WO2014073769A1 - 수지금속 복합체 및 이의 제조방법 - Google Patents

수지금속 복합체 및 이의 제조방법 Download PDF

Info

Publication number
WO2014073769A1
WO2014073769A1 PCT/KR2013/006444 KR2013006444W WO2014073769A1 WO 2014073769 A1 WO2014073769 A1 WO 2014073769A1 KR 2013006444 W KR2013006444 W KR 2013006444W WO 2014073769 A1 WO2014073769 A1 WO 2014073769A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
metal material
metal composite
filler
metal
Prior art date
Application number
PCT/KR2013/006444
Other languages
English (en)
French (fr)
Inventor
이재춘
박성민
백성식
Original Assignee
(주) 웹스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 웹스 filed Critical (주) 웹스
Priority to US14/111,431 priority Critical patent/US9556362B2/en
Priority to JP2014545843A priority patent/JP5789059B2/ja
Publication of WO2014073769A1 publication Critical patent/WO2014073769A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/151Coating hollow articles
    • B29C48/152Coating hollow articles the inner surfaces thereof
    • B29C48/153Coating both inner and outer surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/26Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also organic compounds
    • C23C22/28Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas

Definitions

  • the present invention relates to a resin metal composite and a method for manufacturing the same, and more particularly, to prepare a resin metal composite and a certain type of metal material in a form in which a resin containing an olefin resin, a filler, and a coupling agent and a metal material are combined and the surface of the metal material.
  • the present invention relates to a method for producing a resin metal composite which can be coated by a chemical treatment by extrusion method with a thin and uniform thickness by a series of continuous processes.
  • WPC Wood Plastic Composite
  • WPC has a high filler content of more than 60%, but the strength is high, but the weight is relatively high due to the relatively high specific gravity.
  • a method of lightening the weight is intended to overcome various hollow designs.
  • the hollow structure there is a disadvantage in that it is vulnerable to moisture due to its larger cross-sectional area. As the load is concentrated, cracks or holes are generated due to impact, and as a result, WPC is damaged.
  • an object of the present invention is to solve such a conventional problem, and when the resin including the olefin resin, the organic / inorganic filler and the coupling agent is bonded on the metal material, it is possible to implement a solid and various forms of excellent binding force.
  • the purpose is to provide a resin metal composite.
  • an object of the present invention is a synthetic resin through a surface treatment to control the state of the surface of the metal material through the plasma treatment or primer coating in order to perform the integrated process in the integrated process for producing a final resin metal composite from a metal material having a certain shape.
  • An object of the present invention is to provide a manufacturing method including a metal surface processing step that can improve the adhesive strength with.
  • the objective of the present invention is to provide a resin resin composite having excellent durability and light weight by optimizing synthetic resin pellets and extrusion conditions during melt extrusion to realize a thin and high strength synthetic resin, and using a coupling agent having a certain viscosity in the synthetic resin.
  • the resin metal composite of the present invention is a resin metal composite in which a synthetic resin including an olefin resin, a filler, and a coupling agent is bonded to a metal material, wherein the filler is at least one of an organic filler or an inorganic filler, and the organic filler Is at least one selected from wood flour, wood pellets, wood fibers or equity, and the inorganic filler is at least one selected from talc, calcium carbonate, wollastonite, or kaolinite. It is preferable that the said filler is 1-100 weight part and the said coupling agent are 0.1-10 weight part with respect to 100 weight part of said olefin resins.
  • the coupling agent is a silane resin or a maleic anhydride modified resin
  • the synthetic resin further includes an additive
  • the additive is at least one of a light stabilizer, an antioxidant, a UV absorber, or a lubricant.
  • the metal material is at least one of aluminum, iron, copper, chromium, nickel, silicon, manganese, tungsten, zinc or magnesium, and the metal material has a circular, oval, triangular, square, pentagonal, hexagonal, hexagonal, angled, squared or It is characterized in that the column of open form with three to ten vertices.
  • a method for preparing a resin metal composite includes: preparing a metal material; Metal material surface processing step of processing the surface of the metal material; Extruding the synthetic resin pellets to prepare a synthetic resin coating solution; A coating step of forming a resin metal composite by coating the synthetic resin coating solution on the surface of the metal material; And a cooling step of cooling the resin metal composite.
  • the metal material is at least one of aluminum, iron, copper, chromium, nickel, silicon, manganese, tungsten, zinc, or magnesium, and in the metal material preparation step, the metal material is formed by roll forming a metal plate in cross section.
  • the metal surface processing step may be a plasma treatment or a primer applied.
  • the synthetic resin pellet includes an olefin resin, a filler, and a coupling agent
  • the filler is at least one of an organic filler or an inorganic filler
  • the organic filler is at least one selected from wood flour, wood pellets, wood fibers, or stakes.
  • the inorganic filler is at least one selected from talc, calcium carbonate, wollastonite or kaolinite
  • the coupling agent is a silane resin or a maleic anhydride modified resin.
  • the coating step it is preferable to use a mold for applying the synthetic resin coating liquid to the surface of the metal material, and in the coating step, the synthetic resin coating liquid is preferably applied to the surface of the metal material with a thickness of 0.5 to 7.0mm.
  • the resin metal composite is characterized in that the cooling for 0.5 to 10 minutes in an atmosphere of 5 to 50 °C, preferably further comprises an embossing step of forming a pattern on the surface of the resin metal composite.
  • a resin metal composite which can be embodied in various forms with excellent durability by firmly bonding an olefin resin and a resin including an optimal filler and a coupling agent on a metal material.
  • a resin metal composite in the form of a combination of a metal material and a synthetic resin in manufacturing a resin metal composite in the form of a combination of a metal material and a synthetic resin, it can be made by a continuous process from the initial processing to the finished product, thereby producing a finished product of the desired optimized shape and thickness.
  • the synthetic resin coating liquid in applying the synthetic resin coating liquid, plasma treatment or primer coating is applied to control the surface state of the metallic material, and the synthetic resin includes a silane coupling agent having an optimum viscosity, thereby increasing the adhesive strength between the metallic material and the synthetic resin, thereby making the synthetic resin coating liquid thin and uniform. It can be applied.
  • FIG. 1 is a view showing a resin metal composite according to an embodiment of the present invention.
  • FIG. 2 is a flow chart sequentially showing a method of manufacturing a resin metal composite according to an embodiment of the present invention.
  • the present invention relates to a resin metal composite, in which a resin including an olefin resin, a filler, and a coupling agent is bonded to a metal material.
  • the filler is at least one of an organic filler or an inorganic filler, the organic filler is at least one selected from wood flour, wood pellets, wood fibers or equity, the inorganic filler is at least one selected from talc, calcium carbonate, wollastonite or kaolinite It is preferable.
  • the organic filler wood pellets, wood fibers or equity it is also possible to produce an extruded product by improving the organic filler wood pellets, wood fibers or equity, but as mentioned above, there is a problem that it is difficult to manufacture a variety of forms in terms of durability and difficult to form on the metal material as in the present invention By realizing it, it is possible to have a building material with a solid surface suitable for use.
  • an inorganic filler such as talc, calcium carbonate, wollastonite, or kaolinite
  • the physical properties of the resin can be improved.
  • the inorganic filler as described above is excellent in preventing the shrinkage change by improving the surface active effect without eating moisture, and can significantly improve the moldability in the production of synthetic resin. Therefore, the organic filler and the inorganic filler can be used in combination according to the use of the resin metal composite and the type of the metal.
  • the composition of the said synthetic resin is 1-100 weight part of fillers, and 0.1-10 weight part of coupling agents with respect to 100 weight part of olefin resins.
  • the filler is less than 1 part by weight, the strength is low and the adhesive strength is remarkably difficult to bond to the metal material.
  • the filler is more than 100 parts by weight, the strength is high, but it is difficult to apply a thin resin to the metal material.
  • the coupling agent is less than 0.1 part by weight, the adhesive force is reduced, the binding force between the materials in the resin is reduced and the elasticity is reduced, when the coupling agent exceeds 10 parts by weight, there is a problem that the degree of extrusion decreases.
  • a coupling agent is a silane resin or maleic anhydride modified resin.
  • Silane resins or maleic anhydride modified resins prevent the degradation of the product due to the organic fillers and olefin resins used in large quantities and enable the production of compositions having elasticity and strength at the natural wood level.
  • the silane resin is preferably at least one selected from amino silanes, epoxy silanes, mercapto silanes, ureido silanes, methacryloxy silanes, vinyl silanes, glycidoxy silanes and sulfido silanes.
  • the synthetic resin may further include an additive, and the additive may be at least one of a light stabilizer, an antioxidant, a UV absorber, or a lubricant.
  • the additive may be at least one of a light stabilizer, an antioxidant, a UV absorber, or a lubricant.
  • Such additives may be used without limitation as long as they are commonly used in the art.
  • the light stabilizer is preferably bis 2,2,6,6-tetramethyl-4 piperidyl, and the addition of the light stabilizer prevents olefin resins or synthetic resins from deteriorating weather resistance or discoloring when exposed to ultraviolet rays.
  • Antioxidants use phosphate-based antioxidants, phenolic antioxidants, calcium stearate, and ultraviolet absorbers preferably use benzotriazole-based compounds, thereby improving the durability of the resin metal composite.
  • the lubricant is preferably an ester lubricant or an amide lubricant, more preferably polyethylene wax or polypropylene wax. Lubricants provide lubricity between each component of the synthetic resin and reduce the friction in the mixing process of each component to increase filler dispersion.
  • the metal material is preferably at least one of aluminum, iron, copper, chromium, nickel, silicon, manganese, tungsten, zinc and magnesium, more preferably iron is effective, and more preferably contains a certain amount of chromium to prevent corrosion.
  • Stainless steel is the most effective.
  • the shape of the metal may be any shape, but in general, it is preferable that the cross section is a circular, elliptical, triangular, square, pentagonal, hexagonal, or hexagonal closed structure or an open pillar having a L or C shape or 3 to 10 vertices. .
