. As controls, 53 healthy individuals were selected.
  • IFNB glatiramer acetate
  • the prokaryotic expression system chosen was linear pEcoli-Cterm 6xHN (Clontech ® ).
  • the insert was synthesized by polymerase chain reaction using specific primers.
  • the specific band was purified with the "QIAquick Gel Extraction” kit (QIAGEN®) and bound with the "In-Fusion Dry-Down pellet” kit (Clontech ® ) following the manufacturer's instructions.
  • Competent DH5a TM (Invitrogen ® ) cells were transformed, plated on LB agar plates supplemented with ampicillin (100 mg / ml) and incubated overnight at 37 ° C.
  • OD optical density
  • Bacteria were collected and resuspended in lysis buffer containing a protease inhibitor cocktail (Roche ® ), incubated for 30 min at room temperature with constant agitation and sonicated. The suspension was centrifuged at 20,000 g for 20 min at 4 0 C and the supernatant filtered.
  • a protease inhibitor cocktail (Roche ® )
  • Recombinant SIFNAR2 was purified on high-capacity iminodiacetic acid N + 2 - resin columns and detected by Western Blot using the human anti-IFNAR2 antibody MaxPab (Abnova ®) (Table S1). Recombinant SIFNAR2 was also identified by MALDI ionization (matrix assisted laser desorption / ionization), coupled to a TOF (flight time) analyzer (MALDI-TOF).
  • Buffer of lis s 50 mM Tr ⁇ 5 5, 5 00 mM NaCI, 10% glycerol, 1% NP-40, pH 7 Balancing buffer 50 mM sodium phosphate, 300 mM NaCI, 20 mM imidazole; pH
  • Elution buffer 50 mM sodium phosphate, 300 mM NaCI, 300 mM imidazole;
  • Serum slFNAR2 was detected by a non-commercial semi-quantitative sandwich ELISA (Table S2). Plates were coated with human polyclonal anti - IFNAR2 antibody produced in rabbit MaxPab (Abnova ®) at a final concentration of 800 ng / well and incubated at 4 ° C overnight. After washing the plate, 200 I of blocking buffer per well was added and incubated for 2 hours at room temperature. Then, 50 I of the serum samples were added in duplicate. After one hour, a human polyclonal secondary antibody anti - IFNAR2 MaxPab produced in mouse (Abnova ®) (400 ng / well) and incubated for 1 hour was added. More details about the specificity of the antibodies used are included below and in Fig. 13.
  • IFNAR2 (AAH02793.1, 1 a.a. ⁇ 331 a.a) full-length human protein. SEQUENCE:
  • IFNAR2 (AAH02793.1, 1 a.a. ⁇ 331 a.a) full-length human protein. SEQUENCE:
  • a goat-produced alkaline rabbit phosphatase anti-IgG antibody (Sigma-Aldrich ® ) diluted 1/1000 was added and incubated for one hour.
  • p-nitrophenyl phosphate solution (1 mg / ml) was added and incubated for 30 minutes. Then, the OD was measured at 405 nm. The value was taken to be directly proportional to the amount of slFNAR2 present in the serum.
  • the absorbance of the serum samples were normalized as follows:
  • ROC Receiveiver Operating Characteristic
  • the antibody concentrations used in the ELISA were optimized to obtain the best signal / noise ratio.
  • the specificity of the ELISA was confirmed by obtaining positive results in the wells containing the recombinant slFNAR2 and negative results from samples without it.
  • the absorbance decreased linearly with higher dilutions of SIFNAR2 ( Figure 1 1).
  • the intra and intra-assay variability was evaluated, obtaining a coefficient of variation of 5.3% and 14.8%, respectively.
  • IFNB treated patients show a significant increase in serum levels of slFNAR2 compared to untreated patients (P ⁇ 0.001) and with healthy controls (P ⁇ 0.001).
  • IFNB treated patients show a significant increase in serum levels of slFNAR2 compared to untreated patients (P ⁇ 0.001) and with healthy controls (P ⁇ 0.001).
  • GA healthy controls
  • the range of specificity and sensitivity obtained in this test will depend on the cut line established by the observer.
  • the optimal cut-off value to discriminate between patients with MS and healthy controls was 1, 4, which resulted in a sensitivity (true positive rate) of 80.55% and a specificity (false positive rate) of 70.52%
  • sensitivity is defined as the percentage of patients with MS correctly identified. This optimal cut-off point prioritizes sensitivity over specificity since the clinical utility of the determination is SIFNAR2 as a screening method to identify patients with MS.
  • SIFNAR2 serum and C-reactive protein could improve the diagnosis of patients with gastrointestinal cancer and hepatobiliary-pancreatic cancer.
  • Another example is the two-fold increase in the detection of iron deficiency anemia when three parameters were used in combination (ferritin, RsTf, and the RsTf index) instead of ferritin alone.
  • SIFNAR2 levels could be added to the panel of other potential laboratory diagnostic biomarkers described in MS as CSF OCB IgG and / or KFLC (Free Kappa Free Light Chains) CSF, MRZ reaction (measles-rubella-Zoster Endothecal Reaction) or levels in vitamin D.31 serum
  • CSF OCB IgG and / or KFLC Free Kappa Free Light Chains
  • MRZ reaction measles-rubella-Zoster Endothecal Reaction
  • EXAMPLE 3 The soluble isoform of the IFNAR2 subunit (slFNAR2) can modulate the activity of ⁇ and therefore the associated immune response.
  • SIFNAR2 could be due to an attempt to neutralize the abnormal proinflammatory response that occurs in the disease.
  • EXAMPLE 4 Evaluation of SIFNAR2 in CIS patients At the onset of multiple sclerosis there is a preclinical phase in which there are lesions, but there are no manifestations of symptoms. The suspicion of the presence of the disease begins with the appearance of the first clinically isolated symptom (CIS). These symptoms indicate a suspicion, but not a confirmation of multiple sclerosis. Confirmation of the disease or, as it is called clinically, the change to a clinically defined multiple sclerosis (clinically defined multiple sclerosis CDMS), occurs when the patient presents another clinical symptom in which a spatial dissemination of the lesions (presence of symptoms and signs that indicate the existence of two independent lesions in the CNS) and a temporary dispersion (two or more episodes of neurological dysfunction).
  • Table 9 Median and interquartile range of serum values of SIFNAR2 in patients with CIS who convert to MS or not.
  • mice with progressive chronic autoimmune encephalomyelitis (EAE) (CP) were used as an animal model.
  • the animal models, with a size of n 5, were divided into four groups:
  • the treatment consisted of chronic administration, intraperitoneally, of each of the compounds, from day 8 after immunization (8dp ⁇ ) (before the onset of symptoms) and every 3 days until the end of experimentation .
  • the combined administration of the IFN beta + IFNAR sol (slFNAR2) in the same animal has been done by first administering the IFNb and, 15-20 min later, the slFNAR2, both also intraperitoneally.
  • the slFNAR2 delays the onset of symptoms and, both the maximum and the cumulative score, is considerably lower than those treated with saline. This indicates that EAE (outbreak) is more moderate in animals treated with IFNAR sun. However, over time (chronification), the clinical score of the animals is similar to those treated with saline.
  • SIFNAR2 and IFNb antagonize, to some extent, their effects. Animals with this therapy develop a more moderate CP-EAE than animals treated with saline and IFNb alone. Both the maximum and the cumulative score of the animals with this double therapy is lower. Over time (chronification), the clinical score is similar to those treated with saline and with SIFNAR2 as a single therapy.
  • IFNb does not exert a beneficial therapeutic effect in animals with induced CP-EAE, but intervenes aggravating the disease.
  • the slFNAR2 modulates the development of induced CP-EAE: it moderates its severity and delays both the onset of the disease and the timing of clinical symptomatology. However, the therapeutic effect seems limited in time, since in the chronification of the disease the neurological deficit of the animals is similar to those treated with saline.
  • slFNAR2 antagonizes the effect of IFNb, moderating the severity of EAE, and matching, in the chronification of the disease, the neurological deficit to the values reached by animals treated with saline
  • IFN beta + SIFNAR2 The administration of IFN beta + SIFNAR2 in the same animal has been carried out by administering the IFNb first and, 15-20 min later, SIFNAR2, both also intraperitoneally.
  • both IFNb and SIFNAR2 are administered as “single therapy” but also when administered as “combination therapy”, decrease the severity of EAE, showing these animals maximum scores and cumulative much smaller than those treated with saline.
  • IFNb + slFNAR2 seems to "antagonize", to some extent, this slight increase in the severity of EAE suffered by animals treated with SIFNAR2 at the end of the experiment.
  • SlFNAR2 does NOT enhance or antagonize the beneficial effect of IFNbeta on the clinical course of EAE (there is no synergy or blocking of effects between them when co-administered; the IFNb + slFNAR2 curve is almost parallel to that of IFNb alone) .
  • IFNb exerts a beneficial effect on animals with induced CP-EAE by decreasing the severity and neurological deficit of animals throughout the course of the disease.
  • SlFNAR2 exerts a therapeutic effect similar to that of IFNb. Decreases the severity and neurological deficit of animals throughout the course of the disease. Again, the therapeutic effect seems limited in time, since in the final stage of the chronification, the neurological deficit of the animals tends to equal that of those treated with saline.
  • IFNb It is the IFNb that "potentiates" the beneficial effect of soluble IFNAR at the late stage of disease chronification, avoiding the slight increase in neurological deficit suffered by animals treated only with soluble IFNAR.
  • Soluble IFNAR intervenes by modulating progressive chronic EAE, exerting a beneficial effect on the clinical course and neurological deficit suffered by animals with induced EAE.
  • SlFNAR2 exerts a therapeutic effect greater than that of IFNb when administered preventively. When administered together, both drugs interact by antagonizing their effects.
  • SlFNAR2 exerts a therapeutic effect similar to that of IFNb when administered clinically.
  • the mechanism of action of this beneficial effect seems to be related more to its modulation of endogenous IFNb than to its interaction with exogenous IFNb since, when administered jointly, the effect of none is modified.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Rheumatology (AREA)
  • Rehabilitation Therapy (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Proteína recombinante y usos en el diagnóstico y tratamiento de la esclerosis múltiple. Proteína recombinante IFNAR2.3, anticuerpos, composiciones que los comprenden, y usos. Entre sus usos, especialmente, se refiere a un método para el diagnóstico de la esclerosis múltiple, así como al kit de diagnóstico. También se refiere al uso de la proteína IFNAR2.3 en la elaboración de un medicamento para el tratamiento de la esclerosis múltiple.

