WO2014086108A1 - 用于高温气固分离的过滤管及其过滤器 - Google Patents

用于高温气固分离的过滤管及其过滤器 Download PDF

Info

Publication number
WO2014086108A1
WO2014086108A1 PCT/CN2013/070709 CN2013070709W WO2014086108A1 WO 2014086108 A1 WO2014086108 A1 WO 2014086108A1 CN 2013070709 W CN2013070709 W CN 2013070709W WO 2014086108 A1 WO2014086108 A1 WO 2014086108A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
filter
filter tube
tube
guide cone
Prior art date
Application number
PCT/CN2013/070709
Other languages
English (en)
French (fr)
Inventor
姬忠礼
吴小林
陈鸿海
熊至宜
杨亮
Original Assignee
中国石油大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(北京) filed Critical 中国石油大学(北京)
Priority to US14/397,792 priority Critical patent/US9802147B2/en
Publication of WO2014086108A1 publication Critical patent/WO2014086108A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/70Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter
    • B01D46/71Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter with pressurised gas, e.g. pulsed air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0002Casings; Housings; Frame constructions
    • B01D46/0005Mounting of filtering elements within casings, housings or frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0039Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices
    • B01D46/0041Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices for feeding
    • B01D46/0046Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices for feeding provoking a tangential stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2407Filter candles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/54Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms
    • B01D46/543Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms using membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/56Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
    • B01D46/58Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in parallel
    • B01D46/60Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in parallel arranged concentrically or coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/20High temperature filtration

