WO2014073830A1 - 일체형 광학 필름 제조 방법 및 일체형 광학 필름 - Google Patents
일체형 광학 필름 제조 방법 및 일체형 광학 필름 Download PDFInfo
- Publication number
- WO2014073830A1 WO2014073830A1 PCT/KR2013/009924 KR2013009924W WO2014073830A1 WO 2014073830 A1 WO2014073830 A1 WO 2014073830A1 KR 2013009924 W KR2013009924 W KR 2013009924W WO 2014073830 A1 WO2014073830 A1 WO 2014073830A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- optical film
- mold
- pattern
- light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0268—Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/02—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
- B29C39/026—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles characterised by the shape of the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/02—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
- B29C39/12—Making multilayered or multicoloured articles
- B29C39/123—Making multilayered articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/0074—Production of other optical elements not provided for in B29D11/00009- B29D11/0073
- B29D11/00788—Producing optical films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D7/00—Producing flat articles, e.g. films or sheets
- B29D7/01—Films or sheets
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/021—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
- G02B5/0231—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0273—Diffusing elements; Afocal elements characterized by the use
- G02B5/0278—Diffusing elements; Afocal elements characterized by the use used in transmission
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/04—Prisms
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
- G02B6/0053—Prismatic sheet or layer; Brightness enhancement element, sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0065—Manufacturing aspects; Material aspects
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133606—Direct backlight including a specially adapted diffusing, scattering or light controlling members
- G02F1/133607—Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
Definitions
- the present invention relates to a method for manufacturing an integrated optical film, and more particularly, to a method for manufacturing an integrated optical film and an integrated optical film that can be applied to a liquid crystal display, a light receiving display, a sign, lighting, and the like.
- Liquid crystal display is a representative display device widely used in various fields. Since the liquid crystal display is a non-light emitting device, a backlight unit for generating light is required. Therefore, such a backlight unit is an important factor for determining the size and light efficiency of the liquid crystal display device, and is composed of an assembly of various optical sheets.
- the backlight unit includes a light source, a light guide plate, a reflecting plate, a diffusion sheet, a prism sheet, and a protective sheet.
- the light generated from the light source is directed toward the diffusion sheet through the light guide plate, and the light diffused by the diffusion sheet is focused through the first and second prism sheets to be directed toward the liquid crystal display panel.
- the diffusion sheet serves to provide uniform luminance over the entire area.
- the prism sheet performs a function of improving luminance in a specific viewing angle range.
- the luminance improvement at this particular viewing angle may be realized by condensing by the prism structure.
- the diffusion sheet and the prism sheet of the conventional backlight unit are provided by simple contact, the diffusion sheet and the prism sheet may be shifted from each other when the liquid crystal display device is used for a long time. A light leakage phenomenon may occur, or the light may not be properly refracted to the liquid crystal display panel, resulting in a narrow viewing angle or a problem in that the screen cannot be viewed at a specific viewing angle.
- the optical sheets included in the backlight unit may have various patterns for controlling the degree of diffusion or condensing.
- the base layer underlying each of the optical sheets had to be disposed. For example, by forming a diffusion sheet having a pattern on one substrate layer, forming a prism sheet having a pattern on another substrate layer, and then stacking another substrate layer on which the prism sheet is formed on the diffusion sheet. The assembly was prepared.
- the conventional backlight unit has a limitation in implementing a slim thickness because the base layer must be disposed on each lower side of the optical sheets, and it is difficult to predict the path of incident light because an additional interface is formed between the base layer and the optical sheet. .
- the present application is to solve the above-mentioned problems of the prior art, it is firmly secured to the integrity and provided with a slimmer, at the same time manufacturing an integrated optical film capable of efficiently diffusing or refracting light so as to greatly improve the brightness and light uniformity It is an object to provide a method and an integrated optical film.
- the integrated optical film manufacturing method comprises the steps of (a) coating a curable resin on a first mold having a pattern; (b) covering the substrate layer on an upper surface of the resin coated on the first mold; (c) projecting light for temporary or complete curing onto the resin covered with the base layer to form a first layer in a temporary or fully cured state; (d) coating the curable resin on the second mold having the pattern; (e) planarizing a top surface of the resin coated on the second mold with a release film or a release roll having a surface having a release property to form a second layer in an uncured state; (f) stacking the first layer and the base layer separated from the first mold such that the first layer is in contact with the second layer; And (g) projecting light onto the second layer, the first layer, and the base layer to integrate the second layer, the first layer, and the base layer, and separate the second mold to separate the two-layer optics.
- the integrated optical film according to the first aspect of the present application is a base layer; A first layer disposed on the substrate layer and having a pattern formed on an upper surface thereof; And a second layer disposed on the first layer and having a pattern formed thereon, wherein the second layer is directly connected to the first layer without the addition of a separate base layer between the first layer.
- the base layer is integrally formed with the first layer, and the first layer is formed with the second layer in a state where a part of the upper surface protruding in accordance with the pattern is partially inserted into a lower surface of the second layer. It can be formed integrally.
- the optical layers stacked on the first layer can be formed to have a flat bottom surface without a base layer supporting each, having a slim thickness and at the same time incident through the bottom surface
- An integrated optical film capable of uniformly setting the incident angle of the light to be provided may be provided.
- the optical layers stacked on the first layer can be manufactured and laminated in a state having a clear shape without a base layer, it is possible to easily implement the pattern in a desired shape, Accordingly, an integrated optical film that can more easily adjust or improve luminance and light uniformity may be provided according to application conditions for each product.
- each layer can be formed firmly integrally, use Even if the length of time is longer, it does not displace each other unless excessive external force exceeds the allowable value, so that a problem of light leakage, a narrow viewing angle, or a light divergence at a specific viewing angle may be solved.
- FIG. 1 is a flowchart illustrating a process of manufacturing a two-layer optical film through an integrated optical film manufacturing method according to an embodiment of the present application.
- FIG. 2 is a flowchart illustrating a process of manufacturing a three-layer optical film through the integrated optical film manufacturing method according to an embodiment of the present application.
- 3A to 3D, 4A to 4D, 5, 6A, and 6B are cross-sectional views illustrating a method for manufacturing an integrated optical film according to an embodiment of the present disclosure.
- FIG. 7 is a perspective view of an integrated optical film according to the first embodiment of the present application.
- FIG. 8 is a cross-sectional view for describing a lead-in structure of the integrated optical film according to the first embodiment of the present application.
- 9A is a plan view from above of a second layer of an integrated optical film according to a first embodiment of the present disclosure.
- 9B is a plan view from above of another example of the second layer of the integrated optical film according to the first embodiment of the present application.
- FIG. 10 is a perspective view of an integrated optical film according to a second embodiment of the present application.
- FIG. 11 is a perspective view of an integrated optical film according to a third embodiment of the present application.
- FIG. 12 is a perspective view of an integrated optical film according to a fourth embodiment of the present application.
- FIG. 13 is a perspective view of an integrated optical film according to a fifth embodiment of the present application.
- the term “combination of these” included in the expression of the makushi form means one or more mixtures or combinations selected from the group consisting of constituents described in the expression of the makushi form, wherein the constituents It means to include one or more selected from the group consisting of.
- FIGS. 3A to 3D, 4A to 4D, 5, 6A, and 6B terms related to directions or positions (top, bottom, top, upward, downward, etc.) in the description of the embodiments of the present application are shown in FIGS. 3A to 3D, 4A to 4D, 5, 6A, and 6B.
- the setting is based on.
- the upward direction may be upward
- the upward direction may be the upper surface
- the downward direction may be downward
- the downward direction may be the lower surface.
- the upper surface may be disposed in various directions such as to face forward.
- FIG. 1 is a flowchart illustrating a process of manufacturing a two-layer optical film through an integrated optical film manufacturing method according to an embodiment of the present application
- Figure 2 is a three-layer optical through the integrated optical film manufacturing method according to an embodiment of the present application It is a flowchart which shows the process of manufacturing a film.
- 3A to 3D, 4A to 4D, 5, 6A, and 6B are cross-sectional views illustrating a method of manufacturing an integrated optical film according to an embodiment of the present disclosure.
- the integrated optical film manufacturing method S100 may include coating a curable resin on a first mold 600 having a pattern 610 (S105).
- the pattern 610 of the first mold 600 may be variously formed to correspond to the shape of the pattern 11 of the first layer 1.
- the pattern 610 of the first mold 600 may have a prism shape, and the pattern 11 of the first layer 1 may have a prism shape engaged thereto.
- the pattern 610 of the first mold 600 may be formed convexly to correspond thereto.
- the pattern 610 of the first mold 600 may be formed to be concave to correspond thereto.
- the integrated optical film manufacturing method S100 includes covering the base layer 9 on the top surface of the resin coated on the first mold 600 (S110).
- the base material layer 9 is the most basic layer of each layer which forms an integrated optical film. Referring to FIG. 6B, the base layer 9 may be a layer that transmits light from the lower side to the first layer 1.
- the base layer 9 is disposed above the resin corresponding to the first layer 1. That is, the base layer 9 covers the upper surface of the resin to be the first layer 1 so that the upper surface of the resin may be temporarily cured or completely cured in a state where the upper surface of the resin is kept flat during future curing or complete curing.
- the base layer 9 may be a flat film shape made of a material such as polyethylene terephthalate (PET), polycarbonate (PC), polyethylene (PE), but is not limited thereto. That is, the base layer 9 may be formed of a material having a predetermined refractive index and light transmittance in order to secure desired luminance and light uniformity.
- PET polyethylene terephthalate
- PC polycarbonate
- PE polyethylene
- the base layer 9 may be formed of a material having a predetermined refractive index and light transmittance in order to secure desired luminance and light uniformity.
- a light guide plate may serve as the base layer 9.
- the substrate layer 9 may be a light guide plate.
- the light guide plate is a component that converts light incident from a lamp (not shown) into uniform planar light, and is generally made of PMMA (polymethymethacrylate), which is an acrylic resin.
- PMMA polymethymethacrylate
- the base layer 9 is not necessarily limited to the light guide plate, and it is preferable that the base layer 9 is understood as a concept that includes all the layers capable of transmitting light from the lower side to the first layer 1 as the bases of the respective layers. Do.
- the integrated optical film manufacturing method S100 of the present invention is a first layer in a temporary or fully cured state by projecting light for temporary or complete curing onto a resin covered with a base layer 9. (1) forming a step (S115).
- the resin may be a curable transparent resin cured by any one of ultraviolet (UV) and infrared (IR).
- UV ultraviolet
- IR infrared
- the light projected onto the resin for temporary curing may be short wavelength ultraviolet (UV), and such short wavelength ultraviolet light may be realized through a BL lamp.
- the light projected onto the resin for complete curing may be long wavelength ultraviolet (UV) light, and may be implemented through a mercury lamp, a metal halide lamp, a gallium lamp, an LED lamp, and the like.
- UV ultraviolet
- Such long wavelength ultraviolet (UV) may involve not only photo curing but also thermal curing.
- projecting light for temporary curing on the resin means that the resin projects light enough to be temporarily cured.
- the light for temporary curing may be simultaneously projected from the upper side and the lower side, but the present invention is not limited thereto, and light projection for temporary curing may be performed in another manner as necessary.
- the resin is coated on the first mold 600, and then cured to a predetermined or more to prepare the first layer 1 in an excessively hardened state.
- the first layer 1 is entangled in the first mold 600, it becomes difficult to separate the first layer 1 from the first mold 600, or the first layer 1 is formed in the first mold 600. ) May damage the surface.
- the temporary hardening is such that the first layer 1 can be easily separated from the first mold 600 without damage, and the first layer 1 after the first layer 1 is separated from the first mold 600. It means curing made to the extent that the shape of 1) can be maintained without deformation.
- the term temporary curing used in the future may also be used in the same sense as described above.
- the first mold 600 when the first mold 600 is provided through a mold having a surface having a high releasability through a release agent or the like rather than a general mold, the first mold even after the first layer 1 is completely cured. It may be separated from the 600 without damage. However, in order to form the first layer 1 having a more stable and clear pattern, it will be preferable to perform the temporary curing as described above.
- the first layer 1 in this temporary hardened state and the base layer 9 integrally bonded with the temporary hardened first layer 1 may be separated from the first mold 600. have.
- this separation point is not necessarily before the second layer 2 is manufactured, and the separation point may be determined in consideration of the manufacturing conditions.
- the manufacturing process of the first layer 1 does not necessarily have to proceed first, and the manufacturing process of the second layer 2 may proceed first depending on the manufacturing conditions.
- the integrated optical film manufacturing method S100 may include coating a curable resin on a second mold 700 having a pattern 710 (S120).
- the pattern 710 of the second mold 700 may be variously formed to correspond to the shape of the pattern 21 of the second layer 2.
- the pattern 710 of the second mold 700 may have a concave shape
- the pattern 11 of the first layer 1 may have a convex shape engaged with the pattern 710.
- the pattern 710 of the second mold 700 may be formed in a prism shape engaged with it. .
- the integrated optical film manufacturing method S100 is a release film 99 having a surface having a releasability to flatten the top surface of the resin coated on the second mold 700. Forming a second layer 2 in an uncured state (S125).
- the integrated optical film manufacturing method (S100) is not a release film 99 but a release roll 810 to flatten the top surface of the resin coated on the second mold 700. Forming a second layer 2 in a cured state (S125).
