WO2014073576A1 - Oxidative decomposition catalyst for ammonia, method for producing hydrogen, and apparatus for producing hydrogen - Google Patents

Oxidative decomposition catalyst for ammonia, method for producing hydrogen, and apparatus for producing hydrogen Download PDF

Info

Publication number
WO2014073576A1
WO2014073576A1 PCT/JP2013/080029 JP2013080029W WO2014073576A1 WO 2014073576 A1 WO2014073576 A1 WO 2014073576A1 JP 2013080029 W JP2013080029 W JP 2013080029W WO 2014073576 A1 WO2014073576 A1 WO 2014073576A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
catalyst
reaction
oxidative decomposition
hydrogen
Prior art date
Application number
PCT/JP2013/080029
Other languages
French (fr)
Japanese (ja)
Inventor
勝俊 永岡
壱岐 英
Original Assignee
Jx日鉱日石エネルギー株式会社
国立大学法人大分大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社, 国立大学法人大分大学 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2014073576A1 publication Critical patent/WO2014073576A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an ammonia oxidative decomposition catalyst, a hydrogen production method using an ammonia oxidative decomposition catalyst, and a hydrogen production apparatus.
  • the ammonia decomposition reaction represented by 2NH 3 ⁇ N 2 + 3H 2 is an endothermic reaction, and a temperature of 400 ° C. is required to sufficiently decompose ammonia.
  • a temperature of 400 ° C. is required to sufficiently decompose ammonia.
  • the present invention starts oxidative decomposition of ammonia from a low temperature such as room temperature without external heat supply or with a slight heat supply (hereinafter sometimes referred to as “cold start of oxidative decomposition of ammonia”).
  • An object of the present invention is to provide an ammonia oxidative decomposition catalyst, a hydrogen production method and a hydrogen production apparatus using the catalyst.
  • a reaction gas containing ammonia and oxygen is brought into contact with a catalyst having at least one metal selected from the group consisting of Ru, Co, Rh, Ir and Ni, and a carrier supporting the metal.
  • the method for producing hydrogen of the present invention by introducing oxygen into the reaction gas brought into contact with the catalyst and utilizing the heat generated by the catalyst, it is possible to quickly reach the combustion start temperature of ammonia, Hydrogen can be obtained by decomposing ammonia without heat supply from the outside due to internal heat generation due to the combustion reaction of ammonia.
  • the above heat generation can be obtained by contacting oxygen with a catalyst in which the metal and the carrier are in a reduced state.
  • the carrier contains one or more oxides containing one or more elements selected from Ce, Zr and Pr.
  • the catalyst may be reduced by a product gas containing hydrogen produced from a reaction gas containing ammonia and oxygen.
  • a product gas containing hydrogen produced from a reaction gas containing ammonia and oxygen.
  • the exothermic heat can be obtained by contacting oxygen with a catalyst in which the metal is in a reduced state.
  • the carrier preferably contains one or more oxides selected from the group consisting of La 2 O 3 , MgO, and Mg—Al oxide.
  • the catalyst may be reduced by a product gas containing hydrogen produced from a reaction gas containing ammonia and oxygen.
  • a product gas containing hydrogen produced from a reaction gas containing ammonia and oxygen.
  • the exotherm can be obtained by contacting ammonia with a catalyst in which the carrier has an acid point.
  • the above heat generation can be obtained by contacting ammonia with a catalyst having a support containing one or more oxides selected from the group consisting of Al 2 O 3 and SiO 2 .
  • the catalyst may have ammonia desorbed by the heat of reaction of the oxidative decomposition reaction of ammonia. In this case, once the ammonia decomposition reaction is started, the ammonia decomposition reaction can be started repeatedly without pretreatment of the catalyst thereafter.
  • the present invention also includes one or more metals selected from the group consisting of Ru, Co, Rh, Ir, and Ni, and a carrier supporting the metal, and the carrier is selected from Ce, Zr, and Pr.
  • a carrier supporting the metal and the carrier is selected from Ce, Zr, and Pr.
  • an ammonia oxidative decomposition catalyst characterized by containing one or more oxides containing one or more elements.
  • the present invention also includes at least one metal selected from the group consisting of Ru, Co, Rh, Ir, and Ni, and a carrier supporting the metal, wherein the carrier is La 2 O 3 , MgO, and Mg—.
  • An ammonia oxidative decomposition catalyst comprising one or more oxides selected from the group consisting of Al oxides is provided.
  • the present invention also includes at least one metal selected from the group consisting of Ru, Co, Rh, Ir, and Ni, and a carrier supporting the metal, and the carrier is made of Al 2 O 3 and SiO 2.
  • An ammonia oxidative decomposition catalyst comprising one or more oxides selected from the group is provided.
  • the ammonia oxidative decomposition catalyst according to the present invention can generate heat by being brought into contact with oxygen or ammonia, and thereafter, when brought into contact with a reaction gas containing ammonia and oxygen, the ammonia combustion reaction is started by self-heating. be able to. According to the oxidative decomposition catalyst for ammonia according to the present invention, it is possible to cold start the oxidative decomposition of ammonia.
  • the present invention also provides a hydrogen production apparatus including any one of the ammonia oxidative decomposition catalysts according to the present invention.
  • the hydrogen production apparatus it is possible to suppress energy consumption for startup by including the ammonia oxidative decomposition catalyst according to the present invention, and hydrogen can be supplied without external heat supply after startup. Can be manufactured. It can be said that the hydrogen production apparatus according to the present invention is an apparatus excellent in startability and energy saving.
  • an ammonia oxidative decomposition catalyst that enables a cold start of oxidative decomposition of ammonia, a hydrogen production method and a hydrogen production apparatus using the catalyst.
  • FIG. 1 is a schematic view showing an embodiment of a hydrogen production apparatus according to the present invention.
  • a hydrogen production apparatus 1 shown in FIG. 1 includes a reactor 10, a catalyst layer 20 provided in the reactor 10, and a heat insulating material 30 provided so as to surround the reactor 10.
  • a flow path L1 for introducing a reaction gas that is a raw material of hydrogen is connected to the inlet of the reactor 10, and a flow path L2 for taking out the product gas is connected to the outlet of the reactor 10.
  • the reactor 10 is filled with an inert filler 50 on the upstream side and the downstream side of the catalyst layer 20 partitioned by the partition member 40.
  • FIG. 2 is a schematic view showing another embodiment of the hydrogen production apparatus according to the present invention.
  • the heat insulating material 30 is provided only on the downstream side of the reactor 10, and the inert filler 50 is filled only on the downstream side of the catalyst layer 20. It has the same configuration as the hydrogen production apparatus 1 of FIG.
  • the reactor 10 is preferably a fixed bed flow reactor.
  • the reactor may be a single reactor or a plurality of reactors arranged in series or in parallel.
  • the catalyst bed provided in a reactor may be single, and may be divided into plurality.
  • the catalyst layer 20 is filled with the ammonia oxidative decomposition catalyst according to the present invention.
  • heat insulating material 30 a general heat insulating material having low heat conductivity and sufficient heat resistance at the ammonia oxidation decomposition reaction temperature can be used.
  • a general heat insulating material having low heat conductivity and sufficient heat resistance at the ammonia oxidation decomposition reaction temperature can be used.
  • ceramic, rock wool, calcium silicate hydrate system and the like can be used.
  • the partition material 40 is for preventing the catalyst from mixing with the inert filler, and for example, quartz wool, a metal mesh, or a punching metal plate can be used.
  • the inert filler 50 for the purpose of fixing the catalyst layer 20 and rectifying the reaction fluid, for example, ⁇ -Al 2 O 3 balls, ceramic balls, silicon carbide, or the like, a molded product or granular material that is inert to the reaction is used. Can be used.
  • the hydrogen production method according to the present invention can be implemented by the hydrogen production apparatuses 1 and 2 described above.
  • ammonia and oxygen are added to a catalyst having at least one metal selected from the group consisting of Ru, Co, Rh, Ir, and Ni, and a carrier supporting the metal.
  • a catalyst having at least one metal selected from the group consisting of Ru, Co, Rh, Ir, and Ni, and a carrier supporting the metal.
  • a catalyst having one or more metals selected from the group consisting of Ru, Co, Rh, Ir and Ni, and a carrier supporting the metal, ammonia and Oxidative decomposition of ammonia using the heat generated by contacting oxygen with a catalyst in which the metal and the carrier are in a reduced state when producing hydrogen by oxidizing and decomposing ammonia by contacting a reaction gas containing oxygen Start the reaction.
  • the carrier has redox ability.
  • the carrier preferably contains, for example, one or more oxides containing one or more elements selected from Ce, Zr and Pr.
  • the method for preparing the support containing the oxide is not particularly limited.
  • a known method for example, calcination in the air, using Ce, Pr or Zr nitrate, hydroxide or oxide as a starting material.
  • the carrier containing the oxide can be obtained by treating, or using an aqueous solution alone or after mixing, and then applying hydrothermal treatment, neutralization, calcination and the like alone or in combination.
  • the carrier can contain compounds other than the above oxides.
  • alumina or the like can be used as a binder component for the purpose of maintaining mechanical strength as a molded body.
  • the shape of the carrier can be cylindrical, pellet, spherical, lump, or powder.
  • a cylindrical shape, a pellet, a spherical shape are used so that the gap between the catalysts is not blocked due to powdering of the carrier or mixing of foreign matters, and the flow of the reaction fluid is not hindered or the differential pressure is not generated. It is desirable to have any shape of a lump.
  • the content of the active metal is preferably 0.1 to 50.0% by mass, and preferably 0.5 to 40.0% by mass based on the total mass of the catalyst. More preferably, the content is 1.0 to 30.0% by mass.
  • the method for supporting the metal on the carrier is not particularly limited, and can be easily performed by applying a known method.
  • a known method for example, an impregnation method, a deposition method, a coprecipitation method, a kneading method, an ion exchange method, a pore filling method and the like can be mentioned, and the impregnation method is particularly desirable.
  • the metal starting material for producing the catalyst differs depending on the above-mentioned supporting method and can be appropriately selected. Usually, organic acid salts such as chloride, nitrate and acetic acid, and carbonylates can be used.
  • the calcination is usually performed in an air or nitrogen atmosphere, and the temperature is not particularly limited as long as it is equal to or higher than the decomposition temperature of the organic acid salt or carbonyl compound such as chloride, nitrate and acetic acid. C., preferably 200 to 900.degree. C., more preferably 250 to 800.degree. C. is desirable.
  • the conditions for the pretreatment can be appropriately set according to the oxidation-reduction characteristics of the catalyst.
  • the temperature is room temperature to 800 ° C., preferably 100 to 700 ° C. More preferably, it is carried out by circulating hydrogen gas or a gas containing hydrogen at a catalyst layer temperature of 200 to 600 ° C. for 5 minutes to 5 hours, preferably 10 minutes to 3 hours, more preferably 30 minutes to 2 hours. be able to.
  • heating of the catalyst layer can be stopped while flowing an inert gas such as He, and the catalyst layer can be kept at room temperature.
  • oxygen is brought into contact with the catalyst in which the metal and support are in a reduced state.
  • a reaction gas containing ammonia and oxygen preferably air
  • the combustion reaction of ammonia can be started.
  • the temperature of the catalyst reaches the oxidative decomposition reaction start temperature of ammonia due to the heat generated by the combustion reaction of ammonia due to the heat generated by the combustion reaction of ammonia, the oxidative decomposition reaction of ammonia can be started.
  • the volume ratio of ammonia and oxygen in the reaction gas is preferably 1.0: 0.095 to 0.5, and more preferably 1.0: 0.2 to 0.4.
  • the reactive gas can be accompanied by an inert gas such as helium in order to adjust the calorific value.
  • a product gas containing hydrogen can be obtained from a reaction gas containing ammonia.
  • the reaction is performed under a reducing atmosphere (for example, under a hydrogen atmosphere) or not.
  • a reducing atmosphere for example, under a hydrogen atmosphere
  • the second start-up can be performed without performing the pretreatment (heating before start, hydrogen reduction treatment, etc.) as described above.
  • the heat generation of the catalyst layer is stopped by circulating an inert gas such as He, and the catalyst layer can be restarted by supplying the reaction gas after the temperature of the catalyst layer is lowered to room temperature.
  • a mixed gas of ammonia and helium may be supplied, and then oxygen may be supplied.
  • the above effect is considered to be due to the in-situ reduction of the metal and the carrier by hydrogen generated by the oxidative decomposition reaction of ammonia.
  • a reaction gas containing ammonia and oxygen (preferably air) is supplied, or a reaction gas containing oxygen (preferably air) is supplied after ammonia is supplied first. It is desirable to supply.
  • a reaction gas can be supplied after supplying a mixed gas of ammonia and helium and then supplying oxygen.
  • the catalyst layer temperature is 800 ° C. or less, preferably room temperature (about 25 ° C.) to 800 ° C., more preferably 100 ° C. to 600 ° C.
  • the He gas is circulated, the catalyst is heat-treated with He, and then ammonia is brought into contact with the catalyst, whereby the oxidative decomposition reaction of ammonia can be started.
  • it is preferable to heat the catalyst by supplying a reaction gas containing ammonia and oxygen (preferably air) to the catalyst layer.
  • the combustion reaction of ammonia can be started.
  • the temperature of the catalyst reaches the oxidative decomposition reaction start temperature of ammonia due to the heat generated by the combustion reaction of ammonia, the oxidative decomposition reaction of ammonia can be started.
  • a catalyst having one or more metals selected from the group consisting of Ru, Co, Rh, Ir and Ni, and a carrier supporting the metal, ammonia and
  • the carrier preferably contains one or more oxides selected from the group consisting of La 2 O 3 , MgO, and Mg—Al oxide.
  • the carrier preferably contains, for example, one or more oxides selected from the group consisting of La 2 O 3 , MgO, and Mg—Al oxide.
  • the method for preparing the support containing the oxide is not particularly limited.
  • La, Mg or Al nitrate, hydroxide or oxide is used as a starting material, and a known method, for example, firing in air.
  • the carrier containing the oxide can be obtained by treating, or using an aqueous solution alone or after mixing, and then applying hydrothermal treatment, neutralization, calcination and the like alone or in combination.
  • the carrier can contain compounds other than the above oxides.
  • alumina or the like can be used as a binder component for the purpose of maintaining mechanical strength as a molded body.
  • the shape of the carrier can be cylindrical, pellet, spherical, lump, or powder.
  • a cylindrical shape, a pellet, a spherical shape are used so that the gap between the catalysts is not blocked due to powdering of the carrier or mixing of foreign matters, and the flow of the reaction fluid is not hindered or the differential pressure is not generated. It is desirable to have any shape of a lump.
  • the content of the active metal is preferably 0.1 to 50.0% by mass, and preferably 0.5 to 40.0% by mass based on the total mass of the catalyst. More preferably, the content is 1.0 to 30.0% by mass.
  • the method for supporting the metal on the carrier is not particularly limited, and can be easily performed by applying a known method.
  • a known method for example, an impregnation method, a deposition method, a coprecipitation method, a kneading method, an ion exchange method, a pore filling method and the like can be mentioned, and the impregnation method is particularly desirable.
  • the metal starting material for producing the catalyst differs depending on the above-mentioned supporting method and can be appropriately selected. Usually, organic acid salts such as chloride, nitrate and acetic acid, and carbonylates can be used.
  • the calcination is usually performed in an air or nitrogen atmosphere, and the temperature is not particularly limited as long as it is equal to or higher than the decomposition temperature of the organic acid salt or carbonyl compound such as chloride, nitrate and acetic acid. C., preferably 200 to 900.degree. C., more preferably 250 to 800.degree. C. is desirable.
  • the conditions for the pretreatment can be appropriately set according to the oxidation-reduction characteristics of the catalyst.
  • the temperature is 100 to 800 ° C., preferably 400 to 700 ° C. More preferably, it is carried out by circulating hydrogen gas or a gas containing hydrogen at a catalyst layer temperature of 500 to 700 ° C. for 5 minutes to 5 hours, preferably 10 minutes to 3 hours, more preferably 30 minutes to 2 hours. be able to.
  • heating of the catalyst layer can be stopped while flowing an inert gas such as He, and the catalyst layer can be kept at room temperature.
  • oxygen is brought into contact with the catalyst in which the metal and the carrier are in a reduced state.
  • a reaction gas containing ammonia and oxygen preferably air
  • the combustion reaction of ammonia can be started.
  • the temperature of the catalyst reaches the oxidative decomposition reaction start temperature of ammonia due to the heat generated by the combustion reaction of ammonia due to the heat generated by the combustion reaction of ammonia, the oxidative decomposition reaction of ammonia can be started.
  • the volume ratio of ammonia and oxygen in the reaction gas is preferably 1.0: 0.095 to 0.5, and more preferably 1.0: 0.2 to 0.4.
  • the reactive gas can be accompanied by an inert gas such as helium in order to adjust the calorific value.
  • a product gas containing hydrogen can be obtained from a reaction gas containing ammonia.
  • the reaction is performed under a reducing atmosphere (for example, under a hydrogen atmosphere) or not.
  • a reducing atmosphere for example, under a hydrogen atmosphere
  • the second start-up can be performed without performing the pretreatment (heating before start, hydrogen reduction treatment, etc.) as described above.
  • the heat generation of the catalyst layer is stopped by circulating an inert gas such as He, and the catalyst layer can be restarted by supplying the reaction gas after the temperature of the catalyst layer is lowered to room temperature.
  • a mixed gas of ammonia and helium may be supplied, and then oxygen may be supplied.
  • the above effect is considered to be due to in-situ reduction of the metal by hydrogen generated by the oxidative decomposition reaction of ammonia.
  • a reaction gas containing ammonia and oxygen (preferably air) is supplied, or a reaction gas containing oxygen (preferably air) is supplied after ammonia is supplied first. It is desirable to supply.
  • a reaction gas can be supplied after supplying a mixed gas of ammonia and helium and then supplying oxygen.
  • oxides examples include ⁇ -Al 2 O 3 , SiO 2 and SiO 2 —Al 2 O 3 .
  • the support preferably contains one or more of Al 2 O 3 and SiO 2 . By including these oxides in the support, the combustion start temperature of ammonia can be lowered.
  • the carrier comprises Al 2 O 3.
  • Al 2 O 3 is more preferably ⁇ -Al 2 O 3 .
  • the method for preparing the support containing the oxide is not particularly limited.
  • an aluminum hydroxide gel is prepared using an aluminum aqueous solution prepared from nitrate, sulfate, etc. as a raw material for Al 2 O 3.
  • a commercially available aluminum oxide intermediate or boehmite powder may be used.
  • a raw material of SiO 2 silicic acid, water glass, silica sol and the like can be used.
  • an Si raw material may be added in the aluminum raw material solution or in the kneading step, and it is more preferable that the Al raw material is mixed in advance before the kneading step. After these are prepared, for example, in the air, or after being singly or mixed using an aqueous solution, the above oxides are contained by applying the steps such as hydrothermal treatment, neutralization, and calcination alone or in combination.
  • a carrier can be obtained.
  • the carrier can contain compounds other than the above oxides.
  • alumina or the like can be used as a binder component for the purpose of maintaining mechanical strength as a molded body.
  • the shape of the carrier can be cylindrical, pellet, spherical, lump, or powder.
  • a cylindrical shape, a pellet, a spherical shape are used so that the gap between the catalysts is not blocked due to powdering of the carrier or mixing of foreign matters, and the flow of the reaction fluid is not hindered or the differential pressure is not generated. It is desirable to have any shape of a lump.
  • the content of the active metal is preferably 0.1 to 50.0% by mass, and preferably 0.5 to 40.0% by mass based on the total mass of the catalyst. More preferably, the content is 1.0 to 30.0% by mass.
  • the method for supporting the metal on the carrier is not particularly limited, and can be easily performed by applying a known method.
  • a known method for example, an impregnation method, a deposition method, a coprecipitation method, a kneading method, an ion exchange method, a pore filling method and the like can be mentioned, and the impregnation method is particularly desirable.
  • the metal starting material for producing the catalyst differs depending on the above-mentioned supporting method and can be appropriately selected. Usually, organic acid salts such as chloride, nitrate and acetic acid, and carbonylates can be used.
  • the calcination is usually performed in an air or nitrogen atmosphere, and the temperature is not particularly limited as long as it is equal to or higher than the decomposition temperature of the organic acid salt or carbonyl compound such as chloride, nitrate and acetic acid. C., preferably 200 to 900.degree. C., more preferably 250 to 800.degree. C. is desirable.
  • the catalyst layer heated to 10 to 800 ° C., preferably 50 to 700 ° C., more preferably 100 to 500 ° C. is used as an inert gas.
  • He gas can be circulated for 5 minutes to 5 hours, preferably 10 minutes to 3 hours, more preferably 30 minutes to 2 hours, and then the temperature of the catalyst layer is lowered to, for example, 100 ° C. to room temperature.
  • the temperature of the catalyst layer is lowered, it is preferable to purge with He in order to maintain the acid sites on the catalyst.
  • pretreatment can be performed with a gas containing oxygen.
  • a gas containing oxygen if there is air, ammonia, and a slight heat source, it is possible to repeatedly start the hydrogen production apparatus, and it is preferable because hydrogen can be easily obtained.
  • ammonia is brought into contact with the catalyst.
  • a reaction gas containing ammonia and oxygen preferably air
  • the combustion reaction of ammonia can be started.
  • the temperature of the catalyst reaches the oxidative decomposition reaction start temperature of ammonia due to the heat generated by the combustion reaction of ammonia, the oxidative decomposition reaction of ammonia can be started.
  • the volume ratio of ammonia and oxygen in the reaction gas is preferably 1.0: 0.095 to 0.5, and more preferably 1.0: 0.2 to 0.4.
  • the reactive gas can be accompanied by an inert gas such as helium in order to adjust the calorific value.
  • a product gas containing hydrogen can be obtained from a reaction gas containing ammonia.
  • an inert atmosphere or a reducing atmosphere for example, hydrogen
  • the second start-up is possible without performing the pretreatment as described above (heating before starting, hydrogen reduction treatment, etc.).
  • the catalyst touches a gas containing oxygen if a sufficient adsorption point of ammonia remains, the second activation can be performed without pretreatment.
  • the heat generation of the catalyst layer is stopped by circulating an inert gas such as He, and the catalyst layer can be restarted by supplying the reaction gas after the temperature of the catalyst layer is lowered to room temperature. At this time, oxygen may be supplied before the reaction gas is supplied.
  • a reaction gas containing ammonia and oxygen (preferably air) is supplied, or oxygen (preferably air) is supplied first and then a reaction gas containing ammonia is supplied. It is desirable to supply.
  • Al 2 O 3 when used as the oxide contained in the support, it is 800 ° C. or less, preferably room temperature (about 25 ° C.) to 800 ° C., more preferably room temperature (about 25 ° C.) to 600.
  • a pretreatment for reducing the catalyst can be performed by circulating hydrogen gas or a gas containing hydrogen at a catalyst layer temperature of ° C. Thereafter, the oxygen oxidative decomposition reaction can be started by bringing oxygen into contact with the catalyst in which the metal and the carrier are in a reduced state.
  • it is preferable to heat the catalyst by supplying a reaction gas containing ammonia and oxygen (preferably air) to the catalyst layer.
  • the combustion reaction of ammonia can be started.
  • the temperature of the catalyst reaches the oxidative decomposition reaction start temperature of ammonia due to the heat generated by the combustion reaction of ammonia, the oxidative decomposition reaction of ammonia can be started.
  • Example A-1 A solution of Ru 3 (CO) 12 (Tanaka Kikinzoku Kogyo Co., Ltd.) dissolved in tetrahydrofuran was impregnated with CeO 2 particles (prepared by a precipitation method and baked at 700 ° C. in air for 5 hours), then rotary Evaporation to dryness was carried out using an evaporator, and loading was carried out so that the loading amount of Ru was 5% by mass based on the total mass of the catalyst. Next, the obtained impregnated product was heat-treated at 350 ° C. for 5 hours under a flow of He to obtain an oxidative decomposition catalyst A-1 for ammonia.
  • Example A-2 Instead of CeO 2 particles, Ce 0.5 Zr 0.5 O 2 particles (prepared by a precipitation method and calcined in air at 700 ° C. for 5 hours) were used in the same manner as in Example A-1. Thus, an oxidative decomposition catalyst A-2 of ammonia was obtained.
  • Example A-3 Oxidative decomposition of ammonia in the same manner as in Example A-1, except that Pr 6 O 11 particles (prepared by a precipitation method and calcined in air at 700 ° C. for 5 hours) were used instead of CeO 2 particles. Catalyst A-3 was obtained.
  • a reaction apparatus having the same configuration as in FIG. 1 was prepared.
  • the reactor has a cylindrical normal pressure fixed bed flow reactor having a diameter of 7 mm, and a ceramic heat insulating material provided so as to surround the vessel, and upstream of the catalyst layer partitioned by quartz wool.
  • the side and downstream side are filled with ⁇ -Al 2 O 3 balls.
  • a thermocouple that reaches the catalyst layer is provided inside the reaction apparatus, whereby the temperature of the catalyst layer can be measured. Further, the catalyst layer, quartz wool, and ⁇ -Al 2 O 3 balls can be heated by an electric furnace provided outside the reactor.
  • GC-TCD GC-8A, manufactured by Shimadzu Corporation
  • the ammonia oxidative decomposition catalyst A-1 When the ammonia oxidative decomposition catalyst A-1 was used, it was confirmed that the upstream side of the catalyst layer started to red heat 5 seconds after the start of the supply of the reaction gas, and one minute after the start of the supply of the reaction gas, the thermoelectric inserted into the catalyst layer The temperature of the pair reached 424 ° C., and it was confirmed that the subsequent product gas contained 21% yield of hydrogen. At this time, the conversion rates of ammonia and oxygen were 54% and 100%, respectively.
  • the ammonia oxidative decomposition catalyst A-2 When the ammonia oxidative decomposition catalyst A-2 was used, it was confirmed that the upstream side of the catalyst layer started to red heat 5 seconds after the start of the supply of the reaction gas, and the thermoelectric power inserted into the catalyst layer 1 minute after the start of the supply of the reaction gas. It was confirmed that the temperature of the pair reached 596 ° C., and the subsequent product gas contained hydrogen in a yield of 36%. At this time, the conversion rates of ammonia and oxygen were 70% and 100%, respectively.
  • Example A-4 A reactor having the same configuration as that shown in FIG. 2 was prepared.
  • the reactor has a cylindrical normal pressure fixed bed flow reactor having a diameter of 7 mm and a ceramic heat insulating material provided so as to surround a downstream portion from the catalyst layer of the vessel, and is partitioned by quartz wool.
  • the downstream side of the catalyst layer is filled with ⁇ -Al 2 O 3 balls.
  • a thermocouple that reaches the catalyst layer is provided inside the reaction apparatus, whereby the temperature of the catalyst layer can be measured. Further, the catalyst layer, quartz wool, and ⁇ -Al 2 O 3 balls can be heated by an electric furnace provided outside the reactor.
  • Hydrogen was produced by the following procedure using the oxidative decomposition catalyst A-1 of ammonia obtained in the same manner as in Example A-1 and the above reaction apparatus.
  • GC-TCD GC-8A, manufactured by Shimadzu Corporation
  • reaction can be restarted without external heating by introducing a reaction gas after the reaction is temporarily stopped by purging with He and the catalyst layer is allowed to cool to room temperature. Moreover, it was confirmed that the same hydrogen yield as that of the initial stage and the conversion ratios of ammonia and oxygen were maintained even after the fourth restart, and repeated normal temperature startup was possible.
  • Example A-5 Production of hydrogen in the same manner as in Example A-4, except that ammonia oxidative decomposition catalyst A-2 obtained in the same manner as in Example A-2 was used instead of ammonia oxidative decomposition catalyst A-1. Went.
  • Example A-6 The ammonia oxidative decomposition catalyst A-3 obtained in the same manner as in Example A-3 was used in place of the ammonia oxidative decomposition catalyst A-1, and the catalyst was reduced by flowing hydrogen gas at 200 ° C. for 1 hour. Except for the above, hydrogen was produced in the same manner as in Example A-4.
  • Example A-7 Hydrogen was produced according to the following procedure using the ammonia oxidative decomposition catalyst A-1 obtained in the same manner as in Example A-1 and a reactor having the same configuration as in FIG.
  • the product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).
  • Example B-1 After impregnating a solution of Ru 3 (CO) 12 (Tanaka Kikinzoku Kogyo Co., Ltd.) in tetrahydrofuran with La 2 O 3 particles (prepared by precipitation and baked in air at 700 ° C. for 5 hours) The mixture was evaporated to dryness on a rotary evaporator, and supported so that the supported amount of Ru was 5% by mass based on the total mass of the catalyst. Next, the obtained impregnated product was heat-treated at 350 ° C. for 5 hours under a flow of He to obtain an ammonia oxidative decomposition catalyst B-1.
  • Ru 3 (CO) 12 Teanaka Kikinzoku Kogyo Co., Ltd.
  • Example B-2 Instead of La 2 O 3 particles, MgO particles (manufactured by Ube Material (JRC-MgO-3), fired at 700 ° C. in air for 5 hours) were used in the same manner as in Example B-1. Thus, an oxidative decomposition catalyst B-2 of ammonia was obtained.
  • Ammonia oxidative decomposition catalyst B-3 was obtained in the same manner as in Example B-1, except that was used.
  • a reaction apparatus having the same configuration as in FIG. 1 was prepared.
  • the reactor has a cylindrical normal pressure fixed bed flow reactor having a diameter of 7 mm, and a ceramic heat insulating material provided so as to surround the vessel, and upstream of the catalyst layer partitioned by quartz wool.
  • the side and downstream side are filled with ⁇ -Al 2 O 3 balls.
  • a thermocouple that reaches the catalyst layer is provided inside the reaction apparatus, whereby the temperature of the catalyst layer can be measured. Further, the catalyst layer, quartz wool, and ⁇ -Al 2 O 3 balls can be heated by an electric furnace provided outside the reactor.
  • GC-TCD GC-8A, manufactured by Shimadzu Corporation
  • ammonia oxidative decomposition catalyst B-1 When the ammonia oxidative decomposition catalyst B-1 was used, it was confirmed that the upstream side of the catalyst layer started to red heat after 5 seconds from the start of the supply of the reaction gas, and one minute after the start of the supply of the reaction gas, The temperature of the pair reached 515 ° C., and it was confirmed that the subsequent product gas contained 59% hydrogen. At this time, the conversion rates of ammonia and oxygen were 92% and 100%, respectively.
  • Example B-4 A reactor having the same configuration as that shown in FIG. 2 was prepared.
  • the reactor has a cylindrical normal pressure fixed bed flow reactor having a diameter of 7 mm and a ceramic heat insulating material provided so as to surround a downstream portion from the catalyst layer of the vessel, and is partitioned by quartz wool.
  • the downstream side of the catalyst layer is filled with ⁇ -Al 2 O 3 balls.
  • a thermocouple that reaches the catalyst layer is provided inside the reaction apparatus, whereby the temperature of the catalyst layer can be measured. Further, the catalyst layer, quartz wool, and ⁇ -Al 2 O 3 balls can be heated by an electric furnace provided outside the reactor.
  • Hydrogen was produced according to the following procedure using the ammonia oxidative decomposition catalyst B-1 obtained in the same manner as in Example B-1 and the above reaction apparatus.
  • the product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).
  • Example C-1 In a solution of Ru 3 (CO) 12 (Tanaka Kikinzoku Kogyo Co., Ltd.) dissolved in tetrahydrofuran, ⁇ -Al 2 O 3 particles (Sumitomo Chemical Co., Ltd., high-purity alumina AKP-G15 (JRC-ALO-8)), Impregnated with 700 ° C. in air for 5 hours) and then evaporated to dryness in a rotary evaporator, and supported so that the supported amount of Ru becomes 5% by mass based on the total mass of the catalyst. Next, the obtained impregnated product was heat-treated at 350 ° C. for 5 hours under a flow of He to obtain an ammonia oxidative decomposition catalyst C-1.
  • Example C-2 An ammonia oxidative decomposition catalyst C-2 was obtained in the same manner as in Example C-1, except that SiO 2 particles (AEROSIL 300, used unfired) were used instead of ⁇ -Al 2 O 3 particles.
  • SiO 2 particles AEROSIL 300, used unfired
  • Example C-3 Instead of ⁇ -Al 2 O 3 particles, SiO 2 —Al 2 O 3 particles (manufactured by Catalyst Kasei Co., Ltd., IS-28E, used unfired) were used in the same manner as in Example C-1, An ammonia oxidative decomposition catalyst C-3 was obtained.
  • a reactor having the same configuration as that shown in FIG. 2 was prepared.
  • the reactor has a cylindrical normal pressure fixed bed flow reactor having a diameter of 7 mm and a ceramic heat insulating material provided so as to surround a downstream portion from the catalyst layer of the vessel, and is partitioned by quartz wool.
  • the downstream side of the catalyst layer is filled with ⁇ -Al 2 O 3 balls.
  • a thermocouple that reaches the catalyst layer is provided inside the reaction apparatus, whereby the temperature of the catalyst layer can be measured. Further, the catalyst layer, quartz wool, and ⁇ -Al 2 O 3 balls can be heated by an electric furnace provided outside the reactor.
  • GC-TCD GC-8A, manufactured by Shimadzu Corporation
  • the temperature of the thermocouple inserted into the catalyst layer reached 359 ° C. 2 minutes after the start of the supply of the reaction gas. Was confirmed to be included. At this time, the conversion rates of ammonia and oxygen were 96% and 100%, respectively.
  • the temperature of the thermocouple inserted into the catalyst layer reached 390 ° C. 2 minutes after the start of the supply of the reaction gas, and the yield of 58% in the subsequent product gas It was confirmed that hydrogen was contained. At this time, the conversion rates of ammonia and oxygen were 92% and 100%, respectively.
  • the temperature of the thermocouple inserted into the catalyst layer reached 330 ° C. 2 minutes after the start of the supply of the reaction gas, and the yield of 56% in the subsequent product gas It was confirmed that hydrogen was contained. At this time, the conversion rates of ammonia and oxygen were 89% and 100%, respectively.
  • the product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).
  • reaction can be restarted by introducing the reaction gas without performing external heating after the reaction is temporarily stopped, and the hydrogen yield and the conversion rates of ammonia and oxygen are the same after the fourth restart. was confirmed to be maintained. Even when the catalyst touched the oxygen-containing gas and Ru was oxidized during the suspension of the reaction, restarting by introduction of the reaction gas without external heating was possible.
  • Example C-5 Hydrogen was produced by the following procedure using the ammonia oxidative decomposition catalyst C-1 obtained in the same manner as in Example C-1 and the reactor described above.
  • the product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).
  • reaction can be restarted without external heating by introducing a reaction gas after the reaction is temporarily stopped by purging with He and the catalyst layer is allowed to cool to room temperature. Moreover, it was confirmed that the same hydrogen yield as that of the initial stage and the conversion ratios of ammonia and oxygen were maintained even after the fourth restart, and repeated normal temperature startup was possible.
  • Example C-6 Except for using SiO 2 —Al 2 O 3 particles calcined at 700 ° C. for 5 hours in air, the following oxidative decomposition catalyst of ammonia was obtained in the same manner as in Example C-3, and the following reaction apparatus was used. Hydrogen was produced according to the procedure.
  • the product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).
  • Example C-7 Hydrogen was produced by the following procedure using the ammonia oxidative decomposition catalyst C-1 obtained in the same manner as in Example C-1 and the reactor described above.
  • the product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).