Definitions

  • This invention relates to a gas-solid separation element and apparatus, and more particularly to a sintered metal filter tube and a filtration device therefor.
  • BACKGROUND OF THE INVENTION In the chemical, petroleum, metallurgical, electric power and other industries, high-temperature dust-containing gases are often generated; these high-temperature dust-containing gases are required to be dusted because different processes require energy recovery and environmental emission standards.
  • High-temperature gas dedusting is a technology that directly performs gas-solid separation under high temperature conditions to achieve gas purification. It can maximize the physical sensible heat, chemical latent heat and power energy of the gas, improve energy efficiency, and simplify the process, saving Equipment investment.
  • the equipment commonly used in high temperature gas-solid separation is a gas filter.
  • the filter tube is the core component of the gas filter.
  • the sintered metal filter tube has good seismic performance, high temperature resistance, corrosion resistance and thermal shock resistance, and has high filtration precision. And filtration efficiency, therefore, is widely used in the field of high temperature gas purification.
  • the sintered metal filter tube 902 used in the prior art has a cylindrical shape, one end is open, the other end is closed, and the open end has a flange for fixing to the filter. Tube plate.
  • the tube plate 903 of the existing filter 900 divides the filter seal into two parts, the lower part is the dust-containing gas side, and the upper part is the clean gas side;
  • the dust gas (or called crude syngas) enters the dust-containing gas side of the filter from the gas inlet 901 of the filter 900, and reaches the respective filtering units under the action of the gas driving force. During the filtering process, the dust-containing gas is pressed.
  • the outer surface of the filter tube 902 enters the filter tube through the pores on the filter material, and the solid particles in the gas are trapped on the outer wall of the filter tube 902 to form the powder layer 9021 (as shown in Fig. 8C), the clean gas It is discharged from the open end of the filter tube into the clean gas side, and is discharged through the gas outlet 905 into the subsequent process.
  • the powder layer 9021 on the outer surface of the filter tube 902 is gradually thickened, resulting in an increase in the pressure drop of the filter 900. At this time, the performance of the filter tube is required to be regenerated by pulse backflushing, and the pulse is blown off.
  • the pulse backflushing valve 908 in the normally closed state is opened, and the high pressure nitrogen or clean syngas in the gas storage tank 909 instantaneously enters the backflushing line 907, and then passes through the nozzle 906 on the line to the interior of the corresponding ejector 904.
  • the high pressure high speed backflush gas is injected, and the backflush gas enters the corresponding filter tube 902, and the powder layer 9021 on the outer surface of the filter tube 902 is peeled off by the transient energy (as shown in FIG. 8D), so that the resistance of the filter tube is basically Return to the initial state, thereby achieving the performance regeneration of the filter tube.
  • the support body (or skeleton) of the existing filter tube is made of sintered metal powder or sintered metal fiber material, and the filter tube has a height L1 and an outer diameter D1 (as shown in FIG. 8A), and depends on the filter tube. Micropores are used for filtration, and pulse regeneration is used to achieve performance regeneration.
  • the filtration area of a single filter tube refers to the outer surface area of the filter tube.
  • Large gas filters are usually installed with hundreds to thousands of filter tubes. The larger the process gas volume is, the more filter tubes are needed, the larger the filter volume is, and the production cost and maintenance cost of the entire unit are high.
  • the outer surface of the support is the filter surface.
  • fine particles in the dust-containing gas are easily deposited inside the support. Since the porous passage in the filter tube is in the form of an irregular labyrinth, the back-blowing operation is also It is difficult to blow out the deposited dust, causing the pores of the filter tube to become clogged and fail.
  • Another object of the present invention is to provide a filter tube and a filter for high-temperature gas-solid separation, which use a swirling method to backflush the filter tube to effectively improve the cleaning efficiency and also solve the problem. Reflow "and" negative pressure zone problem.
  • the object of the present invention is achieved by a filter tube for high temperature gas-solid separation, the filter tube being made of a first circle a second cylindrical structure coaxially disposed in the first cylinder, the first cylinder is disposed with the opening facing upward, and the outer edge of the barrel is provided with a first connecting flange, the first cylinder a center of the bottom of the cylinder is provided with a circular through hole, and the second cylinder is vertically inverted and sleeved in the first cylinder, and the open end of the second cylinder corresponds to the circular through hole of the first cylinder Sealing connection; the bottom of the second cylinder is at the same level as the mouth of the first cylinder; an annular gas passage is formed between the first cylinder and the second cylinder.
  • a backflushing deflector is fixedly disposed at a top end of the filter tube; the backflushing deflector includes an outer cylinder penetrating at both ends and a diversion flow fixed in the outer cylinder
  • the inner diameter of the outer cylinder is the same as the inner diameter of the first cylinder of the filter tube, and the bottom end of the outer cylinder is provided with a second connecting flange correspondingly connected with the first connecting flange of the filter tube;
  • the utility model comprises a guiding cone body and a plurality of spiral blades disposed on the outer side of the guiding cone body along the circumferential ring; the guiding cone body is a streamline shape which is large and small, and the bottom of the guiding cone body is planar and fixedly arranged a top end of the second cylinder, and a bottom diameter of the guide cone body is the same as an outer diameter of the second cylinder of the filter tube; an outer side of the plurality of spiral blades is fixedly coupled to the inner wall of the outer
  • the angle between the tangential direction of the spiral of the tip of each blade and the horizontal line is
  • the outer wall of the first cylinder is provided with an outer filter membrane
  • the inner wall of the second cylinder is provided with an inner filter membrane
  • the outer filter membrane has a thickness greater than The thickness of the inner filtration membrane
  • the filter tube is a sintered metal filter tube.
  • a filter for high temperature gas-solid separation a filter unit is disposed on the tube plate of the filter, and the filter unit includes at least one filter tube;
  • the filter seal is divided into an upper clean gas chamber and a lower dust-containing gas chamber; an upper portion of the filter unit is provided with an ejector and a back-blowing line corresponding to the ejector, and one end of the blow-back line is connected to the pulse back-flushing valve a back-flushing gas tank, the other end of which is provided with a nozzle corresponding to the top of the ejector;
  • the filter tube is composed of a first cylinder and a second cylinder coaxially sleeved in the first cylinder,
  • the first cylinder is disposed with the opening facing upward, and the outer edge of the cylinder mouth is provided with a first connecting flange, the center of the bottom of the first cylinder is provided with a circular through hole, and the second cylinder is open to the opening
  • a backflushing deflector is fixedly disposed at a top end of the filter tube; the backflushing deflector includes an outer cylinder penetrating at both ends and a diversion flow fixed in the outer cylinder
  • the inner diameter of the outer cylinder is the same as the inner diameter of the first cylinder of the filter tube, and the bottom end of the outer cylinder is provided with a second connecting flange correspondingly connected with the first connecting flange of the filter tube;
  • the utility model comprises a guiding cone body and a plurality of spiral blades disposed on the outer side of the guiding cone body along the circumferential ring; the guiding cone body is a streamline shape which is large and small, and the bottom of the guiding cone body is planar and fixedly arranged Top of the second cylinder And the diameter of the bottom of the guide cone body is the same as the outer diameter of the first cylinder of the filter tube; the outer sides of the plurality of spiral blades are fixedly connected to the inner wall of the outer cylinder.
  • the angle between the tangential direction of the spiral of the tip of each blade and the horizontal line is
  • the outer wall of the first cylinder is provided with an outer filter membrane
  • the inner wall of the second cylinder is provided with an inner filter membrane
  • the outer filter membrane has a thickness greater than The thickness of the inner filtration membrane
  • the filter tube is a sintered metal filter tube.
  • the filter tube for high temperature gas-solid separation of the present invention and the filter thereof can increase the filtration area of the single filter tube and the entire filter, improve the dust removal effect, and reduce the production cost and maintenance of the entire filter device. Cost; At the same time, it can effectively improve the cleaning efficiency, and also solve the problems of "return” and “negative pressure zone”; and it is beneficial to extend the service life of the filter tube.
  • Figure 1 Schematic diagram of the filter of the present invention.
  • FIG. 2A is a schematic view showing the structure of a filter tube of the present invention.
  • Fig. 2B is a schematic cross-sectional view taken along line B-B of Fig. 2A.
  • Figure 2C is a schematic cross-sectional view of the A-A of Figure 2A.
  • Fig. 2D is a schematic view showing the structure of the blade which is spirally arranged in Fig. 2A.
  • Figure 3 is a schematic view showing the filtration process of the filter tube of the present invention.
  • FIG. 4 Schematic diagram of the pulse backflushing process of the filter tube of the present invention.
  • Fig. 5 is a schematic view showing the arrangement of the filter tubes in a filter unit in the prior art.
  • Figure 6 is a schematic view showing the arrangement of the filter tubes in a filter unit of the present invention.
  • Fig. 7 is a second schematic view showing the arrangement of the filter tubes in a filter unit of the present invention.
  • Fig. 8A is a schematic view showing the structure of a filter tube used in the prior art.
  • Figure 8B Schematic diagram of the structure of an existing filter.
  • Figure 8C Schematic diagram of a filtration process for a prior art filter tube.
  • Fig. 8D is a schematic view of a prior art filter tube pulse backflushing process. detailed description For a better understanding of the technical features, objects and advantages of the present invention, the embodiments of the present invention will be described with reference to the accompanying drawings.
  • the present invention provides a filter 100 for high temperature gas-solid separation, wherein a filter unit is disposed on a tube sheet 3 of the filter, and the filter unit includes at least one filter tube 2, the tube sheet 3 separating the filter seal into an upper clean gas chamber and a lower dust-containing gas chamber; an upper portion of the filter unit is provided with an ejector 4 and a back-blowing line 7 corresponding to the ejector 4, and the back-blowing line 7
  • the end is connected to the backflushing gas tank 9 through the pulse backflushing valve 8, and the other end of the back blowing line 7 is provided with a nozzle 6 corresponding to the top of the ejector 4, and the dust-containing gas chamber is provided with a gas inlet 1, a clean gas
  • the chamber is provided with a gas outlet 5; as shown in FIG.
  • the filter tube 2 described in the present invention is a sintered metal filter tube; the filter tube 2 is sleeved first by the first cylinder 21 and coaxially.
