WO2014079160A1 - 自激振荡喷嘴及带有该喷嘴的过滤器脉冲反吹清灰装置 - Google Patents

自激振荡喷嘴及带有该喷嘴的过滤器脉冲反吹清灰装置 Download PDF

Info

Publication number
WO2014079160A1
WO2014079160A1 PCT/CN2013/070714 CN2013070714W WO2014079160A1 WO 2014079160 A1 WO2014079160 A1 WO 2014079160A1 CN 2013070714 W CN2013070714 W CN 2013070714W WO 2014079160 A1 WO2014079160 A1 WO 2014079160A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
filter
gas
excited oscillation
pulse
Prior art date
Application number
PCT/CN2013/070714
Other languages
English (en)
French (fr)
Inventor
姬忠礼
吴小林
陈鸿海
杨亮
熊至宜
Original Assignee
中国石油大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(北京) filed Critical 中国石油大学(北京)
Priority to US14/397,788 priority Critical patent/US9409113B2/en
Publication of WO2014079160A1 publication Critical patent/WO2014079160A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/70Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter
    • B01D46/71Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter with pressurised gas, e.g. pulsed air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0002Casings; Housings; Frame constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2407Filter candles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/56Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/56Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
    • B01D46/58Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/005Nozzles or other outlets specially adapted for discharging one or more gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/08Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators
    • B05B1/083Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators the pulsating mechanism comprising movable parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
    • B05B1/262Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors
    • B05B1/265Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors the liquid or other fluent material being symmetrically deflected about the axis of the nozzle

