WO2014076913A1 - ボール計測システム - Google Patents

ボール計測システム Download PDF

Info

Publication number
WO2014076913A1
WO2014076913A1 PCT/JP2013/006580 JP2013006580W WO2014076913A1 WO 2014076913 A1 WO2014076913 A1 WO 2014076913A1 JP 2013006580 W JP2013006580 W JP 2013006580W WO 2014076913 A1 WO2014076913 A1 WO 2014076913A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
golf club
measurement
data
golf
Prior art date
Application number
PCT/JP2013/006580
Other languages
English (en)
French (fr)
Inventor
三枝 宏
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2014546854A priority Critical patent/JP6237642B2/ja
Priority to KR1020157011656A priority patent/KR101887428B1/ko
Publication of WO2014076913A1 publication Critical patent/WO2014076913A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/36Training appliances or apparatus for special sports for golf
    • A63B69/3623Training appliances or apparatus for special sports for golf for driving
    • A63B69/3632Clubs or attachments on clubs, e.g. for measuring, aligning
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/36Training appliances or apparatus for special sports for golf
    • A63B69/3658Means associated with the ball for indicating or measuring, e.g. speed, direction
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • A63B2220/34Angular speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • A63B2220/36Speed measurement by electric or magnetic parameters
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/83Special sensors, transducers or devices therefor characterised by the position of the sensor
    • A63B2220/833Sensors arranged on the exercise apparatus or sports implement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/89Field sensors, e.g. radar systems