  • FIG. 1 (a) is a synthetic resin 20 is combined on a metal cross-section of a circular cross-section, (b) is a synthetic resin 20 is combined on a metal material 10 having a cross-section C shape (C) is a form in which the synthetic resin 20 is bonded on the metal material 10 having a rectangular cross section.
  • C is a form in which the synthetic resin 20 is bonded on the metal material 10 having a rectangular cross section.
  • the center of the metal material 10 may be a hollow shape.
  • the synthetic resin 20 may be formed to a thickness of 0.5 to 7.0mm, more preferably 0.5 to 3.0mm thick.
  • the resin metal composite is not limited to the form of FIG. 1 and may be in various forms depending on the use.
  • the present invention also relates to a resin metal composite manufacturing method, and more particularly, to a manufacturing method optimized for a synthetic resin-metal composite.
  • Resin metal composite is prepared through a metal material preparation step (S10), metal surface processing step (S20), extrusion step (S30), coating step (S40) and cooling step (S50) as shown in FIG.
  • the metal material preparation step (S10) is a step of preparing a metal material that is located inside the resin metal composite to maintain the high strength of the resin metal composite finally produced. Unlike the conventional method of producing an integrated product of a resin and a metal such as WPC by inserting a C-shaped steel or a tube inside, it is possible to vary the form of the resin metal composite by producing a metal material first and has excellent durability.
  • the metal material is preferably at least one of aluminum, iron, copper, chromium, nickel, silicon, manganese, tungsten, zinc and magnesium, more preferably iron is effective, and more preferably contains a certain amount of chromium to prevent corrosion.
  • Stainless steel is the most effective.
  • Metal provided in the form of a metal plate or a roll can be manufactured in a desired form by roll forming, forming a desired shape.
  • the metal material may be in any shape, but in general, the cross section is circular, oval or triangular. It is preferable that it is a closed structure with a rectangular, pentagonal, hexagonal or hexagonal shape or an open pillar with a or c or three to ten vertices.
  • Metal surface processing step (S20) is a step of processing the surface of the metal material produced by the roll forming, the surface treatment for applying a thin and uniform thickness of the following synthetic resin coating liquid to the metal surface.
  • the surface of the metal material may be made to adhere firmly to the synthetic resin coating liquid and the metal material by plasma treatment or primer application.
  • Plasma treatment may be carried out according to a conventional method, but it is preferable that the plasma treatment is performed on the metal material alone under argon alone at a pressure of 10 ⁇ 2 torr or under an atmosphere in which argon further contains oxygen or nitrogen. If the plasma treatment at a pressure higher than the pressure may cause arc discharge by impurities.
  • the primer is a composition including a thermosetting resin and a thermoplastic resin.
  • the thermoplastic resin has a low heat resistance and excellent adhesion to the resin, but a poor adhesion with a metal, and a thermosetting resin has a high heat resistance and a thermosetting resin or a metal.
  • the adhesive strength is excellent, the adhesive strength with the thermoplastic resin is not good. Therefore, it is preferable to use a primer formed by mixing a thermosetting resin, and it is effective that the thermoplastic resin is 100 parts by weight with respect to 100 parts by weight of the thermosetting resin.
  • the thermosetting resin an epoxy resin and a melamine resin are preferable, and as the thermoplastic resin, methyl cellulose and polyvinylacetate resin are preferable.
  • Adhesion can be maximized by performing physical processing to control the surface roughness with the chemical treatment as described above. It is preferable that the center line average roughness Ra of the surface of the metal material of this invention is 0.5-10 micrometers, and the maximum height Rmax is 20-50 micrometers. If the center line is outside the average roughness and the maximum height range, the surface of the metal material has a small surface roughness, so the adhesive strength with the resin coating liquid is weak, so that it is difficult to apply thinly or the surface roughness is not smoothly coated, resulting in a poor appearance. .
  • Such surface processing is not limited to the processing method, but a metal processing method of turning, milling, grinding, lapping or honing is preferable.
  • Extrusion step (S30) is to prepare a synthetic resin coating liquid to be applied to the metal material, it is a step of preparing a synthetic resin coating liquid by melt extrusion of the synthetic resin pellets.
  • the composition of the synthetic resin constituting the synthetic resin pellet includes an olefin resin, a filler, and a coupling agent
  • the filler is at least one of an organic filler or an inorganic filler
  • the organic filler is wood flour, wood pellets, wood fibers, or stakes.
  • At least one selected from, the inorganic filler is at least one selected from talc, calcium carbonate, wollastonite or kaolinite
  • the coupling agent is preferably a silane resin or maleic anhydride modified resin.
  • wood flour, wood pellets, and wood fibers which are organic fillers it is preferable to include wood flour, an olefin resin and a coupling agent as organic fillers.
  • wood flour among organic fillers there is no restriction
  • Olefin resin refers to polypropylene (PP) and polyethylene (ethylene polymers such as HDPE, LDPE, LLDPE) and copolymers thereof or mixtures of these polymers. Olefin resins are more resistant to external impacts than other resins to produce high strength resins.
  • the coupling agent is preferably a silane resin or maleic anhydride modified resin, which has excellent performance in bonding the olefin resin and the filler. It is preferable that the coupling agent has a viscosity of 20,000 to 25,000 cps. If the viscosity is less than 20,000 cps, it is difficult to apply a thin coating of the resin coating due to a slight increase in strength. When the viscosity exceeds 25,000 cps, the resin is peeled off the surface of the metal material and the durability of the product This can fall significantly.
  • the synthetic resin further comprises at least one of a light stabilizer, an antioxidant, an ultraviolet absorber, or a lubricant as an additive, and it is effective to use the same weight ratio between the additives.
  • composition of a synthetic resin is 1-100 weight part of fillers, 0.1-10 weight part of coupling agents, and 5-20 weight part of additives with respect to 100 weight part of olefin resins.
  • Synthetic resin pellets are used with a diameter of 2 to 5mm, and the extrudeability is excellent when the diameter of the pellets used is constant in the above range on average, but if the shape of the pellet is different from the above range, Since the supply amount is not constant, there is a problem of inferior extrudability.
  • the extrusion process an important process for producing high quality resin coatings, begins with the raw material pellets being fed into the screw through the extruder's hopper. Due to the characteristics of wood flour, the specific gravity is low, the carbonization point is low, and the internal structure of wood flour is weak to severe shear-stress (shear stress) during the extrusion process, so it is preferable that the diameter of the screw is 20 to 100 mm. In the case of using the screw in the diameter range, by maintaining the optimum kneading degree and the minimum sheath-stress, it is possible to achieve an excellent extrusion property by forming an optimal extrusion state for the synthetic resin pellets having a diameter of 2 to 5mm.
  • the extrusion speed is preferably 1 to 10 m / min, more preferably 2 to 5 m / min is effective. If the extrusion speed is less than 1m / min, the surface of the profile is produced or bent due to the bending and economical efficiency, if it exceeds 10m / min is difficult to control the production conditions to produce a product with a non-constant coating state There is a problem.
  • Coating step (S40) is a step of forming a resin metal composite, on the metal material produced through the metal material preparation step (S10) and the metal surface processing step (S20), applying a synthetic resin coating solution produced through the extrusion step (S30). do.
  • the synthetic resin coating liquid is subjected to the extrusion step (S30) is applied to the metal material in a thin thickness to form a resin metal complex.
  • the mold may be manufactured differently depending on the coating thickness.
  • the cooling step (S50) is a step of cooling the resin metal composite, and the resin metal composite is cooled for 0.5 to 10 minutes in an atmosphere of 5 to 50 ° C. because the synthetic resin coating solution is applied in a melt-extruded state. If the cooling temperature is less than 5 °C cracks may occur on the applied synthetic resin and the economical efficiency is low, and if the cooling temperature is higher than 50 °C high cooling time is excessively excessive cooling time is inferior.
  • a cooling apparatus it is preferable to use a cooling water tank, and you may use an air cooling system.
  • the cooling step (S50) may further include a take-out step (S60), after the embossing step (S70) and the produced resin metal composite for smoothing the surface according to the required length It is preferable to further include a cutting step (S80) to cut.
  • Various patterns may be formed on the resin metal composite surface, and in particular, wood grain patterns may be formed to give a texture of actual wood, and the embossing process for forming the patterns may be deep embossed at high pressure.
  • Conventional WPC-only material has a weaker strength than the resin metal composite according to the present invention, so embossing is difficult, and continuous production is difficult when the tube is inserted.
  • the metal material preparation step (S10), metal material surface processing step (S20), extrusion step (S30), coating step (S40), cooling step (S50), take-off step (S60), embossing step (S70) and cutting step Through a series of steps including (S80), not only can be achieved by a continuous process from the beginning of the processing to the finished product, but also can reduce the production cost by efficiently fusing and producing between different materials.
  • the present invention also relates to a resin metal composite prepared by the above method.
  • the strength is weak and weak to ultraviolet rays, so that when left in the sun for a long time, the surface color is deteriorated and the physical properties thereof are deteriorated and the durability thereof is limited, whereas the resin metal composite according to the manufacturing method of the present invention is made of metal. Synthetic resin coated form can have excellent physical properties and durability.
  • a resin metal composite excellent in physical properties and durability By coating a synthetic resin on the metal material is provided a resin metal composite excellent in physical properties and durability.
  • the manufacturing method of the resin metal composite of the present invention it is possible to produce a resin metal composite in which the synthetic resin is applied to the metal material through a series of processes, and the durability and strength by optimizing the surface of the metal material and the composition of the synthetic resin Excellent resin metal composites can be provided, and a continuous process provides resin metal composites of the desired optimized shape and thickness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 수지금속 복합체 및 이의 제조방법으로, 금속재 상에 올레핀 수지, 필러 및 커플링제를 포함한 합성수지가 결합된 수지금속 복합체로, 상기 필러는 유기필러 또는 무기필러 중 적어도 하나이고, 상기 유기필러는 목분, 목펠렛, 목섬유 또는 지분이고, 상기 무기필러는 탈크, 탄산칼슘, 월라스토나이트 또는 카오리나이트인 것을 특징으로 하는 수지금속 복합체에 관한 것이다.