- the step S125 when the step S125 is performed using the release film 99, the second layer having the top surface flattened by covering the release film 99 on the top surface of the resin coated on the second mold 700 will be described. (2) is formed (refer FIG. 4B), and after the planarized 2nd layer 2 is formed, the release film 99 which covered was removed on the 2nd layer 2 (refer FIG. 4C).
- the release film 99 refers to a film having release properties.
- the release film 99 is a film made of a material having easy peelability.
- the release film 99 may have a surface material including silica, fluorine, titanium, or the like.
- the release film 99 may be separated from the temporarily cured or fully cured resin even after the resin is temporarily cured or completely cured, unlike the base layer 9 at the step S110.
- step S125 when the step S125 is performed using the release roll 810, by pressing the upper surface of the resin coated on the second mold 700 with the release roll 810 having a surface having a release property. Planarize (see FIG. 5).
- the surface having a release property of the release roll 810 means a surface made of a material having peelability that is easily peeled off.
- the release surface of the release roll 810 may be formed through a release layer 811 provided along the outer circumference of the release roll 810 as shown in FIG. 4B.
- the surface having a release property of the release roll 810 may be made of a material including at least one of Teflon, fluorine, silicon, tungsten, and titanium.
- the material of the surface having the release property of the release roll 810 is preferably selected to be a material that can ensure a higher release property corresponding to the component of the resin coated on the second mold 700.
- the resin coated on the second mold 700 and the second mold 700 may be formed at intervals between the release roll 810 and the release roll 810. May be passed between rolls 820.
- the distance between the release roll 810 and the guide roll 820 may be smaller than or equal to the total thickness of the resin coated on the second mold 700 and the second mold 700.
- the release roll 810 is formed on the second mold 700.
- the release roll 810 is disposed on the upper side and the guide roll 820 is disposed on the lower side so as to be in contact with the upper surface of the resin coated thereon.
- the second layer 2 may be formed by using the release roll 810 (see FIG. 5) of the release film 99 (see FIGS. 4B and 4C) with respect to the top surface of the resin coated on the second mold 700.
- the flatness of the upper surface of the can be greatly improved.
- the upper surface of the second layer 2 shown in FIGS. 4B, 4D, and 5 may be referred to as the lower surface of the second layer 2 when the pattern 21 is placed upward in FIG. 6B.
- the second layer 2 remains in an uncured state in which light for curing is not projected until the first layer 1 is laminated.
- a part of the protruding portions of the pattern formed in the first layer 1 is introduced into the upper surface of the flattened second layer 2 and then the second layer 1 ) To maximize the integration effect.
- the integrated optical film manufacturing method S100 of the present invention may include a first layer 1 and a base layer separated from the first mold 600 on the second layer 2. (9) stacking (S135) such that the first layer (1) is in contact with the second layer (2).
- the integrated optical film manufacturing method S100 of the present invention projects a second layer by projecting light onto the second layer 2, the first layer 1, and the base layer 9. (2), integrating the first layer 1 and the base layer 9 and separating the second mold 700 to form a two-layer optical film 120 (S140).
- the light projected in step S140 may be light for complete curing.
- the second layer (2) and the first layer in a state that the second layer (2), the first layer (1), and the base layer (9) are bonded to each other Since (1) is completely cured, the two-layer optical film 120 can be made of an integral optical film having integrity. That is, as the first layer 1 and the second layer 2 are completely cured, the bonded portions of the second layer 2, the first layer 1, and the base layer 9 are entangled with each other to form an integrated optical body. A film can be formed.
- the integral means that the laminated layers are formed as one body so that each layer is not separated from each other when an external force is applied to the optical film.
- the two-layer optical film 120 is integrally formed, so that the second layer 2, the first layer 1, and the base layer 9 are not provided with excessive external force exceeding the allowable value even if the service life becomes longer. ) Does not deviate from each other, so that a light leakage phenomenon, a narrow viewing angle, or a light divergence at a specific viewing angle may be solved.
- each layer is integrated by itself through complete curing, there is no need to add a separate adhesive layer or adhesive layer, the integrated optical film can be provided more slim.
- the configuration is simple, so that the manufacturing is easy and the composition is not coarse, so that the bonding between the components is more firm, and separation between the laminated layers can be more surely prevented.
- the protruding portion of the pattern formed to correspond to the pattern 610 of the first mold 600 may be uncured in the first layer 1.
- the second layer 2 may be integrally formed with the second layer 2 in a partially drawn state on the upper surface of the second layer 2. This is because, in step S135, the first layer 1, which is temporarily hardened or fully hardened, is contacted and stacked on the second layer 1 that is not cured, thereby forming a part of the protruding portion of the pattern formed on the first layer 1.
- the first layer 1 and the second layer 2 can be maximized through integration through cross-linking, whereby the particles are entangled between the particles.
- first layer 1 and the second layer 2 may be made of a resin that is tacky or adhesive. That is, by hardening a resin made of a material having an adhesive or adhesive property to form the first layer 1 and the second layer 2, a more robust integrated optical film can be produced.
- adhesiveness means a property in which adhesive force is continuously maintained by sticking sticky.
- adhesiveness is a property that stickiness is continuously maintained on the surface of the first layer 1 adhering to the base material layer 9 even if the first layer 1 applied to the base layer 9 is removed by applying a predetermined force or more. .
- the first layer 1 having the adhesive property is removed from the base layer 9 and then adhered to the base layer 9 again, the first layer 1 may be stuck to each other again to maintain a predetermined or more integrity.
- adhesiveness is a concept that is distinguished from adhesiveness, which is a property in which stickiness exists only at the time of initial bonding and stickiness is lost when it is detached and cannot be reattached.
- the concept of adhesion refers to adhesion, adhesion, etc., in which an adhesive force exists only when the integrated optical film is first manufactured, and when the layers are separated from each other by an unexpected external force after the completion of manufacturing, the adhesion is lost and cannot be bonded again. Can be understood as another concept.
- each layer may be formed through a sticky resin, the surface of each layer may be unexpectedly generated even when an external force of a size and direction exceeding the allowable value is applied to the finished monolithic optical film so that the layers are separated from each other. Since stickiness is constantly maintained, the separated layers can be easily integrated again. Therefore, the integrated optical film can be more firmly maintained, thereby solving the problem that light leakage occurs, the optical viewing angle is narrowed, or the light does not diverge to a specific viewing angle.
- the second mold 700 is preferably provided through a mold having a high surface releasability (peelability), through which the second layer 2 is stably separated from the second mold 700 in step S140. Can be.
- the integrated optical film manufacturing method S100 may include a second mold 700, a second layer 2, and a first layer 1 between the rolls 900 installed at intervals before the step S140. ), And passing through the substrate layer 9.
- the interval between the rolls 900 may be smaller than or equal to the total thickness of the second mold 600, the second layer 2, the first layer 1, and the base layer 9.
- the second mold 700, the second layer 2, the first layer 1, and the substrate layer 9, which are sequentially stacked, are first passed through the roll 900. Physical action may be taken to make the overall thickness uniform. In addition, predetermined compression may be achieved by adjusting the gap between the rolls 900.
- the second layer 2 and the first layer 1 are supported by the second mold 700 at the lower side thereof and protected by the substrate layer 9 at the upper side thereof. Accordingly, the roll 900 is more stable because the second layer 2 and the first layer 1 of the salpin release roll 810 are indirectly subjected to a physical force for uniformity or predetermined compression. Passage may be made.
- the gap between the rolls 900 may be adjusted to set a desired draw depth.
- the integrated optical film manufacturing method (S100) is a step of coating a curable resin on a third mold having a pattern after the step S140 (S145), the release film having a surface having a release property (99) Or planarizing the top surface of the resin coated on the third mold (not shown) with the release roll 810 to form a third layer (not shown) in an uncured state (S150).
- Integrating the film 120 and separating the third mold may further include forming a three-layer optical film (not shown) (S165).
- the light projected in operation S165 may be light for complete curing.
- the light projected in step S140 may be light for temporary curing or complete curing.
- the integrated optical film may be manufactured in the form of the two-layer optical film 120 by projecting light for complete curing in step S140.
- the light for temporary curing may be projected in step S140.
- the light for complete curing may be projected in step S140.
- the second mold 700 may be removed from the second mold 700 even if the second layer 2 is completely cured in step S140. It can be separated reliably.
- the integrated optical film manufacturing method S100 may form the n-layer optical film by repeating steps S145, S150, S160, and S165 even after the three-layer optical film 130 is formed as described above. have.
- the light projected on the n-th layer and the (n-1) -layer optical film of the light projected for each repeated S165 step is light for complete curing.
- the remaining light may be light for temporary curing. That is, the integrated optical film may be manufactured by projecting light for temporary curing until lamination of the final layer and projecting light for complete curing after lamination of the final layer is made.
- the production of an integrated optical film can be made in a manner that projects light for complete curing as each layer is laminated.
- the temporary curing of the base layer 9 laminated on the upper surface on the second layer 2 in an uncured state Alternatively, the first layer 1 in a fully hardened state is laminated and then completely cured to integrate two layers once, and then the two layers are integrally laminated on a third layer in an uncured state, and then completely cured to integrate the three layers.
- the manufacturing of the integrated optical film can be made in such a way as to.
- the integrated optical film manufacturing method S100 may further include passing the third mold, the third layer, and the two-layer optical film 120 between the rolls 900 installed at intervals before the step S165. Can be.
- the distance between the rolls 700 may be smaller than or equal to the total thickness of the third mold, the third layer, and the two-layer optical film 120.
- each layer may serve as a pressure-sensitive adhesive or an adhesive, and an integrated optical film may be provided with a slimmer thickness, but also through a fastening and fastening method.
- the organic bond of the method is not easily separated from each other, and thus light leakage may be effectively prevented.
- They can be formed to have a flat bottom surface without a substrate layer for each.
- the incident angle of light incident through the bottom surface may be uniform as a whole, and optical properties such as light uniformity and luminance may be greatly improved.
- a method of pattern-processing an upper surface after applying resin on a substrate layer is used, which makes it difficult to form a pattern clearly and may cause problems such as resin flowing down around the substrate layer during a pattern processing process. More specifically, when each optical layer is formed in such a manner that the resin is directly applied onto the substrate layer and cured, it becomes very difficult to form a pattern having a desired shape in the optical layer.
- the shape of the pressed pattern is difficult to maintain continuously and the resin may flow sideways by press compression.
- the press working after the resin is cured there is a possibility that the optical layer to form a pattern is damaged or deformed, the press working becomes more difficult.
- the method of directly applying the resin on the substrate layer made it impossible to manufacture the optical layer having the pattern in a clear shape.
- the present application is to coat the resin on the mold so that the pattern is formed on the lower side, not the upper side of the resin, the upper side of the resin has a release property (peelability) easily removable film 99 or release roll 810
- the bottom surface is also flattened by forming a flat bottom surface by placing a pattern on the upper side thereof, and placing another layer which is pattern hardened or fully hardened, and then temporarily hardening or completely hardened without removing the mold. Instead, the pattern can be clearly formed in the desired shape.
- the present application used a mold having a surface having a high releasability (peelability) or to make the optical layer is detachably hardened on the mold to prevent each optical layer from tangling with the mold during temporary curing or complete curing. .
- all of the base layer except for the base layer 9 supporting the first layer 1 can be omitted, so that the integrated optical to a much slimmer thickness than the conventional optical film Films can be made.
- the integrated optical film manufacturing methods disclosed herein include the material side of the optical layer (curable resin), the side of the manufacturing means of the optical layer (using a release film or a release roll and a mold), and the manufacturing process of the optical layer (no curing)
- the hardened layer is placed on the layer in the hardened state and then hardened to form a predetermined pull-in fastening.
- the integrated optical film according to various embodiments of the present disclosure may be applied to various fields such as a liquid crystal display (LCD) as well as all light receiving display devices such as an electrophoretic display device, a signboard, and an illumination.
- LCD liquid crystal display
- all light receiving display devices such as an electrophoretic display device, a signboard, and an illumination.
- FIG. 7 is a perspective view of an integrated optical film according to a first embodiment of the present application
- FIG. 8 is a cross-sectional view for describing a lead-in structure of the integrated optical film according to the first embodiment of the present application
- 9A is a plan view from above of a second layer of the integrated optical film according to the first embodiment of the present application
- FIG. 9B is a top view of another example of the second layer of the integrated optical film according to the first embodiment of the present application. Top view.
- This integrated optical film includes the base layer 9.
- the base layer 9 is the most basic layer of each of the layers forming the integrated optical film.
- the base layer 9 may be a layer that transmits light from the bottom side to the first layer 1. Accordingly, the base layer 35 may have a material having light transmittance.
- the base layer 9 may be a flat film shape made of a material such as polyethylene terephthalate (PET), polycarbonate (PC), polyethylene (PE), but is not limited thereto. That is, the base layer 9 may be formed of a material having a predetermined refractive index and light transmittance in order to secure desired luminance and light uniformity.
- PET polyethylene terephthalate
- PC polycarbonate
- PE polyethylene
- the base layer 9 may be formed of a material having a predetermined refractive index and light transmittance in order to secure desired luminance and light uniformity.
- a light guide plate may serve as the base layer 9.
- the substrate layer 9 may be a light guide plate.
- the light guide plate is a component that converts light incident from a lamp (not shown) into uniform planar light, and is generally made of PMMA (polymethymethacrylate), which is an acrylic resin.