Definitions

  • the present invention relates to a ball measurement system that measures the direction of the rotation axis of a golf ball after hitting.
  • Patent Document 1 is a ball measurement device using a radar system, and obtains signal intensity distribution data of a Doppler signal measured using an antenna and a Doppler sensor, and calculates a calculation speed and a movement speed obtained in advance.
  • the movement speed is calculated from the calculation speed calculated from the signal intensity distribution data based on the correlation between the signal intensity distribution data and the signal intensity distribution based on the correlation between the signal intensity distribution data obtained in advance and the spin amount. Calculate the spin rate from the data.
  • the parameters indicating the behavior of the golf ball after hitting include various parameters such as a moving speed and a moving direction, and one of them is the direction of the rotation axis (spin axis) of the golf ball.
  • the rotation axis direction of the golf ball can be measured, for example, by the ratio of the back spin component and the side spin component of the spin amount of the golf ball.
  • the radar-type measuring apparatus according to Patent Document 1 described above can measure the total spin amount of a golf ball in addition to being able to build a compact system at a relatively low cost, but it is difficult to calculate the rotation axis direction. It is.
  • a radar type measuring apparatus a method of calculating the rotation axis direction using information on the swing path of the golf club and the launch direction of the golf ball has been tried, but it cannot be said that the accuracy is sufficient.
  • the image measurement system can perform measurement with high accuracy including the spin amount, but has a disadvantage that the system becomes expensive.
  • the above-described optical measurement system can be assembled at low cost, but in principle cannot measure spin.
  • the present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a ball measurement system capable of measuring the rotation axis direction of a golf ball after hitting with a simple configuration. .
  • the present invention provides a ball measuring system for measuring the direction of the rotation axis of a golf ball after hitting, and a ball measuring unit for measuring the behavior of the golf ball after hitting And a golf club measuring means for measuring the behavior before and after hitting the golf club head hitting the golf ball, and the rotational axis direction of the golf ball based on measurement data by the ball measuring means and the golf club measuring means.
  • Calculating means, and the ball measuring means has directivity, transmits a transmission wave toward the golf ball based on a supplied transmission signal, and is reflected by the golf ball.
  • First to nth antennas (n is an integer of 2 or more) arranged to be separated from each other and receive a reflected wave to generate a reception signal, and the first First to nth antennas provided corresponding to each of the n-th antennas for supplying the transmission signal to the antenna and generating a Doppler signal having a Doppler frequency based on the reception signal supplied from the antenna.
  • a golf club side sensor that outputs measurement data indicating a behavior of the golf club, and at least a part of the golf club measurement unit is provided in a golf club that hits the golf ball.
  • the calculation means includes first to nth signal intensity distribution data indicating a signal intensity distribution for each frequency by performing frequency analysis on a Doppler signal obtained from each of the first to nth Doppler sensors.
  • Each of the first to nth signal intensity distribution data A speed calculation unit that detects Doppler frequency components corresponding to the moving speed of the golf ball and calculates first to n-th calculation speeds based on the detected Doppler frequency components;
  • the first to nth signal intensity distributions generated by the signal intensity distribution data generation unit based on the correlation between the first to nth signal intensity distribution data and the spin amount of the golf ball.
  • Behavior data calculating means for calculating a face angle at the time of hitting, the movement trajectory obtained by actual measurement in advance and the fade at the time of hitting
  • a rotation axis calculation means for calculating the rotation axis direction from the movement trajectory calculated by the behavior data calculation means and the face angle at the time of hitting based on a correlation between a golf ball angle and a rotation axis direction of the golf ball; It consists of.
  • the rotation axis direction of the golf ball is calculated based on the movement trajectory of the golf club head at the time of hitting the golf ball and the face angle at the time of hitting. Therefore, the rotation axis can be calculated using a parameter having a high correlation with the rotation axis direction, and the rotation axis direction of the golf ball can be calculated with high accuracy with a simple configuration.
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration of a ball measurement system 10 according to the first embodiment.
  • 3 is a functional block diagram of a ball measurement unit 20.
  • FIG. FIG. 6 is a front view showing a configuration of first to fourth antennas 12A to 12D. It is A arrow directional view of FIG. FIG. 4 is a view taken in the direction of arrow B in FIG. 3. It is explanatory drawing which looked at the 1st-4th antenna 12A-14D from the side.
  • FIG. 6 is an explanatory diagram viewed from above the first to fourth antennas 12A to 14D.
  • 4 is an explanatory diagram showing a configuration of a golf club measurement unit 30.
  • FIG. 4 is an explanatory diagram showing an outline of functions of a golf club measuring unit 30.
  • FIG. 2 is a plan view showing a state in which a face surface 402 of a golf club head 4 is applied to a positioning plate 2008.
  • FIG. It is A arrow directional view of FIG. It is B arrow line view of FIG. 3 is a block diagram showing a configuration of an arithmetic unit 40.
  • FIG. 4 is an explanatory diagram showing a functional configuration of an arithmetic unit 40.
  • FIG. It is explanatory drawing at the time of measuring the behavior of a golf club head. It is explanatory drawing of each left-right approach (theta) LR. It is explanatory drawing of each up-and-down approach (theta) UD. It is explanatory drawing of face angle (phi) at the time of impact.
  • FIG. 6 is an explanatory view in which a golf ball B and first to fourth antennas 14A to 14D are viewed from the side.
  • FIG. 6 is an explanatory view in which a golf ball B and first to fourth antennas 14A to 14D are viewed from the side.
  • FIG. 5 is an explanatory diagram viewed from above the golf ball B and the first to fourth antennas 14A to 14D. It is explanatory drawing explaining calculation of the rotating shaft direction RD by the rotating shaft calculating part 5240.
  • FIG. 4 is a flowchart showing a setting operation of the golf club measurement unit 30. 4 is a flowchart showing a setting operation of the ball measurement unit 20. 3 is a flowchart showing the operation of the ball measurement system 10 during main measurement. It is explanatory drawing explaining 2nd calibration. It is explanatory drawing which shows the example of a display output of the measurement result in the output part 460.
  • FIG. It is explanatory drawing which shows the structure of the golf club measurement unit 30 'concerning a modification. It is explanatory drawing which shows schematic structure of the ball
  • FIG. 4 is a flowchart showing a setting operation of the golf club measurement unit 30. 4 is a flowchart showing a setting operation of the ball
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration of a ball measurement system 10 according to the first embodiment.
  • FIG. 1 shows a ball measurement unit 20 that measures the behavior of a golf ball B after hitting, and a golf club head 4 that hits the golf ball B, along with a player P who wants to hit the golf ball B by the golf club 2.
  • the golf club measuring unit 30 that measures the behavior before and after, and the arithmetic unit 40 that calculates the rotation axis direction of the golf ball B after hitting based on the measurement data by the ball measuring unit 20 and the golf club measuring unit 30.
  • a ball measurement system 10 is shown.
  • the golf club measurement unit 30 is installed at a predetermined position, is fixed to the golf club 2 and a transmitter 312 that generates a magnetic field having a known distribution regarding strength and direction, and the measurement point A golf club that senses surrounding magnetism in three axial directions orthogonal to each other and outputs a detection signal according to the three-dimensional position of the measurement point with respect to a predetermined reference position and the direction of the measurement direction with respect to the predetermined reference direction This is a side three-dimensional magnetic sensor 314.
  • FIG. 2 is a functional block diagram of the ball measuring unit 20.
  • the ball measurement unit 20 includes first to fourth antennas 12A, 12B, 12C, and 12D, first to fourth Doppler sensors 14A, 14B, 14C, and 14D, a microphone 16, and a trigger.
  • the signal generator 18 and the like are included.
  • the first to fourth antennas 12A, 12B, 12C, 12D and the first to fourth Doppler sensors 14A, 14B, 14C, 14D are accommodated and held in a case (not shown).
  • the trigger signal generator 18 is incorporated in a housing (not shown).
  • the first to fourth Doppler sensors 14A, 14B, 14C, 14D and the arithmetic unit 40 are connected via a connection cable (not shown), and the microphone 16 and the arithmetic unit 40 are connected via a connection cable (not shown). ing.
  • the first to fourth antennas 12A to 12D transmit the microwave as the transmission wave W1 to the moving body based on the transmission signals supplied from the first to fourth Doppler sensors 14A to 14D and move The reflected wave W2 reflected by the body is received and the received signal is supplied to the first to fourth Doppler sensors 14A to 14D. More specifically, the first to fourth antennas 12A to 12D have directivity, transmit the transmission wave W1, and receive the reflected wave W2 reflected from the golf ball B to generate a reception signal. And are spaced apart from each other.
  • the first to fourth antennas 12A to 12D are composed of directional antennas of the same shape and the same size, and horn antennas are used as such directional antennas.
  • Various known directional antennas such as parabolic antennas and patch antennas other than the horn antenna can be used as the directional antenna.
  • the horn antenna has a simple configuration and is relatively inexpensive, so that the cost can be reduced. Is advantageous.
  • FIG. 3 is a front view showing the configuration of the first to fourth antennas 12A to 12D
  • FIG. 4 is a view as seen from an arrow A in FIG. 3
  • FIG. 5 is a view as seen from an arrow B in FIG.
  • the case 26 includes a rear plate 2602, upper and lower side plates 2604 ⁇ / b> A, 2604 ⁇ / b> B, 2604 ⁇ / b> C, 2604 ⁇ / b> D, and legs 2606.
  • the rear plate 2602 has a rectangular plate shape, and is provided so that the upper and lower sides are parallel to the horizontal direction, and is inclined rearward as it goes upward.
  • the upper, lower, left and right side plates 2604A to 2604D are erected from the upper, lower, left and right sides of the rear plate 2602, and rectangular openings are formed by the front edges of the side plates 2604A to 2604D.
  • the leg 2606 is provided at the center of the lower surface of the lower side plate 2604B, and is installed on the ground or floor.
  • the first to fourth antennas 12A to 12D are attached to the front surface of the rear plate 2602 while facing forward through the openings, and are accommodated in a space surrounded by the rear plate 2602 and the side plates 2604A to 2604D. Has been.
  • the front portions of the first to fourth antennas 12A to 12D are located behind the front edges of the side plates 2604A to 2604D.
  • the opening is covered with a cover (not shown) formed of a material capable of transmitting the transmission wave W1 and the reflected wave W2, and the first to fourth antennas 12A to 12D are protected from dust.
  • the first to fourth antennas 12A to 12D are arranged near the four corners of the rear plate 2602 when viewed from the front. That is, the first antenna 12 ⁇ / b> A is disposed at the lower right side of the rear plate 2602.
  • the second antenna 12B is arranged at a location near the upper right.
  • a third antenna 12C is arranged at a lower left side.
  • a fourth antenna 12D is arranged at a position near the upper left.
  • the first to fourth virtual axes LA, LB, LC indicating the directivity directions of the respective antennas are straight lines extending along the direction in which the respective gains of the first to fourth antennas 12A to 12D are maximized. , LD.
  • the first and second antennas 12 ⁇ / b> A and 12 ⁇ / b> B are arranged in the vertical direction with an interval dV (first interval) in a side view, and the first and second virtual The axes LA and LB extend on a single vertical plane.
  • the second virtual axis LB extends in the horizontal direction
  • the first virtual axis LA extends in a direction inclined upward by 6 degrees with respect to the horizontal direction.
  • the first and second virtual axes LA and LB are arranged to intersect each other.
  • the third and fourth antennas 12C and 12D are arranged with a spacing dV (first spacing) in the vertical direction, and the third and fourth imaginary axes.
  • LC and LD extend on a single vertical plane.
  • the fourth virtual axis LD extends in the horizontal direction
  • the third virtual axis LC extends in a direction inclined upward by 6 degrees with respect to the horizontal direction. Therefore, the third and fourth virtual axes LC and LD are arranged so as to intersect each other.
  • the second and fourth antennas 12 ⁇ / b> B and 12 ⁇ / b> D are arranged at a distance dH (second distance) in the horizontal direction in a plan view.
  • Virtual axes LB and LD extend on a single horizontal plane.
  • the virtual axes LB, LD of the second and fourth antennas 12B, 12D extend in a direction inclined inward by 4 degrees with respect to the front-rear direction. Therefore, the second and fourth virtual axes LB and LD are arranged so as to intersect each other.
  • the first and third antennas 12A and 12C are arranged with a spacing dH (second spacing) in the horizontal direction.
  • the first and third virtual axes LA and LC also extend in a direction inclined by 4 degrees inward with respect to the front-rear direction. Therefore, the first and third virtual axes LA and LC are arranged so as to intersect each other.
  • the first to fourth antennas 12 ⁇ / b> A to 12 ⁇ / b> D are provided at positions behind the golf ball B in the moving direction of the golf ball B.
  • reference numeral 201 denotes a tee on which the golf ball B is placed
  • G denotes the ground (horizontal plane).
  • the first and second virtual axes LA and LB intersect with each other in a side view
  • the third and fourth virtual axes LC and LD intersect.
  • the first and third virtual axes LA and LC intersect and the second and fourth virtual axes LB and LD intersect in a plan view.
  • the center point of the golf ball B placed on the tee 201 is arranged. This center point is defined as a reference position O (or origin O).
  • the point where the above-described virtual axes intersect is set as the reference position O. It was set at a position ahead of.
  • the regions where the transmission waves W1 transmitted from the first and third antennas 12A and 12C overlap each other and the second and fourth antennas 12B and 12D This is advantageous in ensuring a wide range in the left-right direction where the transmitted wave W1 transmitted from each overlaps the movement trajectory of the golf ball B actually hit.
  • the region where the transmission waves W1 overlap is indicated by hatching. Therefore, even if the moving direction of the golf ball B hit by the golf club head 4 at the reference position O varies somewhat in the vertical direction or the horizontal direction, the moving golf ball B is surely within the region where the transmission waves W1 overlap. It will be advantageous in capturing.
  • the transmission wave W1 is reliably applied to the golf ball B from the first to fourth antennas 12A to 12D, and the reflected wave W2 reflected by the golf ball B is applied to the first to fourth antennas 12A to 12D. Therefore, it is advantageous to reliably measure the moving speed V ⁇ (initial speed) and the spin rate SP of the golf ball B immediately after hitting.
  • the virtual axes LB and LD of the second and fourth antennas 12B and 12D extend in the horizontal direction, and the virtual axes LA and LC of the first and third antennas 12A and 12C are directed upward. It is inclined to.
  • both the virtual axes LB and LD of the second and fourth antennas 12B and 12D and the virtual axes LA and LC of the first and third antennas 12A and 12C may be inclined upward. By doing so, it is more advantageous to secure a wide area where the transmission waves W1 overlap in the vertical direction.
  • the first to fourth Doppler sensors 14A, 14B, 14C, and 14D are accommodated and held in the case 26. As shown in FIG. 2, the first to fourth Doppler sensors 14A to 14D supply transmission signals to the first to fourth antennas 12A to 12D, respectively. In addition, first to fourth Doppler signals SdA, SdB, SdC, and SdD having Doppler frequency Fd are generated as time series data based on reception signals supplied from the first to fourth antennas 12A to 12D. Is.
  • the microphone 16 collects a hitting sound generated when the golf ball B is hit by the golf club head 4 and detects a voice signal.
  • the trigger signal generator 18 generates a trigger signal trg and supplies it to the arithmetic unit 40 when the amplitude of the audio signal detected by the microphone 16 exceeds a predetermined threshold value.
  • the trigger signal trg instructs the arithmetic unit 40 to start data processing to be described later.
  • the trigger signal generator 18 merely generates the trigger signal trg according to the hitting sound, there is a concern that the following inconvenience may occur depending on the installation environment of the ball measurement unit 20.
  • the trigger signal trg is also generated by the hitting sound of the bats around other than the bats to be measured by the ball measurement unit 20,
  • the ball measurement unit 20 may malfunction. Therefore, in the present embodiment, the malfunction is prevented by configuring as follows.
  • the trigger signal generator 18 receives the Doppler signal Sd from the Doppler sensor 14.
  • the trigger signal generator 18 generates the trigger signal trg and supplies it to the arithmetic unit 40 when the Doppler signal Sd is received and the sound signal of the hitting sound exceeds a predetermined threshold value. .
  • the initially generated Doppler signal Sd is obtained by detecting the movement of the golf club head 4. Therefore, since the trigger signal generator 18 generates the trigger signal trg based on both the movement of the golf club 2 and the hitting sound, it is advantageous in accurately preventing the malfunction of the ball measurement unit 20.
  • the trigger signal generator 18 may use a sensor other than the microphone 16 as long as it can generate the trigger signal trg. For example, an optical sensor that detects the golf club head 4 passing through a predetermined specific position (for example, the reference position O) is provided, and the trigger signal generation unit 18 generates the trigger signal trg based on the detection signal of the optical sensor. It is arbitrary. However, since it is necessary to strictly adjust the installation position and direction of the optical sensor, using the microphone 16 as in the present embodiment is advantageous in simplifying the installation work.
  • the golf club measurement unit 30 measures time-series data indicating the three-dimensional position and direction (direction) of the golf club head 4 of the golf club 2.
  • the golf club measurement unit 30 includes a transmitter 312, a golf club side three-dimensional magnetic sensor 314, a holding means side three-dimensional magnetic sensor 316, and a controller / data processing device 318. It is comprised including.
  • the transmitter 312 is installed at a predetermined position. As shown in FIG. 9, the transmitter 312 is wound in a loop shape in the directions of three axes (X axis, Y axis, Z axis) orthogonal to each other. It is constituted by three coils. In the present embodiment, the transmitter 312 is installed such that the X axis and the Y axis extend on the horizontal plane, and the Z axis faces the vertical direction. In the present embodiment, the center position of the transmitter 312 is set as a predetermined reference position 1202, and the Y-axis direction passing through the reference position 1202 is set as a predetermined reference direction 1204. The transmitter 312 generates a magnetic field whose distribution regarding strength and direction is known by a drive signal supplied from the controller / data processor 318.
  • the golf club side three-dimensional magnetic sensor 314 includes three coils wound in a loop shape in the directions of three axes (X axis, Y axis, Z axis) orthogonal to each other. .
  • the golf club side three-dimensional magnetic sensor 314 has a first measurement point 1402 and a first measurement direction 1404.
  • the golf club side three-dimensional magnetic sensor 314 senses the magnetism around the first measurement point 1402 in the three axis directions of the X axis, the Y axis, and the Z axis that are orthogonal to each other, and the first measurement point with respect to the reference position 1202
  • the first detection signal S1 is output according to the three-dimensional position 1402 and the direction of the first measurement direction 1404 with respect to the reference direction 1204.
  • the first measurement point 1402 is the center position of the golf club side three-dimensional magnetic sensor 314, and the first measurement direction 1404 is the Y-axis direction passing through the first measurement point 1402.
  • the golf club side three-dimensional magnetic sensor 314 is fixed to the golf club 2, and is fixed to the grip portion 3 of the golf club 2 in the present embodiment.
  • the golf club side three-dimensional magnetic sensor 314 has the Y axis (first measurement direction 1404) parallel to the striking direction of the golf club 2 and the Z axis parallel to the shaft axis.
  • the holding means side three-dimensional magnetic sensor 316 is configured by three coils wound in a loop shape in directions of three axes (X axis, Y axis, Z axis) orthogonal to each other. .
  • the holding means side three-dimensional magnetic sensor 316 has a second measurement point 1602 and a second measurement direction 1604.
  • the holding means side three-dimensional magnetic sensor 316 senses the magnetism around the second measurement point 1602 in the three axis directions of the X axis, the Y axis, and the Z axis that are orthogonal to each other, and one of the three axis directions.
  • the second detection signal S2 is directed according to the three-dimensional position of the second measurement point 1602 with respect to the reference position 1202 and the direction of the second measurement direction 1604 with respect to the reference direction 1204 with the Y axis that is Is output.
  • the second measurement point 1602 is the center position of the holding means side three-dimensional magnetic sensor 316
  • the second measurement direction 1604 is the Y-axis direction passing through the second measurement point 1602.
  • the holding means side three-dimensional magnetic sensor 316 is integrally supported by the holding means 320.
  • the holding means side three-dimensional magnetic sensor 316 has the Y-axis (second measurement direction 1604) parallel to the striking direction of the golf club 2 and the Z-axis directed vertically as described later. ing.
  • An example of such a golf club measurement unit 30 is LIBERTY (manufactured by Polhemus). The detailed configuration of the golf club measurement unit 30 will be described later.
  • the holding means 320 holds the golf club 2 so that the set lie angle and loft angle are met.
  • the holding unit 320 includes a base 2002, a frame 2004, a support portion 2006, and a positioning plate 2008.
  • the base 2002 is placed on the floor (horizontal plane).
  • the frame 2004 is erected from the base 2002.
  • the support portion 2006 is provided on the frame 2004 and supports the shaft 6 of the golf club 2 so that the shaft 6 can be attached and detached, and the position and orientation of the golf club 2 can be adjusted.
  • Various types of conventionally known structures can be used as the support portion 2006.
  • FIG. 10 is a plan view showing a state in which the face surface 402 of the golf club head 4 is applied to the positioning plate 2008
  • FIG. 11 is a view as seen from the arrow A in FIG. 10, and FIG.
  • the positioning plate 2008 has a rectangular plate shape, and is attached to the base 2002 via a spacer 2010 so as to extend on a horizontal plane.
  • the symbol G indicates the floor surface.
  • the positioning plate 2008 is formed to extend linearly so that an edge portion 2008A having a sharp cross section on one side thereof is parallel to the horizontal plane.
  • a reference line 2012 passing through the center in the extending direction of the edge portion 2008A and orthogonal to the edge portion 2008A is displayed.
  • a holding means side three-dimensional magnetic sensor 316 is provided on the upper surface of the positioning plate 2008.
  • the holding means side three-dimensional magnetic sensor 316 has the second measurement point 1602 positioned on the reference line 2012 and the second measurement direction 1604 coincident (parallel) with the reference line 2012 in a plan view.
  • the golf club 2 has a support portion 2006 so that the lie angle and the loft angle are set in a state where the face surface 402 is applied to the edge portion 2008A so that the edge portion 2008A passes through the center point 410 of the face surface 402. Supported by.
  • that the golf club 2 is on the set lie angle and loft angle is a state in which the normal of the face surface 402 and the launch direction are parallel to each other, and a vertical line
  • the angle formed by the shaft axis is the correct lie angle
  • the golf club 2 can be supported according to the set lie angle by adjusting the support portion 2006 so that the score line 412 and the edge portion 2008A are parallel to each other.
  • the score line 412 is not formed on the face surface 402 as in some putter clubs, the virtual line extending in the left-right width direction of the face surface 402 and the edge portion 2008A are parallel to each other.
  • the support portion 2006 By adjusting the support portion 2006, the golf club 2 can be supported according to the set lie angle.
  • the second measurement of the holding means side three-dimensional magnetic sensor 316 and the three-dimensional position of the center point 410 of the face surface 402 and the orientation of the face surface 402 are performed.
  • the point 1602 and the direction of the second measurement direction have a known relationship. Therefore, the three-dimensional position of the center point 410 of the face surface 402 and the orientation of the face surface 402 can be obtained from the orientations of the second measurement point 1602 and the second measurement direction 1604.
  • the controller / data processing device 318 includes a drive circuit 318A, a detection circuit 318B, and a computer 318C.
  • the drive circuit 318 ⁇ / b> A generates a drive signal that causes the transmitter 312 to sequentially generate predetermined three types of magnetic fields, and supplies the drive signal to the transmitter 312.
  • the detection circuit 318B detects the first detection signal S1 supplied from the golf club side three-dimensional magnetic sensor 314 and the second detection signal S2 supplied from the holding means side three-dimensional magnetic sensor 316. .
  • the computer 318C implements the following functions by executing data processing software. That is, the computer 318C controls the drive circuit 318A and the detection circuit 318B, performs data processing from the output voltage obtained from the detection circuit 318B, and the position and orientation of the golf club side three-dimensional magnetic sensor 314 and the holding means. Data indicating the position and orientation of the side three-dimensional magnetic sensor 316 is generated. As described above, the computer 318C uses the position of the transmitter 312 as the reference position 1202, and calculates time-series data of three-dimensional position coordinates (x, y, z) with reference to the three axes X, Y, Z orthogonal to each other. And output.
  • the computer 318C sets the Y-axis direction centering on the transmitter 312 as the reference direction 1204, and the posture angle indicating the orientation of the magnetic sensors 314 and 16 with respect to the reference direction 1204, that is, the yaw angle, the pitch angle, and the roll
  • the time series data of the corners (hereinafter referred to as ( ⁇ y, ⁇ p, ⁇ r)) is calculated and output. Therefore, the time-series data of the three-dimensional position coordinates (x, y, z) is data indicating the positions of the magnetic sensors 314 and 16, and the time-series data of the yaw angle ⁇ y, the pitch angle ⁇ p, and the roll angle ⁇ r is the magnetic sensor 314. , 16 data indicating the direction of 16.