Description

Proteína recombinante y usos en el diagnóstico de la esclerosis múltiple.
La presente invención se encuentra dentro del campo de la biomedicina y la biotecnología, y se refiere al receptor soluble IFNAR2.3 aislado, producido de manera recombinante, y a su uso en la elaboración de un medicamento para la prevención y/o tratamiento de una enfermedad inflamatoria desmielinizante autoinmune, en particular la esclerosis múltiple, y para su uso en el diagnóstico de dicha enfermedades. También se refiere a un método de diagnóstico de individuos con esclerosis múltiple, a un kit y a sus usos.
ANTECEDENTES DE LA INVENCIÓN
La esclerosis múltiple (EM) es una enfermedad crónica inflamatoria y desmielinizante del sistema nervioso central (SNC), presumiblemente autoinmune. Se caracteriza por la presencia de lesiones inflamatorias en la sustancia blanca y gris del SNC, denominadas placas, en las que se produce pérdida de mielina y cierto grado de degeneración axonal.
Aunque en los últimos años se han desarrollado numerosos fármacos para paliar los efectos de esta enfermedad, el interferon beta (IFNB) sigue siendo el tratamiento más ampliamente utilizado. Numerosos ensayos clínicos han demostrado que disminuye la frecuencia y gravedad de los brotes, el número y volumen de las lesiones cerebrales observadas por resonancia y la progresión en la escala de discapacidad física. Sin embargo, un porcentaje importante de pacientes (30-50%) no responden adecuadamente al tratamiento, ya que continúan con la presencia de brotes y progresan en la escala de discapacidad física.
El IFNB ejerce su actividad biológica a través de la interacción con el receptor de superficie IFNAR formado por dos subunidades, IFNAR1 e IFNAR2. Tras la unión del IFNB a IFNAR2, se produce la dimerización de las dos subunidades y la activación de la cascada de señalización intracelular cuya señal es transducida al núcleo a través de la vía Jak-Stat. De esta forma se ejercen las actividades antivirales, antiproliferativas e inmunomoduladoras del IFNB. La subunidad IFNAR2 del receptor sufre un procesamiento alternativo del ARNm que da lugar a tres isoformas distintas: una isoforma corta (IFNAR2b), una isoforma larga funcionalmente activa (IFNAR2c) y la isoforma soluble (slFNAR2, IFNAR2.3 o IFNAR2a). Solamente IFNAR2c actúa como receptor funcional junto con IFNAR1 y es capaz de mediar los efectos biológicos del IFNB. IFNAR2.3 que carece de dominios citoplasmáticos y transmembrana, ha sido identificada en fluidos biológicos humanos y aunque su papel no está definido, se ha sugerido que pueda tener capacidad neutralizante de la unión del IFNB con el receptor IFNAR2. De esta forma podría ejercer funciones moduladoras según la concentración a la que se encuentre; por un lado podría neutralizar la unión del IFNB al receptor IFNAR o por el contrario, prolongar la vida media del IFNB circulante, impidiendo su degradación o la formación de oligómeros. A día de hoy sigue siendo desconocida la función de la vanante soluble de IFNAR2.
El diagnóstico clínico de la EM es complejo. Éste se realiza teniendo en consideración la existencia de criterios clínicos de diseminación espacial (presenta de síntomas y signos que indiquen existencia de dos lesiones independientes en el SNC) y de diseminación temporal (dos o más episodios de disfunción neurológica).
Los estudios de conductividad nerviosa de los nervios ópticos, sensitivos y motores también proporcionan pruebas de la existencia de la enfermedad, ya que el proceso de desmielinización implica una reducción de la velocidad de conducción de las señales nerviosas. El estudio se realiza comparando los tiempos de reacción con mediciones preestablecidas.
El proceso de diagnóstico se completa con la realización de pruebas para excluir otras enfermedades que pueden imitar a la esclerosis como la Enfermedad de Devic, la sarcoidosis, la vasculitis y la enfermedad de Lyme.
Hasta el momento, la prueba paraclínica por excelencia para confirmar el diagnóstico de EM es la presencia de bandas oligoclonales (BOC) en líquido cefalorraquídeo, producidas por células situadas en el espacio subaracnoideo, que dan lugar a síntesis intratecal de IgG. El método más sensible para su detección es el isoelectroenfoque en gel de poliac lamida, que permite detectar BOC hasta en el 95% de los casos de EM. El principal inconveniente de esta técnica es la necesidad de realizar una punción lumbar al paciente, siendo un método invasivo para el paciente y costoso.
Sería útil, por tanto, encontrar una prueba paraclínica que consiga diagnosticar individuos con EM de una manera mucho menos invasiva, incruenta y por ello, más inocua para el paciente.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
Un primer aspecto de la invención se refiere a una proteína recombinante obtenible por un procedimiento que comprende:
a) integrar un inserto con la secuencia nucleotídica SEQ ID NO. 1 en un vector de expresión,
b) transformar un hospedador con el vector de expresión del paso (a),
c) inducir la expresión de la proteína recombinante,
d) extraer la proteína recombinante, y
e) opcionalmente purificar la proteína recombinante.
Un segundo aspecto de la invención se refiere a un anticuerpo, o un fragmento del mismo, que reconoce específicamente una proteína recombinante según el primer aspecto de la invención.
Un tercer aspecto de la invención se refiere a una composición que comprende:
a) una proteína que comprende la secuencia aminoacídica SEQ ID NO: 2,
b) la proteína recombinante obtenida según el primer aspecto de la invención, c) La proteína SIFNAR2 (IFANR2.3 o IFNAR2 soluble), ó
d) el anticuerpo según el segundo aspecto de la invención.
Preferiblemente la composición es una composición farmacéutica, más preferiblemente además comprende un vehículo y/o excipientes farmacéuticamente aceptables. Opcionalmente puede comprender otro principio activo.
Un cuarto aspecto de la invención se refiere a la composición del tercer aspecto de la invención para su uso como medicamento. Un quinto aspecto de la invención se refiere a la composición del tercer aspecto de la invención para la prevención, control, tratamiento y/o alivio de una enfermedad inflamatoria desmielinizante autoinmune, preferiblemente la enfermedad inflamatoria desmielinizante autoinmune se selecciona de la lista que cosiste en: enfermedades desmielinizantes agudas del sistema nervioso central y enfermedades asociadas (sarampión, varicela, rubéola, enterovirus, Epstein-Barr, HTLV1 , Herpes tipo 6, Herpes simples e Influenza A y B), mielitis transversa aguda (MT), neuromielitis óptica de Devic, esclerosis múltiple, neuritis óptica, esclerosis difusa o enfermedad de Schilder, Polineuropatía Crónica Recidivante, leucodistrofia, síndrome de Hughes, o cualquiera de sus combinaciones. Más preferiblemente se refiere a la composición del tercer aspecto de la invención para la prevención, control, tratamiento y/o alivio de la esclerosis múltiple.
Un sexto aspecto de la invención se refiere a un método de obtención de datos útiles, para el diagnóstico de individuos con esclerosis múltiple, que comprende:
a) obtener una muestra biológica aislada de un individuo, y
b) detectar el producto de expresión de IFNAR2.3, y opcionalmente
c) comparar las cantidades obtenidas en el paso (b) con una cantidad de referencia.
Un séptimo aspecto de la invención se refiere a un método de diagnóstico, pronóstico y clasificación de individuos que comprende los pasos (a)-(c) según el sexto aspecto de la invención, y que además comprende asignar al individuo del paso (a) al grupo de individuos con esclerosis múltiple cuando presentan un valor superior a 2, 14 por encima del punto de corte establecido en la curva ROC. En una realización preferida, comprende asignar al individuo del paso (a) al grupo de individuos sin esclerosis múltiple cuando presentan un valor inferior a 1 , 14 por debajo del punto de corte establecido en la curva ROC.
Un octavo aspecto de la invención se refiere a un método para predecir o pronosticar la evolución de un paciente que ha presentado un síntoma clínicamente aislado (CIS) a esclerosis múltiple, que comprende los pasos (a)-(c) el sexto aspecto de la invención, y que además comprende asignar al individuo del paso (a) al grupo de individuo que evolucionarán a esclerosis múltiple, cuando presentan niveles superiores y significativos con respecto a una muestra de referencia. Un noveno aspecto de la invención se refiere a la composición del tercer aspecto de la invención para la prevención, control, tratamiento y/o alivio de un individuo del paso (a) asignado al grupo de individuos con esclerosis múltiple o que evolucionan a esclerosis múltiple según el séptimo o el octavo aspecto de la invención.
Un décimo aspecto de la invención se refiere a un kit o dispositivo, que comprende los elementos necesarios para cuantificar el producto de expresión de IFNAR2.3, preferiblemente la proteína recombinante según el primer aspecto de la invención.
Un undécimo aspecto de la invención se refiere al uso del kit según el décimo aspecto de la invención para llevar a cabo un método según se describe en el sexto, el sétimo o el octavo aspecto de la invención.
Un duodécimo aspecto de la invención se refiere un medio de almacenamiento legible por un ordenador que comprende instrucciones de programa capaces de hacer que un ordenador lleve a cabo los pasos del método según el sexto, el sétimo o el octavo aspecto de la invención.
Un último aspecto de la invención se refiere a una señal transmisible que comprende instrucciones de programa capaces de hacer que un ordenador lleve a cabo los pasos del método según el sexto, el sétimo o el octavo aspecto de la invención.
DESCRIPCIÓN DE LA INVENCIÓN
Los autores de la presente invención han desarrollado un método para ayudar al diagnóstico de la esclerosis múltiple, y han diseñado un ELISA sem ¡cuantitativo, tipo sándwich, para la determinación de IFNAR2.3 en suero. Para dar validez a este ensayo, han clonado y purificado la proteína IFNAR2.3, de forma que pueda servir como control positivo para incluir en el ensayo. Se ha realizado la optimización de cada uno de los pasos de la técnica y se ha calculado la variación intraensayo e interensayo de la misma. Una vez desarrollada y optimizada la metodología, se han determinado los valores de IFNAR2 soluble en suero de pacientes con EM y controles sanos. Además, los autores de la invención han comprobado, en un modelo animal para EM (modelo animal de encefalitis alérgica experimental, experimental allergic encephalitis o EAE) que el IFNAR2 soluble (IFNAR2.3 o SIFNAR2) es efectivo tanto en la prevención como en el tratamiento de la EM.
PROTEÍNA RECOMBINANTE DE LA INVENCIÓN
Los autores de la invención han clonado y purificado la proteína IFNAR2.3. Además, mediante el método de clonación empleado han añadido una cola de histidina- asparagina en el extremo carboxi terminal, quedando fusionado a la proteína recombinante como una etiqueta. Tras la producción de la proteína recombinante en la célula hospedadora, se hace pasar el lisado celular por una columna de afinidad para su purificación. La proteína de fusión con la etiqueta queda retenida en la columna mientras que las otras proteínas y otros contaminantes son afluidos a través de ésta.
Por tanto, un primer aspecto de la invención se refiere a una proteína recombinante obtenible por un procedimiento que comprende:
a) integrar un inserto con la secuencia nucleotídica SEQ ID NO. 1 en una construcción genética o un vector de expresión,
b) transformar un hospedador con el vector de expresión del paso (a), c) inducir la expresión de la proteína recombinante,
d) extraer la proteína recombinante, y
e) purificar la proteína recombinante
El diseño del vector basado en técnicas de ingeniería genética y la elección de la célula hospedadora determinan, en gran parte, las características de la proteína recombinante.
La construcción génica de la invención puede comprender, además de la secuencia nucleotídica SEQ ID NO. 1 , elementos que regulan la expresión de dicha secuencia. Dichos elementos reguladores incluyen promotores y potenciadores. Los promotores se encuentran típicamente posicionados en posición 5' con respecto al sitio de iniciación de la transcripción o traducción. Los potenciadores son capaces de influenciar la expresión de genes cuando se encuentran en posición 5Ό 3 'con respecto al ADNc o cuando se encuentran formando parte de un intrón. Secuencias reguladoras incluyen, además de promotores, secuencias que facilitan la traducción, señales de procesamiento para los intrones, codones de terminación, secuencias señales, sitios internos de unión al ribosoma (IRES) y señales de poliadenilación.
El vector de expresión que comprende la secuencia nucleotídica SEQ ID NO. 1 o una construcción génica de la invención, está operativamente acoplado con una secuencia que regula la expresión de dicha secuencia nucleotídica SEQ ID NO. 1 o de dicha construcción génica. El experto en la materia advertirá que el tipo de vector adecuado para la expresión de los ácidos nucleicos y construcciones génicas de la invención, dependerá del organismo en el que se desee expresar el polinucleótido de la invención.
En una realización preferida de este aspecto de la invención, el vector de expresión es el vector prelinearizado pEcoli-Cterm 6xHN Linear.
Una célula o un organismo hospedador puede comprender la construcción génica de la invención o un vector, tal como se ha definido en la invención. En principio, cualquier tipo de organismo hospedador conocido para el experto en la materia puede ser usado en la presente invención, tales como una cepa bacteriana (Escherichia coli, Bacillus subtilis y similares), una cepa de levadura (Saccharomyces cerevisiae, Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha y similares), una planta transgénica (dicotiledóneas o monocotildoneas), una célula de insecto, por ejemplo, baculovirus, una célula de mamífero (células COS, CHO, C127, HeLa y similares) y un transgénico no humano (por ejemplo, un ratón, una vaca, una cabra, un conejo, un cerdo, etc.).
En otra realización preferida de este aspecto de la invención, el hospedador del paso (b) son bacterias de expresión. Más preferiblemente las bacterias de expresión son BL21 (DE3). Las bacterias de expresión BL21 (DE2) son células de Escherichia coli químicamente competentes, que posee un genotipo adecuado para la transformación y la expresión de proteínas, y cuyo genoma se conoce (Genome sequences of Escherichia coli B strains REL606 and BL21 (DE3). Jeong H, et al. J Mol Biol 2009 Dec 1 1 ). Una bacteria competente, se caracteriza por tener una pared bacteriana debilitada y por tanto tiene más facilidad para captar un ADN foráneo mediante un proceso de choque térmico o eléctrico (transformación). Para la producción de la proteína se utilizan bacterias de expresión. En esta memoria, las bacterias de expresión son aquellas que poseen la maquinaria necesaria para sobrexpresar el cDNA insertado y producir la proteína recombinante.
En otra realización preferida, la integración de la secuencia nucleotídica SEQ ID NO: 1 del paso (a) se realiza mediante un proceso de ligación.
Para la realización del proceso de ligación, la mezcla de inserto: plásmido fue resuspendida en el producto In-Fusion Dry-Down pellet (Clontech). In-Fusion Dry- Down pellet es un liofilizado que contiene la enzima In-Fusion, la cual favorece la unión del inserto al plásmido gracias a la homología en la secuencia nucleotídica presente en ambos.
Por tanto, en otra realización preferida de la invención, en la ligación se emplea un liofilizado que comprende la enzima In-Fusion. Ésta es una ADN polimerasa de Poxvirus con actividad exonucleasa 3'-5', que es capaz de unir moléculas de ADN de cadena simple que presentan secuencias cortas y homologas en sus extremos, tales como un producto de PCR amplificado y un vector.
En otra realización preferida, el inserto se sintetizó empleando los cebadores de secuencia nucleotídica SEQ ID NO: 5 y SEQ ID NO: 6.
Otro aspecto se refiere a una proteína que comprende la secuencia aminoacídica SEQ ID NO: 2, o a la proteína recombinante de la invención (IFNAR2 soluble, SIFNAR2 o IFNAR2.3), o la proteína de la invención (IFNAR2 soluble, SIFNAR2 o IFNAR2.3) obtenida por otros medios no recombinantes, para su uso como medicamento; o, alternativamente, al uso de una proteína que comprende la secuencia aminoacídica SEQ ID NO: 2 o a la proteína recombinante de la invención, o la proteína de la invención (IFNAR2 soluble, SIFNAR2 o IFNAR2.3) obtenida por otros medios no recombinantes, en la elaboración de un medicamento. Aunque es preferible que la proteína de la invención (IFNAR2 soluble, SIFNAR2 o IFNAR2.3) sea recombinante, y aún más preferiblemente que se obtenga por el método descrito en la presente invención, ya que los métodos de obtención y purificación descritos son ventajosos, se puede obtener por cualquier método conocido en el estado de la técnica para la obtención de proteínas.