Abstract

This method for producing hydrogen is characterized in that when hydrogen is produced by oxidatively decomposing ammonia by bringing a reaction gas that contains ammonia and oxygen into contact with a catalyst that comprises one or more metals selected from the group consisting of Ru, Co, Rh, Ir and Ni and a carrier that supports the metals, the oxidative decomposition reaction of ammonia is initiated by utilizing the heat generated by the catalyst.

Description

アンモニアの酸化分解触媒、水素の製造方法及び水素製造装置Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus
 本発明は、アンモニアの酸化分解触媒、アンモニアの酸化分解触媒を用いる水素の製造方法及び水素製造装置に関する。 The present invention relates to an ammonia oxidative decomposition catalyst, a hydrogen production method using an ammonia oxidative decomposition catalyst, and a hydrogen production apparatus.
 アンモニアを水素媒体とした高度エネルギー変換・利用システムが提唱されている。このシステムでは、日照量の多い地域で、太陽光を利用して水を光分解することにより水素を製造し、得られた水素を窒素と反応させてアンモニアに変換し、液体のアンモニアを消費地まで運搬した後、アンモニアを分解して水素を生成することにより、水素が利用される。 An advanced energy conversion and utilization system using ammonia as a hydrogen medium has been proposed. In this system, hydrogen is produced by photolysis of water using sunlight in an area where there is a lot of sunlight. The resulting hydrogen reacts with nitrogen to convert it to ammonia, and liquid ammonia is consumed by the consumer. Then, hydrogen is utilized by decomposing ammonia to produce hydrogen.
 上記システムの実用化に向けて、アンモニアの分解に用いられるアンモニアの分解触媒の開発が行われている。アンモニアの分解触媒に関しては、これまでにも種々の触媒が提案されている(例えば、下記特許文献1~4を参照)。 Developed ammonia decomposition catalyst used for ammonia decomposition for practical application of the above system. Various catalysts have been proposed for ammonia decomposition catalysts (see, for example, Patent Documents 1 to 4 below).
特開2005-246163号公報JP 2005-246163 A 特開2006-326578号公報JP 2006-326578 A 特開2006-346642号公報JP 2006-346642 A 特開2007-021482号公報JP 2007-021482 A
 2NH→N+3Hで示されるアンモニアの分解反応は吸熱反応であり、アンモニアを十分に分解するには400℃という温度が必要である。従来のアンモニアの分解触媒を利用した水素製造装置では、起動のために触媒を400℃まで加熱する必要があり、起動後も更に外部からの熱供給が必要であり、起動時間やエネルギー消費の点で課題がある。 The ammonia decomposition reaction represented by 2NH 3 → N 2 + 3H 2 is an endothermic reaction, and a temperature of 400 ° C. is required to sufficiently decompose ammonia. In a conventional hydrogen production apparatus using an ammonia decomposition catalyst, it is necessary to heat the catalyst to 400 ° C. for start-up, and it is necessary to supply heat from the outside even after start-up. There is a problem.
 本発明は、室温などの低い温度から、外部からの熱供給なしに若しくはわずかな熱供給によってアンモニアの酸化分解を開始すること(以下、「アンモニアの酸化分解のコールドスタート」という場合もある)を可能とするアンモニアの酸化分解触媒、並びに、当該触媒を用いた水素の製造方法及び水素製造装置を提供することを目的とする。 The present invention starts oxidative decomposition of ammonia from a low temperature such as room temperature without external heat supply or with a slight heat supply (hereinafter sometimes referred to as “cold start of oxidative decomposition of ammonia”). An object of the present invention is to provide an ammonia oxidative decomposition catalyst, a hydrogen production method and a hydrogen production apparatus using the catalyst.
 本発明は、Ru、Co、Rh、Ir及びNiからなる群より選択される1種以上の金属と、該金属を担持する担体と、を有する触媒に、アンモニア及び酸素を含む反応ガスを接触させることによりアンモニアを酸化分解して水素を製造するに際し、上記触媒による発熱を利用してアンモニアの酸化分解反応を開始することを特徴とする水素の製造方法を提供する。 In the present invention, a reaction gas containing ammonia and oxygen is brought into contact with a catalyst having at least one metal selected from the group consisting of Ru, Co, Rh, Ir and Ni, and a carrier supporting the metal. Thus, when producing hydrogen by oxidizing and decomposing ammonia, there is provided a method for producing hydrogen, characterized in that the oxidative decomposition reaction of ammonia is started using the heat generated by the catalyst.
 本発明の水素の製造方法によれば、上記触媒に接触させる反応ガスに酸素を導入すること及び上記触媒による発熱を利用することにより、速やかにアンモニアの燃焼開始温度に到達させることができるとともに、アンモニアの燃焼反応による内部発熱で外部からの熱供給なしにアンモニアを分解して水素を得ることができる。 According to the method for producing hydrogen of the present invention, by introducing oxygen into the reaction gas brought into contact with the catalyst and utilizing the heat generated by the catalyst, it is possible to quickly reach the combustion start temperature of ammonia, Hydrogen can be obtained by decomposing ammonia without heat supply from the outside due to internal heat generation due to the combustion reaction of ammonia.
 本発明の水素の製造方法の一態様においては、上記金属及び上記担体が還元状態にある触媒に酸素を接触させて上記発熱を得ることができる。この場合、上記担体がCe、Zr及びPrから選択される1種又は2種以上の元素を含む酸化物を1種以上含むことが好ましい。 In one embodiment of the method for producing hydrogen according to the present invention, the above heat generation can be obtained by contacting oxygen with a catalyst in which the metal and the carrier are in a reduced state. In this case, it is preferable that the carrier contains one or more oxides containing one or more elements selected from Ce, Zr and Pr.
 更に、上記触媒が、アンモニア及び酸素を含む反応ガスから生成した水素を含む生成ガスによって還元されていてもよい。この場合、アンモニアの分解反応を一度開始させることにより、その後は触媒に前処理を施さなくても繰り返しアンモニアの分解反応を開始させることができる。 Furthermore, the catalyst may be reduced by a product gas containing hydrogen produced from a reaction gas containing ammonia and oxygen. In this case, once the ammonia decomposition reaction is started, the ammonia decomposition reaction can be started repeatedly without pretreatment of the catalyst thereafter.
 本発明の水素の製造方法の別の一態様においては、上記金属が還元状態にある触媒に酸素を接触させて上記発熱を得ることができる。この場合、上記担体がLa、MgO及びMg-Alオキサイドからなる群より選択される1種以上の酸化物を含むことが好ましい。 In another aspect of the method for producing hydrogen according to the present invention, the exothermic heat can be obtained by contacting oxygen with a catalyst in which the metal is in a reduced state. In this case, the carrier preferably contains one or more oxides selected from the group consisting of La 2 O 3 , MgO, and Mg—Al oxide.
 更に、上記触媒が、アンモニア及び酸素を含む反応ガスから生成した水素を含む生成ガスによって還元されていてもよい。この場合、アンモニアの分解反応を一度開始させることにより、その後は触媒に前処理を施さなくても繰り返しアンモニアの分解反応を開始させることができる。 Furthermore, the catalyst may be reduced by a product gas containing hydrogen produced from a reaction gas containing ammonia and oxygen. In this case, once the ammonia decomposition reaction is started, the ammonia decomposition reaction can be started repeatedly without pretreatment of the catalyst thereafter.
 本発明の水素の製造方法の別の一態様においては、上記担体が酸点を有する状態にある触媒にアンモニアを接触させて上記発熱を得ることができる。この場合、Al及びSiOからなる群より選択される一種以上の酸化物を含む担体を有する触媒にアンモニアを接触させて上記発熱を得ることができる。 In another aspect of the method for producing hydrogen according to the present invention, the exotherm can be obtained by contacting ammonia with a catalyst in which the carrier has an acid point. In this case, the above heat generation can be obtained by contacting ammonia with a catalyst having a support containing one or more oxides selected from the group consisting of Al 2 O 3 and SiO 2 .
 更に、上記触媒が、アンモニアの酸化分解反応の反応熱によってアンモニアが脱離されていてもよい。この場合、アンモニアの分解反応を一度開始させることにより、その後は触媒に前処理を施さなくても繰り返しアンモニアの分解反応を開始させることができる。 Furthermore, the catalyst may have ammonia desorbed by the heat of reaction of the oxidative decomposition reaction of ammonia. In this case, once the ammonia decomposition reaction is started, the ammonia decomposition reaction can be started repeatedly without pretreatment of the catalyst thereafter.
 上記の方法においては、アンモニアの酸化分解反応の開始及び終了を繰り返すときに当該反応の間で室温にある触媒が酸素と接触することができる。 In the above method, when the start and end of the oxidative decomposition reaction of ammonia are repeated, the catalyst at room temperature between the reactions can come into contact with oxygen.
 本発明はまた、Ru、Co、Rh、Ir及びNiからなる群より選択される一種以上の金属と、該金属を担持する担体と、を有し、担体がCe、Zr及びPrから選択される1種又は2種以上の元素を含む酸化物を1種以上含むことを特徴とするアンモニアの酸化分解触媒を提供する。 The present invention also includes one or more metals selected from the group consisting of Ru, Co, Rh, Ir, and Ni, and a carrier supporting the metal, and the carrier is selected from Ce, Zr, and Pr. Provided is an ammonia oxidative decomposition catalyst characterized by containing one or more oxides containing one or more elements.
 本発明はまた、Ru、Co、Rh、Ir及びNiからなる群より選択される一種以上の金属と、該金属を担持する担体と、を有し、担体がLa、MgO及びMg-Alオキサイドからなる群より選択される1種以上の酸化物を含むことを特徴とするアンモニアの酸化分解触媒を提供する。 The present invention also includes at least one metal selected from the group consisting of Ru, Co, Rh, Ir, and Ni, and a carrier supporting the metal, wherein the carrier is La 2 O 3 , MgO, and Mg—. An ammonia oxidative decomposition catalyst comprising one or more oxides selected from the group consisting of Al oxides is provided.
 本発明はまた、Ru、Co、Rh、Ir及びNiからなる群より選択される一種以上の金属と、該金属を担持する担体と、を有し、担体がAl及びSiOからなる群より選択される一種以上の酸化物を含むことを特徴とするアンモニアの酸化分解触媒を提供する。 The present invention also includes at least one metal selected from the group consisting of Ru, Co, Rh, Ir, and Ni, and a carrier supporting the metal, and the carrier is made of Al 2 O 3 and SiO 2. An ammonia oxidative decomposition catalyst comprising one or more oxides selected from the group is provided.
 本発明に係るアンモニアの酸化分解触媒は、酸素或いはアンモニアと接触させることにより発熱させることができ、その後アンモニア及び酸素を含む反応ガスと接触させた場合には自己熱によりアンモニアの燃焼反応を開始することができる。本発明に係るアンモニアの酸化分解触媒によれば、アンモニアの酸化分解のコールドスタートが可能となる。 The ammonia oxidative decomposition catalyst according to the present invention can generate heat by being brought into contact with oxygen or ammonia, and thereafter, when brought into contact with a reaction gas containing ammonia and oxygen, the ammonia combustion reaction is started by self-heating. be able to. According to the oxidative decomposition catalyst for ammonia according to the present invention, it is possible to cold start the oxidative decomposition of ammonia.
 本発明はまた、上記本発明に係るアンモニアの酸化分解触媒のいずれかを備えることを特徴とする水素製造装置を提供する。 The present invention also provides a hydrogen production apparatus including any one of the ammonia oxidative decomposition catalysts according to the present invention.
 本発明に係る水素製造装置によれば、本発明に係るアンモニアの酸化分解触媒を備えることにより、起動のためのエネルギーの消費を抑制することができ、起動後は外部からの熱供給なしに水素を製造することができる。本発明に係る水素製造装置は、起動性及び省エネルギーに優れた装置であるといえる。 According to the hydrogen production apparatus according to the present invention, it is possible to suppress energy consumption for startup by including the ammonia oxidative decomposition catalyst according to the present invention, and hydrogen can be supplied without external heat supply after startup. Can be manufactured. It can be said that the hydrogen production apparatus according to the present invention is an apparatus excellent in startability and energy saving.
 本発明によれば、アンモニアの酸化分解のコールドスタートを可能とするアンモニアの酸化分解触媒、並びに、当該触媒を用いた水素の製造方法及び水素製造装置を提供することができる。 According to the present invention, it is possible to provide an ammonia oxidative decomposition catalyst that enables a cold start of oxidative decomposition of ammonia, a hydrogen production method and a hydrogen production apparatus using the catalyst.
本発明に係る水素製造装置の一実施形態を示す模式図である。It is a mimetic diagram showing one embodiment of a hydrogen production device concerning the present invention. 本発明に係る水素製造装置の他の実施形態を示す模式図である。It is a schematic diagram which shows other embodiment of the hydrogen production apparatus which concerns on this invention.
 図1は、本発明に係る水素製造装置の一実施形態を示す模式図である。図1に示される水素製造装置1は、反応器10と、反応器10内に設けられた触媒層20と、反応器10を取り囲むように設けられた断熱材30とを備える。反応器10の入口には、水素の原料となる反応ガスを導入するための流路L1が接続され、反応器10の出口には、生成ガスを取り出すための流路L2が接続されている。更に、反応器10は、仕切材40で仕切られた触媒層20の上流側及び下流側に不活性充填材50が充填されている。 FIG. 1 is a schematic view showing an embodiment of a hydrogen production apparatus according to the present invention. A hydrogen production apparatus 1 shown in FIG. 1 includes a reactor 10, a catalyst layer 20 provided in the reactor 10, and a heat insulating material 30 provided so as to surround the reactor 10. A flow path L1 for introducing a reaction gas that is a raw material of hydrogen is connected to the inlet of the reactor 10, and a flow path L2 for taking out the product gas is connected to the outlet of the reactor 10. Furthermore, the reactor 10 is filled with an inert filler 50 on the upstream side and the downstream side of the catalyst layer 20 partitioned by the partition member 40.
 図2は、本発明に係る水素製造装置の他の実施形態を示す模式図である。図1に示される水素製造装置2は、断熱材30が反応器10の下流側にのみ設けられていること、不活性充填材50が触媒層20の下流側にのみ充填されていること以外は図1の水素製造装置1と同様の構成を有している。 FIG. 2 is a schematic view showing another embodiment of the hydrogen production apparatus according to the present invention. In the hydrogen production apparatus 2 shown in FIG. 1, the heat insulating material 30 is provided only on the downstream side of the reactor 10, and the inert filler 50 is filled only on the downstream side of the catalyst layer 20. It has the same configuration as the hydrogen production apparatus 1 of FIG.
 反応器10は、固定床流通式反応器であることが好ましい。反応器は単一であってもよいし、直列又は並列に配置された複数で構成されてもよい。また反応器内に設けられる触媒床は単一であってもよいし、複数に区分されていてもよい。 The reactor 10 is preferably a fixed bed flow reactor. The reactor may be a single reactor or a plurality of reactors arranged in series or in parallel. Moreover, the catalyst bed provided in a reactor may be single, and may be divided into plurality.
 触媒層20は、本発明に係るアンモニアの酸化分解触媒が充填される。 The catalyst layer 20 is filled with the ammonia oxidative decomposition catalyst according to the present invention.
 断熱材30としては、熱伝導性が低く、アンモニア酸化分解反応温度で十分な耐熱性を有する一般的な断熱材を使用することができる。例えば、セラミック、ロックウール、ケイ酸カルシウム水和物系などを用いることができる。 As the heat insulating material 30, a general heat insulating material having low heat conductivity and sufficient heat resistance at the ammonia oxidation decomposition reaction temperature can be used. For example, ceramic, rock wool, calcium silicate hydrate system and the like can be used.
 仕切材40は、触媒が不活性充填材と混合しないようにするためのものであり、例えば、石英ウール、金属製メッシュ、又はパンチングメタル板などを用いることができる。 The partition material 40 is for preventing the catalyst from mixing with the inert filler, and for example, quartz wool, a metal mesh, or a punching metal plate can be used.
 不活性充填材50としては、触媒層20の固定や反応流体の整流を目的として、例えば、α-Alボール、セラミックボール、炭化ケイ素などの反応に不活性な成型物又は粒状物を用いることができる。 As the inert filler 50, for the purpose of fixing the catalyst layer 20 and rectifying the reaction fluid, for example, α-Al 2 O 3 balls, ceramic balls, silicon carbide, or the like, a molded product or granular material that is inert to the reaction is used. Can be used.
 本発明に係る水素の製造方法は、上述した水素製造装置1、2により実施することができる。 The hydrogen production method according to the present invention can be implemented by the hydrogen production apparatuses 1 and 2 described above.
 本発明に係る水素の製造方法は、Ru、Co、Rh、Ir及びNiからなる群より選択される1種以上の金属と、該金属を担持する担体と、を有する触媒に、アンモニア及び酸素を含む反応ガスを接触させることによりアンモニアを酸化分解して水素を製造するに際し、上記触媒による発熱を利用してアンモニアの酸化分解反応を開始することを特徴とする。以下、本発明に係る水素の製造方法及びそれに用いられる本発明に係るアンモニアの酸化分解触媒の好適な実施形態について説明する。 In the method for producing hydrogen according to the present invention, ammonia and oxygen are added to a catalyst having at least one metal selected from the group consisting of Ru, Co, Rh, Ir, and Ni, and a carrier supporting the metal. When hydrogen is produced by oxidizing and decomposing ammonia by bringing the reaction gas into contact therewith, the oxidative decomposition reaction of ammonia is started using the heat generated by the catalyst. Hereinafter, preferred embodiments of the method for producing hydrogen according to the present invention and the oxidative decomposition catalyst for ammonia according to the present invention used for the method will be described.
(第1の実施形態)
 第1実施形態に係る水素の製造方法は、Ru、Co、Rh、Ir及びNiからなる群より選択される1種以上の金属と、該金属を担持する担体と、を有する触媒に、アンモニア及び酸素を含む反応ガスを接触させることによりアンモニアを酸化分解して水素を製造するに際し、上記金属及び上記担体が還元状態にある触媒に酸素を接触させて得られる発熱を利用してアンモニアの酸化分解反応を開始する。
(First embodiment)
In the method for producing hydrogen according to the first embodiment, a catalyst having one or more metals selected from the group consisting of Ru, Co, Rh, Ir and Ni, and a carrier supporting the metal, ammonia and Oxidative decomposition of ammonia using the heat generated by contacting oxygen with a catalyst in which the metal and the carrier are in a reduced state when producing hydrogen by oxidizing and decomposing ammonia by contacting a reaction gas containing oxygen Start the reaction.
 本実施形態において上記担体は酸化還元能を有することが好ましい。上記担体は、例えば、Ce、Zr及びPrから選択される1種又は2種以上の元素を含む酸化物を1種以上含むことが好ましい。 In the present embodiment, it is preferable that the carrier has redox ability. The carrier preferably contains, for example, one or more oxides containing one or more elements selected from Ce, Zr and Pr.
 上記酸化物としては、例えば、CeO、Pr11、CeZr(0.0<x≦0.75、0.25≦y<1.0、0.0<z≦2.0、但し、x+y=1)が挙げられる。 Examples of the oxide include CeO 2 , Pr 6 O 11 , Ce x Zr y O z (0.0 <x ≦ 0.75, 0.25 ≦ y <1.0, 0.0 <z ≦ 2). 0.0, where x + y = 1).
 上記酸化物を含む担体の調製方法は、特に限定されるものではなく、例えば、Ce、Pr若しくはZrの硝酸塩、水酸化物又は酸化物などを出発原料として、公知の方法、例えば空気中において焼成処理する、又は、水溶液を用いて単独あるいは混合したのちに、水熱処理、中和、焼成などの工程を単独あるいは組み合わせて施すことにより、上記酸化物を含む担体を得ることができる。 The method for preparing the support containing the oxide is not particularly limited. For example, a known method, for example, calcination in the air, using Ce, Pr or Zr nitrate, hydroxide or oxide as a starting material. The carrier containing the oxide can be obtained by treating, or using an aqueous solution alone or after mixing, and then applying hydrothermal treatment, neutralization, calcination and the like alone or in combination.
 担体は、上記酸化物以外の化合物を含有することができる。例えば、成型体として機械的強度を維持する目的でアルミナなどをバインダー成分として用いることができる。 The carrier can contain compounds other than the above oxides. For example, alumina or the like can be used as a binder component for the purpose of maintaining mechanical strength as a molded body.