  • the drive circuit 318A outputs the same signal whose frequency and phase are always constant according to the command signal of the computer 318C, and sequentially excites the three loop coils wound around the three axes of the transmitter 312.
  • Each loop-like coil generates a different magnetic field each time it is excited, and based on this, an independent output voltage V is generated in each of the three loop-like coils wound in the three-axis direction of the golf club side three-dimensional magnetic sensor 314.
  • an independent output voltage V is generated in each of the three loop-like coils wound in the three-axis direction of the golf club side three-dimensional magnetic sensor 314.
  • the transmitter 312 for forming the magnetic field since the transmitter 312 for forming the magnetic field is fixedly installed at a predetermined position, the distribution regarding the strength and direction of the generated magnetic field is known with respect to the reference position 1202 where the transmitter 312 is installed and the reference direction 1204. .
  • the three-dimensional position coordinates (x, y, z) of the golf club side three-dimensional magnetic sensor 314 with respect to the reference position 1202 and the attitude angle with respect to the reference direction 1204 Six unknowns of ( ⁇ y, ⁇ p, ⁇ r) can be obtained.
  • the nine output voltages V sent from the detection circuit 318B are used to calculate the three-dimensional position coordinates (x, y, z) and the posture angle ( ⁇ y, ⁇ p, ⁇ r). Calculate the data.
  • the three-dimensional position coordinates (x, y, z) and posture angles ( ⁇ y, ⁇ p, ⁇ r) obtained by the golf club measuring unit 30 are taken into the arithmetic unit 40, RD-converted, and the grip 3 is being swung. Time-series data of behavior can be obtained.
  • ⁇ p, ⁇ r is basically the same as in the case of the golf club side three-dimensional magnetic sensor 314, and the description thereof is omitted.
  • the transmitter 312, the golf club side three-dimensional magnetic sensor 314, and the holding means side three-dimensional magnetic sensor 316 are arranged so that the coils loop in three axial directions orthogonal to each other, as shown in FIG. 9. It is wound into a shape. Accordingly, the three-axis directions of the transmitter 312 and the magnetic sensors 314 and 16 are matched as much as possible to detect the three-dimensional position coordinates (x, y, z) and the posture angle ( ⁇ y) detected by the magnetic sensors 314 and 16, respectively. , ⁇ p, ⁇ r) is preferable in reducing the load when the calculation means described later is used.
  • the golf club side three-dimensional magnetic sensor 314 is set so that one axis (Z axis) of the three axis directions is coincident with the shaft axis, and the other axis (Y axis) is set to golf. It is preferable that the golf club 2 is fixed to the grip portion 3 in the hitting direction of the club 2. Further, the holding means side three-dimensional magnetic sensor 316 preferably supports the holding means 320 with one of the three axis directions (Y axis) directed in the striking direction of the golf club 2.
  • transmitter 312 has an X axis and a Y axis extending in a horizontal plane, and a Z axis extending in the vertical direction.
  • the arithmetic unit 40 receives the first to fourth Doppler signals SdA to SdD supplied from the first to fourth Doppler sensors 14A to 14D of the ball measuring unit 20, and performs arithmetic processing to thereby obtain the golf ball B
  • the ball behavior data including the movement direction, the movement speed V ⁇ , the spin amount SP, the rotation axis direction RS, and the like are generated.
  • the arithmetic unit 40 generates head behavior data indicating the behavior of the golf club head 4 based on the time-series data supplied from the golf club measurement unit 30.
  • FIG. 13 is a block diagram showing a configuration of the arithmetic unit 40.
  • the arithmetic unit 40 includes a CPU 430, a ROM 432, a RAM 434, a hard disk device 436, a disk device 438, a keyboard 440, a mouse 442, a display 444, a printer 446, and an input / output interface 448 connected via an interface circuit and a bus line (not shown).
  • the ROM 432 stores a control program and the like, and the RAM 434 provides a working area.
  • the hard disk device 436 stores a dedicated program for measuring the behavior of the golf ball B and the golf club head 4.
  • the disk device 438 records and / or reproduces data on a recording medium such as a CD or a DVD.
  • the keyboard 440 and the mouse 442 receive an operation input by the operator.
  • the display 444 displays and outputs data
  • the printer 446 prints and outputs data.
  • the display 444 and the printer 446 output data.
  • the input / output interface 448 exchanges data with the controller / data processing device 318 of the ball measuring unit 20 and the golf club measuring unit 30.
  • FIG. 14 is an explanatory diagram showing a functional configuration of the arithmetic unit 40.
  • the arithmetic unit 40 functionally includes a ball behavior data calculator 452 that generates ball behavior data indicating the behavior of the golf ball B, and a head behavior data calculator that generates head behavior data indicating the behavior of the golf club head 4. 454 and an output unit 460.
  • the head behavior data calculation unit 454 includes a first calibration unit 5450, a second calibration unit 5452, a first time series data generation unit 5453, a second time series data generation unit 5454, a storage unit 5456, and a behavior data generation unit. 5458 etc. are comprised.
  • a positional relationship among the transmitter 312, the golf club 2, and the golf ball B, which is a premise will be described.
  • the transmitter 312 is installed at a predetermined position. Specifically, the transmitter 312 is fixedly arranged behind the person who performs golf swing.
  • a ball placement position P0 for placing the golf ball B is determined in advance, and this ball placement position P0 is displayed by a mark or the like provided on the floor G. .
  • a tee is provided at the ball placement position P0, and the golf ball B is placed on the tee.
  • a target C as a target for launching the golf ball B is provided in front of the ball placement position P0.
  • the golfer swings the golf club 2 to hit the golf ball B placed at the ball placement position P0 by the face surface 402 of the golf club head 4 toward the target C.
  • a straight line connecting the center point P1 (FIG. 16) of the golf ball B placed at the ball placement position P0 and the target C is the target line L.
  • a sufficient interval is secured between the transmitter 312 and the ball placement position P ⁇ b> 0 so that the transmitter 312 does not interfere with the golfer or the golf club 2.
  • the first calibration unit 5450 has the first detection signal S1 and the second detection signal S2 based on the first detection signal S2 in a state where the golf club 2 is held by the holding unit 320.
  • the three-dimensional position data of the center point 410 of the face surface 402 is data obtained using the first measurement point 1402 as the origin of the three-dimensional coordinates
  • the orientation data of the face surface 402 is the first measurement direction 1404. Is obtained as a coordinate axis (Y-axis) of three-dimensional coordinates. That is, based on the first detection signal S 1 and the second detection signal S 2, the three-dimensional position data of the second measurement point 1602 with respect to the first measurement point 1402 and the first measurement direction 1404 with respect to the first measurement direction 1404. Data of two measurement directions 1604 are obtained.
  • the three-dimensional position of the center point 410 of the face surface 402 and the orientation of the face surface 402 are obtained from the orientation of the second measurement point 1602 and the second measurement direction 1604. Therefore, based on the first detection signal S1 and the second detection signal S2, the three-dimensional position data of the center point 410 of the face surface 402 with respect to the first measurement point 1402 and the direction of the first measurement direction 1404
  • the orientation data of the face surface 402 can be obtained as the first calibration data Dc1. That is, the first calibration data Dc1 is used to correct the position of the center point 410 of the face surface 402 with respect to the first measurement point 1402 and to correct the orientation (direction) of the face surface 402 with respect to the orientation of the first measurement direction 1404. It is data for performing.
  • the second calibration unit 5452 matches the center point P1 of the golf ball B at which the second measurement point 1602 is located at the ball placement position P0 in a plan view.
  • the holding unit 320 is positioned on the floor so that the direction of the second measurement direction 1604 matches the direction of the target line L, and the reference position 1202 is determined based on the second detection signal S2.
  • the three-dimensional position data of the second measurement point 1602 and the orientation data indicating the orientation of the second measurement direction 1604 with respect to the reference direction 1204 are obtained as the second calibration data Dc2.
  • the three-dimensional position data of the second measurement point 1602 is data obtained with the reference position 1202 as the origin of the three-dimensional coordinates
  • the orientation data of the second measurement direction 1604 is the reference direction 1204 with the three-dimensional coordinates. Is obtained as the coordinate axis (Y-axis). That is, the second calibration data Dc2 is data for correcting the installation position of the golf ball B with respect to the reference position 1202 and correcting the direction of the target line L with respect to the reference direction 1204.
  • the first time-series data generation unit 5453 includes the three-dimensional position data and the reference of the first measurement point 1402 with respect to the reference position 1202 generated based on the first detection signal S1 in the process of swinging the golf club 2 by the golfer.
  • the first time-series data D1 is generated by correcting the actual measurement data including the orientation data indicating the orientation of the first measurement direction 1404 with respect to the direction 1204 using the first calibration data Dc1.
  • the second time-series data generating unit 5454 generates the second time-series data D2 by correcting the first time-series data D1 using the second calibration data Dc2.
  • the storage unit 5456 stores a three-dimensional shape model M that reproduces two golf club heads in a three-dimensional coordinate system.
  • the storage unit 5456 stores the three-dimensional shape model M in association with the three-dimensional position of the center point 410 of the face surface 402 and the orientation of the face surface 402.
  • the loft angle of the golf club head 4 and the diameter of the golf ball B are registered in the storage unit 5456 in advance.
  • the storage unit 5456 is configured by the hard disk device 36 or the RAM 34 as a calculation means.
  • the behavior data generation unit 5458 generates head behavior data D3 indicating the behavior of the golf club head 4 based on the second time series data D2 and the three-dimensional shape model M of the golf club 2 head.
  • the behavior data generation unit 5458 includes a calculation unit 5458A that calculates time series data of the position and orientation of the three-dimensional shape model M, and an analysis unit 5458B that obtains head behavior data D3 from the time series data. It consists of
  • the head behavior data D3 will be further described.
  • the head behavior data D3 includes the following data.
  • Movement locus data as time series data indicating the movement locus of the golf club head 4:
  • the movement trajectory data is indicated by the movement trajectory of the center point 410 of the face surface 402 (FIGS. 21 and 22), or by animation data (FIG. 23) indicating the outer shape of the golf club head 4. .
  • the vertical approach angle ⁇ UD is a movement on the vertical plane when the movement locus T of the center point 410 of the face surface 402 and the target line L are projected onto a vertical plane parallel to the target line L. An angle formed by the trajectory T and the target line L.
  • the orientation data Df includes a hitting face angle ⁇ , a hitting loft angle ⁇ , and a hitting lie angle ⁇ .
  • the face angle ⁇ at the time of hitting is such that the normal H passing through the center point 410 of the face surface 402 and the target line L immediately before the face surface 402 hits the golf ball B are in a horizontal plane. Is projected by the angle formed by the normal H and the target line L on the horizontal plane.
  • the hitting loft angle ⁇ intersects the normal H passing through the center point 410 of the face surface 402 immediately before the face surface 402 hits the golf ball B and the normal H as shown in FIG. This is indicated by an angle formed between a horizontal plane (floor surface G) and a parallel plane.
  • the hitting loft angle ⁇ is generated by the behavior data generating unit 5458 based on the second time series data D2 and the loft angle of the golf club head 4 registered in the storage unit 5456 in advance.
  • the lie angle ⁇ at the time of hitting is an extension line of the shaft shaft 602 immediately before the face surface 402 hits the golf ball B and a horizontal plane where the extension line intersects (in this example, It is indicated by the angle formed by the floor surface G).
  • the ball behavior data calculation unit 452 includes a storage unit 5230, a signal intensity distribution data generation unit 5232, a speed calculation unit 5234, a movement direction calculation unit 5235, a movement speed calculation unit 5236, a spin An amount calculation unit 5238 and a rotation axis calculation unit 5240 are included.
  • the accumulating unit 5230 accumulates the first to fourth Doppler signals SdA to SdD and the trigger signal trg in order according to the elapse of time at a predetermined sampling period.
  • the CPU 430 samples the Doppler signal Sd and the trigger signal trg at the sampling period and stores them in the RAM 434 as sampling data for the Doppler signal Sd and sampling data for the trigger signal trg.
  • the storage unit 5330 starts the sampling operation at the same time as the power of the ball measurement unit 20 is turned on.
  • FIG. 24 is a diagram showing an example of the Doppler signal Sd when the golf ball B is hit by the golf club head 4.
  • the horizontal axis represents time t (sec) and the vertical axis represents amplitude (arbitrary unit). .
  • the waveform portion exhibiting the first large amplitude indicates the portion of the Doppler signal generated by the golf club head 4, and the subsequent waveform portion indicates the portion of the Doppler signal generated by the hit golf ball B.
  • the signal intensity distribution data generation unit 5232 performs frequency analysis (continuous FFT analysis or wavelet analysis) on the sampling data of the first to fourth Doppler signals SdA to SdD accumulated in the accumulation unit 5230 to thereby obtain signal intensity distribution data. Each P is generated.
  • the signal intensity distribution data generation unit 5232 generates signal intensity distribution data P indicating the distribution of signal intensity for each frequency by performing frequency analysis on the Doppler signal Sd obtained from the Doppler sensor 14.
  • signal intensity distribution data generation unit 5232 uses sampling signal of Doppler signals SdA to SdD, which are time-series data stored in storage unit 5230, based on trigger signal trg stored in storage unit 5230.
  • the signal intensity distribution data P is generated by specifying a predetermined section.
  • the section of the sampling data of the Doppler signal Sd is specified synchronously based on a single trigger signal trg.
  • the signal intensity distribution data generation unit 5232 identifies the sampling data in the section after the golf ball B is hit among the sampling data of the Doppler signals SdA to SdD accumulated by the dripping method, and the signal intensity distribution Data P is generated.
  • the following method is exemplified as a method of specifying sampling data in a predetermined section. That is, the signal intensity distribution data generation unit 5232 uses the detection time of the trigger signal trg as the reference time, excludes the a-th sampling data counted from the reference time, and a + 1-th to b-th (a ⁇ b) The sampling data up to is specified and the signal intensity distribution data P is generated.
  • the numerical values a and b are set so that sampling data from the (a + 1) th to bth (a ⁇ b) does not include data affected by the golf club head 4.
  • the numerical values a and b may be set in consideration of variations in the speed of the golf club head 4 when the golf club 2 is actually swung.
  • the sampling data may be specified as a predetermined interval so that the data affected by the golf club head based on the elapsed time is not included with the detection time of the trigger signal trg as the reference time.
  • the numerical values a and b are set so that sampling data before and after the golf ball B moves about 1 m with respect to the reference position O can be obtained. This is because the change in the moving speed when the golf ball B hit by the golf club head 4 moves around 1 m can be almost ignored.
  • the signal intensity distribution data generation unit 5232 performs the process of taking a moving average on the signal intensity Ps constituting the signal intensity distribution data P, thereby reducing the signal intensity distribution data P that suppresses the influence of noise. Like to get.
  • the speed calculator 5234 detects Doppler frequency components corresponding to the moving speed of the golf ball B based on the first to fourth signal intensity distribution data PA to PD, and based on the detected Doppler frequency components. First to fourth calculation speeds VA to VD are calculated.
  • a method of detecting the Doppler frequency component from each signal intensity distribution data P the following procedure is exemplified. (1) The signal intensity distribution data P in which the influence of noise is suppressed is obtained by taking a moving average of the signal intensity data constituting the signal intensity distribution data P. (2) In the signal intensity distribution data P obtained by taking the moving average, a frequency corresponding to the peak value of the signal intensity or the median value of the peak of the signal intensity is detected as a Doppler frequency component (Doppler frequency).
  • Doppler frequency component detection method is only required to suppress the influence of noise included in each signal intensity distribution data P and detect the Doppler frequency component accurately and stably, and is not limited to the above procedure. Absent.
  • the Doppler frequency Fd is expressed by Expression (1).
  • V speed of golf ball B
  • c speed of light (3 ⁇ 10 8 m / s) Therefore, when equation (1) is solved for V, equation (2) is obtained.
  • V c ⁇ Fd / (2 ⁇ F1) (2) That is, the velocity V of the golf ball B2 is proportional to the Doppler frequency Fd. Therefore, the frequency component of the Doppler frequency Fd is detected from the Doppler signal Sd, and the velocity V of the golf ball B can be obtained from the detected Doppler frequency component based on the equation (2).
  • the moving speed of the golf ball B obtained by Expression (2) is a speed component in a direction that coincides with the virtual axis indicating the directivity of the antenna. Therefore, the error of the moving speed of the golf ball B obtained by the equation (2) tends to increase as the moving locus of the golf ball B deviates from the virtual axis indicating the antenna directivity. Therefore, in the present invention, there is a correlation between the first to fourth velocities VA to VD obtained using the first to fourth antennas 12A to 12D and the measured movement direction of the golf ball B. Further, attention was paid to the fact that there is a correlation between the first to fourth velocities VA to VD and the actually measured moving speed of the golf ball B. That is, if the two correlations described above are acquired in advance, it is possible to determine the moving direction and moving speed of the golf ball B from the first to fourth speeds VA to VD based on the two correlations. Become.
  • the moving direction calculator 5235 calculates the first to fourth velocities VA to VD. From this, the moving direction is calculated.
  • the moving direction of the golf ball B is defined as follows. As shown in FIGS. 25 and 26, a reference vertical plane Pv including a virtual line CL passing through the reference position O and a reference horizontal plane Ph passing through the reference position O and orthogonal to the reference vertical plane Pv are set. In other words, the plane extending in the vertical direction including the virtual line CL extending in the horizontal direction through the predetermined reference position O is defined as the reference vertical plane Pv.
  • a plane passing through the reference position O and orthogonal to the reference vertical plane Pv is defined as a reference horizontal plane Ph.
  • the angle formed by the movement locus projected when the movement locus of the golf ball B is projected on the reference vertical plane Pv and the reference horizontal plane Ph (virtual line CL) is defined as the vertical angle ⁇ y.
  • the left-right angle ⁇ x is an angle formed by the projected movement locus and the reference vertical plane Pv when the movement locus of the golf ball B is projected onto the reference horizontal plane Ph.
  • the moving direction of the golf ball B is defined by a vertical angle ⁇ y and a horizontal angle ⁇ x.
  • the first divided value D1 (( ⁇ VAB + ⁇ VCD) / 2) / ⁇ Vave is calculated. Also, the vertical angle ⁇ y is calculated from the first value D1 based on the correlation between the first value D1 obtained by actual measurement in advance and the vertical angle ⁇ y of the golf ball B obtained by actual measurement. Thus, by calculating the vertical angle ⁇ y from the average value of the differences between the two speeds obtained using the two sets of antennas, it is advantageous in obtaining the value of the vertical angle ⁇ y more accurately and stably.
  • the moving speed calculation unit 5236 calculates the first to fourth calculations based on the correlation between the previously obtained first to fourth calculation speeds VA to VD and the actually measured movement speed V ⁇ of the golf ball B.
  • the moving speed V ⁇ is calculated from the use speeds VA to VD.
  • the moving speed calculation unit 5236 calculates the moving speed V ⁇ from the average value Vave based on the correlation between the average value Vave of the first to fourth calculation speeds VA to VD and the actually measured moving speed V ⁇ of the golf ball B. calculate.
  • the spin amount calculation unit 5238 includes first to fourth signal intensity distribution data PA to PD obtained in advance, in other words, the width of the mountain of the first to fourth signal intensity distribution data P, and the actually measured golf ball.
  • the first to fourth spin amounts SPA to SPD are calculated from the width of the peaks of the first to fourth signal intensity distribution data P based on the correlation with the B spin amount SP.
  • the rotation axis calculation unit 5240 calculates the head behavior of the golf club head 4 based on the correlation between the head behavior data D3 of the golf club head 4 obtained in advance and the measured rotation axis direction of the golf ball B.
  • the rotation axis direction RD of the golf ball B is calculated from the data D3.
  • the rotation axis direction RD of the golf ball B is calculated as the ratio of the back spin component and the side spin component of the spin amount SP.
  • the rotation axis calculation unit 5240 calculates the rotation axis direction RD using the movement trajectory of the golf club head 4 and the hitting face angle ⁇ in the head behavior data D3.
  • FIG. 27 is an explanatory diagram illustrating calculation of the rotation axis direction RD by the rotation axis calculation unit 5240.
  • FIG. 27 schematically shows the positional relationship of each part when the golf ball B is hit with the golf club head 4.
  • the rotation axis calculation unit 5240 calculates the rotation axis direction RD using the three parameters of the movement locus of the golf club head 4, the hitting face angle ⁇ , and the spin amount SP calculated by the spin amount calculation unit 5238.
  • a method for calculating the rotation axis direction for example, a method for calculating the rotation axis direction from the angle difference ⁇ between the movement direction of the golf ball B and the movement locus of the golf club head 4 and the spin amount SP, or the above-mentioned angle
  • a method for calculating the direction of the rotational axis from the difference ⁇ a method for calculating the direction of the rotational axis from the face angle ⁇ upon impact, and the like are known.
  • the rotational axis direction RD is calculated with higher accuracy than in the prior art by using the three parameters of the movement trajectory of the golf club head 4, the hitting face angle ⁇ and the spin amount SP as in the rotational axis computing unit 5240. be able to.
  • the golf ball B positioned at the reference position O is launched at various speeds and directions by a dedicated golf ball launching device (swing robot).
  • the strike is performed with different left-right angle ⁇ x, vertical angle ⁇ y, and moving speed V ⁇ .
  • the left and right angle ⁇ x, the up and down angle ⁇ y, and the moving speed V ⁇ of the golf ball B are measured by a reference measuring instrument capable of measuring the moving direction and moving speed of the moving body with high accuracy, and the left and right angle ⁇ x, up and down angle ⁇ y, and moving speed are measured. Obtain actual measurement data of V ⁇ .
  • the spin amount SP of the golf ball B is measured by a reference measuring instrument capable of measuring the spin amount of the moving body with high accuracy, and actual measurement data of the spin amount SP is acquired.
  • a reference measuring instrument capable of measuring the rotational axis direction of the moving body with high accuracy uses the rotational axis direction RD of the golf ball B (that is, the ratio of the back spin component to the side spin component of the spin amount SP, hereinafter referred to as “the ratio of the spin amount component”). ”) And the measurement data of the rotation axis direction RD (ratio of spin amount components) is acquired.
  • the speed calculation unit 5234 calculates the first to fourth calculation speeds VA to VD. That is, first to fourth calculation speeds VA to VD corresponding to measured data of the left and right angle ⁇ x, the vertical angle ⁇ y, and the moving speed V ⁇ are acquired.
  • the signal intensity distribution data generation unit 5232 calculates the first to fourth signal intensity distributions PA to PD by using the ball measurement unit 20 of the present embodiment. That is, the peak width of the first to fourth signal intensity distribution data P corresponding to the actually measured data of the spin amount SP is acquired.
  • the behavior data generation unit 5458 calculates the head behavior data D3 of the golf club head 4 by using the golf club measurement unit 30 of the present embodiment.
  • the correlation between the first to fourth speeds VA to VD obtained by actual measurement and the moving direction of the golf ball B obtained by actual measurement is obtained as follows. Then, based on the correlation between the measured data of the vertical angle ⁇ y and the first value D1 calculated from the first to fourth speeds VA, VB, VC, VD, a correlation formula (regression for calculating the vertical angle ⁇ y) Equation) is obtained.
  • regression equation is obtained.
  • data obtained by discretely measuring the relationship between the left-right angle ⁇ x and the second value D2 is acquired.
  • the obtained data is subjected to regression analysis using a conventionally known least square method or the like to obtain a correlation expression in which the left-right angle ⁇ x is expressed by a function (polynomial) of the second value D2. That is, a characteristic line indicating the relationship between the left-right angle ⁇ x and the second value D2 can be obtained by the correlation equation thus obtained. Therefore, by using these two correlation equations, the left-right angle ⁇ x and the vertical angle ⁇ y can be obtained from the first to fourth speeds VA, VB, VC, VD.
  • the moving direction calculation unit 5235 uses the correlation equation for calculating the vertical angle ⁇ y and the correlation equation for calculating the left and right angle ⁇ x to determine the left and right angles from the first to fourth speeds VA, VB, VC, and VD.
  • ⁇ x and the vertical angle ⁇ y are calculated as the moving direction of the golf ball B. Therefore, in the present embodiment, the calculation of the movement direction by the movement direction calculation unit 5235 is performed by the first to fourth speeds VA to VD that are obtained in advance and the movement of the golf ball B that is obtained in advance. This is done based on a correlation formula for calculating the moving direction indicating the correlation with the direction.
  • the characteristic line data indicated by the correlation equation is stored as a map for calculating the left-right angle ⁇ x or as a map for calculating the vertical angle ⁇ y,
  • the angle ⁇ x and the vertical angle ⁇ y may be calculated.
  • these maps are arbitrary, for example, provided in the ROM.