- PMMA polymethymethacrylate
- the base layer 9 is not necessarily limited to the light guide plate, and it is preferable that the base layer 9 is understood as a concept that includes all the layers capable of transmitting light from the lower side to the first layer 1 as the bases of the respective layers. Do.
- the integrated optical film includes a first layer (1).
- the first layer 1 is disposed on the base layer 9, and a pattern 11 is formed on an upper surface thereof.
- This first layer 1 may be formed of curable resin.
- a resin may be a curable transparent resin cured by either ultraviolet (UV) or infrared (IR).
- the resin may be a resin that is tacky or adhesive.
- the resin forming the first layer 1 may be a resin that remains tacky even in a hardened state.
- this integrated optical film includes the second layer (2).
- the second layer 2 is disposed on the first layer 1, and a pattern 21 is formed on the upper surface.
- the pattern 21 may be formed according to a regular shape and arrangement as shown in FIG. 9A, or may be formed according to a random size, depth, shape, arrangement, and the like as shown in FIG. 9B.
- the shape and arrangement of the pattern 11 may be variously set in consideration of the desired degree of light diffusion, the necessity of securing luminance, and the like.
- the second layer 2 is directly connected with the first layer 1 without the addition of a separate base layer between the first layer 1.
- the application of the mold and the release film 99 or the release roll 810 may be organically linked. Except for the base layer 9 for supporting the first layer 1, all other base layers such as the base layer for supporting the second layer 2 may be omitted, so that the integrated optical film has a much thinner thickness than the conventional optical film. Can be prepared.
- base material layer 9, the 1st layer 1, and the 2nd layer 2 are integrally formed.
- a portion protruding from the pattern of the layer that is temporarily or completely cured on the uncured layer is predetermined.
- the substrate layer 9, the first layer 1, and the second layer 2 may be integrally formed by temporarily curing or fully curing in the retracted state.
- the second layer By temporarily curing or curing (2), curing occurs in the state where the inlet portion 11a of the first layer 1 is drawn into the inlet groove 22 of the lower surface of the second layer 2, whereby entanglement between particles is prevented. Maximized, through which the integration between both layers (1, 2) can be built very firmly.
- the inlet portion (11a) by fastening the inlet portion (11a) to the inlet groove 22, the area where entanglement between the particles occurs during curing can be increased and even up to the frictional force in the vertical direction can be secured, the bonding force in the vertical direction can be maximized.
- the fixing force in the horizontal direction due to the male and female coupling (or anchoring) between the inlet groove 22 and the inlet portion 11a, the fixing force in the horizontal direction may also be maximized. Therefore, through this, an integral optical film having an extremely rigid structure can be secured.
- the lower surface of the second layer 2 may be connected to the first layer 1 in a flat state.
- the release film 99 instead of the base layer 9 in forming the second layer (2) or more.
- the second layer 2 laminated on the first layer 1 has the exception of the inlet groove 22 into which the inlet portion 11a is introduced, as shown above. It may be formed to have a flat bottom surface.
- the incident angle of light incident through the bottom surface may be uniform as a whole, and optical properties such as light uniformity and luminance may be greatly improved.
- This second layer 2 may be formed of curable resin. Since the structure of the 1st layer 1 has been demonstrated about this, detailed description is abbreviate
- the integrated optical film may further include one or more optical layers.
- each layer may have a flat bottom surface, and a solid integration may be achieved through a hardening method after the inlet coupling between the inlet portion 11a and the inlet groove 22, and the pattern formed on each layer may have a desired shape. Clearly formed.
- one optical layer is disposed on the second layer 2 and a pattern is formed on the upper surface. If there is only one optical layer, it will be referred to as a third layer.
- One optical layer that is, the third layer, is directly connected with the lower second layer 2 without the addition of a separate base layer between the lower second layer 2.
- the base material layer 9, the 1st layer 1, the 2nd layer 2, and the 3rd layer are integrally formed.
- each of the plurality of optical layers is the lower second layer 2 or the lower optical layer without the addition of a separate base layer between the lower second layer 2 or the lower optical layer. It is directly connected with the layer.
- the base material layer 9, the 1st layer 1, the 2nd layer 2, and some optical layer are integrally formed.
- the integrated optical film which concerns on the 1st-5th Example of this application is examined.
- the integrated optical film implemented through the present disclosure is not limited only to the first to fifth embodiments, but may be implemented in various embodiments corresponding to the description of the integrated optical film described above.
- the integrated optical film 120 includes a base layer 9, a first layer 1, and a second layer 2.
- the first layer 1 may be a refractive layer
- the second layer 2 may be a diffusion layer
- the diffusion layer may perform a function of diffusing light transmitted from the lower side and transmitting the light to the upper side
- the refraction layer may perform a function of refracting (condensing) the light transmitted from the lower side and transmitting the light to the upper side.
- the diffusion layer may adjust the degree of light diffusion as needed, and in a device in which light diffusion is to be made slightly smaller, light transmission may be performed at a level between diffusion and condensation.
- the refractive layer can likewise adjust the degree of condensing as necessary.
- the pattern 11 of the first layer 1 may have a prism pillar shape extending in the longitudinal direction of the first layer 1.
- the prism column shape may be formed such that the vertex has a triangular shape (prism shape) facing upward.
- the peak angle of a conventional prism is approximately 90 degrees, and it may be desirable to have a value smaller than 90 degrees for more efficient light refraction.
- the shape of the prism pillar need not be limited to a triangular shape, and may be formed in various shapes (angles and pitches) as necessary, such as a refractive direction.
- the surface of the prism may be formed with fine concavities and convexities that can more precisely control the refractive direction, brightness, light transmittance, and the like.
- the pattern 21 of the second layer 2 may have a convex shape.
- the second layer 2, which is a diffusion layer may be provided as a micro lens film.
- FIG. 10 is a perspective view of an integrated optical film according to a second embodiment of the present application.
- the unitary optical film 120 includes a base layer 9, a first layer 1, and a second layer 2.
- the first layer 1 may be a refractive layer
- the second layer 2 may be a diffusion layer.
- the pattern 11 of the first layer 1 may have a prism pillar shape extending in the longitudinal direction of the first layer 1.
- the pattern 21 of the second layer 2 may be concave.
- the concave pattern 21 of the second layer 2 may be formed in a groove shape recessed downward from the upper surface of the second layer 2.
- the light transmitted through the base layer 9 and the first layer 1 may be transmitted upward in a more uniformly diffused state while passing through the concave-shaped pattern 11 formed in the second layer 2.
- the pattern applied to the diffusion layer is not limited to the convex or concave shape as described above in the first and second embodiments, and may be set in various forms in consideration of efficient light diffusion and luminance improvement. .
- the arrangement method of the pattern 11 may also be set in consideration of the desired degree of light diffusion, the necessity of ensuring luminance, and the like.
- the pattern 11 may be arranged regularly.
- the pattern 11 may be arranged in a honeycomb structure in which one pattern 11 surrounds six other patterns 11.
- the pattern 11 may be formed randomly.
- FIG. 11 is a perspective view of an integrated optical film according to a third embodiment of the present application.
- the unitary optical film 120 includes a base layer 9, a first layer 1, and a second layer 2.
- the first layer 1 and the second layer 2 may be refractive layers.
- the pattern 11 of the first layer 1 has a prism pillar shape extending in the longitudinal direction of the first layer 1, and the pattern 21 of the second layer 2 is formed of the first layer 1. It may have a prism pillar shape extending in the width direction of the second layer 2 to be orthogonal to the prism pillar shape pattern.
- FIG. 12 is a perspective view of an integrated optical film according to a fourth embodiment of the present application.
- the unitary optical film 120 includes a base layer 9, a first layer 1, and a second layer 2.
- the first layer 1 may be a diffusion layer
- the second layer 2 may be a refractive layer.
- the pattern 11 of the first layer 1 may have a concave shape
- the pattern 21 of the second layer 2 may have a prism pillar shape extending in the length direction of the second layer.
- FIG. 13 is a perspective view of an integrated optical film according to a fifth embodiment of the present application.
- the unitary optical film 120 includes a base layer 9, a first layer 1, and a second layer 2.
- the first layer 1 may be a diffusion layer
- the second layer 2 may be a refractive layer.
- the pattern 11 of the first layer 1 may have a convex shape
- the pattern 21 of the second layer 2 may have a prism pillar shape extending in the length direction of the second layer.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Optical Elements Other Than Lenses (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
일체형 광학 필름 제조 방법이 개시되며, 상기 일체형 광학 필름 제조 방법은 (a) 패턴을 갖는 제1 몰드 상에 경화성의 레진을 코팅하는 단계; (b) 상기 제1 몰드 상에 코팅된 레진의 상면에 기재층을 덮는 단계; (c) 광을 투사하여 가경화 또는 완전경화 상태의 제1 층을 형성하는 단계; (d) 패턴을 갖는 제2 몰드 상에 경화성의 레진을 코팅하는 단계; (e) 이형필름 또는 이형롤로 상기 제2 몰드 상에 코팅된 레진의 상면을 평탄화하여 무경화 상태의 제2 층을 형성하는 단계; (f) 상기 제2 층 상에 상기 제1 몰드로부터 분리한 상기 제1 층 및 상기 기재층을 적층하는 단계; 및 (g) 광을 투사하여 상기 제2 층, 상기 제1 층, 및 상기 기재층을 일체화하고 상기 제2 몰드를 분리하여 2층 광학 필름을 형성하는 단계를 포함한다.
Description
본원은 일체형 광학 필름 제조 방법에 관한 것으로, 보다 상세하게는 액정표시장치, 수광형 표시장치, 간판, 조명 등에 적용될 수 있는 일체형 광학 필름을 제조하는 방법 및 일체형 광학 필름에 관한 것이다.
액정표시장치(LCD)는 다양한 분야에 널리 사용되는 대표적인 디스플레이 장치이다. 이러한 액정표시장치는 비발광형 장치이므로, 빛을 발생시키기 위한 백라이트 유닛이 요구된다. 따라서, 이러한 백라이트 유닛은 액정표시장치의 크기와 광효율을 결정하는 중요한 요소이며, 다양한 광학시트들의 어셈블리로 이루어진다.
일반적으로 백라이트 유닛은 광원, 도광판, 반사판, 확산시트, 프리즘시트 및 보호시트를 포함한다. 예시적으로, 광원에서 발생된 광은 도광판을 통해 확산시트를 향하고, 확산시트에 의해 확산된 광은 제1 및 제 2 프리즘시트를 통해 집광되어 액정표시패널로 향하게 된다.
확산시트는 전체 면적에서 균일한 휘도를 제공하는 역할을 한다. 또한, 프리즘 시트는 특정 시야각 범위에서 휘도를 향상시키는 기능을 수행한다. 이러한 특정 시야각에서의 휘도 향상은 프리즘 구조에 의한 집광에 의해 구현될 수 있다.
그런데, 종래의 백라이트 유닛의 확산시트와 프리즘시트는 단순 접촉에 의해 구비되어 있기 때문에 액정표시장치가 사용되는 기간이 길어지는 경우 확산시트와 프리즘시트가 서로 어긋나게 될 수 있으며, 이에 따라 액정표시패널에 빛샘 현상이 발생되거나, 액정표시패널로의 빛의 굴절이 제대로 이루어지지 않아 시야각이 좁아지거나, 특정 시야각에서 화면을 볼 수 없는 문제점이 발생될 수 있었다.
또한, 백라이트 유닛에 포함되는 광학시트들은 확산 또는 집광의 정도를 조절하기 위한 다양한 패턴을 가지게 된다. 그런데, 패턴을 갖는 광학시트들을 바닥면의 처짐이나 패턴 형상의 변형 없이 안정적으로 적층하기 위해서는, 광학시트들 각각의 하측에 기초가 되는 기재층이 배치되어야 했다. 이를테면 하나의 기재층 상에 패턴을 갖는 확산시트를 형성시키고, 다른 기재층 상에 패턴을 갖는 프리즘시트를 형성시킨 다음, 확산시트 상에 프리즘시트가 형성된 다른 기재층을 적층하는 방식으로 광학적 시트의 어셈블리를 제조하였다.
즉, 종래의 백라이트 유닛은 광학시트들 각각의 하측마다 기재층을 배치하여야 해서 슬림한 두께의 구현에 한계가 있었으며, 기재층과 광학시트 사이에 추가적인 경계면이 형성되므로 입사되는 광의 경로를 예측하기 어려웠다.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 견고하게 일체성을 확보하고 보다 슬림하게 구비됨에 동시에, 휘도 및 광 균일도가 크게 향상되도록 광을 효율적으로 확산 또는 굴절시킬 수 있는 일체형 광학 필름 제조방법 및 일체형 광학 필름을 제공하는 것을 목적으로 한다.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제1 측면에 따른 일체형 광학 필름 제조 방법은 (a) 패턴을 갖는 제1 몰드 상에 경화성의 레진을 코팅하는 단계; (b) 상기 제1 몰드 상에 코팅된 레진의 상면에 기재층을 덮는 단계; (c) 상기 기재층이 덮인 레진에 가경화 또는 완전경화를 위한 광을 투사하여 가경화 또는 완전경화 상태의 제1 층을 형성하는 단계; (d) 패턴을 갖는 제2 몰드 상에 경화성의 레진을 코팅하는 단계; (e) 이형성이 있는 표면을 갖는 이형필름 또는 이형롤로 상기 제2 몰드 상에 코팅된 레진의 상면을 평탄화하여 무경화 상태의 제2 층을 형성하는 단계; (f) 상기 제2 층 상에 상기 제1 층이 접촉되도록 상기 제1 몰드로부터 분리한 상기 제1 층 및 상기 기재층을 적층하는 단계; 및 (g) 상기 제2 층, 상기 제1층, 및 상기 기재층에 광을 투사하여 상기 제2 층, 상기 제1 층, 및 상기 기재층을 일체화하고 상기 제2 몰드를 분리하여 2층 광학 필름을 형성하는 단계를 포함할 수 있다.