 担体の形状は、円筒状、ペレット状、球状、塊状、粉状とすることができる。本実施形態においては、担体の粉化や異物混入などによって触媒間の空隙が閉塞して反応流体の流通が妨げられたり、差圧が発生したりすることが無いよう、円筒状、ペレット、球状、塊状のいずれかの形状を有することが望ましい。 The shape of the carrier can be cylindrical, pellet, spherical, lump, or powder. In the present embodiment, a cylindrical shape, a pellet, a spherical shape are used so that the gap between the catalysts is not blocked due to powdering of the carrier or mixing of foreign matters, and the flow of the reaction fluid is not hindered or the differential pressure is not generated. It is desirable to have any shape of a lump.
 本実施形態に係る触媒において、上記活性金属の含有量は、触媒の全質量を基準として、0.1~50.0質量%であることが好ましく、0.5~40.0質量%であることがより好ましく、1.0~30.0質量%であることがさらに好ましい。 In the catalyst according to this embodiment, the content of the active metal is preferably 0.1 to 50.0% by mass, and preferably 0.5 to 40.0% by mass based on the total mass of the catalyst. More preferably, the content is 1.0 to 30.0% by mass.
 上記金属の担体への担持方法は、特に限定されるものではなく、公知の方法を適用することにより容易に行うことができる。例えば、含浸法、沈着法、共沈法、混練法、イオン交換法、ポアフィリング法等が挙げられ、特に含浸法が望ましい。触媒を製造する際の金属の出発物質は、前記の担持法により異なり、適宜選択することができるが、通常、塩化物、硝酸塩、酢酸等の有機酸塩、カルボニル化物を用いることができる。具体的には、Ru(C、RuCl、Ru(NO)(NO(OH)、Rh(NO・2HO、Ru(CO)12、[(CH3COO)Rh]、[Rh(C15COO)、RhCl・nHO、Rh(NO、Rh(C)x・nHO、C1521IrO、IrCl・nHO、Ni(NO・6HO、(CHCOO)Ni・4HO、NiCl・6HO、Ni(O・nHO、Co(NO・6HO、(CHCOCHCOCHCo・2HO、Co(CO)、CoCl・6HOを用いることができる。 The method for supporting the metal on the carrier is not particularly limited, and can be easily performed by applying a known method. For example, an impregnation method, a deposition method, a coprecipitation method, a kneading method, an ion exchange method, a pore filling method and the like can be mentioned, and the impregnation method is particularly desirable. The metal starting material for producing the catalyst differs depending on the above-mentioned supporting method and can be appropriately selected. Usually, organic acid salts such as chloride, nitrate and acetic acid, and carbonylates can be used. Specifically, Ru (C 5 H 7 O 2 ) 3 , RuCl 3 , Ru (NO) (NO 3 ) x (OH) y , Rh (NO 3 ) 3 .2H 2 O, Ru 3 (CO) 12 , [(CH 3 COO) 2 Rh 2 ], [Rh (C 7 H 15 COO) 2 ] 2 , RhCl 3 · nH 2 O, Rh (NO 3 ) 3 , Rh (C 2 H 4 O 2 ) x · nH 2 O, C 15 H 21 IrO 6 , IrCl 3 .nH 2 O, Ni (NO 3 ) 2 .6H 2 O, (CH 3 COO) 2 Ni.4H 2 O, NiCl 2 .6H 2 O, Ni (O 2 C 5 H 7 ) 2 · nH 2 O, Co (NO 3 ) 2 · 6H 2 O, (CH 3 COCHCOCH 3 ) 2 Co · 2H 2 O, Co 2 (CO) 8 , CoCl 2 · 6H 2 O are used. be able to.
 含浸法を適用する場合、例えば、塩化物、硝酸塩、酢酸等の有機酸塩、カルボニル化物を水または有機溶剤に加えた溶液を調製し、前記の担体に含浸させたのち、乾燥、必要に応じ焼成する方法を例示することができる。 When applying the impregnation method, for example, prepare a solution in which an organic acid salt such as chloride, nitrate, acetic acid or the like, a carbonylated product is added to water or an organic solvent, impregnate the carrier, and then dry, if necessary. A method of firing can be exemplified.
 焼成は、通常、空気や窒素雰囲気下などで行われ、温度は、上記塩化物、硝酸塩、酢酸等の有機酸塩、カルボニル化物の分解温度以上であれば特に限定されないが、例えば、100~1000℃、好ましくは200~900℃、より好ましくは250~800℃が望ましい。 The calcination is usually performed in an air or nitrogen atmosphere, and the temperature is not particularly limited as long as it is equal to or higher than the decomposition temperature of the organic acid salt or carbonyl compound such as chloride, nitrate and acetic acid. C., preferably 200 to 900.degree. C., more preferably 250 to 800.degree. C. is desirable.
 次に、本実施形態に係る水素の製造方法の具体的な手順について説明する。 Next, a specific procedure of the hydrogen production method according to this embodiment will be described.
 本実施形態においては、触媒を還元するための前処理を行うことが好ましい。 In this embodiment, it is preferable to perform a pretreatment for reducing the catalyst.
 前処理は、触媒の酸化還元特性に応じて適宜その条件を設定することができ、例えば、触媒を反応器に充填して触媒層を設けた後、室温~800℃、好ましくは100~700℃、さらに好ましくは200~600℃の触媒層温度で、5分~5時間、好ましくは10分~3時間、さらに好ましくは30分~2時間、水素ガス或いは水素を含むガスを流通させることにより行うことができる。 The conditions for the pretreatment can be appropriately set according to the oxidation-reduction characteristics of the catalyst. For example, after the catalyst is filled in the reactor and the catalyst layer is provided, the temperature is room temperature to 800 ° C., preferably 100 to 700 ° C. More preferably, it is carried out by circulating hydrogen gas or a gas containing hydrogen at a catalyst layer temperature of 200 to 600 ° C. for 5 minutes to 5 hours, preferably 10 minutes to 3 hours, more preferably 30 minutes to 2 hours. be able to.
 担体に含まれる酸化物として、CeO又はCeZr(0.0<x≦0.75、0.25≦y<1.0、0.0<z≦2.0、但し、x+y=1)を用いる場合は、室温(25℃)未満の触媒層温度で、水素ガス或いは水素を含むガスを流通させることにより触媒を還元するための前処理を行うことができる。この場合、加熱のためのエネルギーを低減することができる。 As the oxide contained in the support, CeO 2 or Ce x Zr y O z (0.0 <x ≦ 0.75, 0.25 ≦ y <1.0, 0.0 <z ≦ 2.0, provided that When x + y = 1) is used, a pretreatment for reducing the catalyst can be performed by circulating hydrogen gas or a gas containing hydrogen at a catalyst layer temperature lower than room temperature (25 ° C.). In this case, energy for heating can be reduced.
 触媒の前処理が終了すれば、Heなどの不活性ガスを流通させながら触媒層の加熱を止め、そのまま室温で保持することができる。 When the pretreatment of the catalyst is completed, heating of the catalyst layer can be stopped while flowing an inert gas such as He, and the catalyst layer can be kept at room temperature.
 次に、金属及び担体が還元状態にある触媒に酸素を接触させる。本実施形態においては、アンモニア及び酸素(好ましくは空気)を含む反応ガスを触媒層に供給することにより、触媒を発熱させることが好ましい。この場合、触媒の温度がアンモニアの燃焼開始温度に達成するとアンモニアの燃焼反応を開始させることができる。そして、アンモニアの燃焼反応による発熱によって触媒の温度がアンモニアの酸化分解反応開始温度に到達すると、アンモニアの酸化分解反応を開始させることができる。 Next, oxygen is brought into contact with the catalyst in which the metal and support are in a reduced state. In the present embodiment, it is preferable to heat the catalyst by supplying a reaction gas containing ammonia and oxygen (preferably air) to the catalyst layer. In this case, when the temperature of the catalyst reaches the combustion start temperature of ammonia, the combustion reaction of ammonia can be started. When the temperature of the catalyst reaches the oxidative decomposition reaction start temperature of ammonia due to the heat generated by the combustion reaction of ammonia, the oxidative decomposition reaction of ammonia can be started.
 上記反応ガスにおけるアンモニアと酸素との体積比は、1.0:0.095~0.5が好ましく、1.0:0.2~0.4がより好ましい。空気を用いる場合、上記のアンモニアと酸素の比率になるよう空気の量を調節することができる。反応ガスには、発熱量を調整するために、ヘリウムなどの不活性ガスを随伴させることもできる。 The volume ratio of ammonia and oxygen in the reaction gas is preferably 1.0: 0.095 to 0.5, and more preferably 1.0: 0.2 to 0.4. When air is used, the amount of air can be adjusted so that the above-mentioned ratio of ammonia and oxygen is obtained. The reactive gas can be accompanied by an inert gas such as helium in order to adjust the calorific value.
 こうして、アンモニアを含む反応ガスから水素を含む生成ガスを得ることができる。 Thus, a product gas containing hydrogen can be obtained from a reaction gas containing ammonia.
 本実施形態の水素の製造方法によれば、例えば、図1及び2に示されるような水素製造装置において、反応停止・触媒層を降温した後、還元雰囲気下(例えば、水素雰囲気下)あるいは不活性雰囲気下で触媒系を維持することにより、上述したような前処理(スタート前の加熱・水素還元処理など)を施すことなく2回目の起動が可能となる。具体的には、例えば、Heなどの不活性ガスを流通させることで触媒層の発熱を止め、触媒層を常温まで降温した後、反応ガスを供給することにより再起動が可能となる。このとき、反応ガスを供給する前にアンモニア及びヘリウムの混合ガスを供給し、続いて酸素を供給してもよい。 According to the hydrogen production method of the present embodiment, for example, in a hydrogen production apparatus as shown in FIGS. 1 and 2, after the reaction is stopped and the catalyst layer is cooled, the reaction is performed under a reducing atmosphere (for example, under a hydrogen atmosphere) or not. By maintaining the catalyst system under an active atmosphere, the second start-up can be performed without performing the pretreatment (heating before start, hydrogen reduction treatment, etc.) as described above. Specifically, for example, the heat generation of the catalyst layer is stopped by circulating an inert gas such as He, and the catalyst layer can be restarted by supplying the reaction gas after the temperature of the catalyst layer is lowered to room temperature. At this time, before supplying the reaction gas, a mixed gas of ammonia and helium may be supplied, and then oxygen may be supplied.
 上記の効果は、アンモニアの酸化分解反応で生成する水素によって金属と担体がin-situ還元されることによるものと考えられる。 The above effect is considered to be due to the in-situ reduction of the metal and the carrier by hydrogen generated by the oxidative decomposition reaction of ammonia.
 本実施形態において、二回目又は三回目以降の起動時には、アンモニアと酸素(好ましくは空気)を含む反応ガスを供給、又はアンモニアを先に供給してから酸素(好ましくは空気)を含む反応ガスを供給することが望ましい。また、アンモニア及びヘリウムの混合ガスを供給し、続いて酸素を供給した後、反応ガスを供給することができる。 In the present embodiment, at the second or third start-up, a reaction gas containing ammonia and oxygen (preferably air) is supplied, or a reaction gas containing oxygen (preferably air) is supplied after ammonia is supplied first. It is desirable to supply. In addition, a reaction gas can be supplied after supplying a mixed gas of ammonia and helium and then supplying oxygen.
 また、本実施形態においては、担体に含まれる酸化物としてCeOを用いる場合、800℃以下、好ましくは室温(25℃程度)~800℃、より好ましくは100℃~600℃の触媒層温度で、Heガスを流通させて、触媒のHe加熱処理を行い、その後触媒にアンモニアを接触させることにより、アンモニアの酸化分解反応を開始させることができる。本実施形態においては、アンモニア及び酸素(好ましくは空気)を含む反応ガスを触媒層に供給することにより、触媒を発熱させることが好ましい。この場合、触媒の温度がアンモニアの燃焼開始温度に達成するとアンモニアの燃焼反応を開始させることができる。そして、アンモニアの燃焼反応による発熱によって触媒の温度がアンモニアの酸化分解反応開始温度に到達すると、アンモニアの酸化分解反応を開始させることができる。 In this embodiment, when CeO 2 is used as the oxide contained in the support, the catalyst layer temperature is 800 ° C. or less, preferably room temperature (about 25 ° C.) to 800 ° C., more preferably 100 ° C. to 600 ° C. Then, the He gas is circulated, the catalyst is heat-treated with He, and then ammonia is brought into contact with the catalyst, whereby the oxidative decomposition reaction of ammonia can be started. In the present embodiment, it is preferable to heat the catalyst by supplying a reaction gas containing ammonia and oxygen (preferably air) to the catalyst layer. In this case, when the temperature of the catalyst reaches the combustion start temperature of ammonia, the combustion reaction of ammonia can be started. When the temperature of the catalyst reaches the oxidative decomposition reaction start temperature of ammonia due to the heat generated by the combustion reaction of ammonia, the oxidative decomposition reaction of ammonia can be started.
 なお、触媒にアンモニアを接触させることにより得られる発熱は、上記酸化物の酸点にアンモニアが吸着することによるものと考えられる。また、CeO上では上記金属が高分散されやすく、活性が高められるため、吸着熱によってアンモニアの酸化分解反応が可能になったものと考えられる。 In addition, it is thought that the heat_generation | fever obtained by making ammonia contact a catalyst is based on ammonia adsorb | sucking to the acid point of the said oxide. Further, the above metal is easily highly dispersed on CeO 2 , and the activity is enhanced. Therefore, it is considered that the oxidative decomposition reaction of ammonia is enabled by the heat of adsorption.
(第2の実施形態)
 第2実施形態に係る水素の製造方法は、Ru、Co、Rh、Ir及びNiからなる群より選択される1種以上の金属と、該金属を担持する担体と、を有する触媒に、アンモニア及び酸素を含む反応ガスを接触させることによりアンモニアを酸化分解して水素を製造するに際し、上記金属が還元状態にある触媒に酸素を接触させて上記発熱を得ることができる。この場合、上記担体がLa、MgO及びMg-Alオキサイドからなる群より選択される1種以上の酸化物を含むことが好ましい。
(Second Embodiment)
In the method for producing hydrogen according to the second embodiment, a catalyst having one or more metals selected from the group consisting of Ru, Co, Rh, Ir and Ni, and a carrier supporting the metal, ammonia and When producing hydrogen by oxidizing and decomposing ammonia by contacting a reaction gas containing oxygen, the exothermicity can be obtained by bringing oxygen into contact with a catalyst in which the metal is in a reduced state. In this case, the carrier preferably contains one or more oxides selected from the group consisting of La 2 O 3 , MgO, and Mg—Al oxide.
 上記担体は、例えば、La、MgO及びMg-Alオキサイドからなる群より選択される1種以上の酸化物を含むことが好ましい。 The carrier preferably contains, for example, one or more oxides selected from the group consisting of La 2 O 3 , MgO, and Mg—Al oxide.
 上記酸化物を含む担体の調製方法は、特に限定されるものではなく、例えば、La、Mg若しくはAlの硝酸塩、水酸化物又は酸化物などを出発原料として、公知の方法、例えば空気中において焼成処理する、又は、水溶液を用いて単独あるいは混合したのちに、水熱処理、中和、焼成などの工程を単独あるいは組み合わせて施すことにより、上記酸化物を含む担体を得ることができる。 The method for preparing the support containing the oxide is not particularly limited. For example, La, Mg or Al nitrate, hydroxide or oxide is used as a starting material, and a known method, for example, firing in air. The carrier containing the oxide can be obtained by treating, or using an aqueous solution alone or after mixing, and then applying hydrothermal treatment, neutralization, calcination and the like alone or in combination.
 担体は、上記酸化物以外の化合物を含有することができる。例えば、成型体として機械的強度を維持する目的でアルミナなどをバインダー成分として用いることができる。 The carrier can contain compounds other than the above oxides. For example, alumina or the like can be used as a binder component for the purpose of maintaining mechanical strength as a molded body.
 担体の形状は、円筒状、ペレット状、球状、塊状、粉状とすることができる。本実施形態においては、担体の粉化や異物混入などによって触媒間の空隙が閉塞して反応流体の流通が妨げられたり、差圧が発生したりすることが無いよう、円筒状、ペレット、球状、塊状のいずれかの形状を有することが望ましい。 The shape of the carrier can be cylindrical, pellet, spherical, lump, or powder. In the present embodiment, a cylindrical shape, a pellet, a spherical shape are used so that the gap between the catalysts is not blocked due to powdering of the carrier or mixing of foreign matters, and the flow of the reaction fluid is not hindered or the differential pressure is not generated. It is desirable to have any shape of a lump.
 本実施形態に係る触媒において、上記活性金属の含有量は、触媒の全質量を基準として、0.1~50.0質量%であることが好ましく、0.5~40.0質量%であることがより好ましく、1.0~30.0質量%であることがさらに好ましい。 In the catalyst according to this embodiment, the content of the active metal is preferably 0.1 to 50.0% by mass, and preferably 0.5 to 40.0% by mass based on the total mass of the catalyst. More preferably, the content is 1.0 to 30.0% by mass.
 上記金属の担体への担持方法は、特に限定されるものではなく、公知の方法を適用することにより容易に行うことができる。例えば、含浸法、沈着法、共沈法、混練法、イオン交換法、ポアフィリング法等が挙げられ、特に含浸法が望ましい。触媒を製造する際の金属の出発物質は、前記の担持法により異なり、適宜選択することができるが、通常、塩化物、硝酸塩、酢酸等の有機酸塩、カルボニル化物を用いることができる。具体的には、Ru(C、RuCl、Ru(NO)(NO(OH)、Rh(NO・2HO、Ru(CO)12、[(CH3COO)Rh]、[Rh(C15COO)、RhCl・nHO、Rh(NO、Rh(C)x・nHO、C1521IrO、IrCl・nHO、Ni(NO・6HO、(CHCOO)Ni・4HO、NiCl・6HO、Ni(O・nHO、Co(NO・6HO、(CHCOCHCOCHCo・2HO、Co(CO)、CoCl・6HOを用いることができる。 The method for supporting the metal on the carrier is not particularly limited, and can be easily performed by applying a known method. For example, an impregnation method, a deposition method, a coprecipitation method, a kneading method, an ion exchange method, a pore filling method and the like can be mentioned, and the impregnation method is particularly desirable. The metal starting material for producing the catalyst differs depending on the above-mentioned supporting method and can be appropriately selected. Usually, organic acid salts such as chloride, nitrate and acetic acid, and carbonylates can be used. Specifically, Ru (C 5 H 7 O 2 ) 3 , RuCl 3 , Ru (NO) (NO 3 ) x (OH) y , Rh (NO 3 ) 3 .2H 2 O, Ru 3 (CO) 12 , [(CH 3 COO) 2 Rh 2 ], [Rh (C 7 H 15 COO) 2 ] 2 , RhCl 3 · nH 2 O, Rh (NO 3 ) 3 , Rh (C 2 H 4 O 2 ) x · nH 2 O, C 15 H 21 IrO 6 , IrCl 3 .nH 2 O, Ni (NO 3 ) 2 .6H 2 O, (CH 3 COO) 2 Ni.4H 2 O, NiCl 2 .6H 2 O, Ni (O 2 C 5 H 7 ) 2 · nH 2 O, Co (NO 3 ) 2 · 6H 2 O, (CH 3 COCHCOCH 3 ) 2 Co · 2H 2 O, Co 2 (CO) 8 , CoCl 2 · 6H 2 O are used. be able to.
 含浸法を適用する場合、例えば、塩化物、硝酸塩、酢酸等の有機酸塩、カルボニル化物を水または有機溶剤に加えた溶液を調製し、前記の担体に含浸させたのち、乾燥、必要に応じ焼成する方法を例示することができる。 When applying the impregnation method, for example, prepare a solution in which an organic acid salt such as chloride, nitrate, acetic acid or the like, a carbonylated product is added to water or an organic solvent, impregnate the carrier, and then dry, if necessary. A method of firing can be exemplified.
 焼成は、通常、空気や窒素雰囲気下などで行われ、温度は、上記塩化物、硝酸塩、酢酸等の有機酸塩、カルボニル化物の分解温度以上であれば特に限定されないが、例えば、100~1000℃、好ましくは200~900℃、より好ましくは250~800℃が望ましい。 The calcination is usually performed in an air or nitrogen atmosphere, and the temperature is not particularly limited as long as it is equal to or higher than the decomposition temperature of the organic acid salt or carbonyl compound such as chloride, nitrate and acetic acid. C., preferably 200 to 900.degree. C., more preferably 250 to 800.degree. C. is desirable.
 次に、本実施形態に係る水素の製造方法の具体的な手順について説明する。 Next, a specific procedure of the hydrogen production method according to this embodiment will be described.
 本実施形態においては、触媒を還元するための前処理を行うことが好ましい。 In this embodiment, it is preferable to perform a pretreatment for reducing the catalyst.
 前処理は、触媒の酸化還元特性に応じて適宜その条件を設定することができ、例えば、触媒を反応器に充填して触媒層を設けた後、100~800℃、好ましくは400~700℃、さらに好ましくは500~700℃の触媒層温度で、5分~5時間、好ましくは10分~3時間、さらに好ましくは30分~2時間、水素ガス或いは水素を含むガスを流通させることにより行うことができる。 The conditions for the pretreatment can be appropriately set according to the oxidation-reduction characteristics of the catalyst. For example, after the catalyst is filled in the reactor and the catalyst layer is provided, the temperature is 100 to 800 ° C., preferably 400 to 700 ° C. More preferably, it is carried out by circulating hydrogen gas or a gas containing hydrogen at a catalyst layer temperature of 500 to 700 ° C. for 5 minutes to 5 hours, preferably 10 minutes to 3 hours, more preferably 30 minutes to 2 hours. be able to.
 触媒の前処理が終了すれば、Heなどの不活性ガスを流通させながら触媒層の加熱を止め、そのまま室温で保持することができる。 When the pretreatment of the catalyst is completed, heating of the catalyst layer can be stopped while flowing an inert gas such as He, and the catalyst layer can be kept at room temperature.
 次に、金属及び担体が還元状態にある触媒に酸素を接触させる。本実施形態においては、アンモニア及び酸素(好ましくは空気)を含む反応ガスを触媒層に供給することにより、触媒を発熱させることが好ましい。この場合、触媒の温度がアンモニアの燃焼開始温度に達成するとアンモニアの燃焼反応を開始させることができる。そして、アンモニアの燃焼反応による発熱によって触媒の温度がアンモニアの酸化分解反応開始温度に到達すると、アンモニアの酸化分解反応を開始させることができる。 Next, oxygen is brought into contact with the catalyst in which the metal and the carrier are in a reduced state. In the present embodiment, it is preferable to heat the catalyst by supplying a reaction gas containing ammonia and oxygen (preferably air) to the catalyst layer. In this case, when the temperature of the catalyst reaches the combustion start temperature of ammonia, the combustion reaction of ammonia can be started. When the temperature of the catalyst reaches the oxidative decomposition reaction start temperature of ammonia due to the heat generated by the combustion reaction of ammonia, the oxidative decomposition reaction of ammonia can be started.