Description

수지금속 복합체 및 이의 제조방법
본 발명은 수지금속 복합체 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 올레핀 수지, 필러 및 커플링제가 포함된 수지와 금속재가 결합된 형태의 수지금속 복합체와 일정한 형태의 금속재을 준비하고 금속재의 표면을 화학처리하여 얇으면서도 균일한 두께로 합성수지를 압출방식으로 코팅할 수 있는 수지금속 복합체을 일련의 연속 공정에 의해 제조하는 방법에 관한 것이다.
최근 각광받고 있는 건축자재로 목재와 플라스틱을 혼합하여 제조하는 WPC(Wood Plastic Composite) 프로파일 압출 제품이 내장 및 외장 건축자재로 사용되고 있다.
WPC는 60% 이상의 높은 필러의 함량으로 강도는 높아졌으나 비중이 상대적으로 높아져 그로 인해 무게가 무겁다는 단점이 있다. 이러한 단점을 보완하기 위하여 무게를 가볍게 하기 위한 방법으로 다양한 중공(中空) 형태의 디자인으로 극복하고자 하나 중공구조의 경우, 더 많은 단면적으로 인해 수분에 취약한 단점이 있으며 시공시에도 두께가 상대적으로 얇은 쪽에 하중이 집중되어 충격에 의한 크랙(crack) 또는 구멍 등이 발생하여 결과적으로 WPC가 파손되는 문제점이 있다.
이를 개선하기 위하여 중공형태 내부 치수를 판매하고 있는 C형강 또는 각관의 외경과 맞도록 제작하여 제품 내부에 C형강 또는 각관을 삽입하여 울타리, 기둥 또는 루버 등을 제작하여 사용하고 있으나 이는 원가 상승으로 경제적이지 못하다. 또한 정확한 내측치수가 이루어지지 않을 경우 C형강 또는 각관의 삽입이 어려우며, 일정한 유격이 있을 경우 밀착되지 않아서 충격을 줄 경우 WPC 부분이 깨지게 되는 현상이 일어날 수 밖에 없다. 또한 합성목재가 내부 금속재층과 밀착되어 있지 않기 때문에 제품별로 용도에 따라 10mm 이상의 일정의 두께가 형성되어야 일정 강도가 구비되는 목재금속 복합체를 제조할 수 있어 무게가 무거워서 시공이 어려우며, 경제성이 떨어지는 문제가 있었다. 이 외에도 금속재 상에 여러가지의 수지를 결합시켜 복합체를 만들어 다양한 형태의 건축자재가 용도에 맞도록 적절하게 사용될 수 있도록 함이 필요하다.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 올레핀 수지, 유·무기 필러 및 커플링제를 포함한 수지가 금속재 상에 결합함에 있어서, 결합력이 우수하여 견고하면서도 다양한 형태를 구현할 수 있는 수지금속 복합체를 제공함에 목적이 있다.
또한, 본 발명의 목적은 일정한 형태를 가지는 금속재로부터 최종 수지금속 복합체를 제조하는 일체형 공정에 있어서, 일체형 공정을 수행하기 위해서 플라즈마 처리 또는 프라이머 도포를 통해 금속재 표면의 상태를 조절하는 표면처리를 통해 합성수지와의 접착력을 향상시킬 수 있는 금속재 표면 가공단계를 포함한 제조방법을 제공함에 목적이 있다. 또한 얇으면서 강도가 높은 합성수지를 구현하기 위해서 용융 압출시 합성수지 펠렛과 압출 조건을 최적화하고, 합성수지에 일정 점도를 가지는 커플링제를 사용하여 내구성이 우수하면서도 경량인 수지금속 복합체를 제공함에 목적이 있다.
상기의 목적을 달성하기 위하여 본 발명의 수지금속 복합체는 금속재에 올레핀 수지, 필러 및 커플링제를 포함한 합성수지가 결합된 수지금속 복합체로, 상기 필러는 유기필러 또는 무기필러 중 적어도 하나이고, 상기 유기필러는 목분, 목펠렛, 목섬유 또는 지분에서 선택된 하나 이상이고, 상기 무기필러는 탈크, 탄산칼슘, 월라스토나이트 또는 카오리나이트에서 선택된 하나 이상인 것을 특징으로 한다. 상기 올레핀 수지 100중량부에 대하여, 상기 필러는 1 내지 100중량부, 상기 커플링제는 0.1 내지 10중량부인 것이 바람직하다.
바람직한 실시예는 상기 커플링제는 실란 수지 또는 무수 말레인산 변성 수지이고, 상기 합성수지는 첨가제를 더 포함하고, 상기 첨가제는 광안정제, 산화방지제, 자외선흡수제 또는 윤활제 중 적어도 하나이다.
상기 금속재는 알루미늄, 철, 구리, 크롬, 니켈, 규소, 망간, 텅스텐, 아연 또는 마그네슘 중 적어도 하나이며, 상기 금속재는 단면이 원형, 타원형, 삼각형, 사각형, 오각형, 육각형, 칠각형, ㄱ자, ㄷ자 또는 3 내지 10개의 꼭짓점이 있는 열린 형태의 기둥인 것을 특징으로 한다.
상기의 목적을 달성하기 위하여 또 다른 본 발명의 수지금속 복합체 제조방법은 금속재를 준비하는 금속재 준비단계; 상기 금속재의 표면을 가공하는 금속재 표면 가공단계; 합성수지 펠렛을 용융 압출하여 합성수지 코팅액을 준비하는 압출단계; 상기 금속재의 표면에 상기 합성수지 코팅액을 도포하여 수지금속 복합체를 형성하는 코팅단계; 및 상기 수지금속 복합체를 냉각시키는 냉각단계;를 포함하는 것을 특징으로 한다.
바람직하게, 상기 금속재 준비단계에서 상기 금속재는 알루미늄, 철, 구리, 크롬, 니켈, 규소, 망간, 텅스텐, 아연 또는 마그네슘 중 적어도 하나이고, 상기 금속재 준비단계에서 상기 금속재는 금속판을 롤 포밍 성형하여 단면이 원형, 타원형, 삼각형, 사각형, 오각형, 육각형, 칠각형, ㄱ자, ㄷ자 또는 3 내지 10개의 꼭짓점이 있는 열린 형태의 기둥인 것을 특징으로 한다.
상기 금속재 표면 가공단계는 플라즈마 처리하거나 프라이머를 도포할 수 있다.
상기 압출단계에서 상기 합성수지 펠렛은 올레핀 수지, 필러 및 커플링제를 포함하여 이루어지고, 상기 필러는 유기필러 또는 무기필러 중 적어도 하나이며, 상기 유기필러는 목분, 목펠렛, 목섬유 또는 지분에서 선택된 하나 이상이고, 상기 무기필러는 탈크, 탄산칼슘, 월라스토나이트 또는 카오리나이트에서 선택된 하나 이상이며, 상기 커플링제는 실란 수지 또는 무수 말레인산 변성 수지인 것을 특징으로 한다.
상기 코팅단계에서 상기 금속재의 표면에 상기 합성수지 코팅액을 도포하기 위한 금형을 사용하는 것이 바람직하며, 상기 코팅단계에서 상기 합성수지 코팅액은 0.5 내지 7.0mm의 두께로 상기 금속재의 표면에 도포되는 것이 바람직하다.