Definitions

  • This invention relates to a gas-solid separation device, and relates to a pulse back-flushing device for a filter, and more particularly to a self-excited device.
  • the oscillating nozzle and the filter with the nozzle are pulsed backflushing and cleaning device.
  • High-temperature dust-containing gases are often generated; these high-temperature dust-containing gases are required to be dusted because different processes require energy recovery and environmental emission standards.
  • High-temperature gas dedusting is a technology that directly performs gas-solid separation under high temperature conditions to achieve gas purification. It can maximize the physical sensible heat, chemical latent heat and power energy of the gas, improve energy efficiency, and simplify the process, saving Equipment investment.
  • Rigid high-temperature filter elements such as sintered metal filter tubes and ceramic filter tubes have good seismic performance, high temperature resistance, corrosion resistance and thermal shock resistance, and have high filtration precision and filtration efficiency. Therefore, they are widely used for high temperature gases. Purification field.
  • the dust particles in the airflow are intercepted on the outer surface of the filter element to form a filter cake layer, and the gas enters the subsequent process through the porous passage in the filter element, and the filtered gas is clean gas.
  • the dust concentration is small.
  • the powder layer on the outer surface of the filter element will gradually thicken, resulting in an increase in the pressure drop of the filter element.
  • the performance of the filter element needs to be regenerated by backflushing; the direction of the backflush gas flow and the filtered air flow In the opposite direction, the high-pressure blowback airflow instantaneously enters the inside of the filter element, and the powder layer attached to the outer surface of the filter element is peeled off by the generated transient energy, so that the pressure drop of the filter element is substantially restored to the state at the time of initial filtration, thereby Regeneration of filter element performance is achieved.
  • the pulse backflushing method is an important way to achieve the performance cycle regeneration of the filter element.
  • the cleaning performance of the pulse backflushing device determines whether the high temperature gas filter can operate stably for a long time.
  • the structure of the existing high temperature gas filter mainly has two forms: a circular structure and a square structure (depending on the shape of the tube sheet).
  • FIG. 9A and FIG. 9B it is a schematic structural view of a high-temperature filter 800 having a circular structure, and the high-temperature filter 800 of the circular structure is mainly applied to a high temperature and high pressure working condition (a typical operating condition parameter is: operating pressure is about 4-6MPa, operating temperature is about 350-45CTC);
  • FIG. 10A, FIG. 10B is a schematic structural view of a high-temperature filter 900 having a square structure, and the high-temperature filter 900 of the square structure is mainly applied to high temperature and low pressure work.
  • the typical working condition parameters are: operating pressure is about 0. 2-0. 4MPa, operating temperature is about 550_650 ° C); the two high-temperature filters of different structures work the same way. As shown in FIG. 9A, FIG. 9B, FIG. 10A, FIG.
  • the tube sheets 803, 903 of the filters 800, 900 divide the filter seal into two parts, the lower part is the dust-containing gas side, and the upper part is the clean gas side;
  • the dust-containing gas (or coarse syngas) enters the dust-containing gas side of the filter from the gas inlets 801 and 901 of the filters 800 and 900, and reaches the respective filter units under the action of the gas driving force, and the dust particles in the gas stream It is intercepted on the outer surface of the filter tubes 802, 902 to form a powder layer.
  • the gas is filtered through the porous passages of the filter tubes 802, 902 and then enters the clean gas side, and is discharged through the gas outlets 805, 905 into the subsequent process.
  • the powder layer on the outer surface of the filter tubes 802 and 902 is gradually thickened, resulting in an increase in the pressure drop of the filters 800 and 900.
  • the performance of the filter tube is required to be regenerated by pulse backflushing.
  • the pulse backflushing valves 808, 908 in the normally closed state are opened, and the high pressure nitrogen or clean syngas in the gas storage tanks 809, 909 instantaneously enters the backflushing lines 807, 907, and then passes through the nozzles on the pipeline.
  • 906 spray high-pressure high-speed back-blowing gas into the corresponding ejector 804, 904, and the back-blowing gas enters the corresponding filter tubes 802, 902, and uses the transient energy to filter the dust layer on the outer surface of the filter tubes 802, 902.
  • the peeling off causes the resistance of the filter tube to substantially return to the initial state, thereby realizing the performance regeneration of the filter tube.
  • a filter unit is installed with a plurality of filter tubes (usually 48 filter tubes are installed), and each filter unit shares one ejector.
  • the filter tubes 802 are arranged in an equi-triangular manner; 12 or 24 filter units are usually installed on the tube plate 803 of the filter; when the pulse is blown back, according to the set reverse Blowing time, after back blowing the first group of filter units, after a certain period of time, backflushing the second group of filter units, and after a certain period of time, backflushing the third group of filter units, so that the cycle is repeated.
  • the filter tubes 902 are arranged on the square tube plate 903 in a row and a column at equal intervals, and are divided into several groups in units of rows.
  • each row is provided with several to ten filter tubes 902, and each row of filter tubes 902 corresponds to one injection line 907.
  • Each of the injection lines 907 is provided with a plurality of nozzles 906, one corresponding to each nozzle 906.
  • the filter tube 902 the backflushing process is performed in groups of rows, that is, the first row of the pulse backflushing valve 908 is opened, and after the corresponding blowing line 907 is backflushed, the pulse of the second row is elapsed after a certain period of time.
  • the backflushing valve 908 is opened, and the second row of the blowing line 907 is blown back to the filter element of the second row.
  • the third row of the pulse backflushing valve 908 is opened, and the filter elements of the third row are backflushed, thus reciprocating.
  • the pulse back-blowing method of the high-temperature gas filter in the prior art relies on the high-pressure back-blowing gas to generate a pressure wave transient energy in the filter tube to achieve the cleaning effect, and the pulse in the prior art.
  • the nozzle of the backflushing device is a conventional single-hole (single-tube) structure. The nozzle is installed on the back-blowing line. When the back-blowing gas is ejected through the nozzle of this structure, only a pressure wave can be generated inside the filter tube.
  • the backflushing method of the prior art inevitably causes the following problems:
  • the pulse backflush pressure is too high.
  • the backflushing airflow needs to overcome the operating pressure of the filter and the flow resistance of the filtered airflow, and the backflushing airflow energy cannot all be applied to the filtering unit; therefore, in order to ensure the cleaning effect, the actual operation needs to be greater than about 2 times the operating pressure of the filter.
  • Deashing pressure, the backflushing pressure under high temperature and high pressure operating conditions will be as high as 8 MPa, and the filter tube will be subjected to a large impact force. In this process, the filter tube is easily vibrated. The higher the backflush pressure, the more the filter tube vibrates. Vigorous; This high-pressure cleaning operation is likely to cause damage or even breakage of the filter tube due to thermal shock fatigue.
  • the backflush gas flows continuously from the porous passage of the filter tube during the process of energy transfer from the open end of the filter tube to the closed end of the filter tube after the transient energy generated by the backflush gas stream enters the filter tube.
  • the leakage causes the energy transfer process to be dissipated continuously, which results in a large difference in the cleaning effect between the lower part and the upper part of the filter tube.
  • the dust layer attached to the lower surface of the filter tube is not easily removed by the backflushing airflow, and incomplete cleaning is observed. , triggering the dust layer bridge between the filter tubes, which easily causes the filter tube to fail.
  • the cleaning effect is mainly measured by the peak value of the backflushing pressure; the peak value of the pressure refers to the maximum pressure generated by the cleaned airflow generated by the backflushing device inside the filter tube at the moment of pulse blowing.
  • the existing pulse backflushing device can only generate one pressure inside the filter tube each time backflushing (ie: the pulse backflush valve is opened once). Wave, because the cleaning effect of the upper and lower positions of the filter tube is different, and the energy of the generated pressure wave is attenuated faster. Therefore, during the actual operation of the existing high-temperature filter, it is found that the pulse is blown back. The efficiency is low and the ideal cleaning effect is not achieved.
  • the pulse backflushing device of the prior art is used, the number of times of opening and closing of the pulse backflushing solenoid valve is more in the cleaning operation, and the filter tube is cleaned once every time the pulse backflushing solenoid valve is turned on. Operation, it seems that it can also achieve the purpose of improving the efficiency of cleaning. However, this mode of operation is absolutely unacceptable for the following reasons: First, the pulse backflushing solenoid valve is expensive, the life of the diaphragm of the solenoid valve is limited, and the continuous opening of the solenoid valve is equivalent to reducing the period of use; Because of the high temperature and actual working conditions, the filtered dust-containing gas contains corrosive and flammable and explosive gases.
  • pure inert gas such as nitrogen
  • the opening of the solenoid valve is equivalent to increasing the consumption of backflushing gas.
  • the pulse backflushing requires a higher backflushing pressure
  • the backflushing gas flows into the filter tube, and the filter tube
  • the thermal shock force is very large. If the pulse backflushing solenoid valve is turned on multiple times, it will inevitably cause damage to the filter tube and shorten the service life of the filter tube.
  • an important principle when backflushing is to use the outer surface of the filter tube. When the dust layer reaches a certain thickness, it can be cleaned.
  • the inventors have developed a self-oscillating nozzle and a filter pulse backflushing device with the nozzle to overcome the drawbacks of the prior art by virtue of years of experience and practice in related industries.
  • An object of the present invention is to provide a self-oscillating nozzle and a filter pulse backflushing device with the same, which is used to make a backflushing gas through a self-oscillating nozzle when the pulse backflushing valve is opened for pulse backflushing.
  • a plurality of pressure oscillation waves are generated and transmitted in the filter tube to improve backflush unevenness and improve cleaning efficiency.
  • Another object of the present invention is to provide a self-oscillating nozzle and a filter pulse backflushing device with the nozzle to reduce the backflush gas consumption; at the same time, reduce the thermal impact force on the filter tube, and extend the filter tube Service life.
  • a filter pulse backflushing device with a self-excited oscillation nozzle a filter unit is disposed on the tube plate of the filter, and the filter unit includes at least one filter element;
  • the tube sheet divides the filter seal into an upper clean gas chamber and a lower dust-containing gas chamber;
  • the pulse back-blowing cleaning device includes an ejector disposed at an upper portion of the filter unit and a counter corresponding to the ejector a blowing pipeline, one end of the backflushing pipeline is connected to the backflushing gas tank through a pulse backflushing valve, and the other end of the backflushing pipeline is provided with a self-oscillating nozzle corresponding to the top of the ejector;
  • the self-oscillating nozzle includes a hollow cylinder a self-excited oscillation chamber, wherein the upper and lower ends of the self-excited oscillation chamber are correspondingly provided with a gas inlet and a gas outlet, and the gas inlet is connected to the back-blowing
  • the gas inlet and the gas outlet are disposed along a central axis of the self-excited oscillation chamber; the gas inlet and the gas outlet are both circular tubes having a smaller diameter than the self-excited oscillation chamber;
  • the inner diameter of the gas outlet is tapered; the oscillating frequency adjusting member is suspended at the center of the circular tube of the gas inlet by a position adjusting rod axially connected at its upper end.
  • a suspension bracket is disposed in the circular tube of the gas inlet, and an upper portion of the position adjustment rod is fixed at a center position of the suspension bracket.
  • the self-excited oscillation chamber and the gas inlet circular tube and/or the gas outlet circular tube are connected by a truncated cone-shaped connecting portion; the truncated cone-shaped connecting portion and the upper and lower ends of the self-excited oscillation chamber It is arranged in a convex shape or in a concave shape.