 上記反応ガスにおけるアンモニアと酸素との体積比は、1.0:0.095~0.5が好ましく、1.0:0.2~0.4がより好ましい。空気を用いる場合、上記のアンモニアと酸素の比率になるよう空気の量を調節することができる。反応ガスには、発熱量を調整するために、ヘリウムなどの不活性ガスを随伴させることもできる。 The volume ratio of ammonia and oxygen in the reaction gas is preferably 1.0: 0.095 to 0.5, and more preferably 1.0: 0.2 to 0.4. When air is used, the amount of air can be adjusted so that the above-mentioned ratio of ammonia and oxygen is obtained. The reactive gas can be accompanied by an inert gas such as helium in order to adjust the calorific value.
 こうして、アンモニアを含む反応ガスから水素を含む生成ガスを得ることができる。 Thus, a product gas containing hydrogen can be obtained from a reaction gas containing ammonia.
 本実施形態の水素の製造方法によれば、例えば、図1及び2に示されるような水素製造装置において、反応停止・触媒層を降温した後、還元雰囲気下(例えば、水素雰囲気下)あるいは不活性雰囲気下で触媒系を維持することにより、上述したような前処理(スタート前の加熱・水素還元処理など)を施すことなく2回目の起動が可能となる。具体的には、例えば、Heなどの不活性ガスを流通させることで触媒層の発熱を止め、触媒層を常温まで降温した後、反応ガスを供給することにより再起動が可能となる。このとき、反応ガスを供給する前にアンモニア及びヘリウムの混合ガスを供給し、続いて酸素を供給してもよい。 According to the hydrogen production method of the present embodiment, for example, in a hydrogen production apparatus as shown in FIGS. 1 and 2, after the reaction is stopped and the catalyst layer is cooled, the reaction is performed under a reducing atmosphere (for example, under a hydrogen atmosphere) or not. By maintaining the catalyst system under an active atmosphere, the second start-up can be performed without performing the pretreatment (heating before start, hydrogen reduction treatment, etc.) as described above. Specifically, for example, the heat generation of the catalyst layer is stopped by circulating an inert gas such as He, and the catalyst layer can be restarted by supplying the reaction gas after the temperature of the catalyst layer is lowered to room temperature. At this time, before supplying the reaction gas, a mixed gas of ammonia and helium may be supplied, and then oxygen may be supplied.
 上記の効果は、アンモニアの酸化分解反応で生成する水素によって金属がin-situ還元されることによるものと考えられる。 The above effect is considered to be due to in-situ reduction of the metal by hydrogen generated by the oxidative decomposition reaction of ammonia.
 本実施形態において、二回目又は三回目以降の起動時には、アンモニアと酸素(好ましくは空気)を含む反応ガスを供給、又はアンモニアを先に供給してから酸素(好ましくは空気)を含む反応ガスを供給することが望ましい。また、アンモニア及びヘリウムの混合ガスを供給し、続いて酸素を供給した後、反応ガスを供給することができる。 In the present embodiment, at the second or third start-up, a reaction gas containing ammonia and oxygen (preferably air) is supplied, or a reaction gas containing oxygen (preferably air) is supplied after ammonia is supplied first. It is desirable to supply. In addition, a reaction gas can be supplied after supplying a mixed gas of ammonia and helium and then supplying oxygen.
(第3の実施形態)
 第3実施形態に係る水素の製造方法は、Ru、Co、Rh、Ir及びNiからなる群より選択される1種以上の金属と、該金属を担持する担体と、を有する触媒に、アンモニア及び酸素を含む反応ガスを接触させることによりアンモニアを酸化分解して水素を製造するに際し、Al及びSiOからなる群より選択される一種以上の酸化物を含む担体を有する触媒にアンモニアを接触させて上記発熱を得ることができる。
(Third embodiment)
In the method for producing hydrogen according to the third embodiment, a catalyst having one or more metals selected from the group consisting of Ru, Co, Rh, Ir and Ni, and a carrier supporting the metal, ammonia and In producing hydrogen by oxidizing and decomposing ammonia by contacting a reaction gas containing oxygen, ammonia is added to a catalyst having a support containing one or more oxides selected from the group consisting of Al 2 O 3 and SiO 2. The above heat generation can be obtained by contact.
 上記酸化物としては、例えば、γ-Al、SiO及びSiO-Alが挙げられる。 Examples of the oxide include γ-Al 2 O 3 , SiO 2 and SiO 2 —Al 2 O 3 .
 起動性の観点から、担体がAl及びSiOのうちの1種以上を含むことが好ましい。担体が、これらの酸化物を含むことによりアンモニアの燃焼開始温度を低くできる。 From the viewpoint of startability, the support preferably contains one or more of Al 2 O 3 and SiO 2 . By including these oxides in the support, the combustion start temperature of ammonia can be lowered.
 また、繰り返しの起動が外部加熱なしに容易にできる点で、担体がAlを含むことが好ましい。さらに、Alはγ-Alであることがより好ましい。 Also, in that repeated activation of the can be easily without external heating, it is preferred that the carrier comprises Al 2 O 3. Further, Al 2 O 3 is more preferably γ-Al 2 O 3 .
 上記酸化物を含む担体の調製方法は、特に限定されるものではなく、例えば、Alの原料としては硝酸塩、硫酸塩などから調製したアルミニウム水溶液を用いて水酸化アルミニウムゲルを調製してもよく、このほか市販の酸化アルミニウム中間体やベーマイトパウダーを用いてもよい。SiOの原料としてはケイ酸、水ガラス、シリカゾルなどを用いることができる。Al及びSiOを組み合わせる場合、前記のアルミ原料溶液や、混練する工程においてSi原料を添加してもよく、好ましくは混練工程の前でAl原料とあらかじめ混合させることがより好ましい。これらを調合後、例えば空気中において焼成処理する、又は、水溶液を用いて単独あるいは混合したのちに、水熱処理、中和、焼成などの工程を単独あるいは組み合わせて施すことにより、上記酸化物を含む担体を得ることができる。 The method for preparing the support containing the oxide is not particularly limited. For example, an aluminum hydroxide gel is prepared using an aluminum aqueous solution prepared from nitrate, sulfate, etc. as a raw material for Al 2 O 3. In addition, a commercially available aluminum oxide intermediate or boehmite powder may be used. As a raw material of SiO 2 , silicic acid, water glass, silica sol and the like can be used. When combining Al 2 O 3 and SiO 2 , an Si raw material may be added in the aluminum raw material solution or in the kneading step, and it is more preferable that the Al raw material is mixed in advance before the kneading step. After these are prepared, for example, in the air, or after being singly or mixed using an aqueous solution, the above oxides are contained by applying the steps such as hydrothermal treatment, neutralization, and calcination alone or in combination. A carrier can be obtained.
 担体は、上記酸化物以外の化合物を含有することができる。例えば、成型体として機械的強度を維持する目的でアルミナなどをバインダー成分として用いることができる。 The carrier can contain compounds other than the above oxides. For example, alumina or the like can be used as a binder component for the purpose of maintaining mechanical strength as a molded body.
 担体の形状は、円筒状、ペレット状、球状、塊状、粉状とすることができる。本実施形態においては、担体の粉化や異物混入などによって触媒間の空隙が閉塞して反応流体の流通が妨げられたり、差圧が発生したりすることが無いよう、円筒状、ペレット、球状、塊状のいずれかの形状を有することが望ましい。 The shape of the carrier can be cylindrical, pellet, spherical, lump, or powder. In the present embodiment, a cylindrical shape, a pellet, a spherical shape are used so that the gap between the catalysts is not blocked due to powdering of the carrier or mixing of foreign matters, and the flow of the reaction fluid is not hindered or the differential pressure is not generated. It is desirable to have any shape of a lump.
 本実施形態に係る触媒において、上記活性金属の含有量は、触媒の全質量を基準として、0.1~50.0質量%であることが好ましく、0.5~40.0質量%であることがより好ましく、1.0~30.0質量%であることがさらに好ましい。 In the catalyst according to this embodiment, the content of the active metal is preferably 0.1 to 50.0% by mass, and preferably 0.5 to 40.0% by mass based on the total mass of the catalyst. More preferably, the content is 1.0 to 30.0% by mass.
 上記金属の担体への担持方法は、特に限定されるものではなく、公知の方法を適用することにより容易に行うことができる。例えば、含浸法、沈着法、共沈法、混練法、イオン交換法、ポアフィリング法等が挙げられ、特に含浸法が望ましい。触媒を製造する際の金属の出発物質は、前記の担持法により異なり、適宜選択することができるが、通常、塩化物、硝酸塩、酢酸等の有機酸塩、カルボニル化物を用いることができる。具体的には、Ru(C、RuCl、Ru(NO)(NO(OH)、Rh(NO・2HO、Ru(CO)12、[(CH3COO)Rh]、[Rh(C15COO)、RhCl・nHO、Rh(NO、Rh(C)x・nHO、C1521IrO、IrCl・nHO、Ni(NO・6HO、(CHCOO)Ni・4HO、NiCl・6HO、Ni(O・nHO、Co(NO・6HO、(CHCOCHCOCHCo・2HO、Co(CO)、CoCl・6HOを用いることができる。 The method for supporting the metal on the carrier is not particularly limited, and can be easily performed by applying a known method. For example, an impregnation method, a deposition method, a coprecipitation method, a kneading method, an ion exchange method, a pore filling method and the like can be mentioned, and the impregnation method is particularly desirable. The metal starting material for producing the catalyst differs depending on the above-mentioned supporting method and can be appropriately selected. Usually, organic acid salts such as chloride, nitrate and acetic acid, and carbonylates can be used. Specifically, Ru (C 5 H 7 O 2 ) 3 , RuCl 3 , Ru (NO) (NO 3 ) x (OH) y , Rh (NO 3 ) 3 .2H 2 O, Ru 3 (CO) 12 , [(CH 3 COO) 2 Rh 2 ], [Rh (C 7 H 15 COO) 2 ] 2 , RhCl 3 · nH 2 O, Rh (NO 3 ) 3 , Rh (C 2 H 4 O 2 ) x · nH 2 O, C 15 H 21 IrO 6 , IrCl 3 .nH 2 O, Ni (NO 3 ) 2 .6H 2 O, (CH 3 COO) 2 Ni.4H 2 O, NiCl 2 .6H 2 O, Ni (O 2 C 5 H 7 ) 2 · nH 2 O, Co (NO 3 ) 2 · 6H 2 O, (CH 3 COCHCOCH 3 ) 2 Co · 2H 2 O, Co 2 (CO) 8 , CoCl 2 · 6H 2 O are used. be able to.
 含浸法を適用する場合、例えば、塩化物、硝酸塩、酢酸等の有機酸塩、カルボニル化物を水または有機溶剤に加えた溶液を調製し、前記の担体に含浸させたのち、乾燥、必要に応じ焼成する方法を例示することができる。 When applying the impregnation method, for example, prepare a solution in which an organic acid salt such as chloride, nitrate, acetic acid or the like, a carbonylated product is added to water or an organic solvent, impregnate the carrier, and then dry, if necessary. A method of firing can be exemplified.
 焼成は、通常、空気や窒素雰囲気下などで行われ、温度は、上記塩化物、硝酸塩、酢酸等の有機酸塩、カルボニル化物の分解温度以上であれば特に限定されないが、例えば、100~1000℃、好ましくは200~900℃、より好ましくは250~800℃が望ましい。 The calcination is usually performed in an air or nitrogen atmosphere, and the temperature is not particularly limited as long as it is equal to or higher than the decomposition temperature of the organic acid salt or carbonyl compound such as chloride, nitrate and acetic acid. C., preferably 200 to 900.degree. C., more preferably 250 to 800.degree. C. is desirable.
 次に、本実施形態に係る水素の製造方法の具体的な手順について説明する。 Next, a specific procedure of the hydrogen production method according to this embodiment will be described.
 本実施形態においては、担体の酸点を発現させるための前処理を行うことが好ましい。 In the present embodiment, it is preferable to perform a pretreatment for expressing the acid sites of the carrier.
 前処理は、例えば、触媒を反応器に充填して触媒層を設けた後、10~800℃、好ましくは50~700℃、より好ましくは100~500℃に加熱した触媒層に不活性ガスとして例えばHeガスを5分~5時間、好ましくは10分~3時間、より好ましくは30分~2時間流通させ、その後触媒層の温度を例えば100℃~常温に低下させることにより行うことができる。触媒層の温度を低下させる際には触媒上の酸点を維持するためにHeでパージを行うことが好ましい。 In the pretreatment, for example, after a catalyst is charged into a reactor and a catalyst layer is provided, the catalyst layer heated to 10 to 800 ° C., preferably 50 to 700 ° C., more preferably 100 to 500 ° C. is used as an inert gas. For example, He gas can be circulated for 5 minutes to 5 hours, preferably 10 minutes to 3 hours, more preferably 30 minutes to 2 hours, and then the temperature of the catalyst layer is lowered to, for example, 100 ° C. to room temperature. When the temperature of the catalyst layer is lowered, it is preferable to purge with He in order to maintain the acid sites on the catalyst.
 担体がγ-Alを含む場合、酸素を含むガスにより前処理を行うことができる。この場合、空気とアンモニアとわずかな熱源があれば、水素製造装置を繰り返し起動させることが可能となり、容易に水素を得ることができ好ましい。 When the support contains γ-Al 2 O 3 , pretreatment can be performed with a gas containing oxygen. In this case, if there is air, ammonia, and a slight heat source, it is possible to repeatedly start the hydrogen production apparatus, and it is preferable because hydrogen can be easily obtained.
 次に、触媒にアンモニアを接触させる。本実施形態においては、アンモニア及び酸素(好ましくは空気)を含む反応ガスを触媒層に供給することにより、触媒を発熱させることが好ましい。この場合、触媒の温度がアンモニアの燃焼開始温度に達成するとアンモニアの燃焼反応を開始させることができる。そして、アンモニアの燃焼反応による発熱によって触媒の温度がアンモニアの酸化分解反応開始温度に到達すると、アンモニアの酸化分解反応を開始させることができる。 Next, ammonia is brought into contact with the catalyst. In the present embodiment, it is preferable to heat the catalyst by supplying a reaction gas containing ammonia and oxygen (preferably air) to the catalyst layer. In this case, when the temperature of the catalyst reaches the combustion start temperature of ammonia, the combustion reaction of ammonia can be started. When the temperature of the catalyst reaches the oxidative decomposition reaction start temperature of ammonia due to the heat generated by the combustion reaction of ammonia, the oxidative decomposition reaction of ammonia can be started.
 なお、触媒にアンモニアを接触させることにより得られる発熱は、上記酸化物の酸点にアンモニアが吸着することによるものと考えられる。 In addition, it is thought that the heat generated by contacting ammonia with the catalyst is due to adsorption of ammonia on the acid sites of the oxide.
 上記反応ガスにおけるアンモニアと酸素との体積比は、1.0:0.095~0.5が好ましく、1.0:0.2~0.4がより好ましい。空気を用いる場合、上記のアンモニアと酸素の比率になるよう空気の量を調節することができる。反応ガスには、発熱量を調整するために、ヘリウムなどの不活性ガスを随伴させることもできる。 The volume ratio of ammonia and oxygen in the reaction gas is preferably 1.0: 0.095 to 0.5, and more preferably 1.0: 0.2 to 0.4. When air is used, the amount of air can be adjusted so that the above-mentioned ratio of ammonia and oxygen is obtained. The reactive gas can be accompanied by an inert gas such as helium in order to adjust the calorific value.
 こうして、アンモニアを含む反応ガスから水素を含む生成ガスを得ることができる。 Thus, a product gas containing hydrogen can be obtained from a reaction gas containing ammonia.
 本実施形態の水素の製造方法によれば、例えば、図1及び2に示されるような水素製造装置において、反応停止・触媒層を降温した後、不活性雰囲気下あるいは還元雰囲気下(例えば、水素雰囲気下)で触媒系を維持することにより、上述したような前処理(スタート前の加熱・水素還元処理など)を施すことなく2回目の起動が可能となる。なお、このとき触媒が酸素を含むガスに触れても、アンモニアの吸着点が十分に残れば、前処理を施すことなく2回目の起動が可能となる。具体的には、例えば、Heなどの不活性ガスを流通させることで触媒層の発熱を止め、触媒層を常温まで降温した後、反応ガスを供給することにより再起動が可能となる。このとき、反応ガスを供給する前に酸素を供給してもよい。 According to the hydrogen production method of the present embodiment, for example, in a hydrogen production apparatus as shown in FIGS. 1 and 2, after the reaction is stopped and the temperature of the catalyst layer is lowered, an inert atmosphere or a reducing atmosphere (for example, hydrogen By maintaining the catalyst system in the atmosphere), the second start-up is possible without performing the pretreatment as described above (heating before starting, hydrogen reduction treatment, etc.). At this time, even if the catalyst touches a gas containing oxygen, if a sufficient adsorption point of ammonia remains, the second activation can be performed without pretreatment. Specifically, for example, the heat generation of the catalyst layer is stopped by circulating an inert gas such as He, and the catalyst layer can be restarted by supplying the reaction gas after the temperature of the catalyst layer is lowered to room temperature. At this time, oxygen may be supplied before the reaction gas is supplied.
 上記の効果は、アンモニアの酸化分解反応の反応熱によって吸着したアンモニアが担体からin-situ脱離され、酸点が再び発現することによるものと考えられる。 The above effect is thought to be due to the fact that ammonia adsorbed by the heat of reaction of the oxidative decomposition reaction of ammonia is desorbed in-situ from the carrier, and the acid sites are developed again.
 本実施形態において、二回目又は三回目以降の起動時には、アンモニアと酸素(好ましくは空気)を含む反応ガスを供給、又は酸素(好ましくは空気)を先に供給してからアンモニアを含む反応ガスを供給することが望ましい。 In this embodiment, at the second or third start-up, a reaction gas containing ammonia and oxygen (preferably air) is supplied, or oxygen (preferably air) is supplied first and then a reaction gas containing ammonia is supplied. It is desirable to supply.
 また、本実施形態においては、担体に含まれる酸化物としてAlを用いる場合、800℃以下、好ましくは室温(25℃程度)~800℃、より好ましくは室温(25℃程度)~600℃の触媒層温度で、水素ガス或いは水素を含むガスを流通させることにより触媒を還元するための前処理を行うことができる。その後、金属及び担体が還元状態にある触媒に酸素を接触させることにより、アンモニアの酸化分解反応を開始させることができる。本実施形態においては、アンモニア及び酸素(好ましくは空気)を含む反応ガスを触媒層に供給することにより、触媒を発熱させることが好ましい。この場合、触媒の温度がアンモニアの燃焼開始温度に達成するとアンモニアの燃焼反応を開始させることができる。そして、アンモニアの燃焼反応による発熱によって触媒の温度がアンモニアの酸化分解反応開始温度に到達すると、アンモニアの酸化分解反応を開始させることができる。 In this embodiment, when Al 2 O 3 is used as the oxide contained in the support, it is 800 ° C. or less, preferably room temperature (about 25 ° C.) to 800 ° C., more preferably room temperature (about 25 ° C.) to 600. A pretreatment for reducing the catalyst can be performed by circulating hydrogen gas or a gas containing hydrogen at a catalyst layer temperature of ° C. Thereafter, the oxygen oxidative decomposition reaction can be started by bringing oxygen into contact with the catalyst in which the metal and the carrier are in a reduced state. In the present embodiment, it is preferable to heat the catalyst by supplying a reaction gas containing ammonia and oxygen (preferably air) to the catalyst layer. In this case, when the temperature of the catalyst reaches the combustion start temperature of ammonia, the combustion reaction of ammonia can be started. When the temperature of the catalyst reaches the oxidative decomposition reaction start temperature of ammonia due to the heat generated by the combustion reaction of ammonia, the oxidative decomposition reaction of ammonia can be started.
(実施例A-1)
 Ru(CO)12(田中貴金属工業(株)製)をテトラヒドロフランに溶かした溶液に、CeO粒子(沈殿法により調製し、空気中700℃で5時間焼成したもの)を含浸した後、ロータリーエバポレーターにて蒸発乾固し、Ruの担持量が触媒の全質量を基準として5質量%となるように担持を行った。次に、得られた含浸物をHe流通下、350℃で5時間、加熱処理して、アンモニアの酸化分解触媒A-1を得た。
Example A-1
A solution of Ru 3 (CO) 12 (Tanaka Kikinzoku Kogyo Co., Ltd.) dissolved in tetrahydrofuran was impregnated with CeO 2 particles (prepared by a precipitation method and baked at 700 ° C. in air for 5 hours), then rotary Evaporation to dryness was carried out using an evaporator, and loading was carried out so that the loading amount of Ru was 5% by mass based on the total mass of the catalyst. Next, the obtained impregnated product was heat-treated at 350 ° C. for 5 hours under a flow of He to obtain an oxidative decomposition catalyst A-1 for ammonia.
(実施例A-2)
 CeO粒子に代えて、Ce0.5Zr0.5粒子(沈殿法により調製し、空気中700℃で5時間焼成したもの)を用いたこと以外は実施例A-1と同様にして、アンモニアの酸化分解触媒A-2を得た。
Example A-2
Instead of CeO 2 particles, Ce 0.5 Zr 0.5 O 2 particles (prepared by a precipitation method and calcined in air at 700 ° C. for 5 hours) were used in the same manner as in Example A-1. Thus, an oxidative decomposition catalyst A-2 of ammonia was obtained.
(実施例A-3)
 CeO粒子に代えて、Pr11粒子(沈殿法により調製し、空気中700℃で5時間焼成したもの)を用いたこと以外は実施例A-1と同様にして、アンモニアの酸化分解触媒A-3を得た。
Example A-3