  • the correlation between the first to fourth calculation speeds VA to VD obtained by actual measurement and the moving speed V ⁇ of the golf ball B obtained by actual measurement is obtained as follows.
  • a correlation equation (regression equation) for calculating the movement speed is obtained based on the correlation between the actual measurement data of the movement speed V ⁇ measured by the reference measuring instrument and the average value Vave of the first to fourth calculation speeds VA to VD. .
  • data obtained by discretely measuring the relationship between the moving speed V ⁇ and the average value Vave is acquired. Then, the acquired data is subjected to regression analysis using a conventionally known least square method or the like, thereby obtaining a correlation equation representing the moving speed V ⁇ by a function (polynomial) of the average value Vave.
  • the moving speed calculation unit 5236 calculates the moving speed V ⁇ of the golf ball B from the average value Vave by using the above correlation equation. Therefore, in the present embodiment, the calculation of the moving speed by the moving speed calculating unit 5236 shows the correlation between the average value Vave obtained in advance and the movement speed of the golf ball B obtained in advance. This is based on a correlation equation for calculating the moving speed.
  • the characteristic line data indicated by the correlation formula is stored as a map for calculating the moving speed V ⁇ in place of the correlation formula as described above, and the moving speed V ⁇ is calculated using the map. It may be calculated, and these maps are arbitrarily provided in the ROM.
  • the correlation between the first to fourth signal intensity distributions PA to PD obtained by actual measurement and the first to fourth spin amounts SP of the golf ball B obtained by actual measurement is obtained as follows. .
  • a correlation equation (regression equation) for calculating the spin amount is obtained based on the relationship. In other words, data obtained by discretely measuring the relationship between the spin amount SP and the average value Pave of the peak width of the signal intensity distribution data P is acquired.
  • the obtained data is subjected to regression analysis using a conventionally known least square method or the like to obtain a correlation expression representing the spin amount SP by a function (polynomial) of the average value Pave of the peak width of the signal intensity distribution data P. . That is, a characteristic line indicating the relationship between the spin amount SP and the average value Pave of the peak width of the signal intensity distribution data P can be obtained by the correlation equation thus obtained. Therefore, by using the correlation equation thus obtained, the spin amount SP can be obtained from the average value Pave of the peak widths of the signal intensity distribution data P.
  • the spin amount calculation unit 5238 calculates the spin amount SP of the golf ball B from the average value Pave of the peak widths of the signal intensity distribution data P by using the above correlation equation. Therefore, in the present embodiment, the calculation of the spin amount SP by the spin amount calculation unit 5238 is performed in advance with the average value Pave of the peak width of the signal intensity distribution data P that has been measured in advance. This is done on the basis of a correlation formula for calculating the spin amount indicating the correlation with the spin amount SP of the ball B. As with the movement speed calculation unit 5236, instead of the correlation equation as described above, the characteristic line data indicated by the correlation equation is stored as a spin amount calculation map, and the spin amount SP is stored using the map. May be calculated.
  • a correlation between the head behavior data D3 of the golf club head 4 obtained by actual measurement and the rotation axis direction RD (ratio of spin amount component) of the golf ball B obtained by measurement is obtained as follows.
  • a correlation equation (regression equation) for calculating the rotation axis direction (ratio of spin amount component) is calculated based on the correlation between the measured data of the rotation axis direction RD of the golf ball B measured with the reference measuring instrument and the head behavior data D3.
  • This correlation equation uses the movement trajectory of the golf club head 4 and the hitting face angle ⁇ in the head behavior data D3 as parameters. In other words, data obtained by discretely measuring the relationship between the rotation axis direction RD and the head behavior data D3 is acquired.
  • the obtained data is subjected to regression analysis using a conventionally known least square method or the like, so that the rotational axis direction RD is converted into the head behavior data D3 (more specifically, the movement trajectory of the golf club head 4 and the face angle ⁇ at the time of hitting).
  • a correlation expression expressed by a function (polynomial) is obtained. That is, a characteristic line indicating the relationship between the rotation axis direction RD and the head behavior data D3 can be obtained by the correlation equation thus obtained. Therefore, the rotational axis direction RD can be obtained from the head behavior data D3 by using the correlation equation thus obtained.
  • the rotation axis calculation unit 5240 calculates the rotation axis direction RD of the golf ball B from the head behavior data D3 by using the above correlation equation. Therefore, in the present embodiment, the calculation of the rotation axis direction RD by the rotation axis calculation unit 5240 is based on the head behavior data D3 obtained in advance and the rotation axis direction RD of the golf ball B obtained in advance. Based on the correlation equation for calculating the rotation axis direction. Similar to the movement speed calculation unit 5236, instead of the correlation formula as described above, the characteristic line data indicated by the correlation formula is stored as a map for calculating the rotation axis direction, and the rotation axis is calculated using the map. The direction RD may be calculated.
  • FIG. 28 is a flowchart showing the setting operation of the golf club measurement unit 30.
  • the transmitter 312 Prior to the processing of FIG. 28, the transmitter 312 is fixedly installed at a predetermined position in advance.
  • the golf club 2 to be measured is held by the holding means 320 so that the set lie angle and loft angle are met (step S 10: hold). Step).
  • step S12 first calibration step. That is, the first calibration unit 5450 generates the three-dimensional position data of the center point 410 of the face surface 402 with respect to the first measurement point 1402 based on the first detection signal S1 and the second detection signal S2. Orientation data indicating the orientation of the face surface 402 of the golf club head 4 with respect to one measurement direction 1404 is obtained as first calibration data Dc1.
  • Step S14 holding means positioning step). That is, as shown in FIGS. 10 and 11, the second measurement point 1602 of the holding means side three-dimensional magnetic sensor 316 in the plan view is the center point P1 of the golf ball B located at the ball placement position P0.
  • the holding means 320 is positioned so that the second measurement direction 1604 matches the target line L.
  • step S ⁇ b> 14 the holding means 320 that has been positioned in the vicinity of the transmitter 312 in step S ⁇ b> 10 is moved to the ball mounting position P ⁇ b> 0 that is separated from the transmitter 312.
  • the second calibration unit 5452 determines the three-dimensional position data of the second measurement point 1602 with respect to the reference position 1202 and the direction of the second measurement direction 1604 with respect to the reference direction 1204. Is obtained as second calibration data Dc2 (step S16: second calibration step). That is, the second calibration data Dc2 is obtained when the holding unit 320 is moved to the ball placement position P0 (the second measurement point 1602 matches the ball placement position P0 and the second measurement direction 1604 is The three-dimensional position and direction of the holding means side three-dimensional magnetic sensor 316 with respect to the transmitter 312 (in a state where the target line L is matched) are shown.
  • step S16 When step S16 is completed, the holding means 320 is moved from the ball placement position P0 to a position that does not interfere with the swing of the golf club 2. Thus, the setting operation of the golf club measurement unit 30 is completed. Note that the processing of FIG. 28 can be omitted after the first and second calibrations are performed once for the golf club 2 to be used. In addition, when the ball placement position P0 or the target line L is changed, the processes of steps S10 and S12 are omitted, and only S14 and subsequent steps are performed.
  • the golf ball B is hit using a dedicated golf ball launching device (swing robot) while moving the moving direction and the moving speed V ⁇ differently, and the left-right angle ⁇ x, the vertical angle ⁇ y, the moving speed V ⁇ , the spin amount SP, and The rotational axis direction RD is actually measured (step S50).
  • the ball measurement unit 20 is used to measure the first to fourth calculation speeds VA to VD and the width of the first to fourth signal intensity distribution data P (step S52), and the golf club measurement unit 30 is used to measure the head behavior data D3 of the golf club head 4 (step S53).
  • the first value D1 and the upper and lower A correlation equation indicating the correlation with the angle ⁇ y and a correlation equation indicating the correlation between the second value D2 and the left-right angle ⁇ x are calculated (step S54).
  • the movement speed calculation unit 5236 of the calculation unit 40 calculates a correlation equation indicating the correlation between the average value Vave of the first to fourth calculation speeds VA to VD and the movement speed V ⁇ (step S55). Further, the spin amount calculation unit 5238 of the calculation unit 40 calculates a correlation equation indicating the correlation between the average value Pave of the peak widths of the first to fourth signal intensity distribution data P and the spin amount SP (step S56). ). Further, the rotation axis direction calculation unit 5240 of the calculation unit 40 calculates a correlation equation indicating the correlation between the head behavior data D3 and the rotation axis direction RD (step S57). Then, the four correlation equations obtained in steps S54, S55, S56, and S57 are set in each part (step S58). Thus, the setting operation of the ball measurement unit 20 is completed.
  • the user installs the ball measurement unit 20 at a location about 1.5 m to 2 m behind the golf ball B in the launch direction of the golf ball B, for example.
  • the case 26 is installed so that the first to fourth antennas 12A to 12D face the golf ball B.
  • the transmission wave W1 transmitted from the first to fourth antennas 12A to 12D hits the golf ball B, and the reflected wave W2 can be received by the first to fourth antennas 12A to 12D.
  • the ball measurement system 10 is set to a measurement mode for measuring various parameters (step S70).
  • the ball measurement unit 20 starts sampling the first to fourth Doppler signals SdA to SdD and the trigger signal trg into the storage unit 5230 (step S72).
  • the trigger signal generator 18 receives the Doppler signal Sd and the sound signal of the hitting sound exceeds a predetermined threshold value, the trigger signal generator 18 generates a trigger signal trg and supplies it to the arithmetic unit 40. As a result, the trigger signal trg is supplied to the storage unit 5230.
  • the signal intensity distribution data generation unit 5232 determines whether or not the trigger signal trg sampled in the storage unit 5230 has been detected (step S74). If the trigger signal trg is not detected, step S74 is repeated. When the trigger signal trg is detected (step S74: Yes), that is, when the user swings the golf club 2, the golf club measuring unit 30 performs the first time-series data generation unit 5453 in the swing process. Generates the first time series data D1 by correcting the actual measurement data generated based on the first detection signal S1 by using the first calibration data Dc1 (step S76: first time series) Data generation step).
  • the first time series data D1 is generated. However, since the first time series data D1 is not corrected for the ball placement position P0 and the target line L, the first time series data D1 is not yet accurate.
  • the second time-series data generation unit 5454 generates the second time-series data D2 by correcting the first time-series data D1 using the second calibration data Dc2 (step S78: Second time series data generation step). That is, by correcting the first time series data D1 using the second calibration data Dc2, accurate second time series data D2 corrected for the ball placement position P0 and the target line L is obtained. can get.
  • the behavior data generation unit 5458 generates head behavior data D3 indicating the behavior of the golf club head 4 based on the second time-series data D2 and the three-dimensional shape model M of the golf club head read from the storage unit 5456.
  • the signal intensity distribution data generation unit 5232 has first to fourth Doppler signals over a predetermined interval from the time when the trigger signal trg is detected.
  • the sampling data of SdA to SdD is specified (step S82).
  • the signal intensity distribution data generation unit 5232 generates first to fourth signal intensity distribution data P (step S84).
  • the speed calculator 5234 calculates first to fourth calculation speeds VA to VD from the first to fourth signal intensity distribution data P (step S86).
  • the moving direction calculation unit 5235 calculates the moving speed direction (left-right angle ⁇ x and vertical angle ⁇ y) based on the first to fourth calculation speeds VA to VD from a preset correlation equation (step S88). ).
  • the moving speed calculation unit 5236 calculates the moving speed V ⁇ based on the average value Vave of the first to fourth calculation speeds VA to VD from a preset correlation equation (step S90).
  • the spin amount calculation unit 5238 calculates the spin amount SP based on the average value Pave of the peak widths of the first to fourth signal intensity distribution data P from a preset correlation equation (step S92).
  • the rotation axis calculation unit 5240 uses the head behavior data D3 (hitting face angle ⁇ and movement trajectory) measured by the golf club measurement unit 30 and the spin amount SP calculated in step S92 to use the golf ball B Is calculated (step S94).
  • Various parameters (measurement results) thus obtained are supplied to the output unit 460 of the arithmetic unit 40 and output (step S96).
  • FIG. 32 is an explanatory diagram illustrating a display output example of measurement results in the output unit 460.
  • a golf ball B movement trajectory FR from the ball installation position P0 (more specifically, at a predetermined time of the position of the golf ball B, together with a peripheral image that images a golf course). Plot) is displayed.
  • various parameters PR measured by the ball measuring unit 20 and the golf club measuring unit 30 are displayed.
  • the parameter PR includes the head speed of the golf club head 4, the ball speed of the golf ball B, and the like.
  • the rotation axis direction RD is displayed as the amount of back spin and side spin.
  • the unit of the spin amount SP is (rpm).
  • the expression of the spin amount SP in the case of backspin can be represented by, for example, a positive value for the spin amount in the reverse rotation direction and a negative value for the spin amount in the forward rotation direction.
  • the expression of the spin amount SP in the case of side spin can be expressed, for example, by a positive value for the spin amount in the clockwise direction in plan view and a negative value for the spin amount in the counterclockwise direction.
  • the unit of the rotation axis direction RD may be displayed as (degrees).
  • the expression of the rotation axis direction RD can be expressed by a positive value if the rotation axis is raised to the right with respect to the horizontal plane, and a negative value if the rotation axis is raised to the left.
  • the direction of the rotation axis of the golf ball B is calculated based on the movement trajectory of the golf club head 4 at the time of hitting the golf ball B and the face angle ⁇ at the time of hitting. . Therefore, as in the prior art, a method of calculating the rotation axis direction from the angle difference ⁇ between the movement direction of the golf ball B and the movement locus of the golf club head 4 and the spin amount SP, or the rotation axis direction is calculated from the angle difference ⁇ .
  • the rotation axis can be calculated using a parameter having a high correlation with the rotation axis direction, and the golf ball can be accurately obtained.
  • the rotation axis direction of B can be calculated.
  • the rotational axis direction RD is calculated by decomposing the spin amount SP into a back spin component and a side spin component. Therefore, the rotation axis direction RD can be calculated by combining the measurement data of the two measurement units (the ball measurement unit 20 and the golf club measurement unit 30), and the rotation axis direction of the golf ball B can be calculated with higher accuracy. it can.
  • the second time-series data D2 including the three-dimensional position data and the orientation data of the golf club head 4 is obtained using the transmitter 312 and the golf club side three-dimensional magnetic sensor 314.
  • the head behavior data D3 indicating the behavior of the golf club head 4 during the swing is obtained based on the second time series data D2 and the three-dimensional shape model M of the golf club head 4. Therefore, an imaging device such as a camera is not required as compared with the conventional technology using image data, and it is not necessary to secure an imaging space. Therefore, the golf club can be simplified while simplifying the configuration, saving space, and reducing costs. This is advantageous in accurately measuring the behavior of the head 4. Further, it is possible to secure a wider measurement range of the golf club head 4 than the conventional technique using image data, and to perform measurement over the entire swing.
  • the actual measurement data generated based on the first detection signal S1 detected by the golf club side three-dimensional magnetic sensor 314 is corrected by using the first calibration data Dc1.
  • the first time series data D1 is generated, and the first time series data D1 is corrected by using the second calibration data Dc2, thereby generating the second time series data D2. That is, by correcting the first time series data D1 using the second calibration data Dc2, the accurate second time series data D2 corrected for the ball placement position P0 and the target line L is obtained. I tried to get it. Therefore, when the ball placement position P0 or the target line L is changed, accurate second time-series data D2 can be obtained by acquiring the second calibration data Dc2.
  • the behavior of the golf club head 4 can be easily measured when moving the installation location. Can do. In addition, it can be easily installed even in places where layout restrictions are likely to occur, such as an actual golf driving range. Further, by positioning the golf club side three-dimensional magnetic sensor 314 and the holding means side three-dimensional magnetic sensor 316 at a location close to the transmitter 312, the first calibration data Dc1 can be obtained with high accuracy. This is advantageous in increasing the accuracy of the head behavior data D3.
  • the ball position measuring three-dimensional magnetic sensor may be provided separately from the holding means side three-dimensional magnetic sensor 316, and the second calibration data Dc2 may be obtained using the ball position measuring three-dimensional magnetic sensor. That is, the ball position measurement three-dimensional magnetic sensor has a third measurement point and a third measurement direction, and senses magnetism around the third measurement point in three axial directions orthogonal to each other, A third detection signal is output according to the three-dimensional position of the second measurement point with respect to the reference position and the direction of the third measurement direction with respect to the reference direction.
  • the third measurement point coincides with the predetermined ball installation position P0, and the direction of the third measurement direction is a target connecting the ball installation position P0 and the golf ball target point.
  • the ball position measuring three-dimensional magnetic sensor is positioned so as to match the direction of the line L.
  • the second calibration unit 5452 indicates the three-dimensional position data of the third measurement point with respect to the reference position 1202 and the direction of the third measurement direction with respect to the reference direction 1204 based on the third detection signal.
  • the orientation data is acquired as the second calibration data Dc2.
  • the three-dimensional magnetic sensor for measuring the ball position may be provided separately from the holding means side three-dimensional magnetic sensor 316. However, as in the present embodiment, the holding means side three-dimensional magnetic sensor 316 is used.
  • the configuration can be simplified and the cost can be reduced. It will be advantageous.
  • the golf club side three-dimensional magnetic sensor 314 is provided in the grip portion 3 of the golf club 2, but the golf club side three-dimensional magnetic sensor 314 may be provided in the golf club head 4.
  • the golf club side three-dimensional magnetic sensor 314 is not conspicuous, and it is difficult to interfere with the swinging. It becomes advantageous in raising.
  • the behavior data D3 can be obtained using the data D1. Therefore, if the above condition is satisfied, the behavior data D3 can be obtained without using the second calibration data Dc2, and the holding means side three-dimensional magnetic sensor 316 for obtaining the second calibration data Dc2 can be obtained. Can be omitted.
  • FIG. 33 is an explanatory diagram showing a configuration of a golf club measuring unit 30 'according to a modification.
  • the golf club measurement unit 30 ′ according to the modification includes a transmitter 312, a golf club side three-dimensional magnetic sensor 314, and a controller / data processing device 318.
  • the transmitter 312 is configured in the same manner as in the first embodiment.
  • the transmitter 312 is installed at a predetermined position. Specifically, the transmitter 312 is installed at a location near the ball mounting position P0. Similarly to the first embodiment, the transmitter 312 is installed such that the X axis and the Y axis extend on the horizontal plane and the Z axis faces the vertical direction, and the center position of the transmitter 312 is predetermined.
  • a reference position 1202 is set, and a Y-axis direction passing through the reference position 1202 is set as a predetermined reference direction 1204. In the modification shown in FIG. 33, the reference position 1202 with respect to the ball placement position P0 is fixed, and the reference direction 1204 with respect to the target line L is fixed.
  • the golf club side three-dimensional magnetic sensor 314 is configured in the same manner as in the first embodiment, and has a first measurement point 1402 and a first measurement direction 1404, and the first measurement point with respect to the reference position 1202.
  • the first detection signal S1 is output according to the three-dimensional position 1402 and the direction of the first measurement direction 1404 with respect to the reference direction 1204.
  • the first measurement point 1402 is the center position of the golf club side three-dimensional magnetic sensor 314, and the first measurement direction 1404 is the Y-axis direction passing through the first measurement point 1402.
  • the golf club side three-dimensional magnetic sensor 314 is fixed to the vicinity of the club head 4 on the shaft 6 of the golf club 2.
  • the golf club side three-dimensional magnetic sensor 314 has the Y axis (first measurement direction 1404) parallel to the striking direction of the golf club 2 and the Z axis parallel to the shaft axis. Yes.
  • the holding means side three-dimensional magnetic sensor 316 is not required as compared with the first embodiment, only the golf club side three-dimensional magnetic sensor 314 needs to be provided, which simplifies the configuration and reduces costs. It is advantageous in planning. 2) Since the holding means side three-dimensional magnetic sensor 316 is not required, an error component caused by an error in the mounting position of the holding means side three-dimensional magnetic sensor 316 can be removed, which is advantageous in improving measurement accuracy. .
  • the positional relationship and direction between the reference position 1202 and the reference direction 1204 of the transmitter 312, the golf ball installation position P0, and the target line L must be fixed. Therefore, when installing the unit, a plate with the transmitter 312 fixed thereto is prepared, and the golf ball installation position P0 and the target line L are displayed on the plate so as to be visible with marks or the like. Measurement may be performed.
  • FIG. 34 is an explanatory diagram of a schematic configuration of the ball measurement system 10 ′ according to the second embodiment.
  • the golf club measurement unit 30 is configured by a transmitter and a golf club side three-dimensional magnetic sensor.
  • the golf club measurement unit 30 is a small sensor unit having a wireless communication function, and this small sensor unit is attached to the shaft 6 of the golf club 2 to measure the behavior of the golf club 2.
  • the golf club measurement unit 30 includes an acceleration sensor that measures acceleration at a measurement point, a geomagnetic sensor that measures geomagnetism at the measurement point, and a gyro sensor that measures angular velocity at the measurement point. Measurement data of each sensor is transmitted to the arithmetic unit 40 by wireless communication. In the arithmetic unit 40, the moving distance from the reference point is obtained by integrating the measurement data of the acceleration sensor. Further, a trajectory in the moving direction from the reference point is obtained using measurement data of the gyro sensor. Further, by using the measurement data of the geomagnetic sensor, the relative direction with respect to the ground surface, that is, the absolute direction is obtained. In the present embodiment, a small information terminal such as a smart phone may be used as the arithmetic unit 40.
  • the golf club measuring unit 30 small sensor
  • the mounting position of the golf club measuring unit 30 is set so as not to obstruct the user such as the grip end or the middle of the shaft 6.
  • the golf club measurement unit 30 is calibrated. The calibration is performed, for example, by the user holding the golf club 2 at the reference position and pressing a calibration switch provided in the golf club measurement unit 30.
  • the reference position is such that the face angle at the time of hitting is perpendicular to the imaginary line CL (target direction) of the ball measuring unit 20, the lie angle is the position where the score line is horizontal, or the set lie angle of the golf club 2, and the front and rear of the shaft 6 Set the direction vertically.
  • the golf club measurement unit 30 acquires position information and posture information (only posture information for the acceleration sensor) when the calibration switch is pressed by each sensor and stores it as a calibration value.
  • the operation up to here is the setting operation of the golf club measurement unit 30.
  • the golf club 2 is swung and the main measurement is performed.
  • Measurement data of each sensor is transmitted to the arithmetic unit 40 by wireless communication.
  • the arithmetic unit 40 uses the measurement data of each sensor to calculate head behavior data including the hitting face angle ⁇ of the golf club head 4 and the movement locus.
  • various conventionally known methods can be employed as a method for calculating the head behavior data using the measurement data of each sensor.
  • the rotation axis direction of the golf ball B is calculated using the face angle ⁇ at the time of hitting the golf club head 4 and the movement locus, and the result is output.
  • the measurement by the golf club measurement unit 30 is automatically performed by detecting an impact at the time of hitting by the golf club measurement unit 30, for example. Further, the measurement may be terminated by the operation of the measurement switch by the user or the control by the arithmetic unit 40.
  • the sensor built in the golf club measurement unit 30 may be a combination of an acceleration sensor and a gyro sensor, or an acceleration sensor and a geomagnetic sensor.
  • the measurement data by the golf club measurement unit 30 can be transmitted to the arithmetic unit 40 using wireless communication. Therefore, the measurement data is transmitted by wired communication as in the first embodiment. In comparison, the degree of freedom of movement of the user before and after measurement can be increased. Further, since the golf club measuring unit 30 is only a small sensor unit, it can be easily transported outdoors and the convenience of the user can be improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Golf Clubs (AREA)