  • the second cylinder 22 in the cylinder 21 is configured such that the first cylinder 21 is provided with an opening facing upward, and the outer edge of the cylinder mouth is provided with a first connecting flange connected to the tube sheet 3, and the first cylinder 21
  • the center of the bottom of the cylinder is provided with a circular through hole, and the second cylinder 22 is inverted downward.
  • the open end of the second cylinder 22 is sealingly connected with the circular through hole of the first cylinder 21; the bottom of the second cylinder 22 and the first cylinder
  • the nozzles of 21 are at the same level (ie, the heights of the first cylinder 21 and the second cylinder 22 are equal); an annular gas passage 23 is formed between the first cylinder 21 and the second cylinder 22;
  • a backflushing deflector is fixedly disposed at the top end of the filter tube 2; the backflushing deflector includes an outer tube 24 that is penetrated at both ends.
  • the inner diameter of the outer cylinder 24 is the same as the inner diameter of the first cylinder 21 of the filter tube, and the bottom end of the outer cylinder 24 is provided with a first connecting flange with the filter tube
  • the outer cylinder 24 is used to concentrate the back-blowing gas to allow the back-blowing gas to enter the inside of the filter tube
  • the guiding cone 25 includes the guiding cone body 251 and is uniformly annularly arranged in the circumferential direction.
  • the lower streamline shape (for example, the shape of the bullet) is used to facilitate the introduction of the backflushing gas into the filter tube.
  • the bottom of the guide cone body 251 is planar and fixedly disposed at the top end of the second cylinder 22 to prevent backflush gas.
  • the bottom diameter of the guide cone body 251 is the same as the outer diameter of the second cylinder 22 of the filter tube.
  • the outer side of the plurality of spiral blades 252 is fixedly connected to the inner wall of the outer cylinder 24 (connected in a tangential manner), so that the overflow region of the blade 252 just coincides with the axial direction of the annular gas passage 23 of the filter tube. This allows both filtered and backflushed gases to pass through the overflow region of the blade.
  • the dust-containing gas enters the dust-containing gas chamber of the filter from the gas inlet 1 of the filter, and reaches the filter unit under the action of the gas driving force, and the dust-containing gas is separately from the filter tube.
  • the inner filter surface (the inner wall surface of the second cylinder 22) and the outer filter surface (the outer wall surface of the first cylinder 21) on both sides of the annular gas passage 23 of 2 enter the inside of the annular gas passage 23, and the dust particles are Intercepting the inner filter surface and the outer filter surface to form a powder layer (as shown in FIG. 3), the filtered gas is a clean gas, and is filtered along the arrow direction shown in FIG.
  • the clean gas side of the device flows out of the gas outlet 5 and enters the ⁇ subsequent process.
  • the pulse backflushing valve 8 on the backflushing line 7 is instantaneously turned on, and after the pulse backflushing gas reaches the position of the guiding cone, the deflecting cone is guided into the flow path of the blade, and the high-speed backflushing airflow After being rotated by the blade, it is swirled into the annular gas passage 23 of the filter tube, and the rotating airflow forms a vortex in the inner space of the filter tube, transferring energy from top to bottom, and filtering the inner layer of the filter tube and the outer layer.
  • the dust layer of the layer filter surface is peeled off, and the performance of the filter tube is regenerated (as shown in Fig. 4).
  • the filter tube of the present invention can significantly increase the filtration area of the single filter tube, which can be increased by 1. 5 ⁇ 2 times; the number of filter tubes and operating conditions are kept unchanged in the filter.
  • the filter load of the filter can be greatly increased; if the filter load of the filter is kept constant, the use of the filter tube of the present invention can reduce the number of filter tubes, thereby reducing the size of the filter and Reduce production costs and maintenance costs.
  • Single filter tube filtration area S Refers to the outer surface area of the filter tube. After unfolding, the filter surface is a rectangle.
  • the filter area of the prior art filter tube is S1 (as shown in Fig. 8A):
  • the filter tube of the present invention has a filtration area of S2 (as shown in Fig. 2A):
  • the filter area ratio of the two filter tubes is:
  • the volume of a single filter tube V refers to the volume of the chamber of the gas passage of the filter tube. (Because the support of the filter tube is thin, it is about 2-4 dishes, so the thickness of the support can be ignored in the calculation)
  • the actual industrial filter is taken as an example to illustrate:
  • the tubes are arranged at equal triangular intervals.
  • the diameter of the ejector is 810 (that is, the diameter of the circular area where each filter unit is located is 8.1), and the center spacing of any two adjacent filter tubes is 100 (ie, The distance between the outer wall surfaces of two adjacent filter tubes is 40 dishes, It is to leave space for the dust layer during filtration to prevent dust bridges from appearing between adjacent filter tubes when the powder layer is too thick.
  • Fig. 5 it is a filter tube in the prior art. Schematic diagram of the arrangement.
  • the technology arranges the filter tubes in the filter unit (ie: arranged according to the equilateral triangle spacing), and can obtain two kinds of arrangement results, one is arranged 38 pieces (as shown in FIG. 6), and the other can be arranged. 42 pieces of cloth (as shown in Figure 7). That is, in the existing filter unit, 38-42 pieces can be arranged using the filter tube of the present invention.
  • the filter capacity of the filter can be increased by about 48% to 64% compared to the prior art.
  • the filter uses a swirling method to backflush the filter tube, which can effectively improve the cleaning efficiency, and also solves the "reflow” and "negative pressure regions". "Question.
  • the top of the filter tube of the present invention is provided with a backflushing flow guiding device, a plurality of spiral blades are arranged outside the guiding cone body; the gas flows from the lower end to the upper end of the guiding vane in a countercurrent manner, and after the pulse backflush is finished, the filtering
  • the reflux speed is high, and the countercurrent flow increases the gas overcurrent resistance and hinders the gas recirculation process, thereby avoiding the filtration caused by the reflux at the end of the cleaning.
  • the small particles outside the tube are again settled to the outer wall of the filter tube or embedded inside the filter tube.
  • the filtered gas velocity is very low, about 3-7 m/s. Because of the low filtration speed, the influence of the filtration resistance caused by the blade backflow in the present invention can be almost Ignore; and the speed of reflow is very high, about 70-150m / s, so it will be significantly suppressed).
  • 3 to 9 spiral blades 252 may be disposed outside the guide cone body 251; as shown in FIG. 2C, in the present embodiment, 6 blades are provided; as shown in FIG. 2D, the blades are The angle between the tangential direction of the spiral of 252 and the horizontal line is 90°; the angle between the tangential direction of the spiral at the bottom end of each blade 252 and the horizontal line is 0° to 45°.
  • the angle ⁇ value is matched to the length of the filter tube and the backflush parameters.
  • the back-blowing pressure can be appropriately increased, and a smaller angle, for example, 10 °, is adopted, so that when the back-blowing airflow enters the annular gas passage inside the filter tube, the length of the back-blowing gas is increased, so that The energy of the cleaning can reach the bottom of the filter tube; when the length of the filter tube is short, a smaller backflushing pressure can be used, and a larger angle, for example 30 °, is used to increase the strength of the rotation, and a better Cleaning effect.
  • the ejector structure Since the rotating airflow is used for the cleaning operation, the ejector structure is not formed, thus overcoming the prior art, when the backflushing airflow enters the filter tube axially, it is caused in a certain area of the open end of the filter tube. Negative pressure zone" problem. Further, as shown in FIG. 2A and FIG. 2B, in the present embodiment, in order to prevent fine particles (for example, particles of ⁇ ) from being embedded in the micropores of the filter tube in the dust removal filtering operation, the filtration precision is improved.
  • the outer wall of the first cylinder 21 is provided with an outer filter membrane 211
  • the inner wall of the second cylinder 22 is provided with an inner filter membrane 221;
  • the material of the inner filter membrane may be any one of 316, 316L, Inconel alloy, FeCrAl alloy, and HR160, and may be the same as or different from the support material of the filter tube.
  • the thickness of the filter membrane is ⁇ ⁇ ⁇ ! Between ⁇ 500 ⁇ , the membrane has a pore size of 2 to 10 ⁇ m and a porosity of 45% to 60%.
  • the wall thickness of the first cylinder and the second cylinder is generally about 2 to 4, and the area of the outer filtration surface is large during the filtration process, and the area of the inner filtration surface is small. Therefore, in the operation, under the same filtration gas volume, the filtration speed of the outer filter surface is low (the filtration speed is the ratio of the filtration gas volume to the filtration area), and the filtration speed of the inner filtration surface is higher; the higher the filtration speed, the filtration The greater the resistance of the tube, the load on the two filter faces is inconsistent; in the present invention, the thickness of the filter membrane can be controlled to match and adjust the load during operation, the filter membrane thickness is large, the filtration resistance is high, and vice versa. The resistance is small.
  • the thickness of the outer layer filter membrane 211 is larger than the thickness of the inner layer filter membrane 221, and the inner membrane filter membrane is designed to have less resistance and the outer layer has a larger resistance (the inner and outer layers are The filter film thickness can be matched by calculation).
  • the thickness of the outer filtration membrane is greater than the thickness of the inner filtration membrane by 20 to 50%.
  • the filter tube described in the present invention is a sintered metal filter tube which is processed by sintered metal fiber or sintered metal powder, and the material used is any one of 316, 316L, Inconel alloy, FeCrAl alloy, and HR160.
  • the filter tube of the present invention and the filter thereof have at least the following advantages compared with the prior art:
  • the filter area of the filter tube is increased by 1. 5 ⁇ 2 ⁇
  • the filter area of the filter tube is increased by 1. 5 ⁇ 2
  • the processing capacity of the filter can be greatly improved; if the processing capacity of the filter is kept unchanged, the filter tube of the present invention is used. It is possible to reduce the number of filter tubes (sintered metal filter tubes for industrial applications are expensive, from a few thousand to tens of thousands of dollars), thereby reducing the size of the filter and reducing production costs and maintenance costs.
  • the guide vane is used to convert the axial backflush gas, and the filter tube is backflushed and cleaned by means of swirling, which effectively improves the cleaning efficiency and solves the problem existing in the prior art. Reflow "problem and "negative pressure zone” problem.
  • the thickness of the filter membrane layer can be adjusted according to the actual control. It is convenient to adjust the filtration load matching between the inner and outer layers, improve the filtration efficiency, reduce the penetration of fine particles and the deposition inside the filter tube, which is beneficial to Extend the life of the filter tube. 4. As can be seen from the structure of the filter tube of the present invention, the strength of the filter tube 9 of the present invention, the prior art filter tubes than high, which improves the seismic performance of the filter tubes in the filtration operation and the blowback Thermal shock resistance helps to extend its service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtering Materials (AREA)