Otro aspecto se refiere a una proteína que comprende la secuencia aminoacídica SEQ ID NO: 2, la proteína recombinante de la invención (IFNAR2 soluble, SIFNAR2 o IFNAR2.3), o la proteína de la invención (IFNAR2 soluble, SIFNAR2 o IFNAR2.3) obtenida por otros medios no recombinantes, para su uso en la prevención, control, tratamiento y/o alivio de una enfermedad inflamatoria desmielinizante autoinmune, o alternativamente, al uso de una proteína que comprende la secuencia aminoacídica SEQ ID NO: 2, o a la proteína (IFNAR2 soluble, SIFNAR2 o IFNAR2.3) recombinante de la invención, o la proteína de la invención (IFNAR2 soluble, SIFNAR2 o IFNAR2.3) obtenida por otros medios no recombinantes, en la elaboración de un medicamento para el diagnóstico, prevención, control, tratamiento y/o alivio de una enfermedad inflamatoria desmielinizante autoinmune.
En otra realización más preferida la enfermedad inflamatoria desmielinizante autoinmune se selecciona de la lista que consiste en: enfermedades desmielinizantes agudas del sistema nervioso central y enfermedades asociadas (sarampión, varicela, rubéola, enterovirus, Epstein-Barr, HTLV1 , Herpes tipo 6, Herpes simples e Influenza A y B), mielitis transversa aguda (MT), neuromielitis óptica de Devic, esclerosis múltiple, neuritis óptica, esclerosis difusa o enfermedad de Schilder, Polineuropatía Crónica Recidivante, leucodistrofia, síndrome de Hughes, o cualquiera de sus combinaciones. Aún mucho más preferiblemente, la enfermedad inflamatoria desmielinizante es la esclerosis múltiple.
Otro aspecto se refiere a una proteína que comprende la secuencia aminoacídica SEQ ID NO: 2, la proteína recombinante de la invención (IFNAR2 soluble, SIFNAR2 o IFNAR2.3), o la proteína de la invención (IFNAR2 soluble, SIFNAR2 o IFNAR2.3) obtenida por otros medios no recombinantes, para su uso en el diagnóstico de la esclerosis múltiple, y más preferiblemente, en el diagnóstico diferencial de la esclerosis múltiple. ANTICUERPOS Y COMPOSICIONES DE LA INVENCIÓN, Y USOS
Tal y como se demuestra en los ejemplos de la invención, la proteína recombinante de la invención, y/o la proteína SIFNAR2, pueden emplearse para la prevención y el tratamiento de las enfermedades inflamatorias desmielinizantes autoinmunes como la esclerosis múltiple. Además, los anticuerpos o fragmentos de los mismos capaces de unirse a la proteína recombinante de la invención son también un objeto de la presente invención. Estos anticuerpos o fragmentos de los mismos se pueden obtener fácilmente a partir de antisueros.
Los antisueros para la proteína recombinante descrita en la presente invención pueden ser generados por técnicas estándar, por ejemplo, por inyección de la proteína recombinante de la invención en un animal apropiado y recogida y purificación de los antisueros de los animales. Los anticuerpos o fragmentos de los mismos que se unen a la SEQ ID NO: 2, o una secuencia vanante de la misma de acuerdo con la invención pueden ser identificados por inmunoensayos estándar. Los anticuerpos así obtenidos (en lo sucesivo, anticuerpos de la invención) se pueden usar para el método de diagnóstico de la invención. Preferiblemente, los anticuerpos o fragmentos de los mismos son anticuerpos monoclonales.
Así pues, en otro aspecto la invención se relaciona con un anticuerpo o un fragmento del mismo que reconoce específicamente la proteína recombinante de la invención, de ahora en adelante anticuerpo de la invención. Anticuerpos contemplados en el contexto de la presente invención incluyen antisueros policlonales, moléculas de IgG purificadas, sobrenadantes o líquido ascítico que contiene anticuerpos monoclonales, fragmentos Fv, Fab, Fab' y F(ab')2, ScFvdiabodies, triabodies, tetrabodies y anticuerpos humanizados.
En otro aspecto, la invención se relaciona con una composición, de ahora en adelante composición de la invención, que comprende:
a) una proteína que comprende la secuencia aminoacídica SEQ ID NO: 2, b) la proteína recombinante de la invención,
c) la proteína de la invención (IFNAR2 soluble, SIFNAR2 o IFNAR2.3) obtenida por otros medios no recombinantes, y/o c) el anticuerpo, o un fragmento del mismo, de la invención.
Dicha composición puede ser una composición farmacéutica. Por tanto, otro aspecto de la invención se refiere a composiciones farmacéuticas, de ahora en adelante composiciones farmacéuticas de la invención, que comprenden al menos uno de los polinucleótidos de la invención, polipéptidos de la invención o su forma madura, un anticuerpo de la invención, o un fragmento del mismo, la proteína recombinante de la invención, la proteína de la invención (IFNAR2 soluble, SIFNAR2 o IFNAR2.3) obtenida por otros medios no recombinantes, y/o acompañado de un excipiente farmacéuticamente aceptable. Para uso en medicina, los compuestos y combinaciones de compuestos de la invención pueden ser formulados conjuntamente con un excipiente que es aceptable desde el punto de vista farmacéutico. Excipientes preferidos para su uso en la presente invención incluyen azúcares, almidones, celulosas, gomas, proteínas y otros. En una realización particular, la composición farmacéutica de la invención se formulará en una forma farmacéutica de administración sólida (p.ej., comprimidos, cápsulas, grageas, gránulos, supositorios, etc.) o líquida (p.ej., soluciones, suspensiones, emulsiones, etc.), pero sin limitarnos. En otra realización particular, las composiciones farmacéuticas de la invención pueden ser administradas por cualquier ruta, incluyendo, sin ser limitante, oral, intravenosa, intramuscular, ¡ntrarterial, intramedular, intratecal, intraventricular, transdérmica, subcutánea, intraperitoneal, intranasal, entérica, tópica, sublingual o rectal.
Otro aspecto de la invención se refiere a la composición de la invención o la comosición farmacéutica de la invención para su uso como medicamento, o alternativamente, al uso de la composición de la invención o la composición farmacéutica de la invención en la elaboración de un medicamento.
El término "medicamento", tal y como se usa en esta memoria, hace referencia a cualquier sustancia usada para prevención, diagnóstico, alivio, tratamiento o curación de enfermedades o prevención de estados fisiológicos no deseados en el hombre y los animales. Otro aspecto se refiere a la composición de la invención o a la composición farmacéutica de la invención para su uso en uso en la prevención, control, tratamiento y/o alivio de una enfermedad inflamatoria desmielinizante autoinmune, o alternativamente, al uso de la composición de la invención o de la composición farmacéutica de la invención en la elaboración de un medicamento para la prevención, control, tratamiento y/o alivio de una enfermedad inflamatoria desmielinizante autoinmune.
En otra realización más preferida la enfermedad inflamatoria desmielinizante autoinmune se selecciona de la lista que cosiste en: enfermedades desmielinizantes agudas del sistema nervioso central y enfermedades asociadas (sarampión, varicela, rubéola, enterovirus, Epstein-Barr, HTLV1 , Herpes tipo 6, Herpes simples e Influenza A y B), mielitis transversa aguda (MT), neuromielitis óptica de Devic, esclerosis múltiple, neuritis óptica, esclerosis difusa o enfermedad de Schilder, Polineuropatía Crónica Recidivante, leucodistrofia, síndrome de Hughes, o cualquiera de sus combinaciones. Aún mucho más preferiblemente, la enfermedad inflamatoria desmielinizante es la esclerosis múltiple.
MÉTODO DE DIAGNÓSTICO DE LA INVENCIÓN
Los autores de la invención han visto que la capacidad discriminante de la detección en suero de IFNAR2.3 por sí sola, entre pacientes con EM y controles es elevada teniendo en cuenta que estamos ante un indicador univariante, y han desarrollado una técnica de ELISA para la detección de IFNAR2 soluble en suero, que sirve como prueba paraclínica para diagnóstico de la EM. Es una técnica mucho menos invasiva para el paciente y menos costosa que las bandas oligoclonales, y podría utilizarse como un método de screening previo, de forma que solo en el caso de pacientes que obtengan valores de ELISA que puedan dar lugar a duda, sería necesario realizar las bandas oligoclonales. Para ello, tras la normalización de los datos de absorbancias y el establecimiento de un punto de corte para distinguir entre positivo y negativo, se ha obtenido una curva COR con un área bajo la curva de 0.820, y se han establecido diferentes puntos de corte que darán diferente sensibilidad y especificidad según los requerimientos que se le exija al test. Por tanto, otro aspecto de la invención se refiere al uso de IFNAR2.3 para el diagnóstico de individuos con esclerosis múltiple.
Otro aspecto de la invención se refiere a un método de obtención de datos útiles, de ahora en adelante primer método de la invención, para el diagnóstico de individuos con esclerosis múltiple, que comprende:
a) obtener una muestra biológica aislada de un individuo, y
b) detectar el producto de expresión de IFNAR2.3
En otra realización preferida, el primer método de la invención además comprende: c) comparar el producto de expresión de IFNAR2.3 obtenido en el paso (b) con una cantidad de referencia
La cantidad de referencia se obtiene a partir de los valores de expresión constitutiva de IFNAR2.3, en un grupo de individuos sanos o, alternativamente, que no presentan esclerosis múltiple. Las cantidades de referencia adecuadas pueden ser determinadas por el método de la presente invención a partir de una muestra de referencia que puede ser analizada, por ejemplo, simultánea o consecutivamente, junto con la muestra biológica problema. Así, por ejemplo pero sin limitarnos, la muestra de referencia pueden ser los controles negativos, esto es, las cantidades detectadas por el método de la invención en muestras de individuos que no padecen la enfermedad que se pretende diagnosticar. Preferiblemente, el producto de expresión de IFNAR2.3 cfel paso (b) del primer método de la invención es la proteína IFNAR2.3. En otra realización más preferida, el paso (c) de la invención comprende comparar la detección de la proteína IFNAR2.3 en la muestra biológica de (a) con la detección de la proteína IFNAR2.3 en una población de referencia.
Los pasos (b) y/o (c) de los métodos descritos anteriormente pueden ser total o parcialmente automatizados, por ejemplo, por medio de un equipo robótico sensor para la detección de la cantidad en el paso (b) o la comparación computerizada en el paso (c).
El método de la invención es un método in vitro, y la muestra sobre la que se miden los parámetros es una muestra aislada. Así, una "muestra biológica aislada" incluye, pero sin limitarnos a, células, tejidos y/o fluidos biológicos de un organismo, obtenidos mediante cualquier método conocido por un experto en la materia. Preferiblemente, la muestra biológica aislada de un individuo del paso (a) es suero. En otra realización preferida, la muestra biológica aislada de un individuo del paso (a) es líquido cefalorraquídeo.
El término "individuo", tal y como se utiliza en la descripción, se refiere a animales, preferiblemente mamíferos, y más preferiblemente, humanos. El término "individuo" no pretende ser limitativo en ningún aspecto, pudiendo ser éste de cualquier edad, sexo y condición física.
La detección del producto de expresión de IFNAR2.3 puede realizarse por cualquier medio conocido en el estado de la técnica.
La medida del producto de expresión de IFNAR2.3, aunque puede ser cualitativa, también puede determinarse la cantidad o la concentración de dicho producto de expresión, preferiblemente de manera semi-cuantitativa o cuantitativa, y puede ser llevada a cabo de manera directa o indirecta. La medida directa se refiere a la medida de la cantidad o la concentración del producto de expresión de los genes, basada en una señal que se obtiene directamente de la detección de la proteína. Dicha señal - a la que también podemos referirnos como señal de intensidad - puede obtenerse, por ejemplo, midiendo un valor de intensidad de una propiedad química o física de dichos productos. La medida indirecta incluye la medida obtenida de un componente secundario o un sistema de medida biológica (por ejemplo la medida de respuestas celulares, ligandos, "etiquetas" o productos de reacción enzimática).
El término "cantidad", tal y como se utiliza en la descripción, se refiere pero no se limita, a la cantidad absoluta o relativa de los productos de expresión de los genes o de los anticuerpos, así como a cualquier otro valor o parámetro relacionado con los mismos o que pueda derivarse de éstos. Dichos valores o parámetros comprenden valores de intensidad de la señal obtenidos a partir de cualquiera de las propiedades físicas o químicas de dichos productos de expresión obtenidos mediante medida directa. Adicionalmente, dichos valores o parámetros incluyen todos aquellos obtenidos mediante medida indirecta, por ejemplo, cualquiera de los sistemas de medida descritos en otra parte del presente documento.
El término "comparación", tal y como se utiliza en la descripción, se refiere pero no se limita, a la comparación de los productos de expresión de IFNAR2.3 en una muestra problema frente a la población de referencia, o alternativamente, a la comparación de la cantidad de los productos de expresión de los genes o de la cantidad de anticuerpos frente a IFNAR2.3 de la muestra biológica a analizar, también llamada muestra biológica problema, con una cantidad de los productos de expresión de los genes o con una cantidad de anticuerpos frente a IFNAR2.3 de una o varias muestras de referencia deseable. La muestra de referencia puede ser analizada, por ejemplo, simultánea o consecutivamente, junto con la muestra biológica problema. La comparación descrita en el apartado (c) del método de la presente invención puede ser realizada manualmente o asistida por ordenador.
Los interferones tipo I (alpha, beta and omega), ejercen su acción a través de la interacción con el receptor de membrana IFNAR, formado por dos subunidades IFNAR1 e IFNAR2. La subunidad IFNAR2 del receptor sufre un procesamiento alternativo del ARNm que da lugar a tres formas distintas: una forma corta (IFNAR2b), una forma larga funcionalmente activa (IFNAR2c) y la forma soluble (slFNAR2, IFNAR2.3 o IFNAR2a). Solamente IFNAR2c actúa como receptor funcional junto con IFNAR1 y es capaz de mediar los efectos biológicos del IFNB, a través de la activación de la cascada de señalización JAK-STAT.
Múltiples vanantes de la transcripción que codificaban por lo menos dos isoformas diferentes se han encontrado para este gen. La secuencia aminoacídica de IFNAR2.3 se encuentra con número de acceso en el GenBank (NCBI) L41943.1 y en la SEQ ID NO: 2. Dicha SEQ ID NO2 está representada por la siguiente secuencia aminoacídica:
(MLLSQNAFIFRSLNLVLMVYISLVFGISYDSPDYTDESCTFKISLRNFRSILSWELKNH
SIVPTHYTLLYTIMSKPEDLKWKNCANTTRSFCDLTDEWRSTHEAYVTVLEGFSGNT
TLFSCSHNFWLAIDMSFEPPEFEIVGFTNHINVMVKFPSIVEEELQFDLSLVIEEQSEGI
VKKHKPEIKGNMSGNFTYIIDKLIPNTNYCVSVYLEHSDEQAVIKSPLKCTLLPPGQES
EFS). En el contexto de la presente invención, IFNAR2.3 se define también por una secuencia de nucleótidos o polinucleótido, que constituye la secuencia codificante de la proteína recogida en la SEQ ID NO: 2, y que comprendería diversas vanantes procedentes de:
a) moléculas de ácido nucleico que codifican un polipéptido que comprende la secuencia aminoacídica de la SEQ ID NO: 2,
b) moléculas de ácido nucleico cuya cadena complementaria híbrida con la secuencia polinucleotídica de a),
c) moléculas de ácido nucleico cuya secuencia difiere de a) y/o b) debido a la degeneración del código genético,
d) moléculas de ácido nucleico que codifican un polipéptido que comprende la secuencia aminoacídica con una identidad de al menos un 60%, un 70%, un 80%, un 90%, un 95%, un 98% o un 99% con la SEQ ID NO: 2, y en las que el polipéptido codificado por dichos ácidos nucleicos posee la actividad y las características estructurales de la proteína IFNAR2.3. Entre dichas moléculas de ácido nucléico se encuentra la recogida en la secuencia del GenBank (NCBI) L41943.1 y la SEQ ID NO: 1 . Dicha SEQ ID NO1 está representada por la siguiente secuencia nucleotídica:
(agatgtaaaagtcaagagaagactctaaaaatagcaaagatgcttttgagccagaatgccttcatcttcagatcactta atttggttctcatggtgtatatcagcctcgtgtttggtatttcatatgattcgcctgattacacagatgaatcttgcactttcaaga tatcattgcgaaatttccggtccatcttatcatgggaattaaaaaaccactccattgtaccaactcactatacattgctgtata caatcatgagtaaaccagaagatttgaaggtggttaagaactgtgcaaataccacaagatcattttgtgacctcacagat gagtggagaagcacacacgaggcctatgtcaccgtcctagaaggattcagcgggaacacaacgttgttcagttgctca cacaatttctggctggccatagacatgtcttttgaaccaccagagtttgagattgttggttttaccaaccacattaatgtgatg gtgaaatttccatctattgttgaggaagaattacagtttgatttatctctcgtcattgaagaacagtcagagggaattgttaag aagcataaacccgaaataaaaggaaacatgagtggaaatttcacctatatcattgacaagttaattccaaacacgaac tactgtgtatctgtttatttagagcacagtgatgagcaagcagtaataaagtctcccttaaaatgcaccctccttccacctgg ccaggaatcagaattttcataactttttagcctggccatttcctaacctgccaccgttggaagccatggatatggtggaggt catttacatcaacagaaagaagaaagtgtgggattataattatgatgatgaaagtgatagcgatactgaggcagcgcc caggacaagtggcggtggctataccatgcatggactgactgtcaggcctctgggtcaggcctctgccacctctacagaa tcccagttgatagacccggagtccgaggaggagcctgacctgcctgaggttgatgtggagctccccacgatgccaaag gacagccctcagcagttggaactcttgagtgggccctgtgagaggagaaagagtccactccaggacccttttcccgaa gaggactacagctccacggaggggtctgggggcagaattaccttcaatgtggacttaaactctgtgtttttgagagttcttg atgacgaggacagtgacgacttagaagcccctctgatgctatcgtctcatctggaagagatggttgacccagaggatcc tgataatgtgcaatcaaaccatttgctggccagcggggaagggacacagccaacctttcccagcccctcttcagaggg cctgtggtccgaagatgctccatctgatcaaagtgacacttctgagtcagatgttgaccttggggatggttatataatgaga tgactccaaaactattgaatgaacttggacagacaagcacctacagggttctttgtctctgcatcctaacttgctgccttatc gtctgcaagtgttctccaagggaaggaggaggaaactgtggtgttcctttcttccaggtgacatcacctatgcacattccc agtatggggaccatagtatcattcagtgcattgtttacatattcaaagtggtgcactttgaaggaagcacatgtgcacctttc ctttacactaatgcacttaggatgtttctgcatcatgtctaccagggagcagggttccccacagtttcagaggtggtccagg accctatgatatttctcttctttcgttcttttttttttttttttgagacagagtctcgttctgtcgcccaagctggagcgcaatggtgtg atcttggctcactgcaacatccgcctcccgggttcaggtgattctcctgcctcagcctccctcgcaagtagctgggattaca ggcgcctgccaccatgcctagcaaatttttgtatttttagtggagacaggattttaccatgttggccaggctggtctcgaact cctgacctcaagtgatctgccctcctcagcctcgtaaagtgctgggattacaggggtgagccgctgtgcctggctggccc tgtgatatttctgtgaaataaattgggccagggtgggagcagggaaagaaaaggaaaatagtagcaagagctgcaaa gcaggcaggaagggaggaggagagccaggtgagcagtggagagaaggggggccctgcacaaggaaacaggg aagagccatcgaagtttcagtcggtgagccttgggcacctcacccatgtcacatcctgtctcctgcaattggaattccacc ttgtccagccctccccagttaaagtggggaagacagactttaggatcacgtgtgtgactaatacagaaaggaaacatg gcgtcggggagagggataaaacctgaatgccatattttaagttaaaaaaaaaaaa).
En otra realización preferida, la detección de la cantidad de producto de expresión de IFNAR2.3 se realiza mediante un inmunoensayo. El término "inmunoensayo", tal y como se utiliza en la presente descripción se refiere a cualquier técnica analítica que se basa en la reacción de la conjugación de una anticuerpo con un antígeno. Ejemplos de inmunoensayos conocidos en el estado de la técnica son, por ejemplo, pero sin limitarse: inmunoblot, ensayo inmunoabsorbente ligado a enzimas (ELISA), inmunoensayo lineal (LIA), radioinmunoensayo (RIA), inmunofluoresecencia, x-map o chips de proteína.
En otra realización preferida, el inmunoensayo es un ensayo inmunoabsorbente ligado a enzimas o ELISA (Enzyme-Linked ImmunoSorbent Assay). El ELISA se basa en la premisa de que un inmunorreactivo (antígeno o anticuerpo) puede ser inmovilizado en un soporte sólido, poniendo luego ese sistema en contacto con una fase fluida que contiene el reactivo complementario que puede unirse a un compuesto marcador. Existen diferentes tipos de ELISA: ELISA directo, ELISA indirecto o ELISA sándwich. En una realización preferida de este aspecto de la invención, el ELISA es un ELISA sándwich. El término "compuesto marcador", tal y como se utiliza en la presente descripción, se refiere a un compuesto capaz de dar lugar a una señal cromogénica, fluorogénica, radiactiva y/o quimioluminiscente que permita la detección y cuantificación de la cantidad de anticuerpos frente a IFNAR2.3. El compuesto marcador se selecciona de la lista que comprende radioisótopos, enzimas, fluoróforos o cualquier molécula susceptible de ser conjugada con otra molécula o detectada y/o cuantificada de forma directa. Este compuesto marcador puede unirse al anticuerpo directamente, o a través de otro compuesto. Algunos ejemplos de compuestos marcadores que se unen directamente son, pero sin limitarse, enzimas como la fosfatasa alcalina o la peroxidasa, isótopos radiactivos como 32P o 35S, fluorocromos como fluoresceína o partículas metálicas, para su detección directa mediante colorimetría, auto- radiografía, fluorimetría, o metalografía respectivamente.
Otro aspecto de la invención se refiere a un método de diagnóstico, pronóstico y de clasificación de individuos, de ahora en adelante tercer método de la invención, que comprende los pasos (a)-(c) según el primer método de la invención, y que además comprende asignar al individuo del paso (a) al grupo de individuos con o sin esclerosis múltiple, en función del punto de corte establecido para el índice de muestra. Valores con el índice de muestra por encima de 2, 14 (en la curva COR) nos permite clasificar a los sujetos como pacientes con EM, mientras que valores inferiores a 1 ,24 (en la curva COR) son clasificados como individuos sanos.
En el inicio de la esclerosis múltiple existe una fase preclínica en la que hay lesiones, pero no hay manifestaciones de síntomas. La sospecha de la presencia de la enfermedad se inicia con la aparición del primer síntoma clínicamente aislado (CIS, del inglés clinically isolated syndrome).
Adicionalmente, tal y como se demuestra en el EJEMPLO 4 de la invención, SIFNAR2 puede emplearse para predecir o pronosticar la evolución de los pacientes CIS (del inglés clinically isolated syndrome) y poder determinar con antelación si el brote va a revertir o va a convertirse en esclerosis múltiple.
Por tanto, otro aspecto de la invención se refiere al uso de s¡FNAR2 en la elaboración de un marcador para predecir o pronosticar la evolución de un paciente CIS a esclerosis múltiple.
Tal como se demuestra en el EJEMPLO 4, sIFNAR tiene la capacidad para predecir o pronosticar que pacientes tienen más probabilidad de convertir a una EM clínicamente definida (EMCD) después de un síndrome clínico aislado (CIS). Por tanto, otro aspecto de la invención se refiere a un método, de ahora en adelante cuarto método de la invención, para predecir o pronosticar la evolución de un paciente CIS a esclerosis múltiple, que comprende los pasos (a)-(c) según el primer método de la invención, y que además comprende asignar al individuo del paso (a) al grupo de individuo que evolucionarán a EM, cuando presentan niveles superiores y significativos con respecto a una muestra de referencia. Preferiblemente, la muestra de referencia se obtiene de los pacientes que no evolucionan a EM.
KIT O DISPOSITIVO DE DIAGNÓSTICO Y USOS
Otro aspecto de la presente invención se refiere a un kit o dispositivo, de ahora en adelante kit o dispositivo de la invención, que comprende los elementos necesarios para cuantificar el producto de expresión de IFNAR2.3.
Preferiblemente, el kit o dispositivo de la presente invención comprende al menos un anticuerpo anti-IFNAR2.3. En otra realización preferida, el kit de la invención comprende anticuerpos secundarios o controles positivos y/o negativos. En una realización mucho más preferente el kit comprende el polipéptido de la invención, producido por tecnología recombinante, como control positivo. El kit además puede incluir, sin ningún tipo de limitación, tampones, soluciones de extracción de proteínas, agentes para prevenir la contaminación, inhibidores de la degradación de las proteínas, etc.
Por otro lado el kit puede incluir todos los soportes y recipientes necesarios para su puesta en marcha y optimización. Preferiblemente, el kit comprende además las instrucciones para llevar a cabo los métodos de la invención. En otra realización preferida, el kit de la invención comprende:
a) un soporte sólido que lleva unido un anticuerpo primario
b) anticuerpo secundario
c) una solución del anticuerpo de detección, marcado con un marcador enzimático;
d) un reactivo.
En una realización aún más preferida, el anticuerpo de primario es un anticuerpo que comprende la secuencia aminoacídica SEQ ID NO: 3
(MLLSQNAFIVRSLNLVLMVYISLVFGISYDSPDYTDESCTFKISLRNFRSILSWELKNH SIVPTHYTLLYTIMSKPEDLKWKNCANTTRSFCDLTDEWRSTHEAYVTVLEGFSGNT TLFSCSHNFWLAIDMSFEPPEFEIVGFTNHINVMVKFPSIVEEELQFDLSLVIEEQSEGI VKKHKPEIKGNMSGNFTYIIDKLIPNTNYCVSVYLEHSDEQAVIKSPLKCTLLPPGQES ESAESAKIGGIITVFLIALVLTSTIVTLKWIGYICLRNSLPKVLRQGLTKGWNAVAIHRCS HNALQSETPELKQSSCLSFPSSWDYKRASLCPSD).
En otra realización más preferida, el anticuerpo secundario es un anticuerpo que comprende la secuencia aminoacídica SEQ ID NO: 4
(MLLSQNAFIVRSLNLVLMVYISLVFGISYDSPDYTDESCTFKISLRNFRSILSWELKNH SIVPTHYTLLYTIMSKPEDLKWKNCANTTRSFCDLTDEWRSTHEAYVTVLEGFSGNT TLFSCSHNFWLAIDMSFEPPEFEIVGFTNHINVMVKFPSIVEEELQFDLSLVIEEQSEGI VKKHKPEIKGNMSGNFTYIIDKLIPNTNYCVSVYLEHSDEQAVIKSPLKCTLLPPGQES ESAESAKIGGIITVFLIALVLTSTIVTLKWIGYICLRNSLPKVLRQGLTKGWNAVAIHRCS HNALQSETPELKQSSCLSFPSSWDYKRASLCPSD)
Otro aspecto se refiere al uso del kit de la invención, para el diagnóstico, pronóstico, y clasificación de individuos que tienen esclerosis múltiple.
Otro aspecto de la invención se refiere a un medio de almacenamiento legible por un ordenador que comprende instrucciones de programa capaces de hacer que un ordenador lleve a cabo los pasos de cualquiera de los métodos de la invención (del primer o del segundo método de la invención). Otro aspecto de la invención se refiere a una señal transmisible que comprende instrucciones de programa capaces de hacer que un ordenador lleve a cabo los pasos de cualquiera de los métodos de la invención.
El primer y/o el segundo método de la invención pueden incluir etapas adicionales, como por ejemplo, la separación de proteínas mediante electroforesis mono y bidimensional (2D-PAGE), o la digestión previa con tripsina de una mezcla de proteínas (de la muestra) para después purificar y analizar los péptidos mediante espectrometría de masas (MS), como el MALDI-TOF, o mediante cromatografía multidimensional, mediante ICAT (Isotope-coded affinity tags), DIGE (Differential gel electrophoresis) o arrays de proteínas.
Los términos "polinucleótido" y "ácido nucleico" se usan aquí de manera intercambiable, refiriéndose a formas poliméhcas de nucleótidos de cualquier longitud, tanto ribonucleótidos (ARN ó RNA) como desoxiribonucleótidos (ADN ó DNA).
Los términos "secuencia aminoacídica", "péptido", "oligopéptido", "polipéptido" y "proteína" se usan aquí de manera intercambiable, y se refieren a una forma poliméhca de aminoácidos de cualquier longitud, que pueden ser codificantes o no codificantes, química o bioquímicamente modificados.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
DESCRIPCIÓN DE LAS FIGURAS
Fig. 1 : Esquema de trabajo de la clonación, producción y purificación la proteína recombinante.
Fig. 2: Estructura del vector pEcoli-Cterm 6xHN Linear. Fig. 3: Estructura de las estructuras flanqueantes al inserto.
Fig. 4: Electroforesis en gel de agarosa del amplificado obtenido por PCR.
Fig. 5: Alineamientos de las secuencias nucleotídicas en sentido 5'-3'. En la primera línea se muestra la secuencia nucleotídica de IFNAR2.3, en la segunda y tercera línea las secuencias nucleotídicas con los cebadores flanqueantes del inserto T7UP y
T7terminal, obtenida tras el proceso de secuenciación del plásmido.
Fig. 6: Gráficas de la puesta a punto de las concentraciones de anticuerpos para el
ELISA para determinar IFNAR2.3 en suero. (A). Absorbancias obtenidas con 1 .2pg/ml de anticuerpo primario frente a diferentes concentraciones de anticuerpo secundario
(B). Absorbancias obtenidas con 1 .pg/ml de anticuerpo primario frente a diferentes concentraciones de anticuerpo secundario. (C). Absorbancias obtenidas con 0,8 pg/ml de anticuerpo primario frente a diferentes concentraciones de anticuerpo secundario
(D). Gráfica que muestra la relación lineal entre la absorbancia y la concentración de proteína IFNAR2.3.
Fig. 7. Análisis de los valores de IFNAR2.3 en suero en pacientes tratados con INFp, sin tratamiento y controles.
Fig. 8. Análisis de los valores de IFNAR2.3 en suero en pacientes tratados con INFp, sin tratamiento, controles y pacientes tratados con Copaxone®.
Fig. 9. Curva COR (ROC) pacientes sin tratamiento y controles.
Fig. 10. (A) SDS-PAGE 12% y el Western Blot de SIFNAR2 purificada (30 kDa). M muestra el peso molecular. SDS-PAGE de SIFNAR2 purificado (columna 1 ) y Western Blot de la misma secuencia (columna 2). (B) Relación entre la concentración de slFNAR2 purificada y la densidad óptica obtenida por ELISA.
Fig. 11. Resultado del análisis de la huella peptídica por espectrometría de masas MALDI-TOF/TOF.
Fig. 12. Análisis estadístico no paramétrico de los niveles de SIFNAR2 de pacientes CIS que convierten a esclerosis o no. NO EM= pacientes que no convierten a Esclerosis. SI EM= pacientes que convierten a una esclerosis múltiple definida.
Fig. 13. Varias secuencias de alineación del dominio extracelular de IFNAR2 con la isoforma IFNAR2.3 y con las secuencias que reconocen los anticuerpos utilizados en
ELISA. La alineación se ha realizado con la herramienta de alineación múltiple basado en restricciones (cobalto).
Fig. 14. Niveles slFNA2R2 suero se determinaron en dos cohortes independientes de pacientes no tratados (NT) EM y controles sanos (HC) (A y B). El análisis realizado con cohortes mixtas y otras enfermedades neurologicas inflamatorias (OIND) (C) Los datos se analizaron con el uso de la prueba de Kruskal-Wallis de una vía de la varianza seguido por la prueba de la U de Mann-Whitney.
Fig. 15. Evaluación de SIFNAR2 como un marcador de diagnóstico
(A) los valores sem ¡cuantitativos de SIFNAR2 en el suero de los pacientes no tratados (NT) EM y los controles sanos (HC) de cohortes combinadas.
(B) Receptor operador de la curva característica correspondiente para el diagnóstico de la EM basado en los niveles séricos de SIFNAR2 (ROC).
Fig. 16. Evaluación de IFN gamma y TNF alfa en pacientes con EM no tratada El análisis de IFN gamma (A) y TNF alfa (B) expresión en células CD3 + de pacientes con EM no tratados con alto y bajo nivel de SIFNAR2, por citometría de flujo.
Los ejemplos representativos de la expresión de IFN gamma en un paciente con niveles bajos (C) y alta (E) de SIFNAR2. Los ejemplos representativos de la expresión de TNF-alfa en un paciente con bajos (D) y alta (F) los niveles de SIFNAR2.
Fig. 17. Tratamiento preventivo. One way ANOVA + Newman-Keuls.
Fig. 18. Tratamiento preventivo. T-Test de datos pareados.
Fig. 19. Tratamiento clínico. One way ANOVA + Newman-Keuls.
Fig. 20. Tratamiento clínico. T-Test de datos pareados.
EJEMPLOS
A continuación se ¡lustrará la invención mediante unos ensayos realizados por los inventores.
Materiales y métodos
Producción de la proteína recombinante IFNAR2.3
Elección del vector de clonación
El sistema de expresión procariota escogido, es el vector prelinearizado pEcoli-Cterm 6xHN Linear (Clontech). La proteína resultante tendrá fusionada una cola histidina- asparagina en el extremo carboxi terminal que servirá para su purificación. En las imágenes que se muestran a continuación se detalla la estructura del vector donde se integró el inserto con la secuencia nucleotídica de nuestra proteína de interés.
El sistema de expresión de pEcoli Cterm 6xHN Linear está basado en el sistema de expresión del promotor fuerte T7, controlado por el operón LacZ que a su vez es inducible por IPTG (Isopropil-p-D-tiogalactopiranósido). Además, el plásmido posee un gen de resistencia a la ampicilina que permite la selección de los clones que contienen el plásmido.
Para la producción de la proteína, se utilizó la maquinaría de las bacterias de expresión BL21 (DE3), que utilizan el promotor T7. Las bacterias BL21 (DE3) contienen una copia cromosomal del gen de la T7 ARN polimerasa, que a su vez está bajo el control del promotor de lacUV5 inducible por IPTG.
Síntesis del inserto de ADN
El primer punto en el diseño de la estrategia de clonación fue la síntesis del inserto. Para ello se recabó toda la información sobre la secuencia de IFNAR2.3, como la secuencia señal del péptido, las modificaciones postraduccionales, las características bioquímicas de la proteína, los dominios de la misma etc. Toda esta información se obtuvo de la base de datos UNIPROT (http://www.uniprot.org/uniprot/P48551 ), que alberga las secuencias aminoacídicas de las proteínas y sus características bioquímicas.
La secuencia del ARNm de IFNAR2.3 se obtuvo a partir de la base de datos NUCLEOTIDE del NCBI (http://www.ncbi. nlm.nih.gov/nuccore.)
Siguiendo las directrices del fabricante, los cebadores debían de cumplir los siguientes requisitos:
El extremo 5':
• Contener 15 bases homologas con las 15 bases del final del fragmento de ADN del vector donde va a ser insertado.
El extremo 3': • Poseer 15 bases homologas con los extremos del gen que va a ser insertado.
• Una longitud entre 18-25 pb y un contenido de GC del 40-60%.
• Ausencia del codón de inicio (ATG) y de parada en la secuencia a amplificar.
• Ausencia de la secuencia señal.
Teniendo en cuenta estas premisas, los cebadores daban un producto tras la amplificación de 638 pb. Las secuencias de los cebadores fueron:
Sentido (secuencia SEQ ID NO. 3):
5TAAGGCCTCTGTCGACATTTCATATGATTCGCCTGATTACACGATG 3' Antisentido (secuencia SEQ ID NO. 4):
5'CAGAATTCGCAAGCTTTGAAAATTCTGATTCCTGGCCAGGTGGAA 3'
El inserto se sintetizó mediante PCR convencional a partir de los cebadores diseñados en el punto anterior, empleando una Taq de alta fidelidad y utilizando como molde un ADNc proveniente de una mezcla de ADNc humano comercial. Las condiciones óptimas de concentraciones, temperatura y tiempos para la síntesis del inserto fueron las siguientes:
Tabla 1 : resumen de los reactivos de la PCR convencional para la síntesis del inserto.
Reactivos Volumen/ Concentración
muestra final/ muestra
Agua libre de Rnasas 40 μΙ
Cebador sentido (20 μΜ) 1 μΙ 0,4 μΜ
Cebador antisentido (20 μΜ) 1 μΙ 0,4 μΜ
Dntp (10 μΜ) 1 μΙ 0,2 μΜ
Tampón 5X 5 μΙ 1Χ
Pfu High Fidelity 1 μΙ