Abstract

 打撃後のゴルフボールの回転軸方向を簡易な構成で計測すること。 ボール計測システム10は、打撃後の前記ゴルフボールの挙動を計測するボール計測ユニット20と、ゴルフボールを打撃するゴルフクラブヘッドの打撃前後の挙動を計測するゴルフクラブ計測ユニット30と、ボール計測ユニット20およびゴルフクラブ計測ユニット30による計測データに基づいて、ゴルフボールBの回転軸方向RDを算出する演算ユニット40を備える。演算ユニット40では、予め実測され得られている打撃後のゴルフボールBの移動軌跡およびゴルフクラブヘッド4の打撃時フェース角φとゴルフボールBの回転軸方向RDとの相関関係に基づいて、計測された移動軌跡および打撃時フェース角φから回転軸方向RDを算出する。

Description

ボール計測システム
 本発明は、打撃後のゴルフボールの回転軸方向を計測するボール計測システムに関する。
 従来、打撃後のゴルフボールの挙動(弾道等)を計測するシステムは、主に、画像方式、光学方式、レーダ方式に分類される。たとえば下記特許文献1は、レーダ方式によるボール計測装置であり、アンテナおよびドップラーセンサを用いて計測したドップラー信号の信号強度分布データを得ると共に、予め実測され得られている演算用速度と移動速度との相関関係に基づいて、信号強度分布データから算出される演算用速度から移動速度を算出し、予め実測され得られている信号強度分布データとスピン量との相関関係に基づいて、信号強度分布データからスピン量を算出する。
特開2012-68163号公報
 ここで、打撃後のゴルフボールの挙動を示すパラメータには、移動速度や移動方向などの各種のパラメータがあるが、この1つとして、ゴルフボールの回転軸(スピン軸)の方向が挙げられる。ゴルフボールの回転軸方向は、たとえばゴルフボールのスピン量のバックスピン成分とサイドスピン成分の比率によって計測することができる。上述した特許文献1にかかるレーダ方式の計測装置は、比較的低コストでコンパクトなシステムを組めることに加え、ゴルフボールのスピン総量を計測することも可能であるが、回転軸方向の算出は困難である。レーダ方式の計測装置において、ゴルフクラブのスイング軌道やゴルフボールの打出し方向の情報を用いて回転軸方向を算出する方法なども試みられているが、十分な精度とは言えない。
 また、画像方式の計測システムでは、スピン量を含めた高精度の計測をおこなうことができる反面、システムが高額になってしまうデメリットがある。また、上述した光学方式の計測システムは、安価にシステムが組める反面、原理的にスピンを実測することができない。
 本発明は、上述した従来技術の問題点に鑑みてなされたものであり、打撃後のゴルフボールの回転軸方向を簡易な構成で計測することができるボール計測システムを提供することを目的とする。
 上述した問題を解決し、目的を達成するため、本発明は、打撃後のゴルフボールの回転軸方向を計測するボール計測システムであって、打撃後の前記ゴルフボールの挙動を計測するボール計測手段と、前記ゴルフボールを打撃するゴルフクラブヘッドの打撃前後の挙動を計測するゴルフクラブ計測手段と、前記ボール計測手段および前記ゴルフクラブ計測手段による計測データに基づいて、前記ゴルフボールの前記回転軸方向を算出する演算手段と、を備え、前記ボール計測手段は、指向性を有し、供給される送信信号に基づいて前記ゴルフボールに向けて送信波を送信すると共に、前記ゴルフボールで反射された反射波を受信して受信信号を生成する互いに離間して配置された第1乃至第n(nは2以上の整数)のアンテナと、前記第1乃至第nのアンテナのそれぞれに対応して設けられ、前記アンテナに前記送信信号を供給すると共に、前記アンテナから供給される前記受信信号に基づいてドップラー周波数を有するドップラー信号を生成する第1乃至第nのドップラーセンサと、からなり、前記ゴルフクラブ計測手段は、少なくとも一部が前記ゴルフボールを打撃するゴルフクラブに設けられ、前記ゴルフクラブの挙動を示す計測データを出力するゴルフクラブ側センサと、からなり、前記演算手段は、前記第1乃至第nのドップラーセンサのそれぞれから得られたドップラー信号を周波数解析することにより周波数ごとの信号強度の分布を示す第1乃至第nの信号強度分布データを生成する信号強度分布データ生成部と、前記第1乃至第nの信号強度分布データのそれぞれに基づいて、前記ゴルフボールの移動速度に対応するドップラー周波数成分を検出し、それら検出したドップラー周波数成分に基づいて第1乃至第nの演算用速度を算出する速度演算部と、予め実測され得られている前記第1乃至第nの信号強度分布データと前記ゴルフボールのスピン量との相関関係に基づいて、前記信号強度分布データ生成部で生成された前記第1乃至第nの信号強度分布データから前記スピン量を算出するスピン量演算部と、前記ゴルフクラブ側計測手段によって計測された前記計測データに基づいて、前記ゴルフクラブヘッドの移動軌跡および前記ゴルフボールの打撃時における前記ゴルフクラブの打撃時フェース角を算出する挙動データ演算手段と、予め実測され得られている前記移動軌跡および前記打撃時フェース角と前記ゴルフボールの回転軸方向との相関関係に基づいて、前記挙動データ演算手段で算出された前記移動軌跡および前記打撃時フェース角から前記回転軸方向を算出する回転軸演算手段と、からなる、ことを特徴とする。
 本発明によれば、ゴルフボールの打撃時におけるゴルフクラブヘッドの移動軌跡および打撃時フェース角に基づいて、ゴルフボールの回転軸方向を算出するようにした。したがって、回転軸方向との相関性が高いパラメータを用いて回転軸の算出をおこなうことができ、簡易な構成で精度高くゴルフボールの回転軸方向を算出することができる。
図1は、実施の形態1にかかるボール計測システム10の概略構成を示す説明図である。 ボール計測ユニット20の機能ブロック図である。 第1乃至第4のアンテナ12A~12Dの構成を示す正面図である。 図3のA矢視図である。 図3のB矢視図である。 第1~第4のアンテナ12A~14Dを側面視した説明図である。 第1~第4のアンテナ12A~14Dを平面視した説明図である。 ゴルフクラブ計測ユニット30の構成を示す説明図である。 ゴルフクラブ計測ユニット30の機能の概要を示す説明図である。 位置決め板2008にゴルフクラブヘッド4のフェース面402が当て付けられた状態を示す平面図である。 図10のA矢視図である。 図10のB矢視図である。 演算ユニット40の構成を示すブロック図である。 演算ユニット40の機能的構成を示す説明図である。 ゴルフクラブヘッドの挙動を計測する際の説明図である。 左右進入各θLRの説明図である。 上下進入各θUDの説明図である。 打撃時フェース角φの説明図である。 打撃時ロフト角αの説明図である。 打撃時ライ角βの説明図である。 挙動データD3の表示画面例を示す説明図である。 挙動データD3の表示画面例を示す説明図である。 挙動データD3の表示画面例を示す説明図である。 ゴルフクラブヘッド4によってゴルフボールBを打撃した際のドップラー信号Sdの一例を示す線図である。 ゴルフボールBと第1~第4アンテナ14A~14Dとを側面視した説明図である。 ゴルフボールBと第1~第4アンテナ14A~14Dとを平面視した説明図である。 回転軸演算部5240による回転軸方向RDの算出を説明する説明図である。 ゴルフクラブ計測ユニット30の設定動作を示すフローチャートである。 ボール計測ユニット20の設定動作を示すフローチャートである。 ボール計測システム10の本計測時の動作を示すフローチャートである。 第2キャリブレーションを説明する説明図である。 出力部460における計測結果の表示出力例を示す説明図である。 変形例にかかるゴルフクラブ計測ユニット30’の構成を示す説明図である。 実施の形態2にかかるボール計測システム10’の概略構成を示す説明図である。
 以下に添付図面を参照して、本発明にかかるボール計測システムの好適な実施の形態を詳細に説明する。
(実施の形態1)
 図1は、実施の形態1にかかるボール計測システム10の概略構成を示す説明図である。図1には、ゴルフクラブ2によってゴルフボールBを打撃しようとするプレイヤーPとともに、打撃後のゴルフボールBの挙動を計測するボール計測ユニット20と、ゴルフボールBを打撃するゴルフクラブヘッド4の打撃前後の挙動を計測するゴルフクラブ計測ユニット30と、ボール計測ユニット20およびゴルフクラブ計測ユニット30による計測データに基づいて、打撃後のゴルフボールBの回転軸方向を算出する演算ユニット40と、からなるボール計測システム10が示されている。
 実施の形態1においては、ゴルフクラブ計測ユニット30は、予め定められた位置に設置され、強さと方向に関する分布が既知である磁場を発生させるトランスミッタ312と、ゴルフクラブ2に固定され、計測点の周りの磁気を互いに直交する3軸方向で感知すると共に、予め定められた基準位置に対する計測点の3次元位置および予め定められた基準方向に対する計測方向の向きに応じて検出信号を出力するゴルフクラブ側3次元磁気センサ314である。
 以下、ボール計測ユニット20、ゴルフクラブ計測ユニット30、演算ユニット40の順に、各構成について説明する。
(ボール計測ユニット20の構成)
 図2は、ボール計測ユニット20の機能ブロック図である。図2に示すように、ボール計測ユニット20は、第1乃至第4のアンテナ12A、12B、12C、12Dと、第1乃至第4ドップラーセンサ14A、14B、14C、14Dと、マイク16と、トリガ信号発生部18と、などを含んで構成されている。
 本実施の形態では、第1乃至第4のアンテナ12A、12B、12C、12Dと第1乃至第4のドップラーセンサ14A、14B、14C、14Dとは不図示のケースに収容保持されている。
 また、トリガ信号発生部18は、不図示の筐体に組み込まれている。
 第1乃至第4のドップラーセンサ14A、14B、14C、14Dと演算ユニット40とは不図示の接続ケーブルを介して接続され、マイク16と演算ユニット40とは不図示の接続ケーブルを介して接続されている。
 第1乃至第4のアンテナ12A~12Dは、第1乃至第4のドップラーセンサ14A~14Dから供給される送信信号に基づいて送信波W1としてのマイクロ波を移動体に向けて送信すると共に、移動体で反射された反射波W2を受信して受信信号を第1乃至第4のドップラーセンサ14A~14Dに供給するものである。
 より詳細には、第1乃至第4のアンテナ12A~12Dは、指向性を有し、送信波W1を送信すると共に、ゴルフボールB反射された反射波W2を受信して受信信号を生成するものであり、互いに離間して配置されている。
 本実施の形態では、第1乃至第4のアンテナ12A~12Dは同形同大の指向性アンテナで構成され、このような指向性アンテナとしてホーンアンテナを使用している。
 指向性アンテナとしてホーンアンテナ以外のパラボラアンテナ、パッチアンテナなどの従来公知のさまざまな指向性アンテナを使用可能であるが、ホーンアンテナは構成が簡素であり比較的安価であることからコストを抑制する上で有利である。
 図3は第1乃至第4のアンテナ12A~12Dの構成を示す正面図、図4は図3のA矢視図、図5は図3のB矢視図である。
 図3~5に示すように、第1乃至第4のアンテナの12A~12Dは、ケース26に収容保持されている。
 ケース26は、後板2602と、上下左右の側板2604A、2604B、2604C、2604Dと、脚部2606とを含んで構成されている。
 後板2602は矩形板状を呈し、上下の辺を水平方向と平行させ、上方に至るほど後方に傾斜するように設けられている。
 上下左右の側板2604A~2604Dは、後板2602の上下左右の辺から起立され、各側板2604A~2604Dの前縁により矩形状の開口が形成されている。
 脚部2606は、下部の側板2604Bの下面中央に設けられ地面や床面に設置される。
第1乃至第4のアンテナ12A~12Dは、前記の開口を介して前方を向いた状態で後板2602の前面に取着され、後板2602と側板2604A~2604Dとで囲まれた空間に収容されている。第1乃至第4のアンテナ12A~12Dの前部は、各側板2604A~2604Dの前縁よりも後方に位置している。
 前記開口は、送信波W1および反射波W2の透過が可能な材料で形成された図示しないカバーによって覆われており、第1乃至第4のアンテナ12A~12Dの防塵および保護が図られている。
 本実施の形態では、図3に示すように正面から見て第1乃至第4のアンテナ12A~12Dは後板2602の4つの角部近傍に配置されている。すなわち、後板2602の右下寄りの箇所に第1のアンテナ12Aが配置されている。右上寄りの箇所に第2のアンテナ12Bが配置されている。左下寄りの箇所に第3のアンテナ12Cが配置されている。左上寄りの箇所に第4のアンテナ12Dが配置されている。
 ここで、第1乃至第4のアンテナ12A~12Dのそれぞれの利得が最大となる方向に沿って延在する直線を各アンテナの指向方向を示す第1乃至第4の仮想軸LA、LB、LC、LDとする。
 図3、図4に示すように、側面視した状態で第1、第2のアンテナ12A、12Bは鉛直方向に間隔dV(第1の間隔)をおいて配置され、第1、第2の仮想軸LA、LBが単一の鉛直平面上を延在している。
 本実施の形態では、第2の仮想軸LBが水平方向に延在し、かつ、第1の仮想軸LAが水平方向に対して上方に6度傾斜した方向に延在している。したがって、第1、第2の仮想軸LA、LBが交差するように配置されている。
 第3、第4のアンテナ12C、12Dも、第1、第2のアンテナ12A、12Bと同様に鉛直方向に間隔dV(第1の間隔)をおいて配置され、第3、第4の仮想軸LC、LDが単一の鉛直平面上を延在している。
 本実施の形態では、第4の仮想軸LDが水平方向に延在し、かつ、第3の仮想軸LCが水平方向に対して上方に6度傾斜した方向に延在している。したがって、第3、第4の仮想軸LC、LDが交差するように配置されている。
 図4、図5に示すように、平面視した状態で、第2、第4のアンテナ12B、12Dは、水平方向に間隔dH(第2の間隔)をおいて配置され、第2、第4の仮想軸LB、LDが単一の水平面上を延在している。
 本実施の形態では、第2、第4のアンテナ12B、12Dの仮想軸LB、LDが前後方向に対してそれぞれ内方に4度傾斜した方向に延在している。したがって、第2、第4の仮想軸LB、LDが交差するように配置されている。
 第1、第3のアンテナ12A、12Cは、水平方向に間隔dH(第2の間隔)をおいて配置されている。
 第1、第3の仮想軸LA、LCも第2、第4の仮想軸LB、LDと同様に前後方向に対してそれぞれ内方に4度傾斜した方向に延在している。したがって、第1、第3の仮想軸LA、LCが交差するように配置されている。
 図6、図7に示すように、第1乃至第4のアンテナ12A~12Dは、ゴルフボールBの移動方向においてゴルフボールBよりも後方の箇所に設けられている。なお、図6において符号201はゴルフボールBが載置されるティー、Gは地面(水平面)を示す。
 図6に示すように、側面視した状態で第1、第2の仮想軸LA、LBが交差すると共に、第3、第4の仮想軸LC、LDが交差している。
 7に示すように、平面視した状態で第1、第3の仮想軸LA、LCが交差すると共に、第2、第4の仮想軸LB、LDが交差している。
 また、平面視した状態で、左右方向において第1、第3のアンテナ12A、12C(第2、第4のアンテナ12B、12D)の間隔dHの中心を通り水平方向に延在する仮想線CL上にティー201に載置されたゴルフボールBの中心点が配置されている。この中心点を基準位置O(あるいは原点O)とする。
 本実施の形態では、図6、図7に示すように、実際に基準位置Oから打撃されたゴルフボールBの軌跡のばらつきを考慮して、上述した各仮想軸が交差する点を基準位置Oよりも前方の位置に設定した。
 このようにすることで、側面視した状態で、第1、第2のアンテナ12A、12Bのそれぞれから送信される送信波W1が重なる領域と、第3、第4のアンテナ12C、12Dのそれぞれから送信される送信波W1が重なる領域とが、実際に打撃されたゴルフボールBの移動軌跡と重なる範囲を上下方向にわたって広く確保する上で有利となる。図6において送信波W1が重なる領域をハッチングで示す。
 また、このようにすることで、平面視した状態で、第1、第3のアンテナ12A、12Cのそれぞれから送信される送信波W1が重なる領域と、第2、第4のアンテナ12B、12Dのそれぞれから送信される送信波W1とが、実際に打撃されたゴルフボールBの移動軌跡と重なる範囲を左右方向にわたって広く確保する上で有利となる。図7において送信波W1が重なる領域をハッチングで示す。
 したがって、基準位置Oでゴルフクラブヘッド4で打撃されたゴルフボールBの移動方向が上下方向あるいは左右方向にわたって多少ばらついたとしても、移動するゴルフボールBを前記の送信波W1が重なる領域内で確実に捉える上で有利となる。言い換えると、ゴルフボールBに対して第1乃至第4のアンテナ12A~12Dから送信波W1を確実に当てると共に、ゴルフボールBで反射された反射波W2を第1乃至第4のアンテナ12A~12Dによって確実に受信する上で有利となり、打撃直後のゴルフボールBの移動速度Vα(初速)、スピン量SPの計測を確実に行う上で有利となる。
 なお、本実施の形態では、第2、第4のアンテナ12B、12Dの仮想軸LB、LDを水平方向に延在させ、第1、第3のアンテナ12A、12Cの仮想軸LA、LCを上方に傾斜させている。このようにすることで、第1、第2のアンテナ12A、12Bのそれぞれから送信される送信波W1が重なる領域と、第3、第4のアンテナ12C、12Dのそれぞれから送信される送信波W1が重なる領域とが、実際に打撃されたゴルフボールBの移動軌跡と重なる範囲を上下方向にわたって広く確保する上でより一層有利となる。
 また、第2、第4のアンテナ12B、12Dの仮想軸LB、LDと、第1、第3のアンテナ12A、12Cの仮想軸LA、LCとの双方を上方に傾斜させてもよいが、上述のようにすると、送信波W1が重なる領域を上下方向にわたって広く確保する上でより有利となる。
 第1乃至第4ドップラーセンサ14A、14B、14C、14Dは、ケース26に収容保持されている。
 図2に示すように、第1乃至第4ドップラーセンサ14A~14Dは、第1乃至第4のアンテナ12A~12Dのそれぞれに送信信号を供給するものである。また、第1乃至第4のアンテナ12A~12Dのそれぞれから供給される受信信号に基づいてドップラー周波数Fdを有する第1乃至第4のドップラー信号SdA、SdB、SdC、SdDを時系列データとして生成するものである。
 マイク16は、ゴルフボールBがゴルフクラブヘッド4によって打撃された際に発生する打撃音を収音し音声信号を検出するものである。
 トリガ信号発生部18は、マイク16によって検出された音声信号の振幅が予め定められたしきい値を上回ったときに、トリガ信号trgを生成して演算ユニット40に供給するものである。
 トリガ信号trgは、演算ユニット40に対して後述するデータ処理の開始を指示するものである。
 なお、上述したようにトリガ信号発生部18が単に打撃音に応じてトリガ信号trgを生成するものである場合、ボール計測ユニット20の設置環境によっては以下の不都合が生じることが懸念される。
 すなわち、ボール計測ユニット20の設置環境が例えば複数の打席を備えるゴルフ練習場である場合、ボール計測ユニット20の計測対象となる打席以外の周囲の打席の打撃音によってもトリガ信号trgが生成され、ボール計測ユニット20の誤動作が発生することが懸念される。
 したがって、本実施の形態では、以下のように構成することで上記誤動作の防止を図っている。
 トリガ信号発生部18を、マイク16からの音声信号に加えて、ドップラーセンサ14からのドップラー信号Sdを入力する。
 そして、トリガ信号発生部18は、ドップラー信号Sdを受信し、かつ、打撃音の音声信号が予め定められたしきい値を上回ったときに、トリガ信号trgを生成して演算ユニット40に供給する。この場合、当初発生するドップラー信号Sdはゴルフクラブヘッド4の動きを検出したものとなる。
 したがって、トリガ信号発生部18は、ゴルフクラブ2の動きと打撃音の両方でトリガ信号trgを生成するため、ボール計測ユニット20の誤動作を的確に防止する上で有利となる。
 トリガ信号発生部18はトリガ信号trgを生成できれば、マイク16以外のセンサを用いても良い。例えば、予め定められた特定の位置(例えば基準位置O)を通過するゴルフクラブヘッド4を検出する光センサを設け、該光センサの検出信号に基づいてトリガ信号発生部18がトリガ信号trgを生成するなど任意である。しかしながら、光センサは設置する位置や方向を厳密に調整する必要があることから、本実施の形態のようにマイク16を用いる方が設置作業の簡素化を図る上で有利となる。
(ゴルフクラブ計測ユニット30)
 ゴルフクラブ計測ユニット30は、ゴルフクラブ2のゴルフクラブヘッド4の3次元位置と向き(方向)とを示す時系列データを計測するものである。
 本実施の形態では、ゴルフクラブ計測ユニット30は、図8に示すように、トランスミッタ312と、ゴルフクラブ側3次元磁気センサ314と、保持手段側3次元磁気センサ316と、コントローラ・データ処理装置318を含んで構成されている。
 トランスミッタ312は、予め定められた位置に設置されており、図9に示すように、トランスミッタ312は、お互いに直交する3軸(X軸、Y軸、Z軸)方向に各々ループ状に巻かれた3つのコイルによって構成されている。
 本実施の形態では、トランスミッタ312は、X軸およびY軸が水平面上を延在し、Z軸が鉛直方向を向くように設置されている。
 本実施の形態では、トランスミッタ312の中心位置を予め定められた基準位置1202とし、基準位置1202を通るY軸方向を予め定められた基準方向1204とする。
 トランスミッタ312は、コントローラ・データ処理装置318から供給される駆動信号により、強さと方向に関する分布が既知である磁場を発生させる。
 ゴルフクラブ側3次元磁気センサ314は、図9に示すように、お互いに直交する3軸(X軸、Y軸、Z軸)方向に各々ループ状に巻かれた3つのコイルによって構成されている。
 ゴルフクラブ側3次元磁気センサ314は、第1の計測点1402および第1の計測方向1404を有している。
 ゴルフクラブ側3次元磁気センサ314は、第1の計測点1402の周りの磁気を互いに直交するX軸、Y軸、Z軸の3軸方向で感知すると共に、基準位置1202に対する第1の計測点1402の3次元位置および基準方向1204に対する第1の計測方向1404の向きに応じて第1の検出信号S1を出力するものである。
 本実施の形態では、第1の計測点1402はゴルフクラブ側3次元磁気センサ314の中心位置であり、第1の計測方向1404は第1の計測点1402を通るY軸方向である。
 ゴルフクラブ側3次元磁気センサ314は、ゴルフクラブ2に固定され、本実施の形態では、ゴルフクラブ2のグリップ部3に固定されている。
 本実施の形態では、ゴルフクラブ側3次元磁気センサ314は、Y軸(第1の計測方向1404)をゴルフクラブ2の打撃方向と平行させ、かつ、Z軸をシャフト軸と平行させている。
 保持手段側3次元磁気センサ316は、図9に示すように、お互いに直交する3軸(X軸、Y軸、Z軸)方向に各々ループ状に巻かれた3つのコイルによって構成されている。
 保持手段側3次元磁気センサ316は、第2の計測点1602および第2の計測方向1604を有している。
 保持手段側3次元磁気センサ316は、第2の計測点1602の周りの磁気を互いに直交するX軸、Y軸、Z軸の3軸方向で感知すると共に、3軸方向のうちの1つの軸であるY軸をゴルフクラブ2の打撃方向に向け、基準位置1202に対する第2の計測点1602の3次元位置および基準方向1204に対する第2の計測方向1604の向きに応じて第2の検出信号S2を出力するものである。
 本実施の形態では、第2の計測点1602は保持手段側3次元磁気センサ316の中心位置であり、第2の計測方向1604は第2の計測点1602を通るY軸方向である。
 保持手段側3次元磁気センサ316は、保持手段320に一体的に支持されている。
 本実施の形態では、保持手段側3次元磁気センサ316は、後述するようにY軸(第2の計測方向1604)をゴルフクラブ2の打撃方向と平行させ、かつ、Z軸を鉛直方向に向けている。
 このようなゴルフクラブ計測ユニット30として、例えば、LIBERTY(Polhemus社製)を挙げることができる。
 なお、ゴルフクラブ計測ユニット30の詳細な構成については後述する。
(保持手段320)
 保持手段320は、設定されたライ角およびロフト角通りとなるようにゴルフクラブ2を保持するものである。
 保持手段320は、図8に示すように、ベース2002と、フレーム2004と、支持部2006と、位置決め板2008とを含んで構成されている。
 ベース2002は、床面(水平面)に載置されるものである。
 フレーム2004は、ベース2002から立設されている。
 支持部2006は、フレーム2004に設けられゴルフクラブ2のシャフト6を着脱可能に、かつ、ゴルフクラブ2の位置と向きとを調整可能に支持するものである。このような支持部2006として従来公知のさまざまな構造が使用可能である。
 図10は位置決め板2008にゴルフクラブヘッド4のフェース面402が当て付けられた状態を示す平面図、図11は図10のA矢視図、図12は図12のB矢視図である。
 図10乃至図12に示すように、位置決め板2008は、矩形板状を呈し、水平面上を延在するようにベース2002上にスペーサ2010を介して取着されている。なお、図11において符号Gは床面を示す。
 位置決め板2008は、その1辺に断面が鋭角をなすエッジ部2008Aが水平面と平行をなすように直線状に延在形成されている。
 位置決め板2008は、その上面にエッジ部2008Aの延在方向の中心を通りエッジ部2008Aと直交する基準線2012が表示されている。
 位置決め板2008の上面に保持手段側3次元磁気センサ316が設けられている。
 保持手段側3次元磁気センサ316は、平面視した状態で、第2の計測点1602が基準線2012上に位置し、第2の計測方向1604が基準線2012と一致(平行)している。
 ゴルフクラブ2は、フェース面402の中心点410をエッジ部2008Aが通るようにフェース面402がエッジ部2008Aに当て付けられた状態で設定されたライ角およびロフト角通りとなるように支持部2006によって支持される。
 本実施の形態では、ゴルフクラブ2が設定されたライ角およびロフト角通りになっているとは、フェース面402の法線と打ち出し方向とが平行をなしている状態であり、かつ、鉛直線に対してシャフト軸がなす角度が正しいライ角となっている状態をいう。
 フェース面402にスコアライン412が形成されている場合、設定されたライ角通りにゴルフクラブ2が支持部2006によって支持されると、図12に示すように、スコアライン412またはその延長線とエッジ部2008Aとが平行をなす。
 したがって、スコアライン412とエッジ部2008Aとが平行となるように支持部2006を調整することによってゴルフクラブ2を設定されたライ角通りに支持することができる。
 また、一部のパタークラブのように、フェース面402にスコアライン412が形成されていない場合は、フェース面402の左右幅方向に延在する仮想線とエッジ部2008Aとが平行となるように支持部2006を調整することによってゴルフクラブ2を設定されたライ角通りに支持することができる。
 このようにしてゴルフクラブ2が保持手段320に保持された状態において、フェース面402の中心点410の3次元位置およびフェース面402の向きと、保持手段側3次元磁気センサ316の第2の計測点1602および第2の計測方向の向きとは既知の関係となる。
 したがって、第2の計測点1602および第2の計測方向1604の向きからフェース面402の中心点410の3次元位置およびフェース面402の向きを求めることが可能となる。
(ゴルフクラブ計測ユニット30の詳細)
 ゴルフクラブ計測ユニット30についてより詳細に説明する。
 図9に示すように、コントローラ・データ処理装置318は、駆動回路318A、検出回路318B、コンピュータ318Cを有している。
 駆動回路318Aは、トランスミッタ312に所定の3種類の磁場を順次発生させる駆動信号を生成し、該駆動信号をトランスミッタ312に供給するものである。
 検出回路318Bは、ゴルフクラブ側3次元磁気センサ314から供給される第1の検出信号S1と、保持手段側3次元磁気センサ316から供給される第2の検出信号S2とを検出するものである。
 コンピュータ318Cは、データ処理用ソフトウェアを実行することにより次の機能を実現する。
 すなわち、コンピュータ318Cは、駆動回路318Aおよび検出回路318Bを制御し、検出回路318Bから得られた出力電圧よりデータ処理を行って、ゴルフクラブ側3次元磁気センサ314の位置と向き、および、保持手段側3次元磁気センサ316の位置と向きを示すデータを生成する。
 コンピュータ318Cは、前述したようにトランスミッタ312の位置を基準位置1202とし、お互いに直交する3軸X,Y,Zを基準とする3次元位置座標(x,y,z)の時系列データを演算して出力する。
 また、コンピュータ318Cは、前述したようにトランスミッタ312を中心とするY軸方向を基準方向1204とし、この基準方向1204に対する磁気センサ314、16の向きを表す姿勢角度、すなわちヨー角、ピッチ角およびロール角(以降では、(θy,θp,θr)と表す)の時系列データを演算して出力するものである。
 したがって、3次元位置座標(x,y,z)の時系列データが磁気センサ314、16の位置を示すデータであり、ヨー角θy、ピッチ角θpおよびロール角θrの時系列データが磁気センサ314、16の向きを示すデータである。
 次に、ゴルフクラブ側3次元磁気センサ314の第1の計測点1402の基準位置1202に対する3次元位置座標(x,y,z)と、第1の計測方向1404の基準方向1204に対する姿勢角度(θy,θp,θr)の時系列データの生成について説明する。
 駆動回路318Aは、コンピュータ318Cの指令信号にしたがって、周波数と位相が常時一定の同一信号を出力し、トランスミッタ312の3軸方向に巻かれた3つのループ状コイルを順次励磁する。
 各ループ状コイルは、励磁のたびに各々異なる磁場を発生し、それに基づいてゴルフクラブ側3次元磁気センサ314の3軸方向に巻かれた3つのループ状コイルに各々独立な出力電圧Vを発生させる。
