WO2014079385A1 - 衬底处理系统 - Google Patents

衬底处理系统 Download PDF

Info

Publication number
WO2014079385A1
WO2014079385A1 PCT/CN2013/087679 CN2013087679W WO2014079385A1 WO 2014079385 A1 WO2014079385 A1 WO 2014079385A1 CN 2013087679 W CN2013087679 W CN 2013087679W WO 2014079385 A1 WO2014079385 A1 WO 2014079385A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
unit
degassing chamber
processing system
substrate
Prior art date
Application number
PCT/CN2013/087679
Other languages
English (en)
French (fr)
Inventor
边国栋
丁培军
王厚工
赵梦欣
Original Assignee
北京北方微电子基地设备工艺研究中心有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方微电子基地设备工艺研究中心有限责任公司 filed Critical 北京北方微电子基地设备工艺研究中心有限责任公司
Publication of WO2014079385A1 publication Critical patent/WO2014079385A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention relates to the field of integrated circuit manufacturing technology, and in particular, to a substrate processing system. Background technique
  • PVD physical vapor deposition
  • pre-cleaning tantalum nitride Ta(N) deposition
  • metal Copper Cu deposition.
  • the substrate needs to be heated to a certain temperature in a closed degassing chamber to remove water vapor and other volatile impurities adsorbed on the substrate.
  • high requirements are placed on the uniformity of the substrate heating to avoid the removal of volatile impurities on a part of the substrate which may be caused by uneven heating. It is not clean, especially to avoid substrate breakage that may occur when local temperature unevenness occurs on a severe substrate.
  • the degassing chamber includes an inlet 2 disposed on the chamber wall for passage of the substrate 1, and a support member 3 disposed within the chamber for carrying the substrate 1.
  • the substrate 1 enters the degassing chamber via the inlet 2 and is placed at the top end of the support 3.
  • the degassing chamber further includes a heating unit including a plurality of bulbs 4, a bulb mounting plate 5 and a reflecting plate 6, wherein the plurality of bulbs 4 are located above the support member 3 in the degassing chamber, and each bulb 4 passes through the bulb
  • the mounting seat is mounted on the bulb mounting plate 5 disposed at the top of the degassing chamber, and the bulb mounting seat is further electrically connected to an external power source to supply power to the bulb 4; a thicker portion is further disposed between the bulb 4 and the support member 3.
  • a quartz window 8 for isolating the degassing chamber to form an upper subchamber in an atmospheric environment, and a lower subchamber in a vacuum environment, wherein the bulb 4 is located in the upper subchamber, and the support member 3 is located in the lower subchamber, in heating At the time of the substrate 1, the heat generated by the bulb 4 is radiated into the lower sub-chamber through the quartz window 8, thereby heating the substrate 1 placed at the top end of the support member 3; the reflecting plate 6 is located above the plurality of bulbs 4, and is in close contact with each other
  • the lower surface of the bulb mounting plate 5 is provided Moreover, the reflecting plate 6 is usually made of aluminum, and the lower surface of the reflecting plate 6 is smoothed so that the reflecting plate 6 can reflect light irradiated thereto by the bulb 4, thereby improving the generation of the bulb 4.
  • the bulb mounting plate 5 has a cooling water pipe therein, and the reflecting plate 6 is cooled by passing cooling water into the cooling water pipe to prevent the temperature from being excessively high.
  • a shielding member 7 is disposed inside the chamber wall of the degassing chamber, and the shielding member 7 has a cooling water passage for cooling the chamber wall to prevent the chamber wall from being overheated when the bulb 4 is heated.
  • a protective cover 9 is provided on the periphery of the bulb mount to ensure electrical safety.
  • a primary object of the present invention is to overcome the deficiencies of the prior art by proposing a substrate processing system that achieves compatibility for heating different types of substrates.
  • the present invention provides a substrate processing system including: a degassing chamber, a gas delivery unit, and a gas processing device, wherein: the degassing chamber includes a support member located inside the cavity, the support member For carrying a substrate; the gas delivery unit includes an input port for receiving gas and one or more output ports closed to the degassing chamber; an output of the gas processing device and the gas delivery unit a port is connected above the support member for heating the gas flowing out of the output port of the gas delivery unit, and introducing the heated gas into the degassing chamber, and the gas in the degassing chamber passes The heat transfer method heats the bottom of the crucible.
  • the gas processing device comprises a heating unit, the heating unit comprising: a heating element for heating a gas flowing out of an output port of the gas delivery unit.
  • the heating unit further includes: a flow guiding element, wherein the flow guiding element has a An output port of the gas delivery unit and a flow guiding channel connected to the degassing chamber, and gas flowing out from an output port of the gas conveying unit flows along the guiding channel to increase the heating unit and the gas Contact area.
  • a flow guiding element has a An output port of the gas delivery unit and a flow guiding channel connected to the degassing chamber, and gas flowing out from an output port of the gas conveying unit flows along the guiding channel to increase the heating unit and the gas Contact area.
  • the gas processing device further includes: a gas-trapping unit, the gas-sparing unit includes one or more gas-homing plates disposed under the flow guiding element, and the gas-sealing plate has a plurality of through holes. Gas flowing out of the flow guiding passage flows into the degassing chamber through the through hole.
  • the gas processing device further includes: a gas-trapping unit, wherein the gas-sparing unit comprises one or more gas-homing plates disposed under the output port of the gas-storing unit, the gas-sizing plate having a plurality of The through hole, the gas flowing out from the output port of the gas delivery unit flows into the degassing chamber through the through hole.
  • the gas-sparing unit comprises one or more gas-homing plates disposed under the output port of the gas-storing unit, the gas-sizing plate having a plurality of The through hole, the gas flowing out from the output port of the gas delivery unit flows into the degassing chamber through the through hole.
  • the heating element is located above, below or in the homogenizing plate to provide heat to the gas flowing through the through hole.
  • the heating element is closely attached to the upper surface or the lower surface of the homogenizing plate.
  • the plurality of uniform plates are spaced apart in the vertical direction, and a plane of each of the uniform plates is parallel to a surface of the substrate carried by the support; each of the The through holes on the uniform plate are evenly distributed, and the number of through holes on the uniform plate near the support member is larger than the number of through holes on the uniform plate near the output port of the gas delivery unit.
  • the heating element comprises a resistance wire.
  • the substrate processing system further includes a bottom heating unit, and the bottom heating unit is disposed at the bottom of the degassing chamber for heating the substrate.
  • the substrate processing system further includes: a vacuum pumping unit, wherein an air suction interface is connected to the air removal chamber for extracting gas in the air removal chamber.
  • the substrate processing system further includes: a cooling unit, the cooling unit is connected between the degassing chamber and a pumping interface of the vacuum pumping unit for being used for the degassing chamber The gas discharged inside is cooled.
  • the cooling unit includes: a cooling element and an air guiding tube, wherein: the air guiding tube One end of the air duct is connected to the air extraction port, the other end of the air pipe is connected to the air suction port of the air suction unit, and the air pipe is wound and connected to the outer side of the cooling element; the cooling element is used for cooling flow through The gas of the air guiding tube.
  • the invention has the following advantages:
  • the substrate processing system provided by the present invention, the gas flowing out from the output port of the gas transmission unit by means of a gas treatment device disposed above the support member and connected to the output port of the gas transmission unit Heating, and introducing the heated gas into the degassing chamber, the gas in the degassing chamber heats the substrate by heat conduction, that is, the gas in the degassing chamber is used as a heat transfer medium to exchange heat with the substrate, thereby achieving