또한, 상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제1 측면에 따른 일체형 광학 필름은 기재층; 상기 기재층 상에 배치되고, 상면에 패턴이 형성되는 제1 층; 및 상기 제1 층 상에 배치되고, 상면에 패턴이 형성되는 제2 층을 포함하되, 상기 제2 층은 상기 제1 층과의 사이에 별도의 기재층의 부가 없이 상기 제1 층과 직접적으로 연결되며, 상기 기재층은 상기 제1층과 일체로 형성되고, 상기 제1층은 그 상면 중 상기 패턴에 따라 돌출 형성된 부분이 상기 제2 층의 하면에 일부 인입된 상태로 상기 제2 층과 일체로 형성될 수 있다.
전술한 본원의 과제 해결 수단에 의하면, 제1 층 상에 적층되는 광학층들이 각각을 지지하여 주는 기재층 없이도 편평한 바닥면을 갖도록 형성될 수 있어, 슬림한 두께를 가짐과 동시에 바닥면을 통해 입사되는 광의 입사 각도를 균일하게 설정할 수 있는 일체형 광학 필름이 제공될 수 있다.
또한, 전술한 본원의 과제 해결 수단에 의하면, 제1 층 상에 적층되는 광학층들이 기재층 없이도 명확한 형상의 패턴을 가진 상태로 제조 및 적층될 수 있어, 패턴을 원하는 형상으로 쉽게 구현할 수 있으며, 이에 따라 제품별 적용 여건에 따라 휘도 및 광 균일도를 보다 용이하게 조절 또는 향상시킬 수 있는 일체형 광학 필름이 제공될 수 있다.
또한, 전술한 본원의 과제 해결 수단에 의하면, 상층의 하면에 대하여 하층의 패턴 중 돌출된 부분이 상층의 하면에 일부 인입된 상태로 경화됨으로써, 각 층들이 견고하게 일체로 형성될 수 있어, 사용 기간이 길어지더라도 허용치 이상의 과도한 외력이 작용하지 않는 한 서로 어긋나지 않게 되므로, 빛샘 현상이 발생되거나 광 시야각이 좁아지거나 특정 시야각으로 광 발산이 이루어지지 않는 문제점이 해결될 수 있다.
도 1은 본원의 일 실시예에 따른 일체형 광학 필름 제조 방법을 통해 2층 광학 필름을 제조하는 공정을 나타내는 흐름도이다.
도 2는 본원의 일 실시예에 따른 일체형 광학 필름 제조 방법을 통해 3층 광학 필름을 제조하는 공정을 나타내는 흐름도이다.
도 3a 내지 도 3d, 도 4a 내지 도 4d, 도 5, 도 6a 및 도 6b는 본원의 일 실시예에 따른 일체형 광학 필름 제조 방법을 설명하기 위한 단면도이다.
도 7은 본원의 제1 실시예에 따른 일체형 광학 필름의 사시도이다.
도 8은 본원의 제1 실시예에 따른 일체형 광학 필름의 인입 구조를 설명하기 위한 단면도이다.
도 9a는 본원의 제1 실시예에 따른 일체형 광학 필름의 제2 층을 위에서 바라본 평면도이다.
도 9b는 본원의 제1 실시예에 따른 일체형 광학 필름의 제2 층의 다른 예를 위에서 바라본 평면도이다.
도 10은 본원의 제2 실시예에 따른 일체형 광학 필름의 사시도이다.
도 11은 본원의 제3 실시예에 따른 일체형 광학 필름의 사시도이다.
도 12는 본원의 제4 실시예에 따른 일체형 광학 필름의 사시도이다.
도 13은 본원의 제5 실시예에 따른 일체형 광학 필름의 사시도이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 “이들의 조합”의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
참고로, 본원의 실시예에 관한 설명 중 방향이나 위치와 관련된 용어(상면, 하면, 상측, 상향, 하향 등)는 도 3a 내지 3d, 도 4a 내지 도 4d, 도 5, 도 6a, 도 6b 등을 기준으로 하여 설정한 것이다. 예를 들어 도 6b에서 위쪽을 향한 방향이 상향, 위쪽을 향한 면이 상면, 아래쪽을 향한 방향이 하향, 아래쪽을 향한 면이 하면 등이 될 수 있다. 다만, 본원의 실시예의 다양한 실제적인 적용에 있어서는, 상면이 전방을 향하게 배치되는 등 다양한 방향으로 배치될 수 있을 것이다.
이하에서는 본원의 일 실시예에 따른 일체형 광학 필름 제조 방법에 대해 설명한다.
우선, 본원의 일 실시예에 따른 일체형 광학 필름 제조 방법(이하 '본 일체형 광학 필름 제조 방법' 이라 함)(S100)에 대해 설명한다.
도 1은 본원의 일 실시예에 따른 일체형 광학 필름 제조 방법을 통해 2층 광학 필름을 제조하는 공정을 나타내는 흐름도이고, 도 2는 본원의 일 실시예에 따른 일체형 광학 필름 제조 방법을 통해 3층 광학 필름을 제조하는 공정을 나타내는 흐름도이다. 또한, 도 3a 내지 도 3d, 도 4a 내지 도 4d, 도 5, 도 6a 및 도 6b는 본원의 일 실시예에 따른 일체형 광학 필름 제조 방법을 설명하기 위한 단면도이다.
도 1 및 도 3a를 참조하면, 본 일체형 광학 필름 제조 방법(S100)은 패턴(610)을 갖는 제1 몰드(600) 상에 경화성의 레진을 코팅하는 단계(S105)를 포함한다.
도 3a를 참조하면, 제1 몰드(600)의 패턴(610)은 제1 층(1)의 패턴(11)의 형상에 대응되도록 다양하게 형성될 수 있다. 예시적으로 도 3a에 나타난 바와 같이, 제1 몰드(600)의 패턴(610)은 프리즘 형상일 수 있으며, 제1 층(1)의 패턴(11)은 이에 맞물리는 프리즘 형상일 수 있다. 참고로 도 12에 나타난 바와 같이, 제1 층(1)의 패턴이 오목한 형상인 경우라면, 반대로 제1 몰드(600)의 패턴(610)은 이에 대응되도록 볼록하게 형성될 수 있으며, 도 13에 나타난 바와 같이, 제1 층(1)의 패턴이 볼록한 형상인 경우라면, 반대로 제1 몰드(600)의 패턴(610)은 이에 대응되도록 오목하게 형성될 수 있을 것이다.
또한 도 1 및 도 3b를 참조하면, 본 일체형 광학 필름 제조 방법(S100)은 제1 몰드(600) 상에 코팅된 레진의 상면에 기재층(9)을 덮는 단계(S110)를 포함한다.
기재층(9)은 일체형 광학 필름을 형성하는 각 층들의 가장 기초가 되는 층이다. 도 6b를 참조하면, 기재층(9)은 하측으로부터 제1 층(1)으로 광을 전달하는 층이 될 수 있다.
도 3b를 참조하면, S110 단계에서 이러한 기재층(9)은 제1 층(1)에 해당되는 레진의 상측에 배치된다. 즉, 기재층(9)은 제1 층(1)이 될 레진의 상면을 덮어 향후 가경화 또는 완전경화시 레진의 상면이 편평하게 유지된 상태로 가경화 또는 완전경화될 수 있도록 한다.
예시적으로, 기재층(9)은 폴레에틸렌테레프탈레이트(PET), 폴리 카보네이트(PC), 폴리에틸렌(PE) 등의 재질로 이루어진 편평한 필름 형상일 수 있으나 이에 한정되는 것은 아니다. 즉, 기재층(9)은 원하는 휘도 및 광 균일도의 확보를 위해 소정의 굴절률 및 광 투과성을 갖는 재질로 형성될 수 있다.
또한, 도광판(LGP, Light Guide Plate)이 이러한 기재층(9)의 역할을 수행할 수도 있다. 다시 말해, 기재층(9)은 도광판일 수 있다. 도광판은 램프(도면 미도시)로부터 입사된 광을 균일한 평면광으로 변환시켜주는 구성요소로서, 일반적으로 아크릴 수지인 PMMA(polymethymethacrylate)로 이루어진다. 이렇게 기재층(9) 자체가 도광판이 되는 일체형 광학 필름이 적용되는 백 라이트 유닛은 보다 슬림하게 구비될 수 있을 것이다.
다만, 기재층(9)은 반드시 도광판으로만 한정되는 것은 아니며, 각 층들의 기초가 되는 층으로서 하측으로부터 제1 층(1)으로 광을 전달할 수 있는 층을 모두 포함하는 개념으로 이해됨이 바람직하다.
또한 도 1 및 도 3c를 참조하면, 본 일체형 광학 필름 제조 방법(S100)은 기재층(9)이 덮인 레진에 가경화 또는 완전경화를 위한 광을 투사하여 가경화 또는 완전경화 상태의 제1 층(1)을 형성하는 단계(S115)를 포함한다.
여기서, 레진은 자외선(UV) 및 적외선(IR) 중 어느 하나에 의해 경화되는 경화성의 투명한 레진일 수 있다.
예시적으로, 가경화를 위해 레진에 투사되는 광은 단파장 자외선(UV)일 수 있으며, BL 램프를 통해 이러한 단파장 자외선이 구현될 수 있다. 또한, 완전경화를 위해 레진에 투사되는 광은 장파장 자외선(UV)일 수 있으며, 수은 램프, 메탈할라이드 램프, 갈륨 램프, LED 램프 등을 통해 구현될 수 있다. 이러한 장파장 자외선(UV)에 의하면 광 경화 뿐만 아니라 열 경화도 어느 정도 수반될 수 있다.
또한, 레진에 가경화를 위한 광을 투사한다는 것은 레진이 가경화될 정도로 광을 투사한다는 것을 의미한다. 예시적으로 도 3c에 나타난 바와 같이, 가경화를 위한 광은 상측 및 하측에서 동시에 투사될 수 있지만 이에 한정되는 것은 아니며, 필요에 따라 다른 방식으로 가경화를 위한 광 투사가 이루어질 수 있다.
여기서, 가경화가 어느 정도의 경화를 의미하는 것인지 보다 구체적으로 설명하면, 제1 몰드(600)에 레진을 코팅한 후 소정 이상으로 경화시켜 과도하게 경화된 상태로 제1 층(1)을 제조하게 되면, 제1 층(1)이 제1 몰드(600)에 엉겨 붙게 되어 제1 층(1)을 제1 몰드(600)로부터 분리하기 어려워지거나, 제1 층(1)이 제1 몰드(600)로부터 분리되더라도 표면 등이 손상될 수 있다.
즉, 가경화는 제1 층(1)이 제1 몰드(600)로부터 손상 없이 쉽게 분리될 수 있는 정도 및 제1 층(1)이 제1 몰드(600)로부터 분리된 이후에 제1 층(1)의 형상이 변형 없이 유지될 수 있는 정도로 이루어지는 경화를 의미한다. 앞으로 사용되는 가경화라는 용어 또한 상술한 바와 같은 의미로 사용될 수 있다.
다만, 제1 몰드(600)가 일반적인 몰드가 아니라 이형제(release agent) 등을 통해 이형성이 높은 표면을 갖는 몰드를 통해 구비되는 경우라면, 제1 층(1)을 완전 경화시킨 다음에도 제1 몰드(600)로부터 손상 없이 분리할 수도 있다. 하지만 보다 안정적이면서도 명확한 패턴을 갖는 제1 층(1)의 형성을 위해서는 상술한 바와 같은 정도의 가경화가 이루어지는 것이 바람직할 것이다.
또한 도 3d를 참조하면, 이렇게 가경화된 상태의 제1 층(1) 및 가경화된 제1 층(1)과 일체로 접합된 기재층(9)을 제1 몰드(600)로부터 분리할 수 있다. 다만, 이러한 분리 시점이 반드시 제2 층(2)을 제조하기 이전이어야 하는 것은 아니며, 제조 여건을 고려하여 분리 시점을 정할 수 있다. 이와 유사한 맥락에서, 반드시 제1 층(1)의 제조 공정이 먼저 진행되어야 하는 것은 아니며, 제조 여건 등에 따라 제2 층(2)의 제조 공정이 먼저 진행될 수도 있을 것이다.
또한 도 1 및 도 4a를 참조하면, 본 일체형 광학 필름 제조 방법(S100)은 패턴(710)을 갖는 제2 몰드(700) 상에 경화성의 레진을 코팅하는 단계(S120)를 포함한다.
도 4a를 참조하면, 제2 몰드(700)의 패턴(710)은 제2 층(2)의 패턴(21)의 형상에 대응되도록 다양하게 형성될 수 있다. 예시적으로 도 4a에 나타난 바와 같이, 제2 몰드(700)의 패턴(710)은 오목한 형상일 수 있으며, 제1 층(1)의 패턴(11)은 이에 맞물리는 볼록한 형상일 수 있다. 참고로 도 11 내지 도 13에 나타난 바와 같이, 제2 층(2)의 패턴이 프리즘 형상인 경우라면, 제2 몰드(700)의 패턴(710)은 이에 맞물리는 프리즘 형상으로 형성될 수도 있을 것이다.