상기 냉각 단계에서, 상기 수지금속 복합체는 5 내지 50℃의 분위기에서 0.5내지 10분동안 냉각시키는 것을 특징으로 하며, 상기 수지금속 복합체의 표면에 무늬를 형성하는 엠보싱 단계를 더 포함하는 것이 바람직하다.
본 발명에 따르면, 올레핀 수지와 최적의 필러 및 커플링제를 포함한 수지를 금속재 상에 견고하게 결합시킴으로써 내구성이 우수하면서도 다양한 형태로 구현할 수 있는 수지금속 복합체를 제공할 수 있다.
또한 본 발명에 따르면, 금속재와 합성수지를 결합한 형태의 수지금속 복합체를 제조함에 있어서, 가공 초기부터 완제품까지 연속적인 공정에 의해 이루어질 수 있으며 이로 인하여 원하는 최적화된 형태와 두께의 완제품을 제조할 수 있다.
또한 합성수지 코팅액을 도포함에 있어서 금속재 표면 상태를 조절하기 위하여 플라즈마 처리 또는 프라이머 도포를 하고, 합성수지는 최적의 점도를 가지는 실란계 커플링제를 포함시킴으로써 금속재와 합성수지 간의 접착력을 강하게 하여 얇고 균일하게 합성수지 코팅액을 도포할 수 있다.
도 1은 본 발명의 실시예에 의한 수지금속 복합체를 도시한 도면이다.
도 2는 본 발명의 일 실시예에 의한 수지금속 복합체를 제조하는 방법을 순차적으로 나타낸 순서도이다.
이하, 본 발명에 의한 수지금속 복합체 및 이의 제조방법에 대하여 본 발명의 바람직한 실시형태를 첨부한 도면을 참조하여 상세히 설명한다. 본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시목적을 위한 것이고 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.
본 발명은 수지금속 복합체에 관한 것으로, 금속재에 올레핀 수지, 필러 및 커플링제를 포함한 수지가 결합된 형태이다. 상기 필러는 유기필러 또는 무기필러 중 적어도 하나이고, 상기 유기필러는 목분, 목펠렛, 목섬유 또는 지분에서 선택된 하나 이상이고, 상기 무기필러는 탈크, 탄산칼슘, 월라스토나이트 또는 카오리나이트에서 선택된 하나 이상인 것이 바람직하다.
유기필러인 목펠렛, 목섬유 또는 지분을 개량하여 압출 제품을 생산할 수도 있으나, 상기에서 언급한 바와 같이 내구성 면에서 현저히 떨어지고 다양한 형태로 제조하기 어렵다는 문제가 있어 본 발명과 같이 금속재 상에 결합하는 형태를 구현함으로써 견고하면서도 용도에 적합한 표면을 가지는 건축자재가 가능하다. 또한, 탈크, 탄산칼슘, 월라스토나이트 또는 카오리나이트와 같은 무기필러를 포함함으로써 수지의 물성을 개선할 수 있다. 즉, 상기와 같은 무기필러는 수분을 먹지 않고, 표면 활성효과를 높여서 수축 변화방지 효율이 우수하며 합성수지 제조시 성형성을 현저하게 개선시킬 수 있다. 따라서, 수지금속 복합체의 용도에 따라 및 금속의 종류에 따라 유기필러와 무기필러를 조합하여 사용할 수 있다.
상기 합성수지의 조성은 올레핀 수지 100중량부에 대하여, 필러는 1 내지 100중량부, 커플링제는 0.1 내지 10중량부인 것이 바람직하다. 필러는 1중량부 미만인 경우에는 강도가 낮아지고 접착력이 현저하게 떨어져 금속재에 결합시키기 어렵다는 문제점이 있고 100중량부를 넘는 경우에는 강도는 높아지나 금속재 상에 수지를 얇게 도포하기 어렵다는 문제점이 있다. 커플링제는 0.1중량부 미만인 경우에는 접착력이 떨어져 수지 내의 물질 간의 결속력이 감소하고 탄성이 떨어지며, 10중량부를 초과하는 경우에는 압출 정도가 감소하는 문제가 있다.
커플링제는 실란 수지 또는 무수 말레인산 변성 수지인 것이 바람직하다. 실란 수지 또는 무수 말레인산 변성 수지는 다량 사용되는 유기필러 및 올레핀 수지로 인한 제품의 강도 저하를 방지하고 천연 목재 수준의 탄성과 강도를 갖는 조성물을 제조할 수 있게 한다. 실란 수지는 아미노 실란, 에폭시 실란, 메르캅토 실란, 우레이도 실란, 메타크릴록시 실란, 비닐 실란, 글리시독시 실란 및 설파이도 실란으로부터 선택된 하나 이상인 것이 바람직하다.
상기 합성수지는 첨가제를 더 포함할 수 있으며, 첨가제는 광안정제, 산화방지제, 자외선흡수제 또는 윤활제 중 적어도 하나인 것이 바람직하다.이러한 첨가제는 해당 기술 분야에서 통상적으로 사용되는 것이라면 제한되지 않고 사용될 수 있다.
자세하게, 광안정제는 비스 2,2,6,6-테트라메틸-4 파이퍼리딜이 바람직하며, 광안정제를 첨가함으로써 올레핀 수지나 합성수지가 자외선에 노출될 때 내후성이 떨어지거나 색이 탈색되는 것을 방지할 수 있다. 산화방지제는 포스페이트 계통의 산화방지제, 페놀계 산화방지제, 칼슘 스테아린산염을 사용하며, 자외선 흡수제는 벤조트리아졸 계통을 사용하는 것이 바람직하며, 이를 통해 수지금속 복합체의 내구성을 향상시킬 수 있다. 또한, 윤활제는 에스테르계 윤활제 또는 아마이드계 윤활제가 바람직하며, 더욱 바람직하게 폴리에틸렌 왁스 또는 폴리프로필렌 왁스가 효과적이다. 윤활제는 합성수지의 각 성분 사이의 윤활성을 제공하고, 각 성분들의 혼합과정에서 마찰력을 감소시켜 필러의 분산도를 높이는 역할을 한다.
금속재는 알루미늄, 철, 구리, 크롬, 니켈, 규소, 망간, 텅스텐, 아연, 마그네슘 중 적어도 하나인 것이 바람직하며, 더 바람직하게는 철이 효과적이고, 더욱 바람직하게는 크롬을 일정량 함유하여 부식이 방지되는 스테인레스강이 가장 효과적이다. 금속재의 형태는 어떠한 형태라도 무방하나, 일반적으로 단면이 원형, 타원형, 삼각형, 사각형, 오각형, 육각형 또는 칠각형으로 닫힌 구조이거나 ㄱ자 또는 ㄷ자 또는 3 내지 10개의 꼭짓점이 있는 열린 형태의 기둥인 것이 바람직하다.
도 1에서 (a)는 단면이 원형인 금속재(10) 상에 합성수지(20)가 결합된 형태이고, (b)는 단면이 C 형태인 금속재(10) 상에 합성수지(20)가 결합된 형태이고, (c)는 단면이 사각형인 금속재(10) 상에 합성수지(20)가 결합된 형태이다. 닫힌 형태의 금속재인 경우, (a) 또는 (c)와 같이 상기 금속재(10)의 가운데가 빈 형태일 수 있다.