 この出力電圧Vは、トランスミッタ312の3つのループ状コイルによって励磁される3つの磁場に応じて、ゴルフクラブ側3次元磁気センサ314の3つのループ状コイルに発生する3つの出力電圧Vが得られるため、合計9個(3×3個)の出力電圧Vが得られる。
 一方、磁場を形成させるトランスミッタ312が所定の位置に固定設置されているので、発生する磁場の強さと方向に関する分布はトランスミッタ312の設置された基準位置1202および、基準方向1204に対して既知となる。
 この形成された磁場によって生じる9つの出力電圧Vを用いることによって、上記基準位置1202に対するゴルフクラブ側3次元磁気センサ314の3次元位置座標(x,y,z)と上記基準方向1204に対する姿勢角度(θy,θp,θr)の6つの未知数を求めることができる。
 コントローラ・データ処理装置318のコンピュータ318Cにおいて、検出回路318Bから送られてきた9つの出力電圧Vを用いて、3次元位置座標(x,y,z)と姿勢角度(θy,θp,θr)のデータを演算して求める。
 ゴルフクラブ計測ユニット30で得られた3次元位置座標(x,y,z)と姿勢角度(θy,θp,θr)は、演算ユニット40に取り込まれ、RD変換され、グリップ部3のスウィング中の挙動の時系列データを得ることができる。
 なお、保持手段側3次元磁気センサ316の第2の計測点1602の基準位置1202に対する3次元位置座標(x,y,z)と、第2の計測方向1604の基準方向1204に対する姿勢角度(θy,θp,θr)のデータの生成は、基本的にゴルフクラブ側3次元磁気センサ314の場合と同様であるため説明を省略する。
 なお、前述したように、トランスミッタ312、ゴルフクラブ側3次元磁気センサ314、保持手段側3次元磁気センサ316は、図9に示されるように、お互いに直交する3軸方向に向いてコイルがループ状に巻かれている。
 したがって、それらトランスミッタ312、各磁気センサ314、16の3軸方向をなるべく合致させることが、各磁気センサ314、16でそれぞれ検出される3次元位置座標(x,y,z)と姿勢角度(θy,θp,θr)との処理を後述する演算手段で行う際の負荷を軽減する上で好ましい。
 このような観点から、ゴルフクラブ側3次元磁気センサ314は、3軸方向のうちの1つの軸(Z軸)をシャフト軸と一致させるように設定し、もう1つの軸(Y軸)をゴルフクラブ2の打撃方向に向けてゴルフクラブ2のグリップ部3に固定することが好ましい。
 また、保持手段側3次元磁気センサ316は、3軸方向のうちの1つの軸(Y軸)をゴルフクラブ2の打撃方向に向けて保持手段320に支持することが好ましい。
 また、本実施の形態では、トランスミッタ312は、X軸とY軸が水平面内を延在し、Z軸が鉛直方向に延在している。
(演算ユニット40)
 演算ユニット40は、ボール計測ユニット20の第1乃至第4のドップラーセンサ14A~14Dから供給される第1乃至第4のドップラー信号SdA~SdDを入力して演算処理を行うことにより、ゴルフボールBの移動方向、移動速度Vα、スピン量SPおよび回転軸方向RSなどからなるボール挙動データを生成する。また、演算ユニット40は、ゴルフクラブ計測ユニット30から供給される時系列データに基づいてゴルフクラブヘッド4の挙動を示すヘッド挙動データを生成する。
 図13は、演算ユニット40の構成を示すブロック図である。
 演算ユニット40は、CPU430と、不図示のインターフェース回路およびバスラインを介して接続されたROM432、RAM434、ハードディスク装置436、ディスク装置438、キーボード440、マウス442、ディスプレイ444、プリンタ446、入出力インターフェース448などを有している。
 ROM432は制御プログラムなどを格納し、RAM434はワーキングエリアを提供するものである。
 ハードディスク装置436はゴルフボールBおよびゴルフクラブヘッド4の挙動の計測を行うための専用のプログラムを格納している。
 ディスク装置438はCDやDVDなどの記録媒体に対してデータの記録および/または再生を行うものである。
 キーボード440およびマウス442は、操作者による操作入力を受け付けるものである。
 ディスプレイ444はデータを表示出力するものであり、プリンタ446はデータを印刷出力するものであり、ディスプレイ444およびプリンタ446によってデータを出力する。
 入出力インターフェース448は、ボール計測ユニット20およびゴルフクラブ計測ユニット30のコントローラ・データ処理装置318との間でデータの授受を行うものである。
(演算ユニット40の機能的構成)
 図14は、演算ユニット40の機能的構成を示す説明図である。演算ユニット40は、機能的には、ゴルフボールBの挙動を示すボール挙動データを生成するボール挙動データ演算部452と、ゴルフクラブヘッド4の挙動を示すヘッド挙動データを生成するヘッド挙動データ演算部454と、出力部460によって構成される。
 ヘッド挙動データ演算部454は、第1キャリブレーション部5450、第2キャリブレーション部5452、第1の時系列データ生成部5453、第2の時系列データ生成部5454、記憶部5456、挙動データ生成部5458などを含んで構成されている。
 ヘッド挙動データ演算部454の各部について説明する前に、前提となるトランスミッタ312、ゴルフクラブ2、ゴルフボールBの位置関係について説明する。
 図15に示すように、トランスミッタ312は、予め定められた位置に設置され、具体的には、ゴルフスウィングする人の後方に固定配置されている。
 床面G上には、ゴルフボールBを載置するためのボール載置位置P0が予め定められており、このボール載置位置P0は床面G上に設けられたマークなどによって表示されている。あるいは、ボール載置位置P0にティーが設けられ、このティーにゴルフボールBが載置される。
 また、ボール載置位置P0の前方には、ゴルフボールBを打ち出す目標としてのターゲットCが設けられている。なお、図示の制約上、図面上ではボール載置位置P0とターゲットCとが近接して描かれているが、実際にはボール載置位置P0とターゲットCとは所定の距離(ドライバーなど飛距離の出るクラブを用いる程度の距離)があるものとする。
 ゴルファは、ゴルフクラブ2をスウィングすることにより、ゴルフクラブヘッド4のフェース面402によってボール載置位置P0に載置されたゴルフボールBをターゲットCに向けて打ち出す。
 この場合、ボール載置位置P0に載置されたゴルフボールBの中心点P1(図16)とターゲットCとを結ぶ直線が目標線Lである。
 なお、ゴルファがゴルフクラブ2をスウィングするにあたって、トランスミッタ312がゴルファやゴルフクラブ2の邪魔とならないように、トランスミッタ312とボール載置位置P0との間に十分な間隔が確保されている。
 第1キャリブレーション部5450は、図8に示すように、保持手段320にゴルフクラブ2が保持された状態で、第1の検出信号S1と第2の検出信号S2とに基づいて、第1の計測点1402に対するゴルフクラブヘッド4の予め定められた基準点であるフェース面402の中心点410(図18)の3次元位置データと、第1の計測方向1404に対するゴルフクラブヘッド4のフェース面402の向きを示す向きデータとを第1のキャリブレーションデータDc1として得るものである。
 言い換えると、フェース面402の中心点410の3次元位置データは、第1の計測点1402を3次元座標の原点として得られるデータであり、フェース面402の向きデータは、第1の計測方向1404を3次元座標の座標軸(Y軸)として得られるデータである。
 すなわち、第1の検出信号S1と第2の検出信号S2とに基づいて、第1の計測点1402に対する第2の計測点1602の3次元位置データと、第1の計測方向1404の向きに対する第2の計測方向1604の向きのデータとが得られる。
 ここで、前述したように、第2の計測点1602および第2の計測方向1604の向きからフェース面402の中心点410の3次元位置およびフェース面402の向きが得られる。
 したがって、第1の検出信号S1と第2の検出信号S2とに基づいて、第1の計測点1402に対するフェース面402の中心点410の3次元位置データと、第1の計測方向1404の向きに対するフェース面402の向きのデータとを第1のキャリブレーションデータDc1として得ることができる。
 すなわち、第1のキャリブレーションデータDc1は、第1の計測点1402に対するフェース面402の中心点410の位置の補正と、第1の計測方向1404の向きに対するフェース面402の向き(方向)の補正とを行うためのデータである。
 第2キャリブレーション部5452は、図10、図11に示すように、平面視した状態で、第2の計測点1602がボール載置位置P0に位置するゴルフボールBの中心点P1と合致し、かつ、第2の計測方向1604の向きが目標線Lの向きと合致するように、保持手段320を床面上に位置させた状態で、第2の検出信号S2に基づいて、基準位置1202に対する第2の計測点1602の3次元位置データと、基準方向1204に対する第2の計測方向1604の向きを示す向きデータとを第2のキャリブレーションデータDc2として得るものである。
 言い換えると、第2の計測点1602の3次元位置データは、基準位置1202を3次元座標の原点として得られるデータであり、第2の計測方向1604の向きデータは、基準方向1204を3次元座標の座標軸(Y軸)として得られるデータである。
 すなわち、第2のキャリブレーションデータDc2は、基準位置1202に対するゴルフボールBの設置位置の補正と、基準方向1204に対する目標線Lの方向の補正とを行うためのデータである。
 第1の時系列データ生成部5453は、ゴルファによってゴルフクラブ2がスウィングされる過程において第1の検出信号S1に基づいて生成した基準位置1202に対する第1の計測点1402の3次元位置データと基準方向1204に対する第1の計測方向1404の向きを示す向きデータとからなる実測データを、第1のキャリブレーションデータDc1を用いて補正することにより第1の時系列データD1を生成するものである。
 第2の時系列データ生成部5454は、第1の時系列データD1を第2のキャリブレーションデータDc2を用いて補正することにより第2の時系列データD2を生成するものである。
 記憶部5456は、3次元座標系において、ゴルフクラブ2ヘッドを再現した3次元形状モデルMを記憶するものである。
 言い換えると、記憶部5456は、3次元形状モデルMをフェース面402の中心点410の3次元位置およびフェース面402の向きに関連付けて記憶するものである。
 また、本実施の形態では、記憶部5456には、ゴルフクラブヘッド4のロフト角と、ゴルフボールBの直径とが予め登録されている。
 本実施の形態では、記憶部5456は、演算手段のハードディスク装置36あるいはRAM34によって構成される。
 挙動データ生成部5458は、第2の時系列データD2と、ゴルフクラブ2ヘッドの3次元形状モデルMとに基づいてゴルフクラブヘッド4の挙動を示すヘッド挙動データD3を生成するものである。
 本実施の形態では、挙動データ生成部5458は、3次元形状モデルMの位置および向きの時系列データを算出する算出部5458Aと、前記の時系列データからヘッド挙動データD3を求める解析部5458Bとで構成されている。
 ここで、ヘッド挙動データD3についてさらに説明する。
 本実施の形態では、ヘッド挙動データD3は、以下のデータを含む。
(1)ゴルフクラブヘッド4の移動軌跡を示す時系列データとしての移動軌跡データ:
 移動軌跡データは、後述するように、フェース面402の中心点410の移動軌跡によって示され(図21、図22)、あるいは、ゴルフクラブヘッド4の外形を示すアニメーションデータ(図23)によって示される。
(2)左右進入角θLR:
 左右進入角θLRは、図16に示すように、フェース面402の中心点410の移動軌跡Tと目標線Lとを水平面に投影したときに、水平面上において移動軌跡Tと目標線Lとがなす角度をいう。なお、図中、矢印Fはゴルフクラブヘッド4の移動方向を示す。
(3)上下進入角θUD:
 上下進入角θUDとは、図17に示すように、フェース面402の中心点410の移動軌跡Tと目標線Lとを目標線Lと平行する鉛直面に投影したときに、鉛直面上において移動軌跡Tと目標線Lとがなす角度をいう。
(4)フェース面402がゴルフボールBを打撃する直前におけるゴルフクラブヘッド4の向きを示す向きデータDf:
 本実施の形態では、向きデータDfは、打撃時フェース角φと、打撃時ロフト角αと、打撃時ライ角βを含む。
 以下、図18,図19,図20を参照して説明する。
(4-1)打撃時フェース角φは、図18に示すように、フェース面402がゴルフボールBを打撃する直前におけるフェース面402の中心点410を通る法線Hと目標線Lとを水平面に投影したときに、水平面上において法線Hと目標線Lとがなす角度によって示される。
(4-2)打撃時ロフト角αは、図19に示すように、フェース面402がゴルフボールBを打撃する直前におけるフェース面402の中心点410を通る法線Hと該法線Hと交差する水平面(床面G)と平行な平面とがなす角度によって示される。
 ここで、挙動データ生成部5458による打撃時ロフト角αの生成は、第2の時系列データD2と、記憶部5456に予め登録されたゴルフクラブヘッド4のロフト角とに基づいてなされる。
(4-3)打撃時ライ角βは、図20に示すように、フェース面402がゴルフボールBを打撃する直前におけるシャフト軸602の延長線と、この延長線が交差する水平面(本例では床面G)とがなす角度によって示される。
(5)フェース面402がゴルフボールBに当たる箇所を示す打点位置のデータ:
 ここで、挙動データ生成部5458による打点位置のデータの生成は、第2の時系列データD2と、3次元形状モデルMと、記憶部5456に予め登録されたゴルフボールBの直径とに基づいてなされる。
 なお、本実施の形態では、上述したヘッド挙動データD3のうち、少なくともゴルフクラブヘッド4の移動軌跡および打撃時フェース角φを算出できればよい。
(ボール挙動データ演算部452)
 つづいて、ボール挙動データ演算部452の構成について説明する。
 図14に示すように、ボール挙動データ演算部452は、蓄積部5230と、信号強度分布データ生成部5232と、速度演算部5234と、移動方向演算部5235と、移動速度演算部5236と、スピン量演算部5238と、回転軸演算部5240とを含んで構成されている。
 蓄積部5230は、第1乃至第4のドップラー信号SdA~SdDと、トリガ信号trgとを予め定められたサンプリング周期で時間経過に従って順番に蓄積するものである。本実施の形態では、CPU430がドップラー信号Sdとトリガ信号trgを前記サンプリング周期でサンプリングしてRAM434にドップラー信号Sdのサンプリングデータおよびトリガ信号trgのサンプリングデータとして格納する。
 蓄積部5330は、例えば、ボール計測ユニット20の電源が投入されると同時にサンプリング動作を開始する。
 図24は、ゴルフクラブヘッド4によってゴルフボールBを打撃した際のドップラー信号Sdの一例を示す線図であり、横軸に時間t(sec)、縦軸に振幅(任意単位)をとっている。
 図24において、初めの大きな振幅を呈する波形部分がゴルフクラブヘッド4によって生じるドップラー信号の部分を示し、その後に続く波形部分が打撃されたゴルフボールBによって生じるドップラー信号の部分を示している。
 信号強度分布データ生成部5232は、蓄積部5230に蓄積された第1乃至第4のドップラー信号SdA~SdDのサンプリングデータを周波数解析(連続FFT解析、あるいは、ウェーブレット解析)することによって信号強度分布データPをそれぞれ生成する。言い換えると、信号強度分布データ生成部5232は、ドップラーセンサ14から得られたドップラー信号Sdを周波数解析することにより周波数ごとの信号強度の分布を示す信号強度分布データPを生成する。
 本実施の形態では、信号強度分布データ生成部5232は、蓄積部5230に蓄積されたトリガ信号trgに基づいて、蓄積部5230に蓄積された時系列データであるドップラー信号SdA~SdDのサンプリングデータを予め定められた区間に特定して信号強度分布データPの生成を実施する。ここで、ドップラー信号Sdのサンプリングデータの区間は単一のトリガ信号trgに基づいて同期して特定される。
 言い換えると、信号強度分布データ生成部5232は、垂れ流し方式で蓄積されているドップラー信号SdA~SdDのサンプリングデータのうち、ゴルフボールBが打撃された後の区間におけるサンプリングデータを特定して信号強度分布データPの生成を実施する。
 サンプリングデータを予め定められた区間に特定する方法としては以下の方法が例示される。
 すなわち、信号強度分布データ生成部5232は、トリガ信号trgの検出時点を基準時点として、基準時点から数えてa個目までのサンプリングデータを除外し、a+1個目からb個目(a<b)までのサンプリングデータを特定して信号強度分布データPの生成を実施する。
 この場合、a+1個目からb個目(a<b)までのサンプリングデータに、ゴルフクラブヘッド4による影響を受けたデータが含まれないように、上記の数値a、bを設定する。
 数値a、bは、実際にゴルフクラブ2がスウィングされた場合のゴルフクラブヘッド4のスピードのばらつきを考慮して設定すればよい。
 あるいは、トリガ信号trgの検出時点を基準時点として、経過時間に基づいてゴルフクラブヘッドによる影響を受けたデータが含まれないように、サンプリングデータを予め定められた区間に特定してもよい。
 また、上記の数値a、bの設定は、基準位置Oに対してゴルフボールBが約1m移動した時点前後におけるサンプリングデータが得られるにように設定される。この理由は、ゴルフクラブヘッド4で打撃されたゴルフボールBが1m前後移動した時点における移動速度の変化がほぼ無視できるからである。
 また、信号強度分布データPにはノイズが含まれているため、後述するドップラー周波数成分、あるいは、信号強度分布データPの幅(信号強度分布データPがなす山の幅)を正確かつ安定して検出するために、ノイズを抑制することが好ましい。
 そこで、本実施の形態では、信号強度分布データ生成部5232は、信号強度分布データPを構成する信号強度Psについて移動平均を取る処理を実施することによりノイズの影響を抑制した信号強度分布データPを得るようにしている。
 速度演算部5234は、第1乃至第4の信号強度分布データPA~PDのそれぞれに基づいて、ゴルフボールBの移動速度に対応するドップラー周波数成分を検出し、それら検出したドップラー周波数成分に基づいて第1乃至第4の演算用速度VA~VDを算出するものである。
 各信号強度分布データPからドップラー周波数成分を検出する方法としては以下の手順が例示される。
(1)信号強度分布データPを構成する信号強度のデータについて移動平均を取ることによってノイズの影響を抑制した信号強度分布データPを得る。
(2)移動平均を取った信号強度分布データPにおいて信号強度のピーク値、あるいは、信号強度の山の中央値に対応する周波数をドップラー周波数成分(ドップラー周波数)として検出する。
 なお、ドップラー周波数成分の検出方法は、各信号強度分布データPに含まれるノイズの影響を抑制し、ドップラー周波数成分を正確かつ安定して検出できればよいのであり、上記の手順に限定されるものではない。
 ここで、ゴルフボールBの速度の計測原理について説明する。
 従来から知られているように、ドップラー周波数Fdは式(1)で表される。
 Fd=F1-F2=2・V・F1/c (1)
 ただし、V:ゴルフボールBの速度、c:光速(3・10m/s)
 したがって、式(1)をVについて解くと、(2)式となる。
 V=c・Fd/(2・F1) (2)
 すなわち、ゴルフボールB2の速度Vは、ドップラー周波数Fdに比例することになる。
 したがって、ドップラー信号Sdからドップラー周波数Fdの周波数成分を検出し、検出したドップラー周波数成分から式(2)に基づいてゴルフボールBの速度Vを求めることができる。
 ところで、式(2)によって得られるゴルフボールBの移動速度は、アンテナの指向性を示す仮想軸と一致する方向の速度成分である。
 したがって、ゴルフボールBの移動軌跡がアンテナの指向性を示す仮想軸に対して外れるほど式(2)によって得られるゴルフボールBの移動速度の誤差が増大する傾向となる。
 そこで、本発明では、第1乃至第4のアンテナ12A~12Dを用いて得られた第1乃至第4の速度VA~VDと、実測されたゴルフボールBの移動方向との間に相関関係があり、また、それら第1乃至第4の速度VA~VDと、実測されたゴルフボールBの移動速度との間に相関関係があることに着目した。
 すなわち、予め上述した2つの相関関係を取得しておけば、それら2つの相関関係に基づいて第1乃至第4の速度VA~VDからゴルフボールBの移動方向および移動速度を求めることが可能となる。
 移動方向演算部5235は、予め得られている第1乃至第4の速度VA~VDと実測されたゴルフボールBの移動方向との相関関係に基づいて、第1乃至第4の速度VA~VDから移動方向を算出するものである。
 本実施の形態では、ゴルフボールBの移動方向を次のように定義する。
 図25、図26に示すように、基準位置Oを通る仮想線CLを含む基準鉛直面Pvと、基準位置Oを通り基準鉛直面Pvと直交する基準水平面Phとを設定する。
 言い換えると、予め定められた基準位置Oを通り水平方向に延在する仮想線CLを含み鉛直方向に延在する平面を基準鉛直面Pvとする。基準位置Oを通り基準鉛直面Pvと直交する平面を基準水平面Phとする。
 ゴルフボールBの移動軌跡を基準鉛直面Pvに投影した場合に投影した移動軌跡と基準水平面Ph(仮想線CL)とがなす角度を上下角度θyとする。
 ゴルフボールBの移動軌跡を基準水平面Phに投影した場合に投影した移動軌跡と基準鉛直面Pvとがなす角度を左右角度θxとする。
 ゴルフボールBの移動方向を上下角度θyと左右角度θxとで定義する。
 本実施の形態では、鉛直方向において間隔dVをおいて配置された2つのアンテナを用いて実測して得た2つの速度の差分と、実測して得たゴルフボールBの上下角度θyとの相関関係に基づいて上下角度θyを算出する。
 より詳細には、第1、第2のアンテナ12A、12Bを用いて実測して得た第1、第2の速度VA、VBの差分ΔVAB=VA-VBと第3、第4のアンテナ12C、12Dとを用いて得た第3、第4の速度VC、VDの差分ΔVCD=VC-VDとの平均値(ΔVAB+ΔVCD)/2を、第1乃至第4の速度VA~VDの平均値ΔVaveで除算した第1の値D1=((ΔVAB+ΔVCD)/2)/ΔVaveを算出する。
 また、予め実測して得た第1の値D1と、実測して得たゴルフボールBの上下角度θyとの相関関係に基づいて、第1の値D1から上下角度θyを算出する。
このように2組のアンテナを用いて得た2つの速度の差分の平均値から上下角度θyを算出することにより上下角度θyの値をより精度よく安定して求める上で有利となる。
 移動速度演算部5236は、予め得られている第1乃至第4の演算用速度VA~VDと実測されたゴルフボールBの移動速度Vαとの相関関係に基づいて、第1乃至第4の演算用速度VA~VDから移動速度Vαを算出するものである。
 移動速度演算部5236は、第1乃至第4の演算用速度VA~VDの平均値Vaveと実測されたゴルフボールBの移動速度Vαとの相関関係に基づいて、平均値Vaveから移動速度Vαを算出する。
 スピン量演算部5238は、予め得られている第1乃至第4の信号強度分布データPA~PD、言い換えると第1乃至第4の信号強度分布データPの山の幅と、実測されたゴルフボールBのスピン量SPとの間に相関関係に基づいて、第1乃至第4の信号強度分布データPの山の幅から第1乃至第4のスピン量SPA~SPDを算出するものである。
 回転軸演算部5240は、予め得られているゴルフクラブヘッド4のヘッド挙動データD3と、実測されたゴルフボールBの回転軸方向との間に相関関係に基づいて、ゴルフクラブヘッド4のヘッド挙動データD3からゴルフボールBの回転軸方向RDを算出する。本実施の形態では、ゴルフボールBの回転軸方向RDをスピン量SPのバックスピン成分およびサイドスピン成分の比率として算出する。また、本実施の形態では、回転軸演算部5240は、ヘッド挙動データD3のうち、ゴルフクラブヘッド4の移動軌跡および打撃時フェース角φを用いて回転軸方向RDを算出する。
 図27は、回転軸演算部5240による回転軸方向RDの算出を説明する説明図である。図27は、ゴルフクラブヘッド4によりゴルフボールBを打撃する際の各部の位置関係を模式的に示している。回転軸演算部5240では、ゴルフクラブヘッド4の移動軌跡、打撃時フェース角φおよびスピン量演算部5238で算出されたスピン量SPの3つのパラメータを用いて回転軸方向RDを算出する。
 なお、従来の回転軸方向の算出方法としては、たとえばゴルフボールBの移動方向とゴルフクラブヘッド4の移動軌跡との角度差θとスピン量SPとから回転軸方向を算出する方法や、上記角度差θから回転軸方向を算出する方法、打撃時フェース角φから回転軸方向を算出する方法などが知られている。回転軸演算部5240のようにゴルフクラブヘッド4の移動軌跡、打撃時フェース角φおよびスピン量SPの3つのパラメータを用いることによって、従来技術と比較して高い精度で回転軸方向RDを算出することができる。
 次に、(1)実測して得た第1乃至第4の速度VA~VDと実測して得たゴルフボールBの移動方向との相関関係と、(2)実測して得た第1乃至第4の演算用速度VA~VDの平均値Vaveと実測して得たゴルフボールBの移動速度Vαとの相関関係と、(3)実測して得た第1乃至第4の信号強度分布PA~PDと実測して得たゴルフボールBの第1~第4のスピン量SPとの相関関係と、(4)実測して得た第1乃至第4の信号強度分布PA~PDおよびゴルフクラブヘッド4のヘッド挙動データD3と実測して得たゴルフボールBの回転軸方向RDとの相関関係の取得について説明する。
 まず、専用のゴルフボール打ち出し装置(スイングロボット)によって基準位置Oに位置するゴルフボールBを、さまざまな速度、方向にて打ち出す。言い換えると、左右角度θx、上下角度θy、移動速度Vαを異ならせて打撃する。
 そして、移動体の移動方向および移動速度を高精度に計測可能な基準計測器によってゴルフボールBの左右角度θx、上下角度θy、移動速度Vαを計測し、左右角度θx、上下角度θy、移動速度Vαの実測データを取得する。また、移動体のスピン量を高精度に計測可能な基準計測器によってゴルフボールBのスピン量SPを計測し、スピン量SPの実測データを取得する。また、移動体の回転軸方向を高精度に計測可能な基準計測器によってゴルフボールBの回転軸方向RD(すなわちスピン量SPのバックスピン成分とサイドスピン成分の比率、以下「スピン量成分の比率」という)を計測し、回転軸方向RD(スピン量成分の比率)の実測データを取得する。
 また、移動速度Vαの計測と同時に、本実施の形態のボール計測ユニット20を用いることにより、速度演算部5234によって第1乃至第4の演算用速度VA~VDを算出する。すなわち、左右角度θx、上下角度θy、移動速度Vαの実測データに対応する第1乃至第4の演算用速度VA~VDを取得する。また、スピン量SPの計測と同時に、本実施の形態のボール計測ユニット20を用いることにより、信号強度分布データ生成部5232によって第1乃至第4の信号強度分布PA~PDを算出する。すなわち、スピン量SPの実測データに対応する第1乃至第4の信号強度分布データPの山の幅を取得する。また、回転軸方向RDの計測と同時に、本実施の形態のゴルフクラブ計測ユニット30を用いることにより、挙動データ生成部5458によってゴルフクラブヘッド4のヘッド挙動データD3を算出する。
 (1)実測して得た第1乃至第4の速度VA~VDと実測して得たゴルフボールBの移動方向との相関関係については以下のように求める。
 そして、上下角度θyの実測データと、第1乃至第4の速度VA、VB、VC、VDから算出された第1の値D1との相関関係に基づいて上下角度θy算出用の相関式(回帰式)を求める。
 言い換えると、上下角度θyと、第1の値D1との関係を離散的に計測したデータを取得する。そして、取得したデータを従来公知の最小二乗法などを用いて回帰分析することによって上下角度θyを第1の値D1の関数(多項式)によって表わした相関式を求める。すなわち、このようにして求められた相関式によって上下角度θyと第1の値D1との関係を示す特性線を得ることができる。
 同様に、左右角度θxの実測データと、第1乃至第4の速度VA、VB、VC、VDから算出された第2の値D2との相関関係に基づいて左右角度θx算出用の相関式(回帰式)を求める。
 言い換えると、左右角度θxと、第2の値D2との関係を離散的に計測したデータを取得する。そして、取得したデータを従来公知の最小二乗法などを用いて回帰分析することによって左右角度θxを第2の値D2の関数(多項式)によって表わした相関式を求める。すなわち、このようにして求められた相関式によって左右角度θxと第2の値D2との関係を示す特性線を得ることができる。
 したがって、これら2つの相関式を用いることにより、第1乃至第4の速度VA、VB、VC、VDから左右角度θxおよび上下角度θyを求めることが可能となる。
 本実施の形態では、移動方向演算部5235は上下角度θy算出用の相関式および左右角度θx算出用の相関式を用いることで第1乃至第4の速度VA、VB、VC、VDから左右角度θxおよび上下角度θyをゴルフボールBの移動方向として算出する。
 したがって、本実施の形態では、移動方向演算部5235による移動方向の算出は、予め実測され得られている第1乃至第4の速度VA~VDと予め実測され得られているゴルフボールBの移動方向との相関関係を示す移動方向算出用の相関式に基づいてなされる。
 なお、上記のような相関式に代えて、相関式によって示される特性線のデータを左右角度θx算出用のマップとしてあるいは上下角度θy算出用のマップとして記憶しておき、各マップを用いて左右角度θxおよび上下角度θyを算出してもよい。その場合にはそれらマップを例えばROMに設けるなど任意である。
(2)実測して得た第1~第4の演算用速度VA~VDと実測して得たゴルフボールBの移動速度Vαとの相関関係については以下のように求める。
 基準計測器で計測した移動速度Vαの実測データと、第1~第4の演算用速度VA~VDの平均値Vaveとの相関関係に基づいて移動速度算出用の相関式(回帰式)を求める。
 言い換えると、移動速度Vαと、平均値Vaveとの関係を離散的に計測したデータを取得する。そして、取得したデータを従来公知の最小二乗法などを用いて回帰分析することによって移動速度Vαを平均値Vaveの関数(多項式)によって表わした相関式を求める。すなわち、このようにして求められた相関式によって移動速度Vαと平均値Vaveとの関係を示す特性線を得ることができる。