  • a plurality of sets of filter units are disposed on the tube plate of the filter, and each filter unit is provided with a plurality of filter elements; the tops of the ejector of each set of filter units are respectively correspondingly arranged A self-oscillating nozzle.
  • the filter element is a sintered metal filter tube or a ceramic filter tube.
  • the object of the present invention can also be achieved by a self-oscillating nozzle comprising a hollow a cylindrical self-excited oscillation chamber, wherein the upper and lower ends of the self-excited oscillation chamber are correspondingly provided with a gas inlet and a gas outlet, and an oscillation frequency adjusting component is suspended in the self-excited oscillation chamber corresponding to the gas inlet and the gas outlet, and the adjusting component is
  • the upper and lower ends are wide in the middle and the outer surface is a fusiform shape of a smooth transition surface.
  • the gas inlet and the gas outlet are disposed along a central axis of the self-excited oscillation chamber; the gas inlet and the gas outlet are both circular tubes having a smaller diameter than the self-excited oscillation chamber;
  • the inner diameter of the gas outlet is tapered; the oscillating frequency adjusting member is suspended at the center of the circular tube of the gas inlet by a position adjusting rod axially connected at its upper end.
  • a suspension bracket is disposed in the circular tube of the gas inlet, and an upper portion of the position adjustment rod is fixed at a center position of the suspension bracket.
  • the self-excited oscillation chamber and the gas inlet circular tube and/or the gas outlet circular tube are connected by a truncated cone-shaped connecting portion; the truncated cone-shaped connecting portion and the upper and lower ends of the self-excited oscillation chamber It is arranged in a convex shape or in a concave shape.
  • the filter pulse backflushing device with self-oscillating nozzle of the present invention when the pulse backflushing valve is opened for pulse backflushing, is only blown back in a very short time of one pulse backflushing. After the gas passes through the self-oscillating nozzle, a plurality of pressure oscillation waves can be generated and transmitted in the filter tube, thereby improving backflush unevenness and improving the cleaning efficiency.
  • the pulse backflushing device also reduces backflush consumption; at the same time, it reduces the thermal impact on the filter tube and prolongs the service life of the filter tube.
  • Figure 1 is a schematic view showing the structure of a filter pulse backflushing device with a self-oscillating nozzle according to the present invention.
  • FIG. 2A is a schematic view showing the structure of a self-oscillating nozzle in the present invention.
  • Fig. 2B is a schematic cross-sectional view taken along line A-A of Fig. 2A.
  • Figure 2C is a schematic partial cross-sectional view of Figure 2A.
  • Fig. 3 is a schematic view showing the generation of pressure oscillation waves in the self-excited oscillation nozzle of the present invention.
  • Figure 4 Schematic diagram of the pulse backflushing device of the present invention for a circular tube sheet filter.
  • Fig. 5 is a schematic view showing the structure of a pulse tube backwashing device for a square tube plate filter according to the present invention.
  • 6A to 6E are schematic views showing various structures of the self-excited oscillation nozzle of the present invention.
  • Figure 7 Comparison of the pressure waveforms in the filter tube of the present invention and the prior art backflushing.
  • FIG. 9A is a schematic view showing the structure of a high-temperature filter of a conventional circular structure.
  • Fig. 9B is a schematic plan view of Fig. 9A.
  • Fig. 10A is a schematic view showing the structure of a high temperature filter of a conventional square structure.
  • Fig. 10B is a schematic plan view of the top view of Fig. 10A. DETAILED DESCRIPTION OF THE INVENTION
  • the present invention provides a filter pulse backflushing device 100 with a self-oscillating nozzle, and a filter unit is disposed on a tube plate 3 of the filter, and the filter unit includes at least one filter tube 2
  • the filter tube in the present invention is a sintered metal filter tube or a ceramic filter tube; the tube sheet 3 separates the filter seal into an upper clean gas chamber and a lower dust-containing gas chamber; the dust-containing gas is filtered by the filter
  • the gas inlet 1 enters the dust-containing gas chamber of the filter and reaches the filter unit under the action of the gas driving force.
  • the dust particles in the air flow are intercepted on the outer surface of the filter tube 2, and the gas is filtered through the porous passage of the filter tube.
  • the clean gas chamber is discharged through the gas outlet 5 into a subsequent process;
  • the pulse backflushing cleaning device 100 includes an ejector 4 disposed at an upper portion of the filter unit and a backflushing line 7 corresponding to the ejector 4, and a backflushing line
  • the 7th end is connected to the backflushing gas tank 9 through the pulse backflushing valve 8, and the other end of the backflushing line 7 is provided with a self-oscillating nozzle 6 corresponding to the top of the ejector 4; as shown in Fig. 2A, Fig. 2B, Fig. 2C Place
  • the self-excited oscillation nozzle 6 includes a hollow cylindrical self-excited oscillation chamber 61.
  • the upper and lower ends of the self-excited oscillation chamber 61 are correspondingly provided with a gas inlet 62 and a gas outlet 63, and the gas inlet 62 is connected to the back-blowing pipeline 7,
  • An oscillating frequency adjusting member 64 is axially suspended in the self-excited oscillating chamber 61 corresponding to the gas inlet 62 and the gas outlet 63.
  • the adjusting member 64 has a fusiform shape in which the upper and lower ends are pointed, the middle is wide, and the outer surface is a smooth transition surface.
  • the filter pulse backflushing cleaning device 100 with a self-excited oscillation nozzle when the pulse is blown back, the pulse backflushing valve 8 on the backflushing pipeline 7 is instantaneously opened, and one of the self-backflushing gas storage tanks 9
  • the high-speed gas jet enters the self-excited oscillation chamber 61 of the axisymmetric structure through the gas inlet 62 of the self-oscillating nozzle 6, the high-speed pulse gas will turbulently mix in the self-excited oscillation chamber 61, generating momentum exchange, forming an unstable shear.
  • the slice layer due to the high jet velocity and the instability of the shear layer, forms a small vortex S1 around the shear layer (as shown in Fig.
  • the principle of the Coanda effect when the fluid leaves the original flow direction, Protruding Flow tends object, There is surface friction between the fluid and the surface of the object through which it flows, and the flow velocity of the fluid will slow down; as long as the curvature of the surface of the object is not too large, according to the Bernoulli principle in fluid mechanics, the slowing of the flow rate will cause the fluid to be adsorbed.
  • the shuttle-shaped regulating member 64 of the present invention causes the gas to form a Coanda effect), and a part of the gas S3 flows along the outer wall surface of the shuttle-shaped regulating member 64 (as shown in Fig.
  • the feedback pressure oscillation can be amplified to resonate with the gas of the Coanda effect in the self-excited oscillation chamber 61, and after the pressure oscillation wave S4 is ejected from the gas outlet 63, The emitter 4 is transmitted to the corresponding filter tube 2, and in a very short time (only one pulse backflushing process), a plurality of pressure oscillation waves can be generated inside the filter tube 2, which is equivalent to the filter tube 2
  • Multiple cleaning can improve the cleaning efficiency, and at the same time, the multiple pressure oscillation wave in the transmission process in the filter tube 2 will also improve the cleaning unevenness of the upper and lower positions of the filter tube 2, and reduce the dust between the filter tubes. The possibility of bridging.
  • the filter pulse backflushing device with self-oscillating nozzle of the present invention when the pulse backflushing valve is opened for pulse backflushing, is only blown back in a very short time of one pulse backflushing. After the gas passes through the self-oscillating nozzle, a plurality of pressure oscillation waves can be generated and transmitted in the filter tube, thereby improving backflush unevenness and improving the cleaning efficiency.
  • the frequency of the self-oscillating jet is determined by the structure of the self-oscillating nozzle and the characteristics of the jet itself, and the oscillation frequency directly affects the cleaning effect during backflushing; when the filter elements are different or working conditions At different times, in order to achieve better cleaning effect, we hope that when the pulse is backflushed, a strong pressure oscillation wave is generated as much as possible, and the excitation frequency of the pulse backflush gas matches the natural frequency characteristic of the self-excited oscillation nozzle structure.
  • the self-oscillating nozzle structure should be designed according to the gas characteristics of the nozzle inlet, so that the natural frequency of the nozzle is close to the frequency of the pulse gas, thereby obtaining good pressure. Oscillation effect; therefore, in order to adapt the pulse backflushing device to different operating conditions or different filter elements, the frequency of the backflush gas needs to be adjusted. To achieve this, a change can be made inside the oscillating cavity of the nozzle.
  • the component of the oscillation frequency (the shuttle oscillation frequency adjustment component).
  • the optimum oscillation frequency can be achieved by changing the structure of the nozzle so that the shuttle oscillation frequency adjusting member is adjusted to a certain position; thereby making the pulse backflush of the present invention
  • the use of the device is more flexible.
  • the shuttle oscillating frequency adjustment component in the self-oscillating nozzle is adjusted to determine the position, and its actual position is fixed; during use, adjustment is not possible.
  • the gas inlet 62 and the gas outlet 63 of the self-oscillation nozzle 6 are disposed along the central axis direction of the self-excited oscillation chamber 61; the gas inlet 62 and the gas outlet 63 is a circular tube having a smaller diameter than the self-excited oscillation chamber 61; the inner diameter of the gas outlet 63 is tapered, and the tapered flow path acts to concentrate the oscillation energy; the oscillation frequency adjusting member 64 passes through the upper end axial direction thereof.
  • a connected position adjusting rod 641 is suspended at the center of the round pipe of the gas inlet 62; a hanging bracket 621 is disposed in the round pipe of the gas inlet 62, and the hanging bracket 621 is provided. It is composed of three brackets arranged symmetrically, and the upper portion of the position adjusting rod is fixed to the center position of the suspension bracket 621 by a nut (or other clamping device).
  • the height of the oscillation frequency adjusting member 64 is the same as the height of the self-oscillating cavity 61 (this height dimension is not limited and may be different).
  • the pulse backflushing cleaning device is applicable to the filter of the circular tube plate and the square tube plate.
  • the tube plate 3 of the filter is provided.
  • the self-excited oscillation chamber 61 is connected to the gas inlet circular tube 62 and the gas outlet circular tube 63 by a truncated cone-shaped connecting portion 65; the truncated cone-shaped connecting portion 65 and The upper and lower ends of the self-excited oscillation chamber may be arranged in a convex shape or in a concave shape.
  • a frusto-shaped connecting portion 65 is disposed between the self-excited oscillating chamber 61 and the gas inlet circular tube 62 and the gas outlet circular tube 63, and the two truncated-shaped connecting portions 65 are all outwardly convex; As shown in FIG.
  • a truncated cone-shaped connecting portion 65 is provided between the self-excited oscillating chamber 61 and the gas inlet circular tube 62.
  • the truncated cone-shaped connecting portion 65 is outwardly convex, as shown in FIG. 6D.
  • the truncated cone-shaped connecting portion 65 is provided in a concave shape.
  • a truncated cone-shaped connecting portion 65 is provided between the self-excited oscillating chamber 61 and the gas outlet circular tube 63.
  • a truncated cone shape is formed.
  • the connecting portion 65 is provided in a convex shape, and in FIG. 6E, the truncated connecting portion 65 is provided in a concave shape.
  • the invention has the following beneficial effects:
  • the conditions and characteristics of the pulse backflushing device of the present invention are as follows:
  • the pulse backflushing fluid is transient (the backflushing duration is very short, only 300-500 ms), the unsteady compressible high pressure gas; especially suitable for rigidity
  • the filter element such as: ceramic filter tube or sintered metal filter tube; the invention can modulate the self-excited frequency of the optimal back-blowing gas according to actual working conditions and different filter elements, thereby achieving the best use effect, using flexible.
  • Fig. 7 is a comparison of the pressure waveforms in the filter tube of the present invention with the prior art backflushing;
  • Fig. 8 is a comparison of the backflushing efficiency of the present invention with the prior art.
  • the cleaning efficiency during the filter cycle was measured in real time, as shown in Fig. 8, and the results showed that the existing cleaning technology was used during the operation of the filter.
  • the cleaning efficiency of the backflushing device is significantly lower than that of the backflushing device of the present invention; the cleaning efficiency of the filter pulse backflushing device with the self-oscillating nozzle of the present invention is significantly improved .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