상기 합성수지(20)는 0.5 내지 7.0mm의 두께로 형성될 수 있으며, 더 바람직하게는 0.5 내지 3.0mm의 두께인 것이 효과적이다.
수지금속 복합체는 도 1의 형태에 한정되는 것은 아니며, 용도에 따라 다양한 형태일 수 있다.
또한, 본 발명은 수지금속 복합체 제조방법에 관한 것으로, 더 자세하게는 합성수지-금속 복합체에 최적화된 제조방법에 관한 것이다. 수지금속 복합체는 도 2에서와 같이 금속재 준비단계(S10), 금속재 표면 가공단계(S20), 압출단계(S30), 코팅단계(S40) 및 냉각단계(S50)를 통해 제조된다.
금속재 준비단계(S10)는 수지금속 복합체의 내부에 위치하며 최종적으로 제조되는 수지금속 복합체의 높은 강도를 유지하게하는 금속재를 준비하는 단계이다. 종래의 C형강 혹은 각관을 내부에 삽입하여 WPC와 같은 수지와 금속의 일체형 제품을 생산하는 방식과는 달리, 금속재를 먼저 제조함에 따라 수지금속 복합체의 형태를 다양하게 할 수 있으며 우수한 내구성을 지닌다.
금속재는 알루미늄, 철, 구리, 크롬, 니켈, 규소, 망간, 텅스텐, 아연, 마그네슘 중 적어도 하나인 것이 바람직하며, 더 바람직하게는 철이 효과적이고, 더욱 바람직하게는 크롬을 일정량 함유하여 부식이 방지되는 스테인레스강이 가장 효과적이다.
금속재 금속판 또는 롤 형태로 제공되는 금속을 롤 포밍(Roll foaming) 성형을 하여 일정한 형태로 접어 원하는 형태로 제조할 수 있으며, 금속재의 형태는 어떠한 형태라도 무방하나, 일반적으로 단면이 원형, 타원형, 삼각형, 사각형, 오각형, 육각형 또는 칠각형으로 닫힌 구조이거나 ㄱ자 또는 ㄷ자 또는 3 내지 10개의 꼭짓점이 있는 열린 형태의 기둥인 것이 바람직하다.
금속재 표면 가공단계(S20)는 롤 포밍 성형되어 생성된 금속재의 표면을 가공하는 단계로, 금속재 표면에 하기의 합성수지 코팅액을 얇고 균일한 두께로 도포하기 위한 표면 처리가 이루어진다. 금속재의 표면은 플라즈마 처리 또는 프라이머 도포에 의하여 합성수지 코팅액과 금속재와의 견고한 접착을 이루어지게 할 수 있다.
플라즈마 처리는 통상의 방법에 따라 플라즈마 처리를 실시할 수 있으나, 금속재를 10-2torr 이하 압력에서 아르곤 단독으로, 또는 상기 아르곤에 산소 또는 질소를 더 포함한 분위기 하에서, 플라즈마 처리하는 것이 바람직하다. 상기 압력보다 높은 압력에서 플라즈마 처리를 하게 되면 불순물에 의한 아크방전이 일어날 수 있기 때문이다.
프라이머 도포시, 상기 프라이머는 금속재와 합성수지 코팅액의 접착을 용이하게 하기 위한 것으로 소량을 도포한다. 상기 프라이머는 열경화성수지, 열가소성수지를 포함한 조성물인 것으로, 일반적으로 열가소성수지는 내열온도가 낮으며 수지와의 접착력은 우수하나 금속과의 접착력이 좋지 않고, 열경화성수지는 내열온도가 높으며 열경화성수지나 금속과의 접착력은 우수하나 열가소성수지와의 접착력이 좋지 않은 특성이 있다. 따라서 열경화성수지를 혼합하여 조성된 프라이머를 사용하는 것이 바람직하고, 열경화성수지 100중량부에 대하여 열가소성수지 100중량부인 것이 효과적이다. 열경화성수지로는 에폭시 수지와 멜라민 수지가, 열가소성수지로는 메틸셀룰로오스와 폴리비닐아세테이트 수지가 바람직하다.
상기와 같은 화학적 처리와 함께 표면 거칠기를 조절하는 물리적 가공을 실시함으로써 접착력을 극대화시킬 수 있다. 본 발명의 금속재 표면의 중심선 평균 거칠기(Ra)는 0.5 내지 10㎛, 최대 높이(Rmax)는 20 내지 50㎛인 것이 바람직하다. 상기의 중심선 평균 거칠기와 최대 높이 범위를 벗어나는 경우, 금속재의 표면이 표면 거칠기 정도가 작아 수지 코팅액과의 접착력이 약해 얇게 도포하기 어렵거나 표면 거칠기 정도가 커 매끄럽게 코팅되지 않아 외관상 미감이 떨어지는 문제가 있다. 이러한 표면 가공은 가공방법에 제한이 없으나 선삭(turning), 밀링(milling), 연삭(grinding), 랩핑(lapping) 또는 호닝(honing)의 금속 가공법이 바람직하다.
압출단계(S30)는 금속재에 도포할 합성수지 코팅액을 준비하기 위한 것으로, 합성수지 펠렛을 용융 압출하여 합성수지 코팅액을 준비하는 단계이다.
합성수지 펠렛을 구성하는 합성수지의 조성은 상기에서 설명한 바와 같이, 올레핀 수지, 필러 및 커플링제를 포함하고, 필러는 유기필러 또는 무기필러 중 적어도 하나이며, 상기 유기필러는 목분, 목펠렛, 목섬유 또는 지분에서 선택된 하나 이상이고, 상기 무기필러는 탈크, 탄산칼슘, 월라스토나이트 또는 카오리나이트에서 선택된 하나 이상이며, 상기 커플링제는 실란 수지 또는 무수 말레인산 변성 수지인 것이 바람직하다. 특히, 본 발명의 제조방법은 유기필러인 목분, 목펠렛, 목섬유를 사용하는 경우, 유기필러로 목분, 올레핀 수지 및 커플링제를 포함하는 것이 바람직하다.
유기필러 중 목분에 대해서, 그 종류에는 제한이 없다. 활엽수 목분과 침엽수 목분 중 어느 것을 사용하더라도 무방하나, 활엽수가 침엽수에 비하여 비중이 높고 입자를 일정하게 제조할 수 있어 활엽수 목분이 더 바람직하고, 이러한 특성으로 합성수지 코팅액을 얇게 도포할 수 있게 한다. 목분은 10 내지 200메쉬의 입자크기를 가지고, 함수율이 8% 미만 인 것이 바람직하다. 함수율을 8%를 초과하는 경우 기계적 물성과 생산성의 저하를 가져오는 문제가 있다.
올레핀 수지란 폴리프로필렌(PP)과 폴리에틸렌(HDPE, LDPE, LLDPE와 같은 에틸렌 중합체) 및 이들의 공중합체 또는 이들 중합체의 혼합물을 일컫는다. 올레핀 수지는 타 수지에 비하여 외부 충격에 강하여 고강도 수지를 제조할 수 있다.
올레핀 수지와 필러 간의 결합력을 증대시키기 위하여 커플링제가 포함되는 것이 바람직하다. 커플링제는 실란 수지 또는 무수 말레이산 변성 수지를 사용하는 것이 바람직하며 이는 올레핀 수지와 필러를 결합하는데 우수한 성능을 가진다. 커플링제는 점도가 20,000 내지 25,000cps인 것이 바람직하며, 20,000cps 미만인 경우에는 강도의 증가가 미미하여 수지 코팅제를 얇게 도포하기 어려우며 점도가 25,000cps를 초과하는 경우에는 합성수지가 금속재 표면에서 박리되어 제품의 내구성이 현저히 떨어질 수 있다.