  • the heating of the substrate compared with the prior art heating of the substrate by means of thermal radiation, can not only avoid the influence of the surface thermal emissivity of the substrate on the substrate temperature, but also the heating mode of the heat conduction can be realized.
  • the compatibility of different types of substrate heating can thus meet the different requirements of different types of substrates for temperature.
  • FIG. 1 is a schematic view showing a process of a copper interconnect PVD in the prior art
  • FIG. 2 is a cross-sectional view of a degassing chamber capable of performing a degassing process on a substrate in the prior art
  • FIG. 3 is a schematic structural view of a substrate processing system according to a first embodiment of the present invention
  • FIG. 4 is a first embodiment of the present invention
  • FIG. 5 is a top plan view of a second gas distribution plate of a substrate processing system according to a first embodiment of the present invention. detailed description
  • the substrate processing system provided by the embodiment of the present invention will be described in detail below with reference to the accompanying drawings 3-5.
  • the invention is not limited to the embodiment, and general replacements well known to those skilled in the art are also encompassed within the scope of the invention.
  • the schematic diagrams are not partially enlarged in accordance with the general proportions, and should not be construed as limiting the invention. Since the heating principle used in the substrate processing system provided by the present invention is different from that of the prior art substrate processing system, its structure is completely different from that of the existing substrate processing system.
  • FIG. 3 is a schematic structural diagram of a substrate processing system according to a first embodiment of the present invention.
  • a substrate processing system provided by the present invention includes a degassing chamber, a gas delivery unit 10, and a gas processing device.
  • the degassing chamber includes a support member 31 located within the chamber for carrying the substrate 1.
  • the gas delivery unit 10 includes an input port for receiving gas and one or more output ports that are closed to the degassing chamber.
  • the gas delivery unit 10 can be located above or to the side of the degassing chamber for introducing gas into the degassing chamber.
  • the number of the outlets of the gas delivery unit 10 is only one, but the present invention is not limited thereto.
  • the gas delivery unit 10 may have a plurality of outlets for introducing gas in a dispersed manner. Inside the air chamber.
  • the gas processing device is connected to the output port of the gas transmission unit 10 and located above the support member 31 for heating the gas flowing out from the output port of the gas delivery unit 10, and introducing the heated gas into the degassing chamber.
  • the gas in the chamber is heated by heat conduction, that is, the gas in the degassing chamber is heat-exchanged with the substrate 1 as a heat transfer medium, thereby heating the substrate 1.
  • the gas treatment device includes a heating unit and a gas holding unit 21.
  • the heating unit comprises: a flow guiding element 20 and a heating element (not shown).
  • the flow guiding element 20 has a flow guiding channel (not shown) connected to the output port and the degassing chamber of the gas conveying unit 10 respectively, and the gas flowing out from the output port of the gas conveying unit 10 along the guiding channel
  • the heating element comprises a resistance wire electrically connected to the power source for providing heat to the flow element 20, and the flow guiding element 20 conducts heat to the gas in the flow channel to effect heating of the gas.
  • the flow path of the gas in the flow guiding element 20 can be prolonged, so that the contact area of the flow guiding element 20 with the gas can be increased, and the efficiency of heat exchange between the flow guiding element 20 and the gas can be increased, and the heating efficiency can be improved.
  • the gas flowing out from the outlet of the gas transmission unit 10 is heated by means of a gas treatment device, and the heated gas is introduced into the degassing chamber, and the gas in the degassing chamber is heated by heat conduction.
  • the substrate 1, that is, the gas in the degassing chamber is heat-exchanged with the substrate 1 as a heat transfer shield, thereby heating the substrate, which is heated in the prior art by means of thermal radiation.
  • the heating temperature of the resistance wire can be adjusted by adjusting the output power of the power source, thereby achieving compatibility with different types of substrate heating, thereby Different types of substrates can be met for different temperature requirements.
  • the heating temperature requirements of the gas processing device are different for different processes.
  • the substrate needs to be heated to 250 to 300 ° C, and when the packaging process is performed, The substrate is heated to 150-180 ° C.
  • the heating unit may further comprise a temperature sensor and a pressure sensor, such as a thermocouple temperature measuring device and a silicon pressure sensor, for monitoring the temperature of the gas in the degassing chamber in real time. And pressure changes, so that real-time control can be achieved.
  • the gas equalizing unit 21 includes one or more gas equalizing plates disposed under the flow guiding member 20, and the gas distributing plate has a plurality of through holes through which gas flowing out of the flow guiding passage flows into the degassing chamber.
  • the gas equalizing unit 21 includes two gas equalizing plates 210, 211, and the gas distributing plates 210, 211 are arranged at intervals in the vertical direction, and the uniform gas plates 210, 211 are supported by the supporting plates.
  • the surfaces of the substrates 1 carried by the members 31 are parallel to each other; and, the uniform plates 210, 211 are fixedly connected to the side walls of the chamber of the degassing chamber by the fixing members 22.
  • the material of the homogenizing plate may theoretically be any material resistant to high temperatures, and preferably may be stainless steel.
  • a plurality of homogenizing plates can be used to achieve sufficient homogenization.
  • a plurality of gas plates can increase the number of times the gas is homogenized. For example, when two gas plates are used, the gas is homogenized by the first gas plate, and then subjected to secondary homogenization through the second gas plate. Make the gas distribution more uniform. In some preferred embodiments, the number of gas plates may be two or more.
  • each of the gas-trapping plates has a plurality of through holes for the purpose of uniform gas by passing gas through the through holes.
  • the through holes on each of the uniform plates are densely and evenly distributed, and the number of through holes on the uniform plate near the support member 31 is larger than the number of through holes on the uniform plate near the output port of the gas feed unit 10. . That is to say, the aperture of the through hole on the hook plate near the output port of the gas transmission unit 10 is larger, the number of through holes is smaller, and the density of the through hole distribution is smaller, as shown in FIG. 4;
  • the hole diameter of the through hole on the uniform plate of 31 is small, the number of through holes is large, and the density of the through hole distribution is also large, as shown in Fig. 5.
  • the first uniform plate 210 is evenly distributed with through holes having a diameter of 2 mm and a pitch of 50 mm
  • the second uniform plate 211 is evenly distributed with through holes having a diameter of 0.5 mm and a pitch of 12 mm.
  • the aperture of the through hole on the second air trapping plate 211 is smaller than the aperture of the through hole in the first air trapping plate 210, and the number of the through holes in the second uniformizing plate 211 is larger than the number of the through holes in the first uniformizing plate 210. That is, the distribution density of the through holes on the second uniform plate 211 is greater than the distribution density of the through holes on the first uniform plate 210.
  • the number of the flow guiding members 20 is one, which is located above the uniform plates 210, 211 and abuts and surrounds the output port of the gas delivery unit 10.