Oxidative decomposition of ammonia in the same manner as in Example A-1, except that Pr 6 O 11 particles (prepared by a precipitation method and calcined in air at 700 ° C. for 5 hours) were used instead of CeO 2 particles. Catalyst A-3 was obtained.
 図1と同様の構成を有する反応装置を用意した。反応装置は、直径7mmの円筒状の常圧固定床流通式反応器と、この容器を囲むように設けられたセラミック製断熱材とを有しており、石英ウールで仕切られた触媒層の上流側及び下流側にはα-Alボールが充填されている。反応装置の内部には触媒層にまで到達する熱電対が設けられており、これにより触媒層の温度を測定することができる。また、反応器の外側に設けられた電気炉により触媒層、石英ウール、α-Alボールを加熱することができる。 A reaction apparatus having the same configuration as in FIG. 1 was prepared. The reactor has a cylindrical normal pressure fixed bed flow reactor having a diameter of 7 mm, and a ceramic heat insulating material provided so as to surround the vessel, and upstream of the catalyst layer partitioned by quartz wool. The side and downstream side are filled with α-Al 2 O 3 balls. A thermocouple that reaches the catalyst layer is provided inside the reaction apparatus, whereby the temperature of the catalyst layer can be measured. Further, the catalyst layer, quartz wool, and α-Al 2 O 3 balls can be heated by an electric furnace provided outside the reactor.
 上記の反応装置を用いて以下の手順により水素の製造を行った。まず、前処理として、触媒0.2gを充填した触媒層を加熱し、水素ガスを600℃で1時間流通させることにより触媒を還元した。その後、触媒層の加熱を止め、Heでパージを行った。触媒層の温度が常温に低下した後、NH、O及びHeが混合した反応ガスをNH/O/He=150/37.5/20.8(ml/分)の割合で反応装置の入口から常温で供給し、生成ガスをGC-TCD(GC-8A、島津製作所製)により分析した。 Hydrogen was produced by the following procedure using the above reactor. First, as a pretreatment, the catalyst layer filled with 0.2 g of catalyst was heated, and the catalyst was reduced by flowing hydrogen gas at 600 ° C. for 1 hour. Thereafter, the heating of the catalyst layer was stopped and purged with He. After the temperature of the catalyst layer was lowered to room temperature, the reaction NH 3, and a reaction gas O 2 and He are mixed at a ratio of NH 3 / O 2 /He=150/37.5/20.8(ml/ min) The product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).
 また、前処理後の触媒A-1~A-3について酸素吸収量を測定したところ、還元されたRuへの酸素吸収が起きていることが確認され、前処理によってRuの一部が還元されたことが確認された。 Further, when the oxygen absorption amount of the pretreated catalysts A-1 to A-3 was measured, it was confirmed that oxygen was absorbed into the reduced Ru, and a part of Ru was reduced by the pretreatment. It was confirmed that
 アンモニアの酸化分解触媒A-1を用いた場合、反応ガス供給開始5秒後から触媒層の上流側が赤熱し始めることが確認され、反応ガス供給開始から1分後には触媒層に挿し込んだ熱電対の温度が424℃に達し、その後の生成ガス中には収率21%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ54%及び100%であった。 When the ammonia oxidative decomposition catalyst A-1 was used, it was confirmed that the upstream side of the catalyst layer started to red heat 5 seconds after the start of the supply of the reaction gas, and one minute after the start of the supply of the reaction gas, the thermoelectric inserted into the catalyst layer The temperature of the pair reached 424 ° C., and it was confirmed that the subsequent product gas contained 21% yield of hydrogen. At this time, the conversion rates of ammonia and oxygen were 54% and 100%, respectively.
 アンモニアの酸化分解触媒A-2を用いた場合、反応ガス供給開始5秒後から触媒層の上流側が赤熱し始めることが確認され、反応ガス供給開始から1分後には触媒層に挿し込んだ熱電対の温度が596℃に達し、その後の生成ガス中には収率36%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ70%及び100%であった。 When the ammonia oxidative decomposition catalyst A-2 was used, it was confirmed that the upstream side of the catalyst layer started to red heat 5 seconds after the start of the supply of the reaction gas, and the thermoelectric power inserted into the catalyst layer 1 minute after the start of the supply of the reaction gas. It was confirmed that the temperature of the pair reached 596 ° C., and the subsequent product gas contained hydrogen in a yield of 36%. At this time, the conversion rates of ammonia and oxygen were 70% and 100%, respectively.
 また、アンモニアの酸化分解触媒A-2を用いた場合には、反応を一時停止した後に外部加熱を行うことなく、反応ガスの導入によって再起動できることが確認され、4回目の再起動後においても初期と同様の水素収率、並びにアンモニア及び酸素の転化率が維持されることが確認された。 In addition, when the ammonia oxidative decomposition catalyst A-2 was used, it was confirmed that the reaction could be restarted by introducing the reaction gas without performing external heating after the reaction was temporarily stopped, even after the fourth restart. It was confirmed that the same hydrogen yield as in the initial stage and the conversion rates of ammonia and oxygen were maintained.
 アンモニアの酸化分解触媒A-3を用いた場合、反応ガス供給開始5秒後から触媒層の上流側が赤熱し始めることが確認され、反応ガス供給開始から1分後には触媒層に挿し込んだ熱電対の温度が358℃に達し、その後の生成ガス中には収率45%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ79%及び100%であった。 In the case of using the ammonia oxidative decomposition catalyst A-3, it was confirmed that the upstream side of the catalyst layer started to red heat after 5 seconds from the start of the supply of the reaction gas, and one minute after the start of the supply of the reaction gas, The temperature of the pair reached 358 ° C., and it was confirmed that the subsequent product gas contained 45% hydrogen. At this time, the conversion rates of ammonia and oxygen were 79% and 100%, respectively.
 上記のとおり、アンモニアの酸化分解触媒A-1~A-3によれば、アンモニアの酸化分解のコールドスタートが可能であることが分かった。なお、このような効果が得られるメカニズムとしては、還元された担体及びRuが反応ガス中の酸素により酸化され、触媒層温度が急激に上昇し、アンモニアの燃焼開始温度に達し、更にアンモニアの燃焼反応による発熱で反応が継続することで外部からの加熱なしにアンモニアの酸化分解反応が進行することが考えられる。 As described above, it was found that according to the oxidative decomposition catalysts A-1 to A-3 of ammonia, a cold start of oxidative decomposition of ammonia was possible. As a mechanism for obtaining such an effect, the reduced carrier and Ru are oxidized by oxygen in the reaction gas, the catalyst layer temperature rises rapidly, reaches the combustion start temperature of ammonia, and further the combustion of ammonia. It is conceivable that the oxidative decomposition reaction of ammonia proceeds without heating from the outside by continuing the reaction due to heat generated by the reaction.
(実施例A-4)
 図2と同様の構成を有する反応装置を用意した。反応装置は、直径7mmの円筒状の常圧固定床流通式反応器と、この容器の触媒層から下流部分を囲むように設けられたセラミック製断熱材とを有しており、石英ウールで仕切られた触媒層の下流側にはα-Alボールが充填されている。反応装置の内部には触媒層にまで到達する熱電対が設けられており、これにより触媒層の温度を測定することができる。また、反応器の外側に設けられた電気炉により触媒層、石英ウール、α-Alボールを加熱することができる。
Example A-4
A reactor having the same configuration as that shown in FIG. 2 was prepared. The reactor has a cylindrical normal pressure fixed bed flow reactor having a diameter of 7 mm and a ceramic heat insulating material provided so as to surround a downstream portion from the catalyst layer of the vessel, and is partitioned by quartz wool. The downstream side of the catalyst layer is filled with α-Al 2 O 3 balls. A thermocouple that reaches the catalyst layer is provided inside the reaction apparatus, whereby the temperature of the catalyst layer can be measured. Further, the catalyst layer, quartz wool, and α-Al 2 O 3 balls can be heated by an electric furnace provided outside the reactor.
 実施例A-1と同様にして得られたアンモニアの酸化分解触媒A-1と、上記の反応装置を用いて以下の手順により水素の製造を行った。 Hydrogen was produced by the following procedure using the oxidative decomposition catalyst A-1 of ammonia obtained in the same manner as in Example A-1 and the above reaction apparatus.
 まず、前処理として、触媒0.2gを充填した触媒層を加熱し、水素ガスを室温(25℃未満)で1時間流通させることにより触媒を還元した。その後、触媒層の加熱を止め、Heでパージを行った。触媒層の温度が常温に低下した後、NH、O及びHeが混合した反応ガスをNH/O/He=150/37.5/20.8(ml/分)の割合で反応装置の入口から常温で供給し、生成ガスをGC-TCD(GC-8A、島津製作所製)により分析した。 First, as a pretreatment, the catalyst layer filled with 0.2 g of catalyst was heated, and the catalyst was reduced by flowing hydrogen gas at room temperature (less than 25 ° C.) for 1 hour. Thereafter, the heating of the catalyst layer was stopped and purged with He. After the temperature of the catalyst layer was lowered to room temperature, the reaction NH 3, and a reaction gas O 2 and He are mixed at a ratio of NH 3 / O 2 /He=150/37.5/20.8(ml/ min) The product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).
 駆動開始から30分後の生成ガス中には収率63%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ96%及び100%であった。 It was confirmed that the product gas 30 minutes after the start of driving contained hydrogen with a yield of 63%. At this time, the conversion rates of ammonia and oxygen were 96% and 100%, respectively.
 また、Heによるパージを行い反応を一時停止し、触媒層を室温まで放冷した後に、反応ガスの導入によって、外部加熱を行うことなく再起動できることが確認された。また、4回目の再起動後においても初期と同様の水素収率、並びにアンモニア及び酸素の転化率が維持されることが確認され、繰り返しの常温起動が可能であった。 Further, it was confirmed that the reaction can be restarted without external heating by introducing a reaction gas after the reaction is temporarily stopped by purging with He and the catalyst layer is allowed to cool to room temperature. Moreover, it was confirmed that the same hydrogen yield as that of the initial stage and the conversion ratios of ammonia and oxygen were maintained even after the fourth restart, and repeated normal temperature startup was possible.
 また、上記前処理における温度を25℃又は100℃に変更した場合も、水素の製造が可能であることが確認された。 Also, it was confirmed that hydrogen can be produced even when the temperature in the pretreatment is changed to 25 ° C. or 100 ° C.
(実施例A-5)
 アンモニアの酸化分解触媒A-1に代えて、実施例A-2と同様にして得られたアンモニアの酸化分解触媒A-2を用いたこと以外は実施例A-4と同様にして水素の製造を行った。
Example A-5
Production of hydrogen in the same manner as in Example A-4, except that ammonia oxidative decomposition catalyst A-2 obtained in the same manner as in Example A-2 was used instead of ammonia oxidative decomposition catalyst A-1. Went.
 駆動開始から30分後の生成ガス中には収率54%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ87%及び100%であった。 It was confirmed that hydrogen produced at a yield of 54% was contained in the product gas 30 minutes after the start of driving. At this time, the conversion rates of ammonia and oxygen were 87% and 100%, respectively.
 また、上記前処理における温度を25℃に変更した場合も、水素の製造が可能であることが確認された。 Also, it was confirmed that hydrogen can be produced even when the temperature in the pretreatment is changed to 25 ° C.
(実施例A-6)
 アンモニアの酸化分解触媒A-1に代えて、実施例A-3と同様にして得られたアンモニアの酸化分解触媒A-3を用い、水素ガスを200℃で1時間流通させることにより触媒を還元したこと以外は実施例A-4と同様にして水素の製造を行った。
(Example A-6)
The ammonia oxidative decomposition catalyst A-3 obtained in the same manner as in Example A-3 was used in place of the ammonia oxidative decomposition catalyst A-1, and the catalyst was reduced by flowing hydrogen gas at 200 ° C. for 1 hour. Except for the above, hydrogen was produced in the same manner as in Example A-4.
 駆動開始から30分後の生成ガス中には収率66%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ99%及び100%であった。 It was confirmed that the product gas 30 minutes after the start of driving contained hydrogen with a yield of 66%. At this time, the conversion rates of ammonia and oxygen were 99% and 100%, respectively.
(実施例A-7)
 実施例A-1と同様にして得られたアンモニアの酸化分解触媒A-1と、上記の図2と同様の構成を有する反応装置を用いて以下の手順により水素の製造を行った。
(Example A-7)
Hydrogen was produced according to the following procedure using the ammonia oxidative decomposition catalyst A-1 obtained in the same manner as in Example A-1 and a reactor having the same configuration as in FIG.
 まず、前処理として、触媒0.2gを充填した触媒層を加熱し、ヘリウムガスを200℃で0.5時間流通させた。その後、触媒層の加熱を止め、Heでパージを行った。触媒層の温度が常温に低下した後、NH、O及びHeが混合した反応ガスをNH/O/He=150/37.5/20.8(ml/分)の割合で反応装置の入口から常温で供給し、生成ガスをGC-TCD(GC-8A、島津製作所製)により分析した。 First, as a pretreatment, the catalyst layer filled with 0.2 g of catalyst was heated, and helium gas was circulated at 200 ° C. for 0.5 hour. Thereafter, heating of the catalyst layer was stopped and purged with He. After the temperature of the catalyst layer was lowered to room temperature, the reaction NH 3, and a reaction gas O 2 and He are mixed at a ratio of NH 3 / O 2 /He=150/37.5/20.8(ml/ min) The product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).
 駆動開始から30分後の生成ガス中には収率62%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ94%及び100%であった。 It was confirmed that the product gas 30 minutes after the start of driving contained hydrogen with a yield of 62%. At this time, the conversion rates of ammonia and oxygen were 94% and 100%, respectively.
(実施例B-1)
 Ru(CO)12(田中貴金属工業(株)製)をテトラヒドロフランに溶かした溶液に、La粒子(沈殿法により調製し、空気中700℃で5時間焼成したもの)を含浸した後、ロータリーエバポレーターにて蒸発乾固し、Ruの担持量が触媒の全質量を基準として5質量%となるように担持を行った。次に、得られた含浸物をHe流通下、350℃で5時間、加熱処理して、アンモニアの酸化分解触媒B-1を得た。
Example B-1
After impregnating a solution of Ru 3 (CO) 12 (Tanaka Kikinzoku Kogyo Co., Ltd.) in tetrahydrofuran with La 2 O 3 particles (prepared by precipitation and baked in air at 700 ° C. for 5 hours) The mixture was evaporated to dryness on a rotary evaporator, and supported so that the supported amount of Ru was 5% by mass based on the total mass of the catalyst. Next, the obtained impregnated product was heat-treated at 350 ° C. for 5 hours under a flow of He to obtain an ammonia oxidative decomposition catalyst B-1.
 (実施例B-2)
 La粒子に代えて、MgO粒子(宇部マテリアル社製(JRC-MgO-3)、空気中700℃で5時間焼成したもの)を用いたこと以外は実施例B-1と同様にして、アンモニアの酸化分解触媒B-2を得た。
Example B-2
Instead of La 2 O 3 particles, MgO particles (manufactured by Ube Material (JRC-MgO-3), fired at 700 ° C. in air for 5 hours) were used in the same manner as in Example B-1. Thus, an oxidative decomposition catalyst B-2 of ammonia was obtained.
 (実施例B-3)
 La粒子に代えて、Mg-Alオキサイド粒子(粘土状化合物であるハイドロタルサイト(Mg:Al=3:1)を沈殿法により調製し、空気中700℃で5時間焼成したもの)を用いたこと以外は実施例B-1と同様にして、アンモニアの酸化分解触媒B-3を得た。
Example B-3
Instead of La 2 O 3 particles, Mg—Al oxide particles (hydrotalcite (Mg: Al = 3: 1), which is a clay-like compound, prepared by a precipitation method and calcined at 700 ° C. in air for 5 hours) Ammonia oxidative decomposition catalyst B-3 was obtained in the same manner as in Example B-1, except that was used.
 図1と同様の構成を有する反応装置を用意した。反応装置は、直径7mmの円筒状の常圧固定床流通式反応器と、この容器を囲むように設けられたセラミック製断熱材とを有しており、石英ウールで仕切られた触媒層の上流側及び下流側にはα-Alボールが充填されている。反応装置の内部には触媒層にまで到達する熱電対が設けられており、これにより触媒層の温度を測定することができる。また、反応器の外側に設けられた電気炉により触媒層、石英ウール、α-Alボールを加熱することができる。 A reaction apparatus having the same configuration as in FIG. 1 was prepared. The reactor has a cylindrical normal pressure fixed bed flow reactor having a diameter of 7 mm, and a ceramic heat insulating material provided so as to surround the vessel, and upstream of the catalyst layer partitioned by quartz wool. The side and downstream side are filled with α-Al 2 O 3 balls. A thermocouple that reaches the catalyst layer is provided inside the reaction apparatus, whereby the temperature of the catalyst layer can be measured. Further, the catalyst layer, quartz wool, and α-Al 2 O 3 balls can be heated by an electric furnace provided outside the reactor.
 上記の反応装置を用いて以下の手順により水素の製造を行った。まず、前処理として、触媒0.2gを充填した触媒層を加熱し、水素ガスを600℃で1時間流通させることにより触媒を還元した。その後、触媒層の加熱を止め、Heでパージを行った。触媒層の温度が常温に低下した後、NH、O及びHeが混合した反応ガスをNH/O/He=150/37.5/20.8(ml/分)の割合で反応装置の入口から常温で供給し、生成ガスをGC-TCD(GC-8A、島津製作所製)により分析した。 Hydrogen was produced by the following procedure using the above reactor. First, as a pretreatment, the catalyst layer filled with 0.2 g of catalyst was heated, and the catalyst was reduced by flowing hydrogen gas at 600 ° C. for 1 hour. Thereafter, the heating of the catalyst layer was stopped and purged with He. After the temperature of the catalyst layer was lowered to room temperature, the reaction NH 3, and a reaction gas O 2 and He are mixed at a ratio of NH 3 / O 2 /He=150/37.5/20.8(ml/ min) The product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).
 また、前処理後の触媒B-1~B-3について酸素吸収量を測定したところ、還元されたRuへの酸素吸収が起きていることが確認され、前処理によってRuの一部が還元されたことが確認された。なお、具体的な数値としては、触媒B-1の場合、前処理後に286μmol/gの酸素吸収量が測定され、Ruがすべて還元された場合の理論値495μmol/gに対して58%の値であった。 Further, when the oxygen absorption amount of the pretreated catalysts B-1 to B-3 was measured, it was confirmed that oxygen was absorbed into the reduced Ru, and a part of Ru was reduced by the pretreatment. It was confirmed that As specific values, in the case of catalyst B-1, an oxygen absorption amount of 286 μmol / g was measured after the pretreatment, and a value of 58% with respect to the theoretical value of 495 μmol / g when all of Ru was reduced. Met.
 アンモニアの酸化分解触媒B-1を用いた場合、反応ガス供給開始5秒後から触媒層の上流側が赤熱し始めることが確認され、反応ガス供給開始から1分後には触媒層に挿し込んだ熱電対の温度が515℃に達し、その後の生成ガス中には収率59%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ92%及び100%であった。 When the ammonia oxidative decomposition catalyst B-1 was used, it was confirmed that the upstream side of the catalyst layer started to red heat after 5 seconds from the start of the supply of the reaction gas, and one minute after the start of the supply of the reaction gas, The temperature of the pair reached 515 ° C., and it was confirmed that the subsequent product gas contained 59% hydrogen. At this time, the conversion rates of ammonia and oxygen were 92% and 100%, respectively.
 アンモニアの酸化分解触媒B-2を用いた場合、反応ガス供給開始5秒後から触媒層の上流側が赤熱し始めることが確認され、反応ガス供給開始から2分後には触媒層に挿し込んだ熱電対の温度が338℃に達し、その後の生成ガス中には収率47%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ80%及び100%であった。 When the ammonia oxidative decomposition catalyst B-2 was used, it was confirmed that the upstream side of the catalyst layer started to red heat 5 seconds after the start of supply of the reaction gas, and the thermoelectric power inserted into the catalyst layer 2 minutes after the start of supply of the reaction gas. The temperature of the pair reached 338 ° C., and it was confirmed that the subsequent product gas contained 47% yield of hydrogen. At this time, the conversion rates of ammonia and oxygen were 80% and 100%, respectively.
 アンモニアの酸化分解触媒B-3を用いた場合、反応ガス供給開始5秒後から触媒層の上流側が赤熱し始めることが確認され、反応ガス供給開始から3分後には触媒層に挿し込んだ熱電対の温度が339℃に達し、その後の生成ガス中には収率25%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ58%及び100%であった。 In the case of using the ammonia oxidative decomposition catalyst B-3, it was confirmed that the upstream side of the catalyst layer started to red heat 5 seconds after the start of the reaction gas supply, and the thermoelectric power inserted into the catalyst layer 3 minutes after the start of the reaction gas supply. It was confirmed that the temperature of the pair reached 339 ° C., and the subsequent product gas contained hydrogen in a yield of 25%. At this time, the conversion rates of ammonia and oxygen were 58% and 100%, respectively.