또한 도 1, 도 4b 및 도 4c를 참조하면, 본 일체형 광학 필름 제조 방법(S100)은 이형성이 있는 표면을 갖는 이형필름(99)으로 제2 몰드(700) 상에 코팅된 레진의 상면을 평탄화하여 무경화 상태의 제2 층(2)을 형성하는 단계(S125)를 포함한다.
또는 도 1 및 도 5를 참조하면, 본 일체형 광학 필름 제조 방법(S100)은 이형필름(99)이 아니라 이형롤(810)로 제2 몰드(700) 상에 코팅된 레진의 상면을 평탄화하여 무경화 상태의 제2 층(2)을 형성하는 단계(S125)를 포함한다.
우선, S125 단계가 이형필름(99)을 이용하여 수행되는 경우에 대해 설명하면, 제2 몰드(700) 상에 코팅된 레진의 상면에 이형필름(99)을 덮음으로써 상면이 평탄화된 제2 층(2)이 형성되는 것이며(도 4b 참조), 평탄화된 제2 층(2)이 형성되고 나면 덮었던 이형필름(99)을 제2 층(2) 상에서 제거한다(도 4c 참조).
여기서, 이형필름(99)(release film)이라 함은 이형성을 갖는 필름을 의미한다. 다시 말해, 이형필름(99)은 박리되기 쉬운 박리성을 갖는 재질로 이루어진 필름이다. 예시적으로, 이형필름(99)은 실리카, 불소, 티타늄 등을 포함하는 표면 재질을 가질 수 있다. 이러한 이형필름(99)은 앞서 살핀 S110 단계에서의 기재층(9)과는 달리 레진이 가경화 또는 완전경화된 이후에도 이렇게 가경화 또는 완전경화된 레진으로부터 분리될 수 있다.
다음으로, S125 단계가 이형롤(810)을 이용하여 수행되는 경우에 대해 설명하면, 이형성이 있는 표면을 갖는 이형롤(810)로 제2 몰드(700) 상에 코팅된 레진의 상면을 가압하여 평탄화한다(도 5 참조).
여기서, 이형롤(810)의 이형성이 있는 표면이라 함은 박리되기 쉬운 박리성을 갖는 재질로 이루어진 표면을 의미한다. 이러한 이형롤(810)의 이형성이 있는 표면은 도 4b에 나타난 바와 같이 이형롤(810)의 외주를 따라 구비되는 이형층(811)을 통해 형성될 수 있다.
예시적으로, 이형롤(810)의 이형성이 있는 표면(이를 테면 이형층(811)의 표면)은 테프론, 불소, 실리콘, 텅스텐, 티타늄 중 하나 이상을 포함하는 재질로 이루어질 수 있다. 이러한 이형롤(810)의 이형성이 있는 표면의 재질은 제2 몰드(700) 상에 코팅된 레진의 성분에 대응하여 보다 높은 이형성이 확보될 수 있는 재질로 선택함이 바람직하다.
보다 구체적인 예로 도 5를 참조하면, S125 단계에서, 제2 몰드(700) 및 제2 몰드(700) 상에 코팅된 레진은, 이형롤(810) 및 이형롤(810)과 간격을 두고 설치된 가이드롤(820) 사이로 통과될 수 있다. 아울러, 이형롤(810) 및 가이드롤(820) 사이의 간격은 제2 몰드(700) 및 제2 몰드(700) 상에 코팅된 레진의 전체 두께보다 작거나 같은 크기일 수 있다.
또한, 이형롤(810) 및 가이드롤(820) 사이로 제2 몰드(700) 및 제2 몰드(700) 상에 코팅된 레진이 통과될 때에는, 이형롤(810)이 제2 몰드(700) 상에 코팅된 레진의 상면과 접촉될 수 있도록 이형롤(810)이 상측에 배치되고 가이드롤(820)이 하측에 배치됨이 바람직하다.
이렇게 이형롤(810)을 통해 제2 몰드(700) 상에 코팅된 레진의 상면을 일정하게 가압함으로써, 상면이 편평하게 형성된 무경화 상태의 제2 층이 형성된다.
이와 같이, 제2 몰드(700) 상에 코팅된 레진의 상면에 대하여 이형필름(99)(도 4b 및 4c 참조) 중 이형롤(810)(도 5 참조)를 이용함으로써, 제2 층(2)의 상면의 평탄성이 크게 향상될 수 있다. 참고로, 도 4b, 도 4d 및 도 5 상에 나타난 제2 층(2)의 상면은 도 6b에서 패턴(21)이 위를 향하게 놓인 상태에서는 제2 층(2)의 하면이라 할 수 있다.
또한, 제2 층(2)은 제1 층(1)이 적층되기 전까지는 경화를 위한 광이 투사되지 않은 무경화 상태를 유지한다. 이는 후술하겠지만, 제1 층(1)의 적층 시 제1 층(1)에 형성된 패턴의 돌출된 부분 중 일부가 평탄화된 제2 층(2)의 상면에 소정 인입되도록 한 후 제2 층(1)을 경화시킴으로써 일체화 효과를 극대화하기 위함이다.
그리고 도 1, 도 4b, 및 도 5a를 참조하면, 본 일체형 광학 필름 제조 방법(S100)은 제2 층(2) 상에 제1 몰드(600)로부터 분리한 제1 층(1) 및 기재층(9)을 제1 층(1)이 제2 층(2)에 접촉되도록 적층하는 단계(S135)를 포함한다.
즉, S125 단계를 통해 편평한 상면(도 6b에서 보았을 때에는 하면)을 갖는 제2 층(2) 을 형성시킨 다음(도 4b, 도 4c 및 도 5 참조), 이러한 제2 층(2) 상에 도 3d에 나타난 바와 같이 제1 몰드(600)로부터 분리된 제1 층(1) 및 기재층(9)을 적층한다(도 4d 참조).
도 1, 도 6a 및 도 6b를 참조하면, 본 일체형 광학 필름 제조 방법(S100)은 제2 층(2), 제1층(1), 및 기재층(9)에 광을 투사하여 제2 층(2), 제1 층(1), 및 기재층(9)을 일체화하고 제2 몰드(700)를 분리하여 2층 광학 필름(120)을 형성하는 단계(S140)를 포함한다.
이때, S140 단계에서 투사하는 광은 완전 경화를 위한 광일 수 있다. S140 단계에서 이렇게 완전 경화를 위한 광을 투사하게 되면, 제2 층(2), 제1 층(1), 및 기재층(9)이 서로 맞붙은 상태에서 제2 층(2) 및 제1 층(1)이 완전히 경화되므로, 2층 광학 필름(120)은 일체성을 갖는 일체형 광학 필름으로 제조될 수 있다. 즉, 제1 층(1) 및 제2 층(2)이 완전 경화되면서 제2 층(2), 제1 층(1), 및 기재층(9)의 접합된 부분이 서로 엉겨붙음으로써 일체형 광학 필름이 형성될 수 있다.
참고로 일체형이라 함은, 광학 필름에 외력이 가해졌을 때 적층된 각 층들이 서로 분리되지 않도록 하나의 몸체로 형성되는 것을 의미한다.
이와 같이, 2층 광학 필름(120)이 일체형으로 형성됨으로써, 사용 기간이 길어지더라도 허용치 이상의 과도한 외력이 작용하지 않는 한 제2 층(2), 제1 층(1), 및 기재층(9)이 서로 어긋나지 않게 되므로, 빛샘 현상이 발생되거나 광 시야각이 좁아지거나 특정 시야각으로 광 발산이 이루어지지 않는 문제점이 해결될 수 있다.
또한, 완전 경화를 통해 각 층들이 자체적으로 일체형이 되므로, 별도의 점착층 또는 접착층을 부가할 필요가 없어져, 일체형 광학 필름이 보다 슬림하게 구비될 수 있다. 아울러, 점착층 또는 접착층의 부가가 없어 구성이 간명하므로 제조가 용이해지고 구성이 조잡하지 않은 만큼 구성간 결합이 보다 견고해져 적층된 각 층들간의 분리가 보다 확실히 방지될 수 있다.
특히, 도 4d 및 도 6a를 참조하면, S135 단계 및 S140 단계를 통하여, 제1층(1)은 제1 몰드(600)의 패턴(610)에 대응하여 형성된 패턴의 돌출된 부분이 무경화 상태인 제2 층(2)의 상면에 일부 인입된 상태로 제2 층(2)과 일체로 형성될 수 있다. 이는 S135 단계에서 무경화 상태인 제2 층(1) 상에 가경화 또는 완전경화 상태인 제1 층(1)이 접촉되어 적층됨으로써, 제1 층(1)에 형성된 패턴의 돌출된 부분 중 일부가 평탄화된 제2 층(2)의 상면에 소정 인입되게 되고, S140 단계에서 이렇게 제2 층(2)에 제1 층(1)이 인입 체결된 상태에서 제2 층(1)을 경화시킴으로써 제1 층(1)과 제2 층(2)은 경화를 통해 입자들간에 엉겨붙는 상호결합을 통한 일체화가 통해 극대화될 수 있다.
또한, 제1 층(1) 및 제2 층(2)은 점착성 또는 접착성을 갖는 레진으로 이루어질 수 있다. 즉, 점착성 또는 접착성을 갖는 재질로 이루어진 레진을 완전 경화시켜 제1 층(1) 및 제2 층(2)을 형성함으로써, 보다 견고한 일체형 광학 필름의 제조가 이루어질 수 있다.
참고로, 점착성이라 함은 끈끈하게 달라붙어서 점착력이 계속적으로 유지되는 성질을 의미한다. 예를 들어 설명하면, 점착성은 기재층(9)과 맞붙은 제1 층(1)을 기재층(9)으로부터 소정 이상의 힘을 가해 떼어내어도 때어낸 면에 끈끈함이 계속적으로 유지되도록 하는 성질이다. 즉, 점착성을 갖는 제1 층(1)을 기재층(9)으로부터 떼어낸 뒤 기재층(9)에 다시 맞붙이면 또 다시 서로 달라붙어 소정 이상의 일체성이 유지될 수 있다.
즉, 점착성은 처음 접합할 때에만 끈끈함이 존재하고 떼어내면 끈끈함이 상실되어 다시 붙일 수 없게 되는 성질인 접착성과는 구별되는 개념이다. 다시 말해, 점착이라는 개념은 일체형 광학 필름을 처음 제조하였을 때에만 접착력이 존재하고 제조가 완료된 후에 예상치 못한 외력에 의해 각 층들이 서로 벌어지는 경우에는 접착력이 상실되어 다시 서로 접합되지 못하게 되는 접착, 부착 등과는 다른 개념으로 이해될 수 있다.
이와 같이, 점착성을 갖는 레진을 통해 각 층들이 형성되도록 함으로써, 완성된 일체형 광학 필름에 허용치를 초과하는 크기 및 방향의 외력이 가해져 각 층들이 서로 분리되는 경우가 예상치 못하게 발생되더라도, 각 층들의 표면에는 계속적으로 끈끈함이 유지되고 있으므로, 분리된 층들이 다시 쉽게 일체화될 수 있다. 따라서, 일체형 광학 필름이 보다 견고하게 일체성을 유지할 수 있으며, 이에 따라 빛샘 현상이 발생되거나 광 시야각이 좁아지거나 특정 시야각으로 광 발산이 이루어지지 않는 문제점도 훨씬 효과적으로 해결할 수 있게 된다.
또한 완전 경화를 통해 기재층(9) 상에 제1 층(1) 및 제2 층(2)이 적층된 2층 광학 필름(120)(도 6b 참조)으로 최종적으로 제조되는 경우에는, 제2 층(2)은 완전 경화된 후에 제2 몰드(700)로부터 분리되게 된다. 따라서, 제2 몰드(700)는 이형성(박리성)이 높은 표면을 갖는 몰드를 통해 구비되는 것이 바람직하며, 이를 통해 S140 단계에서 제2 층(2)은 제2 몰드(700)로부터 안정적으로 분리될 수 있다.
아울러 도 6a를 참조하면, 본 일체형 광학 필름 제조 방법(S100)은 S140 단계 이전에 서로 간격을 두고 설치된 롤(900) 사이로 제2 몰드(700), 제2 층(2), 제1 층(1), 및 기재층(9)을 통과시키는 단계를 더 포함할 수 있다. 이때, 롤(900) 사이의 간격은 제2 몰드(600), 제2층(2), 제1 층(1) 및 기재층(9)의 전체 두께보다 작거나 같은 크기일 수 있다.
이와 같이 S140 단계의 진행에 앞서, 차례로 적층된 제2 몰드(700), 제2 층(2), 제1 층(1), 및 기재층(9)을 롤(900) 사이로 통과시킴으로써 1차적으로 전체 두께가 균일해지도록 하는 물리적인 작용이 이루어질 수 있다. 또한, 롤(900) 사이의 간격 조절을 통해 소정의 압착이 이루어질 수 있다.