  • the gas outlet of the gas delivery unit 10 introduces a gas, since the through holes on the gas distribution plates 210 and 211 are small, there is gas flow resistance, and the gas is first filled and stays in the flow guiding member 20 and the gas extraction plate 210, respectively.
  • the space formed between the air-trapping plate 210 and the gas-homogenizing plate 211 is not immediately distributed downward to the substrate 1, which not only enables the gas staying in the space to be sufficiently heated, but also allows heating
  • the latter gas is more uniform after being homogenized twice by the homogenizing plate 210 and the homogenizing plate 211, so that the heated homogenized gas can be used as a heat transfer shield to transfer heat to the substrate by heat conduction. 1.
  • the substrate 1 is brought to the temperature required for the process.
  • the substrate processing system may further include a bottom heating unit disposed at the bottom of the degassing chamber for heating the substrate, in practical applications, the bottom portion
  • the heating unit can be used in conjunction with a heating unit to heat the substrate together.
  • the degassing chamber may also include a protective casing above the cavity, and a cavity wall shield positioned below the protective casing and disposed around the inner wall of the cavity. Both the protective casing and the cavity wall shield have cooling water paths to prevent overheating of the protective casing and the degassing chamber wall.
  • the substrate processing system may further include a vacuum pumping unit 40.
  • the pumping port of the vacuum pumping unit 40 is connected to the degassing chamber for extracting the heated and homogenized gas in the degassing chamber, for example, As shown in FIG. 3, the suction port of the vacuum pumping unit 40 is sealingly connected to the degassing chamber at the bottom of the degassing chamber. Since the gas in the degassing chamber is greater than 7 Torr in the chamber, the heat transfer efficiency in the degassing chamber is relatively stable, so that the heat transfer can be completed quickly with the substrate 1, and therefore, by the pumping unit 40 by means of the vacuum pump. Vacuum evacuation or vacuum evacuation can be performed to adjust the pressure in the degassing chamber to maintain the pressure above 7 ⁇ .
  • the substrate processing system may further include a cooling unit connected between the degassing chamber and the vacuum pumping unit 40 for cooling the gas discharged from the degassing chamber, thereby The temperature of the gas entering the vacuum pumping unit 40 can be lowered, and the damage of the gas to the vacuum pumping unit 40 can be reduced, and the service life of the vacuum pumping unit 40 can be prolonged.
  • the cooling unit comprises a cooling element and an air guiding tube, wherein one end of the air guiding tube is connected to the degassing chamber, and the other end of the air guiding tube is connected to the air suction interface of the air pumping unit 40, and the air guiding tube is tightly wound at least outside the cooling element.
  • the cooling element is used to cool the gas flowing through the air conduit.
  • the material of the cooling element may be a metal having better thermal conductivity, such as copper, and the inside thereof is provided with cooling water;
  • the material of the air guiding tube may be a material having a high thermal conductivity, such as stainless steel, so that the gas can be used The heat is transferred to the cooling element. When a hotter gas flows in the air guiding tube, it is sufficiently cooled by the air guiding tube and the cooling element to be cooled.
  • the gas of the present invention may be an inert gas such as helium, argon or the like; the substrate may be any suitable substrate to be degassed by heating, such as silicon dioxide, silicon nitride or The substrate of metal or the like, the present invention is not limited thereto.
  • the substrate processing system according to the second embodiment of the present invention also includes a degassing chamber, a gas delivery unit, and a gas processing device as compared with the first embodiment described above. Since the degassing chamber, the gas delivery unit, and the gas treatment device have been described in detail in the above first embodiment, they will not be described again.
  • the gas treatment device includes a gas hooking unit and a heating unit.
  • the uniformity unit comprises one or more homogenizing plates disposed under the output port of the gas conveying unit, the uniforming plate has a plurality of through holes, and the gas flowing out from the output port of the gas conveying unit flows into the degassing through the through holes
  • the heating unit includes a heating element located above, below or in the gas plate to heat the gas flowing out of the outlet of the gas delivery unit.
  • the heating unit in this embodiment eliminates the flow guiding member as compared with the above-described first embodiment. Moreover, when the heating element is located above the homogenizing plate, the gas flowing out from the output port of the gas conveying unit is first heated by the heating element, and then passes through the through hole of the homogenizing plate, so that the heated gas uniformly reaches the lining.
  • the heating element when the heating element is located below the homogenizing plate, the gas flowing out from the output port of the gas conveying unit first passes through the through hole of the homogenizing plate, and then is heated by the heating element; when the heating element is located inside the homogenizing plate At the same time, the gas flowing out from the outlet of the gas transmission unit is heated by the heating element while passing through the through hole of the gas distribution plate, that is, the heating element indirectly heats the gas passing through the through hole by heating the gas distribution plate.
  • the heating element indirectly heats the gas passing through the through hole by heating the gas distribution plate.
  • the heating element When the heating element is located outside the homogenizing plate (i.e., above or below the homogenizing plate), it is preferred that the heating element be brought into close contact with the upper or lower surface of the homogenizing plate to improve heating efficiency.
  • a plurality of uniform plates are spaced apart in the vertical direction, and a plane of each of the uniform plates is parallel to a surface of the substrate carried by the support;
  • the through holes on the gas plate are uniformly distributed, and the number of through holes on the hook plate near the support member is larger than the number of through holes on the uniform plate near the output port of the gas conveying unit.
  • the heating elements may be one or more depending on the number of plates.
  • one heating element may be configured for each of the gas-trapping plates, or one heating element may be configured by a plurality of gas-trapping plates, or one heating element may be configured by one gas-trapping plate.
  • the gas processing device can also dispense with the homogenizing unit, that is, heating the gas passing through it only by means of the heating unit.
  • the heating unit can also be saved The flow guiding element is removed, and the gas passing therethrough is heated only by means of the heating element. That is to say, the gas processing device may adopt a heating element in the air-inducing unit and the heating unit, or may use a heating element and a flow guiding element in the uniformizing unit and the heating unit, or may only use the heating element in the heating unit.
  • the flow guiding element it is also possible to use only the heating element in the heating unit.
  • the substrate processing system passes the gas flowing out from the output port of the gas transmission unit by means of a gas processing device disposed above the support member and connected to the output port of the gas transmission unit.
  • Heating, and introducing the heated gas into the degassing chamber, and the gas in the degassing chamber heats the substrate by heat conduction, that is, the gas in the degassing chamber is used as a heat transfer shield to exchange heat with the substrate, thereby realizing
  • the heating of the substrate compared with the prior art heating of the substrate by means of thermal radiation, can not only avoid the influence of the surface thermal emissivity of the substrate on the substrate temperature, but also the heating method of the heat conduction.
  • the compatibility of different types of substrate heating is achieved, so that different requirements of different types of substrates for temperature can be met.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Furnace Details (AREA)