cDNA 1 μΙ Condiciones de temperatura:
Tabla 2: resumen de las condiciones de temperatura para la síntesis del inserto mediante PCR convencional.
Etapa Temperatura Tiempo Ciclos
Desnaturalización inicial 95°C 3 min 1
Desnaturalización 95°C 20 seg
Anillamiento 60,4 °C 20 seg 40 ciclos
Extensión 72°C 30 seg
Extensión final 72°C 10 min
Etapa final 4°C Infinito
El producto final obtenido de la PCR, fue separado en función de su tamaño mediante la técnica de electroforesis horizontal en un gel de agarosa al 2% disuelta en tampón TAE, junto con el intercalante Gold View Nucleic Acid Satín (Sbs Genetech) a una dilución 1/20. El gel fue sometido a una corriente constante de 80 V y fue visionado en un transiluminador de ultavioleta, que permitió localizar la banda de interés en función del número de pares de bases. La banda localizada a la altura de 638 pb fue recortada del gel de agarosa con la ayuda de un bisturí.
La secuencia del inserto amplificada contenida en la agarosa, fue purificada con el kit comercial QIAquick Gel Extraction (QIAGEN) siguiendo las indicaciones del fabricante. Al final del proceso se obtuvo un eluido, que fue cuantificado con un espectrofotómetro (Nanodrop, Thermo) antes de ser almacenado a -20°C.
Proceso de ligación
Siguiendo el esquema de trabajo, el siguiente punto en el proceso de clonación, fue el proceso de ligación, es decir, "pegar" al plásmido, la secuencia nucleotídica de IFNAR2.3, que dará lugar a la proteína recombinante.
Para determinar las concentraciones y los volúmenes del inserto y del plásmido, la casa comercial Clontech, en su web ofrece una herramienta informática (http://bioinfo.clontech.com/infusion) para calcular las cantidades óptimas del vector y del inserto, para el proceso de ligación a partir de las variables conocidas longitud del vector y del inserto.
Para la realización del proceso de ligación, la mezcla de inserto: plásmido fue resuspendida en el producto In-Fusion Dry-Down pellet (Clontech). In-Fusion Dry- Down pellet es un liofilizado que contiene la enzima In-Fusion, la cual favorece la unión del inserto al plásmido gracias a la homología en la secuencia nucleotídica presente en ambos. La reacción de ligación fue llevada a cabo en un termociclador, a 37°C durante 15 minutos seguida de 15 minutos a 50°C y posteriormente fue transferido a hielo. Finalmente, el producto de ligación fue resuspendido en 40 μΙ de tampón TE (Tris-HCI, EDTA) a pH 8.
Transformación en bacterias replicativas
Las bacterias competentes utilizadas fueron MAX Efficiency DH5a™ Competent Cells (Invitrogen) las cuales fueron transformadas con el plásmido, siguiendo el siguiente protocolo:
Como control positivo de la técnica de transformación, se añadieron 5 μΙ del plásmido pUC19 (control positivo) en una alícuota de bacterias competentes y se resuspendió suavemente esta mezcla. De forma paralela, se transformaron las bacterias con el producto de ligación. Para ello, se añadieron 2,5 μΙ a una alícuota de bacterias competentes y se mezcló suavemente. A continuación, ambas alícuotas de bacterias (control y problema) fueron incubadas durante 30 minutos en hielo. Pasado este tiempo, las muestras se sometieron a un choque térmico a 42°C durante 45 segundos. Rápidamente, las muestras fueron transferidas a hielo durante 2 minutos y posteriormente se añadieron 900 μΙ de medio SOC (el cual favorece el proceso de transformación). Para que el plásmido expresara la resistencia a ampicilina, las muestras fueron incubadas a 37°C, con agitación de 225 rpm durante 1 hora. Finalmente las bacterias transformadas, fueron sembradas a diferentes volúmenes en placas de LB-Agar suplementadas con ampicilina 100 μg/ml e incubadas toda la noche a 37°C.
Purificación del ADN plasmídico y verificación del marco de lectura Trascurrida una noche en el incubador, las bacterias habían formando UFC (unidades formadoras de colonias). Para evaluar las características de cada UFC, éstas fueron aisladas de forma independiente con la ayuda de un hilo de siembra y sembradas en tubos con 4 mi de medio LB Broth suplementados con 100 pg/ml de ampicilina. Estas suspensiones fueron incubadas a 37°C durante toda la noche con una agitación de 220 rpm junto con un control negativo que fue un tubo de LB Broth sin bacterias. Posteriormente, se procedió a la purificación del plásmido contenido en las bacterias, siguiendo las indicaciones del kit de Promega (PureYield™ Plasmid Miniprep System) como se explican a continuación:
El cultivo de bacterias fue alicuotado en tubos de 1 .5 mi y centrifugado a 16000g durante 30 segundos en una microcentrifuga. Del producto obtenido, se descartó el sobrenadante y el precipitado fue resuspendido en 600 μΙ de agua, al cual se le añadió 100μΙ de tampón de lisis celular y fue mezclado por inversión. A esta mezcla se le añadieron 350μΙ de solución neutralizante y se mezcló de nuevo por inversión. A continuación, se centrifugó a 16000g durante 3 minutos. El sobrenadante obtenido fue transferido a una de las minicolumnas que proporciona el kit que retiene el ADN. Se volvió a centrifugar a 16000g durante 15 segundos. A continuación, se le añadieron 200μΙ de solución de lavado a la minicolumna y se volvió a centrifugar durante 15 segundos. Posteriormente, se añadieron 400μΙ de solución de lavado a la minicolumna y se centrifugó durante 30 segundos. Finalmente para eluir el ADN que había quedado retenido en la membrana, se transfirió la minicolumna a un tubo de microcentrifuga limpio de 1 .5 mi, se le añadieron 30μΙ de agua estéril al centro de la membrana y se incubó durante 1 minuto a temperatura ambiente. Finalmente, para obtener el ADN plasmídico purificado se centrifugó a 16000g durante 15 segundos. El ADN plasmídico fue cuantificado mediante absorbancia en el espectrofotometro (Nanodrop, Thermo) y fue almacenado a -20°C hasta el momento de su uso.
En este punto teníamos diferentes UFC aisladas y congeladas, pero se desconocía si el plásmido poseía el inserto, su secuencia completa, la orientación en el marco abierto de lectura etc, por tanto se debía comprobar que el plásmido cumplía con todos los requisitos deseados. Para ello se realizaron dos pruebas:
• PCR convencional utilizando como ADN molde el ADN plasmídico. • Secuenciación de ADN: Los plásmidos positivos en la PCR, fueron secuenciados para obtener la secuencia nucleotídica que nos permitiría evaluar la secuencia del inserto y comprobar la orientación del mismo.
La secuenciación del inserto abarcaba secuencias aguas arriba que coincidían con el promotor del T7 y aguas abajo con la secuencia T7 terminal. Las secuencias obtenidas fueron alineadas en sentido 5'3' con la secuencia de referencia del NBCI de número de GeneBank: CAA61940.1 mediante el programa bioinformático Multalin. A continuación se muestra los resultados obtenidos tras el alineamiento que nos cercioraba la integridad de la secuencia y orientación en el marco de lectura correcto:
Transformación en bacterias de expresión BL21 (DE3)
Una vez verificado el clon que contenía el plásmido con las condiciones correctas, el plásmido se transformó en las bacterias de expresión BL21 (DE3) para la producción de la proteína recombinante IFNAR2.3, siguiendo el mismo protocolo descrito anteriormente para la transformación en bacterias replicativas y detección del plásmido . inducción de la expresión de la proteína recombinante IFNAR2.3
En condiciones normales, en las bacterias BL21 (DE3) transformadas con el plásmido, la proteína recombinante no se está expresando porque su expresión está reprimida por el represor Lac (Lacl) que se encuentra unido al operon Lac. Para permitir su expresión, es necesario la adicción de IPTG que actúa como inductor secuestrando al represor y permitiendo que la T7 ARN polimerasa se una al promotor T7 y realice el proceso de transcripción. Para inducir la expresión de la proteína recombinante IFNAR2.3 se siguió el siguiente protocolo:
En el día previo a la inducción de la producción de la proteína, se preparó un precultivo de la siguiente manera:
• Las bacterias BL21 (DE3) con el plásmido fueron cultivadas en 4ml de LB-Broth suplementados con ampicilina a una concentración final de 100pg/ml e incubadas toda la noche a 37°C con una agitación de 220 rpm.
• Al día siguiente, se realizó la inducción de la expresión de la proteína. Para ello, el cultivo del día anterior fue diluido 1/10 en un volumen final de 50 mi de medio LB-Broth suplementado con ampicilina e incubado a 37°C con una agitación de 220 rpm hasta alcanzar una densidad óptica (D.O.) de 0.80-1 nm. Llegado este momento se añadió el inductor IPTG a una concentración final de 0.5mM (previamente establecida) y el cultivo fue incubado durante 4 horas a 37°C con una agitación de 220 rpm. A partir de este momento comenzó el proceso de transcripción para la expresión de la proteína. Transcurridas las 4 horas de inducción (optimizada previamente) se recogió el cultivo y se centrifugó a 1600g a 4°C durante 20 minutos. El sobrenadante fue descartado y el pellet guardado a -80°C hasta su posterior uso.
Extracción de la proteína recombinante
La proteína recombinante expresada se localizaba en el interior de la bacteria. Para acceder a ella y poder purificarla se debía romper la pared bacteriana mediante procesos físicos y químicos que a continuación se detallan:
El precipitado de bacterias almacenado a -80°C fue descongelado a temperatura ambiente. Seguidamente, se le añadieron 0.5ml de tampón de lisis bacteriana por cada mililitro de cultivo inicial y se resuspendió on la ayuda de una pipeta. La suspensión resultante fue incubada durante 1 hora a temperatura ambiente en rotación. Transcurrido este tiempo la muestra fue sometida a ultrasonidos en ciclos de 5 pulsos de 30 segundos en hielo, y con una intensidad del 40%. A continuación fue ultracentrifigada a 15000 g durante 20 minutos a 4°C y con ello se separaron las membranas de las proteínas liberadas de la bacteria. Tras la ultracentrifugación se recogió el sobrenadante y se pasó a través de un filtro de 0.45 pm.
Purificación de la proteína recombinante IFNAR2.3
El producto obtenido tras la extracción contenía la proteína recombinante junto con otras proteínas bacterianas. Para purificar y aislar la proteína recombinante IFNAR2.3, se utilizó la técnica de cromatografía de afinidad, de forma que la proteína recombinante IFNAR2.3 queda retenida por la cola de histidina-asparagina que contiene. Las columnas elegidas se presentan en un volumen de 1 mi y están llenas de resina de sefarosa que llevan unidas iones de níquel. Los iones de níquel le confieren la capacidad de retener proteínas ricas en histidina y por tanto la proteína recombinante IFNAR2.3 va a quedar retenida, entre otras. La liberación de la proteína de la resina se produce por la adicción de un tampón rico en imidazol que compite con el sitio de unión al níquel. A continuación se detalla el protocolo seguido:
Antes de iniciar el proceso de purificación con la cromatografía de afinidad, la resina fue lavada y equilibrada con 10 mi de tampón de equilibrado. Seguidamente, el extracto proteico que contiene nuestra proteína de interés, fue puesto en contacto con la resina en rotación a 4°C durante 1 hora y posteriormente, la resina fue empaquetada en la columna. Para eliminar las proteínas no unidas a la resina, ésta se lavó con 10ml de tampón de equilibrado. Finalmente, las proteínas retenidas por el níquel fueron eluidas con 5 mi de tampón de elución rico en imidazol y recogidas en alícuotas de 1 mi.
Detección de la proteína recombinante: Electroforesis y Western blot
El primer paso para la detección de la proteína fue la realización de la electroforesis en geles de poliacrilamida y posteriormente la transferencia de las proteínas a una membrana. El protocolo seguido fue:
Las muestras fueron resuspendidas en tampón de carga 5x y hervidas a 100°C durante 3 minutos en un termobloque. A continuación, éstas fueron cargadas en un gel de poliacrilamida al 12%, sumergidas en tampón de electroforesis y sometidas a una corriente constante de 130 V. Una vez finalizada la electroforesis, el gel obtenido fue sumergido en tampón de transferencia durante unos minutos.
La transferencia se realizó en un sistema semi-seco en planchas de grafito que previamente habían sido humedecidas con agua. A continuación la membrana de nitrocelulosa con tamaño de poro de 0.45 pm fue activada sumergiéndola en agua y posteriormente equilibrada en tampón de transferencia. Posteriormente, se procedió a montar el sándwich; sobre la plancha de grafito; se dispusieron 9 papeles de transferencia previamente humedecidos en tampón de transferencia, a continuación la membrana encima y sobre ésta el gel que iba a ser transferido. Para terminar con el sándwich, se volvieron a poner 9 papeles de transferencia humedecidos en tampón de transferencia. La transferencia se realizó durante 45 minutos con una intensidad de 0.8 mA/cm2. Una vez terminada la transferencia, la membrana fue separada y bloqueada con tampón de bloqueo durante 2h a temperatura ambiente y con agitación. El bloqueo es una etapa que evita la unión no específica de los anticuerpos a los sitios libres de la membrana, quedando éstos bloqueados con la caseína de la leche. Tras el bloqueo, la membrana fue puesta en contacto con el anticuerpo primario anti-IFNAR2 Human producido en conejo (Abnova) 1/5000, previamente establecida la dilución, en solución de bloqueo durante toda la noche a 4°C en rotación. Al día siguiente, la membrana fue retirada de la solución con anticuerpo y lavada con tampón de lavado. La membrana fue incubada durante una hora y media con el anticuerpo anti-lgG de conejo (Sigma-Aldrich) marcado con fosfatasa alcalina, a una dilución 1/10000 en solución de bloqueo. Se procedió a lavar como en el punto anterior. Para ver el resultado del western blot, se reveló la membrana poniéndola en contacto con una mezcla formada por 200 μΙ de NBT/BCIP + 10ml de solución de revelado a temperatura ambiente hasta la aparición un producto coloreado. Para finalizar, la reacción fue parada desechando la solución de revelado y sumergiéndola en solución de parada, rica en iones magnesio que bloquean el desarrollo de la reacción colorimétrica retirando el NBT/BCIP.
Análisis de la proteína recombinante
Tras la purificación de la proteína recombinante SIFNAR2, se procedió a su análisis. Para ello, se escindieron las la/s proteínas/bandas de un gel de acrilamida SDS/PAGE y se fragmentaron para realizar el análisis posterior de la huella peptídica por espectrometría de masas MALDI-TOF/TOF. Los resultados obtenidos se pueden ver en las Fig. 10 y 1 1 .
Tras la purificación de la proteína, se hicieron los ensayos de puesta a punto de la técnica de ELISA tal y como se detalla a continuación.
Técnica de ELISA para cuantificación del fragmento soluble IFNAR2.3
Podemos considerar la técnica de ELISA (enzyme linked immunosorben assay) como una de las herramientas más poderosas para la detección y cuantificación de proteínas específicas en una mezcla compleja de ellas. Originalmente descrito por Engvall y Perlmann en 1971 (Engvall & Perlmann Immunochemistry. 1971 Sep;8(9):871 -4) como una alternativa más sencilla e igualmente sensible a la metodología de detección de sustancias por RIA (Radioimmuno assay).
Se ha puesto a punto un ELISA tipo sándwich que requiere dos anticuerpos diferentes que se unen al mismo antígeno. El primer anticuerpo (unido a la placa) es el llamado anticuerpo primario, mientras que el segundo anticuerpo detecta el antígeno inmovilizado por el primero y se denomina anticuerpo de secundario) Dado que este último no está marcado, hemos recurrido a un tercer anticuerpo (especie-específico) conjugado a una enzima a la que posteriormente enfrentaremos con su sustrato que dará lugar a una reacción colorimétrica.
Se sensibiliza la placa con un anticuerpo específico que reconocerá e inmovilizará nuestro antígeno objeto de estudio (IFNAR2.3). En este estudio hemos optimizado la concentración de anticuerpo primario en combinación con la concentración de anticuerpo secundario para incrementar la relación entre señal/ruido de fondo. Para esto, hemos realizado la sensibilización de las placas con tres diferentes concentraciones de anticuerpo de primario (0.8, 1 y 1 .2 pg/ml) en tampón carbonato/bicarbonato a pH 9.6 e incubado 16 horas a 4°C. Posteriormente se procede a la retirada del anticuerpo de primario y el lavado de la placa tres veces con tampón de lavado TBS/Tween (TBS, 1 .5mM MgCI2, 0.05% Tween 20)
En todos los experimentos se bloqueó la unión no específica por medio de la adición de una solución de bloqueo (TBS/Tween/1 % BSA), incubando durante 1 hora a 37 °C, tras lo cual procedemos a realizar de nuevo tres lavados con TBS-Tween.