이때 도 6a에 나타난 바와 같이, 제2 층(2) 및 제1 층(1)은 하측이 제2 몰드(700)를 통해 지지되고 있고 상측에는 기재층(9)을 통해 보호되고 있다. 이에 따라, 이러한 롤(900)은 앞서 살핀 이형롤(810)제2 층(2) 및 제1 층(1)은 두께의 균일화 또는 소정의 압착을 위한 물리적인 작용력을 간접적으로 받게 되므로, 보다 안정적인 통과가 이루어질 수 있다.
또한, 이러한 롤(900) 사이로 통과되는 단계를 통하여, 제1 층(1)에 형성된 패턴의 돌출된 부분 중 일부가 평탄화된 제2 층(2)의 상면에 인입되는 정도(인입 깊이)가 균일해질 수 있고, 롤(900) 사이의 간격 조절을 통해 원하는 인입 깊이를 설정할 수 있게 된다.
한편 도 2를 참조하면, 본 일체형 광학 필름 제조 방법(S100)은 S140 단계 이후에 패턴을 갖는 제3 몰드 상에 경화성의 레진을 코팅하는 단계(S145), 이형성이 있는 표면을 갖는 이형필름(99) 또는 이형롤(810)로 제3 몰드(도면 미도시) 상에 코팅된 레진의 상면을 평탄화하여 무경화 상태의 제3 층(도면 미도시)을 형성하는 단계(S150), 이러한 제3 층 상에 제2 층(2)이 접촉되도록 2층 광학 필름(120)을 적층하는 단계(S160), 그리고 제3 층 및 2층 광학 필름(120)에 광을 투사하여 제3 층 및 2층 광학 필름(120)을 일체화하고 제3 몰드를 분리하여 3층 광학 필름(도면 미도시)을 형성하는 단계(S165)를 더 포함할 수 있다.
그리고, S165 단계에서 투사하는 광은 완전경화를 위한 광일 수 있다.
이 경우, S140 단계에서 투사하는 광은 가경화 또는 완전경화를 위한 광일 수 있다. 전술한 바와 같이 S140 단계에서 완전경화를 위한 광을 투사함으로써 2층 광학 필름(120)의 형태로 일체형 광학 필름이 제조될 수 있다. 반면, 제2 층(2) 상에 다른 층들을 더 적층하여 3층 또는 4층 이상의 다층 광학 필름을 제조하고자 하는 경우에는, S140 단계에서 가경화를 위한 광을 투사할 수 있다. 또는, 제2 층(2) 상에 다른 층들을 더 적층하여 3층 또는 4층 이상의 다층 광학 필름을 제조하고자 하는 경우라도, S140 단계에서 완전경화를 위한 광을 투사할 수 있다. 이러한 경우 앞서 살핀 바와 같이 제2 몰드(700)는 이형성(박리성)이 높은 표면을 갖는 몰드로 구비된다면, 이를 통해 S140 단계에서 제2 층(2)이 완전경화 되더라도 제2 몰드(700)로부터 안정적으로 분리될 수 있을 것이다.
즉, 본 일체형 광학 필름 제조 방법(S100)은 상술한 바와 같이 3층 광학 필름(130)이 형성된 이후에도 S145 단계, S150 단계, S160 단계, 및 S165 단계를 반복함으로써, n층 광학 필름을 형성할 수 있다.
이와 같이 n층 광학 필름의 형성을 위해 S145 내지 S165 단계가 반복될 때, 반복되는 S165 단계마다 투사하는 광 중 제n 층 및 (n-1)층 광학 필름에 투사하는 광은 완전경화를 위한 광이고, 나머지 광은 가경화를 위한 광일 수 있다. 즉, 최종 층의 적층 전까지는 가경화를 위한 광을 투사하고, 최종 층의 적층이 이루어진 다음에는 완전경화를 위한 광을 투사함으로써 일체형 광학 필름이 제조될 수 있다.
또는, 각 층이 적층될 때마다 완전 경화를 위한 광을 투사하는 방식으로 일체형 광학 필름의 제조가 이루어질 수 있다. 예시적으로 최종적으로 3층(기재층 제외)인 광학 필름을 제조하는 경우(도 2 참조), 무경화 상태의 제2 층(2) 상에 기재층(9)이 상면에 적층되어 있는 가경화 또는 완전경화 상태의 제1 층(1)을 적층한 다음 완전 경화시켜 일단 2층을 일체화시키고, 다시 무경화 상태의 제3 층 상에 일체화된 2층을 적층한 다음 완전 경화시켜 3층을 일체화시키는 방식으로 일체형 광학 필름의 제조가 이루어질 수 있다. 다만, 앞서 살핀 바와 같이, 최종 층의 적층 전에 투사되는 광이 완전경화를 위한 광인 경우에는 완전경화되는 레진과 접촉되는 해당 몰드를 이형성(박리성)이 높은 표면을 갖는 몰드로 구비함이 바람직하다.
아울러, 본 일체형 광학 필름 제조 방법(S100)은 S165 단계 이전에 서로 간격을 두고 설치된 롤(900) 사이로 제3 몰드, 제3 층, 및 2층 광학 필름(120)을 통과시키는 단계를 더 포함할 수 있다. 이때, 롤(700) 사이의 간격은 제3 몰드, 제3층, 및 2층 광학 필름(120)의 전체 두께보다 작거나 같은 크기일 수 있다.
이와 같이, 이형필름(99) 또는 이형롤(810)을 통해 층의 형상을 평탄하게 형성한 다음 평탄하게 형성된 면 상에 가경화 또는 완전 경화된 층에 형성된 패턴 중 돌출된 부분을 일부 인입한 후 경화시키는 방식을 통해, 별도의 점착제나 점착제를 코팅하지 않더라도 각 층들 자체가 점착제 또는 접착제의 역할까지 할 수 있어, 일체형 광학 필름이 보다 슬림한 두께로 구비될 수 있으면서도 인입 체결 방식과 경화를 통한 접합 방식의 유기적 결합을 통해 서로 쉽게 분리되지 않게 되고, 이에 따라 빛샘 현상 등이 매우 효과적으로 방지될 수 있다.
또한 앞서 살핀 바와 같이, 제2 층(2) 이상의 층 형성에 있어서는 기재층(9) 대신 이형필름(99) 또는 이형롤(810)을 이용함으로써, 제1 층(1) 상에 적층되는 광학층들이 각각에 대한 기재층 없이도 편평한 바닥면을 갖도록 형성될 수 있다. 또한 이렇게 각각의 광학층들의 바닥면이 보다 편평해지게 되면, 바닥면을 통해 입사되는 광의 입사 각도가 전체적으로 균일해질 수 있어, 광 균일도, 휘도 등의 광학 특성이 크게 향상될 수 있다.
그리고 종래에는 기재층 상에 레진을 도포한 후 상면을 패턴 가공하는 방식이 이용되어, 패턴을 명확하게 형성하기 어렵고 패턴 가공 공정 중에 레진이 기재층 주변으로 흘러내리는 등의 문제가 발생할 수 있었다. 보다 구체적으로, 기재층 상에 레진을 직접 도포하고 경화시키는 방식으로 각각의 광학층을 형성하게 되면, 광학층에 원하는 형태를 갖는 패턴을 형성시키기는 것이 매우 어려워진다.
예를 들어 기재층 상에 레진을 도포한 다음 레진이 경화되기 전에 프레스를 통해 패턴의 형상을 가공한다면, 프레스된 패턴의 형상이 계속 유지되기 어렵고 프레스 압축에 의해 레진이 옆으로 흘러내리게 될 수 있다. 한편, 레진이 경화된 후에 프레스 가공을 하게 되면 패턴을 형성시키고자 하는 광학층이 파손 또는 변형될 우려가 심해져 프레스 가공이 더욱 어려워진다. 이와 같이, 기재층 상에 레진을 직접 도포하는 방식으로는 패턴을 갖는 광학층을 명확한 형상으로 제조하기가 불가능에 가까웠다.
이에 반해, 본원은 몰드 상에 레진을 코팅하여 레진의 상측이 아닌 하측에 패턴이 형성되도록 하고, 레진의 상측은 이형성(박리성)을 가져 쉽게 분리 가능한 이형필름(99) 또는 이형롤(810)을 이용하여 편평한 바닥면을 형성시키고 그 상측에 패턴이 형성되고 가경화 또는 완전경화된 다른 층을 얹은 다음 몰드를 분리하지 않은 상태에서 바로 가경화 또는 완전경화 시키는 방식을 통해, 바닥면도 편평해질 뿐만 아니라 패턴도 원하는 형상으로 명확하게 형성될 수 있도록 하였다. 더불어, 본원은 가경화 또는 완전경화 시 각각의 광학층이 몰드와 엉겨 붙지 않도록 몰드 상에서는 광학층이 분리 가능한 가경화된 상태로 제조되도록 하거나, 이형성(박리성)이 높은 표면을 갖는 몰드를 사용하였다.
또한, 이러한 몰드 및 이형롤(810)의 적용에 따라 제1 층(1)을 지지하는 기재층(9) 이외에는 기재층이 전부 생략될 수 있어, 종래의 광학 필름보다 훨씬 슬림한 두께로 일체형 광학 필름이 제조될 수 있다.
즉, 본원에 개시되는 일체형 광학 필름 제조 방법들은 광학층의 재료적 측면(경화성 레진), 광학층의 제조수단 측면(이형필름 또는 이형롤 및 몰드를 이용), 및 광학층의 제조공정(무경화 상태의 층에 경화 상태의 층을 얹은 후 경화하여 소정의 인입 체결이 이루어지도록 함으로써 보다 견고한 결합 구조를형성함) 측면이 유기적으로 연계되도록 조합한 발명이다.
이하에서는 본원의 다양한 실시예에 따른 일체형 광학 필름에 대해 설명한다. 다만, 이는 앞서 설명한 본원의 다양한 실시예에 따른 일체형 광학 필름 제조 방법을 통해 제조된 일체형 광학 필름에 관한 것이므로, 앞서 살핀 구성과 동일하거나 유사한 구성에 대하여는 동일한 도면 부호를 사용하고, 중복되는 설명은 간략히 하거나 생략하기로 한다.
또한 참고로, 본원의 다양한 실시예에 따른 일체형 광학 필름은 액정표시장치(LCD)뿐 아니라 전기영동 표시장치 등의 모든 수광형 표시장치, 간판, 조명 등 다양한 분야에 적용될 수 있다.
우선, 본원의 제1 실시예에 따른 일체형 광학 필름에 대한 도면(도 7, 도 8, 도 9a, 도 9b, 및 도 10 내지 도 13)을 참조하여, 본원의 다양한 실시예에 따른 일체형 광학 필름(이하 '본 일체형 광학 필름'이라 함)에 공통적으로 적용되는 구성 및 기술적 사항을 설명한다.
도 7은 본원의 제1 실시예에 따른 일체형 광학 필름의 사시도이고, 도 8은 본원의 제1 실시예에 따른 일체형 광학 필름의 인입 구조를 설명하기 위한 단면도이다. 또한, 도 9a는 본원의 제1 실시예에 따른 일체형 광학 필름의 제2 층을 위에서 바라본 평면도이고, 도 9b는 본원의 제1 실시예에 따른 일체형 광학 필름의 제2 층의 다른 예를 위에서 바라본 평면도이다.
본 일체형 광학 필름은 기재층(9)을 포함한다. 도 7 및 도 8을 참조하면, 기재층(9)은 일체형 광학 필름을 형성하는 각 층들의 가장 기초가 되는 층이다. 기재층(9)은 하측으로부터 제1 층(1)으로 광을 전달하는 층이 될 수 있다. 이에 따라, 기재층(35)은 광 투과성을 갖는 재질을 가질 수 있다.
예시적으로, 기재층(9)은 폴레에틸렌테레프탈레이트(PET), 폴리 카보네이트(PC), 폴리에틸렌(PE) 등의 재질로 이루어진 편평한 필름 형상일 수 있으나 이에 한정되는 것은 아니다. 즉, 기재층(9)은 원하는 휘도 및 광 균일도의 확보를 위해 소정의 굴절률 및 광 투과성을 갖는 재질로 형성될 수 있다.
또한, 도광판(LGP, Light Guide Plate)이 이러한 기재층(9)의 역할을 수행할 수도 있다. 다시 말해, 기재층(9)은 도광판일 수 있다. 도광판은 램프(도면 미도시)로부터 입사된 광을 균일한 평면광으로 변환시켜주는 구성요소로서, 일반적으로 아크릴 수지인 PMMA(polymethymethacrylate)로 이루어진다. 이렇게 기재층(9) 자체가 도광판이 되는 일체형 광학 필름이 적용되는 백 라이트 유닛은 보다 슬림하게 구비될 수 있을 것이다.
다만, 기재층(9)은 반드시 도광판으로만 한정되는 것은 아니며, 각 층들의 기초가 되는 층으로서 하측으로부터 제1 층(1)으로 광을 전달할 수 있는 층을 모두 포함하는 개념으로 이해됨이 바람직하다.
또한, 본 일체형 광학 필름은 제1 층(1)을 포함한다.
도 7 및 도 8을 참조하면, 제1 층(1)은 기재층(9) 상에 배치되고, 상면에 패턴(11)이 형성된다.
이러한 제1 층(1)은 경화성 레진으로 형성될 수 있다. 예시적으로, 이러한 레진은 자외선(UV) 및 적외선(IR) 중 어느 하나에 의해 경화되는 경화성의 투명한 레진일 수 있다. 또한, 상기 레진은 점착성 또는 접착성을 갖는 레진일 수 있다. 예를 들면, 제1 층(1)을 형성하는 레진은 경화된 상태에서도 점착성이 유지되는 레진일 수 있다.