Abstract

提供了一种高温气固分离的过滤管(2)以及包括该过滤管(2)的过滤器(100)。过滤管(2)由第一圆筒(21)和第二圆筒(22)构成,第一圆筒(21)开口朝上,筒口外缘设有连接法兰,第一圆筒(21)筒底设有圆形透孔,第二圆筒(22)开口向下倒立套设于第一圆筒(21)内,第二圆筒(22)开口端与第一圆筒(21)的圆形透孔密封连接;第二圆筒(22)筒底与第一圆筒(21)筒口处于同一高度,第一圆筒(21)和第二圆筒(22)之间形成环形气体通道(23)。

Description

用于高温气固分离的过滤管及其过滤器 技术领域 本发明是关于一种气固分离元件及装置, 尤其涉及一种烧结金属过滤管及其过滤装 置。 背景技术 在化工、 石油、 冶金、 电力等行业中, 常产生高温含尘气体; 由于不同工艺需要回收 能量和达到环保排放标准, 都需对这些高温含尘气体进行除尘。高温气体除尘是高温条件 下直接进行气固分离,实现气体净化的一项技术,它可以最大程度地利用气体的物理显热, 化学潜热和动力能, 提高能源利用率, 同时简化工艺过程, 节省设备投资。
高温气固分离常采用的设备是气体过滤器, 过滤管是气体过滤器的核心元件,烧结金 属过滤管具有良好的抗震性能、耐高温、耐腐蚀和热冲击性能, 同时具有较高的过滤精度 和过滤效率, 因此, 被广泛地用于高温气体净化领域。
如图 8A所示, 为现有技术中使用的烧结金属过滤管 902, 该过滤管 902为圆筒状, 一端开口, 另一端为封闭形式, 开口端有法兰, 用来固定在过滤器的管板上。
如图 8B所示, 为现有过滤器 900的结构示意图, 现有过滤器 900的管板 903将过滤 器密封分隔为两部分, 下部分为含尘气体侧, 上部分为洁净气体侧; 含尘气体(或称为粗 合成气)由过滤器 900的气体入口 901进入到过滤器的含尘气体侧, 在气体推动力的作用 下到达各个过滤单元, 在过滤过程中, 含尘气体在压差的作用下由过滤管 902的外侧表面 通过过滤材料上的孔隙进入过滤管内,气体中的固体颗粒被截留在过滤管 902的外壁上形 成粉饼层 9021 (如图 8C所示), 洁净的气体由过滤管的开口端排出进入洁净气体侧, 经 气体出口 905排出进入后续工艺。随着过滤操作的进行,过滤管 902外表面的粉饼层 9021 逐渐增厚, 导致过滤器 900的压降增大, 这时需要采用脉冲反吹的方式实现过滤管的性能 再生, 脉冲反吹清灰时, 处于常闭状态的脉冲反吹阀 908开启, 气体储罐 909中的高压氮 气或洁净合成气瞬间进入反吹管路 907 中, 然后通过管路上的喷嘴 906 向对应的引射器 904内部喷射高压高速的反吹气体, 反吹气体进入对应的过滤管 902内部, 利用瞬态的能 量将过滤管 902外表面的粉饼层 9021剥落(如图 8D所示), 使得过滤管的阻力基本上恢 复到初始状态, 从而实现过滤管的性能再生。 现有过滤管的支撑体 (或称为骨架), 由烧结金属粉末或者烧结金属纤维材料制成, 该过滤管的高度为 Ll、 外径为 D1 (如图 8A所示), 依靠过滤管的微孔实现过滤, 采用脉 冲反吹的方式实现性能再生。
但是, 现有技术使用的过滤管至少存在以下缺陷:
(1) 单根过滤管的过滤面积有限, 整个过滤器的过滤能力较小。
单根过滤管的过滤面积是指过滤管的外表面积。大型气体过滤器中一般安装有几百至 上千根滤管, 处理的工艺气气量越大, 需要的过滤管数量越多, 过滤器的体积越庞大, 整 个装置的生产成本和维护费用很高。
(2) 脉冲反吹过程造成严重的 "回流"。
研究表明, 在脉冲反吹接近结束时, 反吹气体速度逐渐减小, 在这个过程中, 过滤管 内部的压力要小于其外面的压力,过滤管外壁附近的气体会出现由管外侧通过管壁向管内 侧流动的回流现象, 使己经从过滤管的管外壁吹掉的固体颗粒重新沉降在其外壁上, 这种 "回流"现象甚至会使部分小颗粒穿嵌在管壁内, 容易堵塞过滤管的多孔通道, 降低滤管 的使用寿命。
(3) 支撑体外表面即为过滤面, 在过滤的过程中, 含尘气体中细小的颗粒物容易沉积 在支撑体的内部, 由于过滤管内的多孔通道为不规则的迷宫形式, 因此反吹操作也很难将 沉积的粉尘吹出来, 造成过滤管孔隙堵塞而失效。
(4) 研究表明, 对过滤管进行脉冲反吹清灰时, 由于过滤管的顶部开口端与反吹气流 形成了一个引射结构,高压高速的反吹气流会从过滤管的开口端周围引射洁净的气体进入 过滤管的内部, 在开口端附近容易形成 "负压区", 负压区的存在使得过滤管外的粉尘被 卷吸到该区域的过滤管表面, 这一区域相当于清灰的盲区, 达不到清灰效果。
由此, 本发明人凭借多年从事相关行业的经验与实践, 提出一种用于高温气固分离的 过滤管及其过滤器, 以克服现有技术的缺陷。 发明内容 本发明的目的在于提供一种用于高温气固分离的过滤管及其过滤器, 以增大单根过滤 管和整个过滤器的过滤面积,提高除尘效果,并降低整个过滤装置的生产成本和维护费用。
本发明的另一目的在于提供一种用于高温气固分离的过滤管及其过滤器,采用旋流的 方式对过滤管进行反吹清灰, 以有效提高清灰效率, 同时也解决了 "回流 "和 "负压区" 问题。
本发明的目的是这样实现的, 一种用于高温气固分离的过滤管, 所述过滤管由第一圆 筒和同轴套设于第一圆筒内的第二圆筒构 , 所述第一圆筒呈开口朝上设置, 其筒口外缘 设有第一连接法兰, 所述第一圆筒的筒底中心设有圆形透孔, 所述第二圆筒呈开口向下倒 立套设于第一圆筒内, 所述第二圆筒的开口端与第一圆筒的圆形透孔对应密封连接; 所述 第二圆筒的筒底与第一圆筒的筒口处于同一水平高度;所述第一圆筒与所述第二圆筒之间 形成环形气体通道。
在本发明的一较佳实施方式中, 在所述过滤管顶端固定设置一反吹导流装置; 所述反 吹导流装置包括一个两端贯通的外筒和固定于外筒内的导流锥;所述外筒的内径与过滤管 的第一圆筒的内径相同,且外筒底端设有与过滤管的第一连接法兰对应连接的第二连接法 兰; 所述导流锥包括导流锥本体和沿周向环设于导流锥本体外侧的多个螺旋状叶片; 所述 导流锥本体为上小下大的流线状, 导流锥本体底部为平面状并固定设置在第二圆筒的顶 端, 且导流锥本体底部直径与过滤管的第二圆筒的外径相同; 所述多个螺旋状叶片的外侧 与外筒内壁固定连接。
在本发明的一较佳实施方式中, 所述各叶片顶端的螺旋线切线方向与水平线夹角为
90° ; 所述各叶片底端的螺旋线切线方向与水平线夹角为 0° 〜45° 。
在本发明的一较佳实施方式中, 所述第一圆筒的外壁设有外层过滤膜, 所述第二圆筒 的内壁设有内层过滤膜; 所述外层过滤膜的厚度大于内层过滤膜的厚度。
在本发明的一较佳实施方式中, 所述过滤管为烧结金属过滤管。
本发明的目的还可以这样实现, 一种用于高温气固分离的过滤器, 所述过滤器的管板 上设有过滤单元, 所述过滤单元中至少包括一个过滤管; 所述管板将过滤器密封分隔为上 部的洁净气体腔室和下部的含尘气体腔室;过滤单元上部设置有引射器和与引射器对应的 反吹管路, 反吹管路一端通过脉冲反吹阀连通于反吹储气罐, 反吹管路另一端设有与引射 器顶部对应设置的喷嘴; 所述过滤管由第一圆筒和同轴套设于第一圆筒内的第二圆筒构 成, 所述第一圆筒呈开口朝上设置, 其筒口外缘设有第一连接法兰, 所述第一圆筒的筒底 中心设有圆形透孔, 所述第二圆筒呈开口向下倒立套设于第一圆筒内, 所述第二圆筒的开 口端与第一圆筒的圆形透孔对应密封连接;所述第二圆筒的筒底与第一圆筒的筒口处于同 一水平高度; 所述第一圆筒与所述第二圆筒之间形成环形气体通道。