 したがって、このようにして求めた相関式を用いることにより、平均値Vaveから移動速度Vαを求めることが可能となる。
 本実施の形態では、移動速度演算部5236は上記の相関式を用いることで平均値VaveからゴルフボールBの移動速度Vαを算出する。
 したがって、本実施の形態では、移動速度演算部5236による移動速度の算出は、予め実測され得られている平均値Vaveと予め実測され得られているゴルフボールBの移動速度との相関関係を示す移動速度算出用の相関式に基づいてなされる。
 なお、移動速度Vαの場合も、上記のような相関式に代えて、相関式によって示される特性線のデータを移動速度Vα算出用のマップとして記憶しておき、マップを用いて移動速度Vαを算出してもよく、それらマップをROMに設けるなど任意である。
(3)実測して得た第1乃至第4の信号強度分布PA~PDと実測して得たゴルフボールBの第1~第4のスピン量SPとの相関関係については以下のように求める。
 基準計測器で計測したスピン量SPの実測データと、第1乃至第4の信号強度分布PA~PD(第1乃至第4の信号強度分布データPの山の幅)の平均値Paveとの相関関係に基づいてスピン量算出用の相関式(回帰式)を求める。
 言い換えると、スピン量SPと、信号強度分布データPの山の幅の平均値Paveとの関係を離散的に計測したデータを取得する。そして、取得したデータを従来公知の最小二乗法などを用いて回帰分析することによってスピン量SPを信号強度分布データPの山の幅の平均値Paveの関数(多項式)によって表わした相関式を求める。
 すなわち、このようにして求められた相関式によってスピン量SPと信号強度分布データPの山の幅の平均値Paveとの関係を示す特性線を得ることができる。
 したがって、このようにして求めた相関式を用いることにより、信号強度分布データPの山の幅の平均値Paveからスピン量SPを求めることが可能となる。
 本実施の形態では、スピン量演算部5238は上記の相関式を用いることで信号強度分布データPの山の幅の平均値PaveからゴルフボールBのスピン量SPを算出する。
 したがって、本実施の形態では、スピン量演算部5238によるスピン量SPの算出は、予め実測され得られている信号強度分布データPの山の幅の平均値Paveと予め実測され得られているゴルフボールBのスピン量SPとの相関関係を示すスピン量算出用の相関式に基づいてなされる。
 なお、移動速度演算部5236と同様に、上記のような相関式に代えて、相関式によって示される特性線のデータをスピン量算出用のマップとして記憶しておき、マップを用いてスピン量SPを算出してもよい。
(4)実測して得たゴルフクラブヘッド4のヘッド挙動データD3と実測して得たゴルフボールBの回転軸方向RD(スピン量成分の比率)との相関関係については以下のように求める。
 基準計測器で計測したゴルフボールBの回転軸方向RDの実測データと、ヘッド挙動データD3との相関関係に基づいて回転軸方向(スピン量成分の比率)算出用の相関式(回帰式)を求める。この相関式は、ヘッド挙動データD3のうち、ゴルフクラブヘッド4の移動軌跡および打撃時フェース角φをパラメータとする。
 言い換えると、回転軸方向RDと、ヘッド挙動データD3との関係を離散的に計測したデータを取得する。そして、取得したデータを従来公知の最小二乗法などを用いて回帰分析することによって回転軸方向RDをヘッド挙動データD3(より詳細にはゴルフクラブヘッド4の移動軌跡および打撃時フェース角φ)の関数(多項式)によって表わした相関式を求める。
 すなわち、このようにして求められた相関式によって回転軸方向RDとヘッド挙動データD3との関係を示す特性線を得ることができる。
 したがって、このようにして求めた相関式を用いることにより、ヘッド挙動データD3から回転軸方向RDを求めることが可能となる。
 本実施の形態では、回転軸演算部5240は上記の相関式を用いることでヘッド挙動データD3からゴルフボールBの回転軸方向RDを算出する。
 したがって、本実施の形態では、回転軸演算部5240による回転軸方向RDの算出は、予め実測され得られているヘッド挙動データD3と予め実測され得られているゴルフボールBの回転軸方向RDとの相関関係を示す回転軸方向算出用の相関式に基づいてなされる。
 なお、移動速度演算部5236と同様に、上記のような相関式に代えて、相関式によって示される特性線のデータを回転軸方向算出用のマップとして記憶しておき、マップを用いて回転軸方向RDを算出してもよい。
(ボール計測システム10の動作)
 次に、ボール計測システム10の動作について図28~図30のフローチャートを参照して説明する。
 まず、図28および図29を参照して、本計測に先立つ設定動作について説明する。
 図28はゴルフクラブ計測ユニット30の設定動作を示すフローチャートである。
 図28の処理に先立って、トランスミッタ312は、予め所定の位置に固定して設置されている。
 まず、図8、図10乃至図12に示すように、計測対象となるゴルフクラブ2を、設定されたライ角およびロフト角通りとなるように保持手段320に保持させておく(ステップS10:保持ステップ)。
 次に、適宜箇所において保持手段320がゴルフクラブ2を保持した状態で、ゴルフクラブ計測ユニット30および演算ユニット40を起動させ、第1キャリブレーションを実行する(ステップS12:第1キャリブレーションステップ)。
 すなわち、第1キャリブレーション部5450は、第1の検出信号S1と第2の検出信号S2とに基づいて、第1の計測点1402に対するフェース面402の中心点410の3次元位置データと、第1の計測方向1404に対するゴルフクラブヘッド4のフェース面402の向きを示す向きデータとを第1のキャリブレーションデータDc1として得る。
 ここで、トランスミッタ312と、ゴルフクラブ側3次元磁気センサ314および保持手段側3次元磁気センサ316との距離を短くすることが好ましい。
 その理由は、トランスミッタ312と磁気センサ314,16の距離を短くするほど、磁束密度の高いエリアでの計測が可能となり、精度を確保する上で有利となるためである。
 次いで、図31に示すように、保持手段320からゴルフクラブヘッド4を取り外したのち、保持手段320をボール載置位置P0および目標線Lを基準として位置決めして床面G上に載置する(ステップS14:保持手段位置決めステップ)。
 すなわち、図10、図11に示すように、平面視した状態で、保持手段側3次元磁気センサ316の第2の計測点1602がボール載置位置P0に位置するゴルフボールBの中心点P1と合致し、かつ、第2の計測方向1604が、目標線Lと合致するように、保持手段320を位置させる。
 ステップS14では、ステップS10においてトランスミッタ312の近傍に位置させていた保持手段320を、トランスミッタ312から離間したボール載置位置P0に移動させることになる。
 次に、第2キャリブレーション部5452によって、第2の検出信号S2に基づいて、基準位置1202に対する第2の計測点1602の3次元位置データと、基準方向1204に対する第2の計測方向1604の向きを示す向きデータとを第2のキャリブレーションデータDc2として得る(ステップS16:第2キャリブレーションステップ)。
 すなわち、第2のキャリブレーションデータDc2は、保持手段320がボール載置位置P0に移動された状態における(第2の計測点1602がボール載置位置P0に合致しかつ第2の計測方向1604が目標線Lに合致した状態における)保持手段側3次元磁気センサ316のトランスミッタ312に対する3次元位置と方向とを示す。
 ステップS16が終了したならば、保持手段320をボール載置位置P0からゴルフクラブ2のスウィングの邪魔にならない位置に移動させる。
 以上によりゴルフクラブ計測ユニット30の設定動作が終了する。
 なお、使用するゴルフクラブ2について、いったん第1、第2キャリブレーションを実施した以降は、図28の処理は省略することができる。
 また、ボール載置位置P0あるいは目標線Lを変更した場合は、ステップS10,S12の処理を省略し、S14以降のみを実施すればよい。
 つぎに、図29を参照してボール計測ユニット20の設定動作を説明する。
 まず、専用のゴルフボール打ち出し装置(スイングロボット)を用いてゴルフボールBを、移動方向と移動速度Vαを異ならせて打撃し、左右角度θx、上下角度θy、移動速度Vα、スピン量SP、および回転軸方向RDを実測する(ステップS50)。
 同時に、ボール計測ユニット20を用いて第1乃至第4の演算用速度VA~VDおよび第1乃至第4の信号強度分布データPの山の幅を計測するとともに(ステップS52)、ゴルフクラブ計測ユニット30を用いてゴルフクラブヘッド4のヘッド挙動データD3を計測する(ステップS53)。
 次いで、演算ユニット40の移動方向演算部5235により、第1乃至第4の速度VA~VDに基づいて算出した第1の値D1および第2の値D2に基づいて、第1の値D1と上下角度θyとの相関関係を示す相関式および第2の値D2と左右角度θxとの相関関係を示す相関式を算出する(ステップS54)。なお、第1の値D1=((ΔVAB+ΔVCD)/2)/Vave(ΔVAB=VA-VB、ΔVCD=VC-VD)、第2の値D2=((ΔVAC+ΔVBD)/2)/ΔVave(ΔVAC=VA-VC、ΔVBD=VB-VD)である。
 次いで、演算ユニット40の移動速度演算部5236により、第1乃至第4の演算用速度VA~VDの平均値Vaveと移動速度Vαとの相関関係を示す相関式を算出する(ステップS55)。また、演算ユニット40のスピン量演算部5238により、第1乃至第4の信号強度分布データPの山の幅の平均値Paveとスピン量SPとの相関関係を示す相関式を算出する(ステップS56)。さらに、演算ユニット40の回転軸方向演算部5240により、ヘッド挙動データD3と回転軸方向RDとの相関関係を示す相関式を算出する(ステップS57)。
 そして、ステップS54,S55,S56,S57によって得られた4つの相関式を各部に設定する(ステップS58)。
 以上によりボール計測ユニット20の設定動作が終了する。
 つぎに、図30を参照して、ボール計測システム10の本計測時の動作について説明する。
 まず、使用者は、ゴルフボールBの打ち出し方向においてゴルフボールBから例えば1.5m~2m程度後方の箇所にボール計測ユニット20を設置する。このとき、第1乃至第4のアンテナの12A~12DがゴルフボールBに向くようにケース26を設置する。
 これにより、第1乃至第4のアンテナの12A~12Dから送出された送信波W1がゴルフボールBに当たり、反射波W2が第1乃至第4のアンテナの12A~12Dに受信可能な状態となる。
 使用者が所定の操作をおこなうことにより、ボール計測システム10は各種パラメータを計測する計測モードに設定される(ステップS70)。
 計測モードに設定されると、ボール計測ユニット20において、第1乃至第4のドップラー信号SdA~SdDとトリガ信号trgの蓄積部5230へのサンプリングが開始される(ステップS72)。
 ここで、図15に示すように、使用者がゴルフボールBをボール載置位置P0に載置し、ゴルフクラブ2をスウィングしてゴルフボールBをターゲットCに向けて打ち出すと、打撃音がボール計測ユニット20のマイク16によって収音される。トリガ信号発生部18は、ドップラー信号Sdを受信し、かつ、打撃音の音声信号が予め定められたしきい値を上回ったときに、トリガ信号trgを生成して演算ユニット40に供給し、これによりトリガ信号trgが蓄積部5230に供給される。
 信号強度分布データ生成部5232は、蓄積部5230にサンプリングされたトリガ信号trgの検出の有無を判定しており(ステップS74)、トリガ信号trgを検出しなければ、ステップS74を繰り返す。
 トリガ信号trgを検出された場合(ステップS74:Yes)、すなわち、使用者がゴルフクラブ2をスウィングした場合、ゴルフクラブ計測ユニット30では、このスウィングの過程において、第1の時系列データ生成部5453は、第1の検出信号S1に基づいて生成した実測データを、第1のキャリブレーションデータDc1を用いて補正することにより第1の時系列データD1を生成する(ステップS76:第1の時系列データ生成ステップ)。
 すなわち、実測データを第1のキャリブレーションデータDc1を用いて補正することにより、トランスミッタ312に対するフェース面402の中心点410の3次元位置データおよびフェース面402の向きを示す向きデータからなる第1の時系列データD2が生成される。
 しかしながら、第1の時系列データD1は、ボール載置位置P0と目標線Lとに関する補正がなされていないので、第1の時系列データD1は未だ正確なものではない。
 次に、第2の時系列データ生成部5454は、第1の時系列データD1を第2のキャリブレーションデータDc2を用いて補正することにより第2の時系列データD2を生成する(ステップS78:第2の時系列データ生成ステップ)。
 すなわち、第1の時系列データD1を第2のキャリブレーションデータDc2を用いて補正することにより、ボール載置位置P0と目標線Lとに関する補正がなされた正確な第2の時系列データD2が得られる。
 次いで、挙動データ生成部5458は、第2の時系列データD2と、記憶部5456から読み出したゴルフクラブヘッドの3次元形状モデルMとに基づいてゴルフクラブヘッド4の挙動を示すヘッド挙動データD3を生成する(ステップS80:挙動データ生成ステップ)。
 すなわち、挙動データ生成部5458は、ステップS20で得られたフェース面402の中心点410の3次元位置データとフェース面402の向きを示す向きデータとからなる時系列データに基づいて3次元形状モデルMを仮想空間上で動かすことにより、ヘッド挙動データD3を生成する。
 また、ボール計測ユニット20では、トリガ信号trgを検出すると(ステップS74:Yes)、信号強度分布データ生成部5232においてトリガ信号trgの検出時点から予め定められた区間にわたる第1乃至第4のドップラー信号SdA~SdDのサンプリングデータを特定する(ステップS82)。
 そして、信号強度分布データ生成部5232は、第1乃至第4の信号強度分布データPを生成する(ステップS84)。
 次いで、速度演算部5234は、第1乃至第4の信号強度分布データPから第1乃至第4の演算用速度VA~VDを算出する(ステップS86)。
 次いで、移動方向演算部5235は、予め設定されている相関式から第1乃至第4の演算用速度VA~VDに基づいて移動速度方向(左右角度θxおよび上下角度θy)を算出する(ステップS88)。
 次いで、移動速度演算部5236は、予め設定されている相関式から第1乃至第4の演算用速度VA~VDの平均値Vaveに基づいて移動速度Vαを算出する(ステップS90)。
 次いで、スピン量演算部5238は、予め設定されている相関式から第1乃至第4の信号強度分布データPの山の幅の平均値Paveに基づいてスピン量SPを算出する(ステップS92)。
 次いで、回転軸演算部5240は、ゴルフクラブ計測ユニット30で測定されたヘッド挙動データD3(打撃時フェース角φおよび移動軌跡)とステップS92で算出されたスピン量SPとを用いて、ゴルフボールBの回転軸方向RDを算出する(ステップS94)。
 このようにして得られた各種のパラメータ(計測結果)は、演算ユニット40の出力部460に供給されて出力される(ステップS96)。
 図32は、出力部460における計測結果の表示出力例を示す説明図である。図32において、表示画面Mの上部には、ゴルフコースをイメージした周辺画像とともに、ボール設置位置P0からのゴルフボールBの移動軌跡FR(より詳細には、ゴルフボールBの位置の所定時間ごとのプロット)が表示される。
 また、表示画面Mの下部には、ボール計測ユニット20およびゴルフクラブ計測ユニット30で計測された各種のパラメータPRが表示される。パラメータPRには、ゴルフクラブヘッド4のヘッドスピードやゴルフボールBのボールスピード等が含まれる。
 また、パラメータPRにおいて、回転軸方向RDは、バックスピンおよびサイドスピンの量として表示される。スピン量SPの単位は(rpm)である。なお、バックスピンの場合のスピン量SPの表現は、例えば、逆回転方向のスピン量は正の値、順回転方向のスピン量は負の値で示すことができる。また、サイドスピンの場合のスピン量SPの表現は、例えば、平面視時計回り方向のスピン量は正の値で、反時計回り方向のスピン量は負の値で示すことができる。
 また、回転軸方向RDの単位を(度)として表示してもよい。この場合、回転軸方向RDの表現は、例えば、回転軸が水平面に対して右上がりであれば角度を正の値で、左上がりであれば角度を負の値で示すことができる。
 以上説明したように本実施の形態によれば、ゴルフボールBの打撃時におけるゴルフクラブヘッド4の移動軌跡および打撃時フェース角φに基づいて、ゴルフボールBの回転軸方向を算出するようにした。したがって、従来のようにゴルフボールBの移動方向とゴルフクラブヘッド4の移動軌跡との角度差θとスピン量SPとから回転軸方向を算出する方法や、上記角度差θから回転軸方向を算出する方法、打撃時フェース角φから回転軸方向RDを算出する方法などと比較して、回転軸方向との相関性が高いパラメータを用いて回転軸の算出をおこなうことができ、精度高くゴルフボールBの回転軸方向を算出することができる。
 また、本実施の形態によれば、スピン量SPをバックスピン成分およびサイドスピン成分とに分解することによって回転軸方向RDを算出する。したがって、2つの計測ユニット(ボール計測ユニット20およびゴルフクラブ計測ユニット30)の計測データを合わせて回転軸方向RDを算出することができ、より精度高くゴルフボールBの回転軸方向を算出することができる。
 また、本実施の形態によれば、トランスミッタ312と、ゴルフクラブ側3次元磁気センサ314とを用いてゴルフクラブヘッド4の3次元位置データと向きデータとからなる第2の時系列データD2を得ると共に、第2の時系列データD2とゴルフクラブヘッド4の3次元形状モデルMとに基づいてスウィング中のゴルフクラブヘッド4の挙動を示すヘッド挙動データD3を得るようにした。
 したがって、従来の画像データを用いる技術に比較してカメラなどの撮像装置が不要となり、撮像スペースを確保する必要がないため、構成の簡素化および省スペース化、低コスト化を図りつつ、ゴルフクラブヘッド4の挙動を的確に計測する上で有利となる。
 また、従来の画像データを用いる技術に比較してゴルフクラブヘッド4の計測範囲を広く確保でき、スウィングの全体にわたって計測を行うことができる。
 また、本実施の形態では、ゴルフクラブ側3次元磁気センサ314によって検出された第1の検出信号S1に基づいて生成した実測データを、第1のキャリブレーションデータDc1を用いて補正することにより第1の時系列データD1を生成し、第1の時系列データD1を第2のキャリブレーションデータDc2を用いて補正することにより第2の時系列データD2を生成するようにした。
 すなわち、第1の時系列データD1を第2のキャリブレーションデータDc2を用いて補正することにより、ボール載置位置P0と目標線Lとに関する補正がなされた正確な第2の時系列データD2を得るようにした。
 したがって、ボール載置位置P0あるいは目標線Lが変更された場合には、第2のキャリブレーションデータDc2を取得しなおすことによって、正確な第2の時系列データD2を得ることができる。
 したがって、ゴルフクラブ2、トランスミッタ312、保持手段320の設置レイアウトの変更の自由度を確保する上で有利となるため、設置場所を移動する場合に簡単にゴルフクラブヘッド4の挙動の計測を行うことができる。また、実際のゴルフ練習場などレイアウトの制限を受けやすい場所であっても容易に設置することができる。
 また、ゴルフクラブ側3次元磁気センサ314と、保持手段側3次元磁気センサ316とをトランスミッタ312に近接した箇所に位置させることによって、第1のキャリブレーションデータDc1を高い精度で得ることができ、ヘッド挙動データD3の精度を高める上で有利となる。
 また、本実施の形態では、保持手段側3次元磁気センサ316を用いて第2のキャリブレーションデータDc2を得る場合について説明した。
 しかしながら、保持手段側3次元磁気センサ316と別にボール位置計測用3次元磁気センサを設け、このボール位置計測用3次元磁気センサを用いて第2のキャリブレーションデータDc2を得るようにしてもよい。
 すなわち、前記のボール位置計測用3次元磁気センサは、第3の計測点および第3の計測方向を有し、第3の計測点の周りの磁気を互いに直交する3軸方向で感知すると共に、基準位置に対する第2の計測点の3次元位置および基準方向に対する第3の計測方向の向きに応じて第3の検出信号を出力する。
 そして、平面視した状態で、第3の計測点が予め定められたボール設置位置P0と合致し、かつ、第3の計測方向の向きがボール設置位置P0とゴルフボールの目標点とを結ぶ目標線Lの向きと合致するように、ボール位置計測用3次元磁気センサを位置させる。
 この状態で、第2キャリブレーション部5452は、第3の検出信号に基づいて、基準位置1202に対する第3の計測点の3次元位置データと、基準方向1204に対する第3の計測方向の向きを示す向きデータとを第2のキャリブレーションデータDc2として取得する。
 上述したようにボール位置計測用3次元磁気センサを保持手段側3次元磁気センサ316と別に設けても用いてもよいが、本実施の形態のように、保持手段側3次元磁気センサ316を用いて第2のキャリブレーションデータDc2を得ると、言い換えると、保持手段側3次元磁気センサ316によって前記のボール位置計測用3次元磁気センサを兼用すると、構成の簡素化、低コスト化を図る上で有利となる。
 なお、本実施の形態では、ゴルフクラブ側3次元磁気センサ314をゴルフクラブ2のグリップ部3に設けたが、ゴルフクラブ側3次元磁気センサ314をゴルフクラブヘッド4に設けても良い。
 しかしながら、本実施の形態のようにゴルフクラブ側3次元磁気センサ314をグリップ部3に設けると、ゴルフクラブ側3次元磁気センサ314が目立たず、また、スウィングの際に邪魔となりにくいため、使い勝手を高める上で有利となる。
(ゴルフクラブ計測ユニット30の変形例)
 また、本実施の形態では、第1の時系列データD1を第2のキャリブレーションデータDc2を用いて補正することにより、ボール載置位置P0と目標線Lとに関する補正がなされた正確な第2の時系列データD2を得るようにした。
 しかしながら、トランスミッタ312の基準位置1202に対するボール載置位置P0が固定して定められ、かつ、トランスミッタ312の基準方向1204に対する目標線Lが固定して定められるという条件が成立するならば、第2のキャリブレーションデータDc2による補正は不要となる。
 すなわち、ゴルフクラブ側3次元磁気センサ314によって検出された第1の検出信号S1に基づいて生成した実測データを、第1のキャリブレーションデータDc1を用いて補正することにより生成した第1の時系列データD1を用いて挙動データD3を得ることができることになる。
 したがって、上記条件が満たされるならば、第2のキャリブレーションデータDc2を使用することなく、挙動データD3を得ることができ、第2のキャリブレーションデータDc2を得る保持手段側3次元磁気センサ316を省略することができる。
 図33は、変形例にかかるゴルフクラブ計測ユニット30’の構成を示す説明図である。図33に示すように、変形例にかかるゴルフクラブ計測ユニット30’は、トランスミッタ312と、ゴルフクラブ側3次元磁気センサ314と、コントローラ・データ処理装置318を含んで構成されている。
 トランスミッタ312は、第1の実施の形態と同様に構成されている。
 トランスミッタ312は、予め定められた位置に設置されており、具体的には、ボール載置位置P0の近傍の箇所に設置されている。
 また、第1の実施の形態と同様に、トランスミッタ312のX軸およびY軸が水平面上を延在し、Z軸が鉛直方向を向くように設置され、トランスミッタ312の中心位置を予め定められた基準位置1202とし、基準位置1202を通るY軸方向を予め定められた基準方向1204とする。
 図33に示す変形例では、ボール載置位置P0に対する基準位置1202が固定されており、かつ、目標線Lに対する基準方向1204が固定されている。
 ゴルフクラブ側3次元磁気センサ314は、第1の実施の形態と同様に構成されており、第1の測定点1402および第1の測定方向1404を有し、基準位置1202に対する第1の測定点1402の3次元位置および基準方向1204に対する第1の測定方向1404の向きに応じて第1の検出信号S1を出力するものである。
 図33に示す変形例では、第1の測定点1402はゴルフクラブ側3次元磁気センサ314の中心位置であり、第1の測定方向1404は第1の測定点1402を通るY軸方向である。
 ゴルフクラブ側3次元磁気センサ314は、ゴルフクラブ2のシャフト6のうちクラブヘッド4の近傍箇所に固定されている。
 図33に示す変形例では、ゴルフクラブ側3次元磁気センサ314は、Y軸(第1の測定方向1404)をゴルフクラブ2の打撃方向と平行させ、かつ、Z軸をシャフト軸と平行させている。
 このような変形例によれば、第1の実施の形態と同様の効果が奏されることは無論のこと、以下の効果が奏される。
1)第1の実施の形態に比較して保持手段側3次元磁気センサ316が不要となるため、ゴルフクラブ側3次元磁気センサ314のみを設ければよいため、構成の簡素化、コストダウンを図る上で有利となる。
2)保持手段側3次元磁気センサ316が不要となるため、保持手段側3次元磁気センサ316の取り付け位置の誤差などに起因する誤差成分を除去でき、測定精度の向上を図る上で有利となる。
 なお、図33に示した変形例では、トランスミッタ312の基準位置1202,基準方向1204と、ゴルフボール設置位置P0と、目標線Lとの位置関係および方向を固定しなくてはならない。
 したがって、ユニットの設置に際しては、トランスミッタ312が固定されたプレートを用意し、このプレートに、ゴルフボール設置位置P0と、目標線Lとをマークなどにより視認可能に表示し、このようなプレート上で測定を行うようにすればよい。
(実施の形態2)
 図34は、実施の形態2にかかるボール計測システム10’の概略構成を示す説明図である。実施の形態1では、ゴルフクラブ計測ユニット30を、トランスミッタとゴルフクラブ側3次元磁気センサによって構成した。実施の形態2では、ゴルフクラブ計測ユニット30を、無線通信機能を有する小型のセンサユニットとし、この小型センサユニットをゴルフクラブ2のシャフト6に取り付けてゴルフクラブ2の挙動を計測する。
 ゴルフクラブ計測ユニット30には、計測点における加速度を計測する加速度センサ、計測点における地磁気を計測する地磁気センサ、および計測点における角速度を計測するジャイロセンサが内蔵されている。各センサの計測データは、無線通信によって演算ユニット40に送信される。
 演算ユニット40では、加速度センサの計測データを積分することによって、基準点からの移動距離を求める。また、ジャイロセンサの計測データを用いて基準点からの移動方向の軌跡を求める。また、地磁気センサの計測データを用いることによって、地表との相対方向、すなわち絶対方向を求める。
 なお、本実施の形態では、演算ユニット40として、スマートホン等の小型情報端末を用いてもよい。
 つぎに、ボール計測システム10’における計測の手順について説明する。
 まず、ゴルフクラブ2のシャフト6にゴルフクラブ計測ユニット30(小型センサ)を取り付ける。ゴルフクラブ計測ユニット30の取り付け位置は、グリップ端やシャフト6の途中など使用者の邪魔にならない場所にする。
 つぎに、ゴルフクラブ計測ユニット30のキャリブレーションをおこなう。キャリブレーションは、たとえば、使用者がゴルフクラブ2を基準位置に保持して、ゴルフクラブ計測ユニット30に設けられたキャリブレーション用スイッチを押すなどしておこなう。
 基準位置は、打撃時フェース角をボール計測ユニット20の仮想線CL(目標方向)と垂直とし、ライ角をスコアラインが水平になる位置、またはゴルフクラブ2の設定ライ角とし、シャフト6の前後方向を垂直に立てた位置とする。
 ゴルフクラブ計測ユニット30では、キャリブレーション用スイッチが押された際の位置情報および姿勢情報(加速度センサでは姿勢情報のみ)を各センサで取得して校正値として保存する。
 ここまでの動作がゴルフクラブ計測ユニット30の設定動作となる。
 その後、実施の形態1と同様に、ゴルフクラブ2をスウィングさせ、本測定をおこなう。各センサの計測データは、無線通信によって演算ユニット40に送信される。演算ユニット40は、各センサの計測データを用いて、ゴルフクラブヘッド4の打撃時フェース角φおよび移動軌跡を含むヘッド挙動データを算出する。そなお、各センサの計測データを用いてヘッド挙動データを算出する方法としては、従来公知の様々な方式を採用することができる。
 そして、実施の形態1と同様に、ゴルフクラブヘッド4の打撃時フェース角φおよび移動軌跡を用いてゴルフボールBの回転軸方向を算出し、その結果を出力する。
 なお、ゴルフクラブ計測ユニット30での計測の終了は、たとえばゴルフクラブ計測ユニット30で打撃時の衝撃を感知して自動でおこなう。また、使用者による計測用スイッチの操作や演算ユニット40による制御によって計測を終了してもよい。
 なお、ゴルフクラブ計測ユニット30に内蔵するセンサは、加速度センサおよびジャイロセンサ、または加速度センサおよび地磁気センサの2つを組み合わせたものであってもよい。
 実施の形態2によれば、ゴルフクラブ計測ユニット30による計測データを無線通信を用いて演算ユニット40に送信することができるので、実施の形態1のように有線通信で測定データを送信する場合と比較して、計測前後における使用者の動きの自由度を高めることができる。また、ゴルフクラブ計測ユニット30が小型のセンサユニットのみであるので、屋外等にも簡単に搬送することができ、使用者の利便性を向上させることができる。
 2……ゴルフクラブ、4……ゴルフクラブヘッド、6……シャフト、10……ボール計測システム、12……アンテナ、14……ドップラーセンサ、20……ボール計測ユニット、30……ゴルフクラブ計測ユニット、40……演算ユニット、314……ゴルフクラブ側3次元磁気センサ、316……保持手段側3次元磁気センサ、452……ボール挙動データ演算部、454……ヘッド挙動データ演算部、460……出力部。