一种自激振荡喷嘴(6)及带有该喷嘴(6)的过滤器脉冲反吹清灰装置,该装置的反吹管路(7)—端由脉冲反吹阀(8)连通反吹储气罐(9),另一端设有与引射器(4)顶部对应的自激振荡喷嘴(6);该喷嘴(6)包括上、下端设有气体进口(62)和出口(63)的中空圆柱状自激振荡腔(61),进口(62)连通反吹管路(7),振荡腔(61)内对应进口(62)和出口(63)轴向悬挂一振荡频率调节部件(64),该部件(64)呈上下两端尖中间宽且外表面为圆滑过渡面的梭形形状。

Description

自激振荡喷嘴及带有该喷嘴的过滤器脉冲反吹清灰装置 技术领域 本发明是关于一种气固分离装置, 涉及一种过滤器的脉冲反吹清灰装置, 尤其涉及一 种自激振荡喷嘴及带有该喷嘴的过滤器脉冲反吹清灰装置。 背景技术 在化工、 石油、 冶金、 电力等行业中, 常产生高温含尘气体; 由于不同工艺需要回收 能量和达到环保排放标准, 都需对这些高温含尘气体进行除尘。高温气体除尘是高温条件 下直接进行气固分离,实现气体净化的一项技术,它可以最大程度地利用气体的物理显热, 化学潜热和动力能, 提高能源利用率, 同时简化工艺过程, 节省设备投资。
烧结金属滤管和陶瓷滤管等刚性高温过滤元件, 具有良好的抗震性能、耐高温、耐腐 蚀和热冲击性能, 同时具有较高的过滤精度和过滤效率, 因此, 被广泛地用于高温气体净 化领域。
高温含尘气体进入过滤器后, 气流中的粉尘颗粒物被拦截在过滤元件的外表面, 形成 滤饼层,气体通过过滤元件中的多孔通道进入到后续工艺中,经过过滤后的气体为洁净气, 粉尘浓度很小。 随着过滤的进行, 过滤元件外表面的粉饼层会逐渐增厚, 导致过滤元件的 压降增大, 这时需要采用反吹的方式实现过滤元件的性能再生; 反吹气流的方向与过滤气 流方向相反, 高压反吹气流瞬间进入到过滤元件的内部, 依靠产生的瞬态能量将附着于过 滤元件外表面的粉饼层剥离, 使得过滤元件的压降基本上恢复到最初过滤时的状态, 从而 实现过滤元件性能的再生。
脉冲反吹方式是实现过滤元件的性能循环再生的重要途径,脉冲反吹清灰装置的清灰 性能决定了高温气体过滤器能否长期稳定运行。
现有高温气体过滤器的结构主要有两种形式: 圆形结构和方形结构(依据管板的形状 区分)。 如图 9A、 图 9B所示, 为圆形结构的高温过滤器 800的结构示意图, 该圆形结构 的高温过滤器 800主要应用于高温高压的工况 (典型的工况参数是:操作压力约为 4-6MPa, 操作温度约为 350-45CTC ); 如图 10A、 图 10B所示, 为方形结构的高温过滤器 900的结构 示意图, 该方形结构的高温过滤器 900主要应用于高温低压的工况(典型的工况参数是: 操作压力约为 0. 2-0. 4MPa, 操作温度约为 550_650°C ); 这两种不同结构的高温过滤器的 工作原理是相同的。 如图 9A、 图 9B、 图 10A、 图 10B所示, 过滤器 800、 900的管板 803、 903将过滤器 密封分隔为两部分, 下部分为含尘气体侧, 上部分为洁净气体侧; 含尘气体(或称为粗合 成气) 由过滤器 800、 900的气体入口 801、 901进入到过滤器的含尘气体侧, 在气体推动 力的作用下到达各个过滤单元, 气流中的粉尘颗粒物被拦截在滤管 802、 902的外表面, 形成粉饼层,气体通过滤管 802、 902的多孔通道过滤后进入洁净气体侧,经气体出口 805、 905排出进入后续工艺。 随着过滤操作的进行, 滤管 802、 902外表面的粉饼层逐渐增厚, 导致过滤器 800、 900的压降增大, 这时需要采用脉冲反吹的方式实现滤管的性能再生, 脉冲反吹清灰时, 处于常闭状态的脉冲反吹阀 808、 908开启, 气体储罐 809、 909中的高 压氮气或洁净合成气瞬间进入反吹管路 807、 907中, 然后通过管路上的喷嘴 806、 906向 对应的引射器 804、 904 内部喷射高压高速的反吹气体, 反吹气体进入对应的滤管 802、 902 内部, 利用瞬态的能量将滤管 802、 902外表面的粉尘层剥落, 使得滤管的阻力基本 上恢复到初始状态, 从而实现滤管的性能再生。
如图 9A、 图 9B所示, 对于滤管排布方式为圆形的过滤器 800, 一个过滤单元中安装 有多根滤管 (通常安装 48根滤管), 每个过滤单元共用一个引射器 804; 在圆形的过滤单 元内, 滤管 802按照等三角方式排布; 在过滤器的管板 803上通常安装 12个或 24个过滤 单元; 脉冲反吹时, 按照设定好的反吹时间, 反吹完第一组过滤单元后, 经过一定时间, 再反吹第二组过滤单元, 再经过一定时间后反吹第三组过滤单元, 如此循环往复。
如图 10A、 图 10B所示, 对于滤管排布方式为方形的过滤器 900, 滤管 902在方形的 管板 903上按照行、列等间距方式排布, 以行为单位被分成若干组, 通常每行设有几根至 十几根滤管 902, 每行滤管 902对应一个喷吹管路 907, 每一个喷吹管路 907上设有多个 喷嘴 906, 每一个喷嘴 906的正下方对应一个滤管 902, 反吹过程是以行为单位分组进行 的, 即第一行脉冲反吹阀 908开启, 对应的喷吹管路 907反吹完该行过滤元件后, 经过一 定时间, 第二行的脉冲反吹阀 908开启, 第二行喷吹管路 907反吹第二行的过滤元件, 再 经过一定时间, 第三行脉冲反吹阀 908开启, 反吹第三行的过滤元件, 如此循环往复。
综上所述, 现有技术中的高温气体过滤器的脉冲反吹方式, 都是靠高压反吹气体在滤 管内产生一个压力波的瞬态的能量实现清灰效果的,现有技术中脉冲反吹装置的喷嘴为常 规单孔(单管)结构, 喷嘴安装在反吹管路上, 反吹气体经过这种结构的喷嘴喷出时, 只 能在滤管的内部产生一次压力波,通常我们认为,反吹的压力越大,产生压力的峰值越高, 清灰的效果就越好, 但是, 在实际操作中, 现有技术的反吹方式不可避免的会产生以下很 多问题:
(1)脉冲反吹压力过高。 反吹气流需要克服过滤器的操作压力和过滤气流的流动阻力,反吹气流能量不能全部 作用到过滤单元上; 因此, 为保证清灰效果, 实际操作中需要大于过滤器操作压力 2倍左 右的清灰压力, 在高温高压操作工况下的反吹压力会高达 8MPa, 滤管会受到很大的冲击 力, 这一过程中容易造成滤管振动, 反吹压力越高, 滤管的振动越剧烈; 这种高压清灰操 作容易造成滤管因热冲击疲劳而引发破损甚至断裂。
(2)脉冲反吹效果不均匀。
脉冲反吹时, 由于反吹气流产生的瞬态能量进入滤管后, 沿着滤管的开口端向末端的 封闭端进行能量传递的过程中, 反吹气流不断的从滤管的多孔通道空隙中泄漏, 使得能量 传递的过程中不断耗散, 导致滤管的下部和上部的清灰效果差异很大, 附着于滤管下部表 面的粉尘层不易被反吹气流清除, 出现不完全清灰现象, 引发滤管间的粉尘层架桥, 容易 造成滤管失效。
(3)脉冲反吹清灰效率低。
如前所述, 现有反吹技术中, 主要靠反吹压力峰值来衡量清灰效果; 压力峰值是指脉 冲喷吹瞬间, 反吹装置喷出的清灰气流在滤管内部产生的最大压力; 但是, 压力峰值高未 必能够达到理想的清灰效果, 主要原因在于, 现有脉冲反吹清灰装置每次反吹(即: 脉冲 反吹阀开启一次)只能在滤管内部产生一次压力波, 由于滤管的上、 下位置的清灰效果差 异较大, 加上产生的压力波的能量衰减较快, 所以, 在现有高温过滤器实际运行过程中发 现, 脉冲反吹清灰的效率较低, 达不到理想的清灰效果。