在本发明的一较佳实施方式中, 在所述过滤管顶端固定设置一反吹导流装置; 所述反 吹导流装置包括一个两端贯通的外筒和固定于外筒内的导流锥;所述外筒的内径与过滤管 的第一圆筒的内径相同,且外筒底端设有与过滤管的第一连接法兰对应连接的第二连接法 兰; 所述导流锥包括导流锥本体和沿周向环设于导流锥本体外侧的多个螺旋状叶片; 所述 导流锥本体为上小下大的流线状, 导流锥本体底部为平面状并固定设置在第二圆筒的顶 端, 且导流锥本体底部直径与过滤管的第 :圆筒的外径相同; 所述多个螺旋状叶片的外侧 与外筒内壁固定连接。
在本发明的一较佳实施方式中, 所述各叶片顶端的螺旋线切线方向与水平线夹角为
90 ° ; 所述各叶片底端的螺旋线切线方向与水平线夹角为 0 ° 〜45 ° 。
在本发明的一较佳实施方式中, 所述第一圆筒的外壁设有外层过滤膜, 所述第二圆筒 的内壁设有内层过滤膜; 所述外层过滤膜的厚度大于内层过滤膜的厚度。
在本发明的一较佳实施方式中, 所述过滤管为烧结金属过滤管。
由上所述, 本发明的用于高温气固分离的过滤管及其过滤器, 可以增大单根过滤管和 整个过滤器的过滤面积, 提高除尘效果, 降低整个过滤装置的生产成本和维护费用; 同时 可有效提高清灰效率, 也解决了 "回流"和 "负压区" 问题; 并有利于延长过滤管的使 用寿命。 附图说明 以下附图仅旨在于对本发明做示意性说明和解释, 并不限定本发明的范围。 其中: 图 1 : 为本发明过滤器的结构示意图。
图 2A: 为本发明的过滤管的结构示意图。
图 2B: 为图 2A中 B-B剖视结构示意图。
图 2C: 为图 2A中 A-A剖视结构示意图。
图 2D: 为图 2A中螺旋状设置的叶片结构示意图。
图 3 : 为本发明的过滤管过滤过程示意图。
图 4: 为本发明的过滤管脉冲反吹过程示意图。
图 5 : 为现有技术中一个过滤单元内过滤管的排布结构示意图。
图 6 : 为本发明中一个过滤单元内过滤管的排布结构示意图一。
图 7 : 为本发明中一个过滤单元内过滤管的排布结构示意图二。
图 8A: 为现有技术中使用的过滤管的结构示意图。
图 8B: 为现有过滤器的结构示意图。
图 8C: 为现有技术的过滤管过滤过程示意图。
图 8D: 为现有技术的过滤管脉冲反吹过程示意图。 具体实施方式 为了对本发明的技术特征、 目的和效 有更加清楚的理解, 现对照附图说明本发明的 具体实施方式。
如图 1所示, 本发明提出一种用于高温气固分离的过滤器 100, 过滤器的管板 3上设 有过滤单元, 所述过滤单元中至少包括一个过滤管 2, 所述管板 3将过滤器密封分隔为上 部的洁净气体腔室和下部的含尘气体腔室;所述过滤单元上部设置有引射器 4和与引射器 4对应的反吹管路 7, 反吹管路 7—端通过脉冲反吹阀 8连通于反吹储气罐 9, 反吹管路 7 另一端设有与引射器 4顶部对应设置的喷嘴 6, 含尘气体腔室设有气体入口 1, 洁净气体 腔室设有气体出口 5; 如图 2A、 图 2B所示, 本发明中所述的过滤管 2为烧结金属过滤管; 该过滤管 2由第一圆筒 21和同轴套设于第一圆筒 21内的第二圆筒 22构成, 所述第一圆 筒 21呈开口朝上设置, 其筒口外缘设有与管板 3连接的第一连接法兰, 所述第一圆筒 21 的筒底中心设有圆形透孔, 所述第二圆筒 22呈开口向下倒立套设于第一圆筒 21内, 所述 第二圆筒 22的开口端与第一圆筒 21的圆形透孔对应密封连接; 所述第二圆筒 22的筒底 与第一圆筒 21的筒口处于同一水平高度 (即: 第一圆筒 21与第二圆筒 22的高度相等); 所述第一圆筒 21与所述第二圆筒 22之间形成环形气体通道 23; 进一步, 如图 2A、 图 2C 和图 2D所示, 在本实施方式中, 所述过滤管 2顶端固定设置一反吹导流装置; 所述反吹 导流装置包括一个两端贯通的外筒 24和固定于外筒 24内的导流锥 25; 所述外筒 24的内 径与过滤管的第一圆筒 21的内径相同,且外筒 24底端设有与过滤管的第一连接法兰对应 连接的第二连接法兰, 外筒 24用来集中反吹气体, 以使反吹气体进入到过滤管内部; 所 述导流锥 25包括导流锥本体 251和沿周向均匀环设于导流锥本体 251外侧的多个螺旋状 叶片 252; 所述导流锥本体 251为上小下大的流线状 (如: 子弹头形状), 以利于将反吹 气流导入过滤管内, 导流锥本体 251底部为平面状并固定设置在第二圆筒 22的顶端, 可 以防止反吹气体直接作用在过滤管顶部的薄弱位置(即: 第二圆筒 22的顶端), 造成对过 滤管的冲击; 所述导流锥本体 251底部直径与过滤管的第二圆筒 22的外径相同; 所述多 个螺旋状叶片 252的外侧与外筒 24内壁固定连接 (呈相切状连接), 由此, 使得叶片 252 的过流区域刚好与过滤管的环形气体通道 23轴向相对重合, 这就使得过滤与反吹的气体 都可以通过叶片的过流区域。
使用本发明的过滤器进行气体除尘时,含尘气体由过滤器的气体入口 1进入到过滤器 的含尘气体腔室, 在气体推动力的作用下到达过滤单元, 含尘气体分别从过滤管 2的环形 气体通道 23两侧的内层过滤面 (第二圆筒 22的内壁面) 和外层过滤面 (第一圆筒 21的 外壁面) 进入到环形气体通道 23的内部, 粉尘颗粒物被拦截在内层过滤面和外层过滤面 形成粉饼层 (如图 3所示), 过滤后的气体为洁净气体, 顺着图 3所示的箭头方向到过滤 器的洁净气体侧, 由气体出口 5流出并进 λ后续工艺中。 当脉冲反吹清灰时, 反吹管路 7 上的脉冲反吹阀 8瞬间开启, 脉冲反吹气体达到导流锥位置后, 被导流锥导流进入叶片的 流道, 高速的反吹气流经过叶片后被旋转, 以旋流的方式进入过滤管的环形气体通道 23 内, 旋转的气流在过滤管的内部空间形成旋涡, 自上而下传递能量, 将过滤管的内层过滤 面和外层过滤面的粉尘层剥离, 实现了过滤管的性能再生 (如图 4所示)。
由上所述, 本发明的过滤管可以显著增加单根过滤管的过滤面积, 可比现有过滤管的 过滤面积提高 1. 5〜2倍; 在过滤器中保持滤管数量和操作条件不变时, 如果安装本发明 的过滤管可以大大提升过滤器的过滤负荷; 如果保持过滤器的过滤负荷不变, 那么使用本 发明的过滤管可以减少过滤管的数量, 从而减小过滤器的尺寸并降低生产成本和维护费 用。
下面通过与现有技术的比较, 对本发明的上述效果作出进一步说明:
单根过滤管过滤面积 S : 指过滤管的外表面积, 展开后过滤面为一个矩形。
现有技术中的过滤管的过滤面积为 S1 (如图 8Α所示):
Sl= Ji · D1 · L1 ;
本发明的过滤管过滤面积为 S2 (如图 2A所示):
S2= π · D2 · L2+ π · d2 · L2= π · ( D2+d2 ) · L2 ;
当两种过滤管的长度 L相等时, 两种过滤管的过滤面积比为:
S2/S1= ( D2+d2 ) /Dl ;
过滤管的过滤面积越大, 相同的操作条件下, 其过滤能力越高。
单根过滤管的容积 V: 是指过滤管的气体通道的腔体体积。 (由于过滤管的支撑体厚 度较薄, 约为 2-4皿, 因此, 计算时可以忽略支撑体厚度)