Para optimizar la concentración de anticuerpo de detección, la placa se sensibilizó con el anticuerpo primario como acabamos de describir. Como antígeno (y control positivo de la técnica) se empleó la proteína recombinante IFNAR2.3 producida en bacterias y purificada por medio de cromatografía de afinidad. Se utilizaron distintas diluciones de la proteína recombinante IFNAR2.3 (1/20, 1/50, 1/100 y 1/200); además se incluyó un control negativo en cada placa que consistió en solución de bloqueo (TBS/Tween 20/1 % BSA). Las muestras se incubaron a 37°C durante 1 hora, tras lo cual se procedió a lavar la placa tres veces con tampón TBS/Tween. Tras este paso se añadió el anticuerpo secundario a distintas concentraciones (400, 600 y 800 ng/ml en solución de bloqueo) y se incubó de nuevo durante 1 hora a 37°C, procediendo de nuevo al lavado de la placa 3 veces con tampón TBS/Tween. Posteriormente, se recurrió a la incubación con un anticuerpo conjugado a fosfatasa alcalina, siguiendo las especificaciones del proveedor, que detecta específicamente la IgG de ratón y se incubó de nuevo durante 1 hora a 37°C, lavando la placa tras la incubación con TBS/Tween. Finalizado este proceso se añadió a cada pozo de la placa la solución sustrato de fosfatasa alcalina. Tras incubar la placa durante 30 min a 37°C se detuvo la reacción con 3 M NaOH. Como fruto de la reacción enzima-sustrato, los pozos en los que hay una identificación del antígeno aparecen amarillo brillante. La intensidad del color se cuantificó por la lectura de la densidad óptica de cada pocilio a 405 nm en un lector de placas.
El resultado obtenido en este tipo de experimentos permitió fijar la concentración óptima de anticuerpo de primario y secundario para mantener la mejor relación entre señal y ruido de fondo (figuras), eligiendo como mejor condición, la sensibilización de la placa con 0.8 pg/ml de anticuerpo de primario y 400 ng/ml de anticuerpo secundario.
Ensayo en pacientes
Una vez optimizada la técnica se ha determinado la presencia de IFNAR2.3 en suero en una primera cohorte de pacientes de EM y de controles sanos.
Frecuencia Porcentaje
Válidos Sin tratar 81 60,4
CONTROLES 53 39,6
Total 134 100,0
A continuación se presenta una tabla (Tabla 3) como ejemplo de las absorbancias obtenidas: 1 2 3 4 5 6 7 8 9 10 11 12
A 0,999 0,876 0,813 0,812 0,709 0,722 0,928 0,939 0,862 0,835 0,743 0,778
B 0,747 0,665 0,672 0,733 0,787 0,768 0,8 0,776 0,686 0,702 0,995 1 ,056
C 0,882 0,85 0,841 0,829 0,729 0,735 1 ,032 0,845 0,706 0,759 1 ,045 1 ,012
D 0,71 1 0,721 0,701 0,7 0,915 0,906 0,6 0,618 0,726 0,966 0,96 0,983
E 0,89 0,832 0,925 0,877 0,897 0,866 0,709 0,676 0,843 0,949 0,917 0,892
F 0,872 0,814 0,839 0,825 1 , 106 1 , 1 18 0,639 0,661 0,767 0,776 0,764 0,75
G 0,941 0,954 0,839 0,86 0,933 0,94 0,758 0,743 0,984 1 ,014 0,842 0,827
H 0,967 0,972 0,874 0,89 0,808 0,817 0,88 0,919 4,000 3,909 0,208 0,205
Se ha calculado la variación intraensayo de la técnica, determinando la DO la misma muestra en el mismo ensayo 12 veces y se ha obtenido un coeficiente de variación de 12,2%. Para el cálculo de la variación interensayo se determinó la DO de la misma muestra en 7 ensayos diferentes realizados en diferentes días, obteniéndose un coeficiente de variación de 17, 1 %.
Todas las muestras han sido analizadas por duplicado. En el caso que el porcentaje del coeficiente de variación entre las duplicas exceda el 25%, la determinación para esa muestra es considerada como no válida.
Análisis estadístico de los datos
Los datos obtenidos en los diferentes experimentos se normalizaron para obtener el "índice de muestra" como se describe en el apartado siguiente y sobre ellos se aplicaron test no paramétricos para muestras independientes. La expresión de IFNAR2.3 en suero muestra diferencias significativas en pacientes tratados con IFN, pacientes de EM sin tratamiento y controles sanos, tal y como se observa en la Fig. 7.
Según los datos, el tratamiento con IFNB aumenta los niveles séricos de IFNAR2.3 respecto a pacientes no tratados y controles sanos. Las diferencias encontradas entre pacientes no tratados y controles sanos, sin intervenir el tratamiento con IFNB, son probablemente debidas a la patogenia de la enfermedad. Para comprobar que las diferencias encontradas no se deben exclusivamente al tratamiento con IFNB, se han incluido pacientes tratados con Copaxone®. No se han encontrado diferencias significativas entre los pacientes tratados con Copaxone® y los pacientes sin tratamiento (presentan medianas muy similares) y se mantienen las diferencias entre los tratados con Copaxone® y los controles sanos.
Análisis de la sensibilidad y especificidad del ELISA
Para normalizar y homogeneizar los datos crudos de absorbancias obtenidos en el ELISA para la determinación de IFNAR2.3 en suero, se estableció un punto de corte a partir del control negativo obtenido en cada placa, mediante los siguientes cálculos:
Cut off: 3(DO NEG+Desv. St neg); Cut off: 3(0.089+0.0136) = 0.307
Las absorbancias de los sueros fue divido entre el cut off. A este nuevo valor resultante, se le denominó "INDICE DE LA MUESTRA" con la cual realizaríamos todos los análisis estadísticos.
SENSIBILIDAD: Es la probabilidad de clasificar correctamente a un individuo que se ha definido como positivo respecto a la condición que estudia la prueba. Probabilidad de que un sujeto enfermo obtenga en la prueba un resultado positivo. La sensibilidad es, por lo tanto, la capacidad del test para detectar la enfermedad.
En este ensayo se ha definido como positivo ser paciente.
S= VP/(VP+FN) *100
ESPECIFICIDAD: Es la probabilidad de clasificar correctamente a un individuo que se ha definido como negativo. Probabilidad de clasificar correctamente a un individuo sano, es decir, la probabilidad de que un sujeto sano obtenga un resultado negativo.
Es igual a restar a 1 la fracción de falsos positivos.
En nuestro caso se ha definido como negativo ser control.
E= VN/ (VN+FP)*100 Con el índice de muestra se ha establecido de forma arbitraria diferentes puntos de corte. Se ha creado una variable nueva para cada punto de corte, clasificando las muestras como:
- verdaderos positivos (pacientes por encima del punto de corte)
- falsos positivos (control por encima del punto de corte),
- verdaderos negativos (control por debajo del punto de corte)
- falsos negativos (pacientes por debajo del punto de corte).
Análisis de pacientes tratados, no tratados y controles sanos
En este primer análisis se incluyen pacientes de EM (sin tratamiento, tratados con IFN y tratados con Copaxone®) y controles sanos (Fig. IX)
Este análisis no sirve para discriminar entre controles sanos y pacientes, porque dentro del grupo de pacientes de EM se incluyen los pacientes tratados con IFN y previamente se ha visto que el tratamiento con IFN incrementa los niveles de IFNAR2.3, por lo que es necesario excluir a los pacientes tratados con IFNB del análisis.
Análisis de pacientes sin tratamiento - Controles sanos
Para establecer si el test permite discriminar entre pacientes de EM y controles sanos, se han excluido del análisis los pacientes con tratamiento. (Fig. 10)
A continuación, se muestran las sensibilidades y especificidades para distintos puntos de corte, según las siguientes fórmulas
Sensibilidad= VP/(VP+FN) *100
Especificidad= VN/ (VN+FP)*100 Tabla 4. positivo=paciente; negativo= control; punto de corte 1 .45
Frecuencia Porcentaje
Válidos verdadero
30 22,4
negativo
verdadero
74 55,2
positivo
falso negativo 8 6,0 falso positivo 22 16,4
Total 134 100,0
Sensibilidad= 90%
Especificidad= 57%
Tabla 5. positivo=paciente; negativo= control; punto de corte 1.50
Frecuencia Porcentaje
Válidos verdadero
36 26,9
negativo
verdadero
67 50,0
positivo
falso negativo 14 10,4 falso positivo 17 12,7
Total 134 100,0
Sensibilidad = 82.7%
Especificidad = 67.9%
positivo=paciente; negativo= control; punto de corte 1.55
Frecuencia Porcentaje
Válidos verdadero
36 26,9
negativo
verdadero
65 48,5
positivo falso negativo 17 12,7
falso positivo 16 1 1 ,9
Total 134 100,0
Sens¡bil¡dad= 79.2%
Especificidad = 69.0% positivo=paciente; negativo= control; punto de corte 1.70
Frecuencia Porcentaje
Válidos verdadero
39 29, 1 negativo
verdadero
49 36,6 positivo
falso negativo 33 24,6 falso positivo 13 9,7
Total 134 100,0
Sensibilidad= 59.7%
Especificidad = 75%
Resumen de los resultados
Teniendo en cuenta los grupos de los pacientes sin tratamiento y los controles sanos.
Tabla 6 resumen de frecuencias
Figure imgf000041_0001
TABLA 7 RESUMEN Sensibilidad y especificidad de la variable índice de la muestra (ELISA) con distintos puntos de corte establecidos (pacientes sin tratamiento y controles sanos)
Punto de corte Sensibilidad Especificidad
(Test positivo) (tasa de (tasa de aciertos
aciertos con con los controles)
los
enfermos)
>1.24 100% 25% Se clasifican bien los pacientes
>1.45 90.0% 57.0%
>1.50 82.7% 68.0%
>1.55 79.2% 69.0%
>1.70 59.7% 75.0%
<2.14 24% 100% Se clasifican bien los controles TABLA 8 RESUMEN: Valores predictivos positivo y negativo de la variable índice de la muestra (ELISA) con distintos puntos de corte establecidos
Valor predictivo positivo: VP/VP+FP
Valor predictivo negativo: VN/FN+VN
Figure imgf000042_0001
* Valores sujetos a la prevalencia obtenida en consulta.
Estaríamos ante un indicador (univariante) que sin otro tipo de información multivariante presenta buena capacidad discriminante entre pacientes de EM y controles sanos.
Hasta aquí, quedan reflejados los resultados obtenidos en la primera cohorte de pacientes analizada.
Ejemplo 2: Validación de SIFNAR2 como marcador diagnóstico de EM
Tras los resultados obtenidos en la primera cohorte de pacientes, donde se evaluaron los niveles séricos de SIFNAR2 en 305 pacientes con esclerosis múltiple (EM) (224 tratados con IFNB y 81 no tratada) y 53 controles sanos, se incluyó una segunda cohorte para comprobar si se replicaban los datos. Esta segunda cohorte comprendió 208 pacientes con esclerosis múltiple (136 tratados y 72 no tratados) y 64 controles sanos. SIFNAR2 recombinante se clonó y se expresó en células BL21 (DE3) de bacterias y se purificó con columnas de afinidad. Esta proteína se utilizó para optimizar un ensayo de inmunoabsorción ligado a enzimas semicuantitativo no comercial para detectar SIFNAR2 y se incluyó como un control positivo en cada serie. La absorbancia se normalizó y los datos se analizaron mediante la prueba U de Mann-Whitney y la curva ROC {receiver operating characteristics).
NIA TERIAL Y MÉTODOS
Sujetos del estudio
La cohorte inicial incluyó 305 pacientes, reclutados del Hospital Universitario Regional Carlos Haya (Málaga, España), con la EM definida según el criterio revisado de McDonald (McDonald et al., 2001 . Ann Neurol 50:121 -7; Polman et al., 2005. Ann Neurol 58:840-6; Polman et al., 201 1 . Ann Neurol 69:292-302). Ochenta y un pacientes fueron tratados previamente y nunca habían recibido IFNB, acetato de glatiramer (GA) o mitoxantrona, o corticosteroides en los tres meses anteriores a la toma de muestras de sangre. En total, 224 pacientes habían recibido tratamiento con IFNB 1 a o 1 b durante al menos un año, y 47 pacientes habían sido tratados con GA. Como controles, se seleccionaron 53 individuos sanos.
Para validar los anteriores resultados se incluyó a una segunda cohorte de 136 pacientes con EM tratados con 72 pacientes con EM no tratados y 64 controles sanos.
El protocolo de investigación fue aprobado por el Comité de Ética (CEI Málaga Nordeste) y todos los participantes dieron su consentimiento informado por escrito.
Recogida de muestras
Para los pacientes no tratados, se recogieron 5 mi de sangre periférica antes de iniciar el tratamiento con IFNB. Para los pacientes tratados, se obtuvieron muestras después de más de un año de tratamiento con IFNB o GA. En todos los casos, los controles incluidos, se obtuvo el suero por centrifugación a 1800xg durante 5 min y se almacenaron a -20 0 C hasta su análisis.
Clonación y expresión de IFNAR2 soluble recombinante
El sistema de expresión procariota elegido fue pEcoli - Cterm 6xHN lineal (Clontech ®). El inserto se sintetizó por reacción en cadena de la polimerasa usando los cebadores específicos. La banda específica se purificó con el "QIAquick Gel Extraction" kit (QIAGEN®) y se ligó con el "In- Fusión Dry -Down pellet " kit ( Clontech ®) siguiendo las instrucciones del fabricante. Las células competentes DH5a™ ( Invitrogen ®)) se transformaron , se siembran en placas de agar LB suplementado con ampicilina (100 mg/ml) y se incubaron durante la noche a 37 °C. La unidades formadoras de colonias se aislaron, se sembraron en caldo lisogénico suplementado con ampicilina y se incubó durante la noche con agitación. Después de la purificación del plásmido (PureYield™ ( Promega ®)) y una vez que la secuencia de nucleótidos y el marco de lectura correcto se había verificado, bacterias BL21 (DE3) ( Invitrogen ®) se transformaron para producir la proteína recombinante SIFNAR2 . Una vez que el cultivo alcanzó una densidad óptica (DO) de 0,8 (λ = 600 nm) , expresión de la proteína se indujo mediante la adición de 0,5 mM de isopropil β-D-l - tiogalactopiranósido con la posterior incubación durante 4 horas a 37 °C con agitación. Las bacterias se recogieron y se resuspendieron en tampón de lisis que contiene un cóctel de inhibidores de proteasa (Roche ®), se incubaron durante 30 min a temperatura ambiente con agitación constante y se sonicaron. La suspensión se centrifugó a 20.000 χ g durante 20 min a 4 0 C y el sobrenadante se filtró.
La SIFNAR2 recombinante se purificó en columnas de resina N¡+2- de ácido iminodiacético de alta capacidad y detectado por Western Blot utilizando el anticuerpo anti-IFNAR2 humano MaxPab (Abnova ®) (Tabla S1 ). La SIFNAR2 recombinante también fue identificada por ionización MALDI (desorción/ionización mediante láser asistida por Matriz), acoplada a un analizador TOF (tiempo de vuelo) (MALDI-TOF).
SOLUCIONE s CO M POSI Cl( N
Tampón de l¡ sis 50 m M Tr¡5 5, 5 00 mM NaCI, 10% glicerol, 1 % NP-40, pH 7 Tampón equilibrador 50 mM fosfato de sodio, 300 mM NaCI, 20 mM imidazol; pH
7.4
50 mM fosfato de sodio, 300 mM NaCI, 40 mM imidazol; pH
Tampón de lavado 7.4
Tampón de elución 50 mM fosfato de sodio, 300 mM NaCI,, 300 mM imidazol;
pH 7.4
Tabla 10. Soluciones uti izadas para la clonación, expresión y purificación de IFNAR2 soluble (slFNAR2) recombinante.
Determinación de IFNAR2 soluble en suero por ELISA
El slFNAR2 sérico fue detectado por un ELISA sandwich semi-cuantitativo no comercial (Tabla S2). Las placas se recubrieron con anticuerpo policlonal humano anti- IFNAR2 MaxPab producido en conejo (Abnova ®), a una concentración final de 800 ng/pocillo y se incubaron a 4 °C durante la noche . Después de lavar la placa, se añadieron 200 I de tampón de bloqueo por pocilio y se incubó durante 2 horas a temperatura ambiente. A continuación, se añadieron 50 I de las muestras de suero por duplicado. Después de una hora, se añadió un anticuerpo secundario policlonal humano anti- IFNAR2 MaxPab producido en ratón (Abnova ®) (400 ng/pocillo) y se incubó durante 1 hora. Más detalles acerca de la especificidad de los anticuerpos utilizados se incluyen a continuación y en la Fig.13.
Especificidad de los anticuerpos utilizados SIFNAR2 ELISA Información acerca de las isoformas de IFNAR2 se encuentra en: http://www.uniprot.org/uniprot/P48551 ANTI IFNAR2 HUMAN MAXPAB H00003455-D01 P (ABNOVA)
Rabbit polyclonal antibody raised against a full-length human IFNAR2 protein.
IMMUNOGEN: IFNAR2 (AAH02793.1 , 1 a.a. ~ 331 a.a) full-length human protein. SEQUENCE:
MLLSQNAFIVRSLNLVLMVYISLVFGISYDSPDYTDESCTFKISLRNFRSILSWELK NHSIVPTHYTLLYTIMSKPEDLKWKNCANTTRSFCDLTDEWRSTHEAYVTVLEGF SGNTTLFSCSHNFWLAIDMSFEPPEFEIVGFTNHINVMVKFPSIVEEELQFDLSLVI EEQSEGIVKKHKPEIKGNMSGNFTYIIDKLIPNTNYCVSVYLEHSDEQAVIKSPLKC TLLPPGQESESAESAKIGGIITVFLIALVLTSTIVTLKWIGYICLRNSLPKVLRQGLTK GWNAVAIHRCSHNALQSETPELKQSSCLSFPSSWDYKRASLCPSD ANTI IFNAR2 HUMAN MAXPAB H00003455-B01 P (ABNOVA)
Mouse polyclonal antibody raised against a full-length human IFNAR2 protein.
IMMUNOGEN: IFNAR2 (AAH02793.1 , 1 a.a. ~ 331 a.a) full-length human protein. SEQUENCE:
MLLSQNAFIVRSLNLVLMVYISLVFGISYDSPDYTDESCTFKISLRNFRSILSWELKNHS
IVPTHYTLLYTIMSKPEDLKWKNCANTTRSFCDLTDEWRSTHEAYVTVLEGFSGNTT
LFSCSHNFWLAIDMSFEPPEFEIVGFTNHINVMVKFPSIVEEELQFDLSLVIEEQSEGIV
KKHKPEIKGNMSGNFTYIIDKLIPNTNYCVSVYLEHSDEQAVIKSPLKCTLLPPGQESE
SAESAKIGGIITVFLIALVLTSTIVTLKWIGYICLRNSLPKVLRQGLTKGWNAVAIHRCSH
NALQSETPELKQSSCLSFPSSWDYKRASLC
Después de lavar la placa de nuevo, se añadió un anticuerpo anti-lgG de conejo fosfatasa alcalina producido en cabra (Sigma - Aldrich ®) diluido 1/1000 y se incubó durante una hora. Para desarrollar la reacción de color, se añadió solución de fosfato de p - nitrofenilo (1 mg/ml) y se incubó durante 30 minutos. Después, el OD se midió a 405 nm. El valor fue llevado a ser directamente proporcional a la cantidad de slFNAR2 presente en el suero.
Figure imgf000046_0001
abla 1 1 . Soluciones utilizadas en SIFNAR2 ELISA Se incluyeron en cada placa un control positivo sin diluir con SIFNAR2 recombinante purificada obtenida como se ha descrito anteriormente y un control negativo que contenía sólo tampón de bloqueo.
El punto de corte se estableció de acuerdo con la siguiente ecuación:
3 (Media O.D. negat¡vo + desviación estándar (SD) Media).
La absorbancia de las muestras de suero se normalizaron como sigue:
O. D. muestra / 3 (Media O. D. negativo + SD) y el resultado fue designado como el índice SIFNAR2.
Análisis estadístico