합성수지는 첨가제로 광안정제, 산화방지제, 자외선흡수제 또는 윤활제 중 적어도 하나를 더 포함하는 것이 바람직하며, 각 첨가제 간의 비율은 동일한 중량비로 사용하는 것이 효과적이다.
합성수지의 조성은 올레핀 수지 100중량부에 대하여, 필러 1 내지 100중량부, 커플링제 0.1 내지 10중량부, 첨가제 5 내지 20중량부인 것이 바람직하다.
합성수지 펠렛은 직경이 2 내지 5mm인 것을 사용하고, 사용되는 펠렛의 직경이 평균적으로 상기의 범위로 일정한 경우 압출성이 우수하게 발휘되나, 상기 범위를 벗어나 펠렛의 형상이 서로 다를 경우 스크류에 원료의 공급량이 일정하지 않아 압출성이 떨어지는 문제가 있다.
양질의 합성수지 코팅액을 생산하는 중요한 공정인 압출공정은 원료인 합성수지 펠렛이 압출기의 호퍼(hopper)를 통해 스크류 배부로 들어가면서 시작된다. 목분의 특성상 비중이 낮으며 탄화점이 낮고 목분의 내부 구조가 압출공정 상의 심한 시어-스트레스(shear stress)에 약하므로 이중압출 방식에 의하며 스크류의 지름이 20 내지 100mm인 것이 바람직하다. 상기 지름의 범위의 스크류를 사용하는 경우, 최적의 혼련도 및 최소의 시어-스트레스를 유지하여, 직경이 2 내지 5mm인 합성수지 펠렛에 대하여 최적의 압출 상태를 조성하여 우수한 압출성을 구현할 수 있다.
또한 압출속도는 1 내지 10m/min이 바람직하며 더 바람직하게는 2 내지 5m/min이 효과적이다. 압출속도가 1m/min 미만인 경우에는 제조되는 프로파일의 겉면이 일어나거나 굴곡이 생겨 휘어지고 경제성이 떨어지며, 10m/min을 넘는 경우에는 생산 조건 제어에 어려움이 있어 코팅 상태가 일정하지 않은 제품이 생성되는 문제점이 있다.
코팅단계(S40)는 수지금속 복합체를 형성하는 단계로, 금속재 준비단계(S10)와 금속재 표면 가공단계(S20)를 거쳐 생산된 금속재 상에, 압출단계(S30)를 거쳐 생산된 합성수지 코팅액을 도포한다.
도포하기 위하여 금속재는 금형으로 길이방향으로 이송되어 투입되고, 압출단계(S30)를 거친 합성수지 코팅액이 금속재에 얇은 두께로 도포되어 수지금속 복체가 형성된다. 금형은 도포두께에 따라 달리 제작될 수 있다. 본 발명의 경우 내부에 고강도의 금속재가 있을 뿐만 아니라, 플라즈마 처리 또는 프라이머 도포 과정을 실시하여 금속재의 표면의 상태를 조절하고 합성수지의 조성을 최적으로 하여 접착력을 높였기때문에 종래와 달리 얇은 두께로도 도포가 가능하다. 따라서 합성수지 코팅액을 0.5 내지 7.0mm의 두께로도 금속재 표면에 도포할 수 있으며, 더 바람직하게는 0.5 내지 3.0mm의 두께가 효과적이다.
냉각단계(S50)는 수지금속 복합체를 냉각시키는 단계로, 용융 압출된 상태의 합성수지 코팅액을 도포하였기 때문에 수지금속 복합체를 5 내지 50℃ 분위기 하에서 0.5 내지 10분간 냉각시킨다. 냉각 온도가 5℃ 미만인 경우에는 도포된 합성수지 상에 크랙이 발생할 수 있으며 경제성이 떨어지고, 50℃를 넘는 경우에는 냉각온도가 높아 냉각 시간이 과다로 소요되어 경제성이 떨어진다. 냉각장치로는 냉각수조를 사용하는 것이 바람직하고, 공냉방식을 사용하여도 무방하다.
냉각단계(S50) 이후 생산을 용이하게 하기 위하여 인취단계(S60)를 더 포함할 수 있으며, 인취된 이후에 표면을 유려하기 하기 위한 엠보싱 단계(S70) 및 생산된 수지금속 복합체를 필요한 길이에 따라 절단하는 절단단계(S80)를 더 포함하는 것이 바람직하다. 상기 수지금속 복합체 표면에 다양한 무늬를 형성할 수 있으며, 특히 실제 나무의 질감을 부여하기위하여 나뭇결 무늬를 형성할 수 있으며, 무늬 형성을 위한 엠보싱 처리는 고압으로 딥 엠보싱이 가능하다. 종래의 WPC만으로 된 재료는 강도가 본 발명에 의한 수지금속 복합체보다 약하여 엠보싱이 어렵고, 각관을 삽입하여 만들 경우 연속 생산이 어렵다는 문제가 있다.
이와 같이, 금속재 준비단계(S10), 금속재 표면 가공단계(S20), 압출단계(S30), 코팅단계(S40), 냉각단계(S50), 인취단계(S60), 엠보싱 단계(S70) 및 절단단계(S80)를 포함한 일련의 단계를 통해 가공 초기부터 완제품까지 연속적인 공정에 의해 이루어지게 할 수 있을 뿐만 아니라, 이종 소재 간의 융합 및 생산을 효율적으로 할 수 있어 생산 원가의 절감이 가능하다. 또한 기존 기성품 금속각관 혹은 C형강을 사용하여야 하는 비효율성에서 벗어나 원하는 최적화된 형태와 두께의 제품을 사용할 수 있어, 본 발명에 따르는 경우 제품에 최적화된 설계가 가능하다는 장점이 있다.
또한, 본 발명은 상기의 방법에 의하여 제조된 수지금속 복합체에 관한 것이다. 종래의 WPC만으로 구성된 자재의 경우 강도가 취약하고 자외선에 약하여 태양에 장기간 방치되면 표면 색상이 변질되고 물성 자체가 열화되어 내구성에 한계가 있는 반면, 본 발명의 제조방법에 의한 수지금속 복합체는 금속재에 합성수지를 코팅한 형태로 우수한 물성 및 내구성을 보유할 수 있다.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가지는 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.
금속재에 합성수지를 코팅하여 물성 및 내구성이 우수한 수지금속 복합체가 제공된다. 또한 본 발명의 수지금속 복합체의 제조방법에 의하여, 일련의 과정을 통해서 금속재에 합성수지가 도포된 형태의 수지금속 복합체를 제조할 수 있으며, 금속재의 표면의 상태 및 합성수지의 조성을 최적화하여 내구성 및 강도가 우수한 수지금속 복합체를 제공할 수 있으며, 연속적인 공정에 의하여 원하는 최적화된 형태와 두께의 수지금속 복합체가 제공된다.