那么, 如果使用现有技术的脉冲反吹清灰装置, 在清灰操作时采用脉冲反吹电磁阀的 启闭次数多一些, 每开启一次脉冲反吹电磁阀, 就对滤管进行一次清灰操作, 似乎也能够 达到提高清灰效率的目的。 但是, 这种操作方式是绝对不可取的, 原因如下: 第一, 脉冲 反吹电磁阀价格昂贵, 电磁阀的膜片的使用寿命有限, 不断的开启电磁阀相当于减少其使 用周期; 第二, 由于高温实际工况下, 过滤的含尘气体多含有腐蚀性和易燃、易爆性气体, 因此, 清灰时往往采用纯净的惰性气体(如: 氮气等)作为清灰气源, 惰性气体的造价成 本很高, 多开启电磁阀相当于增加反吹气体的耗量; 第三, 由于脉冲反吹需要较高的反吹 压力, 反吹气流进入滤管的过程中, 对滤管的热冲击力很大, 如果多次开启脉冲反吹电磁 阀, 势必会对滤管造成损害,缩短滤管的使用寿命; 第四, 反吹清灰时一个重要的原则是, 当滤管外表面的粉尘层达到一定的厚度时才能清灰, 如果粉尘层很薄, 粉尘层之间的作用 力就很小, 清灰的能量根本不能有效果, 不能使薄粉尘层剥离, 因此, 纵然反吹效果没有 达到要求, 也不能开启电磁阀清灰, 只能等到滤管表面的粉尘层再次累积到一定厚度时, 再进行反吹操作。 由此, 本发明人凭借多年从事相关行业的经验与实践,提出一种自激振荡喷嘴及带有 该喷嘴的过滤器脉冲反吹清灰装置, 以克服现有技术的缺陷。 发明内容 本发明的目的在于提供一种自激振荡喷嘴及带有该喷嘴的过滤器脉冲反吹清灰装置, 当脉冲反吹阀开启进行脉冲反吹时,通过自激振荡喷嘴使反吹气体在滤管内产生并传递多 个压力振荡波, 以改善反吹不均匀性, 提高清灰效率。
本发明的另一目的在于提供一种自激振荡喷嘴及带有该喷嘴的过滤器脉冲反吹清灰 装置, 以减少反吹气量消耗; 同时减少对滤管的热冲击力, 延长滤管的使用寿命。
本发明的目的是这样实现的, 一种带有自激振荡喷嘴的过滤器脉冲反吹清灰装置, 过 滤器的管板上设有过滤单元, 所述过滤单元中至少包括一个过滤元件; 所述管板将过滤器 密封分隔为上部的洁净气体腔室和下部的含尘气体腔室;所述脉冲反吹清灰装置包括有过 滤单元上部设置的引射器和与引射器对应的反吹管路,反吹管路一端通过脉冲反吹阀连通 于反吹储气罐, 反吹管路另一端设有与引射器顶部对应设置的自激振荡喷嘴; 所述自激振 荡喷嘴包括有一中空圆柱状自激振荡腔, 该自激振荡腔的上、下端对应设有气体进口和气 体出口, 气体进口连通于反吹管路, 在自激振荡腔内对应气体进口和气体出口轴向悬挂一 振荡频率调节部件, 该调节部件呈上下两端尖中间宽且外表面为圆滑过渡面的梭形形状。
在本发明的一较佳实施方式中,所述气体进口和气体出口是沿着自激振荡腔的中心轴 方向设置的; 气体进口和气体出口均为直径小于自激振荡腔的圆管; 所述气体出口的内径 呈渐缩状;所述振荡频率调节部件通过其上端轴向连接的一位置调节杆悬挂于气体进口的 圆管中心处。
在本发明的一较佳实施方式中, 所述气体进口的圆管内设有一悬挂支架, 所述位置调 节杆的上部固定于悬挂支架的中心位置。
在本发明的一较佳实施方式中, 所述自激振荡腔与气体进口圆管和 /或气体出口圆管 由圆台形连接部连通;所述圆台形连接部与自激振荡腔上下两端呈外凸状设置或呈内凹状 设置。
在本发明的一较佳实施方式中, 所述过滤器的管板上设有多组过滤单元, 每组过滤单 元中设有多个过滤元件; 每组过滤单元的引射器顶部分别对应设置一自激振荡喷嘴。
在本发明的一较佳实施方式中, 所述过滤元件为烧结金属滤管或陶瓷滤管。
本发明的目的还可以这样实现, 一种自激振荡喷嘴, 所述自激振荡喷嘴包括有一中空 圆柱状自激振荡腔, 该自激振荡腔的上、下端对应设有气体进口和气体出口, 在自激振荡 腔内对应气体进口和气体出口轴向悬挂一振荡频率调节部件,该调节部件呈上下两端尖中 间宽且外表面为圆滑过渡面的梭形形状。
在本发明的一较佳实施方式中,所述气体进口和气体出口是沿着自激振荡腔的中心轴 方向设置的; 气体进口和气体出口均为直径小于自激振荡腔的圆管; 所述气体出口的内径 呈渐缩状;所述振荡频率调节部件通过其上端轴向连接的一位置调节杆悬挂于气体进口的 圆管中心处。
在本发明的一较佳实施方式中, 所述气体进口的圆管内设有一悬挂支架, 所述位置调 节杆的上部固定于悬挂支架的中心位置。
在本发明的一较佳实施方式中, 所述自激振荡腔与气体进口圆管和 /或气体出口圆管 由圆台形连接部连通;所述圆台形连接部与自激振荡腔上下两端呈外凸状设置或呈内凹状 设置。
由上所述, 本发明的带有自激振荡喷嘴的过滤器脉冲反吹清灰装置, 当脉冲反吹阀开 启进行脉冲反吹时, 仅仅在一次脉冲反吹的极短时间内, 反吹气体通过自激振荡喷嘴后在 滤管内能够产生并传递多个压力振荡波, 由此可改善反吹不均匀性, 提高清灰效率。该脉 冲反吹清灰装置还能够减少反吹气量消耗; 同时减少对滤管的热冲击力, 延长滤管的使用 寿命。 附图说明 以下附图仅旨在于对本发明做示意性说明和解释, 并不限定本发明的范围。 其中: 图 1 : 为本发明带有自激振荡喷嘴的过滤器脉冲反吹清灰装置的结构示意图。
图 2A: 为本发明中自激振荡喷嘴的结构示意图。
图 2B: 为图 2A中 A-A剖视结构示意图。
图 2C: 为图 2A中局部剖视结构示意图。
图 3 : 为本发明中自激振荡喷嘴产生压力振荡波的示意图。
图 4: 为本发明脉冲反吹清灰装置用于圆形管板过滤器的结构示意图。
图 5 : 为本发明脉冲反吹清灰装置用于方形管板过滤器的结构示意图。
图 6A〜图 6E: 为本发明中自激振荡喷嘴的多种结构示意图。
图 7 : 为本发明与现有技术反吹时滤管内的压力波形对比。
图 8 : 为本发明与现有技术的反吹清灰效率对比。 图 9A: 为现有圆形结构的高温过滤器的结构示意图。
图 9B: 为图 9A的俯视结构示意图。
图 10A: 为现有方形结构的高温过滤器的结构示意图。
图 10B: 为图 10A的俯视结构示意图。 具体实施方式 为了对本发明的技术特征、 目的和效果有更加清楚的理解,现对照附图说明本发明的 具体实施方式。
如图 1所示, 本发明提出一种带有自激振荡喷嘴的过滤器脉冲反吹清灰装置 100, 过 滤器的管板 3上设有过滤单元, 所述过滤单元至少包括一个滤管 2, 本发明中的滤管为烧 结金属滤管或陶瓷滤管;所述管板 3将过滤器密封分隔为上部的洁净气体腔室和下部的含 尘气体腔室; 含尘气体由过滤器的气体入口 1进入到过滤器的含尘气体腔室, 在气体推动 力的作用下到达过滤单元, 气流中的粉尘颗粒物被拦截在滤管 2的外表面,气体通过滤管 的多孔通道过滤后进入洁净气体腔室, 经气体出口 5排出进入后续工艺; 所述脉冲反吹清 灰装置 100包括有过滤单元上部设置的引射器 4和与引射器 4对应的反吹管路 7, 反吹管 路 7—端通过脉冲反吹阀 8连通于反吹储气罐 9, 反吹管路 7另一端设有与引射器 4顶部 对应设置的自激振荡喷嘴 6; 如图 2A、 图 2B、 图 2C所示, 所述自激振荡喷嘴 6包括有一 中空圆柱状自激振荡腔 61, 该自激振荡腔 61的上、 下端对应设有气体进口 62和气体出 口 63, 气体进口 62连通于反吹管路 7, 在自激振荡腔 61内对应气体进口 62和气体出口 63轴向悬挂一振荡频率调节部件 64, 该调节部件 64呈上下两端尖、 中间宽且外表面为圆 滑过渡面的梭形形状。