Abstract

提供一种衬底处理系统,包括去气腔、输气单元(10)和气体处理装置,其中去气腔包括位于腔内用于承载衬底的支撑件(31),输气单元(10)包括用于气体的输入口以及与去气腔封闭相连的一个或多个输出口;气体处理装置与输气单元(10)的输出口连接并位于支撑件(31)上方,用以对自输气单元(10)的输出口流出的气体进行加热,并将加热后的气体引入去气腔,该去气腔内的气体通过热传导的方式加热衬底(1)。该衬底处理系统能够有效改善衬底表面热辐射系数对加热温度的影响,实现不同类型衬底的加热兼容性。

Description

衬底处理系统 技术领域
本发明涉及集成电路制造技术领域, 尤其涉及一种衬底处理系统。 背景技术
请参阅图 1 , 在半导体铜互连的物理气相沉积(Physical Vapor Deposition, 筒称 PVD)工艺中,主要包括四个主要工艺过程: 去气、预清洗、 氮化钽 Ta(N)沉积和金属铜 Cu沉积。 在去气工艺中, 需要在密闭的去气腔 中将衬底加热至一定温度, 以去除衬底上吸附的水蒸气及其它易挥发杂质。 为了保证后续工艺的正常进行,提高衬底的质量, 就对衬底加热的均匀性提 出了较高的要求,以避免因加热不均匀而可能导致的衬底的部分区域上的易 挥发杂质去除不干净,尤其是可以避免在出现严重的衬底上局部温度不均匀 时可能造成的衬底破碎。
图 2为现有技术中可对衬底进行去气工艺的去气腔的剖视图。请参阅图 2, 该去气腔包括设置在腔室壁上用于供衬底 1通过的入口 2, 以及设置在 腔内用于承载衬底 1的支撑件 3。 在装载衬底 1时, 衬底 1经由入口 2进入 去气腔, 并置于支撑件 3的顶端。 去气腔还包括加热单元, 该加热单元包括 多个灯泡 4、 灯泡安装板 5和反射板 6, 其中, 多个灯泡 4位于去气腔内的 支撑件 3的上方,且各个灯泡 4通过灯泡安装座安装于设置在去气腔顶部的 灯泡安装板 5上,并且灯泡安装座还与外界的电源电连接,以向灯泡 4供电; 在灯泡 4与支撑件 3之间还设有一较厚的石英窗 8, 用以将去气腔隔离形成 处于大气环境的上子腔室, 以及处于真空环境的下子腔室, 其中, 灯泡 4位 于上子腔室内, 支撑件 3位于下子腔室内, 在加热衬底 1时, 由灯泡 4产生 的热量透过石英窗 8辐射进入下子腔室内,从而加热置于支撑件 3的顶端的 衬底 1; 反射板 6位于多个灯泡 4的上方, 且紧贴灯泡安装板 5的下表面设 置, 并且,通常采用铝制作反射板 6, 且对反射板 6的下表面进行光滑处理, 以使反射板 6能够将由灯泡 4照射至其上的光线进行光反射,从而可以提高 灯泡 4所产生的光能量的利用率。 而且, 灯泡安装板 5内具有冷却水管路, 通过向该冷却水管路中通入冷却水来冷却反射板 6, 以防止其温度过高。 此 外, 在去气腔的腔室壁内侧还设置有屏蔽件 7, 屏蔽件 7内具有冷却水路, 用以冷却腔室壁, 以防止在使用灯泡 4加热时腔室壁过热。 另外, 在灯泡安 装座的外围还设置有保护罩 9, 用以保障电气安全。
然而, 由于不同类型的衬底的表面热辐射系数不同, 因而在获得相同的 辐射热量的前提下, 不同类型的衬底实际达到的温度有所不同, 这使得在使 用上述结构的加热单元通过热辐射的方式加热衬底 1 时, 在相同工艺条件 下, 不同类型的衬底所达到的温度不同, 从而上述结构的加热单元仅能够兼 容一种类型的衬底, 而无法满足不同类型的衬底针对温度的不同需求。 发明内容
本发明的主要目的在于克服现有技术的缺陷, 提出了一种衬底处理系 统, 其可以实现对不同类型衬底进行加热的兼容性。
为了达成上述目的, 本发明提供一种衬底处理系统, 其包括: 去气腔、 输气单元和气体处理装置, 其中: 所述去气腔, 包括位于腔内的支撑件,所 述支撑件用于承载衬底; 所述输气单元, 包括用于接收气体的输入口以及与 所述去气腔封闭相连的一个或多个输出口;所述气体处理装置与所述输气单 元的输出口连接并位于所述支撑件上方,用以对自所述输气单元的输出口流 出的气体进行加热, 并将加热后的气体引入所述去气腔, 所述去气腔内的气 体通过热传导的方式加热 4†底。
其中,所述气体处理装置包括加热单元,所述加热单元包括:加热元件, 所述加热元件用于对自所述输气单元的输出口流出的气体进行加热。
优选的, 所述加热单元还包括: 导流元件, 所述导流元件内具有分别与 所述输气单元的输出口和所述去气腔连接的导流通道, 自所述输气单元的输 出口流出的气体沿所述导流通道流动,以增加所述加热单元与所述气体的接 触面积。
优选的, 所述气体处理装置, 还包括: 勾气单元, 所述匀气单元包括设 置在所述导流元件下方的一个或多个匀气板, 所述匀气板具有多个通孔, 自 所述导流通道流出的气体经由所述通孔流入所述去气腔内。
优选的, 所述气体处理装置, 还包括: 勾气单元, 所述匀气单元包括设 置在所述输气单元的输出口下方的一个或多个匀气板,所述匀气板具有多个 通孔, 自所述输气单元的输出口流出的气体经由所述通孔流入所述去气腔 内。
优选的, 所述加热元件位于所述匀气板的上方、 下方或所述匀气板内, 用以向流经所述通孔的气体提供热量。
优选的, 所述加热元件紧密贴合于所述匀气板的上表面或下表面。 优选的,所述多个匀气板沿所述竖直方向间隔设置,且每个所述匀气板 所在平面与由所述支撑件承载的所述衬底的表面相互平行;每个所述匀气板 上的通孔呈均匀分布,且靠近所述支撑件的匀气板上通孔的数量大于靠近所 述输气单元的输出口的匀气板上通孔的数量。
优选的, 所述加热元件包括电阻丝。
优选的, 所述衬底处理系统, 还包括底部加热单元, 所述底部加热单元 设置于所述去气腔底部, 用于对所述衬底进行加热。
优选的, 所述衬底处理系统, 还包括: 真空泵抽气单元, 其抽气接口与 所述去气腔连接, 用于将所述去气腔内的气体抽出。
优选的, 所述衬底处理系统, 还包括: 冷却单元, 所述冷却单元连接于 所述去气腔和所述真空泵抽气单元的抽气接口之间,用于将自所述去气腔内 排出的气体冷却。
优选的, 所述冷却单元, 包括: 冷却元件及导气管, 其中: 所述导气管 的一端连接所述去气腔, 所述导气管的另一端连接所述抽气单元的抽气接 口, 所述导气管缠绕连接于所述冷却元件的外侧; 所述冷却元件用于冷却流 经所述导气管的气体。