现有技术过滤管: Vl=l/4 * π - Dl2 - LI (圆柱的体积)
本发明过滤管 V2=l/4 · π · ( D22 -d22 ) · L2 (圆柱环的体积)
令 V1=V2, 并且令两种过滤管的长度 L相等, 化简得到 Dl2 = D22 -d22 ;
当滤管体积和长度相同时, 我们比较两种过滤管的过滤面积, 并进一步核算整个过滤 器的过滤能力。
以实际的工业过滤器作为实例进行说明:
现有技术使用的过滤管的外径 Dl=60mm, 长度 Ll=1500mm, 过滤器内安装 1152根, 分 成 24组过滤单元, 每组过滤单元内安装 48根过滤管, 每个过滤单元内, 过滤管按照等三 角间距排布, 引射器直径为 810皿 (也即每个过滤单元所在的圆形区域的直径为 810皿), 任意相邻两根过滤管的中心间距为 100皿 (也即相邻两根过滤管外壁面间距为 40皿, 其目 的是为过滤时的粉尘层留出空间,防止粉 ^层过厚时在相邻的过滤管之间出现粉尘架桥), 如图 5所示, 为现有技术中一个过滤单元内过滤管的排布方式示意图。
本发明的过滤管中 d2=40mm (相当于现有技术的外壁面间距 40匪) , 代入公式 Dl2 = D2 2 -d22得到 D2=72. 11匪, 取整数 72匪, 那么单根过滤管的面积比 S2/S1= ( D2+d2 ) /Dl=1. 868, 即采用本发明的过滤管的外表面积比现有技术增加了 86. 8%。 为了更客观的 对比整个过滤单元内的情况, 令本发明相邻过滤管之间的外壁面间距为 40皿, 则相邻两 根过滤管的中心间距为 72+40=112皿, 按现有技术在过滤单元内对过滤管进行排布 (即: 按照等三角间距排布), 可得到两种排布结果, 一种是排布 38根 (如图 6所示), 另一种 可以排布 42根(如图 7所示)。 也就是说, 在现有的过滤单元内, 使用本发明的过滤管可 以排布 38-42根。 由于本发明单根过滤管的外表面积是现有技术的 1. 868倍, 对于过滤单 元来说, 总的过滤面积是现有技术的 1. 478-1. 635倍, 因此, 对于整个过滤器而言, 使用 本发明的过滤管, 过滤器的过滤能力可以比现有技术提高约 48%-64%。
此外, 由于本发明提出的过滤管的特有结构, 所述过滤器采用旋流的方式对过滤管进 行反吹清灰, 可以有效提高清灰效率, 同时也解决了 "回流"和 "负压区" 问题。
由于本发明的过滤管顶部设有反吹导流装置,其中的导流锥本体外侧设有多个螺旋叶 片; 气体从导流叶片下端向上端流动属于逆流方式, 当脉冲反吹结束后, 过滤管外壁附近 的气体出现回流时, 这种回流的速度很高, 逆流的叶片会增加气体的过流阻力, 阻碍了气 体的回流过程, 从而避免了在清灰即将结束时, 因回流作用导致过滤管外小颗粒重新沉降 到过滤管外壁面或穿嵌到过滤管内部。 (在此需要说明的是, 在实际的过滤过程中, 过滤 的气速是很低的, 约为 3-7m/s, 由于过滤速度低, 所以本发明中叶片逆流造成的过滤阻 力影响几乎可以忽略; 而回流的速度很高, 约 70-150m/s, 所以会明显得到抑制)。
在本发明中, 导流锥本体 251外侧可设置 3〜9个螺旋状叶片 252; 如图 2C所示, 在 本实施方式中, 设置了 6个叶片; 如图 2D所示, 所述各叶片 252顶端的螺旋线切线方向 与水平线夹角 α为 90° ;所述各叶片 252底端的螺旋线切线方向与水平线夹角 β为 0° 〜 45° 。 角度 β值是与过滤管的长度及反吹参数相匹配的。 当过滤管较长时, 可以适当增加 反吹压力, 采用较小的角度, 例如 10 ° , 这样使得反吹的气流的进入过滤管内部的环形 气体通道时, 增加反吹气体旋转的长度, 使得清灰的能量可以充分到达过滤管的底部; 当 过滤管的长度较短时, 可以采用较小的反吹压力, 采用较大的角度, 例如 30 ° , 以增加 旋转的力度, 达到较好的清灰效果。 由于采用了旋转的气流进行清灰操作, 不会形成引射 的结构, 这样就克服了现有技术中, 反吹气流轴向进入过滤管时, 在过滤管的开口端一定 区域内造成的 "负压区" 问题。 进一步, 如图 2A、 图 2B所示, 在本实施方式中, 为了防止细小的颗粒 (如: Ι μ πι的 颗粒)在除尘过滤操作中嵌入到过滤管的微孔中, 以达到提高过滤精度和过滤效率, 延长 过滤管使用寿命, 所述第一圆筒 21的外壁设有外层过滤膜 211, 所述第二圆筒 22的内壁 设有内层过滤膜 221 ; 所述外层过滤膜和内层过滤膜的材料选用 316、 316L、 Inconel合 金、 FeCrAl合金、 HR160中的任意一种, 可以与过滤管的支撑体材料相同, 也可以不同。 根据不同的工况要求, 过滤膜的厚度范围为 ΙΟΟ μ π!〜 500 μ πι之间, 过滤膜的孔径为 2〜 10 μ m, 孔隙率为 45%〜60%。
在本实施方式中, 所述第一圆筒和第二圆筒的壁厚一般为 2〜4皿左右, 在过滤的过 程中外层过滤面的面积较大, 内层过滤面的面积较小, 因此在操作中, 同等的过滤气量下, 外层过滤面的过滤速度较低 (过滤速度是过滤气量与过滤面积的比值),而内层过滤面的过 滤速度较高; 过滤速度越高,滤管的阻力越大, 因此,两个过滤面承担的负荷是不一致的; 在本发明中, 可以控制过滤膜的厚度来匹配和调节操作过程中的负荷, 过滤膜厚度大过滤 阻力高, 反之过滤阻力小。 在本实施方式中, 所述外层过滤膜 211的厚度大于内层过滤膜 221的厚度, 由此设计, 使内层的过滤膜承担的阻力小一些, 外层的阻力大一些 (内外层 的过滤膜厚度可以通过计算来进行匹配)。 在本实施方式中, 外层过滤膜的厚度要大于内 层过滤膜的厚度 20〜50%。
本发明中所述的过滤管为烧结金属过滤管, 采用烧结金属纤维或者烧结金属粉末加 工, 所用材料为 316、 316L、 Inconel合金、 FeCrAl合金、 HR160中的任意一种。
综上所述, 本发明的过滤管及其过滤器与现有技术相比至少具有如下优点:
1.本发明所述过滤管的结构设计可以显著地提高单根过滤管的过滤面积,采用与现有 技术的过滤管设计原则一致时, 可比现有过滤管的过滤面积提高 1. 5〜2倍; 在过滤器中 保持滤管数量和操作条件不变时,如果安装本发明的过滤管可以大大提升过滤器的处理能 力;如果保持过滤器的处理能力不变,那么使用本发明的过滤管可以减少过滤管的数量 (工 业应用的烧结金属过滤管价格昂贵, 单只价格几千至上万元), 从而减小过滤器的尺寸并 降低生产成本和维护费用。
2.采用导流叶片将轴向的反吹气体进行转能, 使用旋流的方式对过滤管进行反吹清 灰, 有效的提高了清灰效率, 同时也解决了现有技术中存在的 "回流"问题和 "负压区" 问题。
3.内外层均有过滤膜, 且过滤膜层厚度可根据实际控制, 便于调节内外层的过滤负荷 匹配, 提高了过滤效率, 减小细小颗粒的穿透和在过滤管内部的沉积, 有利于延长过滤管 的使用寿命。 4.从本发明的过滤管的结构可以看出,9本发明的过滤管的强度要比现有技术中的过滤 管高, 这就提高了过滤管在过滤与反吹操作中的抗震性能及耐热冲击能力, 有利于延长其 使用寿命。
以上所述仅为本发明示意性的具体实施方式, 并非用以限定本发明的范围。任何本领 域的技术人员, 在不脱离本发明的构思和原则的前提下所作出的等同变化与修改, 均应属 于本发明保护的范围。