 上記のとおり、アンモニアの酸化分解触媒B-1~B-3によれば、アンモニアの酸化分解のコールドスタートが可能であることが分かった。なお、このような効果が得られるメカニズムとしては、還元されたRuが反応ガス中の酸素により酸化され、触媒層温度が急激に上昇し、アンモニアの燃焼開始温度に達し、更にアンモニアの燃焼反応による発熱で反応が継続することで外部からの加熱なしにアンモニアの酸化分解反応が進行することが考えられる。 As described above, according to the oxidative decomposition catalysts B-1 to B-3 of ammonia, it was found that cold start of oxidative decomposition of ammonia is possible. As a mechanism for obtaining such an effect, the reduced Ru is oxidized by oxygen in the reaction gas, the catalyst layer temperature rapidly increases, reaches the combustion start temperature of ammonia, and further due to the combustion reaction of ammonia. It is conceivable that the oxidative decomposition reaction of ammonia proceeds without heating from the outside as the reaction continues with exotherm.
(実施例B-4)
 図2と同様の構成を有する反応装置を用意した。反応装置は、直径7mmの円筒状の常圧固定床流通式反応器と、この容器の触媒層から下流部分を囲むように設けられたセラミック製断熱材とを有しており、石英ウールで仕切られた触媒層の下流側にはα-Alボールが充填されている。反応装置の内部には触媒層にまで到達する熱電対が設けられており、これにより触媒層の温度を測定することができる。また、反応器の外側に設けられた電気炉により触媒層、石英ウール、α-Alボールを加熱することができる。
Example B-4
A reactor having the same configuration as that shown in FIG. 2 was prepared. The reactor has a cylindrical normal pressure fixed bed flow reactor having a diameter of 7 mm and a ceramic heat insulating material provided so as to surround a downstream portion from the catalyst layer of the vessel, and is partitioned by quartz wool. The downstream side of the catalyst layer is filled with α-Al 2 O 3 balls. A thermocouple that reaches the catalyst layer is provided inside the reaction apparatus, whereby the temperature of the catalyst layer can be measured. Further, the catalyst layer, quartz wool, and α-Al 2 O 3 balls can be heated by an electric furnace provided outside the reactor.
 実施例B-1と同様にして得られたアンモニアの酸化分解触媒B-1と、上記の反応装置を用いて以下の手順により水素の製造を行った。 Hydrogen was produced according to the following procedure using the ammonia oxidative decomposition catalyst B-1 obtained in the same manner as in Example B-1 and the above reaction apparatus.
 まず、前処理として、触媒0.2gを充填した触媒層を加熱し、水素ガスを500℃で1時間流通させることにより触媒を還元した。その後、触媒層の加熱を止め、Heでパージを行った。触媒層の温度が常温に低下した後、NH、O及びHeが混合した反応ガスをNH/O/He=150/37.5/20.8(ml/分)の割合で反応装置の入口から常温で供給し、生成ガスをGC-TCD(GC-8A、島津製作所製)により分析した。 First, as a pretreatment, the catalyst layer filled with 0.2 g of the catalyst was heated, and the catalyst was reduced by flowing hydrogen gas at 500 ° C. for 1 hour. Thereafter, the heating of the catalyst layer was stopped and purged with He. After the temperature of the catalyst layer was lowered to room temperature, the reaction NH 3, and a reaction gas O 2 and He are mixed at a ratio of NH 3 / O 2 /He=150/37.5/20.8(ml/ min) The product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).
 駆動開始から30分後の生成ガス中には収率63%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ96%及び100%であった。 It was confirmed that the product gas 30 minutes after the start of driving contained hydrogen with a yield of 63%. At this time, the conversion rates of ammonia and oxygen were 96% and 100%, respectively.
(実施例C-1)
 Ru(CO)12(田中貴金属工業(株)製)をテトラヒドロフランに溶かした溶液に、γ-Al粒子(住友化学社製、高純度アルミナ AKP-G15 (JRC-ALO-8)、空気中700℃で5時間焼成したもの)を含浸した後、ロータリーエバポレーターにて蒸発乾固し、Ruの担持量が触媒の全質量を基準として5質量%となるように担持を行った。次に、得られた含浸物をHe流通下、350℃で5時間、加熱処理して、アンモニアの酸化分解触媒C-1を得た。
Example C-1
In a solution of Ru 3 (CO) 12 (Tanaka Kikinzoku Kogyo Co., Ltd.) dissolved in tetrahydrofuran, γ-Al 2 O 3 particles (Sumitomo Chemical Co., Ltd., high-purity alumina AKP-G15 (JRC-ALO-8)), Impregnated with 700 ° C. in air for 5 hours) and then evaporated to dryness in a rotary evaporator, and supported so that the supported amount of Ru becomes 5% by mass based on the total mass of the catalyst. Next, the obtained impregnated product was heat-treated at 350 ° C. for 5 hours under a flow of He to obtain an ammonia oxidative decomposition catalyst C-1.
(実施例C-2)
 γ-Al粒子に代えて、SiO粒子(AEROSIL300、未焼成で使用)を用いたこと以外は実施例C-1と同様にして、アンモニアの酸化分解触媒C-2を得た。
Example C-2
An ammonia oxidative decomposition catalyst C-2 was obtained in the same manner as in Example C-1, except that SiO 2 particles (AEROSIL 300, used unfired) were used instead of γ-Al 2 O 3 particles.
(実施例C-3)
 γ-Al粒子に代えて、SiO-Al粒子(触媒化成社製、IS-28E、未焼成で使用)を用いたこと以外は実施例C-1と同様にして、アンモニアの酸化分解触媒C-3を得た。
Example C-3
Instead of γ-Al 2 O 3 particles, SiO 2 —Al 2 O 3 particles (manufactured by Catalyst Kasei Co., Ltd., IS-28E, used unfired) were used in the same manner as in Example C-1, An ammonia oxidative decomposition catalyst C-3 was obtained.
 図2と同様の構成を有する反応装置を用意した。反応装置は、直径7mmの円筒状の常圧固定床流通式反応器と、この容器の触媒層から下流部分を囲むように設けられたセラミック製断熱材とを有しており、石英ウールで仕切られた触媒層の下流側にはα-Alボールが充填されている。反応装置の内部には触媒層にまで到達する熱電対が設けられており、これにより触媒層の温度を測定することができる。また、反応器の外側に設けられた電気炉により触媒層、石英ウール、α-Alボールを加熱することができる。 A reactor having the same configuration as that shown in FIG. 2 was prepared. The reactor has a cylindrical normal pressure fixed bed flow reactor having a diameter of 7 mm and a ceramic heat insulating material provided so as to surround a downstream portion from the catalyst layer of the vessel, and is partitioned by quartz wool. The downstream side of the catalyst layer is filled with α-Al 2 O 3 balls. A thermocouple that reaches the catalyst layer is provided inside the reaction apparatus, whereby the temperature of the catalyst layer can be measured. Further, the catalyst layer, quartz wool, and α-Al 2 O 3 balls can be heated by an electric furnace provided outside the reactor.
 上記の反応装置を用いて以下の手順により水素の製造を行った。まず、前処理として、触媒0.2gを充填した触媒層を加熱し、ヘリウムガスを350℃で0.5時間流通させた。その後、触媒層の加熱を止め、Heでパージを行った。触媒層の温度が常温に低下した後、NH、O及びHeが混合した反応ガスをNH/O/He=150/37.5/20.8(ml/分)の割合で反応装置の入口から常温で供給し、生成ガスをGC-TCD(GC-8A、島津製作所製)により分析した。 Hydrogen was produced by the following procedure using the above reactor. First, as a pretreatment, the catalyst layer filled with 0.2 g of catalyst was heated, and helium gas was circulated at 350 ° C. for 0.5 hour. Thereafter, the heating of the catalyst layer was stopped and purged with He. After the temperature of the catalyst layer was lowered to room temperature, the reaction NH 3, and a reaction gas O 2 and He are mixed at a ratio of NH 3 / O 2 /He=150/37.5/20.8(ml/ min) The product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).
 アンモニアの酸化分解触媒C-1を用いた場合、反応ガス供給開始から2分後に触媒層に挿し込んだ熱電対の温度が359℃に達し、その後の生成ガス中には収率61%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ96%及び100%であった。 When the ammonia oxidative decomposition catalyst C-1 was used, the temperature of the thermocouple inserted into the catalyst layer reached 359 ° C. 2 minutes after the start of the supply of the reaction gas. Was confirmed to be included. At this time, the conversion rates of ammonia and oxygen were 96% and 100%, respectively.
 また、アンモニアの酸化分解触媒C-1を用いた場合には、反応を一時停止した後に外部加熱を行うことなく、反応ガスの導入によって再起動できることが確認され、4回目の再起動後においても初期と同様の水素収率、並びにアンモニア及び酸素の転化率が維持されることが確認された。なお、反応の一時停止中に触媒が酸素含有ガスに触れRuが酸化されても、外部加熱なしの反応ガスの導入による再起動は可能であった。 In addition, when the ammonia oxidative decomposition catalyst C-1 was used, it was confirmed that the reaction can be restarted by introducing the reaction gas without performing external heating after the reaction is temporarily stopped, even after the fourth restart. It was confirmed that the same hydrogen yield as in the initial stage and the conversion rates of ammonia and oxygen were maintained. Even when the catalyst touched the oxygen-containing gas and Ru was oxidized during the suspension of the reaction, restarting by introduction of the reaction gas without external heating was possible.
 アンモニアの酸化分解触媒C-2を用いた場合、反応ガス供給開始から2分後には触媒層に挿し込んだ熱電対の温度が390℃に達し、その後の生成ガス中には収率58%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ92%及び100%であった。 When the ammonia oxidative decomposition catalyst C-2 was used, the temperature of the thermocouple inserted into the catalyst layer reached 390 ° C. 2 minutes after the start of the supply of the reaction gas, and the yield of 58% in the subsequent product gas It was confirmed that hydrogen was contained. At this time, the conversion rates of ammonia and oxygen were 92% and 100%, respectively.
 アンモニアの酸化分解触媒C-3を用いた場合、反応ガス供給開始から2分後には触媒層に挿し込んだ熱電対の温度が330℃に達し、その後の生成ガス中には収率56%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ89%及び100%であった。 In the case of using the ammonia oxidative decomposition catalyst C-3, the temperature of the thermocouple inserted into the catalyst layer reached 330 ° C. 2 minutes after the start of the supply of the reaction gas, and the yield of 56% in the subsequent product gas It was confirmed that hydrogen was contained. At this time, the conversion rates of ammonia and oxygen were 89% and 100%, respectively.
 上記のとおり、アンモニアの酸化分解触媒C-1~C-3によれば、アンモニアの酸化分解のコールドスタートが可能であることが分かった。なお、このような効果が得られるメカニズムとしては、担体の酸点に反応ガス中のアンモニアが吸着し、吸着熱により触媒層温度が急激に上昇し、アンモニアの燃焼開始温度に達し、更にアンモニアの燃焼反応による発熱で反応が継続することで外部からの加熱なしにアンモニアの酸化分解反応が進行することが考えられる。また、上記の担体によるアンモニアの燃焼開始温度の低減効果もコールドスタートに寄与していると考えられる。 As described above, it was found that according to the ammonia oxidative decomposition catalysts C-1 to C-3, cold start of oxidative decomposition of ammonia was possible. As a mechanism for obtaining such an effect, ammonia in the reaction gas is adsorbed on the acid point of the carrier, the temperature of the catalyst layer rapidly rises due to the heat of adsorption, reaches the combustion start temperature of ammonia, and further the ammonia It is conceivable that the oxidative decomposition reaction of ammonia proceeds without heating from the outside by continuing the reaction due to heat generated by the combustion reaction. Moreover, it is considered that the effect of reducing the combustion start temperature of ammonia by the above carrier also contributes to the cold start.
 (実施例C-4)
 実施例C-1と同様にして得られたアンモニアの酸化分解触媒C-1を用意し、直径9mmの円筒状の常圧固定床流通式反応器を備えること以外は実施例C-1で用いた反応装置と同様の構成を有する装置を用いて以下の手順により水素の製造を行った。まず、前処理として、触媒0.4gを充填した触媒層を加熱し、酸素及びヘリウムの混合ガス(体積比O/He=1/4)を120℃で0.5時間流通させた。その後、触媒層の加熱を止め、Heでパージを行った。触媒層の温度が常温に低下した後、NH、O及びHeが混合した反応ガスをNH/O/He=250/62.5/34.7(ml/分)の割合で反応装置の入口から常温で供給し、生成ガスをGC-TCD(GC-8A、島津製作所製)により分析した。
Example C-4
Except that an ammonia oxidative decomposition catalyst C-1 obtained in the same manner as in Example C-1 was prepared and provided with a cylindrical atmospheric pressure fixed bed flow reactor having a diameter of 9 mm, it was used in Example C-1. Hydrogen was produced by the following procedure using an apparatus having the same configuration as the reaction apparatus. First, as a pretreatment, the catalyst layer filled with 0.4 g of catalyst was heated, and a mixed gas of oxygen and helium (volume ratio O 2 / He = 1/4) was circulated at 120 ° C. for 0.5 hour. Thereafter, the heating of the catalyst layer was stopped and purged with He. After the temperature of the catalyst layer was lowered to room temperature, the reaction NH 3, and a reaction gas O 2 and He are mixed at a ratio of NH 3 / O 2 /He=250/62.5/34.7(ml/ min) The product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).
 反応ガス供給開始から2分後に触媒層に挿し込んだ熱電対の温度が342℃に達し、その後の生成ガス中には収率64%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ98%及び100%であった。 2 minutes after starting the supply of the reaction gas, the temperature of the thermocouple inserted into the catalyst layer reached 342 ° C., and it was confirmed that the subsequent product gas contained 64% hydrogen. At this time, the conversion rates of ammonia and oxygen were 98% and 100%, respectively.
 また、反応を一時停止した後に外部加熱を行うことなく、反応ガスの導入によって再起動できることが確認され、4回目の再起動後においても初期と同様の水素収率、並びにアンモニア及び酸素の転化率が維持されることが確認された。なお、反応の一時停止中に触媒が酸素含有ガスに触れRuが酸化されても、外部加熱なしの反応ガスの導入による再起動は可能であった。 In addition, it was confirmed that the reaction can be restarted by introducing the reaction gas without performing external heating after the reaction is temporarily stopped, and the hydrogen yield and the conversion rates of ammonia and oxygen are the same after the fourth restart. Was confirmed to be maintained. Even when the catalyst touched the oxygen-containing gas and Ru was oxidized during the suspension of the reaction, restarting by introduction of the reaction gas without external heating was possible.
(実施例C-5)
 実施例C-1と同様にして得られたアンモニアの酸化分解触媒C-1と、上記の反応装置を用いて以下の手順により水素の製造を行った。
(Example C-5)
Hydrogen was produced by the following procedure using the ammonia oxidative decomposition catalyst C-1 obtained in the same manner as in Example C-1 and the reactor described above.
 まず、前処理として、触媒0.2gを充填した触媒層を加熱し、ヘリウムガスを300℃で0.5時間流通させた。その後、触媒層の加熱を止め、Heでパージを行った。触媒層の温度が常温に低下した後、NH、O及びHeが混合した反応ガスをNH/O/He=150/37.5/20.8(ml/分)の割合で反応装置の入口から常温で供給し、生成ガスをGC-TCD(GC-8A、島津製作所製)により分析した。 First, as a pretreatment, the catalyst layer filled with 0.2 g of catalyst was heated, and helium gas was circulated at 300 ° C. for 0.5 hour. Thereafter, the heating of the catalyst layer was stopped and purged with He. After the temperature of the catalyst layer was lowered to room temperature, the reaction NH 3, and a reaction gas O 2 and He are mixed at a ratio of NH 3 / O 2 /He=150/37.5/20.8(ml/ min) The product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).
 駆動開始から30分後の生成ガス中には収率63%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ97%及び100%であった。 It was confirmed that the product gas 30 minutes after the start of driving contained hydrogen with a yield of 63%. At this time, the conversion rates of ammonia and oxygen were 97% and 100%, respectively.
 また、Heによるパージを行い反応を一時停止し、触媒層を室温まで放冷した後に、更に反応ガスの導入によって、外部加熱を行うことなく再起動できることが確認された。また、4回目の再起動後においても初期と同様の水素収率、並びにアンモニア及び酸素の転化率が維持されることが確認され、繰り返しの常温起動が可能であった。 It was also confirmed that the reaction can be restarted without external heating by introducing a reaction gas after the reaction is temporarily stopped by purging with He and the catalyst layer is allowed to cool to room temperature. Moreover, it was confirmed that the same hydrogen yield as that of the initial stage and the conversion ratios of ammonia and oxygen were maintained even after the fourth restart, and repeated normal temperature startup was possible.
(実施例C-6)
 空気中700℃で5時間焼成したSiO-Al粒子を用いた以外は実施例C-3と同様にして得られたアンモニアの酸化分解触媒と、上記の反応装置を用いて以下の手順により水素の製造を行った。
(Example C-6)
Except for using SiO 2 —Al 2 O 3 particles calcined at 700 ° C. for 5 hours in air, the following oxidative decomposition catalyst of ammonia was obtained in the same manner as in Example C-3, and the following reaction apparatus was used. Hydrogen was produced according to the procedure.
 まず、前処理として、触媒0.2gを充填した触媒層を加熱し、ヘリウムガスを300℃で0.5時間流通させた。その後、触媒層の加熱を止め、Heでパージを行った。触媒層の温度が常温に低下した後、NH、O及びHeが混合した反応ガスをNH/O/He=150/37.5/20.8(ml/分)の割合で反応装置の入口から常温で供給し、生成ガスをGC-TCD(GC-8A、島津製作所製)により分析した。 First, as a pretreatment, the catalyst layer filled with 0.2 g of catalyst was heated, and helium gas was circulated at 300 ° C. for 0.5 hour. Thereafter, the heating of the catalyst layer was stopped and purged with He. After the temperature of the catalyst layer was lowered to room temperature, the reaction NH 3, and a reaction gas O 2 and He are mixed at a ratio of NH 3 / O 2 /He=150/37.5/20.8(ml/ min) The product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).
 駆動開始から30分後の生成ガス中には収率59%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ92%及び100%であった。 It was confirmed that the yield of 59% hydrogen was contained in the product gas 30 minutes after the start of driving. At this time, the conversion rates of ammonia and oxygen were 92% and 100%, respectively.
(実施例C-7)
 実施例C-1と同様にして得られたアンモニアの酸化分解触媒C-1と、上記の反応装置を用いて以下の手順により水素の製造を行った。
(Example C-7)
Hydrogen was produced by the following procedure using the ammonia oxidative decomposition catalyst C-1 obtained in the same manner as in Example C-1 and the reactor described above.
 まず、前処理として、触媒0.2gを充填した触媒層を加熱し、水素ガスを50℃で1時間流通させることにより触媒を還元した。その後、触媒層の加熱を止め、Heでパージを行った。触媒層の温度が常温に低下した後、NH、O及びHeが混合した反応ガスをNH/O/He=150/37.5/20.8(ml/分)の割合で反応装置の入口から常温で供給し、生成ガスをGC-TCD(GC-8A、島津製作所製)により分析した。 First, as a pretreatment, the catalyst layer filled with 0.2 g of catalyst was heated, and the catalyst was reduced by flowing hydrogen gas at 50 ° C. for 1 hour. Thereafter, the heating of the catalyst layer was stopped and purged with He. After the temperature of the catalyst layer was lowered to room temperature, the reaction NH 3, and a reaction gas O 2 and He are mixed at a ratio of NH 3 / O 2 /He=150/37.5/20.8(ml/ min) The product gas was supplied from the inlet of the apparatus at room temperature, and the generated gas was analyzed by GC-TCD (GC-8A, manufactured by Shimadzu Corporation).
 駆動開始から30分後の生成ガス中には収率64%の水素が含まれることが確認された。このときのアンモニア及び酸素の転化率はそれぞれ97%及び100%であった。 It was confirmed that hydrogen produced at a yield of 64% was contained in the product gas 30 minutes after the start of driving. At this time, the conversion rates of ammonia and oxygen were 97% and 100%, respectively.
 また、上記前処理における温度を400℃に変更した場合も、水素の製造が可能であることが確認された。 It was also confirmed that hydrogen can be produced even when the temperature in the pretreatment is changed to 400 ° C.
 1,2…水素製造装置、10…反応器、20…触媒層、30…断熱材、40…仕切材、50…不活性充填材。 DESCRIPTION OF SYMBOLS 1, 2 ... Hydrogen production apparatus, 10 ... Reactor, 20 ... Catalyst layer, 30 ... Heat insulating material, 40 ... Partition material, 50 ... Inert filler.