本发明的有益效果在于: 本发明提供的衬底处理系统,其通过借助设置 在支撑件的上方且与输气单元的输出口连接的气体处理装置,对自输气单元 的输出口流出的气体进行加热, 并将加热后的气体引入去气腔, 去气腔内的 气体通过热传导的方式加热衬底, 即, 去气腔内的气体作为传热介质与衬底 进行热交换, 从而实现对衬底的加热, 这与现有技术现有技术中采用热辐射 的方式加热衬底相比,不仅可以避免衬底的表面热辐射系数对衬底温度的影 响, 而且热传导的加热方式还可以实现对不同类型衬底加热的兼容性, 从而 可以满足不同类型的衬底针对温度的不同需求。 附图说明
图 1为现有技术中铜互连 PVD工艺过程的示意图;
图 2为现有技术中可对衬底进行去气工艺的去气腔的剖视图; 图 3为本发明第一实施例提供的衬底处理系统的结构示意图; 图 4为本发明第一实施例提供的衬底处理系统的第一匀气板的俯视图; 以及
图 5为本发明第一实施例提供的衬底处理系统的第二匀气板的俯视图。 具体实施方式
为使本发明的内容更加清楚易懂, 以下结合说明书附图 3-5, 对本发明 实施例提供的衬底处理系统进行详细描述。 当然本发明并不局限于该实施 例, 本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。 此外, 在详述本发明实施例时, 为了便于说明, 示意图不依照一般比例局部 放大, 不应以此作为对本发明的限定。 由于本发明提供的衬底处理系统所使用的加热原理与现有的衬底处理 系统的原理不同, 因此其结构与现有的衬底处理系统结构完全不同。
第一实施例
图 3为本发明第一实施例提供的衬底处理系统的结构示意图。请参阅图 3, 本发明提供的衬底处理系统包括去气腔、 输气单元 10和气体处理装置。 去气腔包括位于腔内用于承载衬底 1的支撑件 31。
输气单元 10包括用于接收气体的输入口以及与去气腔封闭相连的一个 或多个输出口。 输气单元 10可位于去气腔上方或侧面, 用于将气体引入去 气腔内。 在本实施例中, 输气单元 10的输出口的数量仅为一个, 但是本发 明并不局限于此, 较佳的, 输气单元 10可有多个输出口, 以分散地将气体 引入去气腔内。
气体处理装置与输气单元 10的输出口连接并位于支撑件 31上方,用以 对自输气单元 10的输出口流出的气体进行加热, 并将加热后的气体引入去 气腔, 该去气腔内的气体通过热传导的方式加热 ^"底 1 , 即, 去气腔内的气 体作为传热介质与衬底 1进行热交换, 从而实现对衬底 1的加热。
在本实施例中, 气体处理装置包括加热单元和勾气单元 21。 其中, 该 加热单元包括: 导流元件 20和加热元件(图中未示出)。 其中, 导流元件 20内具有分别与输气单元 10的输出口和去气腔连接的导流通道(图中未示 出), 自输气单元 10的输出口流出的气体沿该导流通道流动; 加热元件包括 电阻丝, 其与电源电连接, 用以向导流元件 20提供热量, 导流元件 20将热 量传导至导流通道内的气体, 从而实现对气体的加热。 借助导流通道, 可以 延长气体在导流元件 20中的流动路径,从而可以增加导流元件 20与气体的 接触面积, 进而可以增加导流元件 20与气体进行热交换的效率, 提高加热 效率。
通过借助气体处理装置对自输气单元 10 的输出口流出的气体进行加 热, 并将加热后的气体引入去气腔, 去气腔内的气体通过热传导的方式加热 衬底 1 , 即, 去气腔内的气体作为传热介盾与衬底 1进行热交换, 从而实现 对衬底的加热, 这与现有技术现有技术中采用热辐射的方式加热衬底相比, 不仅可以避免衬底的表面热辐射系数对衬底温度的影响, 而且, 通过调节电 源的输出功率来调节电阻丝的加热温度,还可以实现对不同类型衬底加热的 兼容性, 从而可以满足不同类型的衬底针对温度的不同需求。
此外, 针对不同的工艺对气体处理装置的加热温度的要求也不同的情 况, 例如, 在集成电路制造工艺时, 需将衬底加热至 250~300°C , 而在进行 封装工艺时, 则需将衬底加热至 150~180°C , 因此, 优选的, 加热单元还可 包括温度传感器和压力传感器, 如热偶测温装置和硅压力传感器, 用以实时 监控去气腔内的气体的温度和压力变化, 从而可以达到实时控制的目的。
匀气单元 21包括设置在导流元件 20下方的一个或多个匀气板,匀气板 具有多个通孔, 自导流通道流出的气体经由该通孔流入去气腔内。在本实施 例中, 如图 3所示, 匀气单元 21包括两个匀气板 210, 211 , 匀气板 210, 211沿竖直方向间隔设置, 且匀气板 210, 211均与由支撑件 31承载的衬底 1的表面相互平行; 并且, 匀气板 210, 211通过固定件 22与去气腔的腔室 侧壁固定连接。在实际应用中, 匀气板的材料理论上可以为耐高温的任何材 料, 较佳的, 可以为不锈钢材料。
较佳的,可通过多个匀气板达到充分匀气的目的。多个匀气板可以增加 气体被匀化的次数, 例如, 当采用两个匀气板时, 气体经过第一匀气板匀化 之后, 再经过第二匀气板进行二次匀化, 能够使气体分布更为均匀。 在一些 较佳实施例中, 匀气板的数量可以为两个及以上。
在本实施例中,每个勾气板具有多个通孔,通过使气体穿过该通孔达到 均匀气体的目的。 通常情况下, 每个匀气板上的通孔呈密集均匀分布, 且靠 近支撑件 31的匀气板上通孔的数量大于靠近输气单元 10的输出口的匀气板 上通孔的数量。 也就是说, 靠近输气单元 10的输出口的勾气板上通孔的孔 径较大, 通孔数较少, 通孔分布的密度也较小, 如图 4所示; 而靠近支撑件 31 的匀气板上通孔的孔径较小, 通孔数较多, 通孔分布的密度也较大, 如 图 5所示。 容易理解, 较大的通孔分布密度可以更有效的实现气体的分流, 从而可以使通过勾气板的气体分布的更加均勾, 因此, 通过在靠近支撑件 31的匀气板上设置具有较大分布密度的通孔, 可以使匀气单元 21的匀气效 果更好。 优选的, 第一匀气板 210均匀分布有直径为 2mm, 间距为 50mm 的通孔, 第二匀气板 211均匀分布有直径为 0.5mm, 间距为 12mm的通孔。 第二勾气板 211上通孔的孔径要小于第一勾气板 210上通孔的孔径,第二匀 气板 211上通孔的数量则要大于第一匀气板 210上通孔的数量,也即是第二 匀气板 211上通孔的分布密度要大于第一匀气板 210上通孔的分布密度。