Claims (15)

  1. 금속재에 올레핀 수지, 필러 및 커플링제를 포함한 합성수지가 결합된 수지금속 복합체로,
    상기 필러는 유기필러 또는 무기필러 중 적어도 하나이고, 상기 유기필러는 목분, 목펠렛, 목섬유 또는 지분에서 선택된 하나 이상이고, 상기 무기필러는 탈크, 탄산칼슘, 월라스토나이트 또는 카오리나이트에서 선택된 하나 이상인 것을 특징으로 하는 수지금속 복합체.
  2. 제 1항에 있어서,
    상기 올레핀 수지 100중량부에 대하여, 상기 필러는 1 내지 100중량부, 상기 커플링제는 0.1 내지 10중량부인 것을 특징으로 하는 수지금속 복합체.
  3. 제 1항에 있어서,
    상기 커플링제는 실란 수지 또는 무수 말레인산 변성 수지인 것을 특징으로 하는 수지금속 복합체.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    상기 합성수지는 첨가제를 더 포함하고, 상기 첨가제는 광안정제, 산화방지제, 자외선흡수제 또는 윤활제 중 적어도 하나인 것을 특징으로 하는 수지금속 복합체.
  5. 제 1항에 있어서,
    상기 금속재는 알루미늄, 철, 구리, 크롬, 니켈, 규소, 망간, 텅스텐, 아연 또는 마그네슘 중 적어도 하나인 것을 특징으로 하는 수지금속 복합체.
  6. 제 1항 또는 제 5항에 있어서,
    상기 금속재는 단면이 원형, 타원형, 삼각형, 사각형, 오각형, 육각형, 칠각형, ㄱ자, ㄷ자 또는 3 내지 10개의 꼭짓점이 있는 열린 형태의 기둥인 것을 특징으로 하는 수지금속 복합체.
  7. 금속재를 준비하는 금속재 준비단계;
    상기 금속재의 표면을 가공하는 금속재 표면 가공단계;
    합성수지 펠렛을 용융 압출하여 합성수지 코팅액을 준비하는 압출단계;
    상기 금속재의 표면에 상기 합성수지 코팅액을 도포하여 수지금속 복합체를 형성하는 코팅단계; 및
    상기 수지금속 복합체를 냉각시키는 냉각단계;를 포함하는 것을 특징으로 하는 수지금속 복합체 제조방법.
  8. 제 7항에 있어서,
    상기 금속재 준비단계에서 상기 금속재는 알루미늄, 철, 구리, 크롬, 니켈, 규소, 망간, 텅스텐, 아연 또는 마그네슘 중 적어도 하나인 것을 특징으로 하는 수지금속 복합체 제조방법.
  9. 제 7항 또는 제 8항에 있어서,
    상기 금속재 준비단계에서 상기 금속재는 금속판을 롤 포밍 성형하여 단면이 원형, 타원형, 삼각형, 사각형, 오각형, 육각형, 칠각형, ㄱ자, ㄷ자 또는 3 내지 10개의 꼭짓점이 있는 열린 형태의 기둥인 것을 특징으로 하는 수지금속 복합체 제조방법.
  10. 제 7항에 있어서,
    상기 금속재 표면 가공단계는 플라즈마 처리하거나 프라이머를 도포하는 것을 특징으로 하는 수지금속 복합체 제조방법.
  11. 제 7항에 있어서,
    상기 압출단계에서 상기 합성수지 펠렛은 올레핀 수지, 필러 및 커플링제를 포함하여 이루어지고,
    상기 필러는 유기필러 또는 무기필러 중 적어도 하나이며, 상기 유기필러는 목분, 목펠렛, 목섬유 또는 지분에서 선택된 하나 이상이고, 상기 무기필러는 탈크, 탄산칼슘, 월라스토나이트 또는 카오리나이트에서 선택된 하나 이상이고, 상기 커플링제는 실란 수지 또는 무수 말레인산 변성 수지인 것을 특징으로 하는 수지금속 복합체 제조방법.
  12. 제 7항에 있어서,
    상기 코팅단계에서 상기 금속재의 표면에 상기 합성수지 코팅액을 도포하기 위한 금형을 사용하는 것을 특징으로 하는 수지금속 복합체 제조방법.
  13. 제 7항 또는 제 12항에 있어서,
    상기 코팅단계에서 상기 합성수지 코팅액은 0.5 내지 7.0mm의 두께로 상기 금속재의 표면에 도포되는 것을 특징으로 하는 수지금속 복합체 제조방법.
  14. 제 7항에 있어서,
    상기 냉각 단계에서, 상기 수지금속 복합체는 5 내지 50℃의 분위기에서 0.5내지 10분동안 냉각시키는 것을 특징으로 하는 수지금속 복합체 제조방법.
  15. 제 7항에 있어서,
    상기 수지금속 복합체의 표면에 무늬를 형성하는 엠보싱 단계를 더 포함하는 것을 특징으로 하는 수지금속 복합체 제조방법.
PCT/KR2013/006444 2012-11-06 2013-07-18 수지금속 복합체 및 이의 제조방법 WO2014073769A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/111,431 US9556362B2 (en) 2012-11-06 2013-07-18 Resin-metal complex and manufacturing method thereof
JP2014545843A JP5789059B2 (ja) 2012-11-06 2013-07-18 樹脂金属複合体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120124807A KR101276089B1 (ko) 2012-11-06 2012-11-06 수지금속 복합체 및 이의 제조방법
KR10-2012-0124807 2012-11-06