Claims

权利要求书
1、 一种用于高温气固分离的过滤管, 其特征在于: 所述过滤管由第一圆筒和同轴套 设于第一圆筒内的第二圆筒构成, 所述第一圆筒呈开口朝上设置, 其筒口外缘设有第一连 接法兰, 所述第一圆筒的筒底中心设有圆形透孔, 所述第二圆筒呈开口向下倒立套设于第 一圆筒内, 所述第二圆筒的开口端与第一圆筒的圆形透孔对应密封连接; 所述第二圆筒的 筒底与第一圆筒的筒口处于同一水平高度;所述第一圆筒与所述第二圆筒之间形成环形气 体通道。
2、 如权利要求 1所述的用于高温气固分离的过滤管, 其特征在于: 在所述过滤管顶 端固定设置一反吹导流装置;所述反吹导流装置包括一个两端贯通的外筒和固定于外筒内 的导流锥; 所述外筒的内径与过滤管的第一圆筒的内径相同, 且外筒底端设有与过滤管的 第一连接法兰对应连接的第二连接法兰;所述导流锥包括导流锥本体和沿周向环设于导流 锥本体外侧的多个螺旋状叶片; 所述导流锥本体为上小下大的流线状, 导流锥本体底部为 平面状并固定设置在第二圆筒的顶端,且导流锥本体底部直径与过滤管的第二圆筒的外径 相同; 所述多个螺旋状叶片的外侧与外筒内壁固定连接。
3、 如权利要求 2所述的用于高温气固分离的过滤管, 其特征在于: 所述各叶片顶端 的螺旋线切线方向与水平线夹角为 90 ° ; 所述各叶片底端的螺旋线切线方向与水平线夹 角为 0° 〜45° 。
4、 如权利要求 1所述的用于高温气固分离的过滤管, 其特征在于: 所述第一圆筒的 外壁设有外层过滤膜, 所述第二圆筒的内壁设有内层过滤膜; 所述外层过滤膜的厚度大于 内层过滤膜的厚度。
5、如权利要求 1〜4任一项所述的用于高温气固分离的过滤管, 其特征在于: 所述过 滤管为烧结金属过滤管。
6、 一种用于高温气固分离的过滤器, 所述过滤器的管板上设有过滤单元, 所述过滤 单元中至少包括一个过滤管;所述管板将过滤器密封分隔为上部的洁净气体腔室和下部的 含尘气体腔室; 过滤单元上部设置有引射器和与引射器对应的反吹管路, 反吹管路一端通 过脉冲反吹阀连通于反吹储气罐, 反吹管路另一端设有与引射器顶部对应设置的喷嘴; 其 特征在于: 所述过滤管由第一圆筒和同轴套设于第一圆筒内的第二圆筒构成, 所述第一圆 筒呈开口朝上设置, 其筒口外缘设有第一连接法兰, 所述第一圆筒的筒底中心设有圆形透 孔, 所述第二圆筒呈开口向下倒立套设于第一圆筒内, 所述第二圆筒的开口端与第一圆筒 的圆形透孔对应密封连接; 所述第二圆筒 ^筒底与第一圆筒的筒口处于同一水平高度; 所 述第一圆筒与所述第二圆筒之间形成环形气体通道。
7、 如权利要求 6所述的用于高温气固分离的过滤器, 其特征在于: 在所述过滤管顶 端固定设置一反吹导流装置;所述反吹导流装置包括一个两端贯通的外筒和固定于外筒内 的导流锥; 所述外筒的内径与过滤管的第一圆筒的内径相同, 且外筒底端设有与过滤管的 第一连接法兰对应连接的第二连接法兰;所述导流锥包括导流锥本体和沿周向环设于导流 锥本体外侧的多个螺旋状叶片; 所述导流锥本体为上小下大的流线状, 导流锥本体底部为 平面状并固定设置在第二圆筒的顶端,且导流锥本体底部直径与过滤管的第二圆筒的外径 相同; 所述多个螺旋状叶片的外侧与外筒内壁固定连接。
8、 如权利要求 7所述的用于高温气固分离的过滤器, 其特征在于: 所述各叶片顶端 的螺旋线切线方向与水平线夹角为 90 ° ; 所述各叶片底端的螺旋线切线方向与水平线夹 角为 0° 〜45° 。
9、 如权利要求 6所述的用于高温气固分离的过滤器, 其特征在于: 所述第一圆筒的 外壁设有外层过滤膜, 所述第二圆筒的内壁设有内层过滤膜; 所述外层过滤膜的厚度大于 内层过滤膜的厚度。
10、 如权利要求 6〜9任一项所述的用于高温气固分离的过滤器, 其特征在于: 所述 过滤管为烧结金属过滤管。
PCT/CN2013/070709 2012-12-05 2013-01-18 用于高温气固分离的过滤管及其过滤器 WO2014086108A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/397,792 US9802147B2 (en) 2012-12-05 2013-01-18 Filter tube for high temperature gas-solid separation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210517544.6A CN103007647B (zh) 2012-12-05 2012-12-05 用于高温气固分离的过滤管及其过滤器
CN201210517544.6 2012-12-05