Claims (14)

  1.  Ru、Co、Rh、Ir及びNiからなる群より選択される1種以上の金属と、該金属を担持する担体と、を有する触媒に、アンモニア及び酸素を含む反応ガスを接触させることによりアンモニアを酸化分解して水素を製造するに際し、前記触媒による発熱を利用してアンモニアの酸化分解反応を開始することを特徴とする水素の製造方法。 A catalyst having at least one metal selected from the group consisting of Ru, Co, Rh, Ir and Ni, and a carrier supporting the metal is brought into contact with a reaction gas containing ammonia and oxygen to bring the ammonia into contact. A method for producing hydrogen, characterized in that, when producing hydrogen by oxidative decomposition, an oxidative decomposition reaction of ammonia is initiated by utilizing heat generated by the catalyst.
  2.  前記金属及び前記担体が還元状態にある前記触媒に酸素を接触させて前記発熱を得ることを特徴とする請求項1に記載の水素の製造方法。 The method for producing hydrogen according to claim 1, wherein the heat is obtained by contacting oxygen with the catalyst in which the metal and the support are in a reduced state.
  3.  前記担体がCe、Zr及びPrから選択される1種又は2種以上の元素を含む酸化物を1種以上含むことを特徴とする請求項2に記載の水素の製造方法。 3. The method for producing hydrogen according to claim 2, wherein the carrier contains one or more oxides containing one or more elements selected from Ce, Zr and Pr.
  4.  前記金属が還元状態にある前記触媒に酸素を接触させて前記発熱を得ることを特徴とする請求項1に記載の水素の製造方法。 The method for producing hydrogen according to claim 1, wherein the heat is obtained by bringing oxygen into contact with the catalyst in which the metal is in a reduced state.
  5.  前記担体がLa、MgO及びMg-Alオキサイドからなる群より選択される1種以上の酸化物を含むことを特徴とする請求項4に記載の水素の製造方法。 5. The method for producing hydrogen according to claim 4, wherein the carrier contains one or more oxides selected from the group consisting of La 2 O 3 , MgO and Mg—Al oxide.
  6.  前記触媒が、アンモニア及び酸素を含む反応ガスから生成した水素を含む生成ガスによって還元されることを特徴とする請求項1~5のいずれか一項に記載の水素の製造方法。 The method for producing hydrogen according to any one of claims 1 to 5, wherein the catalyst is reduced by a product gas containing hydrogen produced from a reaction gas containing ammonia and oxygen.
  7.  前記担体が酸点を有する状態にある前記触媒にアンモニアを接触させて前記発熱を得ることを特徴とする請求項1に記載の水素の製造方法。 The method for producing hydrogen according to claim 1, wherein the exotherm is obtained by contacting ammonia with the catalyst in a state where the carrier has an acid point.
  8.  Al及びSiOからなる群より選択される一種以上の酸化物を含む前記担体を有する前記触媒にアンモニアを接触させて前記発熱を得ることを特徴とする請求項7に記載の水素の製造方法。 8. The hydrogen generation according to claim 7, wherein the exothermic heat is obtained by contacting ammonia with the catalyst having the support containing one or more oxides selected from the group consisting of Al 2 O 3 and SiO 2 . Production method.
  9.  前記触媒が、アンモニアの酸化分解反応の反応熱によってアンモニアが脱離されることを特徴とする請求項7又は8に記載の水素の製造方法。 The method for producing hydrogen according to claim 7 or 8, wherein the catalyst is desorbed by heat of reaction of oxidative decomposition reaction of ammonia.
  10.  前記アンモニアの酸化分解反応の開始及び終了を繰り返すときに当該反応の間で室温にある前記触媒が酸素と接触することを特徴とする請求項7~9のいずれか一項に記載の水素の製造方法。 The hydrogen production according to any one of claims 7 to 9, wherein when the start and end of the oxidative decomposition reaction of ammonia is repeated, the catalyst at room temperature during the reaction comes into contact with oxygen. Method.
  11.  Ru、Co、Rh、Ir及びNiからなる群より選択される一種以上の金属と、該金属を担持する担体と、を有し、前記担体がCe、Zr及びPrから選択される1種又は2種以上の元素を含む酸化物を1種以上含むことを特徴とするアンモニアの酸化分解触媒。 One or two or more metals selected from the group consisting of Ru, Co, Rh, Ir and Ni, and a carrier supporting the metal, wherein the carrier is selected from Ce, Zr and Pr. An ammonia oxidative decomposition catalyst comprising at least one oxide containing at least one kind of element.
  12.  Ru、Co、Rh、Ir及びNiからなる群より選択される一種以上の金属と、該金属を担持する担体と、を有し、前記担体がLa、MgO及びMg-Alオキサイドからなる群より選択される1種以上の酸化物を含むことを特徴とするアンモニアの酸化分解触媒。 One or more metals selected from the group consisting of Ru, Co, Rh, Ir and Ni, and a carrier supporting the metal, the carrier comprising La 2 O 3 , MgO and Mg—Al oxide. An ammonia oxidative decomposition catalyst comprising one or more oxides selected from the group.
  13.  Ru、Co、Rh、Ir及びNiからなる群より選択される一種以上の金属と、該金属を担持する担体と、を有し、前記担体がAl及びSiOからなる群より選択される一種以上の酸化物を含むことを特徴とするアンモニアの酸化分解触媒。 One or more metals selected from the group consisting of Ru, Co, Rh, Ir and Ni, and a carrier supporting the metal, wherein the carrier is selected from the group consisting of Al 2 O 3 and SiO 2. A catalyst for oxidative decomposition of ammonia, comprising at least one oxide.
  14.  請求項11~13のいずれか一項に記載のアンモニアの酸化分解触媒を備えることを特徴とする水素製造装置。 A hydrogen production apparatus comprising the ammonia oxidative decomposition catalyst according to any one of claims 11 to 13.
PCT/JP2013/080029 2012-11-06 2013-11-06 Oxidative decomposition catalyst for ammonia, method for producing hydrogen, and apparatus for producing hydrogen WO2014073576A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-244934 2012-11-06
JP2012244934 2012-11-06
JP2013047332A JP6145921B2 (en) 2012-11-06 2013-03-08 Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus
JP2013-047332 2013-03-08