그리고 본 일체형 광학 필름은 제2 층(2)을 포함한다.
제2 층(2)은 제1 층(1) 상에 배치되고, 상면에 패턴(21)이 형성된다.
예시적으로 패턴(21)은 도 9a에 나타난 바와 같이 규칙적인 형상 및 배열에 따라 형성될 수도 있고, 도 9b에 나타난 바와 같이 랜덤한 크기, 깊이, 모양, 배치 등에 따라 형성될 수도 있다. 이러한 패턴(11)의 형상 및 배열은 원하는 광 확산의 정도, 휘도 확보의 필요성 등을 종합적으로 고려하여 다양하게 설정될 수 있을 것이다.
또한, 제2 층(2)은 제1 층(1)과의 사이에 별도의 기재층의 부가 없이 제1 층(1)과 직접적으로 연결된다.
앞서 본원의 다양한 실시예에 따른 일체형 광학 필름 제조 방법에서 살핀 바와 같이, 본 일체형 광학 필름의 제조 공정에 있어서, 몰드 및 이형필름(99) 또는 이형롤(810)의 적용이 유기적으로 연계됨에 따라 제1 층(1)을 지지하는 기재층(9) 이외에는 제2 층(2)을 지지하는 기재층 등 다른 기재층은 전부 생략될 수 있어, 종래의 광학 필름보다 훨씬 슬림한 두께로 일체형 광학 필름이 제조될 수 있다.
그리고 기재층(9), 제1층(1), 및 제2 층(2)은 일체로 형성된다.
앞서 본원의 다양한 실시예에 따른 일체형 광학 필름 제조 방법에서 살핀 바와 같이, 본 일체형 광학 필름의 제조에 있어서, 무경화 상태인 층 상에 가경화 또는 완전경화 상태인 층의 패턴 중 돌출된 부분이 소정 인입된 상태로 가경화 또는 완전 경화하는 방식을 통해, 기재층(9), 제1 층(1), 및 제2 층(2)은 일체형으로 형성될 수 있다.
보다 구체적으로 도 8을 참조하면, 제1 층(1)의 상면 중 패턴(11)에 따라 돌출 형성된 부분이 무경화 상태인 제2 층(2)의 하면에 일부 인입된 상태에서, 제2 층(2)을 가경화 또는 완전경화 시킴으로써, 제1 층(1)의 인입부(11a)가 제2 층(2) 하면의 인입홈(22)에 인입된 상태에서 경화가 이루어져 입자 간의 엉김 결합이 극대화되고, 이를 통한 양 층(1, 2)간의 일체화가 매우 견고하게 구축될 수 있다.
다시 말해, 인입홈(22)에 인입부(11a)가 체결됨으로써, 경화 시 입자 간의 엉김 결합이 발생하는 면적이 증가되고 상하 방향에 대한 마찰력까지 확보될 수 있으므로 상하 방향에 대한 접합력이 극대화될 수 있고, 인입홈(22)과 인입부(11a) 간의 암수 결합(또는 앵커 체결)으로 인해 수평 방향에 대한 고정력 또한 극대화될 수 있다. 따라서, 이를 통해 극히 견고한 구조의 일체형 광학 필름이 확보될 수 있다.
또한, 제2 층(2)의 하면은 편평한 상태로 제1 층(1)과 연결될 수 있다.
앞서 본원의 다양한 실시예에 따른 일체형 광학 필름 제조 방법에서 살핀 바와 같이, 본 일체형 광학 필름의 제조에 있어서, 제2 층(2) 이상의 층 형성에 있어서는 기재층(9) 대신 이형필름(99) 또는 이형롤(810)을 통한 평탄화를 이용함으로써, 제1 층(1) 상에 적층되는 제2 층(2)은 위에서 살핀 바와 같이 인입부(11a)가 인입되는 인입홈(22)을 제외하고는 편평한 바닥면을 갖도록 형성될 수 있다. 또한 이렇게 제2 층(2)의 바닥면이 보다 편평해지게 되면, 바닥면을 통해 입사되는 광의 입사 각도가 전체적으로 균일해질 수 있어, 광 균일도, 휘도 등의 광학 특성이 크게 향상될 수 있다.
이러한 제2 층(2)은 경화성 레진으로 형성될 수 있다. 이에 대해서는 제1 층(1)의 구성을 설명하면서 살핀 바 있으므로, 상세한 설명은 생략한다.
또한, 도면에는 도시되지 않았으나, 본 일체형 광학 필름은 하나 이상의 광학층을 더 포함할 수 있다.
이렇게 본 일체형 광학 필름이 3층 이상으로 적층되더라도, 앞서 설명한 바와 같이 본 일체형 광학 필름의 제조 공정에 있어서, 제1 층(1)을 지지하는 기재층(9) 이외에는 다른 기재층은 전부 생략될 수 있고, 각 층들은 편평한 바닥면을 가질 수 있게 되며, 인입부(11a)와 인입홈(22) 간의 인입 결합 후 경화 방식을 통해 견고한 일체화가 이루어질 수 있고, 각 층들에 형성되는 패턴은 원하는 형태로 명확하게 형성되게 된다.
따라서, 일체형 광학 필름이 3층 이상의 다층으로 구비되더라도, 종래의 다층 광학 필름에 비해 훨씬 슬림하면서도 견고하고, 향상된 광학 특성을 갖는 일체형 광학 필름이 구현될 수 있다.
도면에는 도시되지 않았으나 광학층이 하나인 경우, 하나의 광학층은 제2층(2) 상에 배치되고 상면에 패턴이 형성된다. 이렇게 광학층이 하나인 경우, 이를 제3 층이라 부르기로 한다. 하나의 광학층, 즉 제3 층은 하측의 제2 층(2)과의 사이에 별도의 기재층의 부가 없이 하측의 제2 층(2)과 직접적으로 연결된다. 또한, 기재층(9), 제1 층(1), 제2 층(2), 및 제3 층은 일체로 형성된다.
또는 도면에는 도시되지 않았으나 광학층이 복수 개인 경우, 복수의 광학층은 제2 층(2) 상에 순차적으로 배치되고 각각의 상면에는 패턴이 형성된다. 이렇게 광학층이 복수 개인 경우, 복수의 광학층 각각은 하측의 제2 층(2) 또는 하측의 광학층과의 사이에 별도의 기재층의 부가 없이 하측의 제2 층(2) 또는 하측의 광학층과 직접적으로 연결된다. 또한, 기재층(9), 제1 층(1), 제2 층(2), 및 복수의 광학층은 일체로 형성된다.
한편, 본 일체형 광학 필름에 대해 상술한 설명에 기초하여, 본원의 제1 내지 제5 실시예에 따른 일체형 광학 필름을 살핀다. 다만, 본원을 통해 구현되는 일체형 광학 필름은 제1 내지 제5 실시예의 경우에만 한정되는 것은 아니며, 상술한 본 일체형 광학 필름에 대한 설명에 대응되는 다양한 실시예로 구현될 수 있다.
우선 도 7 및 도 8을 참조하면, 본원의 제1 실시예에 따른 일체형 광학 필름(120)은 기재층(9), 제1 층(1), 및 제2 층(2)을 포함한다.
여기서, 제1 층(1)은 굴절층이고, 제2 층(2)은 확산층일 수 있다.
확산층은 하측으로부터 전달된 광을 확산시켜 상측으로 전달하는 기능을 수행하고, 굴절층은 하측으로부터 전달되는 광을 굴절(집광)시켜 상측으로 전달하는 기능을 수행할 수 있다. 다만, 확산층은 광 확산의 정도를 필요에 따라 조절할 수 있으며, 광 확산이 다소 작게 이루어져야 하는 기기에서는 확산과 집광의 중간 정도의 수준으로 광 전달을 수행할 수도 있다. 또한, 굴절층도 마찬가지로 집광의 정도를 필요에 따라 조절할 수 있다.
그리고, 제1층(1)의 패턴(11)은 제1 층(1)의 길이 방향으로 연장되는 프리즘 기둥 형상일 수 있다.
프리즘 기둥 형상은 정점이 위로 향한 삼각형 형태(프리즘 형태)를 갖도록 형성될 수 있다. 예시적으로, 통상적인 프리즘의 정점각은 대략 90˚ 정도이며, 보다 효율적인 광 굴절을 위해서는 90˚보다 작은 값을 가지는 것이 바람직할 수 있다. 다만, 이러한 프리즘 기둥의 형상은 삼각형 형태에 한정될 필요는 없으며, 굴절 방향 등의 필요에 따라 다양한 형상(각도 및 피치)으로 형성될 수 있다. 또한 도면에는 도시되지 않았지만, 프리즘의 표면에는 굴절 방향, 휘도, 광 투과율 등을 보다 세밀하게 조절할 수 있는 미세한 요철이 형성될 수 있다.
그리고 제2 층(2)의 패턴(21)은 볼록한 형상일 수 있다. 예시적으로, 확산층인 제2 층(2)은 마이크로 렌즈 필름으로 구비될 수 있다.
도 10은 본원의 제2 실시예에 따른 일체형 광학 필름의 사시도이다.
도 10을 참조하면, 본원의 제2 실시예에 따른 일체형 광학 필름(120)은 기재층(9), 제1 층(1), 및 제2 층(2)을 포함한다. 여기서, 제1 층(1)은 굴절층이고, 제2 층(2)은 확산층일 수 있다. 그리고, 제1층(1)의 패턴(11)은 제1 층(1)의 길이 방향으로 연장되는 프리즘 기둥 형상일 수 있다. 또한, 제2 층(2)의 패턴(21)은 오목한 형상일 수 있다.
예시적으로 도 10을 참조하면, 제2 층(2)의 오목한 형상의 패턴(21)은 제2 층(2)의 상면에서 하향으로 움푹 패인 홈 형태로 형성될 수 있다. 기재층(9) 및 제1 층(1)을 통해 전달된 광은 제2 층(2)에 형성된 오목한 형상의 패턴(11)을 거치면서 보다 균일하게 확산된 상태로 상측으로 전달될 수 있다.
이렇게 확산층에 적용되는 패턴의 형태는 제1 실시예 및 제2 실시예에서 상술한 바와 같이 볼록 또는 오목한 형상으로만 한정되는 것은 아니며, 효율적인 광 확산 및 휘도 향상을 고려하여 다양한 형태로 설정될 수 있다.
또한, 패턴(11)의 배열 방식 역시 원하는 광 확산의 정도, 휘도 확보의 필요성 등을 종합적으로 고려하여 설정될 수 있다. 이를테면 패턴(11)은 규칙적으로 배열될 수 있다. 예시적으로 도 9a에 나타난 바와 같이, 패턴(11)은 하나의 패턴(11)을 다른 6개의 패턴(11)이 둘러싸는 허니콤 구조로 배열될 수 있다. 또는 도 9b를 참조하면 패턴(11)은 랜덤(random)하게 형성될 수도 있다.
도 11은 본원의 제3 실시예에 따른 일체형 광학 필름의 사시도이다.
도 11을 참조하면, 본원의 제3 실시예에 따른 일체형 광학 필름(120)은 기재층(9), 제1 층(1), 및 제2 층(2)을 포함한다. 여기서, 제1 층(1) 및 제2 층(2)은 굴절층일 수 있다. 또한, 제1 층(1)의 패턴(11)은 제1 층(1)의 길이 방향으로 연장되는 프리즘 기둥 형상이며, 제2 층(2)의 패턴(21)은 제1 층(1)의 프리즘 기둥 형상의 패턴과 직교하도록 제2 층(2)의 폭 방향으로 연장되는 프리즘 기둥 형상일 수 있다.
도 12은 본원의 제4 실시예에 따른 일체형 광학 필름의 사시도이다.
도 12를 참조하면, 본원의 제4 실시예에 따른 일체형 광학 필름(120)은 기재층(9), 제1 층(1), 및 제2 층(2)을 포함한다. 여기서, 제1 층(1)은 확산층이고, 제2 층(2) 은 굴절층일 수 있다. 또한, 제1 층(1)의 패턴(11)은 오목한 형상이고, 제2 층(2)의 패턴(21)은 상기 제2 층의 길이 방향으로 연장되는 프리즘 기둥 형상일 수 있다.
도 13은 본원의 제5 실시예에 따른 일체형 광학 필름의 사시도이다.
도 13을 참조하면, 본원의 제5 실시예에 따른 일체형 광학 필름(120)은 기재층(9), 제1 층(1), 및 제2 층(2)을 포함한다. 여기서, 제1 층(1)은 확산층이고, 제2 층(2) 은 굴절층일 수 있다. 또한, 제1 층(1)의 패턴(11)은 볼록한 형상이고, 제2 층(2)의 패턴(21)은 상기 제2 층의 길이 방향으로 연장되는 프리즘 기둥 형상일 수 있다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.