Publications (1)

Publication Number Publication Date
WO2014086108A1 true WO2014086108A1 (zh) 2014-06-12

Family

ID=47957086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070709 WO2014086108A1 (zh) 2012-12-05 2013-01-18 用于高温气固分离的过滤管及其过滤器

Country Status (3)

Country Link
US (1) US9802147B2 (zh)
CN (1) CN103007647B (zh)
WO (1) WO2014086108A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109621569A (zh) * 2019-01-10 2019-04-16 中国石油大学(北京) 自调向周期性脉冲射流喷嘴及过滤器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104107603B (zh) * 2014-07-11 2015-07-08 中国石油大学(北京) 用于高温气体净化的过滤装置
CN104998487B (zh) * 2015-07-31 2017-02-08 西安科技大学 一种安装有限位传感器的废气处理装置
CN104998475B (zh) * 2015-07-31 2017-02-08 重庆同佳电子科技有限公司 用于对具有多个内部工作站的加工设备的废气处理装置
CN105148640B (zh) * 2015-07-31 2016-12-14 重庆界威模具股份有限公司 一种便于拆装的废气处理装置
WO2018101125A1 (ja) * 2016-11-29 2018-06-07 セイコーエプソン株式会社 集塵装置、及び、シート製造装置
DE102018103157A1 (de) 2018-02-13 2019-08-14 Camfil Apc Gmbh Geteilte Strömungsleitvorrichtung, Bausatz aus Grundkörper und Endstück einer Strömungsleitvorrichtung, Filteranlage und Verfahren zum Reinigen
CN109248506B (zh) * 2018-11-15 2024-01-30 中国石油大学(北京) 歧管式脉冲反吹清灰结构及运用该清灰结构的过滤器
GB2592267A (en) * 2020-02-24 2021-08-25 Altair Uk Ltd Pulse nozzle for filter cleaning systems
US20230182044A1 (en) * 2021-01-04 2023-06-15 Roger Breakfield Pressure and Heat Molded Polymer Tube, ect.
CN113007822B (zh) * 2021-02-22 2022-02-11 济南润德医用工程有限公司 一种用于洁净空间专用的抗菌抑菌自洁材料及方法
CN112973295B (zh) * 2021-03-18 2022-03-29 中国石油大学(北京) 具有排液功能的聚结滤芯
CN115671914B (zh) * 2022-10-21 2023-12-05 江苏一启集成木业有限公司 一种节能高效家具加工车间除尘装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133657A (en) * 1976-03-17 1979-01-09 Elkem-Spigerverket A/S Apparatus for purification of gasses
CN2297238Y (zh) * 1997-01-22 1998-11-18 煤炭科学研究总院北京煤化学研究所 一种高温气体除尘装置
CN102728162A (zh) * 2012-07-12 2012-10-17 中国石油大学(北京) 带有旋转式喷吹管的脉冲反吹清灰装置
CN102728161A (zh) * 2012-07-12 2012-10-17 中国石油大学(北京) 带有伸缩式喷吹管的脉冲反吹清灰装置
CN202983425U (zh) * 2012-12-05 2013-06-12 中国石油大学(北京) 用于高温气固分离的过滤管及其过滤器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860038A (en) * 1986-09-29 1989-08-22 Honeywell Inc. Underwater bubble camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133657A (en) * 1976-03-17 1979-01-09 Elkem-Spigerverket A/S Apparatus for purification of gasses
CN2297238Y (zh) * 1997-01-22 1998-11-18 煤炭科学研究总院北京煤化学研究所 一种高温气体除尘装置
CN102728162A (zh) * 2012-07-12 2012-10-17 中国石油大学(北京) 带有旋转式喷吹管的脉冲反吹清灰装置
CN102728161A (zh) * 2012-07-12 2012-10-17 中国石油大学(北京) 带有伸缩式喷吹管的脉冲反吹清灰装置
CN202983425U (zh) * 2012-12-05 2013-06-12 中国石油大学(北京) 用于高温气固分离的过滤管及其过滤器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109621569A (zh) * 2019-01-10 2019-04-16 中国石油大学(北京) 自调向周期性脉冲射流喷嘴及过滤器
CN109621569B (zh) * 2019-01-10 2024-02-02 中国石油大学(北京) 自调向周期性脉冲射流喷嘴及过滤器

Also Published As

Publication number Publication date
US9802147B2 (en) 2017-10-31
CN103007647A (zh) 2013-04-03
US20150182897A1 (en) 2015-07-02
CN103007647B (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
WO2014086108A1 (zh) 用于高温气固分离的过滤管及其过滤器
CN103055627B (zh) 用于高温气体过滤的直流式预分离装置及其过滤器
CN104984597A (zh) 一种气动旋流并联组合除雾装置及应用
CN202983425U (zh) 用于高温气固分离的过滤管及其过滤器
CN107096272A (zh) 一种全自动列管式反冲洗过滤器及其过滤方法
CN202237687U (zh) 单旋风管加滤芯组合可拆分式分离器
CN102921259B (zh) 一种自循环旋液复合式气体过滤器及其过滤方法
CN104107603A (zh) 用于高温气体净化的过滤装置
CN204911024U (zh) 一种气动旋流并联组合除雾装置
CN202983406U (zh) 用于高温气体过滤器的预分离装置及其过滤器
CN205627210U (zh) 一种高压微旋流固液分离除砂装置
CN209885342U (zh) 一种无余液干法排渣过滤器
CN106474830A (zh) 气固分离装置
CN104399311B (zh) 一种二次回流式过滤接头
CN201333367Y (zh) 内置旋风预除尘的复合飞灰过滤器
CN205236214U (zh) 胡氏旋流分离装置
CN113559619B (zh) 两级分离除尘设备及其方法
CN206168097U (zh) 一种气固分离装置
CN103071349B (zh) 一种工业排放废气中有害超微粉尘分离收集的方法及装置
CN203935736U (zh) 用于高温气体净化的过滤装置
CN203281188U (zh) 一种用于气体分离净化的高效低阻除尘器
NL2025879B1 (en) Microporous membrane dust collector for dust removal based on rotary pulse and dust removal method therefor
CN211612134U (zh) 一种燃气轮机进气过滤装置
CN203954986U (zh) 一种高效分离旋风袋式除尘设备
CN103041651B (zh) 用于高温气体过滤器的预分离装置及其过滤器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861062

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14397792

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861062

Country of ref document: EP

Kind code of ref document: A1