Claims (6)

  1.  打撃後のゴルフボールの回転軸方向を計測するボール計測システムであって、
     打撃後の前記ゴルフボールの挙動を計測するボール計測手段と、
     前記ゴルフボールを打撃するゴルフクラブヘッドの打撃前後の挙動を計測するゴルフクラブ計測手段と、
     前記ボール計測手段および前記ゴルフクラブ計測手段による計測データに基づいて、前記ゴルフボールの前記回転軸方向を算出する演算手段と、を備え、
     前記ボール計測手段は、
     指向性を有し、供給される送信信号に基づいて前記ゴルフボールに向けて送信波を送信すると共に、前記ゴルフボールで反射された反射波を受信して受信信号を生成する互いに離間して配置された第1乃至第n(nは2以上の整数)のアンテナと、前記第1乃至第nのアンテナのそれぞれに対応して設けられ、前記アンテナに前記送信信号を供給すると共に、前記アンテナから供給される前記受信信号に基づいてドップラー周波数を有するドップラー信号を生成する第1乃至第nのドップラーセンサと、からなり、
     前記ゴルフクラブ計測手段は、
     少なくとも一部が前記ゴルフボールを打撃するゴルフクラブに設けられ、前記ゴルフクラブの挙動を示す計測データを出力するゴルフクラブ側センサと、からなり、
     前記演算手段は、
     前記第1乃至第nのドップラーセンサのそれぞれから得られたドップラー信号を周波数解析することにより周波数ごとの信号強度の分布を示す第1乃至第nの信号強度分布データを生成する信号強度分布データ生成部と、
     前記第1乃至第nの信号強度分布データのそれぞれに基づいて、前記ゴルフボールの移動速度に対応するドップラー周波数成分を検出し、それら検出したドップラー周波数成分に基づいて第1乃至第nの演算用速度を算出する速度演算部と、
     予め実測され得られている前記第1乃至第nの信号強度分布データと前記ゴルフボールのスピン量との相関関係に基づいて、前記信号強度分布データ生成部で生成された前記第1乃至第nの信号強度分布データから前記スピン量を算出するスピン量演算部と、
     前記ゴルフクラブ側計測手段によって計測された前記計測データに基づいて、前記ゴルフクラブヘッドの移動軌跡および前記ゴルフボールの打撃時における前記ゴルフクラブの打撃時フェース角を算出する挙動データ演算手段と、
     予め実測され得られている前記移動軌跡および前記打撃時フェース角と前記ゴルフボールの回転軸方向との相関関係に基づいて、前記挙動データ演算手段で算出された前記移動軌跡および前記打撃時フェース角から前記回転軸方向を算出する回転軸演算手段と、からなる、
     ことを特徴とするボール計測システム。
  2.  前記回転軸演算手段は、前記スピン量をバックスピン成分およびサイドスピン成分とに分解することによって前記回転軸方向を算出することを特徴とする請求項1に記載のボール計測システム。
  3.  前記ゴルフクラブ計測手段は、
     予め定められた位置に設置され、強さと方向に関する分布が既知である磁場を発生させるトランスミッタと、
     前記ゴルフクラブに固定され、計測点の周りの磁気を互いに直交する3軸方向で感知すると共に、予め定められた基準位置に対する前記計測点の3次元位置および予め定められた基準方向に対する計測方向の向きに応じて検出信号を出力するゴルフクラブ側3次元磁気センサであることを特徴とする請求項1または2に記載のボール計測システム。
  4.  前記ゴルフクラブ計測手段は、
     前記ゴルフクラブに固定され、計測点における加速度を計測する加速度センサ、および前記計測点における地磁気を計測する地磁気センサであることを特徴とする請求項1または2に記載のボール計測システム。
  5.  前記ゴルフクラブ計測手段は、
     前記ゴルフクラブに固定され、計測点における加速度を計測する加速度センサ、および前記計測点における角速度を計測するジャイロセンサであることを特徴とする請求項1または2に記載のボール計測システム。
  6.  前記ゴルフクラブ計測手段は、
     前記ゴルフクラブに固定され、計測点における加速度を計測する加速度センサ、前記計測点における地磁気を計測する地磁気センサ、および前記計測点における角速度を計測するジャイロセンサであることを特徴とする請求項1または2に記載のボール計測システム。
PCT/JP2013/006580 2012-11-14 2013-11-08 ボール計測システム WO2014076913A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014546854A JP6237642B2 (ja) 2012-11-14 2013-11-08 ボール計測システム
KR1020157011656A KR101887428B1 (ko) 2012-11-14 2013-11-08 볼 계측 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012250471 2012-11-14
JP2012-250471 2012-11-14

Publications (1)

Publication Number Publication Date
WO2014076913A1 true WO2014076913A1 (ja) 2014-05-22

Family

ID=50730848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006580 WO2014076913A1 (ja) 2012-11-14 2013-11-08 ボール計測システム

Country Status (3)

Country Link
JP (1) JP6237642B2 (ja)
KR (1) KR101887428B1 (ja)
WO (1) WO2014076913A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086952A (ja) * 2014-10-31 2016-05-23 横浜ゴム株式会社 移動体の挙動計測方法および挙動計測装置
JP2016107087A (ja) * 2014-12-09 2016-06-20 ダンロップスポーツ株式会社 監視デバイスを備えるスポーツ器具
JP2017000180A (ja) * 2015-06-04 2017-01-05 株式会社ブリヂストン ゴルフボールの弾道予測方法、ゴルフボールの弾道予測装置及びゴルフクラブの選定方法
JP2017000179A (ja) * 2015-06-04 2017-01-05 株式会社ブリヂストン ゴルフボールの弾道予測方法、ゴルフボールの弾道予測装置及びゴルフクラブの選定方法
JP2017029665A (ja) * 2015-07-28 2017-02-09 株式会社ユピテル 装置およびプログラム
WO2018204538A1 (en) * 2017-05-03 2018-11-08 Blast Motion Inc. Method of coupling a motion sensor to a piece of equipment
US10254139B2 (en) 2010-08-26 2019-04-09 Blast Motion Inc. Method of coupling a motion sensor to a piece of equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102024831B1 (ko) * 2018-10-29 2019-09-25 주식회사 크리에이츠 공의 회전을 측정하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007530151A (ja) * 2004-03-23 2007-11-01 ナイキ・インコーポレーテッド ゴルフスイングの動作特性を決定するシステム
JP2010155074A (ja) * 2008-12-04 2010-07-15 Yokohama Rubber Co Ltd:The ゴルフクラブの選択方法
JP2012068163A (ja) * 2010-09-24 2012-04-05 Yokohama Rubber Co Ltd:The ボール計測装置
JP2012095850A (ja) * 2010-11-02 2012-05-24 Sri Sports Ltd ゴルフクラブのフィッティング方法、その装置及び解析方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2102442A1 (en) * 1992-11-20 1994-05-21 William Gobush Method and apparatus to determine object striking instrument movement conditions
US20080287207A1 (en) * 2003-08-27 2008-11-20 Callaway Golf Company System and method for measuring a golfer's ball striking parameters
JP4960744B2 (ja) * 2007-03-30 2012-06-27 株式会社ユピテル スイング速度測定装置及びゴルフクラブのヘッドスピード測定装置
JP5617480B2 (ja) * 2010-09-24 2014-11-05 横浜ゴム株式会社 ボール計測装置およびボール計測方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007530151A (ja) * 2004-03-23 2007-11-01 ナイキ・インコーポレーテッド ゴルフスイングの動作特性を決定するシステム
JP2010155074A (ja) * 2008-12-04 2010-07-15 Yokohama Rubber Co Ltd:The ゴルフクラブの選択方法
JP2012068163A (ja) * 2010-09-24 2012-04-05 Yokohama Rubber Co Ltd:The ボール計測装置
JP2012095850A (ja) * 2010-11-02 2012-05-24 Sri Sports Ltd ゴルフクラブのフィッティング方法、その装置及び解析方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10254139B2 (en) 2010-08-26 2019-04-09 Blast Motion Inc. Method of coupling a motion sensor to a piece of equipment
JP2016086952A (ja) * 2014-10-31 2016-05-23 横浜ゴム株式会社 移動体の挙動計測方法および挙動計測装置
JP2016107087A (ja) * 2014-12-09 2016-06-20 ダンロップスポーツ株式会社 監視デバイスを備えるスポーツ器具
JP7064278B2 (ja) 2014-12-09 2022-05-10 住友ゴム工業株式会社 監視デバイスを備えるスポーツ器具
JP2017000180A (ja) * 2015-06-04 2017-01-05 株式会社ブリヂストン ゴルフボールの弾道予測方法、ゴルフボールの弾道予測装置及びゴルフクラブの選定方法
JP2017000179A (ja) * 2015-06-04 2017-01-05 株式会社ブリヂストン ゴルフボールの弾道予測方法、ゴルフボールの弾道予測装置及びゴルフクラブの選定方法
JP2017029665A (ja) * 2015-07-28 2017-02-09 株式会社ユピテル 装置およびプログラム
WO2018204538A1 (en) * 2017-05-03 2018-11-08 Blast Motion Inc. Method of coupling a motion sensor to a piece of equipment

Also Published As

Publication number Publication date
KR101887428B1 (ko) 2018-09-11
JPWO2014076913A1 (ja) 2017-01-05
JP6237642B2 (ja) 2017-11-29
KR20150084816A (ko) 2015-07-22

Similar Documents

Publication Publication Date Title
JP6237642B2 (ja) ボール計測システム
JP2007530151A (ja) ゴルフスイングの動作特性を決定するシステム
US8657707B2 (en) Swing analysis method
US20150343293A1 (en) Measuring device for detecting a hitting movement of a hitting implement, training device, and method for training a hitting movement
US8864599B2 (en) Teaching aid
US10048365B2 (en) Mobile body measurement device and measurement method
JP5824857B2 (ja) 球技用シミュレータ装置および球技用シミュレーション方法
JP2008284133A (ja) ゴルフスイング測定装置
KR20060125447A (ko) 골프 스윙 진단장치
JP5617481B2 (ja) ボール計測装置
US20120108354A1 (en) Golf swing analysis apparatus
JP6361147B2 (ja) スイング測定方法およびスイング測定装置
WO2015109442A1 (zh) 一种多节点运动测量与分析系统
JP5304941B2 (ja) ゴルフクラブヘッドの挙動計測装置および挙動計測方法、打撃具の挙動計測装置および挙動計測方法
WO2014061707A1 (ja) ゴルフクラブのスイング分析方法、スイング分析システム、及び記憶媒体
US20220339495A1 (en) Golf analysis device with calibration function
JP6862931B2 (ja) 運動解析装置、運動解析方法、運動解析システムおよび表示方法
KR100773423B1 (ko) 골프스윙 분석장치
US11340311B2 (en) Determining position and orientation from a Helmholtz device
JP2006109988A (ja) ゴルフスウィング解析システムおよびそのプログラム
JP5682190B2 (ja) 移動体の計測方法および計測装置
JP6361134B2 (ja) スイング評価装置およびスイング評価方法
US20200139214A1 (en) Swing Measurement Device, Swing Measurement Method, and Swing Measurement Program
US20050221906A1 (en) Method of selecting a golf club shaft
US11771956B2 (en) Swing analysis device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014546854

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157011656

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855720

Country of ref document: EP

Kind code of ref document: A1