本发明带有自激振荡喷嘴的过滤器脉冲反吹清灰装置 100, 当脉冲反吹清灰时, 反吹 管路 7上的脉冲反吹阀 8瞬间开启, 自反吹储气罐 9中一股高速气体射流经自激振荡喷嘴 6的气体入口 62进入轴对称结构的自激振荡腔 61时, 高速脉冲气体会在自激振荡腔 61 内出现紊流混合, 产生动量交换, 形成不稳定剪切层, 由于射流速度大且剪切层的不稳定 性, 剪切层周围形成小涡旋 S1 (如图 3所示), 剪切射流中一定频率范围内的涡量扰动得 到放大, 形成大尺度涡旋 S2; 当该大尺度涡旋 S2与喷嘴的自激振荡腔 61中的梭形调节 部件 64相撞时会产生边缘音, 边缘音的扰动波使得剪切层不稳定波与反馈的扰动波之间 相互激励、相互增强, 导致剪切层的流动以特定的频率产生压力振荡; 同时由于流体的附 壁效应 (附壁效应原理: 当流体有离开本来的流动方向, 改为随着凸出的物体流动的倾向, 流体与它流过的物体表面之间存在面摩擦, 这时流体的流速会减慢; 只要物体表面的曲率 不是太大, 依据流体力学中的伯努利原理, 流速的减缓会导致流体被吸附在物体表面上流 动。 本发明中的梭形调节部件 64会使气体形成附壁效应), 一部分气体 S3会沿梭形调节 部件 64的外壁面流动 (如图 3所示); 当该压力振荡的频率与喷嘴的自激振荡腔 61固有 频率匹配时, 反馈的压力振荡就能得到放大, 从而在自激振荡腔 61 内与附壁效应的气体 产生共振, 当压力振荡波 S4从气体出口 63喷出后, 经引射器 4传递给对应的滤管 2, 在 极短的时间内 (仅仅一次脉冲反吹过程), 就可以在滤管 2的内部产生多次压力振荡波, 从而相当于对滤管 2进行了多次清灰, 能够提高清灰效率, 同时多次压力振荡波在滤管 2 内的传递过程中, 也会改善滤管 2上下不同位置的清灰不均匀性, 降低滤管之间的粉尘架 桥的可能性。
由上所述, 本发明的带有自激振荡喷嘴的过滤器脉冲反吹清灰装置, 当脉冲反吹阀开 启进行脉冲反吹时, 仅仅在一次脉冲反吹的极短时间内, 反吹气体通过自激振荡喷嘴后在 滤管内能够产生并传递多个压力振荡波, 由此可改善反吹不均匀性, 提高清灰效率。
在本实施方式中,所述自激振荡射流的频率是由自激振荡喷嘴的结构和射流本身特性 两方面决定的, 振荡频率直接影响反吹时的清灰效果; 当过滤元件不同或工况不同时, 为 了更好的达到清灰效果, 我们希望脉冲反吹时, 尽可能的产生较强的压力振荡波, 当脉冲 反吹气体的激励频率与自激振荡喷嘴结构的固有频率特性相匹配时,反吹气体的压力振荡 会更加剧烈, 反吹效果更佳; 所以应根据喷嘴入口的气体特性来设计自激振荡喷嘴结构, 使喷嘴的固有频率接近脉冲气体的频率, 进而获得好的压力振荡效果; 因此, 为了使脉冲 反吹装置适用于不同的工况或者不同的过滤元件, 需要对反吹气体的频率进行调节, 为了 达到该目的, 在喷嘴的振荡腔内部装入了一个可以改变振荡频率的部件(梭形振荡频率调 节部件)。 当调节梭形振荡频率调节部件的上下位置时, 由于改变了喷嘴的结构, 使得梭 形振荡频率调节部件调节到某一位置时, 可以达到最佳的振荡频率; 从而使得本发明的脉 冲反吹装置的使用更灵活。
在使用之前, 自激振荡喷嘴中的梭形振荡频率调节部件经过调试确定位置后, 其实际 上位置就固定下来了; 在使用过程中, 无法、 也不需要进行调节。
进一步, 如图 2A、 图 2B、 图 2C所示, 所述自激振荡喷嘴 6的气体进口 62和气体出 口 63是沿着自激振荡腔 61的中心轴方向设置的;气体进口 62和气体出口 63均为直径小 于自激振荡腔 61的圆管; 所述气体出口 63的内径呈渐缩状,渐缩状的流道作用是集中振 荡能量; 所述振荡频率调节部件 64通过其上端轴向连接的一位置调节杆 641悬挂于气体 进口 62的圆管中心处; 所述气体进口 62的圆管内设有一悬挂支架 621, 该悬挂支架 621 是由对称设置的三根支架构成的, 所述位置调节杆的上部通过螺母(或其他夹紧装置)固 定于悬挂支架 621的中心位置。 在本实施方式中, 所述振荡频率调节部件 64的高度与自 激振荡腔 61的高度相同 (此高度尺寸不作限制, 可以不同)。
进一步, 在本实施方式中, 脉冲反吹清灰装置适用于圆形管板和方形管板两种结构的 过滤器, 如图 4、 图 5所示, 所述过滤器的管板 3上设有多组过滤单元; 每组过滤单元包 括有多个滤管 2, 引射器 4顶部分别对应设置一自激振荡喷嘴 6。
如图 6A〜图 6E所示, 在本实施方式中, 所述自激振荡腔 61与气体进口圆管 62和气 体出口圆管 63由圆台形连接部 65连通; 所述圆台形连接部 65与自激振荡腔上下两端可 呈外凸状设置或呈内凹状设置。 如图 6A所示, 为自激振荡腔 61与气体进口圆管 62和气 体出口圆管 63之间均设有圆台形连接部 65, 且两个圆台形连接部 65均为外凸状设置; 如图 6C、 图 6D所示, 为自激振荡腔 61与气体进口圆管 62之间设有圆台形连接部 65, 在 图 6C中, 圆台形连接部 65为外凸状设置, 在图 6D中, 圆台形连接部 65为内凹状设置; 如图 6B、 图 6E所示, 为自激振荡腔 61与气体出口圆管 63之间设有圆台形连接部 65, 在 图 6B中, 圆台形连接部 65为外凸状设置, 在图 6E中, 圆台形连接部 65为内凹状设置。
本发明与现有技术相比具有如下的有益效果:
( 1 )可以显著提高反吹清灰效率。
由于脉冲反吹时, 在滤管内产生多次压力振荡, 相当于一次反吹, 进行了多次清灰, 所以能够大大提升清灰效率。
( 2 ) 改善了反吹不均匀性。
由于产生的多个压力振荡波在滤管内传递,减少由滤管的开口端向封闭端的能量耗散 损失,因此可以改善现有技术中的滤管不同部分的反吹不均匀性,减少滤管间的粉尘架桥。
( 3 )减少反吹气量消耗, 降低对滤管的热冲击。
使用较低的反吹压力达到较好的清灰效果, 同时节约了气量消耗; 较低的反吹压力, 对滤管的热冲击力会相对小, 可以减缓热疲劳引发的断裂等问题, 从而延长滤管的使用寿 命。
(4)尤其适用刚性过滤元件, 使用灵活。
本发明脉冲反吹清灰装置适用的条件和特点是: 脉冲反吹流体为瞬态的(反吹持续时 间很短, 仅为 300-500ms)、 非稳态可压缩的高压气体; 尤其适用刚性过滤元件 (如: 陶 瓷滤管或烧结金属滤管); 本发明可以根据实际工况和不同的过滤元件, 调制出最佳的反 吹气体的自激荡频率, 从而达到最佳的使用效果, 使用灵活。
为更好的说明本发明的效果,增加其可信程度和可行性,现将部分实验数据予以公布。 通过实验,得出在使用本发明的脉冲反吹清灰装置和使用现有技术的脉冲反吹清灰装 置的情况下的滤管内的压力波形及反吹清灰效率, 并进行对比。
实验在某工厂的实际高温气体过滤装置中进行, 在相同的实验条件下,对过滤器中的 某一根滤管内的压力波形进行了测定, 使用的脉冲反吹压力和温度分别为 8. 2MPa和 225 V。
如图 7、 图 8所示, 图 7是本发明与现有技术反吹时滤管内的压力波形对比; 图 8是 本发明与现有技术的反吹清灰效率对比。
由图 7可以看出,现有技术脉冲反吹清灰装置反吹时,滤管内的压力波形是快速上升, 达到一个峰值后又逐渐下降, 依靠瞬态的能量实现清灰, 本实验测定的现有脉冲反吹技术 产生的压力峰值约为 4. 8MPa; 而使用带有自激荡喷嘴的脉冲反吹清灰装置时, 滤管内出 现了振荡的压力波形, 在脉冲宽度 350ms这一极短的时间内, 滤管内出现了 10次压力振 荡波, 虽然其压力峰值小于现有技术产生的压力峰值, 但是相当于对滤管进行了 10次脉 冲反吹, 因此能够显著的提高清灰效果。
为了进一步验证本发明的反吹装置的性能,对过滤器循环过程中的清灰效率进行了实 时测定, 如图 8所示, 结果表明, 在过滤器的运行过程中, 使用现有清灰技术的反吹装置 时的清灰效率明显低于使用本发明的反吹装置时的清灰效率;本发明带有自激振荡喷嘴的 过滤器脉冲反吹清灰装置的清灰效率得到显著的提高。
以上所述仅为本发明示意性的具体实施方式, 并非用以限定本发明的范围。任何本领 域的技术人员, 在不脱离本发明的构思和原则的前提下所作出的等同变化与修改, 均应属 于本发明保护的范围。