Publications (1)

Publication Number Publication Date
WO2014073576A1 true WO2014073576A1 (en) 2014-05-15

Family

ID=50684678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080029 WO2014073576A1 (en) 2012-11-06 2013-11-06 Oxidative decomposition catalyst for ammonia, method for producing hydrogen, and apparatus for producing hydrogen

Country Status (2)

Country Link
JP (1) JP6145921B2 (en)
WO (1) WO2014073576A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015177773A1 (en) * 2014-05-22 2015-11-26 Sabic Global Technologies B.V. Mixed metal oxide catalysts for ammonia decomposition
CN111051238A (en) * 2017-11-29 2020-04-21 住友化学株式会社 Process for oxidation of ammonia
US10941691B2 (en) 2017-04-04 2021-03-09 Basf Corporation On-board vehicle hydrogen generation and use in exhaust streams
US10961890B2 (en) 2017-04-04 2021-03-30 Basf Corporation On-board vehicle ammonia and hydrogen generation
US11028749B2 (en) 2017-04-04 2021-06-08 Basf Corporation Hydrogen reductant for catalytic pollution abatement
US11125133B2 (en) 2017-04-04 2021-09-21 Basf Corporation Hydrogen-assisted integrated emission control system
US11181028B2 (en) 2017-04-04 2021-11-23 Basf Corporation Ammonia generation system for NOx emission control
US11199117B2 (en) 2017-04-04 2021-12-14 Basf Corporation Integrated emissions control system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6403135B2 (en) * 2014-07-24 2018-10-10 国立大学法人群馬大学 Method for producing ammonia-decomposing hydrogen from ammonia nitrogen-containing waste
JP6566662B2 (en) * 2015-03-06 2019-08-28 国立大学法人 大分大学 Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus using ammonia oxidative decomposition catalyst
JP6650840B2 (en) * 2016-06-24 2020-02-19 国立大学法人 大分大学 Method for producing MgO-supported catalyst
JP6751606B2 (en) * 2016-07-01 2020-09-09 株式会社日本触媒 Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JP6795804B2 (en) * 2019-07-30 2020-12-02 国立大学法人 大分大学 Ammonia oxidative decomposition-hydrogen production catalyst and hydrogen production equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456301A (en) * 1987-08-27 1989-03-03 Nippon Kokan Kk Treatment of ammonia
US20020028171A1 (en) * 2000-05-12 2002-03-07 Goetsch Duane A. Production of hydrogen by autothermic decomposition of ammonia
JP2010269239A (en) * 2009-05-21 2010-12-02 Hitachi Zosen Corp Catalyst for oxidation/decomposition of ammonia
WO2012029122A1 (en) * 2010-08-31 2012-03-08 日立造船株式会社 Ammonia oxidation/decomposition catalyst
JP2012101157A (en) * 2010-11-09 2012-05-31 Hitachi Zosen Corp Ammonia oxidation and decomposition catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456301A (en) * 1987-08-27 1989-03-03 Nippon Kokan Kk Treatment of ammonia
US20020028171A1 (en) * 2000-05-12 2002-03-07 Goetsch Duane A. Production of hydrogen by autothermic decomposition of ammonia
JP2010269239A (en) * 2009-05-21 2010-12-02 Hitachi Zosen Corp Catalyst for oxidation/decomposition of ammonia
WO2012029122A1 (en) * 2010-08-31 2012-03-08 日立造船株式会社 Ammonia oxidation/decomposition catalyst
JP2012101157A (en) * 2010-11-09 2012-05-31 Hitachi Zosen Corp Ammonia oxidation and decomposition catalyst

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KATSUTOSHI NAGAOKA ET AL.: "Highly active Cs20/ Ru/Pr6011 as a catalyst for ammonia decomposition", CHEMISTRY LETTERS, vol. 39, no. 9, 17 July 2010 (2010-07-17), pages 918 - 919 *
SHADEN RYU ET AL.: "Hydrogen production by oxidative decomposition of ammonia on Ru/Al2O3", DAI 98 KAI CATSJ MEETING YOKOSHU A, 26 September 2006 (2006-09-26), pages 145 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015177773A1 (en) * 2014-05-22 2015-11-26 Sabic Global Technologies B.V. Mixed metal oxide catalysts for ammonia decomposition
CN106457222A (en) * 2014-05-22 2017-02-22 沙特基础工业全球技术有限公司 Mixed metal oxide catalysts for ammonia decomposition
US10941691B2 (en) 2017-04-04 2021-03-09 Basf Corporation On-board vehicle hydrogen generation and use in exhaust streams
US10961890B2 (en) 2017-04-04 2021-03-30 Basf Corporation On-board vehicle ammonia and hydrogen generation
US11028749B2 (en) 2017-04-04 2021-06-08 Basf Corporation Hydrogen reductant for catalytic pollution abatement
US11125133B2 (en) 2017-04-04 2021-09-21 Basf Corporation Hydrogen-assisted integrated emission control system
US11181028B2 (en) 2017-04-04 2021-11-23 Basf Corporation Ammonia generation system for NOx emission control
US11199117B2 (en) 2017-04-04 2021-12-14 Basf Corporation Integrated emissions control system
CN111051238A (en) * 2017-11-29 2020-04-21 住友化学株式会社 Process for oxidation of ammonia
CN111051238B (en) * 2017-11-29 2023-06-16 住友化学株式会社 Method for oxidizing ammonia

Also Published As

Publication number Publication date
JP2014111517A (en) 2014-06-19
JP6145921B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP6145921B2 (en) Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus
JP6795804B2 (en) Ammonia oxidative decomposition-hydrogen production catalyst and hydrogen production equipment
JP4758888B2 (en) Hydrocarbon reforming catalyst, hydrogen production method using the reforming catalyst, and fuel cell system
Liu et al. Progresses in the preparation of coke resistant Ni‐based catalyst for steam and CO2 reforming of methane
Wang et al. Lithium-based sorbent from rice husk materials for hydrogen production via sorption-enhanced steam reforming of ethanol
Lv et al. Promoting effect of zirconium doping on Mn/ZSM-5 for the selective catalytic reduction of NO with NH3
CN113694922A (en) Supported catalyst for ammonia decomposition and preparation method thereof
JP6566662B2 (en) Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus using ammonia oxidative decomposition catalyst
JP2006346598A (en) Steam reforming catalyst
JP4185952B2 (en) Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus
JP2005169236A (en) Fuel reforming catalyst
JP2004344721A (en) Reforming catalyst for oxygen -containing hydrocarbon, method for producing hydrogen or synthesis gas using it and fuel cell system
JP2005200266A (en) Reforming method, reformer, power generator and fuel vessel
US11795055B1 (en) Systems and methods for processing ammonia
JP6081445B2 (en) HYDROGEN GENERATION CATALYST, HYDROGEN GENERATION CATALYST MANUFACTURING METHOD, AND HYDROGEN-CONTAINING GAS MANUFACTURING METHOD, HYDROGEN GENERATOR, FUEL CELL SYSTEM, AND SILICON-SUPPORTED CEZR BASED OXIDE
JP5989306B2 (en) Carbon monoxide methanation catalyst
Hu et al. Facile preparation and efficient MnxCoy porous nanosheets for the sustainable catalytic process of soot
JP2006281205A (en) Catalyst for producing hydrogen
JPH11165070A (en) Selective oxidation catalyst for co in gaseous hydrogen its production and removing method of co in gaseous hydrogen
JP5800719B2 (en) Hydrogen production catalyst and hydrogen production method using the same
JP2004134299A (en) Carbon monoxide removing device and solid polymer fuel cell system
JP6257256B2 (en) Steam reforming reactor and fuel cell power generator
US11866328B1 (en) Systems and methods for processing ammonia
JP4463914B2 (en) Method for producing hydrogen-containing gas for fuel cell
JP4213952B2 (en) Methanol aqueous solution reforming catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13852965

Country of ref document: EP

Kind code of ref document: A1