在本实施例中, 导流元件 20 的数量为一个, 其位于匀气板 210, 211 的上方, 紧靠并环绕输气单元 10的输出口。 当输气单元 10的输出口将气体 引入后, 由于匀气板 210和 211上的通孔较小, 存在气体流通阻力, 气体会 首先填充并停留在分别由导流元件 20和勾气板 210之间以及勾气板 210和 匀气板 211之间所构成的空间, 而不会立即向下分布至衬底 1 , 这不仅使得 停留在上述空间内的气体能够被充分加热,而且可以使加热后的气体在经过 匀气板 210和匀气板 211两次匀气之后更为均匀, 如此一来, 加热匀化后的 气体就能够作为传热介盾通过热传导的方式将热量传递给衬底 1 , 最终使衬 底 1达到工艺所需的温度。
此外, 为了达到更好的衬底去气加热的效果,衬底处理系统还可包括设 置于去气腔底部的底部加热单元, 其用于对所述衬底进行加热, 在实际应用 中, 底部加热单元可与加热单元配合使用, 共同对衬底进行加热。
去气腔也可包括位于腔体上方的保护外壳, 以及位于保护外壳下方,且 环绕腔体内壁设置的腔壁屏蔽件。 保护外壳和腔壁屏蔽件均具有冷却水路, 用以防止保护外壳及去气腔壁过热。
此外, 衬底处理系统还可包括真空泵抽气单元 40。 真空泵抽气单元 40 的抽气接口与去气腔连接,用于将去气腔内加热及匀化后的气体抽出,例如, 如图 3所示, 真空泵抽气单元 40的抽气接口与在去气腔的底部与去气腔密 封连接。 由于去气腔内的气体在腔内压力大于 7ΤΟΓΓ的情况下, 去气腔中的 传热效率较为稳定, 从而能够很快地与衬底 1完成热量传递, 因此, 通过借 助真空泵抽气单元 40进行真空排气或停止真空排气, 可以调节去气腔内的 压力, 以将其中压力保持在 7ΤΟΓΓ以上。
然而, 若真空泵抽气单元 40直接连接于去气腔, 则从去气腔排出的高 温气体会直接进入到真空泵抽气单元 40, 这容易对真空泵抽气单元 40造成 损害。 因此, 在本发明的另一实施例中, 衬底处理系统还可包括连接在去气 腔和真空泵抽气单元 40之间的冷却单元, 用于将自去气腔内排出的气体冷 却, 从而可以降低进入到真空泵抽气单元 40的气体的温度, 进而可以减少 气体对真空泵抽气单元 40的损害, 延长真空泵抽气单元 40的使用寿命。
较佳的, 冷却单元包括冷却元件及导气管, 其中, 导气管的一端与去气 腔连接, 导气管的另一端连接抽气单元 40的抽气接口, 导气管在冷却元件 外侧紧密缠绕至少一圏。 冷却元件用于冷却流经导气管的气体。在实际应用 中,冷却元件的材料可为导热性较好的金属,例如铜,且其内部通有冷却水; 导气管的材料可为具有较高导热系数的材料, 例如不锈钢, 从而可将气体的 热量传至冷却元件。 当较热的气体在导气管中流动时, 其通过导气管与冷却 元件充分进行热量交换以被冷却。
需要说明的是,本发明所述的气体可以为惰性气体,例如氦气、氩气等; 衬底可为待加热去气的任何适当的衬底, 例如表面为二氧化硅, 氮化硅或金 属的衬底等, 本发明并不限于此。
第二实施例
本发明第二实施例提供的衬底处理系统与上述第一实施例相比,同样包 括去气腔、 输气单元和气体处理装置。 由于去气腔、 输气单元和气体处理装 置在上述第一实施例中已有了详细描述, 在此不再赘述。
下面仅对本发明第二实施例提供的衬底处理系统与上述第一实施例的 不同处进行详细描述。 具体地, 气体处理装置包括勾气单元和加热单元。 其 中, 匀气单元包括设置在输气单元的输出口下方的一个或多个匀气板, 该匀 气板具有多个通孔, 自输气单元的输出口流出的气体经由通孔流入去气腔 内;加热单元包括加热元件,加热元件位于匀气板的上方、下方或匀气板内, 用以对自输气单元的输出口流出的气体进行加热。
容易理解,本实施例中的加热单元与上述第一实施例相比,省去了导流 元件。 而且, 当加热元件位于匀气板的上方时, 则自输气单元的输出口流出 的气体首先被加热元件加热, 之后再通过匀气板的通孔, 从而使被加热的气 体均匀地到达衬底处; 当加热元件位于匀气板的下方时, 则自输气单元的输 出口流出的气体首先通过匀气板的通孔, 之后再被加热元件加热; 当加热元 件位于匀气板的内部时, 自输气单元的输出口流出的气体在通过匀气板的通 孔的同时, 被加热元件加热, 即, 加热元件通过加热匀气板来间接加热经过 通孔的气体。 由此, 上述三种情况均可以实现使被加热的气体均匀地到达衬 底处。
当加热元件位于匀气板之外(即, 位于匀气板的上方或下方)时, 较佳 的,可以使加热元件紧密贴合于匀气板的上表面或下表面,以提高加热效率。
此外, 与上述第一实施例的技术方案相类似, 多个匀气板沿竖直方向间 隔设置, 且每个匀气板所在平面与由支撑件承载的衬底的表面相互平行; 每 个匀气板上的通孔呈均勾分布,且靠近支撑件的勾气板上通孔的数量大于靠 近输气单元的输出口的匀气板上通孔的数量。匀气板的其他结构和设置方式 均与上述第一实施例相同, 在此不再重复描述。
另夕卜, 在一些实施例中, 加热元件根据匀气板的数量, 可以为一个或多 个。 例如, 可以每一个勾气板均相应配置一个加热元件, 也可以多个勾气板 配置一个加热元件, 或一个勾气板配置多个加热元件。
需要说明的是,在实际应用中,气体处理装置也可以省去匀气单元,即, 仅借助加热单元来实现对经过其的气体进行加热。此外, 加热单元也可以省 去导流元件,而仅借助加热元件来实现对经过其的气体进行加热。也就是说, 气体处理装置可以采用勾气单元及加热单元中的加热元件,也可以采用匀气 单元及加热单元中的加热元件和导流元件, 或者, 还可以仅采用加热单元中 的加热元件和导流元件, 也可以仅采用加热单元中的加热元件。 这些均可以 达到本发明的目的。
综上所述,本发明实施例提供的衬底处理系统,其通过借助设置在支撑 件的上方且与输气单元的输出口连接的气体处理装置,对自输气单元的输出 口流出的气体进行加热, 并将加热后的气体引入去气腔, 去气腔内的气体通 过热传导的方式加热衬底, 即, 去气腔内的气体作为传热介盾与衬底进行热 交换, 从而实现对衬底的加热, 这与现有技术现有技术中采用热辐射的方式 加热衬底相比, 不仅可以避免衬底的表面热辐射系数对衬底温度的影响, 而 且热传导的加热方式还可以实现对不同类型衬底加热的兼容性,从而可以满 足不同类型的衬底针对温度的不同需求。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发 明并不限制于以上描述的具体实施例。对于本领域技术人员而言, 任何对本 发明进行的等同修改和替代也都在本发明的范畴之中。 因此, 在不脱离本发 明的精神和范围下所作的均等变换和修改, 都应涵盖在本发明的范围内。