Claims

权利要求书
1、 一种带有自激振荡喷嘴的过滤器脉冲反吹清灰装置, 过滤器的管板上设有过滤单 元, 所述过滤单元中至少包括一个过滤元件; 所述管板将过滤器密封分隔为上部的洁净气 体腔室和下部的含尘气体腔室;所述脉冲反吹清灰装置包括有过滤单元上部设置的引射器 和与引射器对应的反吹管路, 反吹管路一端通过脉冲反吹阀连通于反吹储气罐, 其特征在 于: 反吹管路另一端设有与引射器顶部对应设置的自激振荡喷嘴; 所述自激振荡喷嘴包括 有一中空圆柱状自激振荡腔, 该自激振荡腔的上、下端对应设有气体进口和气体出口, 气 体进口连通于反吹管路,在自激振荡腔内对应气体进口和气体出口轴向悬挂一振荡频率调 节部件, 该调节部件呈上下两端尖中间宽且外表面为圆滑过渡面的梭形形状。
2、如权利要求 1所述的带有自激振荡喷嘴的过滤器脉冲反吹清灰装置, 其特征在于: 所述气体进口和气体出口是沿着自激振荡腔的中心轴方向设置的;气体进口和气体出口均 为直径小于自激振荡腔的圆管; 所述气体出口的内径呈渐缩状; 所述振荡频率调节部件通 过其上端轴向连接的一位置调节杆悬挂于气体进口的圆管中心处。
3、如权利要求 2所述的带有自激振荡喷嘴的过滤器脉冲反吹清灰装置, 其特征在于: 所述气体进口的圆管内设有一悬挂支架,所述位置调节杆的上部固定于悬挂支架的中心位 置。
4、如权利要求 2所述的带有自激振荡喷嘴的过滤器脉冲反吹清灰装置, 其特征在于: 所述自激振荡腔与气体进口圆管和 /或气体出口圆管由圆台形连接部连通; 所述圆台形连 接部与自激振荡腔上下两端呈外凸状设置或呈内凹状设置。
5、如权利要求 1所述的带有自激振荡喷嘴的过滤器脉冲反吹清灰装置, 其特征在于: 所述过滤器的管板上设有多组过滤单元, 每组过滤单元中设有多个过滤元件; 每组过滤单 元的引射器顶部分别对应设置一自激振荡喷嘴。
6、如权利要求 1所述的带有自激振荡喷嘴的过滤器脉冲反吹清灰装置, 其特征在于: 所述过滤元件为烧结金属滤管或陶瓷滤管。
7、 一种自激振荡喷嘴, 其特征在于: 所述自激振荡喷嘴包括有一中空圆柱状自激振 荡腔, 该自激振荡腔的上、下端对应设有气体进口和气体出口, 在自激振荡腔内对应气体 进口和气体出口轴向悬挂一振荡频率调节部件,该调节部件呈上下两端尖中间宽且外表面 为圆滑过渡面的梭形形状。
8、 如权利要求 7所述的自激振荡喷嘴, 其特征在于: 所述气体进口和气体出口是沿 着自激振荡腔的中心轴方向设置的; 气体进口和气体出口均为直径小于自激振荡腔的圆 管; 所述气体出口的内径呈渐缩状; 所述振荡频率调节部件通过其上端轴向连接的一位置 调节杆悬挂于气体进口的圆管中心处。
9、 如权利要求 8所述的自激振荡喷嘴, 其特征在于: 所述气体进口的圆管内设有一 悬挂支架, 所述位置调节杆的上部固定于悬挂支架的中心位置。
10、如权利要求 8所述的自激振荡喷嘴, 其特征在于: 所述自激振荡腔与气体进口圆 管和 /或气体出口圆管由圆台形连接部连通; 所述圆台形连接部与自激振荡腔上下两端呈 外凸状设置或呈内凹状设置。
PCT/CN2013/070714 2012-11-22 2013-01-18 自激振荡喷嘴及带有该喷嘴的过滤器脉冲反吹清灰装置 WO2014079160A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/397,788 US9409113B2 (en) 2012-11-22 2013-01-18 Self-oscillating nozzle and pulse-jet cleaning system with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210479270.6 2012-11-22
CN201210479270.6A CN102961934B (zh) 2012-11-22 2012-11-22 自激振荡喷嘴及带有该喷嘴的过滤器脉冲反吹清灰装置

Publications (1)

Publication Number Publication Date
WO2014079160A1 true WO2014079160A1 (zh) 2014-05-30

Family

ID=47792540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070714 WO2014079160A1 (zh) 2012-11-22 2013-01-18 自激振荡喷嘴及带有该喷嘴的过滤器脉冲反吹清灰装置

Country Status (3)