Publications (1)

Publication Number Publication Date
WO2014073769A1 true WO2014073769A1 (ko) 2014-05-15

Family

ID=48867221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006444 WO2014073769A1 (ko) 2012-11-06 2013-07-18 수지금속 복합체 및 이의 제조방법

Country Status (3)

Country Link
JP (1) JP5789059B2 (ko)
KR (1) KR101276089B1 (ko)
WO (1) WO2014073769A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE212020000714U1 (de) 2019-09-04 2022-04-21 Aleksandr Victorovich Ezhkov Stuhl für das Messen eines Elektrokardiogramms in dem ersten Anschluss

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101574408B1 (ko) * 2014-01-22 2015-12-07 (주) 웹스 접착층을 포함한 수지금속복합체

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044809A (ja) * 1998-07-28 2000-02-15 Matsushita Electric Works Ltd 木粉入り樹脂組成物
US20050058822A1 (en) * 2003-08-04 2005-03-17 Ittel Steven Dale Fiber-reinforced thermoplastic matrices
US7825180B2 (en) * 2005-10-21 2010-11-02 Chemtura Corporation Thermoplastic blend compositions as soft coupling agents
JP2012012684A (ja) * 2010-07-02 2012-01-19 Bridgestone Corp 樹脂−金属複合材料及びその製造方法、並びにタイヤ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048350A (ja) * 2000-07-31 2002-02-15 Daiwa House Ind Co Ltd 床暖房用床構造及び床材
DE102007037795A1 (de) * 2007-08-10 2009-02-12 Nabaltec Ag Stabilisatorsysteme für halogenhaltige Polymere
JP2012007356A (ja) * 2010-06-24 2012-01-12 Panasonic Electric Works Co Ltd 床材
DE102010030927A1 (de) * 2010-07-05 2012-01-05 Evonik Röhm Gmbh Verbundwerkstoff aus einem zellulosehaltigen Material und einem Kunststoff

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044809A (ja) * 1998-07-28 2000-02-15 Matsushita Electric Works Ltd 木粉入り樹脂組成物
US20050058822A1 (en) * 2003-08-04 2005-03-17 Ittel Steven Dale Fiber-reinforced thermoplastic matrices
US7825180B2 (en) * 2005-10-21 2010-11-02 Chemtura Corporation Thermoplastic blend compositions as soft coupling agents
JP2012012684A (ja) * 2010-07-02 2012-01-19 Bridgestone Corp 樹脂−金属複合材料及びその製造方法、並びにタイヤ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE212020000714U1 (de) 2019-09-04 2022-04-21 Aleksandr Victorovich Ezhkov Stuhl für das Messen eines Elektrokardiogramms in dem ersten Anschluss

Also Published As

Publication number Publication date
JP2015505750A (ja) 2015-02-26
JP5789059B2 (ja) 2015-10-07
KR101276089B1 (ko) 2013-06-18

Similar Documents

Publication Publication Date Title
KR101816875B1 (ko) 폴리프로필렌 친환경 바닥재 및 이의 시공방법
KR20180097692A (ko) 열가소성 탄성중합체를 함유하는 바닥 피복재 및 그 제조 방법
KR101946987B1 (ko) 친환경 바닥재 및 그의 제조방법
KR20160093193A (ko) 바닥재용 투명필름 및 이를 포함하는 바닥재
EP3480249A1 (en) Polypropylene composite resin composition with fiber texture
KR102365690B1 (ko) 합성목재 제조방법 및 이로 제조되는 합성목재
US20060147693A1 (en) Foil or film laminated enhanced natural fiber/polymer composite
US20140227485A1 (en) Composite profile and producing method thereof
WO2014073769A1 (ko) 수지금속 복합체 및 이의 제조방법
KR101229116B1 (ko) Pe 2중 내외부 피복 파형강관의 제조방법 및 이로 제조된 pe 2중 내외부 파형강관
KR101952903B1 (ko) 열팽창 계수를 조절한 보강형 합성목재-금속프레임 복합체 및 이의 제조방법
KR101801807B1 (ko) 데코타일 탑 시트 및 이의 제조방법
CN110818982A (zh) 一种木塑型材共挤面料
CN103722862B (zh) 一种覆金属膜的pvc型材的制备方法
US9556362B2 (en) Resin-metal complex and manufacturing method thereof
CN104890340A (zh) 一种户外高耐候性高强度共挤塑木复合地板及其制造工艺
KR102308108B1 (ko) 합성목재
KR101798468B1 (ko) 메쉬판이 일체화된 합성목재 제조장치 및 이를 이용한 메쉬판이 일체화된 합성목재의 제조방법
CN114231204B (zh) 一种高韧性耐磨的复合型pe保护膜及其制备方法
JP2003003621A (ja) プラスチック建材及びその製造方法
US20040001940A1 (en) Composite siding
CN110802905A (zh) 一种聚乙烯木塑共挤型材
CN104669732A (zh) 橱柜贴面用复合板及其制备方法
CN107629315A (zh) 一种阻燃和高耐候性的塑木型材
KR102153579B1 (ko) 금속 질감이 부여된 창호용 합성수지 프로파일

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14111431

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014545843

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 13853282

Country of ref document: EP

Kind code of ref document: A1