Claims

UP-132313-98 权 利 要 求 书
1. 一种衬底处理系统, 其特征在于, 包括: 去气腔、 输气单元和气体 处理装置, 其中:
所述去气腔, 包括位于腔内的支撑件, 所述支撑件用于承载衬底; 所述输气单元,包括用于接收气体的输入口以及与所述去气腔封闭相连 的一个或多个输出口;
所述气体处理装置与所述输气单元的输出口连接并位于所述支撑件上 方, 用以对自所述输气单元的输出口流出的气体进行加热, 并将加热后的气 体引入所述去气腔, 所述去气腔内的气体通过热传导的方式加热衬底。
2.根据权利要求 1所述的衬底处理系统, 其特征在于, 所述气体处理 装置包括加热单元, 所述加热单元包括: 加热元件, 所述加热元件用于对自 所述输气单元的输出口流出的气体进行加热。
3. 根据权利要求 2所述的衬底处理系统, 其特征在于, 所述加热单元 还包括: 导流元件, 所述导流元件内具有分别与所述输气单元的输出口和所 述去气腔连接的导流通道, 自所述输气单元的输出口流出的气体沿所述导流 通道流动, 以增加所述加热单元与所述气体的接触面积。
4.根据权利要求 3所述的衬底处理系统, 其特征在于, 所述气体处理 装置, 还包括: 勾气单元, 所述匀气单元包括设置在所述导流元件下方的一 个或多个匀气板, 所述匀气板具有多个通孔, 自所述导流通道流出的气体经 由所述通孔流入所述去气腔内。
5. 根据权利要求 2所述的衬底处理系统, 其特征在于, 所述气体处理 装置, 还包括: 匀气单元, 所述匀气单元包括设置在所述输气单元的输出口 下方的一个或多个匀气板, 所述匀气板具有多个通孔, 自所述输气单元的输 出口流出的气体经由所述通孔流入所述去气腔内。
6. 根据权利要求 5所述的衬底处理系统, 其特征在于, 所述加热元件 位于所述匀气板的上方、 下方或所述匀气板内, 用以向流经所述通孔的气体 提供热量。
7. 根据权利要求 6所述的衬底处理系统, 其特征在于, 所述加热元件 紧密贴合于所述匀气板的上表面或下表面。
8. 根据权利要求 4或 5所述的衬底处理系统, 其特征在于, 所述多个 匀气板沿所述竖直方向间隔设置,且每个所述匀气板所在平面与由所述支撑 件承载的所述衬底的表面相互平行;
每个所述匀气板上的通孔呈均匀分布,且靠近所述支撑件的匀气板上通 孔的数量大于靠近所述输气单元的输出口的匀气板上通孔的数量。
9.根据权利要求 2所述的衬底处理系统, 其特征在于, 所述加热元件 包括电阻丝。
10. 根据权利要求 1所述的衬底处理系统, 其特征在于, 所述衬底处理 系统, 还包括底部加热单元, 所述底部加热单元设置于所述去气腔底部, 用 于对所述衬底进行加热。
11. 根据权利要求 1所述的衬底处理系统, 其特征在于, 所述衬底处理 系统, 还包括:
真空泵抽气单元,其抽气接口与所述去气腔连接,用于将所述去气腔内 的气体抽出。
12.根据权利要求 11 所述的衬底处理系统, 其特征在于, 所述衬底处 理系统, 还包括:
冷却单元,所述冷却单元连接于所述去气腔和所述真空泵抽气单元的抽 气接口之间, 用于将自所述去气腔内排出的气体冷却。
13.根据权利要求 12所述的衬底处理系统, 其特征在于, 所述冷却单 元, 包括: 冷却元件及导气管, 其中:
所述导气管的一端连接所述去气腔,所述导气管的另一端连接所述抽气 单元的抽气接口, 所述导气管缠绕连接于所述冷却元件的外侧;
所述冷却元件用于冷却流经所述导气管的气体。
PCT/CN2013/087679 2012-11-23 2013-11-22 衬底处理系统 WO2014079385A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210480416.9 2012-11-23
CN201210480416.9A CN103839875B (zh) 2012-11-21 2012-11-23 一种衬底处理系统