Los datos se presentan como mediana y rango intercuartil. Como se estableció una distribución no normal en la prueba de Kolmogorov-Smirnov, se utilizaron métodos no paramétricos para las comparaciones estadísticas.
Se calcularon las diferencias estadísticas entre los grupos independientes usando el test de Kruskal Wallis (más de dos variables independientes) con la prueba U de Mann-Whitney (dos variables independientes). La significación estadística se estableció en p < 0.05.
Se utilizó el análisis de la curva ROC (Receiver Operating Characteristic) para evaluar la capacidad diagnóstica de SIFNAR2 para identificar a los pacientes con EM. Los valores de sensibilidad, especificidad y de corte se calcularon usando el área bajo la curva (AUC) de acuerdo con las fórmulas estándar.
RESULTADOS
Características del paciente
Las características demográficas y clínicas se resumen en la Tabla 12. Cohorte original Cohorte de
no tratada validación no tratada p-value
81 72
mujer/hombre 53/28 42/30 0,41
Media de edad al inicio de 26 (5.91 ) 29 (10.75) 0.89 los síntomas (años)
Duración de la enfermedad 10.13 (6.61 ) 9.67 (8.65) 0.32 (años)
Forma clínica RR/SP 47/34 62/10 0.914
Puntuación de EDSS al inicio 2(2.0) 1 .75 (1 .69) 0.123
a. Los datos se expresan como media (desviación estándar) p-valores se obtuvieron las siguientes comparaciones entre los medios de prueba de chi-cuadrado (sexo y presentación clínica) y RR: Relapsing-Remitting; SP: Secondary Progressive; EDSS: Expanded Disability Status Scale
ELISA sandwich para la detección de SIFNAR2 en suero
Las concentraciones de anticuerpos usados en el ELISA fueron optimizados para obtener la mejor relación señal/ruido. La especificidad del ELISA se confirmó mediante la obtención de resultados positivos en los pocilios que contienen los slFNAR2 recombinante y resultados negativos a partir de muestras sin ella. La absorbancia disminuyó linealmente con diluciones mayores de SIFNAR2 (Figura 1 1 ).
Se evaluó la variabilidad intra e ¡nter-ensayo, obteniendo un coeficiente de variación de 5,3% y 14,8%, respectivamente.
Evaluación de los niveles séricos de SÍFNAR2 en pacientes con EM y controles sanos. La comparación de los pacientes con EM y controles sanos en la primera cohorte mostró un aumento significativo en los niveles séricos de SIFNAR2 en los pacientes en comparación con los controles sanos (P < 0,001 ) (Fig. 2). Los valores de SIFNAR2 obtenidos para los diferentes grupos de estudio se resumen en la Tabla 13.
Tabla 13. La mediana y el rango intercuartil de SIFNAR2 determinado por ELISA. IFNB: interferón beta; GA: Acetato de glatiramero
Figure imgf000049_0001
Pacientes con EM fueron divididos en dos grupos, IFNB tratados y IFNB - no tratado, para evaluar el efecto del tratamiento con IFN en los niveles séricos de SIFNAR2 . IFNB pacientes tratados muestran un aumento significativo en los niveles séricos de slFNAR2 en comparación con los pacientes no tratados (P < 0,001 ) y con los controles sanos (P < 0,001 ). Para confirmar que el aumento de SIFNAR2 observado en los pacientes tratados fue debido a la acción de IFNB , hemos incluido un grupo de pacientes tratados con GA . Estos pacientes muestran menores niveles séricos de slFNAR2 significativas en comparación con los pacientes tratados con IFNB (P < 0,001 ) y los niveles séricos mayores en comparación con los controles sanos (P < 0,001 ) . Sin embargo, no se observaron diferencias entre los pacientes no tratados y los pacientes GA - tratados (Fig. 15A ) .
Curiosamente, los pacientes no tratados tenían valores significativos más altos de slFNAR2 que los controles sanos (P <0,001 ). Esto sugiere que este receptor soluble podría ser un biomarcador de diagnóstico potencial para la EM. Para corroborar estos resultados, SIFNAR2 se determinó en suero en una segunda cohorte independiente. Se reproducen las diferencias en los niveles séricos de SIFNAR2 entre pacientes no tratados y controles sanos en este segundo estudio (P <0.001 ) (Fig. 15B). Sin embargo, las diferencias entre los pacientes tratados y no tratados que se observan en la primera cohorte no alcanzaron significación en la segunda cohorte estudiada, probablemente debido a la dispersión de los datos en este subestudio. En el análisis combinado de ambas cohortes, los pacientes tratados habían aumentado los niveles de SIFNAR2 en comparación con los pacientes no tratados (P <0,001 ) y los controles sanos (P <0,001 ). Como era de esperar, los resultados combinados mostraron los niveles más altos de SIFNAR2 en pacientes no tratados en comparación con los controles sanos (P <0,001 ) (Fig. 15A).
Evaluación de IFNAR2 soluble como un biomarcador de diagnóstico para MS
Las diferencias observadas entre pacientes no tratados y controles sanos en la primera cohorte, replicados en la segunda cohorte independiente, sugirieron que los niveles séricos de SIFNAR2 son un biomarcador de diagnóstico para la EM. Para evaluarlo se llevó a cabo, el análisis de la curva ROC de las cohortes combinadas para evaluar la precisión y la capacidad de discriminación de la prueba de diagnóstico. El AUC obtenido fue de 0,79 (95% límites de confianza de área = 0,74 hasta 0,85, p <0.001 ) (Fig15B)
El rango de especificidad y sensibilidad obtenida en esta prueba dependerá de la línea de corte establecida por el observador. El valor de corte óptimo para discriminar entre los pacientes con EM y controles sanos fue de 1 ,4, lo que resultó en una sensibilidad (tasa de verdaderos positivos) de 80.55% y una especificidad (tasa de falsos positivos) del 70,52% .En este estudio, la sensibilidad se define como el porcentaje de pacientes con EM identificó correctamente. Este punto de corte óptimo prioriza la sensibilidad sobre la especificidad ya que la utilidad clínica de la determinación es SIFNAR2 como método de cribado para identificar a los pacientes con EM.
Aunque la determinación de SIFNAR2 en el suero, como muestran los ejemplos de la invención, ya tiene un alto poder discriminatorio para un indicador univariante, otro marcador adicional podría mejorar la capacidad de discriminación de SIFNAR2 y la especificidad de diagnóstico de la EM, como se ha descrito con otros biomarcadores. Por ejemplo, SIFNAR2 suero y la proteína C-reactiva podría mejorar el diagnóstico de los pacientes con cáncer gastrointestinal y hepatobiliar-pancreático cáncer. Otro ejemplo es el aumento de dos veces en la detección de la anemia por deficiencia de hierro cuando se utilizaron tres parámetros en combinación (ferritina, RsTf , y el índice de RsTf) en lugar de ferritina solo.
Los niveles de SIFNAR2 podrían añadirse al panel de otros potenciales biomarcadores de diagnóstico de laboratorio descrito en EM como CSF OCB IgG y / o KFLC (Kappa gratuito Cadenas Ligeras Libres) LCR, reacción MRZ (sarampión- rubéola-Zoster Endothecal Reaction) o los niveles en suero de vitamina D.31 Estos biomarcadores tienen valores de sensibilidad y especificidad cercanos a los valores obtenidos con SIFNAR2 y con la ventaja de que su determinación se hace en el suero.
EJEMPLO 3. La isoforma soluble de la subunidad IFNAR2 (slFNAR2) puede modular la actividad de ΙΡΝβ y por lo tanto la respuesta inmune asociada.
Se han seleccionado cinco pacientes con niveles altos de SIFNAR2 y cinco pacientes con niveles bajos de SIFNAR2 y se ha analizado, partiendo de células mononucleares de sangre periférica, los perfiles de citoquinas proinflamatorias.
Los pacientes con altos niveles de SIFNAR2, mostraron bajos niveles de TNF alpha e IFN ganma, mientras que en los pacientes con bajos niveles de SIFNAR2, se encontraron niveles mas elevados de TNF alpha e IFN ganma (Fig. 16)
El incremento de SIFNAR2 podría deberse a un intento de neutralizar la respuesta proinflamatoria anormal que ocurre en la enfermedad.
EJEMPLO 4. Evaluación de SIFNAR2 en pacientes CIS En el inicio de la esclerosis múltiple existe una fase preclínica en la que hay lesiones, pero no hay manifestaciones de síntomas. La sospecha de la presencia de la enfermedad se inicia con la aparición del primer síntoma clínicamente aislado (CIS, del inglés clinically isolated syndrome). Estos síntomas indican una sospecha, pero no una confirmación de padecer esclerosis múltiple. La confirmación de la enfermedad o, como se denomina en clínica, el cambio a una esclerosis múltiple clínicamente definida (CDMS del inglés múltiple sclerosis clinically defined), se produce cuando el paciente presenta otro síntoma clínico en el que se confirme una diseminación espacial de las lesiones (presencia de síntomas y signos que indiquen la existencia de dos lesiones independientes en el SNC) y una dispersión temporal (dos o más episodios de disfunción neurológica).
Desde la aparición de un CIS hasta que se diagnostica la enfermedad (CDMS) transcurre un tiempo. Descartar la enfermedad o diagnosticarla desde la manifestación de algún síntoma es de suma importancia para el paciente y el clínico. Por ello, se valoraron los niveles de SIFNAR2 en suero de pacientes con CIS.
A partir del ELISA desarrollado, se incluyeron en el estudio 43 pacientes que tenía un CIS de los cuales, 27 convertían a esclerosis múltiple.
En la Fig. 12 y la Tabla 9 se observa que los pacientes que tienen un CIS y van a evolucionar a EM tienes niveles superiores y significativos con respecto a los que no evolucionarán a EM (p= 0.047) con sus respectivas medianas y rangos intercuartílicos.
Tabla 9. Mediana y rango intercuartílico de los valores en suero de SIFNAR2 en pacientes que con CIS que convierten a EM o no
No EM Si EM
N 16 27
Mediana 0.82 0.92
P25-P75 0.79-0.89 0.85-1.08 EJEMPLO 5. Eficacia terapéutica de IFNAR2 soluble (slFNAR2)
Para medir la eficacia terapéutica de SIFNAR2 en la EM, se emplearon como modelo animal ratones con encefalomielitis autoinmune experimental (EAE) crónica progresiva (CP). Se dividieron los modelos animales, con un tamaño de n=5, en cuatro grupos:
Figure imgf000053_0002
El tratamiento consistió en la administración crónica, por vía intraperitoneal, de cada uno de los compuestos, desde el día 8 después de la inmunización (8dp¡) (antes de la aparición de la sintomatología) y cada 3 días hasta el fin de la experimentación.
La administración combinada del IFN beta + IFNAR sol (slFNAR2) en un mismo animal, se ha realizado administrando primero el IFNb y, 15-20 min después, el slFNAR2, ambos también por vía intraperitoneal.
Los datos se muestran como la media ± el Error estándar de la media de los valores obtenidos de 5 animales en cada grupo experimental. a) Tratamiento preventivo
Los resultados se muestran en la Fig. 17 y 18 y en las Tablas 15 y 16
Figure imgf000053_0001
Figure imgf000054_0001
Tabla 15. Resultados del Test Newman-Keuls de comparación múltiple. Tratamiento preventivo.
T-Test
Figure imgf000054_0002
Tabla 16. "End- Point" tratamiento preventivo.
Resultados
- Todas las terapias administradas de forma preventiva, incluido el suero salino (vehículo), modifican el curso normal de la EAE crónica progresiva. El brote es más moderado y escalonado en el tiempo, y la cronificación de la enfermedad no es tan evidente hasta día 31 -32 DPI.
- El IFNb administrado antes del inicio de la sintomatología, parece agravar la enfermedad, desarrollando una EAE más severa que en los animales tratados con salino (El score máximo y el acumulativo que sufren los animales, es mayor que en los tratados con el resto de compuestos)
- El slFNAR2 retrasa la aparición de la sintomatología y, tanto el score máximo como el acumulativo, es considerablemente menor que los tratados con salino. Esto indica que la EAE (brote) es más moderada en los animales tratados con IFNAR sol. Sin embargo, con el tiempo (cronificación), el score clínico de los animales es similar al de los tratados con salino.
- Administración combinada: El SIFNAR2 y el IFNb se antagonizan, en alguna medida, sus efectos. Los animales con esta terapia, desarrollan una CP-EAE más moderada que los animales tratados con salino y con IFNb solo. Tanto el score máximo como el acumulativo de los animales con esta doble terapia es menor. Con el tiempo (cronificación), el score clínico es similar al de los tratados con salino y con SIFNAR2 como terapia única.
Conclusiones del tratamiento preventivo:
1 . Los compuestos administrados de forma preventiva, alteran el curso clínico del modelo de EAE crónica progresiva.
2. El IFNb no ejerce un efecto terapéutico beneficioso en los animales con CP-EAE inducida, sino que interviene agravando la enfermedad.
3. El slFNAR2 modula el desarrollo de la CP-EAE inducida: modera su gravedad y retrasa tanto el inicio de la enfermedad como la cronificación de la sintomatología clínica. Sin embargo, el efecto terapéutico parece limitado en el tiempo, ya que en la cronificación de la enfermedad el déficit neurológico de los animales se ¡guala al de los tratados con salino.
4. Administración combinada: el IFNb y el SIFNAR2 interaccionan (de algún modo) ejerciendo sus efectos. Los resultados tienen dos lecturas:
A. El slFNAR2 antagoniza el efecto del IFNb, moderando la gravedad de la EAE, e igualando, en la cronificación de la enfermedad, el déficit neurológico a los valores alcanzados por los animales tratados con salino
B. El IFNb antagoniza el efecto del SIFNAR2, disminuyendo su efecto terapéutico, antes de la cronificacióin de la enfermedad. b) Tratamiento clínico El tratamiento ha consistido en la administración crónica, por vía intraperitoneal, de cada uno de los compuestos desde la manifestación clínica de la enfermedad (14 DPI) y cada 3 días hasta el fin de la experimentación.
Grupos experimentales:
Figure imgf000056_0001
La administración del IFN beta + SIFNAR2 en un mismo animal, se ha realizado administrando pnmero el IFNb y, 15-20 min después, el SIFNAR2, ambos también por vía intraperitoneal.
Los datos se muestran como la media ± el Error estándar de la media de los valores obtenidos de 5 animales en cada grupo experimental. FIG, 19 y 20 y Tablas X y X
Figure imgf000056_0002
Tabla 17. Resultados del Test Newman-Keuls de comparación múltiple. Tratamiento clínico.
Figure imgf000057_0001
Tabla 18. "End- Point" tratamiento clínico.
Resultados
Los resultados indican que:
- la EAE crónica progresiva se desarrolla con un curso clínico normal, tal y como está descrito. La cronificación de la enfermedad es evidente a partir de los días 17-19 DPI, en todos los grupos experimentales.
- Desde la primera dosis (a día 14 dpi), tanto el IFNb como el SIFNAR2, no solo administrados como "terapia única" sino también cuando se administran como "terapia combinada", disminuyen la gravedad de la EAE, mostrando estos animales scores máximos y acumulativos mucho menores que los tratados con suero salino.
- El grupo de animales tratados con SIFNAR2 sólo, experimentan un leve aumento del score clínico al final de la experimentación, acercándose a los valores alcanzados por los animales tratados con salino.
Administración combinada:
- El IFNb parece "antagonizar", en alguna medida, este leve aumento de la gravedad de la EAE que sufren los animales tratados con SIFNAR2 al final de la experimentación. - El slFNAR2 NO potencia ni antagoniza el efecto beneficioso del IFNbeta sobre el curso clínico de la EAE (no hay sinergia ni bloqueo de efectos entre ellos al administrarse de forma conjunta; la curva de IFNb+slFNAR2 es prácticamente paralela a la del IFNb solo).
Conclusiones:
1 . El IFNb ejerce un efecto beneficioso en los animales con CP-EAE inducida disminuyendo la gravedad y el déficit neurológico de los animales a lo largo del curso de la enfermedad.
2. El slFNAR2 ejerce un efecto terapéutico similar al del IFNb. Disminuye la gravedad y el déficit neurológico de los animales a lo largo del curso de la enfermedad. De nuevo, el efecto terapéutico parece limitado en el tiempo, ya que en la etapa final de la cronificación, el déficit neurológico de los animales tiende a igualarse al de los tratados con salino.
3. Administración combinada: el IFNb y el IFNAR soluble interaccionan (de algún modo) ejerciendo sus efectos:
A) Es el IFNb el que "potencia" el efecto beneficioso del IFNAR soluble en la etapa tardía de la cronificación de la enfermedad, evitando el leve aumento del déficit neurológico que sufren los animales tratados solo con IFNAR soluble.
B) Sin embargo, el IFNAR sol. NO potencia ni antagoniza el efecto beneficioso del IFNb sobre el curso clínico de la EAE (no hay sinergia de efectos al administrarse de forma conjunta).
CONCLUSIONES FINALES
1 . El IFNAR soluble interviene modulando la EAE crónica progresiva, ejerciendo un efecto beneficioso sobre el curso clínico y el déficit neurológico que sufren los animales con la EAE inducida. 2. El slFNAR2 ejerce un efecto terapéutico mayor al del IFNb al ser administrado de forma preventiva. Al ser administrados de forma conjunta, ambos fármacos interaccionan antagonizando sus efectos.
3. El slFNAR2 ejerce un efecto terapéutico similar al del IFNb al ser administrado de forma clínica. El mecanismo de acción de este efecto beneficioso parece estar relacionado más con su modulación del IFNb endógeno que con su interacción con el IFNb exógeno ya que, al ser administrado de forma conjunta, no se modifica el efecto de ninguno.