Country Link
US (1) US9409113B2 (zh)
CN (1) CN102961934B (zh)
WO (1) WO2014079160A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104069696A (zh) * 2014-07-23 2014-10-01 江苏宝华环保科技有限公司 具有布袋去尘装置的布袋除尘器
CN108031566A (zh) * 2017-10-17 2018-05-15 北京科技大学 一种结构可调的高压水射流自振喷嘴装置
CN109621569A (zh) * 2019-01-10 2019-04-16 中国石油大学(北京) 自调向周期性脉冲射流喷嘴及过滤器
CN111706683A (zh) * 2020-05-18 2020-09-25 重庆界石仪表有限公司 一种地下调压站调压器的调压阀座清理装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273188B1 (en) 1998-12-11 2001-08-14 Schlumberger Technology Corporation Trailer mounted coiled tubing rig
CN105521662A (zh) * 2014-09-30 2016-04-27 上海安赐环保科技股份有限公司 应用于有机硅行业气体净化的过滤装置及工艺
CN105833623B (zh) * 2016-04-05 2018-10-16 河南理工大学 脉冲反吹清灰装置及其气体引射器、过滤装置
CN105727648B (zh) * 2016-04-05 2018-06-22 河南理工大学 脉冲反吹清灰装置及其气体引射器、过滤装置
CN105833624B (zh) * 2016-04-05 2018-06-22 河南理工大学 脉冲反吹清灰装置及其气体引射器、过滤装置
CN105771468B (zh) * 2016-04-05 2019-05-21 河南理工大学 脉冲反吹清灰装置及其喷嘴、过滤装置
CN107605628A (zh) * 2016-07-12 2018-01-19 刘春田 一种用于高粉尘作业吸气设备和车辆的空气滤清器
CN108662270A (zh) * 2017-03-29 2018-10-16 山东华鲁恒升化工股份有限公司 三聚氰胺工业化设备中结晶器出料至捕集器管线上的气控疏通阀
CN109092615B (zh) * 2018-08-10 2019-12-31 中国人民解放军国防科技大学 一种无转子射流喷雾风扇
CN109248506B (zh) * 2018-11-15 2024-01-30 中国石油大学(北京) 歧管式脉冲反吹清灰结构及运用该清灰结构的过滤器
CN109238947B (zh) * 2018-11-24 2024-04-12 飞潮(上海)新材料股份有限公司 多用途陶瓷滤管测试装置
CN109759250B (zh) * 2019-03-22 2023-12-22 南充市农业科学院 一种可反冲洗的喷头
CN113101758B (zh) * 2021-04-01 2023-05-09 九江七所精密机电科技有限公司 一种空气过滤系统在线自清洁用的超音速喷吹装置
CN113426626B (zh) * 2021-05-26 2022-10-11 沈阳西子航空产业有限公司 一种低压入渗式高温环氧胶修补装置
TWI793842B (zh) * 2021-11-03 2023-02-21 立百邑有限公司 除塵裝置
CN114702996A (zh) * 2022-04-14 2022-07-05 国家石油天然气管网集团有限公司 天然气过滤器压力波振荡清灰装置以及清灰控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333787A (en) * 1992-02-05 1994-08-02 Smith Leary W Nozzle with self controlled oscillation
CN201791124U (zh) * 2010-09-17 2011-04-13 北京东方诚益通工业自动化技术有限公司 生物发酵连续灭菌汽料喷射式混合加热装置
CN102728161A (zh) * 2012-07-12 2012-10-17 中国石油大学(北京) 带有伸缩式喷吹管的脉冲反吹清灰装置
CN202983430U (zh) * 2012-11-22 2013-06-12 中国石油大学(北京) 自激振荡喷嘴及带有该喷嘴的过滤器脉冲反吹清灰装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509698A (en) * 1967-05-01 1970-05-05 American Air Filter Co Filter arrangement
US4398931A (en) * 1982-05-19 1983-08-16 Minnesota Mining And Manufacturing Company Ceramic fabric filter
SE507239C2 (sv) * 1996-01-23 1998-04-27 Flaekt Ab Anordning för rensning av filterelement
US6186414B1 (en) * 1998-09-09 2001-02-13 Moen Incorporated Fluid delivery from a spray head having a moving nozzle
ES2574408T3 (es) * 2012-02-28 2016-06-17 Pall Corporation Sistema de filtración de gas caliente y procedimiento para regenerar dicho sistema

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333787A (en) * 1992-02-05 1994-08-02 Smith Leary W Nozzle with self controlled oscillation
CN201791124U (zh) * 2010-09-17 2011-04-13 北京东方诚益通工业自动化技术有限公司 生物发酵连续灭菌汽料喷射式混合加热装置
CN102728161A (zh) * 2012-07-12 2012-10-17 中国石油大学(北京) 带有伸缩式喷吹管的脉冲反吹清灰装置
CN202983430U (zh) * 2012-11-22 2013-06-12 中国石油大学(北京) 自激振荡喷嘴及带有该喷嘴的过滤器脉冲反吹清灰装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104069696A (zh) * 2014-07-23 2014-10-01 江苏宝华环保科技有限公司 具有布袋去尘装置的布袋除尘器
CN104069696B (zh) * 2014-07-23 2016-08-03 江苏宝华环保科技有限公司 具有布袋去尘装置的布袋除尘器
CN108031566A (zh) * 2017-10-17 2018-05-15 北京科技大学 一种结构可调的高压水射流自振喷嘴装置
CN108031566B (zh) * 2017-10-17 2023-10-27 北京科技大学 一种结构可调的高压水射流自振喷嘴装置
CN109621569A (zh) * 2019-01-10 2019-04-16 中国石油大学(北京) 自调向周期性脉冲射流喷嘴及过滤器
CN109621569B (zh) * 2019-01-10 2024-02-02 中国石油大学(北京) 自调向周期性脉冲射流喷嘴及过滤器
CN111706683A (zh) * 2020-05-18 2020-09-25 重庆界石仪表有限公司 一种地下调压站调压器的调压阀座清理装置

Also Published As

Publication number Publication date
CN102961934B (zh) 2014-08-06
US20150165360A1 (en) 2015-06-18
US9409113B2 (en) 2016-08-09
CN102961934A (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
WO2014079160A1 (zh) 自激振荡喷嘴及带有该喷嘴的过滤器脉冲反吹清灰装置
WO2021073082A1 (zh) 一种气体振打辅助清灰高温膜法除尘设备及操作方法
US4661131A (en) Backflushed air filters
EP1699543B1 (en) Reverse-flow cleaning systems and methods
CN102908840B (zh) 过滤器的脉冲反吹清灰装置
JPS61107917A (ja) ろ過装置
WO2014086108A1 (zh) 用于高温气固分离的过滤管及其过滤器
JP2013176754A (ja) 高温ガス濾過システムおよび前記システムを再生するためのプロセス
CN203816398U (zh) 一种高温气体除尘滤袋
CN109225694A (zh) 用于脉冲喷吹除尘器的可调式混合效应清灰装置
JP2015160210A (ja) 繊維性フィルターシステム、及び当該繊維性フィルターシステムを清浄する方法
CN202983430U (zh) 自激振荡喷嘴及带有该喷嘴的过滤器脉冲反吹清灰装置
SU1291031A3 (ru) Перемещаемое устройство дл сдувани сажи
JP5574548B2 (ja) コアンダインジェクター
CN105727648B (zh) 脉冲反吹清灰装置及其气体引射器、过滤装置
CN212396156U (zh) 一种脉冲喷吹除尘器
CN105833623B (zh) 脉冲反吹清灰装置及其气体引射器、过滤装置
CN109550328A (zh) 一种袋式除尘器的脉冲喷吹系统
CN206198879U (zh) 一种烟气除尘装置
CN203281166U (zh) 高温陶瓷除尘器的反冲装置
CN105854455A (zh) 一种多孔陶瓷除尘器
Chen et al. Cleaning of filter cartridges with convergent trapezoidal pleat shape via reverse multi-pulsing jet flow
JP2009113014A (ja) バグフィルタ構造
JP2009214063A (ja) パルスジェット式集塵機用フィルタカートリッジ
CN109248506B (zh) 歧管式脉冲反吹清灰结构及运用该清灰结构的过滤器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14397788

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856946

Country of ref document: EP

Kind code of ref document: A1