Publications (1)

Publication Number Publication Date
WO2014079385A1 true WO2014079385A1 (zh) 2014-05-30

Family

ID=50775557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087679 WO2014079385A1 (zh) 2012-11-23 2013-11-22 衬底处理系统

Country Status (3)

Country Link
CN (1) CN103839875B (zh)
TW (1) TWI510662B (zh)
WO (1) WO2014079385A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681402B (zh) * 2015-03-16 2018-03-16 京东方科技集团股份有限公司 基板加热装置和基板加热方法
CN113517213A (zh) * 2021-07-02 2021-10-19 北京北方华创微电子装备有限公司 去气腔室、半导体设备及去气方法
CN115305460A (zh) * 2022-08-02 2022-11-08 江苏微导纳米科技股份有限公司 半导体处理腔室及pecvd镀膜设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100511604C (zh) * 2005-04-01 2009-07-08 精工爱普生株式会社 半导体装置的制造方法
JP2011108603A (ja) * 2009-11-20 2011-06-02 Ulvac Japan Ltd 薄膜リチウム二次電池及び薄膜リチウム二次電池の形成方法
CN102612631A (zh) * 2009-08-14 2012-07-25 莱博德光学有限责任公司 用于基材热处理的装置和处理室

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228173B1 (en) * 1998-10-12 2001-05-08 Tokyo Electron Limited Single-substrate-heat-treating apparatus for semiconductor process system
JP2001319885A (ja) * 2000-03-02 2001-11-16 Hitachi Kokusai Electric Inc 基板処理装置及び半導体製造方法
JP3718688B2 (ja) * 2003-06-17 2005-11-24 東京エレクトロン株式会社 加熱装置
US20050238816A1 (en) * 2004-04-23 2005-10-27 Li Hou Method and apparatus of depositing low temperature inorganic films on plastic substrates
US20060062914A1 (en) * 2004-09-21 2006-03-23 Diwakar Garg Apparatus and process for surface treatment of substrate using an activated reactive gas
CN101971303B (zh) * 2007-09-04 2013-05-01 东京毅力科创株式会社 Sr-Ti-O系膜的成膜方法和存储媒介
US20100221426A1 (en) * 2009-03-02 2010-09-02 Fluens Corporation Web Substrate Deposition System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100511604C (zh) * 2005-04-01 2009-07-08 精工爱普生株式会社 半导体装置的制造方法
CN102612631A (zh) * 2009-08-14 2012-07-25 莱博德光学有限责任公司 用于基材热处理的装置和处理室
JP2011108603A (ja) * 2009-11-20 2011-06-02 Ulvac Japan Ltd 薄膜リチウム二次電池及び薄膜リチウム二次電池の形成方法

Also Published As

Publication number Publication date
CN103839875B (zh) 2017-08-22
TWI510662B (zh) 2015-12-01
CN103839875A (zh) 2014-06-04
TW201420797A (zh) 2014-06-01

Similar Documents

Publication Publication Date Title
US8741065B2 (en) Substrate processing apparatus
US10287686B2 (en) Hot plate and substrate processing equipment using the same
TW201116492A (en) Device and treatment chamber for thermal treatment of substrates
KR101046043B1 (ko) 노용 다중 구역 히터
US8901518B2 (en) Chambers with improved cooling devices
TWI404819B (zh) 成膜裝置及成膜方法
US6727194B2 (en) Wafer batch processing system and method
TW200908202A (en) Thermal batch reactor with removable susceptors
TWI400418B (zh) Heat treatment apparatus and heat treatment method
TW201633425A (zh) 特別是用於基板之脫氣的設備及方法
WO2014079385A1 (zh) 衬底处理系统
WO2003041132A2 (en) Gas-assisted rapid thermal processing
TWI512128B (zh) A substrate processing apparatus and a chamber apparatus thereof
CN105009260A (zh) 热耦合的石英圆顶热沉
CN104746009A (zh) Pvd去气加热腔
JP2006319175A (ja) 基板処理装置
KR102148834B1 (ko) 밀리세컨드 어닐 시스템을 위한 가스 흐름 제어
JP2008138986A (ja) 熱処理用シリコンプレートおよび熱処理炉
JP2008078196A (ja) 基板処理装置
KR102485866B1 (ko) 기판처리 장치
JP2011103469A (ja) 基板処理装置及び半導体装置の製造方法及び加熱装置及び断熱材
JP2012174725A (ja) 基板処理装置
JP2004327528A (ja) 半導体処理装置
TWI576554B (zh) 熱處理爐及熱處理方法
KR0134671Y1 (ko) 반도체 확산장비의 히터 냉각장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856507

Country of ref document: EP

Kind code of ref document: A1