Claims

REIVINDICACIONES
1 . - Una proteína recombinante obtenible por un procedimiento que comprende:
a) integrar un inserto con la secuencia nucleotídica SEQ ID NO. 1 en un vector de expresión,
b) transformar un hospedador con el vector de expresión del paso (a), c) inducir la expresión de la proteína recombinante,
d) extraer la proteína recombinante, y opcionalmente
e) purificar la proteína recombinante.
2. - La proteína recombinante según la reivindicación anterior, donde el vector de expresión es el vector prelinearizado pEcoli-Cterm 6xHN Linear.
3. - La proteína recombinante según cualquiera de las reivindicaciones 1 -2, donde el hospedador del paso (b) son bacterias de expresión.
4. - La proteína recombinante según la reivindicación antenor, donde las bacterias de expresión son bacterias E.coli BL21 (DE3).
5. - La proteína recombinante según cualquiera de las reivindicaciones 1 -4, donde la integración del paso (a) se realiza mediante un proceso de ligación.
6. - La proteína recombinante según la reivindicación antenor, donde en la ligación se emplea un liofilizado que comprende la enzima In-Fusion.
7. - La proteína recombinante según cualquiera de las reivindicaciones 1 -6, donde el inserto se sintetizó empleando los cebadores de secuencia nucleotídica SEQ ID NO: 5 y SEQ ID NO: 6.
8. - Un anticuerpo, o un fragmento del mismo, que reconoce específicamente una proteína recombinante según cualquiera de las reivindicaciones 1 -7.
9. - El anticuerpo o un fragmento del mismo, según la reivindicación anterior, obtenible por inyección de la proteína recombinante según cualquiera de las reivindicaciones 1 -7 en un animal apropiado, y recogida y opcionalmente purificación de los antisueros de los animales.
10. - El anticuerpo según cualquiera de las reivindicaciones 8-9, que es un anticuerpo monoclonal.
1 1 . - Una composición que comprende:
a) una proteína que comprende la secuencia aminoacídica SEQ ID NO: 2,
b) la proteína recombinante según cualquiera de las reivindicaciones 1 -7,
c) La proteína IFNAR2.3, ó
d) el anticuerpo según cualquiera de las reivindicaciones 8-10.
12. - La composición según la reivindicación anterior, que es una composición farmacéutica que opcionalmente además comprende un vehículo farmacéuticamente aceptable y/o excipientes farmacéuticamente aceptables.
13. - El uso de una composición según cualquiera de las reivindicaciones 1 1 -12, en la elaboración de un medicamento.
14. - El uso de una composición según cualquiera de las reivindicaciones 1 1 -12, en la elaboración de un medicamento para la prevención, control, tratamiento y/o alivio de una enfermedad inflamatoria desmielinizante autoinmune.
15. - El uso de una composición según cualquiera de las reivindicaciones 1 1 -12, en la elaboración de un medicamento para la prevención, control, tratamiento y/o alivio de una enfermedad inflamatoria desmielinizante autoinmune, donde la enfermedad inflamatoria desmielinizante autoinmune se selecciona de la lista que cosiste en: enfermedades desmielinizantes agudas del sistema nervioso central y enfermedades asociadas (sarampión, varicela, rubéola, enterovirus, Epstein-Barr, HTLV1 , Herpes tipo 6, Herpes simples e Influenza A y B), mielitis transversa aguda (MT), neuromielitis óptica de Devic, esclerosis múltiple, neuritis óptica, esclerosis difusa o enfermedad de Schilder, Polineuropatía Crónica Recidivante, leucodistrofia, síndrome de Hughes, o cualquiera de sus combinaciones.
16. - El uso de una composición según cualquiera de las reivindicaciones 1 1 -12, en la elaboración de un medicamento para la prevención, control, tratamiento y/o alivio de una enfermedad inflamatoria desmielinizante autoinmune, donde la enfermedad inflamatoria desmielinizante autoinmune es la esclerosis múltiple.
17. - Un método de obtención de datos útiles, para el diagnóstico de individuos con esclerosis múltiple, que comprende:
a) obtener una muestra biológica aislada de un individuo, y
b) detectar el producto de expresión de IFNAR2.3.
18. - Un método de obtención de datos útiles según la reivindicación anterior, que además comprende:
c) comparar las cantidades obtenidas en el paso (b) con una cantidad de referencia.
19. - El método según cualquiera de las reivindicaciones 15-16, donde los pasos (b) y/o (c) de los métodos descritos anteriormente pueden ser total o parcialmente automatizados.
20. - El método según cualquiera de las reivindicaciones 15-17, donde la muestra biológica es suero.
21 . - El método según cualquiera de las reivindicaciones 15-18, donde la cuantificación se hace mediante un inmunoensayo.
22. - El método según la reivindicación 19, donde el inmunoensayo es un ELISA.
23. - El método según cualquiera de las reivindicaciones 19-20, donde el inmunoensayo es un ELISA sándwich.
24. - Un método de diagnóstico, pronóstico y clasificación de individuos que comprende los pasos (a)-(c) según cualquiera de las reivindicaciones 15-21 , y que además comprende asignar al individuo del paso (a) al grupo de individuos con esclerosis múltiple cuando presentan un valor superior a 2, 14 por encima del punto de corte establecido en la curva ROC.
25. - Un método de diagnóstico, pronóstico y clasificación de individuos que comprende los pasos (a)-(c) según cualquiera de las reivindicaciones 15-21 , y que además comprende asignar al individuo del paso (a) al grupo de individuos sin esclerosis múltiple cuando presentan un valor inferior a 1 , 14 por debajo del punto de corte establecido en la curva ROC.
26. - Un método para predecir o pronosticar la evolución de un paciente que ha presentado un síntoma clínicamente aislado (CIS) a esclerosis múltiple, que comprende los pasos (a)-(c) según cualquiera de las reivindicaciones 15-21 , y que además comprende asignar al individuo del paso (a) al grupo de individuo que evolucionarán a esclerosis múltiple, cuando presentan niveles superiores y significativos con respecto a una muestra de referencia.
27. - Un kit o dispositivo, que comprende los elementos necesarios para cuantificar el producto de expresión de IFNAR2.3.
28. - El kit o dispositivo según la reivindicación anterior, que comprende un anticuerpo según se describe en cualquiera de las reivindicaciones 8-10.
29. - Un kit o dispositivo según cualquiera de las reivindicaciones 27 o 28, que comprende una proteína recombinante según se describe en cualquiera de las reivindicaciones 1 -7.
30. - Un kit o dispositivo según cualquiera de las reivindicaciones 27-29, que además comprende:
a) un soporte sólido que lleva unido un anticuerpo primario
b) anticuerpo secundario
c) una solución del anticuerpo de detección, marcado con un marcador enzimático; y
d) un reactivo.
31 . - Un kit o dispositivo según la reivindicación anterior, donde el anticuerpo primario comprende la secuencia aminoacídica SEQ ID NO: 3.
32. - Un kit o dispositivo según cualquiera de las reivindicaciones 27-31 , donde el anticuerpo secundario comprende la secuencia aminoacídica SEQ ID NO: 4.
33. - El uso de un kit o dispositivo según cualquiera de las reivindicaciones 27-32, para llevar a cabo un método según se descnbe en cualquiera de las reivindicaciones 15 - 26.
34. - Un medio de almacenamiento legible por un ordenador que comprende instrucciones de programa capaces de hacer que un ordenador lleve a cabo los pasos del método según cualquiera de las reivindicaciones 15 -26.
35. - Una señal transmisible que comprende instrucciones de programa capaces de hacer que un ordenador lleve a cabo los pasos del método según cualquiera de las reivindicaciones 15 -26.
PCT/ES2013/070812 2012-11-22 2013-11-22 Proteína recombinante y usos en el diagnóstico de la esclerosis múltiple WO2014080063A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/443,814 US10393758B2 (en) 2012-11-22 2013-11-22 Methods for treating or ameliorating multiple sclerosis
EP13856322.6A EP2930183B1 (en) 2012-11-22 2013-11-22 Recombinant protein and uses thereof in the diagnosis of multiple sclerosis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201231815A ES2470816B1 (es) 2012-11-22 2012-11-22 Proteína recombinante y usos en el diagnóstico de la esclerosis múltiple
ESP201231815 2012-11-22

Publications (1)

Publication Number Publication Date
WO2014080063A1 true WO2014080063A1 (es) 2014-05-30

Family

ID=50775586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070812 WO2014080063A1 (es) 2012-11-22 2013-11-22 Proteína recombinante y usos en el diagnóstico de la esclerosis múltiple

Country Status (4)

Country Link
US (1) US10393758B2 (es)
EP (1) EP2930183B1 (es)
ES (1) ES2470816B1 (es)
WO (1) WO2014080063A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017109257A1 (es) * 2015-12-21 2017-06-29 Servicio Andaluz De Salud Procedimiento de obtención de la proteína ifnar recombinante así como su uso como antiviral

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3862436A4 (en) * 2018-10-02 2022-08-17 Servicio Andaluz De Salud METHODS OF PREDICTING OR PROGNOSTING RESPONSE TO TREATMENT OF MULTIPLE SCLEROSIS WITH INTERFERON BETA
EP4191247A1 (en) * 2021-12-02 2023-06-07 ALA Diagnostics, S.L. In vitro method for the diagnosis and/or prognosis of multiple sclerosis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0679717A2 (en) * 1993-10-24 1995-11-02 Yeda Research And Development Company Limited Soluble interferon -receptor, its preparation and use
WO2000024417A1 (en) * 1998-10-23 2000-05-04 Monash University A method of regulation
US20040018522A1 (en) * 2002-05-09 2004-01-29 Brigham And Women's Hospital, Inc. Identification of dysregulated genes in patients with multiple sclerosis

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821078A (en) * 1992-09-03 1998-10-13 Yeda Research And Development Co. Ltd. Nucleic acid encoding interferon-α/β binding protein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0679717A2 (en) * 1993-10-24 1995-11-02 Yeda Research And Development Company Limited Soluble interferon -receptor, its preparation and use
WO2000024417A1 (en) * 1998-10-23 2000-05-04 Monash University A method of regulation
US20040018522A1 (en) * 2002-05-09 2004-01-29 Brigham And Women's Hospital, Inc. Identification of dysregulated genes in patients with multiple sclerosis

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ARDUINI ROBERT M ET AL.: "Characterization of a soluble ternary complex formed between human interferon-beta-la and its receptor chains", PROTEIN SCIENCE, vol. 8, no. 9, 31 August 1999 (1999-08-31), pages 1867 - 1877, XP000886314 *
ENGVALL; PERLMANN, IMMUNOCHEMISTRY, vol. 8, no. 9, September 1971 (1971-09-01), pages 871 - 4
JEONG H ET AL., J MOL BIOL, 11 December 2009 (2009-12-11)
LUTFALLA G ET AL.: "Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster", THE EMBO JOURNAL, vol. 14, no. 20, 16 October 1995 (1995-10-16), pages 5100 - 5108, XP055255018 *
MCDONALD ET AL., ANN NEURAL, vol. 50, 2001, pages 121 - 7
MEALY N E ET AL.: "IFNAR-2", DRUGS OF THE FUTURE, vol. 29, no. 3, 29 February 2004 (2004-02-29), pages 292, XP055255202 *
NOVICK D ET AL.: "The human interferon alphabeta receptor: Characterization and molecular cloning", CELL, vol. 77, no. 3, 6 May 1994 (1994-05-06), pages 391 - 400, XP024244739 *
PIEHLER J ET AL.: "Biophysical analysis of the interaction of human ifnar2 expressed in E. coli with IFNalpha2", JOURNAL OF MOLECULAR BIOLOGY, vol. 289, no. 1, 28 May 1999 (1999-05-28), pages 57 - 67, XP004462067 *
POLMAN ET AL., ANN NEURAL, vol. 69, 2011, pages 292 - 302
POLMAN ET AL., ANN NEUROL, vol. 58, 2005, pages 840 - 6
See also references of EP2930183A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017109257A1 (es) * 2015-12-21 2017-06-29 Servicio Andaluz De Salud Procedimiento de obtención de la proteína ifnar recombinante así como su uso como antiviral

Also Published As

Publication number Publication date
EP2930183A4 (en) 2016-06-08
EP2930183A1 (en) 2015-10-14
US10393758B2 (en) 2019-08-27
ES2470816B1 (es) 2015-04-01
US20160011212A1 (en) 2016-01-14
ES2470816A1 (es) 2014-06-24
EP2930183B1 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
Fialová et al. Serum and cerebrospinal fluid light neurofilaments and antibodies against them in clinically isolated syndrome and multiple sclerosis
WO2016125148A1 (en) Methods and compositions for diagnosing brain injury or neurodegeneration
ES2788389T3 (es) Ensayo mejorado para el diagnóstico de alergia al cacahuete
WO2014080063A1 (es) Proteína recombinante y usos en el diagnóstico de la esclerosis múltiple
US20160187354A1 (en) Diagnostic markers for multiple sclerosis
JP2013174442A (ja) リウマチ障害と非リウマチ障害とを識別するためのトリガーアッセイ
WO2012137180A2 (en) Biomarkers of immunotherapy efficacy
CA3033035C (en) Method for the diagnosis of acute pancreatitis (ap) by detection of glycoprotein 2 isoform alpha (gp2a)
ES2598248B1 (es) Método in vitro y kit para el pronóstico o predicción de la respuesta al tratamiento con agentes antipsicóticos por parte de pacientes que han sufrido un primer episodio psicótico
US10041947B2 (en) Biomarker for the prediction of responsiveness to an anti-tumour necrosis factor alpha (TNF) treatment
Kawamura et al. New Sandwich‐Type Enzyme‐Linked Immunosorbent Assay for Human MxA Protein in a Whole Blood Using Monoclonal Antibodies Against GTP‐Binding Domain for Recognition of Viral Infection
Asturias et al. Purified allergens vs. complete extract in the diagnosis of plane tree pollen allergy
EP3112867B1 (en) Qualitative predictive method for differential diagnosis of pneumococcic, meningococcic and viral menigitis, differential meningitis diagnostic method and use of a kit
JP6687391B2 (ja) リウマチ性関節炎(ra)の存在を決定するためのサンプルの測定方法
JP2018523092A5 (es)
JP2011528799A (ja) 全身性疾患の診断
WO2020070363A1 (es) Método para predecir o pronosticar la respuesta al tratamiento de la esclerosis múltiple con interferón beta.
JP7461346B2 (ja) 重度の外傷性脳損傷の血液バイオマーカー
US20230003742A1 (en) Non-invasive assay for detecting and monitoring systemic inflammation
WO2023275235A1 (en) Method and means for diagnosis of spondyloarthritis
AU2014277709B2 (en) Biomarker for the prediction of responsiveness to an anti-tumour necrosis factor alpha (TNF) treatment
WO2015154056A1 (en) Methods and compositions for the prediction and treatment of focal segmental glomerulosclerosis
CN117451993A (zh) 一种梅毒诊断与疗效评估试剂盒
WO2018143896A1 (en) Ovarian cancer biomarker
ES2727261A1 (es) INMUNOCOMPLEJOS ARTIFICIALES Y SU USO COMO CALIBRES EN SISTEMAS DE DETECCION DE INMUNOCOMPLEJOS CIRCULANTES B2GP1-aB2GP1

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013856322

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14443814

Country of ref document: US