Claims (19)
- 일체형 광학 필름 제조 방법에 있어서,(a) 패턴을 갖는 제1 몰드 상에 경화성의 레진을 코팅하는 단계;(b) 상기 제1 몰드 상에 코팅된 레진의 상면에 기재층을 덮는 단계;(c) 상기 기재층이 덮인 레진에 가경화 또는 완전경화를 위한 광을 투사하여 가경화 또는 완전경화 상태의 제1 층을 형성하는 단계;(d) 패턴을 갖는 제2 몰드 상에 경화성의 레진을 코팅하는 단계;(e) 이형성이 있는 표면을 갖는 이형필름 또는 이형롤로 상기 제2 몰드 상에 코팅된 레진의 상면을 평탄화하여 무경화 상태의 제2 층을 형성하는 단계;(f) 상기 제2 층 상에 상기 제1 층이 접촉되도록 상기 제1 몰드로부터 분리한 상기 제1 층 및 상기 기재층을 적층하는 단계; 및(g) 상기 제2 층, 상기 제1층, 및 상기 기재층에 광을 투사하여 상기 제2 층, 상기 제1 층, 및 상기 기재층을 일체화하고 상기 제2 몰드를 분리하여 2층 광학 필름을 형성하는 단계를 포함하는 일체형 광학 필름 제조 방법.
- 제1항에 있어서,상기 (g) 단계에서, 상기 제1층은 상기 제1 몰드의 패턴에 대응하여 형성된 패턴의 돌출된 부분이 무경화 상태인 상기 제2 층의 상면에 일부 인입된 상태로 상기 제2 층과 일체로 형성되는 것인 일체형 광학 필름 제조 방법.
- 제1항에 있어서,상기 (g) 단계에서 투사하는 광은 완전경화를 위한 광인 것인 일체형 광학 필름 제조 방법.
- 제1항에 있어서,상기 (g) 단계 이전에,서로 간격을 두고 설치된 롤 사이로 상기 제2 몰드, 상기 제2 층, 상기 제1 층, 및 상기 기재층을 통과시키는 단계를 더 포함하되,상기 롤 사이의 간격은 상기 제2 몰드, 상기 제2층, 상기 제1 층 및 상기 기재층의 전체 두께보다 작거나 같은 크기인 일체형 광학 필름 제조 방법.
- 제1항에 있어서,상기 (e) 단계에서, 상기 이형필름을 이용하는 경우, 상기 제2 몰드 상에 코팅된 레진의 상면에 이형필름을 덮어 평탄화된 상기 제2 층을 형성한 다음 상기 이형필름을 상기 제2층 상에서 제거하는 것인 일체형 광학 필름 제조 방법.
- 제1항에 있어서,상기 (e) 단계에서, 상기 이형롤을 이용하는 경우, 상기 제2 몰드 및 상기 제2 몰드 상에 코팅된 레진은 상기 이형롤 및 상기 이형롤과 간격을 두고 설치된 가이드롤 사이로 통과되되,상기 이형롤 및 상기 가이드롤 사이의 간격은 상기 제2 몰드 및 상기 제2 몰드 상에 코팅된 레진의 전체 두께보다 작거나 같은 크기인 일체형 광학 필름 제조 방법.
- 제1항에 있어서,상기 (g) 단계에서 투사하는 광은 가경화 또는 완전경화를 위한 광이고,상기 (g) 단계 이후에,(h) 패턴을 갖는 제3 몰드 상에 경화성의 레진을 코팅하는 단계;(i) 이형성이 있는 표면을 갖는 이형필름 또는 이형롤로 상기 제3 몰드 상에 코팅된 레진의 상면을 평탄화하여 무경화 상태의 제3 층을 형성하는 단계;(j) 상기 제3 층 상에 상기 제2 층이 접촉되도록 상기 2층 광학 필름을 적층하는 단계; 및(k) 상기 제3 층 및 상기 2층 광학 필름에 광을 투사하여 상기 제3 층 및 상기 2층 광학 필름을 일체화하고 상기 제3 몰드를 분리하여 3층 광학 필름을 형성하는 단계를 더 포함하는 일체형 광학 필름 제조 방법.
- 제7항에 있어서,상기 (k) 단계에서 투사하는 광은 완전경화를 위한 광인 것인 일체형 광학 필름 제조 방법.
- 제7항에 있어서,상기 (k) 단계 이전에,서로 간격을 두고 설치된 롤 사이로 상기 제3 몰드, 상기 제3 층, 및 상기 2층 광학 필름을 통과시키는 단계를 더 포함하되,상기 롤 사이의 간격은 상기 제3 몰드, 상기 제3층, 및 상기 2층 광학 필름의 전체 두께보다 작거나 같은 크기인 일체형 광학 필름 제조 방법.
- 제7항에 있어서,상기 (h) 내지 (k) 단계를 반복하여 n층 광학 필름을 형성하는 일체형 광학 필름 제조 방법.
- 제10항에 있어서,상기 n층 광학 필름의 형성을 위해 상기 반복되는 (k) 단계마다 투사하는 광 중 제n 층 및 (n-1)층 광학 필름에 투사하는 광은 완전경화를 위한 광이고, 나머지 광은 가경화 또는 완전경화를 위한 광인 것인 일체형 광학 필름 제조 방법.
- 일체형 광학 필름에 있어서,기재층;상기 기재층 상에 배치되고, 상면에 패턴이 형성되는 제1 층; 및상기 제1 층 상에 배치되고, 상면에 패턴이 형성되는 제2 층을 포함하되,상기 제2 층은 상기 제1 층과의 사이에 별도의 기재층의 부가 없이 상기 제1 층과 직접적으로 연결되며,상기 기재층은 상기 제1층과 일체로 형성되고,상기 제1층은 그 상면 중 상기 패턴에 따라 돌출 형성된 부분이 상기 제2 층의 하면에 일부 인입된 상태로 상기 제2 층과 일체로 형성되는 것인 일체형 광학 필름.
- 제12항에 있어서,상기 제2 층의 하면은 편평한 상태로 상기 제1 층과 연결되는 것인 일체형 광학 필름.
- 제12항에 있어서,상기 제1 및 제2 층은 경화성 레진으로 형성되는 것인 일체형 광학 필름.
- 제12항에 있어서,상기 제2층 상에 배치되고 상면에 패턴이 형성되는 하나의 광학층 또는 상기 제2 층 상에 순차적으로 배치되고 상면에 패턴이 형성되는 복수의 광학층을 더 포함하고,상기 하나 이상의 광학층은 하측의 제2 층 또는 하측의 광학층과의 사이에 별도의 기재층의 부가 없이 상기 하측의 제2 층 또는 하측의 광학층과 직접적으로 연결되며,상기 기재층, 상기 제1 층, 상기 제2 층, 및 상기 하나 이상의 광학층은 일체로 형성되는 것인 일체형 광학 필름.
- 제12항에 있어서,상기 제1 층은 굴절층이고,상기 제2 층은 확산층이며,상기 제1층의 패턴은 상기 제1 층의 길이 방향으로 연장되는 프리즘 기둥 형상이고,상기 제2층의 패턴은 볼록 또는 오목한 형상인 것인 일체형 광학 필름.
- 제16항에 있어서,상기 확산층은 마이크로 렌즈 필름으로 구비되는 것인 일체형 광학 필름.
- 제12항에 있어서,상기 제1 및 제2 층은 굴절층이고,상기 제1 층의 패턴은 상기 제1 층의 길이 방향으로 연장되는 프리즘 기둥 형상이며,상기 제2 층의 패턴은 상기 제1 층의 프리즘 기둥 형상의 패턴과 직교하도록 상기 제2 층의 폭 방향으로 연장되는 프리즘 기둥 형상인 것인 일체형 광학 필름.
- 제12항에 있어서,상기 제1 층은 확산층이고,상기 제2 층은 굴절층이며,상기 제1 층의 패턴은 볼록 또는 오목한 형상이고,상기 제2 층의 패턴은 상기 제2 층의 길이 방향으로 연장되는 프리즘 기둥 형상인 것인 일체형 광학 필름.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0125357 | 2012-11-07 | ||
KR1020120125357A KR101262885B1 (ko) | 2012-11-07 | 2012-11-07 | 일체형 광학 필름 제조 방법 및 일체형 광학 필름 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014073830A1 true WO2014073830A1 (ko) | 2014-05-15 |
Family
ID=48665924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/009924 WO2014073830A1 (ko) | 2012-11-07 | 2013-11-05 | 일체형 광학 필름 제조 방법 및 일체형 광학 필름 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101262885B1 (ko) |
WO (1) | WO2014073830A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11906759B2 (en) | 2018-05-22 | 2024-02-20 | 3M Innovative Properties Company | Optical film with light control edge |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050030583A (ko) * | 2003-09-25 | 2005-03-30 | 제너럴 일렉트릭 캄파니 | 다층 광학 필름 및 그것의 제조 방법 |
KR20070090796A (ko) * | 2006-03-03 | 2007-09-06 | 앱티콘 인코퍼레이티드 | 다층 프리즘을 갖는 광학 필름 및 이의 제조 방법 |
KR20090064527A (ko) * | 2006-07-24 | 2009-06-19 | 발터 악티엔게젤샤프트 | 크랭크축 밀링 커터 |
KR20090096374A (ko) * | 2008-03-06 | 2009-09-10 | 미래나노텍(주) | 단일의 다층 광학 시트 및 이를 포함하는 디스플레이용 백라이트 어셈블리 |
KR20120086620A (ko) * | 2011-01-26 | 2012-08-03 | 광 석 서 | 압출법으로 패턴을 보유한 필름을 제조하는 방법 및 이로부터 제조된 광학 필름 |
-
2012
- 2012-11-07 KR KR1020120125357A patent/KR101262885B1/ko not_active IP Right Cessation
-
2013
- 2013-11-05 WO PCT/KR2013/009924 patent/WO2014073830A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050030583A (ko) * | 2003-09-25 | 2005-03-30 | 제너럴 일렉트릭 캄파니 | 다층 광학 필름 및 그것의 제조 방법 |
KR20070090796A (ko) * | 2006-03-03 | 2007-09-06 | 앱티콘 인코퍼레이티드 | 다층 프리즘을 갖는 광학 필름 및 이의 제조 방법 |
KR20090064527A (ko) * | 2006-07-24 | 2009-06-19 | 발터 악티엔게젤샤프트 | 크랭크축 밀링 커터 |
KR20090096374A (ko) * | 2008-03-06 | 2009-09-10 | 미래나노텍(주) | 단일의 다층 광학 시트 및 이를 포함하는 디스플레이용 백라이트 어셈블리 |
KR20120086620A (ko) * | 2011-01-26 | 2012-08-03 | 광 석 서 | 압출법으로 패턴을 보유한 필름을 제조하는 방법 및 이로부터 제조된 광학 필름 |
Also Published As
Publication number | Publication date |
---|---|
KR101262885B1 (ko) | 2013-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2983021B1 (en) | Pattern structure and method of manufacturing the pattern structure, and liquid crystal display device | |
WO2016195300A1 (ko) | 확산패턴을 가지는 반사편광모듈 및 이를 구비한 백라이트 유닛 | |
WO2010033002A2 (ko) | 미세복합형상렌즈 및 그 제조방법 | |
WO2011081351A2 (ko) | 패턴 도광판, 그 제조방법 및 이를 이용한 액정표시장치 백라이트 유닛 | |
WO2015105317A1 (ko) | 광학시트 조립체 및 이를 포함하는 백라이트 유닛 | |
TW201001001A (en) | Liquid crystal display | |
WO2015156548A1 (ko) | 백라이트 유닛, 및 이를 포함하는 디스플레이 장치 | |
WO2017171323A2 (ko) | 유연성 디스플레이 장치의 제조 방법 | |
KR20160024410A (ko) | 패턴 구조체 및 그 제조방법 | |
WO2012074167A1 (ko) | 도광판 및 그 제조방법 및 제조장비 | |
WO2016208892A1 (ko) | 벤딩 저감이 가능한 반사편광모듈 및 이를 구비한 백라이트 유닛 | |
WO2018074841A1 (ko) | 캐리어 필름, 이를 이용한 소자 전사방법 및 소자 전사방법을 이용한 전자제품 제조방법 | |
WO2016114597A1 (ko) | 광 리사이클링 향상 시트를 가지는 반사편광모듈 및 이를 구비한 백라이트 유닛 | |
WO2013032053A1 (ko) | 광학부재 및 그 제조방법 | |
WO2003090993A1 (fr) | Procede pour former une lentille composite | |
WO2014021594A1 (ko) | 일체형 광학 필름 제조 방법 | |
WO2014073830A1 (ko) | 일체형 광학 필름 제조 방법 및 일체형 광학 필름 | |
WO2021101341A1 (ko) | 소자 전사방법 및 이를 이용한 전자패널 제조방법 | |
WO2013154280A1 (ko) | 일체형 광학 필름 제조 방법 및 일체형 광학 필름 | |
WO2009113833A2 (ko) | 웨이퍼 스케일 렌즈 어레이, 그 성형장치 및 그 제조방법 | |
WO2015030563A1 (ko) | 뉴턴링 개선 복합 광학 필름 및 그 제조방법 | |
WO2018221878A1 (ko) | 차폐부가 형성된 광전달유닛, 이를 이용한 백라이트모듈 및 광전달유닛의 제조방법 | |
WO2014088360A1 (ko) | 일체형 광학 필름 제조 방법 및 일체형 광학 필름 | |
WO2016204438A1 (ko) | 벤딩 저감이 가능한 집광모듈 및 이를 구비한 백라이트 유닛 | |
WO2017204413A1 (ko) | 백라이트 유닛 및 그를 이용한 디스플레이 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13852870 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 14.07.2015) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13852870 Country of ref document: EP Kind code of ref document: A1 |